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1 Introduction

Estimating the causal effect of an intervention (treatment) is a common task across the

social sciences. Longitudinal approaches based on difference-in-differences have long

been used for this task. However, the credibility of these methods can be strained when

the pre-treatment trends or characteristics of the untreated units differ significantly

from those of the treated units. This occurs frequently, especially when the units

are large aggregates, such as countries or states. For these types of comparative case

studies, the synthetic control (SC) method of Abadie and Gardeazabal (2003) and

Abadie, Diamond, and Hainmueller (2010, 2015) provides an attractive alternative.

The motivation of the SC method is to limit the extrapolation bias that can occur

when units with different pre-treatment characteristics are combined using a traditional

adjustment, such as a linear regression. Instead, the SC estimator interpolates by using

a convex weighted average of the untreated units to create a synthetic untreated unit

with pre-treatment characteristics similar to those of the treated unit. As observed

by Abadie et al. (2010, pp. 495–496), this makes the SC estimator susceptible to

interpolation bias. In Section 2, we formalize this observation by showing that the SC

estimator will only avoid such bias if the conditional mean of the outcome is linear in

pre-treatment characteristics.

As Abadie and L’Hour (2019) observe, the SC estimator belongs to a large class

of estimators constructed around the assumption of selection-on-observables. Within

this class, its vulnerability to interpolation bias is unique. Most other commonly used

estimators, such as nearest-neighbor matching, suffer from the opposite drawback of

potentially extrapolating too much when suitable untreated units are unavailable. That

is, the SC estimator controls extrapolation bias while being susceptible to interpola-

tion bias, whereas the matching estimator has the opposite properties. This comple-

mentarity suggests that an estimator that adaptively combines the SC and matching

estimators may be particularly attractive.

In Section 2, we propose the matching and synthetic control (or MASC) estimator as

a model averaging estimator that combines the standard SC and matching estimators.

We show how averaging these two purposefully-chosen estimators defends against the

weaknesses of both while preserving their strengths. In Section 3, we show how to

choose the weight assigned to each estimator in the MASC through cross-validation,

as in Wolpert (1992), Breiman (1996) and Hansen and Racine (2012). Our cross-

validation criterion uses an evaluation concept referred to as rolling-origin recalibration

in the forecasting literature (e.g. Tashman, 2000). One attractive feature of the MASC

estimator is that its cross-validated weight can be solved for in closed-form, making it

2



only marginally more difficult to implement than the usual SC estimator.

In Sections 4, 5, and 6, we provide evidence that the MASC estimator performs

extremely well in practice. In Sections 4 and 5, we use both illustrative and empirical

(data-derived) Monte Carlo simulations to demonstrate the concepts of extrapolation

and interpolation bias, and how the MASC estimator defends against both. In Section

6, we use the MASC estimator to revisit the Spanish terrorism application of Abadie

and Gardeazabal (2003). We evaluate the performance of the matching, SC, penalized

SC (Abadie and L’Hour, 2019), and MASC estimators through placebo exercises using

the untreated units. Our findings show that the MASC estimator consistently outper-

forms the others on these exercises. The MASC estimator also yields treatment effect

estimates that are substantially different than those using other methods.

Our paper is related to a growing literature on SC (see Abadie, 2019, for a recent

survey). The closest work to ours is the paper by Abadie and L’Hour (2019), who

propose the penalized SC estimator. The penalized SC and MASC estimators are dif-

ferent, but related in that both assign weights to untreated units while taking into

consideration their distance from the treated unit in terms of pre-treatment charac-

teristics. In Section 2, we show that the penalized SC estimator is the solution to a

constrained version of the problem implicitly solved by the MASC. Thus, the MASC

represents a richer model than the penalized SC. While this does not necessarily mean

it will perform better in practice, our simulations and empirical results in Sections 4–6

suggest that it may have an edge in the types of comparative case studies to which SC

estimators are often applied.

Also closely related to our work is the paper by Athey, Bayati, Imbens, and Qu

(2019), who also consider the benefits of model averaging in the context of compar-

ative case studies. Those authors combine several of the regularized SC and matrix

completion estimators developed in Doudchenko and Imbens (2016) and Athey, Bayati,

Doudchenko, Imbens, and Khosravi (2018). Our MASC estimator differs from theirs

both in details and intent. The purpose of the MASC estimator is to directly guard

against the types of interpolation biases that can occur with the SC estimator, and

the extrapolation bias that can occur with matching, by adaptively blending them to-

gether. Like Athey et al. (2019), we also find that model averaging tends to work quite

well, in concordance with a recurring finding of the economic forecasting literature (see

e.g. Stock and Watson, 2004, 2006). A contrast with Athey et al. (2019), and much of

the forecasting literature, is that the estimators we average are purposefully chosen to

be complementary. This is exactly the case when data-driven model averaging should

be especially beneficial, see, for example, Breiman (1996) or Elliot (2011).
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2 Methodology

2.1 Setup

Suppose that we observe a scalar outcome, Yit, for cross-sectional units denoted by i

at times t = 1, . . . , T , as well as a time-invariant binary treatment group indicator,

Di ∈ {0, 1}, and a k–dimensional vector of pre-treatment covariates, Xi. Units in

the treated group become treated at an event date, t?, so that treatment status in

time t is given by Dit ≡ Di1[t ≥ t?]. Associated with the outcome and treatment are

potential outcomes Yit(0) and Yit(1), which are related to the observed outcome via

Yit = DitYit(1) + (1−Dit)Yit(0). Our goal is to estimate the average treatment on the

treated (ATT),

ATTt ≡ E[Yit(1)− Yit(0)|Di = 1] = E[Yit|Di = 1]−E[Yit(0)|Di = 1] (1)

where t ≥ t? is some period after the event date.

Identifying the ATT in (1) is a matter of identifying the mean untreated outcomes

for the treated group in the post-period, i.e. βt ≡ E[Yit(0)|Di = 1]. This quantity is

point identified under the following widely-used pair of assumptions.

Assumption 1. (Selection on observables) If x is in the supports of bothXi|Di = 0

and Xi|Di = 1, then E[Yit(0)|Di = 1, Xi = x] = E[Yit(0)|Di = 0, Xi = x] for all t ≥ t?.

Assumption 2. (Overlap) The support of Xi|Di = 1 is contained in the support of

Xi|Di = 0.

Assumption 1 is variously described in the literature as ignorable treatment assign-

ment (Rosenbaum and Rubin, 1983), unconfoundedness (Imbens and Rubin, 2015), or

selection on observables (Barnow, Cain, Goldberger et al., 1980; Heckman and Robb,

1985). Together with Assumption 2, it implies that

βt = E
[

E[Yit|Di = 0, Xi]
∣∣∣Di = 1

]
≡ E [µt(Xi)|Di = 1]

where µt(x) ≡ E[Yit|Di = 0, Xi = x], (2)

so that βt is point identified by the outcomes for the untreated group, conditional

on covariates, after reweighting by the distribution of these covariates in the treated

group. For further discussion, see e.g. Heckman, Ichimura, and Todd (1997, 1998),

Imbens (2004, 2015), or Imbens and Rubin (2015).

Suppose now that we observe a sample of n+1 realizations {(yi1, . . . , yiT , di, xi)}n+1
i=1

from the distribution of (Yi1, . . . , YiT , Di, Xi). Our focus in this paper is the compara-
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tive case study setting considered by Abadie and Gardeazabal (2003) and Abadie et al.

(2010, 2015), in which there is only a single treated unit. We label this treated unit as

i = 1, so that d1 = 1, while di = 0 for all n remaining units i ≥ 2.

Since we only have a single treated unit, we estimate E[Yit|Di = 1] by the realization

of Y1t in the post-period. Similarly, since the empirical distribution of Xi given Di = 1

is simply a point mass at x1, we estimate βt with an estimator of µt(x1). Thus, we

focus on a class of estimators for the ATT of the form

ÂTTt ≡ y1t − µ̂t(x1), (3)

where µ̂t(x1) ≡ µ̂t is an estimator of µt(x1), and we suppress the dependence of µ̂t on

x1 for notational efficiency. The problem we focus on is how to construct µ̂t.

2.2 The Synthetic Control Estimator

The synthetic control (SC) estimator proposed by Abadie and Gardeazabal (2003) and

later elaborated by Abadie et al. (2010, 2015) is defined as

µ̂sct ≡ y′0tωsc where ωsc ≡ arg min
ω∈S

∥∥x1 − x′0ω∥∥2 , (4)

where y0t ∈ Rn are the observed outcomes for the untreated units at time t, x0 ∈ Rn×k

is a matrix containing the stacked covariate vectors of the untreated units, ‖ · ‖ is the

Euclidean norm, and

S ≡

ω ∈ Rn :
∑
j

ωj = 1 and ωj ≥ 0 for all j


is the (n − 1)–dimensional simplex.1 The SC weights, ωsc, are chosen so that the

weighted average of covariates among the untreated units comes as close as possible to

matching the covariate vector of the treated unit, subject to the convexity constraint

that they are non-negative and sum to unity. These weights are then used to construct

µ̂sct by simply weighting the observed outcomes for the untreated units in any given

post-period, t.

The SC estimator has a number of attractive properties. By construction, it mini-

1 The Euclidean norm might be weighted by some symmetric, positive semidefinite matrix, but we omit
this from the notation for simplicity.
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mizes the quantity

Ext(ω) ≡ ‖x1 − x′0ω‖2, (5)

which can be viewed as a measure of extrapolation. Since the weights are constrained

to be convex, this ensures that the SC estimator does not extrapolate, at least as

long as it is possible to make (5) small. This stands in contrast to linear regression

(Abadie, 2019). For example, Imbens (2004, pg. 13) shows that if the treated and un-

treated groups have very different pre-treatment characteristics, then linear regression

adjustment will be quite sensitive to the way it is specified.

Another benefit of the SC estimator is that the weights ωsc are generally sparse, in

the sense that they are only non-zero for a few untreated units (Abadie and L’Hour,

2019). This aids in transparency and provides a way for experts to use contextual

knowledge to evaluate the plausibility of the resulting estimates. Also, solving for ωsc

only requires solving the quadratic program in (4), which is a straightforward convex

problem.

2.3 Interpolation Bias

One concern with the SC estimator is that it is susceptible to interpolation bias. This

was noted by Abadie et al. (2010, pp. 495–496), and has been discussed more recently

by Abadie and L’Hour (2019), although those authors emphasize non-uniqueness issues

that occur with many treated or untreated units. Interpolation biases arise when it

is possible to reproduce the pre-treatment characteristics of the treated unit by using

untreated units with pre-treatment characteristics quite different from the treated unit.

In Figure 1, we illustrate how interpolation biases can arise with the SC estimator.

This figure shows a stylized example with untreated outcome paths for a single treated

unit and five untreated units. The dashed vertical line indicates the beginning of the

treatment period. The outcome paths to the left of the vertical line are observed for

both the treated and untreated units. To the right of the vertical line, only the paths

for the untreated units are observed, while the path we plot for the treated unit is a

potential realization of Y1t(0).

Suppose we follow the recent tradition in the synthetic control literature of taking

Xi to include all pre-treatment outcomes and no other covariates (Doudchenko and

Imbens, 2016).2 Then the SC estimator will be comprised solely of the two distant

untreated units in Figure 1a. It will put zero weight on the three units whose pre-

2 We focus on this case throughout the paper both it allows us to examine the methods graphically, and
also because it limits specification searching.
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Figure 1: The potential for interpolation bias with the synthetic control estimator
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(a) Untreated outcome paths for all units.
The treated unit is in black.
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(b) Untreated outcome path for the treated
unit against the estimated paths.

Notes: The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts all control units in
the data as light colored lines. Markers indicate which of these controls are assigned non-zero weight in the different
estimators. Panel (a) plots each estimator using the same markers as in panel (b). In both plots, the solid black line
indicates the untreated outcome for the treated unit, which is observed as data to the left of the vertical dashed line,
and unobserved to the right of it.

period paths oscillate closely around that of the treated unit. This is by design: A

convex weighted average of the two distant untreated units gives the best possible fit

of the pre-period path of the treated unit. While this choice of weights minimizes

extrapolation, it comes at the cost of interpolation.

Whether such interpolation leads µ̂sct to be biased depends on the structure of the

function µt(x). To see this, let eit ≡ yit − µt(xi) denote the deviation between yit and

its conditional mean. Then

µ̂sct ≡ y′0tωsc =
∑
i≥2

ωsc
i (µt(xi) + eit) =

signal︷ ︸︸ ︷∑
i≥2

ωsc
i µt(xi) +

noise︷ ︸︸ ︷∑
i≥2

ωsc
i eit . (6)

In order for the SC estimator to avoid bias due to interpolation, it should be the case

that the signal term can approximate µt(x1). The best possible case is when x1 lies in
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the convex hull of x0, so that x1 = x′0ω
sc =

∑
i≥2 ω

sc
i xi. However, even when this is so,

there is the additional requirement that

∑
i≥2

ωsc
i µt(xi) = µt(x1) = µt

∑
i≥2

ωsc
i xi

 . (7)

We record this necessary condition as the following proposition.

Proposition 1. Suppose that eit = 0 for all i, and that x′0ω
sc = x1. Then µ̂sct = µt(x1)

only if (7) holds.

In order for (7) to hold, the function µt needs to be effectively linear in x.3 A

sufficient condition for this is that Yit(0) follows a factor structure, as suggested by

Abadie et al. (2010, 2015) and further elaborated by Gobillon and Magnac (2016) and

Xu (2017). For example, suppose that

Yit(0) = θ′tXi + ϕ′tLi + Uit with E[Uit|Xi, Li] = 0, (8)

where θt is a vector of unknown parameters, ϕt is a vector of unknown time effects,

and Li is a vector of latent factor loadings. Assume further that E[Li|Xi = x] = Λx is

linear in x. Then

µt(x) = θ′tx+ ϕ′tΛx,

which implies that (7) is satisfied when x′0ω
sc = x1, since

∑
i≥2

ωsc
i µt(xi) = θ′t

∑
i≥2

ωsc
i xi

+ ϕ′tΛ

∑
i≥2

ωsc
i xi

 = θ′tx1 + ϕ′tΛx1 = µt(x1).

However, without the linear, additive structure provided by the factor model (8),

there is no guarantee that (7) will be satisfied. When it is not, interpolation bias can

arise. This is illustrated in Figure 1b, in which the SC estimator interpolates between

the two distant untreated units to fit the pre-intervention outcomes of the treated unit.

Because µt is highly nonlinear, (7) fails, and this interpolation leads µ̂sct to be a poor

estimate of the post-intervention outcomes of the treated unit.

Of course, Figure 1 is a stylized example, which we have constructed to show how

interpolation bias can arise. The extent to which it actually arises in applications is an

3 We say effectively linear because technically this condition is only required when considering points in
the empirical support of Xi.
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empirical question. In Section 5, we characterize the situations in which interpolation

bias is a problem by using data-driven Monte Carlo simulations that are chosen to

roughly reproduce the data in Abadie and Gardeazabal (2003). In Section 6, we provide

evidence of interpolation bias in the original data used by Abadie and Gardeazabal

(2003).

2.4 The Matching Estimator

Local nonparametric smoothing estimators are a classical way to estimate µt(x1). In

general, these estimators can be written as

µ̂lot ≡
∑
i≥2

κ (‖xi − x1‖) yit ≡ y′i0ωlo, (9)

where κ is a kernel function that determines the weight applied to each untreated

observation. For such an estimator to be local, the function κ should be decreasing, so

that untreated units with predetermined characteristics more distant from the treated

unit are given less weight. Local smoothing estimators do not require the linearity

condition (7) that was required for the SC estimator. Instead, they rely only on µt

being sufficiently smooth in its continuous components (e.g. Fan and Gijbels, 1992).

Unlike the SC estimator, local smoothing estimators do not necessarily have sparse,

convex weights. However, the specific class of k–nearest neighbors estimators (Cover,

1968) does have weights with these properties. Estimators based on the nearest neigh-

bors idea are widely used for causal inference problems under Assumptions 1 and 2,

in which case they are commonly described as matching estimators (e.g. Dehejia and

Wahba, 1999; Abadie and Imbens, 2006).

The matching estimator we consider is defined by choosing an integer m ≥ 1 and

setting

κ(v) =

1/m, if m ≥
∑

j≥2 1[v ≥ ‖xj − x1‖]

0, otherwise,

where, for simplicity, we are assuming there are no ties. Letting M ≡ {i ≥ 2 :

κ(‖xi−x1‖) = 1/m} denote the set of untreated units for which this weighting function

is non-zero, we can write the matching estimator more concisely as

µ̂ma
t (m) ≡ 1

m

∑
i∈M

yit =
∑
i≥2

1

m
1[i ∈M]yit ≡ y′0tωma(m). (10)

Intuitively, the matching estimator just takes the average outcomes across the m un-
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Figure 2: The potential for extrapolation bias with matching
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(a) Untreated outcome paths for all units.
The treated unit is in black.
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(b) Untreated outcome path for the treated unit
against the estimated paths.

Notes: The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts all control units in
the data as light colored lines. Markers indicate which of these controls are assigned non-zero weight in the different
estimators. Panel (a) plots each estimator using the same markers as in panel (b). In both plots, the solid black line
indicates the untreated outcome for the treated unit, which is observed as data to the left of the vertical dashed line,
and unobserved to the right of it.

treated units that have pre-period characteristics closest to the treated unit. Like the

SC estimator, it is a sparse, convex weighted average of the post-period outcomes of

the untreated units.

There is an alternative way of expressing the weights for the matching estimator

that facilitates comparison with the SC estimator:

ωma(m) = arg min
ω∈S

∑
i≥2

ωi‖x1 − xi‖2 s.t. ωi ≤
1

m
for all i ≥ 2. (11)

This formulation shows that, in contrast to the SC estimator, the matching estimator

aims to minimize a measure of interpolation:

Int(ω) ≡
∑
i≥2

ωi‖x1 − xi‖2. (12)
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For example, with m = 3, the matching estimator would equally weight the three units

in Figure 1a that oscillate around the treated unit, since their pre-period outcomes are

close to those of the treated unit.4 As a consequence, the matching estimator is less

susceptible to interpolation bias than the SC estimator, and in this example provides

a better estimate of the post-intervention outcomes for the treated unit.

However, the matching estimator is more vulnerable to extrapolation bias than the

SC estimator. To see this, consider Figure 2. In this example, the matching estimator

uses the single untreated unit that is closest to the treated unit, even though the two

units are not actually that close, resulting in considerable bias. In contrast, the SC

estimator weights three of the other untreated units in a way that provides an excellent

fit to the untreated outcome path of the treated unit throughout the pre- and post-

period. The reason is that µt is close to linear in this example, so that (7) is close to

satisfied, and the SC estimator has little interpolation bias.

2.5 Model Averaging with the MASC Estimator

Both the SC and matching estimators share a number of appealing properties in com-

mon. As illustrated in Figures 1 and 2, however, their drawbacks are different and

diametrically opposed: The SC estimator controls extrapolation bias but not inter-

polation bias, while the matching estimator does the opposite. This complementarity

suggests that a model averaging estimator will be able to harness the best properties

of both the matching and SC estimators.5

With this motivation, we define the matching and synthetic control (MASC) esti-

mator as

µ̂masc
t ≡ φµ̂ma

t (m) + (1− φ)µ̂sct ≡ y′0tωmasc

where φ ∈ [0, 1] is a tuning parameter, and ωmasc ≡ φωma(m)+(1−φ)ωsc. In Section 3,

we provide a cross-validation procedure for choosing φ and m. This allows the MASC

to control both interpolation and extrapolation biases in a data-driven way. When

interpolation is the chief concern, the procedure makes the MASC estimator assign

more weight to the matching estimator. In Figure 1, it sets φ = 1, so that the MASC

exactly coincides with the matching estimator. On the other hand, when extrapolation

is the concern, the procedure assigns more weight to the SC estimator. For example,

in Figure 2, it sets φ = 0, so that the MASC exactly coincides with the SC estimator.

Intermediate cases can also arise, as in Figure 3. In this case, the outcome paths

4 Our cross-validation procedure, which we discuss ahead in Section 3, selects m = 3 in this example.
5 For example, see the discussion surrounding Theorem 1 of Breiman (1996).
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Figure 3: MASC adapts to control both extrapolation and interpolation bias
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(a) Untreated outcome paths for all units.
The treated unit is in black.
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(b) Untreated outcome path for the treated
unit against the estimated paths.

Notes: The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts all control units in
the data as light colored lines. Markers indicate which of these controls are assigned non-zero weight in the different
estimators. Panel (a) plots each estimator using the same markers as in panel (b). In both plots, the solid black line
indicates the untreated outcome for the treated unit, which is observed as data to the left of the vertical dashed line,
and unobserved to the right of it.

are moderately non-linear, so the SC estimator suffers from interpolation bias. At the

same time, there are no untreated units that closely match the pre-period path of the

treated unit, so the matching estimator suffers from extrapolation bias.6 In contrast,

the cross-validation procedure chooses φ ≈ .5, which allows the MASC estimator to

mix the SC estimator with the matching estimator, mitigating both sources of bias.

2.6 The Penalized Synthetic Control Estimator

A related, but much different estimator has recently been proposed by Abadie and

L’Hour (2019). Those authors start with the SC estimator and add a penalty that

discourages choosing units far from the treated unit. Their penalized SC estimator is

6 In this case, the cross-validation procedure selects m = 1 for the matching estimator.
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defined as

µ̂pent ≡ y′0tωpen

where ωpen ≡ arg min
ω∈S

(1− π)‖x1 − x′0ω‖2 + π

∑
i≥2

ωi‖xi − x1‖2
 , (13)

where π ∈ [0, 1] is a tuning parameter that controls the penalty incurred by weight-

ing untreated units with pre-treatment characteristics different from the treated unit.

When π = 0, the penalized SC estimator reduces to the usual SC estimator, µ̂sct , while

for π = 1, it is equal to µ̂ma
t (m) with m = 1.7

The optimization problem solved by the penalized SC estimator is a constrained

version of the one implicitly solved by the MASC estimator. This is because (13) can

also be written as

ωpen = arg min
ωa,ωb∈S

(1− π)‖x1 − x′0ωa‖2 + π

∑
i≥2

ωbi‖xi − x1‖2
 s.t. ωa = ωb,

whereas ωmasc is the solution to this program (with π replaced by φ) when m = 1 and

the constraint ωa = ωb is dropped. While the MASC estimator takes a convex combi-

nation of the SC and matching estimators—which respectively minimize extrapolation

and interpolation bias—the penalized SC estimator solves a constrained problem which

can lead it to choose an entirely different set of weights.

Figure 4 demonstrates the implications this can have in practice, using the same

scenario as in Figure 3. Recall that in this example, the MASC estimator is a roughly

equal combination of the SC and matching estimators. In contrast, the penalized SC

estimator represents neither the SC estimator nor the matching estimator. It puts

roughly half of its weight on the untreated unit whose path is most below the treated

unit, which is a unit that gets weight in the SC estimator. The other half of the

penalized SC weight is placed on a unit that is given zero weight in both the SC and

matching estimators. Intuitively, the penalized SC estimator ends up being the average

7 Note that Abadie and L’Hour (2019) parameterize their criterion function slightly differently as

arg min
ω∈S

‖x1 − x′0ω‖2 + π̃

∑
i≥2

ωi‖xi − x1‖2
 ,

for π̃ ≥ 0. This can be made comparable to (13) by dividing by (1 − π), so that π̃ ≡ π
(1−π) . Then, π̃ = 0

corresponds to the SC estimator, while the matching estimator with m = 1 is recovered as π → 1 so that
π̃ →∞, just as in Abadie and L’Hour (2019).
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Figure 4: Contrasting the behavior of penalized SC with MASC
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(b) Untreated outcome path for the treated
unit against the estimated paths.

Notes: The vertical dashed line indicates the beginning of the treatment period. Panel (a) depicts all control units in
the data as light colored lines. Markers indicate which of these controls are assigned non-zero weight in the different
estimators. Panel (a) plots each estimator using the same markers as in panel (b). In both plots, the solid black line
indicates the untreated outcome for the treated unit, which is observed as data to the left of the vertical dashed line,
and unobserved to the right of it.

of a suboptimal SC estimator and a suboptimal matching estimator. In this example,

its bias is comparable to that of the SC estimator, and significantly greater than that

of the MASC estimator.

It is important to observe that we are ignoring a primary motivation provided by

Abadie and L’Hour (2019) for the penalized SC estimator, which is its ability to solve

the non-uniqueness problem that can arise when solving the SC problem (4). As Abadie

and L’Hour (2019) discuss, this problem is usually not an issue when there is a single

treated unit, which is the case we consider here. It becomes much more likely to be

problematic with multiple treated units. In such settings, one could modify the MASC

so that it averages between the matching and penalized SC estimators. We expect that

the resulting estimator would behave similar to the way the MASC behaves when there

is a single treated unit.
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3 Cross-Validation

In this section, we propose a cross-validation procedure for choosing the tuning param-

eters for the estimators discussed in the previous section. As in Abadie et al. (2015),

our procedure is based on optimizing the fit of the treated unit’s outcome series in the

pre-treatment period. Whereas those authors used a single training-validation split,

our procedure uses a series of one-step ahead forecasts, each of which is estimated

using data only from periods prior to the forecast date. This is called rolling-origin

recalibration in the forecasting literature (e.g. Tashman, 2000; Bergmeir and Beńıtez,

2012).8

We define our folds, f , as consisting of all pre-period data running from period

t = 1 up to t = f . Let µ̂f+1(τ) denote a generic estimator of the outcome in period

f + 1 based on data in fold f , where τ is a generic vector of tuning parameters. Our

cross-validation procedure chooses τ to minimize

Q(τ) ≡ 1

|F|
∑
f∈F

(y1,f+1 − µ̂f+1(τ))2 , (14)

where F is a subset of time periods taken from the pre-period, {1, . . . , t? − 1}.
Figure 5 illustrates the structure of the rolling-origin cross-validation procedure. In

this example, the treatment date is t? = 21, so that there are 20 pre-treatment periods.

Fold f = 19 uses all data from t = 1, . . . , 19 to construct a forecast of the treated unit’s

outcome in period f + 1 = 20. Fold f = 18 uses data from t = 1, . . . , 18 to forecast

at t = 19, and so on. The criterion is constructed by averaging together the squared

prediction errors from a choice of folds, F .

The largest that F can be is of course {1, . . . , t?−1}. In practice, we use fewer folds

than this, and prefer folds that are longer. The bias-variance trade-offs that drive this

choice are natural. Folds closer to the treatment date are likely to be more relevant to

the post-treatment period. They are also larger, so that the estimators use more data.

On the other hand, we expect that having more folds will decrease the variance of Q(τ).

These trade-offs are also present in more common applications of cross-validation with

independent and identically distributed data (e.g. Hastie, Tibshirani, and Friedman,

2009, pg. 242–243). The added complication here is that not all folds are equally

valuable, so we prefer ones that are closer to the actual treatment date.

The parameters τ differ by estimator. The synthetic control estimator has no

tuning parameters.9 The matching parameter has the number of matches, m. The

8 A similar evaluation concept is the rolling-window considered by Swanson and White (1997).
9 As we mentioned in footnote 1, the Euclidean norm defining the synthetic control or matching estimators
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Figure 5: Cross-validation based on rolling-origin recalibration.

MASC estimator has both m and the model average parameter, φ. The penalized

synthetic control estimator has the penalty parameter, π.

For the MASC estimator, it is straightforward to find the unconstrained minimum

of Q(φ,m) in φ for any fixed m. Using least squares algebra, the solution is

φ?(m) ≡
∑

f∈F (µ̂ma
f+1(m)− µ̂scf+1)(y1,f+1 − µ̂scf+1)∑
f∈F (µ̂ma

f+1(m)− µ̂scf+1)
2

. (15)

This means that cross-validating the MASC is extremely easy computationally. First,

compute φ?(m) for a set of potential matches, m. Then for each m, set

φ̂(m) ≡


0, if φ?(m) ≤ 0

1, if φ?(m) ≥ 1

φ?(m) otherwise

Finally set m̂ ≡ arg minmQ(φ̂(m),m), and set φ̂ ≡ φ̂(m̂). The cross-validated MASC

could be weighted. Abadie et al. (2010, 2015) view the weights as tuning parameters and choose them using
cross-validation. We could do this as well with our criterion (14), but we have elected not to in the current
paper because optimizing over the weights introduces computational issues that, while solvable, are not the
main focus of our paper (Becker and Klößner, 2017, 2018).
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Figure 6: Typical draws in the illustrative Monte Carlo
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(c) Increased dispersion

Notes: The vertical dashed line indicates the beginning of the treatment period. The treated unit is shown in black.

estimator is a weighted average of µ̂sc and µ̂ma(m̂) with weights (1− φ̂) and φ̂, respec-

tively.

For the penalized SC estimator, Q(π) is not necessarily convex in π, which makes

it harder to find the global minimum. In the results ahead, we use a grid search to

cross-validate both the MASC and penalized SC estimators, so that we can focus on

the statistical differences instead of computational artifacts. In practice, one should

cross-validate the MASC estimator analytically, as described in the previous paragraph.

4 An Illustrative Monte Carlo

We first illustrate the behavior of different estimators in a fabricated simulation. This

simulation is meant to be expository, not necessarily realistic; we consider a Monte

Carlo based on real data in the next section.

The data is generated by taking draws over T = 24 periods from

Yit = trendit(α) + Vit,

where trendit(α) is a unit-specific time trend that depends on a scalar parameter, α,

and Vit is normally distributed for all units with mean 0 and standard deviation 5.

The full expression for trendit(α) is given in Appendix A; the important part is that

its nonlinearity over time decreases with α for each of the seven untreated units. As

shown in Figures 6a and 6b, for α = 1 there is no trend, and for α = .95 the untreated

units range from also have no trend to having a severely nonlinear trend.

We measure performance in terms of the mean squared prediction error averaged
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Figure 7: Performance in the illustrative Monte Carlo
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Notes: These violin plots show the density of MSPE over 1,000 simulation draws. The internal boxplots indicate the
5th and 95th percentiles at the end of the whiskers, the 25th and 75th percentiles at the hinges, and the median at
the line splitting the box. The black dot is the mean.

over the post-period, which starts in t? = 21. For a generic estimator µ̂, this is defined

as

MSPE ≡ 1

4

24∑
t=21

(y1t − µ̂t)2 .

Figures 7a and 7b report violin plots of MSPE across simulations for α = 1 and α =

.95.10 For the linear case with α = 1, all estimators have similar MSPE distributions,

although the SC estimator is a bit more concentrated towards 0. For the nonlinear case

with α = .95, the SC estimator starts to suffer from interpolation bias with both larger

average MSPE and larger, more frequent poor-performing outlying draws, while the

other estimators—including both the MASC and penalized SC estimators—continue

to perform about equally well.

In Figure 6c, we make the interpolation bias even more severe by maintaining

α = .95, but increasing the dispersion in the initial conditions of the untreated units.

One untreated unit remains a close neighbor, while the others have moved further

away in the early parts of the sample. The violin plot in Figure 7c shows that both the

matching and MASC estimators continue to perform well in this case, because they

pick up this close neighbor. In contrast, the SC and penalized SC estimators perform

much worse.

10 Our Monte Carlo simulations use 1,000 replications. The tuning parameters in the matching, penalized
SC, and MASC estimators are chosen through cross-validation with F = {12, . . . , 19} consisting of 8 folds.
For the matching and MASC estimators, we choose the number of matches from m ∈ {1, 2, 3, 4, 5}.
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Figure 8: Decreasing MSPE by allowing for extrapolation error
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Note: The results are for the third design, which is depicted in Figure 6c. The MASC estimator uses m = 1.

Figure 8 shows why this occurs. The figure plots both the average MSPE and the

average extrapolation error, as measured by Ext(ω), as functions of φ and π for both

the MASC and penalized SC estimators. When φ = π = 0, both estimators correspond

to the standard SC estimator which, while it minimizes extrapolation error, has a very

large average MSPE in this case. Increasing φ or π increases extrapolation error,

but reduces average MSPE due to reduced interpolation error. After a certain point,

the trade-off reverses, and average MSPE starts increasing again until reaching the

matching estimator at φ = π = 1. Both the MASC and penalized SC estimators

capture this trade-off, although in this case the MASC does so more efficiently due the

wider range over which it outperforms both the SC and matching estimators.

5 An Empirical Monte Carlo

In the next section, we reexamine Abadie and Gardeazabal’s (2003) seminal application

of the synthetic control method to estimating the effect of terrorism on per capita

GDP in Spain. In this section, we first implement a Monte Carlo simulation designed

to mimic their data by simulating from a model that fits their data. The purpose

of this simulation is to study the different estimators in a setting that is constructed
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Figure 9: Ten draws of Catalonia in the empirical Monte Carlo
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Notes: The vertical dashed line is drawn halfway between 1969 and 1970 to indicate the beginning of the placebo
treatment period in 1970. The solid black line in panel (a) indicates the original times series for Catalonia.

to closely resemble real data. The original data consists of time series on per-capita

GDP running from 1955–1997 for 17 regions in Spain. The treated unit is the Basque

Country, and the treatment (the onset of separatist terrorism) begins in 1970. Here,

we use only the period from 1955–1973, and we conduct a placebo study that uses only

the 16 untreated units.

We construct a data generating process by fitting a spatial autoregressive model

with normally distributed errors.11 Then, we generate simulated data by taking draws

from this model. Figure 9 shows the original data for one untreated unit (Catalonia),

as well as ten sample draws from the estimated model. The perturbations from the

data are relatively minor, which is our intent, since we want to preserve the qualitative

features of the data. The model does good job at faithfully reproducing the patterns

in the Spanish data with a bit of sampling error added. It does not mechanically favor

either the SC or matching estimator.

We use this data generating process to compare estimators through a placebo exer-

11 The model is similar to that in Blanchard and Katz (1992) or Acemoglu, Naidu, Restrepo, and Robinson
(2019). First, we regress the raw outcome paths against a set of time dummies as well as a unit-specific
cubic trend. Then, we fit the detrended paths with an AR(2) process with normally distributed innovations
that are allowed to be arbitrarily correlated across regions.
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Figure 10: Results of the Spanish placebo Monte Carlo simulation
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Note: The dashed line in panel (a) indicates the mean square treatment effect estimated for the Basque Country for
scale. Panel (b) reports the proportional (log) difference in average MSPE between each estimator and MASC.

cise. For each untreated unit, we fit an estimator using all other untreated units, and

dropping the Basque Country. Then we look at the distribution of its four-year MSPE

over 1970–1973 across simulation draws. We expect this distribution to be clustered

close to zero if the estimator is working well.

Figure 10a shows the average MSPE for the MASC estimator in each region’s

placebo study.12 Figure 10b shows the proportional (log) difference in average MSPE

between the MASC estimator and the other four estimators. The MASC estimator

tends to outperform the other estimators, including the penalized SC estimator, which

in this case looks close to the standard SC estimator. The MASC adapts to regions

such as Madrid, where matching performs well but SC does poorly. It also adapts to

regions such as Catalonia, where matching does poorly, but SC does well. In regions

like Murcia, where neither matching nor SC perform well, the MASC outperforms

both. For the two regions where the MASC does poorly, Balearas and Extremadura,

the other estimators perform equally poorly.13

12 In this simulation we cross-validate using F = {1962, . . . , 1968} and choose the number of matches from
all integers between 1 and 10.

13 For Extremadura, all estimators turn out to be identical. This is because both its outcome path lies
substantially and uniformly below that of Castilla-La Mancha, which itself lies substantially and uniformly
below the outcome paths of all other regions. All estimators thus place all of their weight on Castilla-La
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Figure 11: Cross-validation performance in the Spanish placebo Monte Carlo Simulation
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Figure 11 plots the average values of φ and m chosen for the MASC by the rolling-

origin cross-validation procedure against the infeasible values that would minimize the

unknown expected MSPE. For most regions, the average selected values of φ and m are

reasonably close to the 45 degree line. To the extent that the average values deviate,

the deviations tend to be towards smaller φ’s and larger m’s. This suggests that, if

anything, the cross-validated MASC is underfitting, since the cross-validation proce-

dure appears biased towards weighting the SC estimator and using a larger number of

matches.

6 Re-Examining the Economic Costs of Conflict

In this section, we use the entire Spanish data set to re-examine the estimates from

Abadie and Gardeazabal (2003) using the MASC estimator.

We begin by conducting the same type of placebo exercise as in the previous section,

but now using the real data. Abadie and Gardeazabal (2003) performed this analysis

using Catalonia as the placebo region, since Catalonia is a similar region with lower

exposure to terrorism, and the one that received the most weight in their original

application of the SC estimator. They found that the SC estimator reproduced the

actual per capita GDP for Catalonia quite well, at least up to the late 1980s. They

interpreted this as evidence in support of their estimates for the Basque Country.

Mancha in the Extremadura placebo.
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Figure 12: Results of the placebo estimates
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Note: The dashed line in panel (a) indicates the mean square treatment effect estimated for the Basque Country for
scale. Panel (b) reports the proportional (log) difference in MSPE between each estimator and MASC.

We apply a similar placebo exercise to each of the 16 untreated region, including

Catalonia. For each one, we exclude both the region in question and the Basque

Country when constructing the various estimators. Then we use each estimator to

compute treatment effect estimates over the pre-terrorism years 1970–1973.14 This

iterative procedure yields a distribution of MSPE across regions where no intervention

took place. As in the previous section, we expect the distribution to cluster near 0 if

the estimator is working well.

Figure 12 displays the results. Consistent with the simulation results, the MASC

estimator performs much better than either matching, SC, or penalized SC estimators.

On average, these estimators have MSPEs that are, respectively, 24, 27, and 21 percent

higher than the MASC. Figure 10b suggests that the reason is the same as we found

in the placebo simulation exercise in the previous section. The MASC estimator is

able to adapt to regions where matching performs well, and to regions where the SC

estimator performs well, while blending the two successfully in regions where both do

poorly. In contrast, the penalized SC estimator tends to behave quite similarly to the

standard SC estimator. This echoes its interpretation as a restricted version of the

14 As in Section 5, we continue to cross-validate all estimators using F = {1962, . . . , 1968}, and we choose
the number of matches for the matching and MASC estimators from all integers between 1 and 10.
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Figure 13: Counterfactuals for the Basque Country by estimator
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MASC estimator. At least in the current setting, it appears that the extra flexibility

of the MASC estimator provides substantial benefits over the penalized SC estimator.

Having established that the MASC performs better on the placebo exercise, we

now turn to treatment effect estimates for the Basque Country. Figure 13 shows the

counterfactual estimates for the Basque Country in the absence of terrorism. The

SC and penalized SC estimators track the actual Basque Country series well up until

1974, which is the year that separatist terrorism started to really ramp up (Abadie

and Gardeazabal, 2003, Table 1). The matching and MASC estimators track the series

less well, despite the fact that the MASC estimator performed much better than the

rest on the placebo exercises. This demonstrates the point (already well-known in the

literature on SC) that pre-period fit alone should not be used to evaluate the credibility

of an estimator.

Figure 14a shows the yearly treatment effect estimates for the MASC estimator in

the period 1970–1980. The MASC estimates suggest that separatist terrorism caused

an economically significant decrease in per capita GDP in the Basque Country. By
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Figure 14: Treatment effects for the Basque Country by estimator
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1975, for example, we estimate that terrorism had reduced GDP per capita by 144 US

dollars (a 1.9 percent reduction). By way of comparison, the SC estimate is -47 US

dollars (a 0.6 percent reduction), and the penalized SC estimate is 37.9 US dollars (a 0.5

percent increase).15 Figure 14b shows the proportional (log) difference in the estimated

treatment effects between the MASC estimator and the other estimators. Here we see

that across the entire post-period, the matching estimator suggests considerably larger

effect estimates than MASC, while the penalized and standard SC estimators suggest

much smaller effect sizes.

7 Conclusion

One of the major impacts of the synthetic control method has been to recast lon-

gitudinal comparative case studies as prediction problems. In this paper, we made

use of two tools from the machine learning and economic forecasting literature: Model

averaging and rolling-origin forecast evaluation. By examining the weakness of the syn-

thetic control (SC) to interpolation bias, and the weakness of the matching estimator

to extrapolation bias, we showed how to use these tools to build a third estimator, the

matching and synthetic control (MASC) estimator, which is able to effectively avoid

15 These are 1986 dollars, as in Abadie and Gardeazabal (2003).
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both sources of bias. Using both simulated and empirical placebo studies, we showed

that the MASC performs much better than either the matching, SC, or penalized SC

estimators. We used the MASC estimator to re-examine Abadie and Gardeazabal’s

(2003) application to the economic costs of conflict in the Basque Country and found

significantly larger effects than with SC.

Appendix

A The Data Generating Process for the Illustrative Monte Carlo

The trend terms are unit-specific autoregressive (AR) sequences defined recursively as

trendit = ρitrendαi(t−1).

For α = 1, this is an AR(1), while for α = .95 it becomes nonlinear, as in Figures 6b and

6c. The autoregressive coefficient for the treated unit, ρ1, is taken to be ρ1 = 1001−α.

For the seven untreated units with i ≥ 2, it is set by

log(ρi) =

(
1− α

1− 0.95

)(
13∑12

s=0 0.95s

)
log

(
ρ1

trend11

trendi1

)
.

We specify the initial conditions as either

trend1t

trend2t

trend3t

trend4t

trend5t

trend6t

trend7t

trend8t


=



100

10

40

70

110

130

160

190


or



trend1t

trend2t

trend3t

trend4t

trend5t

trend6t

trend7t

trend8t


=



100

10

25

40

110

160

175

190


,

where the first set of values is used for Figures 6a and 6b, and the second set is used

when we fan out the initial conditions in Figure 6c.
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