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1 Introduction

It is well known that prices and product variety vary systematically across space: high-end
goods are more available in rich neighborhoods than poor ones. Yet the cost-of-living indexes
that economists employ to account for these spatial price differences aggregate prices using the
same expenditure weights for all consumers, implicitly assuming that tastes do not vary with in-
come.!? Under this assumption, a high-income Washington D.C. resident would be indifferent
between the set of goods available in their local stores and the set available in a city with less
than half the per capita income, like Detroit. In reality, preferences are non-homothetic.® This
paper is the first to study the implications of non-homotheticity for spatial price indexes.*

I first document how availability and prices of grocery products varies with local income
across U.S. cities as well as across neighborhoods within these cities. To measure the impli-
cations of these spatial availability and pricing patterns for the welfare of consumers at differ-
ent income levels, I next develop a model of non-homothetic demand. I estimate the model
with a combination of data describing the aggregate sales of different products in a sample of
stores across the U.S. and the purchases of individual households in those stores. I use the es-
timated model to construct price indexes that summarize how households at different income
levels value the prices and products available to them in different geographic markets. Finally,
I characterize how and why the price level varies across cities and neighborhoods in the U.S.
differently for consumers at different income levels. This analysis yields three sets of novel
results.

First, stores favor high-income consumers more in wealthy locations than in poor ones
through both their pricing and product offerings. Stores in wealthier cities offer products rep-
resenting a greater share of the high-income consumption bundle than the low-income con-
sumption bundle. Stores in wealthier cities also charge relatively less for the high-income con-
sumption bundle than the low-income one, conditional on availability. The same patterns are

observed across stores in different neighborhoods of the same city.

|Albouy| (2009) and Morettil (2013)), for example, use the ACCRA indexes to calculate real tax burdens and
income inequality accounting for intra-national price variation, while Deaton| (2010) and |Almas| (2012} use ho-
mothetic indexes based on the Penn World Table data to calculate poverty thresholds and real income inequality
adjusting for international price variation.

2Notable exceptions include |Deaton and Dupriez (2011a) who calculate country-specific poverty thresholds
based on purchasing power parity deflators that reflect the consumption patterns of the global poor, and L1 (2012)
who uses income-specific price indexes to measure the difference in the potential welfare gains from variety for
high- relative to low-expenditure households moving from rural to urban areas in India.

3Deaton and Muellbauer (1980) note that homotheticity is consistently violated in cross-sectional household
studies. More direct evidence includes Bils and Klenow| (2001)), [Broda et al.| (2009), |[Faber and Fally| (2017,
Hottman and Monarch! (2018]), and|{Jaimovich et al.| (2019) for the U.S., [Faber|(2014) and |Cravino and Levchenko
(2017) for Mexico, and L1/ (2012) for India.

*The importance of recognizing the these non-homotheticities in regional price indexes was recognized over
50 years ago in|Snyder|(1956)). Related concurrent work has considered the impact of non-homotheticity in demand
for housing in measuring real income inequality (Albouy et al.|[2016).
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Second, these differences in availability and pricing matter for consumers. Income-specific
spatial price indexes reveal large differences in how high- and low-income households perceive
the prices and variety available in different U.S. cities. Once you account for income-specific
tastes, markets that are relatively expensive for poor households can be instead relatively cheap
for the wealthy. For example, a low-income household earning $25,000 a year faces approx-
imately 2 percent higher grocery costs in Bridgeport, CT, with per capita income $50,000,
relative to El Paso, TX, with per capita income below $20,000. But the same is not true for
high-income households earning $200,000 a year whose grocery costs are 47 percent lower
in Bridgeport than in El Paso. On average, high-income households perceive the difference
in grocery costs between high- and low-income cities to be 40 percentage points larger than
low-income households.

Third, I show that the differences in relative grocery costs across cities are driven more by
cross-city variation in product variety than by variation in prices. Higher income households
find groceries cheaper in wealthier cities primarily because more varieties of the high-quality
products that high-income consumers prefer to consume are available in these locations. These
high-quality products are sold at lower unit prices relative to low-quality products in wealthy
cities, but these price differences only explain a small portion of the gap between the grocery
costs perceived by high- and low-income households across wealthy and poor cities. This result
points towards a second short-coming of conventional price indexes, which compare only the
prices of common goods, and not variety differences, across locations.> Even if they are non-
homothetic, price indexes that do not account for differences in product availability will fail to
capture any of the true cost-of-living differences for wealthy, relative to poor, consumers.

I also study how store-level price indexes vary across and within cities. I find that higher
income households face relatively lower price indexes in stores located in higher income neigh-
borhoods, even within the same CBSA. In fact, the cross-CBSA variation in income-specific
price indexes is strongest between stores located in above median neighborhoods within each
CBSA. Thus, within-city sorting can maximize a wealthy consumer’s variety gains from living
in a wealthy city, and mitigate the relative losses for a poor consumer. I also use these indexes
to better understand why variety varies across and within cities. Here I find that the variation in
variety offerings across CBSAs and neighborhoods is entirely driven by variation in the local
mix of retail chains. There is no systematic variation in the price indexes high- and low-income
households face across stores belonging to the same retail chain.

The main methodological challenge 1 overcome in this paper is to summarize the costs

JHandbury and Weinstein|(2014) find a huge amount of variation in availability of grocery varieties across U.S.
cities and show that conventional price indexes underestimate the correlation between city size and the grocery
price level, for a homothetic representative consumer, by about a third. Variety differences play a much larger role
here, explaining all of the positive correlation between city income and the differences in the grocery price levels
faced by wealthy, relative to poor, consumers.



that consumers face across multiple differentiated product categories in a way that parsimo-
niously accounts for the non-homothetic tastes demonstrated in household behavior. To do
this, I build income-specific price indexes. A major reason why existing regional price indexes
do not take non-homotheticities into account is that the single-sector models used to identify
non-homotheticities in micro studies do not lend themselves to aggregation. I nest a variant of
these micro models into a utility framework that represents non-homothetic preferences across
many sectors of differentiated products. The starting point for these price indexes is the log-
logit/constant elasticity of substitution (CES) family of utility functions. Log-logit sub-utility
functions govern how consumers allocate expenditures between products within product cat-
egories, while a CES superstructure governs the substitutability of products across different
categories. The key feature of this structure is that it can be aggregated in such a way that one
could also express aggregate demands for goods as if they had been derived from a representa-
tive (non-homothetic) household.® This provides a way of bridging the gap between the micro
data that I use to identify parameters and an aggregate non-homothetic price index that can be
used to compare price levels across locations.

The model nests two forms of non-homotheticity and is structured in a way that enables
me to test for their relative importance in explaining the differences between the purchases of
high- and low-income consumers. The elasticity of demand with respect to price and product
quality depends on the consumer’s expenditure on a composite of non-grocery products which
I assume to be normal. The intuition here is that, if high-income households spend more on
cars, schooling, and mortgages, for example, then they have a greater willingness to pay for
their own ideal product variety or for products that are ranked as high quality by all consumers.
These are the most common ways in which international economists hypothesize that non-
homotheticities might matter.” Where previous papers have verified each of these channels of
non-homotheticity independently, this is the first to test their empirical relevance concurrently
and to assess their relative importance in explaining consumer behavior. My results demonstrate
the salience of non-homothetic demand for quality in U.S. grocery consumption. I compare
three different models of non-homotheticity: a specification in which the taste for quality rises

with income, a specification in which high-income households are less price sensitive, and a

The log-logit and CES are linked mathematically such that the CES-nested log-logit utility framework yields
the same aggregate outcomes as a nested-CES utility function. The origins of this result are|Anderson et al.[(1987)),
whose proof is extended to models that account for product quality in [Verhoogen! (2008). This link has also been
explored recently in Hortacsu and Joo| (2015)) who present a generalized version of the demand system developed
here that allows for tastes for product quality to vary with both observed and unobserved consumer attributes.

THummels and Lugovskyy| (2009) and |[Simonovska| (2010), for example, are based on the idea that substi-
tution elasticities vary systematically with income, while Fajgelbaum et al.| (2011)) and [Faber| (2012) model non-
homotheticities as a changing taste for quality. There are other reasons that demand may vary with income, related
to demand for variety (Li/(2012)) and shopping behavior (Aguiar and Hurst (2005))). These do not appear to be the
primary factors driving differences in the purchases of high- and low-income households in this dataset and are,
therefore, not included in the model.



specification in which both factors play a role. I find that the specification that allows for non-
homothetic demand for quality alone explains the differences between the purchases of rich and
poor households most parsimoniously.®

The main contribution of this paper is to provide the first direct evidence of income-specific
tastes for local consumption amenities. A recent urban economics literature hypothesizes that
these tastes may help explain spatial disparities in income and skill observed across U.S. cities:
high-skill, high-income workers co-locate because they enjoy more utility from certain endoge-
nous local amenities than low-skill, low-income consumers.’ Previous empirical support of this
theory relies on spatial equilibrium models that assume people are perfectly mobile. Diamond
(2016), for example, infers changes to skill-biased amenities as those which reconcile changes
in housing price and wage data with the changing skill composition of U.S. cities between 1980
and 2000.'° T instead measure these skill-specific amenities directly, providing cross-sectional
evidence that non-housing price indexes are correlated with local incomes in such a way that
might encourage further skill-biased agglomeration.

In particular, I show that product variety is skewed towards the income-specific tastes of
local consumers. This result is consistent with the theory that, in markets with increasing re-
turns and demand heterogeneity, differentiated product firms cater to local tastes generating

2

“preference externalities” or “home market effects.” [Fajgelbaum et al.| (2011)), for example,
show theoretically that high-income consumers with non-homothetic preferences enjoy greater
consumption utility when living in high-income countries. Like Waldfogel (2003), I provide
evidence suggesting that the mechanism behind these effects is local distributors catering to lo-
cal tastes. My main contribution here, however, is to demonstrate the economic significance of
these externalities by measuring their impact on consumer costs. My results showing that these
preference externalities are mediated by chain-level pricing and product assortment decisions
corroborate a growing literature on these decisions (DellaVigna and Gentzkow (2019)) and the

role that they play in generating cross-city variation in aggregate variety (Hottman| (2014)).'!+12

8Faber and Fally (2017) estimate the same demand system non-parametrically using only the household-level
data and also find that the differences in price elasticities across income quintiles are small relative to the cross-
quintile differences in the elasticities of demand for quality.

9Glaeser et al. (2001) brought attention to the role of high-skilled workers as consumers of urban amenities.
Diamond| (2016)) and |[Couture and Handbury| (2017)) thereafter studied the differential role that access to amenities
play in explaining the changing location choices of the college and non-college educated across and within U.S.
cities over recent decades.

10B]lack et al|(2009) show that returns to education are inversely related to housing prices and posit that non-
homothetic preferences reconcile these results with a spatial equilibrium model. Non-homothetic preferences for
endogenous private amenities, such as the distribution of high-quality retail goods, are one factor that makes high
house price cities less expensive for the rich.

'"The observed distribution of product availability is also consistent with a comparative advantage story and
my analysis does not identify this story from the preference externalities. More recent work by Dingel (2016
shows that the specialization of high-income counties in exporting high-quality products is explained as much by
home-market demand as by differences in factor usage and endowments.

2Complementary work finds variation in inflation across income groups. The BLS has a long tradition of



These results have mixed implications for the question of how to account for cost-of-living
differences across locations when measuring welfare. Standard homothetic price indexes im-
plicitly ignore that households with different incomes have different tastes and, therefore, may
perceive these relative costs differently. I find that these cost differences are large in the con-
text of non-durable goods. If similar group-specific externalities are at play in other non-
tradable sectors (such as housing, non-tradable services, and durables), it may be necessary
to account for income-specific tastes when measuring relative real incomes and expenditures of
households at opposite ends of the income distribution. Such adjustments may, for example,
have implications for the recent findings on how ignoring intra-national price variation biases
measures of real income inequality (Moretti, 2013}; Albouy et al., |2016) and the geographic
distribution of real tax expenditures in the U.S. (Albouy, [2009)."* Finally, these results sug-
gest that it may also be worth revisiting whether to use homothetic price indexes to account
for location-specific costs when calculating poverty thresholds or entitlement payments (e.g.,
Slesnick| (2002)), Deaton| (2010), and Ziliak (2011)).'4

2 Data

The analysis in this paper is based on detailed store sales and household purchase data, both
from Nielsen.!® T use the store sales data to infer the set of products and prices available in U.S.
cities and the household purchase data to identify how consumers at different income levels
value these products and prices. These two Nielsen datasets are available from 2006 onward.
I analyze data from a single year, 2012, so as to abstract from dynamics in both the product

set and tastes. I complement the 2012 Nielsen data with 5-year 2010-2014 average of tract-,

using confidential survey data to construct inflation indexes that use income-specific expenditure weights (see,
e.g.,|Snyder| (1961); [Kokoski| (1987); Jorgenson et al.|(1989); Garner et al.|(1996);/Cage et al.|(2002)). More recent
papers apply a method developed by Broda and Romalis| (2009) to calculate income-specific exact price indexes
for the U.S. with the same household purchase data used here (Argente and Lee} 2017; Jaravel, |2018)). On the
structural side, |Albouy et al.| (2016) quantify a model of non-homothetic housing demand to show that the poor
have been disproportionately impacted by rising relative rents in the U.S., and |Atkin et al.| (2019) use an AIDS
model to calculate aggregate income-specific inflation rates for Indian households.

3Results here suggest that we underestimate the relative tax burden of high-income consumers (Albouyl 2009)
and overestimate welfare inequality between individuals with and without college degrees (Moretti, [2013) if when
we do not account for the fact that the wealthy and college-educated are more likely to live in cities with high
house prices. The results here suggest that income-biased preference externalities might offset the expensiveness
of wealthy cities for high-income households.

4By contrast, Deaton and Dupriez|(2011b) find that re-weighting the International Comparison Project (ICP)’s
country-level purchasing power parity (PPP) indexes to reflect the consumption patterns of the world’s poor does
not change the indexes or, therefore, poverty counts dramatically. These indexes are not adjusted for spatial
variation in product availability, however, so do not account for the variety differences that drive the price index
differentials documented here.

SThese data are provided by the Kilts-Nielsen Data Center at the University of Chicago Booth School of
Business.



county-, and CBSA-level population and income data from the American Community Survey
(ACS) to measure how prices and product availability co-vary with local wealth across cities
and neighborhoods.16 In what follows, I describe the structure of each Nielsen dataset and the
key variables I draw from them. Further details are available in Appendix

The Nielsen store-level (RMS) data contains a panel of weekly sales and quantities by Uni-
versal Product Code (UPC) collected by point-of-sale systems in over 30,000 participating re-
tailers across the U.S., along with the county in which each store is located. I complement
the RMS data with the Nielsen household-level (HMS) data, which contains information on all
bar-coded product purchases made by a panel of over 100,000 households in markets across
the United States. Each household in this sample was provided with a bar-code scanner and in-
structed to collect information such as the UPC, the value and quantity, the date, and the name,
location, and type of store for every purchase they made. Nielsen also surveys each household
to collect information on, among other things, income, household size, and residential 5-digit
zip code.

The RMS data is collected in an automated process so it is less prone to measurement
error than the HMS household survey data. As such, the RMS data is better-suited for the
construction of non-linear sales share moments I use to identify price elasticity and quality
parameters common to all households. The HMS data, meanwhile, provides a detailed picture
of the products selected by households at different income levels in the same store and is useful
for documenting differences in purchases by income level, controlling for their choice set, and
estimating the parameters that generate these differences in the model.

The HMS data also allows me to obtain a more precise estimate of household income in the
neighborhoods surrounding each store. I measure the income distribution in a store’s vicinity
with a distance-weighted average of the income distributions observed in the Census tracts
within 30km of the centroid of the modal residential zip code of Nielsen panelists that report

shopping at that store over all available years (2006 through 2017).

Product Definitions

Nielsen categorizes UPCs into categories called “modules” and provides a UPC’s brand, size

t.!7 Within each module, I aggregate UPCs into a classi-

(including units), and container coun
fication that I call a “product.” A product is defined as the set of UPCs within a module with
the same brand. For example, in the module “SOFT DRINKS - CARBONATED”, there are

104 UPCs that refer to drinks sold under the brand “COCA-COLA R” (R stands for regular, as

16The ACS data are sourced from NHGIS (Manson, Schroeder, Van Riper, and Ruggles, Manson et al.).
"The container count is equal to one when each container of the product is sold individually and greater than
one when multiple containers of the good are sold in a multi-pack.



opposed to diet). These UPCs belong to the same product. '8

Table [I]shows how UPCs are distributed across products and modules in the sample used to
estimate demand. This sample has been cleaned in various ways. To ensure that differences in
container sizes or multi-packs do not mechanically generate spurious differences in prices in my
sample, I define prices on a per unit basis throughout the paper, using the modal unit definition
for each module. So, I limit my attention to products whose container size is expressed in
the modal units for their module and exclude modules whose modal container size is either
not expressed in meaningful units (e.g., counts instead of weights or volume) or in the same
units for at least 75% of UPCs. To avoid differences in product quality that could be correlated
with store amenities or neighborhood income, I exclude random weight items.!” To control
for data recording errors, I drop any market (store-month) in which I observe a UPC sold at a
unit price greater than three times or less than a third of the median unit price paid per unit of
any UPC within the same product or module categorization. For computational reasons, I put
products whose average positive sales shares across store-month markets fall below the 60th
percentile into an outside product and drop sales from any markets that sell less than two non-
outside products. Finally, for identification purposes, I limit my attention to modules that have
some overlap between the product-store-month RMS store sales data and the HMS household
purchase data and to products that are sold in 5 or more of the remaining markets. The cleaned
data contains approximately 200,000 UPCs categorized into 22,655 products across 530 product
modules. Almost three quarters of these products are purchased by households in the HMS data.
The median numbers of products and UPCs per module are 28 and 119, respectively.

The utility function presented below assumes that, conditional on price, consumers do not
differentiate between UPCs in the same product. The assumption might be violated in cases
where different UPCs that I have defined to be the same product are differentiated by their
packaging or flavor. To check the extent to which consumers differentiate between UPCs within
product categories, I compared the coefficient of variation for the average unit price paid for
each UPC with the coefficient of variation for the average unit price paid for the set of UPCs
with the same product categorization. The median coefficient of variation of unit values across
UPCs in a given module is 0.506, only slightly higher than the median coefficient of variation
of unit values across products in a given module at 0.498, and the two statistics are highly
correlated across modules (p = 0.96). This indicates that there is little variation in the prices

charged for UPCs within the same product.

18The analysis abstracts from other product characteristics, such as container, flavor, size, and whether the
product was sold in a multi-pack or not. Differentiating between products along these dimensions leads to many
products with sales shares too low to allow for the matrix inversions required in the estimation procedure.

9The quality of random weight items, such as fruit, vegetables, and deli meats, varies over time as the produce
loses its freshness and it is likely that stores set prices to reflect this. This potential inter-temporal correlation
between their unobserved quality of random weight products and their prices would introduce biases in the price
elasticities estimated below.



Table 1: Summary Statistics for the Nielsen Data Used in Estimation

Data: RMS (Store) HMS (HH)

Total Count Per Module Count Per Product Total

Count Min Median Max Min Median Max Count

Modules 530 - - - - - - 530
Products 22,655 2 28 627 - - - 15,615
UPCs 203,049 2 119 6,595 1 6 1,347 106,118

Notes: This table shows the distribution of UPCs across product and module categories in the Nielsen RMS store sales and HMS household
purchase data used for estimation. This estimation sample has been cleaned from the raw Nielsen data as described in Section2]of the paper.
A product is defined as the set of UPCs within a module with the same brand. The table does not include the “outside” product (into which 60
percent of products are allocated, in the base specification).

Household Income

The Nielsen HMS data is uniquely suited for estimating how consumers at different income
levels value products because it links detailed information on household purchases to infor-
mation on their reported annual income and demographics. Nielsen classifies households into
16 brackets of reported income. For my analysis, I exclude households with reported incomes
below $11,000 and/or missing demographic data. I convert household income to a continuous
variable equal to the mid-point of the income range represented by their Nielsen income cate-
gory and an income of $150,000 to the households in the “above $100,000” income category. I
then adjust income for household size using a square-root equivalence scale.?

Figure |1{ shows the distribution of the resulting size-adjusted household income across the
households considered in the analysis below. The bulk of the distribution is between $10,000
and $80,000, which seems reasonable given that the per capita incomes of the cities represented

in the sample ranges from approximately $30,000 to $60,000.%!

City-Level Product and Price Availability

I infer the products and prices available in CBSAs in 2012 with those that I observe in the sales
of local outlets of Nielsen participating retailers in that year. Not all stores participate in the
RMS sample, so I likely observe only a sub-set of the products available in each city. This

sample might not be representative, so my measure of product availability and prices will be

20This simple rule of thumb has been employed by the OECD Income Distribution Database (IDD) since 2012
(http://www.oecd.org/els/soc/IDD-ToR.pdf).

“INielsen under-samples low-income households and, to a lesser degree, high-income households (see Ap-
pendix Figures[A.2)), but has positive weight of households at most income levels — up to the top-code — which,
combined with functional form assumptions, allows for the calculation of price indexes at all points along the
income distribution.


http://www.oecd.org/els/soc/IDD-ToR.pdf

Figure 1: Distribution of Size-Adjusted Household Income
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Notes: Plot depicts the number of households with a purchasing record in the 2012 Nielsen HMS data with non-missing demographic
information and reported income above $11,000. Household income is adjusted for size by dividing by the square root of the number of
household members.

subject to biases related to the number and type of stores sampled in each city.?> To deal with
these potential biases, I infer CBSA-level product availability and pricing using the sales of
randomly-selected sub-samples of stores from each city. For the main analysis, I use products
and unit prices represented in the sales of 50 randomly-selected stores, limiting my attention to

125 cities with 50 or more retailers in the RMS sample.??

3 Stylized Facts

This section draws on the Nielsen HMS and RMS data described above to document two styl-
ized facts. Taken together, these facts demonstrate the empirical patterns behind the main results
of the paper. The first also serves to motivate the theoretical framework presented in Section [

below.

22This data limitation is common to all work that builds spatial price indexes from micro data. [Handbury and
Weinstein| (2014) show how homothetic non-parametric cross-city price indexes can be adjusted to account for
potential sample size biases. Unfortunately the parametric price index methodology used in this paper does not
allow for such adjustments.

23 Appendix lists this data for each of the 125 cities considered in this analysis and shows how the stores
are distributed across these locations. Appendix Figure[A.3|shows that the Nielsen participating retailer sample is
over-weighted towards stores in higher-income neighborhoods, relative to the distribution of grocery stores in the
County Business Patterns zip-level data, but only to a small degree.
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3.1 High-Income Households Purchase Different, More Expensive, Products than Low-

Income Households

Figure |2 shows that high-income households pay more than low-income households for the
same type of products. The level of each circle shows how much more households in each
Nielsen income category pay per unit for products within a module than households in the low-
est income category, earning between $10,000 and $12,000. These relative prices are measured
in a regression of log unit price paid against income category dummies and module fixed ef-
fects, controlling for other demographics with dummies for household size, marital status, race,
Hispanic origin, and male and female head-of-household education and age. There is a distinct
upward slope, with households in the upper-most income category paying approximately 17
percent more for products in the same module than households in the lowest income category.
This could be either because high-income households are paying more for the same products
within a module or because they are purchasing different, more expensive products. The fol-

lowing result suggests that the latter effect dominates.

Figure 2: Average Log Price Paid by Household Income Category
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Notes: This figure plots the average unit price paid by Nielsen household panelists at different income levels relative to the unit price paid by
all households for either the same product or products in the same module. Relative price paid is the coefficient on a household income
dummy in a regression of the log unit price paid by a household for a product in a month on module or product fixed effects and demographic
controls. The relative price paid by each household income category is plotted against the mid-point of the bounds of the reported incomes for
that category for all but the highest “income greater than $100,000” category, whose relative price paid is plotted at $130,000.

The level of each triangle in Figure 2] shows how much more households in each Nielsen
income category pay for the same product, relative to households in the lowest income category,
measured in the same regression as described above but with product, instead of module, fixed

effects. The slope of the log unit price paid controlling for product fixed effects is positive
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but much smaller than the slope of the log unit paid only controlling for module fixed effects.
High-income households do pay more for the same products but, consistent with |Broda et al.
(2009), most of this gradient is explained by the fact that they are buying different products that

are sold at higher prices to all consumers.

3.2 Stores in Wealthier Markets Offer More Products that are Purchased by High-

Income than by Low-Income Households at Slightly Lower Relative Prices

Above, I showed that high-income households purchase different, more expensive, products to
low-income households. Here I infer the extent to which high- and low-income households
favor each product from the collective product-level expenditures of HMS panelists in each
size-adjusted income decile. To assess the favorability of the product variety offered in a given
market towards high- or low-income tastes, I then calculate how much more of the top income
decile’s consumption bundle is represented in the set of products available in a market than of
the bottom income decile’s consumption bundle. Then, to study whether the prices charged by
stores in a market favor the tastes of high- or low-income households, I calculate the difference
in the weighted average relative price charged for products in the top income decile’s bundle
from the weighted average relative price charged for products in the bottom income decile’s
bundle, using each income decile’s expenditures as respective weights.?*

Figure [3] shows how the difference in these availability and price indexes between the top
and bottom income decile varies across CBSAs with different per capita incomes. The upper
plot in Figure [3|shows a statistically-significant correlation between the city wealth and product
availability: the consumption opportunities in high-income cities are skewed towards those
products that are consumed more heavily by high-income consumers relative to those consumed
more heavily by low-income consumers. For example, around 1.2 percentage points more of
the top income decile’s expenditure share than that of the bottom income decile is represented in
the sample for the wealthiest city, Bridgeport-Stamford-Norwalk, CT (BRI), while 1 percentage
point less is represented in the sample for the poorest city, El Paso, Texas (ELP). To put these
differences into context, the mean CBSA has products representing 40 percent each of the
top and bottom decile’s expenditures, with a standard deviation across CBSAs of 1.9 and 1.4,
respectively.

The lower plot in Figure [3|replicates this analysis looking instead at how the gap in the av-
erage relative price faced by high- and low-income households for the products they consume

more of varies across CBSAs with different per capita income. The plot shows a noisier rela-

24Specifically, I calculate the price level in a market for a given income decile as the weighted average log ratio
of the unit price a product is sold at in that market and the unit price it is sold at nationally, where products are
weighted by the value of purchases of that product by the respective income decile of Nielsen household panelists.
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Figure 3: Difference in the Availability and Relative Price of High-Income and Low-Income
Baskets Across CBSAs
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Notes: Figure a. plots CBSA-level data for the difference between the expenditure shares of high-income Nielsen HMS panelists represented
in the CBSA product set and the expenditure share of low-income panelists represented in that product set against CBSA per capita income.
The panelist expenditure shares are calculated for 2012 and are CBSA-specific, in that they exclude the expenditures of any panelists residing
in the CBSA whose availability is being measured. Figure b. plots CBSA-level data for the difference between the average price level faced by
consumers in the top income decile and the average price level faced by households in the bottom income decile against CBSA per capita
income. The price level in each CBSA for a given income decile is calculated as the weighted average log of the ratio between the price a
product is sold for in a CBSA relative to the price that product is sold at in the national sample where weights are defined as the value of the
purchases of that product made by households in the respective income decile in the Nielsen household-level panel. Panelists are defined as
high- (or low-) income if their size-adjusted income falls in the top (bottom) decile of panelist incomes. The products available and prices
charged in each CBSA are defined as the set of products sold and average unit prices charged in a random sample of 50 Nielsen stores in a
given CBSA in 2012. The plots show the mean availablility share and price indexes calculated in 100 bootstrap iterations of this sampling
procedure. CBSA income is household income adjusted for size using a square-root equivalence scale. The marker labels for each CBSA are
acronyms linked to the full CBSA name in Appendix@
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tionship. Stores in high-income CBSAs tend to charge less for the products that high-income
households purchase more of (relative to low-income households) than stores in low-income
CBSAs, but the slope is smaller (-0.9 relative to the standard deviation of the price levels across
CBSA for the top and bottom deciles of 2.1 and 2.2, respectively).

In summary, there are large systematic differences between the products available in wealthy
and poor cities that are correlated with the purchase behavior of high- and low-income house-
holds. Stores in wealthy cities also charge relatively less for products that the top income
decile’s consumption basket than the bottom income decile’s consumption basket, but this cor-
relation explains less of the variation in prices than the corresponding correlation in relative
availability with local income explains of the variation in that variable.

Table 2| replicates this analysis comparing the products available and price charged across
individual grocery stores, rather than across CBSAs.? Panel A compares availability patterns
across stores. In column [1], we see that, in aggregate, stores in higher-income neighborhoods
offer more of the products high-income households purchase more of. These availability pat-
terns are stronger looking across stores within the same CBSA, in column [3], than across stores
in CBSAs with different per capita incomes, in column [5]. In all three cases, the availability
patterns are less than half as large when looking across stores in the same retail chain. The
patterns in price levels, shown in Panel B, are similar, also favoring high-income consumers in
higher-income neighborhoods and CBSAs, with less variation looking within chain than across
chains. The only exception here is that the relative price charged for products that high-income
consumers favor is less correlated with local income across stores in different neighborhoods of
the same CBSA (column [3]) than across neighborhoods both within and across CBSAs (col-
umn [1]). Consistent with evidence of chain-level pricing in DellaVigna and Gentzkow| (2019),
this correlation falls almost to zero when looking within chain and CBSA (column [4]). In sum-
mary, the spatial differences in product availability and prices documented in this paper can be
attributed primarily to variation in store location and product distribution patterns across chains,
and less to variation in product distribution patterns across stores within the same chain.

In the structural analysis below, I will revisit these stylized facts in the context of a non-
homothetic demand system. This analysis will serve to characterize which products are pre-
ferred by high-income households and quantify how much high-income households gain from
the relative abundance and low prices of these products available in wealthy cities and neigh-
borhoods across the U.S..

ZIn the store-level analysis, I compare pricing and availability across different grocery stores (listed in the
Nielsen data as in the “food” channel), dropping mass merchandisers, drug, and convenience stores, which may
exhibit different relative pricing and availability patterns.
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Table 2: Difference in the Availability and Relative Price of High-Income and Low-Income
Baskets Across Stores

Panel A: Availability
Dependent Variable: Difference in Basket Shares (%)

(1] (2] (3] (4] [5] (6]
Ln(Local Per Capita  2.12*** 0.70*** 2.47** 1.07***
Income) (0.053) (0.036) (0.088) (0.042)
Ln(CBSA Per Capita 1.87*** (0.49***
Income) 0.44) (0.18)
CBSA Fixed Effects No No Yes Yes No No
Chain Fixed Effects No Yes No Yes No Yes
Number of CBSAs - - - - 691 691
Observations 9,019 9,019 8,849 8,849 9,019 9,019
adj. R? 0.15 0.79 0.56 0.89 0.08 0.78
Panel B: Relative Price
Dependent Variable: Difference in Hedonic Price Index (%)
[1] (2] [3] (4] [5] (6]
Ln(Local Per Capita -1.30"** -0.36"** -0.58"** -0.067*
Income) (0.029) (0.024) (0.055) (0.036)
Ln(CBSA Per Capita -1.447  -0.46™*
Income) (0.23) (0.12)
CBSA Fixed Effects No No Yes Yes No No
Chain Fixed Effects No Yes No Yes No Yes
Number of CBSAs - - - - 691 691
Observations 9,019 9,019 8,849 8,849 9,019 9,019
adj. R? 0.18 0.72 0.51 0.79 0.14 0.72

Notes: *** p< 0.01, ** p<0.05, * p<0.10; ; standard errors, clustered by store in columns 1 through 4 and by CBSA in columns 5 and 6, are in
parentheses. The table reports the results of fixed-effect regressions. In the Panel A, the dependent variable is the difference between the share
of the high-income Nielsen HMS panelist expenditures represented in the set of products sold by a store in 2012 and the share of low-income
panelist expenditures represented in that same product set. In Panel B, the dependent variable is the difference between the average price level
faced by consumers in the top income decile and the average price level faced by households in the bottom income decile against local per
capita income. The price level in each store for a given income decile is calculated as the weighted average ratio between the price a product is
sold for in a store relative to the price that product is sold at in the national sample where weights are defined as the value of the purchases of
that product made by households in the respective income decile in the Nielsen household-level panel. In each column, this dependent
variable is regressed against the log per capita income of the neighborhood (in columns 1 through 4) or CBSA (in columns 5 and 6) where the
store is located, as well as chain fixed effects in columns 2, 4, and 6. The number of observations decreases when introducing CBSA fixed

effects because not all stores are located in CBSAs.
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4 Model

This section introduces the demand system I use to study why high-income households purchase
different products to low-income households and at different prices. This framework also forms
the basis of the price indexes that summarize how high- and low-income households value the

prices and products available to them in different markets.

4.1 Notation

Figure [] shows how consumers choose to allocate expenditures. At the upper-most level, a
consumer ¢ spends W on a set of grocery products, denoted G, and Z on a set of other goods,
denoted Z, subject to the budget constraint W + Z < Y. I do not explicitly model this upper-
level expenditure allocation decision, but it is crucial in one respect: preferences over grocery

products are non-homothetic because they depend on aggregate non-grocery expenditures.?®

This is generically the case if optimal non-grocery expenditures are normal.?’

Figure 4: Consumer Choices
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is, how consumers allocate their grocery expenditure W between product modules, M =
{1, ..., M}, and their module expenditure w,, between the varieties of grocery products in mod-

ule m, Gy, = {1,...,G),,}, for each module m. A consumer chooses to spend some w,,, on

26Formally, preferences cannot depend on expenditures, so Z is rather an aggregate of non-grocery consump-
tion.

?In Appendix I solve for an implicit restriction on utility and prices under which the optimal non-grocery
expenditure, Z;, will be increasing in income. I cannot show that this restriction holds generally, but am instead
able to show that it holds in the data.
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each product g in module m, purchasing g¢,,; = Wy,g/Pmg units of the product at a unit price
Pmg- 1 denote the set of observed grocery prices and purchase quantities for module m as
Py, = {Pmg}gecm and Q= {@ng }sec.,» respectively. P and Q are the unions of these price
and quantity sets over all modules. A consumer’s across-module and within-module expendi-
ture allocation decisions are linked by the fact that they cannot allocate more than their total

module expenditure, w,,, between products g € G,y; that is, Z Wing = Why.
9€Gm

4.2 Consumption Utility

I model consumer demand for the products in G using a combination of CES and log-logit
preferences. A consumer ¢’s utility from grocery consumption, conditional on their non-grocery

expenditure Z, is a CES aggregate over consumer-specific module-level utilities:

o—1

o—1
(1) Uic(Q.Z2) = ) ttin (Qu, Z) 7
meM
where o > 1 is the elasticity of substitution between modules.
Consumer #’s utility from consumption in module m, conditional on their non-grocery ex-

penditure Z, is equal to the sum of their consumer-specific product-level utilities:

(2) Uim (Qma Z) = Z uimg(@ma Z)

9€Gm

where consumer ¢’s utility from consuming ¢,,,, of product g in module m, conditional on their

non-grocery expenditure Z, is defined as:

(3) Uimg(Z) = Gmg eXP(Ym(Z) Bimg + tm(Z)€imyg)

where 3,4 is the quality of product g in module m and €;,,, is the idiosyncratic utility of con-
sumer ¢ from product g in module m drawn from a type I extreme value distribution. ,,(Z)
and p,,,(Z) > 0 are weights that govern the extent to which consumers with non-grocery ex-

penditure Z care about product quality and their idiosyncratic utility draws.?8

4.2.1 Functional Forms

Before proceeding, it is worth making three observations about the general functional forms

assumed above. First, the CES utility function governing the cross-module substitution patterns

2The log-logit utility function defined in equations (2) and (3) is a generalization of a utility function used by
Auer| (2010) to theoretically derive the effects of consumer heterogeneity on trade patterns and the welfare gains
from trade.
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implies that consumers will optimally consume a positive amount in each module. In the data
for 2012, the typical household buys products in around one third of sample modules. This
purchase behavior could reflect that households are, on average, consuming small quantities of
products in some modules and, therefore, purchase the product so infrequently that we do not
observe a purchase over the time period that they are in the sample.?’

Second, the assumption that module utility is additive in product utilities that themselves
are proportional to random draws from a continuous (type I extreme value) distribution implies
that households allocate all of their module expenditure to a single product (the product that
maximizes their marginal utility from expenditure, exp(V,(Z)Bmg + tm(Z)€img)/Pmg)- This
matches the discrete-continuous behavior observed in the data: conditional on purchasing any
products in a module in a month, households typically only purchase on product.*

Finally, the log-logit function governing preferences within modules yields the same Mar-
shallian demand function for a set of consumers as the nested-CES utility function for a rep-
resentative consumer with non-grocery expenditure Z and an elasticity of substitution between
products equal to one plus the inverse of the idiosyncratic utility draw weight, i.e., 0,,(Z) =
1+1/u(Z). This link provides a natural analytic approximation for the relative utility that con-
sumers with the discrete-continuous preferences described above face across markets offering
different choice sets. The log-logit functional form also implies that, conditional on non-grocery
expenditure, preferences are weakly-separable between modules. I exploit these features in the

empirical strategy presented in Section [5.1] below.

4.2.2 Non-Homotheticities

Consumers get utility from consuming quantity ¢,,, of a product g, scaled up by the exponents
of the quality of the product, 3,,4, and their idiosyncratic utility draw for the product, ;.
Preferences will be non-homothetic when at least one of the weights on these scalars, v,,(7)
or i, (Z), varies with non-grocery expenditure and, as discussed above, this expenditure varies
with income. In order to interpret how these weights vary with income empirically, I make

further functional form assumptions.

2In this scenario, households make purchases in all modules in expectation. The moments used to estimate
the model parameters are based on individual household product selections within modules, conditional on their
making a purchase in a given module, and expected store sales, i.e., the purchases of many households that shop
in a store. The fact that some households do not purchase products in certain modules during a given period will
be reflected in the fact that these modules have low within-store sales shares, and explained by the fact that the
products in these modules are, on average, either more expensive or lower quality, relative to products in other
modules. Models that reflect these more realistic cross-module consumption patterns, either by accounting for
dynamic purchase behavior (see, e.g., [Hendel| (1999); Dube| (2004)) or explicitly modeling consumer’s discrete-
continuous preferences over modules (see, e.g., Song and Chintaguntal (2007); [Pinjart and Bhat (2010))), would be
difficult to estimate given the dimensions of the problem that this paper addresses.

30That is, the median household-month-module level observation with strictly positive expenditure has just one
product purchased.
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I interpret 7,,(Z) to be the valuation for product quality, /3,4, for product g in module m
shared by consumers with non-grocery expenditure Z. I assume that ,,(Z) is log-linear in Z

with a module specific slope, 7., such that:
(4) Ym(Z) =1+ ymIn(Z)

A consumer’s valuation for product quality in module m is increasing in Z when ~,, > 0.

I employ a revealed preference approach to estimate the product quality 3,,, parameters
as the average willingness to pay for product g in module m across all consumers. The idea
here is that product g in module m is estimated as having high quality, 3,4, relative to that of
another product ¢ in the same module m, 3,,;, when a set of consumers facing the same price
for both products spends a higher share of their expenditure on product g than on product g.
All consumers agree on this distribution of product qualities but, for v,, > 0, consumers who
spend more on non-grocery items place a greater weight on product quality, relative to quantity,
in selecting which product to purchase in a module. Since Z is normal, a positive 7, implies
that high-income consumers spend a disproportionate amount of their module expenditures on
higher quality products, relative to low-income consumers.

This form of non-homotheticity is common in the international trade literature where, for
example, Fajgelbaum et al.|(201 1)) show the theoretical implications of non-homothetic demand
with a model that allows for complementarities between product quality and expenditure on a
non-differentiated outside good. These complementarities imply that the elasticity of demand
for quality is increasing with income, as in [Hallakl (2006) and |[Feenstra and Romalis (2012),
who calculate cross-country price indexes similar to those estimated below.

The within-module utility function defined in equations (2)) and (3) is also non-homothetic
through the weight, ;.,,(Z), on the idiosyncratic utility, ¢;,,,. These idiosyncratic utility weights
govern the dis-utility from consuming products that are horizontally differentiated from the
consumer’s ideal type of product, or the extent to which consumers find the available products
substitutable with their ideal. I assume that the inverse of the idiosyncratic utility draw weight

for module m is log linear in non-grocery expenditures:

1

nlZ) =on(Z)—1=q,, +a,,In(2)

&)

where recall that 0,,(Z) reflects the elasticity of substitution between products in module m
for a representative consumer with non-grocery expenditure Z. For o}, < 0, 0,,(Z) decreases
with Z such that consumers with high non-grocery expenditures find the available products
less substitutable with each other and their ideal product and will, therefore, have a higher

willingness to pay for the product closest to their ideal than consumers with low non-grocery
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expenditures. That is, for Z normal, oz}n < 0 implies that consumers’ elasticity of substitution
between products within a module and their tendency to switch between products in response
to relative price changes is decreasing in consumer income.>!

This form of non-homothetic price sensitivity is also similar to those used in recent inter-
national trade models. Hummels and Lugovskyy (2009), for example, develop a Lancaster
ideal variety utility function where the dis-utility from distance between a product and a con-
sumer’s ideal type is an increasing function of their consumption quantity ¢” for v € [0, 1]. This
weight implies an income-specific price elasticity in a similar manner to the idiosyncratic utility

weights, j1,,(7), above.*?

4.3 Individual Utility Maximization Problem

The grocery utility function defined in equations (I)-(3)) is specific to the individual through
a consumer’s income, their non-grocery expenditure, and their idiosyncratic utility draws. I
assume that consumers draw an idiosyncratic utility €;,,, for each product ¢ € G prior to
making their purchase decision. Consumers then solve for their optimal grocery consumption
bundle for a given non-grocery expenditure level Z by maximizing grocery utility subject to

budget and non-negativity constraints:

(6) Z Z PmgQdmg < Y; — Z and Gmg > OVmg e G

meM geGm

The solution to this problem is a vector of optimal product selections (one for each module),
gi(Z2) = (95(2),...,95,(Z)), and module-level expenditures, w; (Z) = (wj(Z), ..., w5,;(Z)).
These are derived in Appendix [C.2]to be:

(7) Gim(Z) = arg max (Y (2) Bimg + tm(Z)€img) [Pmyg
g m

3I'The role that the o parameters that govern the substitution elasticities play in determining the elasticity of
demand with respect to price is clearly demonstrated in the expenditure share equations presented in Section [5.3]
below.

32Macro-economists have found alternative models to be empirically relevant for explaining differences in the
prices paid by high- and low-income households. These models appear to be less relevant in the Nielsen data, so it
is unlikely that ignoring them biases the aggregate estimates found below. The cross-income differences in search
costs and shopping behavior explored in |Simonovska| (2010) could, in theory, enable low-income households to
mitigate the high prices in wealthy cities at a lower cost than high-income households. However, Figure [ shows
that the cross-income differences in prices paid for identical items purchased in different stores or at different
sale/non-sale periods are relatively small compared to the unit expenditure differences attributable to the fact that
high- and low-income consumers are buying entirely different products. I also find no evidence that high-income
consumers purchase more varieties of bar-coded products than low-income consumers, as would be the case in
a hierarchic demand model like that use to explain Indian household consumption in |[Li| (2012) or the translated
additive-log utility function used in[Simonovska (2010).
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and

035 (1 (2B + fn(Z)img) /pmg) .

« . - (gEGm
(8) w; (Z> = (Y; Z) P(]P)7Z,€i)1—a

where P(IP, Z,¢;) is a CES price index over the grocery products that a consumer i optimally

consumes in each module:

1

©  PEZe)- [Z (3085 (20 + (2D s ) ] B

eG
meM g=Tm

Plugging these optimal product choices and module expenditures into the direct utility function
defined in equations (I)-(3)), I obtain the indirect utility of consumer 7 from grocery consumption

in a market offering prices and products summarized in the vector P

Y,— Z
(10) V(P,Y;, Z, &) = %

5 Empirical Strategy

A key goal of this paper is to characterize how consumers at different income levels value the
different products and prices available to them across different markets in the U.S.. In this sec-
tion, I derive the income- and city-specific price indexes I use to measure this variation. These
indexes require two key components: vectors of the prices that provide comparable representa-
tions of the prices and product variety available in different U.S. cities, and estimates for model
parameters that govern consumer’s perceptions of these price vectors. In the remainder of the

section, I describe how I use the Nielsen data to obtain each of these components.

5.1 Measuring Relative Utility Across Markets

Section .3 above solved for the indirect utility of a consumer from grocery consumption in a
generic market offering a vector of prices IP. This paper seeks to compare the utility consumers
get from the prices and products available to them in different markets, so I now introduce a

market subscript to equation (I0), writing the indirect utility of a consumer ¢ in market ¢ as

(Yi — Za)

1 VP, Y;, Zie1) = —ot = Zit)
(b (Pe, i Zit: ) = 5,7, 21
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where the set of prices and products available to household i, P, = {pmg} geq,, and their
optimal non-grocery expenditures, Z;;, are both allowed to vary across markets.

This indirect utility function is consumer-specific in three ways: it depends on a consumer’s
income, Y;, on their optimal non-grocery expenditures, Z;;, and on their idiosyncratic utility
draws, ;. To study the systematic variation in utility across consumers earning different in-
comes, I abstract from any variation in non-grocery expenditures Z;; and/or idiosyncratic utility
draws ¢; that is uncorrelated with income. The idiosyncratic utility €; draws are, by definition,
uncorrelated with consumer income Y;. The most direct way to abstract from this random vari-
ation would be to take the expectation of the indirect utility defined in equation (IT)) over the
idiosyncratic draws. Unfortunately, there is no analytic solution to this problem, and numerical
solutions are computationally intensive. Instead, I approximate the relative utility of households
at a given income level across different markets with the relative utility of an income-specific
representative consumer at the same income across the same markets. The representative con-
sumer’s utility from consuming a grocery bundle Q is a nested-CES function conditional on

their non-grocery expenditure Z defined as:

om(Z)—1 (UZLT?Z()ZZl)("T*l) 5

(120 US(Q.2) =< D> | D g p(Brgym(2))] on® |

where g, Bimg, Ym(Z), 0m(Z), and o take the same definitions as in the log-logit utility func-
tion presented in Section 4] above.®* The indirect utility of this representative consumer from
income Y; and prices and products P, yeES (P;, Y;), takes a similar form to the indirect utility
of the idiosyncratic consumer provided in equation (T1]) above. It can also be expressed as the
ratio of the consumer’s grocery expenditure to a price index that summarizes the consumer’s

marginal utility from expenditure given the prices and products available in the market:

Y, — Zy)
13 VOES(P,,Y;, Z; - -2
( ) ( ty ) t) PCES(Pt,ZZ‘t)’

where

. Pt (1—om(Ze)| TomZi
POES(P,. 7.,) = m
BnZi) =12 || 2 (exp< <Zit>>)

meM 9EGmt ﬁmg’)/m

for p,,g+ equal to the unit price at which product g in module m is sold in market ¢.

To summarize this indirect utility function across households so that it varies with ¢ only

3In Appendix I show that this income-specific, nested, asymmetric CES utility function yields identical
within-grocery budget shares as the CES-nested log-logit utility function that I estimate.
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through income, Y;, I approximate household non-grocery expenditures by assuming that non-
grocery expenditures, Z;;, vary only with household income, Y}, such that Z;; = Z (}/;).34 Under
this assumption, we can express the consumer’s indirect utility as a function of market prices,

P, and consumer income, Y; alone:

cms _ (¥i—Z(Yy))
(14) Vv (Ptam) - PCESGEDt, Z(}/Z))a
where
(15)

1—0o

CES DPmgt (1=0m(Z(Y)))] TomZ70
PCES(P,, Z(Y;)) = .
L.z = |3 (| X (expwmﬂm(zm))))

meM 9EGmt

In particular, a consumer’s relative indirect utility across two markets ¢ and ¢’ is equal to the

inverse of the relative price indexes they face across the same markets:

V(P,Y:)  PYPS(Py, Z(Y)))
V(Py,Y;)  PCPS(Py, Z(Y;))

~

(16)

That is, the magnitude of the price index a consumer with income Y; faces in market ¢ relative
to the price index they face in market ¢’ indicates how much lower (or higher) the consumer’s
grocery utility is in market ¢ relative to market ¢’. The remainder of this section outlines how
I obtain the two key inputs for these price indexes: market-specific price vectors and demand
parameters.

Note that this approach to measuring income-specific spatial price indexes is different from
the approach that |Broda and Romalis (2009) developed to calculate income-specific inflation
with the same Nielsen household-level data. |Broda and Romalis|(2009), and subsequent papers
by Argente and Lee|(2017) andJaravel (2018)), use the Feenstra (1994) methodology to calculate
price indexes that are exact to a nested-CES utility function similar to the one above, but with
two key differences. The Broda and Romalis| (2009) approach is more restrictive in that the
authors do not allow the substitution elasticities, o, in the framework above, to vary with
income. It is, however, more flexible in implicitly allowing for households at different income
levels to have entirely different revealed preferences (/3,,,45) for products. In the model presented

here, households agree on the qualities of products and only the willingness to pay for quality

34Theoretically, this assumption could be violated since consumers at each income level may optimally choose
different aggregate expenditure allocations across cities to suit the different grocery and non-grocery prices they
face in these locations. Empirically, however, I observe that the relationship between non-grocery expenditures and
income is surprisingly consistent across cities. Appendix Figure[A.6]demonstrates that households earning higher
incomes spend a smaller share of their income on grocery products. Within income groups, however, the average
grocery expenditure share does not vary much across cities and, in particular, it does not vary systematically with
city income.
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varies with household income. The additional structure imposed on the relationship between
perceived quality and income in this paper, as well as in more recent work by [Feenstra and
Romalis| (2014), provides a clearer economic interpretation for the cross-income differences in

the relative costs measured here relative to those measured in Broda and Romalis (2009).%

5.2 Inferring Prices and Product Availability

The first input to the price index defined in equation (I5)) is a market-specific price vector, Py,
representing the set of prices and products available to consumers in a market ¢. I calculate
price indexes comparing grocery costs across two types of markets in 2012: CBSAs and stores.
I proxy for the set of prices and products available to consumers in each CBSA in 2012 using
the set of products and unit prices represented in the 2012 sales of a random sample of the RMS
participating retailers located in that CBSA, as described in Section [2] above. I proxy for the
prices and products available to consumers in individual grocery stores in 2012 using the set of

products and unit prices observed in the sales of each establishment in 2012.3

5.3 Parameter Estimation

The second set of inputs into the price index defined in equation (I5]) are model parameters that
characterize how consumers value the products and prices available to them in a market, and
how this valuation varies with consumer income. I denote this set of parameters using a vector
0 defined as

9:{(91,...,91\/[),0'}

where 0,, = {al,, o, Bt - - - BinGin s Ym }-

I estimate these parameters in two stages. The first stage identifies the parameters that
govern the relative shares households spend on different products within each module. The
second identifies the parameters that govern the relative shares households spend on different
modules. In the first estimation stage, I follow Berry et al. (2004) in a GMM procedure that fits
two sets of predicted moments to their data analogs: (1) store-level product sales shares and (2)
the covariance of the prices and estimated qualities of the products purchased by each household
with household income. In the second estimation stage, I fit only store-level module sales
shares. This section describes the moment conditions and the identification of the parameters

for each estimation stage.

33The |Feenstra and Romalis| (2014) approach is similar to mine in that the authors estimate the parameters of
the underlying utility function and use these estimates to adjust prices for product quality. While the resulting price
indexes are not income-specific, they are based on a utility function that is non-homothetic in demand for quality
in the same way as the utility function presented above.

36The cross-store comparisons are again between stores in one channel — grocery or “food” in the RMS data —
dropping mass merchandise, drug, and convenience stores.
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5.3.1 Within-Module Estimation Methodology

Moments Given the distributional assumption on &;,,4, the conditional probability of purchas-
ing product g in module m for a household with non-grocery expenditure Z; and facing a vector

of prices P takes the familiar multinomial logit form:

€xp [aim (f}/lmﬁmg —In pmg)]
Z (exp [im (VimBmg' — I progr)])

g €Gm

(17) ng(ZhPa 9m) =

where a;,,, = (@, + o} In Z;) and v, = (1 + 7, In Z,).

The first set of moments fits predicted store-level product sales shares to the shares observed
in the RMS data. To calculate the store-level sales shares, I adjust the standard purchase prob-
ability expressed in equation to reflect time-varying store-specific pricing and promotion
activity:

exp [aim (%‘mﬁmgst —1In pmgst)]
> (exp [tim (VimBmgrst — I Prngrr)])

9'€Gmst

ng(Zi7 PSt? ema gSt) =

where B,,gst = Bmg 1 Emgst and st 18 a transitory taste shock for product g in store s at time ¢,
demeaned from the fixed product quality parameter, (3,,,. The fixed product quality parameter
refers to characteristics of the product that are common across stores and over time, such as
physical characteristics of the product itself and national recognition of the product’s brand. The
transitory taste shock is associated with local brand tastes, non-price promotions, and relative
prominence of the product in the store’s layout. In this stage of estimation, the product quality
and the transitory taste shock will be identified for all but one product in each module, so will
be estimated relative to the taste shock for the outside product (the set of products with average
positive sales shares below the 60th percentile for all products).

The predicted sales of product g in module m at store s at time ¢ is obtained by aggregat-
ing individual choice probabilities over the units purchased by customers at each non-grocery

expenditure level:

1
(18) ngst(gm; ]P)st / €Xp azm (%mﬁmgst npmgst)] dF(ZZ |S, t)
§ €xXp azm (Vlmﬁmg ‘st T hl pmg st)]

9'€EGmst

where F'(Z;|s,t) is the distribution of non-grocery expenditures over all customers i of store s
at time ¢ weighted by the number of module-m units each purchases.

The first set of within-module moment conditions is expressed over the transitory compo-
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nent of the unobserved product quality

_ 1 1 ~
gl(9m> = TL_ Z grlnggt(em) = n_ Z fmgst(Xm; elm)wmgst
m mg,s,t m mg,s,t

where n,,, is the number of (store-product-time) observations and W, . is a vector of pre-
determined variables including product fixed effects and instrumental variables outlined in
the identification discussion below. The tilde denotes that a variable has been differenced
from the respective value for the outside product in each module, g,,, e.g., fmgst(Xm; O1m) =
fmgst(Xm Hlm) - gm[]mst(Xm; le)-

The second and third set of within-module moment conditions respectively compare the
covariance between the relative quality and unit value of the products purchased by households
and their non-grocery expenditure to that predicted by the model. Following Berry et al.|(2004),
I fit the model’s predictions for the uncentered covariance of quality and price with household
non-grocery expenditure, i.e., £(2,,,Z) for 2,45 € { Bmg, Pmgst }, to that observed in the HMS
data.

The quality-covariance moments are obtained from the difference between the average non-
grocery expenditure of Nielsen panelists who purchase each product g in store s at time ¢ and the
average non-grocery expenditure predicted by the model for households that purchase product g
in store s at time ¢. If y = mg denotes that a household purchases a unit of product g in module

m, i,y denote one of the N,,, units purchased by sample households, and N,,, = > Nings

geGn,
the quality-co variance moments are:

1 1 X
_9 —~ L o -
g (em) ~ Nm ng ng@mg ng iZ:1 szg E[Z|y =mg, Qm]

I calculate E[Z|y = mg,0] by first transforming it into an expression that depends on the

model’s predicted choice probabilities for each unit purchased:

[ | ZP(y =mg|Z, 0,y = mst)F(Z|m,s,t)G(s,tly = m)
[ Pr(y =mg,|0m,y = m)G(s,tly = m)

where F'(Z|m, s,t) is now the distribution of non-grocery expenditures of the households ob-
served to be purchasing units of module-m products in store s at time ¢, weighted by units
purchased, and G(s,tly = m) is the distribution of these purchases across stores and time

periods. In practice, I calculate

= ZiPrng(Zi, Py, O, Est)

Nlm Zz ng(Zia ]P)sta ema gst)
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where N,, = Zm g Npng 1s the total number of units sold and 7 indexes each unit purchased
by a household ¢ with non-grocery expenditure Z;. This assumes that households receive an
independent taste shock for each unit they purchase. P, ,(Z;, Py, 0., ) is defined above in
equation (17)).

The price-covariance moments compare the covariance between the relative unit price paid
by households for their selection and their non-grocery expenditure to that predicted by the

model:

Q

7°(0m)

s,t 1,8,t

where 7 = Nim > Z; is the unit-weighted mean non-grocery expenditure of sample house-
holds. The relative unit price paid by a household 7 in module m in store s at time ¢ is de-
fined as the difference between the unit price charge by the store for product household  se-
lected from the weighted average unit price charged by the store for products in that module:
Pimst = (Dimgst — Pmst)» Where pp,q = Ege(;mst WingstPmgst ANd Wingst = Smg/ decmst Smy 18
the product sales weight taken from the store-level data. I calculate the predicted relative unit

price paid by household ¢ in module m in store s and time ¢, as

E[ﬁzmstyem] = Z ﬁmgstpmg<Zia]P)st79m7gst)

geGmst

Estimation Procedure The three moment conditions defined above identify all of the module-
specific parameters, 0,,, except for the quality parameter 3,,5,, of the outside product g,, in each

module. I denote this set of parameters by ¢, = {01, },,.0 Where

elm = {042“ Oéqlm%m {Bmg} }
9€Gm

for each module m € M and tildes continue to denote that a variable has been differenced from
the respective value for the outside product in each module, g, (e.g., Bmg = 5mg — Bm[]m)-

The 0, parameters are estimated in separate non-linear GMM procedures that minimize a
quadratic function over the moment conditions {g*(6.,), §*(6:m), 3> (6,,)} for each module m.
I use the nested fixed-point algorithm proposed by Berry et al.| (1995)) to obtain the relative

product quality parameters, {Bmg} , as a function of the three non-linear parameters for
9€Gm

each module, 0L = {a® ol ~,.}. Given a guess of
for the relative product quality shocks, Bgst (ONE) = Bmgst (ONE) — Brng,.s(FVE), that solve a

system of non-linear equations equating predicted and observed demand at each store in each

NL
1im

eNL

1’ » 1 first invert the share equation

time period. I project Bmgst(é ) on product dummies to obtain estimates for relative product
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quality Smg(ANE). The residuals provide estimates for the transitory shocks, &,ge(0NF) =
Bungst (ONEY — B,,(ONE). Both of these terms are used to calculate the moment conditions
{3"(0,),3%*(0m), 3°(0,,) } and, in turn, the objective function that I minimize over the remaining
parameters, 0V = {a® ol ~,}. Details on this full procedure can be found in Appendix
D.2.1]

I proxy non-grocery expenditure, Z, with household income, Y%7 I assume that the distri-
bution of units purchased in each module across income levels F'(Y'|m, s, t) is constant over
time within a store s. I estimate the store-level income distribution F'(Y'|s) as an average of
the income distributions of tracts whose centroids fall within 30km of the store zip centroid
(estimated to be the modal residential zip code of the store’s customers observed in the Nielsen
HMS data). *® In the baseline estimation, I assume a degenerate distribution for the clientele of

each store.

Identification The store-level moments serve primarily to identify the mean price elasticity,
a?, and product quality, 3,,,,, parameters. Conditional on product quality, the base price sensi-
tivity a2, parameter is identified by the extent to which relative within-store sales shares co-vary
with the components of relative price variation captured by the price instruments, described in
more detail below. Relative product quality, Bmg = Bimg — Bmgn» 18 identified by variation in
the average within-store sales shares of each product g, relative to the sales share of the outside
product g,,, conditional on price. The idea here is that, if products with two different products
sell at the same price, but product A has a higher average relative market share across all store-
months than product B, then product A will be assigned a higher quality parameter relative to
the base good for that module.*

The household moments serve to identify the non-homothetic parameters, o}, and ~,,. The
al parameter that governs how the price sensitivity varies with income is identified primarily
by the covariance between the prices of products purchased by households and their income.
Like o}, the quality-income gradient ,,, parameter that governs how demand for quality varies

with income are primarily identified by the covariance between the estimated quality of products

¥In a slight abuse of notation, I will denote the coefficients on log income using the same notation used to
denote the coefficients on log non-grocery expenditure in defining the moment conditions above. These new coef-
ficients are in fact approximations of the original coefficient multiplied by the elasticity of non-grocery expenditure
with respect to household income.

38See the Appendix for more details on this procedure.

FVariation in the quality of the outside product across store-months may bias the relative quality estimates
that, in practice, are calculated as the mean of store-month-specific quality shocks that rationalize the relative
sales shares on that product relative to the outside product given the non-linear parameter estimates, across the

store-months in which the product is sold; i.e., By = N% ot Brmgst (ONE) where Brget (ONE) = Brngst (ONE) —

ﬂmgmst(é{%). I discuss these errors in more detail in Section , where I find them to be small in magnitude
and not correlated with the spending patterns of high- or low-income households in such a way that would yield
biases in other parameter estimates.
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purchased by households and their income.

Price Instruments  The store-level moments are based on the assumption that E[£,,,, (VL)W g =
0 for a set of instruments W'. These instruments include a set of brand dummies, price instru-
ments, and interaction terms between these sets of variables and a set moments of the income
distribution in the vicinity of the store.*® As noted above, the tildes in the moment equation
indicate that these errors and instruments are differenced from the outside product within each
market to control, among other things, for market-level variation in the quality of the outside
product. The set of brand dummies includes one dummy for each brand except this base product
Jm- To reduce the dimension of the estimation data, I conduct principal components analysis
on this final set of instruments and use components that together explain over 99 percent of the
variation of the data.*!

I do not use prices as instruments because they might be correlated with the transient
product-market-specific taste shocks, &,,(07F). 1 instrument for the price charged by a store
for a given product with the contemporaneous price charged for the same product by stores
that belong to the same retail chain but are located in different Demographic Market Areas
(geographic market areas defined by Nielsen, which are roughly akin to MSAs). This “same
chain-other city” instrument, also employed in|DellaVigna and Gentzkow (2019), relies on sim-
ilar relevance and exogeneity arguments as in Hausman et al.|(1994) and |[Nevo| (2001)).

For relevance, I rely on cross-product inter-temporal and across-chain variation in the prices
charged by chains, driven by the timing of chain-level sales or changes in wholesale pricing
arrangements. Recall that the data is differenced from the outside product within market and
and implicitly from the product mean, by the inclusion of the product fixed effects. Even after
controlling for market and product fixed effects, there is sufficient variation in the instrument to
provide a strong first stage, with F-statistics above 100 in all modules, and above 500 in 99% of
modules.*

For exogeneity, cross-product variation in retail chain-level pricing cannot be correlated
with changes in relative product tastes in a market. Such a correlation could arise, for example,
if prices adjust in response to changes in the tastes of a retail chain’s national customer base. A
chain might, for example, lower the frequency of promotional sales for a product or re-negotiate

a wholesale price agreement in response to declining national demand for that product. Though

40Speciﬁcally, the average, the average squared, and the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles
of the income distribution.

4 The principal components IV reduces the scale of the optimization problem with minimal sacrifice to iden-
tifying variation, noting that linear combinations of valid instruments remain valid instruments — c.f. [Bai and Ng
(2010). The exact number of principal components used based on [Winkelried and Smith| (2011))’s retention rule
with § = —2. This retains instruments explaining over 99 percent of the variation in the instruments while reducing
the number of instruments by 90-95 percent.

42See Appendix Figures and
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I am unable to test this exclusion restriction directly, I can — for a subset of my data — construct
an instrument that is plausibly uncorrelated with national demand shocks by residualizing my
baseline “same chain-other city” instrument from the average contemporaneous price charged
for the same product by other retail chains in different DMAs. I use this alternate instrument to
test the validity of my base instrument in the sub-sample of products over which the residualized
instrument is non-missing — i.e., products sold in multiple chains in multiple DMAs.

First, I run a GMM distance test comparing the J-statistics from the model estimated using
both “same chain-other city” instruments to the J-statistics from the model estimated using only
the residualized version. In most modules, I fail to reject the null that the base instrument is
exogenous.

Then, I show that the price elasticity estimates using the baseline and the residualized in-
struments are comparable. Both instruments similarly remove negative biases in the price coef-
ficient relative to an “OLS” specification that uses the endogenous observed price as the instru-
ment. The price coefficients estimated using the base instrument are slightly lower than those
estimated using the residualized version, but the difference is small with respective medians
of 1.34 and 1.69. In Section below, I show that the main index results are robust to

increases in the mean price coefficient of this, or even larger, magnitudes.

5.3.2 Across-Module Estimation Procedure

Moments The remaining parameters include the cross-module substitution parameter, o, and
the quality of the base product in each module, 3,,;,,, for all modules m € M, except for the

base module m.* I denote this set of parameters by 0s:

Oy = {07 {Bmgm}meM,m;ém}

To estimate these parameters, I use a single set of moments that fit the predicted store-level
module sales shares observed in the Nielsen RMS data to those predicted by the model.

The expected log expenditure share in module m relative to m for a group of households
with the same non-grocery expenditure, Z;, facing a common vector of grocery prices, P, is
derived in Appendix|C.2] Adjusting this expression to reflect time-varying store-specific pricing

and promotion activity yields:
(19) Ee [111 Simst — In Simst] - (U - ]-) In ‘N/m(Zm IP)m51€7 anst)

Where Vmst(Ziy IP)msta ]P)’ﬁ’LSt) = Vmst(Zia Pmst)/vfnst(zia ]P)mst)- Vmst(Zia ]P)mst) iS a CES'Style

43See Appendix Figure mfor the full distributions.
“T normalize the fixed quality of the base product in the base module (unpopped popcorn), Bj,., to equal
Zero.
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index over price-adjusted product qualities:

1

20) Vi (Zs, Prat) = [Z (W> aim] h

g€Gm pmgst

Note that the inclusive value is a function of the parameters estimated in both the first and second
stage, i.e., 01 and 0,. To see this recall that o, = (a2, + ), In Z;) and v, = (1 4+ 7 In Z;)
and each store-specific product quality shock, (,,4st, is the the sum of (S5t — Bmg,nst)> €S-
timated in stage 1, and an unknown base product quality shock, 3,,5,,s. We can express the
inclusive value function as the product of the base product quality parameter, 3,,5,,s:, to be es-
timated in the second stage and an inclusive value function calculated using only elements of

1., estimated in the first stage:

Vm<Zz7 IEDmst) = eXp(Vimﬁmgmst)‘/lm(Ziu IEDmst)

where

(21) ‘/im(Zi7Pmst) = [Z (W) ] "

9€Gm pmgst

and Bmgst = Bmgst — Bmgmst- Under the normalization that 3,5, = 0 for all s, ¢, and using the

decomposition of the inclusive value function above, we can now rewrite equation (19) as:
(22) Es [ln Simst — ln Siﬁwt] = (U - 1) (7imﬁmgmst + ln f/1mst(Zi7 IP>mst7 ]PﬁLst))

where In ‘71mst(Zi7 ]P)msta anst) =In ‘flm(Zu IP>mst) —In ‘/im(sz ]P)mst)~
The predicted log expenditure share of module m relative to module m at store s at time
t is obtained by aggregating i-specific expected relative shares over the units purchased by

customers at each non-grocery expenditure level:

(23) Ez [Ee [hl Simst — In Simst]] - Bmgmst (O - ]-) Wmst + (U - 1) 5mst

where 7,..; = [ VimdF(Z|s,t) and Onst = [ 10 Vipst(Zi, Pnst, Prnst)AF (Z |5, ) can be calcu-
lated using price data and parameter estimates for §; obtained in stage 1 above.

The moment equation is then defined as:

_ 1 1 o
h(02) = ﬁ Z hmst(02) = ﬁ Z umst(X; 917 92)Wmst

m,s,t m,s,t
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where n is the number of (store-module-month) observations; W, s; includes the average store-
level quality coefficient 7,,,, interacted with module fixed effects and an instrument for the
average relative inclusive value for the module, Umst, described below; and u,,s; denotes the
difference between the observed log relative module shares between modules m and 7 in store

s at time ¢ and their predicted values, i.e.,

~ ~

(24) umst(X; éla 92) - ln (Smst/smst) - /Bmgm (0‘ - 1) 7mst(01) - <0 - ]-) 5mst(el)

Identification of o and f3,,5,, relies on the assumption that the errors in the model predicted

shares (u,,s;) are orthogonal from W, ;. The u,,s errors can be broken into two components,
Unnst = Uppgp + u72‘rzst‘ The first, u,,, = (0 — 1) <5m§m <7mst - 7mst(é1)> + Vst — 5mst(él))’
reflect errors in the first stage estimates, while the second, u2,;;, = &ng,.st (0 — 1)7,,, for
Emgmst = DBmgmst — Bmgn» reflect the transitory components of the product-store-time taste
shocks that are not estimated directly. To deal with the endogeneity of prices with respect to
these transitory taste shocks, I instrument for the average inclusive value, U,,s, using a data ana-
log calculated with the same contemporaneous chain-specific national cost shock instruments
that are used in the module-level estimation in place of store-time-specific price data.

The o substitution elasticity parameter is identified by the extent to which relative module
shares react to national chain-specific cost shocks for each module. Recall that the relative
inclusive value, 0,4, is scaled up or down by the quality of the base product, g,,, in a module
m relative to the quality of the base product, g5, in the base module m, unpopped popcorn (a
product type sold in most stores), which is normalized to equal zero. Any difference between
the expenditure share of module m relative to popcorn and what would be expected given the
relative inclusive value of the two modules and the o estimate will identify the quality of the
base product in the module, 3,,3,,, scaled by the market average taste for quality, 7,,,,,. Together
with the relative product quality estimates from the first stage of estimation, 5,,; — B5,,, the
base product quality estimates define the quality of each product in the dataset relative to the
quality of the base product in the base module.

This estimation procedure yields consistent estimates for #,, but the variance-covariance
matrix of these parameters will be biased due to the presence of the first-step estimates for
6, in the u! component of the error. I adjust this variance-covariance matrix to account for the
errors from the first stage of the estimation following the GMM analog of the Murphy and Topel
(1985) procedure outlined in Newey and McFadden|(1994).%° The adjusted variance-covariance

matrix yields consistent standard errors for the 6 estimates.

45 Appendix details how these adjustments are calculated.

32



6 Results

6.1 Parameter Estimates

I estimated the model under four sets of parameter restrictions. These restrictions allow pref-
erences to vary with income through the demand elasticities with respect to both quality and
price, through only one of these channels, or through neither of these channels, in which case
the model is homothetic.

Table 3|summarizes the estimates for the module-level parameters in each of these four mod-
els over the 400-500 modules where the optimization procedure reached internal solutions.*®

Columns [1] through [3] summarize the parameter estimates for the unrestricted version
of the model. Column [1] reports the parameter that governs the substitution elasticity of a
consumer with the mean log income level in the sample for each module, &°, = 6, — 1. The
median of this price elasticity is 1.5, with an inter-quartile range of 0.8 to 2.4, implying a median
and inter-quartile range for the elasticity of substitution of 2.5 and 1.8 to 3.4, respectively. The
magnitude and distribution of these estimates are similar across the four models and are well-
identified in most modules, with over 90 percent significant at the 95 percent level across all
four models. The own-price elasticities found here are in the range of those estimated in Nevo
(2000), Dube| (2004), and [Faber and Fally (2017).*

Columns [3] and [8] of Table |3| summarize the distribution of the estimated values for -,,.
All four models assume that all consumers agree on the relative quality of products, as described
by the distribution of the 3,,, parameters for products g € G, within a module m. For positive
values of +,,, however, the utility weight that consumers place on this component of utility,
relative to their idiosyncratic utility draw for each product or the quantity consumed, is increas-
ing in their non-grocery expenditure Z. This implies that consumers with higher non-grocery
expenditures have a higher willingness to pay for quality. In estimation, these parameters are
identified by the fact that higher income consumers spend a relatively greater share of module
expenditure on products with relatively high f3,,, estimates, that is, the products for which all
consumers have a higher willingness to pay. Figure [5|shows that products with higher f3,,,, es-

timates have higher expenditures at all income levels, but more so for the rich. Accordingly,

46The parameters were bounded as follows: a2, € (0.05,30), al, € (-5,5), and 7,, € (=5, 5). See Appendix
for more detail on the steps taken to identify interior estimates.

4TNevo| (2000), Dube| (2004), and [Faber and Fally| (2017) also use the Hausman-IV approach and estimate
the own-price elasticity of demand for similar categories of products to those considered here to be between in the
range of -0.5 to -4. These estimates are lower than the own-price elasticities implied by the elasticity of substitution
estimates in |Broda and Weinstein| (2010) and [Hottman et al.| (2016), who use the |[Feenstra (1994) methodology to
identify the elasticity of substitution between products. In Section I demonstrate the robustness of the
estimated price indexes to a set of demand parameters estimated in a two-step procedure, first using the [Feenstra
(1994) method to estimate the average price elasticities, agl , which are then held fixed when estimating the

remaining parameters (., Y, and 3,,4) using the moments described above.
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Table 3: Summary Statistics for Parameter Estimates

Model: Homothetic NH in Quality NH in Price NH in Quality and Price
Restrictions: al, =0& v, =0 al, =0 Y =0 None
[1] [2] [3] [41 [51 [6] [7] [8]

Parameter: al al Y al al oAb ol Y
Count 404 470 470 421 421 494 494 494

with t>1.96 375 463 406 421 231 433 90 420

with t<-1.96 29 7 64 0 190 61 404 74
Mean 2.60 220 142 194 023 1.73 -0.60 1.95
p25 0.83 0.89 038 0.72 -0.28 097 -1.24 1.35
p50 1.52 .71 116 1.36 0.15 158 -0.79 1.99
p75 2.39 241 252 206 080 242 -0.18 2.69

Notes: These tables report the summary statistics for the main module-level parameter estimates governing the elasticity of substitution and
non-homotheticities in demand. Attention is limited to modules for which the estimation procedure converged at interior estimates for all
relevant parameters. The second and third rows of the table show the number of modules in which the estimated t-statistic for the parameter
was above or below 1.96. The mean and percentile statistics in the subsequent rows are weighted by module sales in the Nielsen store-level
data.

Columns [3] and [8] of Table [3] show that the willingness to pay for quality (governed by 7,,)
increases with income in over three-quarters of the modules represented in the data.*® The
demand for quality is therefore increasing with income in most grocery sectors.

Columns [5] and [7] of Table [3| summarize the distribution of the estimated values for !,
in each module. Recall this parameter governs how the elasticity of substitution varies across
consumers with different non-grocery expenditures. For )}, < 0, high-income consumers will
find other products to be less substitutable with their ideal variety and, therefore, substitute
less across products in response to relative price changes. Comparing columns [5] and [7] of
Table |3} we see that the majority of the !, estimates are instead positive unless you control
for non-homotheticity in the demand for quality. Column [5] shows that the majority of the o,
estimates, and even the majority of those that are statistically significant, are instead positive

when #,, is constrained to be zero.** Column [7], on the other hand, shows that, in over 75

“8The full distributions of the ,,, and o}, estimates are depicted in Figures and in Appendix

“'These estimates may be biased upwards by a correlation between unobserved income-specific product tastes
and prices. Consider the model where -y, is restricted to equal zero for a degenerate store income distribu-
tion: InSmgst — MSmg,st = (a9 + at yst)[(Bmg — Bmg,.) — (N Pmgst — MPmg,, st)] + Vinggst- I the
true 7y, is positive, the error terms here will include any income-specific product tastes, Yo (Bmg — Bmgn, )-
If the chains at which high-income consumers shop set prices in accordance with these tastes such that
Corr(Ym (Bmg — Bmgm ) » N Pmgst — NPz, st) # 0, then the assumption that E[W¢] = 0 will be violated.
The fact that the o, estimates are lower, and generally negative, in the model that allows for non-homotheticity
in the demand for quality and the price sensitivity supports this theory, since this model directly controls for,
YmYst(Bmg — Bmg.,)- 1 do not, therefore, take the positive a}n estimates in the model that does not control for
correlations in income-product specific tastes as evidence that high-income consumers are more price sensitive
than low-income consumers. Instead, the positive v}, estimates highlight the difficulty in identifying the non-
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Figure 5: Product Quality (3,,,) Estimates and High-vs.-Low Income Household Expenditures
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Note: Plots shows coefficient on log product-level expenditures by each income decile in the household-level (HMS) data regressed against
the product quality (8mg) estimates in the model that allows for non-homotheticity in quality but not price sensitivity (i.e., restricting o}, = 0
but allowing ~y,, 7# 0). These regressions include product module fixed effects and observations are weighted by aggregate module sales.
Attention is limited to estimates in the 470 modules where the estimation procedure converged at interior estimates.

percent of modules, high-income consumers are less price sensitive, or &! < 0, when you

control for the fact that they also have a greater willingness to pay for quality.

The parameter estimates generally support that demand is non-homothetic within modules.
In particular, high-income consumers have a greater willingness to pay for quality than low-
income consumers and, when controlling for this non-homotheticity in the demand for quality,
the results show that high-income consumers are also less price sensitive.>

The upper-level estimation yields between-module elasticity o estimates reported in Table
As expected, products in different modules are less substitutable than products in the same

module, with between-module substitution elasticities close to one.

homotheticity related to price sensitivity in isolation from the non-homotheticity related to product quality.
0 Appendix provides further evidence with moments demonstrating the out-of-sample fit of the model.
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Table 4: Upper-Level Substitution Elasticity Estimates

Model Name o
Homothetic 1.007
[0.010]
Non-Homothetic in Price 1.007
[0.008]
Non-Homothetic in Quality 1.027
[0.005]
Non-Homothetic in Quality and Price  1.058
[0.009]

Note: This table shows the estimates for the elasticity of substitution between modules. Standard errors (in brackets) have been adjusted for
first-stage measurement error as described in Appendix[D.2.7]

6.2 Model Selection

The model estimates above provide micro-evidence that high-income households have a stronger
taste for high-quality products and, controlling for this, they are less price sensitive. Allowing
for both forms of non-homotheticity introduces over 400 additional parameters to the model
(one o or v, for each module). These parameters will all be sources of error in the income-
specific price indexes used to address the paper’s main question in Section [6.3| below. Prior to
undertaking this analysis, I therefore first attempt to determine whether this parametric flexi-
bility is valuable enough to warrant these additional errors. To do this, I use the GMM-BIC
model selection criterion that judges models using a trade-off between model fit and model
complexity, measured using the number of parameters relative to the number of moments used
in the estimation of those parameters.’! Specifically, for each module, the GMM-BIC criterion
selects the model and moment conditions that minimize the difference between the estimated .J
statistic and the log of the number of observations multiplied by the number of over-identifying
restrictions used in estimation. The results of this exercise are summarized in Table[3

The model that permits non-homothetic demand for quality, but not for price, is the optimal
model for 63 percent of modules, representing 70 percent of sample sales. Further, in bilat-
eral model comparisons, the model that accounts for non-homothetic demand for quality had
a lower GMM-BIC criterion in modules representing 82 and 79 percent of sales when com-
pared to the models that account for non-homothetic demand for price or both price and quality,

respectively.>?

51This method was developed in|Andrews|(1999) as a moment selection criterion and is shown to be consistent
for model selection in /Andrews and Lul (2001}).

2See Appendix Table
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Table 5: Summary Statistics for BIC Model Selection Criteria

Non-Homotheticity in:

Quality Price Price and Quality

Share of Modules where Model Dominates 0.63 0.13 0.25
Sales Share of Modules where Model Dominates ~ 0.70 0.11 0.19
Average Statistic 8,596 8,191 21,015
Sales-Weighted Average Statistic 622 1,889 789

Note: This table shows summary statistics describing the value of the Bayesian Information Criterion (BIC) statistic for the three
non-homothetic models whose estimates are summarized in Table[3] Attention is limited to the set of modules that have interior estimates for
all three models. See Appendix (D.3)) for further details on the BIC calculation.

These results suggest that the salient form of non-homotheticity in grocery consumption
is in the demand for quality. In the analysis below, I limit my attention to price indexes that
account for this form of non-homotheticity alone when studying how grocery costs vary across
local markets differently for consumers at different income levels. Any differences between the
relative price indexes high- and low-income consumers face across cities and stores will reflect
differences in the availability and prices of high- relative to low-quality products across these

markets.”3

6.3 Income-Specific Consumption Externalities

The analysis above has provided the inputs to market- and income-specific price indexes that
represent how households at different income levels value the products and prices available to
them in different U.S. cities and neighborhoods, as outlined in Section E] above. I can now turn
to answering the central question in this paper: do grocery costs vary differently across markets
for consumers at different income levels?

To answer this question, I estimate the following regression:

(25) In P(P,, y) = O + Brve + Bo(Yk — T)Ye + €res

where P(IP’C, yx) is the grocery price index for a representative consumer with log income yy, in
each market ¢, obtained by plugging the market-specific price vector P, income v, and model

parameter estimates into equation (13)); ¢, is an income-level fixed effect; y. is log per capita

3Conversely, these price indexes do not allow for non-homotheticity in consumer’s price sensitivity (or id-
iosyncratic utility weight). So, while high-income consumers face relatively lower costs in markets with relatively
more, and cheaper, high-quality products than low-quality products, all consumers get the same additional utility,
and cost savings, in markets that offer more varieties and lower prices of both high- and low-quality products
equally.
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income in city ¢, and ¥y, is the mean log household income in the sample.

In the above specification, the coefficient on log city income (3;) reflects the mean elasticity
of grocery costs with respect to city income. The coefficient on the interaction of demeaned log
consumer income and log city income (3;) measures how the elasticity varies with household
income. The grocery price index, P(]Pc, Yk ), is calculated using a model that allows for non-
homotheticity in the demand for quality, so the elasticity of grocery costs with respect to city
income will vary with income, and (3, will be non-zero, if the goods and prices available in each
city are correlated with the tastes corresponding to the average income of the consumers living
there. If wealthy cities offer more varieties of high-quality goods at lower prices than poorer
cities, the price index faced by high-income consumers will decrease by more (or increase by
less) than the price index faced by low-income consumers between poor and wealthy cities.
This is because high-income consumers benefit more from the availability and lower prices
of the goods that they prefer. Under this scenario, the elasticity of the price index faced by
high-income consumers with respect to city income would be lower than the elasticity of the
price index faced by low-income consumers with respect to city income yielding a negative (3,
estimate.>*

Table [6| presents the results of the baseline regression estimated using income-specific price
indexes calculated for price vectors reflecting the prices and products available at 100 random
samples of 50 stores in each of the 125 CBSAs that have 50 or more stores.> The 3; coefficient
on CBSA per capita income is negative but not significant, reflecting the large degree of noise
in the price indexes across CBSAs making it impossible to identify a systematic relationship
between the mean price index that a household faces in a city and its per capita income. There is,
on the other hand, strong evidence that the elasticity of the price index with respect to per capita
income increases with household income: the 35 coefficients on the interaction between CBSA
per capita income and demeaned household income are negative and statistically significant.
The magnitude of the (3, estimate indicates that this variation is economically significant. A
consumer who earns $25,000 a year sees their per dollar grocery costs decrease by around 4
percent for each log unit increase in city per capita income, comparable to the gap between the
wealthiest and poorest cities in the sample (Bridgeport-Stamford-Norwalk, CT with per capita
income of $49,688 and El Paso, TX with per capita income of $18,684). On the other hand, the

>*This regression characterizes an equilibrium relationship and should not be interpreted causally. The results
presented here do not indicate whether, for example, grocery costs are lower for high-income consumers in wealthy
cities because a high per capita income causes stores in a city to stock more high-quality products or because high-
quality products attract more high-income inhabitants to a city, raising its per capita income.

3Formally, the regression estimated is:

In P(Pey, yi) = Okt + B1e + Bo(Yk — Gk)Ye + kb,

where P, denotes the set of prices available to consumers in the 50 stores in bootstrap sample b for CBSA ¢ and
Orp is a bootstrap sample-household income group fixed effect. Standard errors are clustered at the CBSA level.
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per dollar grocery costs of a consumer with a yearly income of $200,000 decreases by over 50
percent for each log unit increase in city per capita income. A high-income household would
experience approximately a 10 percent greater decrease in grocery costs than a low-income
household when both move from a CBSA at the 25th percentile of the income distribution (e.g.,
Scranton, PA) to a CBSA at the 75th percentile of the income distribution (e.g., Pittsburgh, PA).

Table 6: City-Income Specific Price Index Regressions

Dependent Variable: Ln(Price Index for Household in Income Group & in CBSA c¢)

Local Prices National Prices

(1] (2] (3] (4]

Ln(Per Capita -0.32 -0.30 -0.082 -0.15
Income,) (0.21) (0.20) (0.19) 0.21)
Ln(Per Capita -0.25%* 0277 -0.22%F -0.25%F
Income.)* Demeaned Ln(HH Income;)  (0.040)  (0.045)  (0.038) (0.030)
Ln(Population,.) -0.0075 0.020

(0.047) (0.046)
Ln(Population,)x 0.0050 0.0093***
Demeaned Ln(HH Income;,) (0.0031) (0.0018)
Income Group k*Bootstrap Sample FEs Yes Yes Yes Yes
Number of CBSAs (¢) 125 125 125 125
Observations 98,920 98,920 98,920 98,920
adj. R? 0.03 0.03 0.01 0.01

Notes: *#* p< 0.01, ** p<0.05, * p<0.10; standard errors, clustered by bootstrap sample and CBSA, are in parentheses. This table presents
results from regressions of household income- and CBSA-specific grocery price indexes against CBSA characteristics alone and interacted
with demeaned log household income. The price indexes correspond to the baseline model that allows for non-homotheticity in the demand
for quality but not in price sensitivity (i.e., restricting that ., =0) and measure how households at eight different income levels between
$25,000 and $200,000 value the products and prices represented in each of 100 bootstrap samples of 50 stores in each of 125 CBSAs with 50
or more participating retailers. Bootstrap sample-CBSA-income group-level observations are weighted by CBSA population.

Market income is correlated with market size: wealthier sample cities are larger than poorer
sample cities with a correlation coefficient of 0.35. Therefore, it is possible that a negative
P2 estimate in the baseline regression could result from grocery costs being lower for high-
income households than for low-income households in larger, as opposed to wealthier, cities. In
column [2] of Table[6] I therefore add controls for log population and log population interacted
with log household income to the baseline regression. The (3, coefficient is robust to these
controls, whose coefficients are estimated as precise zeros. This evidence is consistent with
the “within-group preference externalities” story in which higher income consumers receive
relatively more consumption benefits from living in wealthier cities, as opposed to a story in

which high-income consumers receive more consumption benefits from living in larger cities
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than low-income consumers.>°

Differentiating between Price and Variety Effects

The results above suggest that, relative to low-income households, high-income households
receive higher consumption utility from the grocery bundles available in wealthier cities than
from the grocery bundles available in poorer cities with the same population. The model allows
for high-income households to have a stronger preference for high-quality goods than do low-
income households. So, the fact that high-income households get relatively more utility from
consuming grocery products in high-income cities must be either because there are more high-
quality goods available in these locations or because the high-quality goods are sold at relatively
lower prices in high-income cities, or for both reasons. I examine this issue by calculating
income-specific price indexes for the set of products I observe in the 50-store sample for each
city, as before, but setting the prices of each product equal to its national average price.
Columns [3] through [4] of Table [f] replicate columns [1] through [2] using these fixed-
price indexes as the dependent variable. The coefficients on the interaction between per capita
income and household income only decrease slightly in magnitude. High-income households
would continue to find wealthy cities almost as cheap relative to poor cities, relative to low-
income households, if products were sold in both locations at their national average price. This
indicates that the difference in how high- and low-income households perceive the relative costs
to vary across cities is almost all due to variety differences. The products that high-income
consumers prefer to consume are sold at higher prices in wealthy cities than they are in poor
cities, but high-income consumers are more than compensated for this price difference by the

fact that more of these products are available to them in these locations.

Semi-Parametric Estimates

The regression estimated above imposes that the elasticity of the income-specific price index
with respect to city income is log-linear in income. There is no reason for this to be the case.
To obtain non-parametric estimates of these elasticities at different income levels, I estimate the
above regression specification but with a household income dummy interacted with per capita
city income instead of the household income level interacted with per capita city income:

(26) In P(PC, Yr) = 0k + B1Ye + BokYe + €ke,

I estimate this regression separately for each set of 100 bootstrapped samples of 50 random

stores from each CBSA. Figure [ plots the mean of the resulting [y elasticity parameter es-

5"Tablein Appendix E] shows that these main results only change marginally when based on price indexes
that account for non-homotheticities in both consumer’s demand for quality and their price sensitivity.
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timates against log household income, y;. These results indicate that there is a non-linear
relationship between this elasticity and household income, with the downward slope flattening

out somewhat at the lower tail of the income distribution.”’

Figure 6: Elasticity of Grocery Price Index with respect to CBSA Income for Households at
Different Size-Adjusted Income Levels
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Notes: This figure plots the elasticity of the grocery price index for households at different income levels across different CBSAs with respect
to CBSA per capita income. The price indexes correspond to the model that allows for non-homotheticity in the demand for quality but not in
price sensitivity (i.e., restricting that o}, =0). Each index measures how households at a given income level values the products and prices
represented one of 100 bootstrap samples of 50 stores in each of 125 CBSAs with 50 or more participating retailers. The elasticities of these
indexes with respect to CBSA per capita income are calculated by regressing the indexes against household income fixed effects and these
fixed effects interacted with log CBSA per capita income separately for each bootstrap sample. Observations in these regressions are weighted
by CBSA population. The figure plots the mean of these elasticities at each household-income level across bootstrap samples.

Variation within CBSAs

We see similar variation in the per dollar grocery utility offered to high- and low-income house-
holds across stores in different neighborhoods as we did across CBSAs. Table [/| presents the
elasticity estimates from equation (25]) where market ¢ denotes a store.”® Column [1] shows
a similar qualitative pattern in the variation in the elasticity of price indexes with respect to
household income across stores with different local per capita income as we saw across CB-
SAs with different per capita income. With these store-level indexes, we can consider whether
sorting within CBSAs might enable households to mitigate some of the cross-CBSA variation

in grocery availability. Column [2] shows that the elasticity of store-level indexes with respect

37 Appendix Figure show that these elasticities vary much less across bootstrap samples than they do
between incomes below and above $100,000, for example.

3For the store-level results, P(]P’C, yr) reflects the grocery price index of a representative household earning
yr. faces in store c and vy, is the average size-adjusted income in the vicinity of store c, calculated using the non-
parametric method described in Appendix @
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to household income is also increasing with CBSA income. Columns [3] and [4] show that

this correlation is stronger when comparing the indexes for stores located in the high-income

neighborhoods in different CBSAs. That is, the relationship between grocery costs and CBSA

income is amplified for residents of high-income neighborhoods and mitigated for residents of

low-income neighborhoods.

Table 7: Store Price Index Regressions

Dependent Variable: Ln(Price Index for Representative Consumer & in Store c¢)

(1]

[2]

(3]

[4]

(5] (6]

(71

(8]

Ln(Per Capita -0.11%%* -0.0040

Income.) (0.0084) (0.0056)

Ln(Per Capita -0.033** -0.0014

Income.)* Demeaned Ln(HH Incomey)  (0.0099) (0.0031)

Ln(CBSA Per Capita Inc.) -0.13*** -0.13* -0.074 0.0036 0.0023 -0.0076
(0.029) (0.063) (0.042) (0.016) (0.022) (0.017)

Ln(CBSA Per Capita -0.047**  -0.072**  -0.024*** 0.0072 0.0072 0.00034

Inc.)* Demeaned Ln(HH Incomey,) (0.014) (0.021) (0.0061) (0.0077) (0.018) (0.0041)

Income Group k Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Chain x Income Group Fixed Effects No No No No Yes Yes Yes Yes

Store Set (Local Per Capita Income.) All All High-Inc.  Low-Inc. All All High-Inc.  Low-Inc.

Number of Stores (c) 9311 8859 4637 4222 9310 8858 4633 4212

Number of CBSAs - 691 175 650 - 691 175 649

Observations 74,488 70,872 37,096 33,776 74,480 70,864 37,064 33,696

adj. R? 0.03 0.02 0.02 0.01 0.56 0.57 0.57 0.55

Notes: *** p< 0.01, ** p<0.05, * p<0.10; standard errors, clustered by store and household income in columns 1 and 5 and by CBSA and

household income in columns 2 through 4 and 6 through 8, are in parentheses. This table presents results from regressions of household

income- and store-specific grocery price indexes against measures of local store income alone and interacted with demeaned log household

income. The price indexes correspond to the baseline model that allows for non-homotheticity in the demand for quality but not in price

sensitivity (i.e., restricting that a, =0) and measure how households at eight different income levels between $25,000 and $200,000 value the
products and prices represented in grocery stores in the Nielsen RMS sample. Store-by-income group observations are weighted by store sales.

The results in columns [5] through [8] show that the variation in columns [1] through [4]

can be entirely explained by variation in the set of retail chains that locate in high- vs. low-

income neighborhoods. Retail chains do not appear to significantly alter the mix of brands they

offer across neighborhoods or CBSAs in a way that biases the attractiveness of their stores in

higher-income locations to higher-income customers.

6.4 Robustness Checks

6.4.1 Robustness to Different Estimation Choices

Table [§] demonstrates the robustness of the demand parameter estimates used in the index cal-

culation above to various decisions made in the course of estimation. Due to computation

limitations, the main estimation procedure grouped any products with expenditure shares below
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the 60th percentile in a given store-month to an outside product for that store-month. The first
row shows the distribution of parameter values under this base specification. The next two rows
show the robustness of key parameter estimates — a2, 7,,, and the standard deviation of quality
Bmg across products — to allocating either fewer or more products (those below the 40th or 80th
percentiles) to the outside product. The distributions of these a®, and ~,, parameters are shifted
marginally upward, while the variation in the quality estimates falls. Table[§|next shows that the
parameters estimated using data at a weekly or quarterly, instead of monthly, frequency. The
price elasticity estimates are higher in both cases, but more so when the frequency of the data
is reduced, indicating that there is some attenuation bias in the parameter estimates. Finally,
Table [§| shows the distribution of parameter estimates reached in a two-step procedure that uses
the Feenstra (1994) method to identify the price coefficients and then — holding those price co-
efficients fixed — uses the moment conditions described above to identify the remaining model
parameters.” As expected, the price coefficients estimated using this method are larger, with a
median of 2.88. As in other robustness checks discussed above, the ~,,, parameters, that govern

the non-homotheticity in demand for quality are also larger and there is less estimated variation

in product quality.
Table 8: Robustness of Parameter Estimates
Price Elasticity (ag) Income-Quality Elasticity () St. Dev. of Quality (o(8mg))
Percentile Percentile Percentile
Specification Mean 25th  50th  75th  Mean 25th  50th  75th  Mean 25th  50th  75th
Base 2.13 0.89 170 240 140 039 1.01 247 0.87 030 048 098

Outside Good Cutoff =40%  3.55 1.40 236 4.26 172 049 172 265 067 025 046 073
Outside Good Cutoft =80%  2.72 1.10  1.88 2.8l 162 051 174 227 066 024 040 0.67

Weekly Data 2.79 1.19 190 3.24 1.71 064 1.69 257 068 027 043 0.57
Quarterly Data 3.72 133 229 439 1.e4 072 139 251 0.75 027 037 056
Feenstra 3.30 1.35 288 4.6l 1.41 051 138 217 067 026 043 071

Notes: This table presents the distribution of interior parameter estimates obtained for the baseline model that allows for non-homotheticity in
the demand for quality but not in price sensitivity (i.e., restricting that a1, =0) using different estimation samples and specifications discussed
in the text.

The variation in parameter estimates across specifications is important insofar as it generates
differences in how high- and low-income households perceive the relative product offerings
across high- and low-income markets. To understand what drives these differences, consider
a simple case in which there is a single module containing two types of varieties, indexed by
j € {H, L}. All products of each type have the same quality, denoted /3; (wWhere Sy > [) and,
conditional on being available in a market, are sold at the same price, p;. Markets, indexed by ¢,

are only differentiated by the number of products of each type available, denoted Ny, and Np,.

See Appendix for further details on how the [Feenstra (1994) method is applied in this context.
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Under these assumptions, the log price index for market ¢ for a household with income yy, is

0 0
1 —a —a
In P(Py,yx) = —@hl Ny (li{—Hk) + N <%)

Consider how the price index changes differentially for households with different incomes, as
the number of high-quality products available in the market increases. The cross-elasticity of
the log price index with respect to the number of high-quality varieties Ny, and household

income yy 1s:

ey DIERM g, Nt (b%>_a0 (%)wo

ON g Oyy, —af —a0]?
Vo () 4 (22)

This cross-elasticity is proportional to the quality-income gradient v and the difference in the
quality of high- and low-quality products (g — ). These two key estimates govern the dif-
ferential gains that high-income consumers get from the higher quality product assortment in
wealthier cities relative to low-income consumers are the income-quality elasticity (,,) and the
degree of variation in the estimated quality across products, rather than the mean price elasticity
(@ ).%0

Reassuringly, these estimates are relatively stable across specifications. If anything, the
specifications that yield higher estimates for the mean price elasticity (a2,) tend to also show
higher estimates for the income-quality elasticity (,,) and less variation in the estimated quality

across products.®!

These shifts balance out, making the relative gains to wealthy consumers
from access to high-quality products quite robust across specifications. The variation in the
relative grocery costs across different U.S. cities across households at different incomes is the
same order of magnitude using price indexes based on estimates using the Feenstra method
to identify price elasticities, the residualized instrument, quarterly frequency data, and a less
restrictive cutoff for inclusion in the outside product. Across these specifications, high-income
households are estimated to find wealthy cities between 20 and 50 percent less expensive than

poor cities relative to low income households.®?

%0 As is standard in CES setting, the welfare effect of having more variety — measured as the elasticity of the
log price index with respect to (Ng; + Nr;) — is proportional to the inverse price elasticity, 1/a’ = 1/(c — 1).
This variety effect, however, cancels out when considering the differential effect of variety on the price index of
households with different incomes. What matters for this differential welfare effect is the mix of varieties available.

IThis makes sense. The quality parameters are scaled by the price (substitution) elasticity in the demand
function, so when a?n is higher, less variation in f,,, is required to rationalize the observed variation in sales
across products. Conditional on there being less variation in quality across products, a higher income-quality
elasticity gradient is required to match the bias of high-income purchases towards higher quality products.

92See Appendix Figure
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6.4.2 Measurement Error in Quality

To estimate product quality, [ have assumed that the quality of the outside good in each module
is equal across markets. In practice, variation in the quality of the outside product across store-
months will generate errors in the relative quality estimates (Bmg). One concern is that quality
may be mis-measured in a way that biases the gradient of the quality elasticity with respect to
income (v,,). For example, suppose that high-income households tend to purchase products
stocked in stores that also offer higher quality outside goods. Bmg will then understate the
relative quality of products that high-income households purchase, and overstate the relative
quality of products that low-income households purchase. This could lead me to overstate the
income-quality elasticity gradient (7,,).%

I run two tests to gauge the degree of this error and its potential to bias the +,,, estimates. The
results, in Appendix [E.1.3] show that these errors are typically small in magnitude. Importantly,
I find that the errors are not correlated with the purchasing behavior of high- vs. low-income
households in such a way that would bias the income-quality elasticity gradient. The robustness
of the 7,, and f3,,, parameter estimates to alternate definitions of the outside good in Table [8|is

also reassuring.

6.4.3 Alternative Sources of Demand Heterogeneity

The price indexes calculated here account for how consumer tastes vary with income both across
products in the same category and across categories of products. Income is a factor in determin-
ing a consumer’s preferences over different types of breakfast cereal, for example, as well as
in determining their willingness to pay for cereal relative to milk. In order to make this multi-
sector analysis tractable, I have abstracted from a number of other ways in which demand and,
therefore, aggregate costs could vary across heterogeneous households.

In particular, empirical micro-economists have shown that income is just one of a range
of demographic characteristics that can be correlated with consumer demand for a variety of
product characteristics, including brand quality. The model here is more stylized, allowing the
willingness to pay for a single product characteristic, brand name, to vary with a single con-
sumer characteristic, income. The benefit of such a simple framework is that it is generalizable:
none of the variables are category-specific so it can be used to measure how demand varies

systematically with consumer characteristics across products in many product categories. The

83 Alternatively, if the bias is so large that the ordering of product quality is not maintained — such that prod-
ucts that high-income households favor are estimated to have lower relative quality than products low-income
households favor when they are in fact higher quality (or vice versa) — I could estimate the wrong sign for the
income-quality elasticity gradient (y,,). In this case, the main result that high-income markets offer more of the
products that high-income households favor and, therefore, provide high-income households with relatively lower
grocery costs than low-income markets, would hold, but the interpretation that these products are higher quality
(i.e., preferred on average by all households) would not.
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drawback is that it imposes two types of strong assumptions on the consumer tastes.

The first is that households value units of products from the same brand and module equally,
regardless of their flavor, texture, or the size and type of container they were packaged in. The
cross-city price indexes I calculate account for the fact that high-quality brand name products
are more available or sold at cheaper prices than low-quality brand name products in some cities
than in others, but the prices of products in the same module and brand enter symmetrically, even
if they have different sizes, container types, etc.. For violations of this assumption to bias the
results of the paper, low-income tastes would need to be biased towards product characteristics
that are disproportionately represented (or available at lower prices) in high-income cities. This
is unlikely to be the case. I do not, for example, find any statistically significant correlations
between either the price or availability of products with certain sizes and per capita income
when controlling for product module and brand name.

The second simplification in the model above is that, controlling for size-adjusted house-
hold income, consumer demand does not vary systematically with other demographics, such as
age, marital status, and education. The consumption patterns and parameter estimates above are
consistent with non-homotheticities in demand but may instead pick up correlations between de-
mand and these other demographics, to the extent that age, marital status, and education are also
correlates of income. Similarly, the estimated patterns in product availability across high- and
low-income markets are consistent with local firms catering to income-specific tastes, but could
also be the result of preference externalities along other demographics or unrelated supply-side
factors. It is important, therefore, to caution against interpreting these results causally. More

work is needed to assess the role of preference externalities in grocery retail.

7 Conclusion

There is growing interest in the role of non-homothetic preferences and cross-market income
differences in determining production patterns in macro, urban, and international economics. If
preferences are income-specific and, further, if the products available in different markets are
biased to the income-specific tastes in these markets, then consumers at different income lev-
els will experience different changes in consumption utility across these markets. The results
in this paper indicate that this is indeed the case: high-income households face greater gro-
cery consumption gains from moving to high per capita income markets than do low-income
households.

I show that high-income households face much lower grocery costs in wealthy cities than in
poor cities, while low-income households face slightly higher grocery costs in these locations.
Further work is required to extend the analysis presented here to other components of household

expenditure in order to build income-specific aggregate spatial price indexes that can be used,
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for example, in real income measurement or in a Rosen-Roback framework to look at the role
of these pecuniary consumption amenities, relative to skill-biased productivity spillovers, in
explaining skill-biased agglomeration. Recent work by |Atkin et al.| (2019) suggests a promising
path forward in this direction.

I do not expect that these grocery cost differentials are representative of the differentials that
we would expect in other components of the typical consumer basket. For one, I expect that
the availability of the food and fast-moving consumer goods represented in my sample varies
less geographically than other parts of the consumption basket like non-tradable services and
housing. If anything, I would expect the strength of consumption externalities to be higher in
sectors that are less tradable. So, conditional on these other products having similar degrees of
demand heterogeneity, I would consider my estimates to be a lower bound for the differentials

we would expect to see in aggregate price indexes.**

%Even under the conservative assumption that preferences are homothetic within each of the households other
consumption areas, the difference in relative grocery costs alone implies an economically-significant 1.4 percent
gap between the aggregate living costs faced by high-income households in wealthy, relative to poor, cities and
those faced by low-income households. High-income households, who spend around 2 percent of their annual
income on groceries, would face 0.94 percent lower living costs in wealthy cities, whereas low-income households,
who spend around 10 percent of their annual income on groceries, would face 0.4 percent higher living costs in
these locations.
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Appendices for Online Publication

A Data Appendix

A.1 Data Cleaning

The estimation sample is cleaned in various ways. Throughout I define prices on a per unit basis, limiting
my attention to products whose container size is expressed in the modal units for that module. I exclude
any module whose modal container size is either not expressed in meaningful units (i.e., counts instead
of weights or volume) or in the same units for at least 75% of UPCs. Approximately one quarter of
modules do not satisfy these restrictions. I also exclude random weight items, whose quality can be
variable over time.%

To control for data recording errors, I drop any market (store-month) in which I observe a UPC
sold at a unit price greater than three times or less than a third of the median unit price paid per unit of
any UPC within the same product or module categorization. The typical module loses 6.5 percent of
product-store-month observations for this reason, and 5.6 percent of store-month markets.

For computational reasons, I group any products with small sales shares into a single outside product
for each module. This implies that product quality is only identified for products that see non-negligible
sales shares, on average, across markets. In the base specification, I allocate any product to the outside
product if its average non-zero sales share across store-month markets falls above the 60th percentile
of the products in its respective module. Using this cutoff, products grouped in the outside product
account for 15 percent of the store sales observed in the data.®® I drop any markets that sell less than two
non-outside products.

Finally, for identification purposes, I limit my attention to products that are sold in 5 or more of the
remaining markets where I observe HMS households shopping and to modules that have some overlap
between the product-store-month RMS store sales data and the HMS household purchase data.

Of the 1,071 non-random weight modules in the RMS data, 807 have 75% or more of their UPC
container sizes measured in useful units. 666 of the remaining modules appear in five or more markets
where HMS panelists shop (for the purposes of identifying store neighborhood income used to calculate
the macro moments), after removing markets with outlier prices or insufficient non-outside products.
Of this 666 modules, 530 have some store-products represented in the household purchase data, i.e.,
observations with which I can calculate the micro moments to identify the non-homotheticity parameters.

The cleaned data contains approximately 200,000 UPCs categorized into 22,655 products across
530 product modules. Almost three quarters of these products are purchased by households in the HMS
data. The median numbers of products and UPCs per module are 28 and 119, respectively.

65The quality of random weight items, such as fruit, vegetables, and deli meats, varies over time as the produce
loses its freshness and it is likely that stores set prices to reflect this. This potential inter-temporal correlation
between their unobserved quality of random weight products and their prices would introduce biases in the price
elasticities estimated below, so they are excluded from this analysis.

%Gandhi et al. (2013) highlight a selection problem associated with this treatment of low and zero sales shares.
To gauge the magnitude of this problem, I test the robustness of my estimates to higher and lower selection criteria
for the main model in Section of the paper.
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Table A.1: Summary Statistics for the Nielsen Data Used in Estimation

Panel A: Full Sample
Data: RMS (Store) HMS (HH)

Total Count Per Module Count Per Product Total

Count Min Median Max Min Median Max Count

Modules 1,071 - - - - - - 1,060
Products 188,549 1 122 4,844 - - - 107,455
UPCs 768,639 1 220 32,554 1 2 3,000 362,143
Panel B: Estimation Sample
Data: RMS (Store) HMS (HH)
Total Count Per Module Count Per Product Total
Count Min Median Max Min Median Max Count
Modules 530 - - - - - - 530
Products 22,655 2 28 627 - - - 15,615
UPCs 203,049 2 119 6,595 1 6 1,347 106,118

Notes: This table shows the distribution of UPCs across product and module categories in the raw Nielsen RMS store sales and HMS
household purchase data as well as the samples used for estimation. A product is defined as the set of UPCs within a module with the same
brand. The estimation sample does not include the “outside” product (into which 60 percent of products are allocated, in the base
specification). In the raw data, the products grouped into the “outside” product are reported as individual products.

54



A.2 Estimating the Empirical Distribution of Store Customers

Nielsen provides the county in which each Nielsen sample store is located. To obtain a more precise
measure of each store’s clientele, I estimate the income distribution in the vicinity of the store by taking
a distance-weighted average of the income distributions observed in the Census tracts within 30km of
the centroid of the modal residential zip code of Nielsen panelists that report shopping there.

The income distribution of each sample store F'(Y'|s) is a generalized beta distribution fitted to the
average binned income distribution in nearby tracts.%” The number of households in each income bin for
each store is calculated combining tract-level income from the 2010-2014 5-year American Community
Survey (ACS) 1% sample and household-store-level trip data from the Nielsen HMS sample for the same
period. Let Ny (k) denote the number of households that the ACS reports in each of 16 income brackets
k residing in a Census tract ¢t and V; denote the total number of households in the ACS sample for tract
t. I estimate the share of store s customers in income bracket k as the weighted average of the density
of households in each income bracket in each Census tract in the vicinity of store s:

dy(k) = 2 {t)d.r)<s0km} Ws(dst) Ne(k)
) Z{t‘dst)ﬁ?)ﬂkm} ws(dst)Nt

Tract weights, ws(dg; ), are a store type-specific function of distance from the centroid of the tract to the
centroid of the store zip (estimated to be the modal residential zip code of the store’s customers observed
in the Nielsen HMS data). Specifically, the weight for tract ¢ whose centroid is a distance dg from the
centroid of the zip code for store s is:

= poptgs(d)
Z{tldst)530} popy3s(d)

Wg (dst)

where pop; is the total population in each tract ¢, also from the 2010-2014 5-year ACS and $4(d) is the
estimated density of sales for store s as a function of customer distance. The sales density for stores
of each type (grocery and mass merchandise in low, medium, and high population density zip codes)
is interpolated using the observed densities of the shopping trips observed in the Nielsen HMS data for
years 2010 to 2014. These curves are shown for each store type in Figure [A.T]

7Income bins are as defined in the ACS data. To fit the binned income distributions for each store to a gener-
alized beta distribution, I assume the income of the first 15 bins is the midpoint of the bracket and the income of
the top bracket is the mean income estimated assuming a Pareto distribution.
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Figure A.1: Sales Density by Store Type

a. Grocery Store b. Mass Merchandise Stores

ity of Sales
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Notes: This table shows the density of sales at different distances from grocery stores (in a.) and mass merchandise stores (in b.) separately for
stores in high, middle, and low population density zip codes.

A.3 Representativeness of Nielsen Samples by Income

Figure [A.2] compares the income distribution of the households in the Nielsen HMS sample to the na-
tional U.S. population. Figure [A.3] compares the income distribution of the counties of stores in the
Nielsen RMS sample to the counties of stores in the County Business Patterns dataset.
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Figure A.2: Distribution of Household Income: Nielsen HMS (Homescan) versus ACS
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Notes: This figure compares the income distribution among Nielsen household panelists in 2012 with the national household income
distribution in that year. The solid line depicts the fitted distribution of household income from the full 2012 Nielsen household (Homescan)
sample; the dashed line depicts the fitted distribution of household income from the 2012 ACS single-year estimates.

Figure A.3: Distribution of Store Local Income: Nielsen RMS vs. County Business Patterns
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Notes: This figure compares the income distribution across the counties where Nielsen participating retailers are located with the income
distribution across the counties where all grocery and non-durable stores are located. Each line depicts the distribution of median household
income per county from the 2008-2012 ACS, weighted by the number of stores in the county. The solid line weights counties by the number
of Nielsen RMS stores in the county, while the dashed line weights counties by the number of stores in the County Business Patterns, limiting
attention to the following categories: 445110: Supermarket; 445120: Convenience stores; 446110: Pharmacies and Drug stores; 447110:
Gasoline Stations with Convenience stores; 452910: Warehouse Clubs and Supercenters; and 452990: All Other General Merchandise Stores
including Dollar stores.
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A.4 CBSA Statistics

This table shows the number of sample stores, population, and per capita income in each of the 125
CBSAs with 50 or more sample stores. The population and per capita income data five-year averages
from the 2010-2014 ACS.

Table A.2: Sample Size, Population, and Income by CBSA

Store  Per Capita

CBSA Name Count Income Population
Akron, OH (AKR) 76 27,823 703,017
Albany-Schenectady-Troy, NY (ALB) 127 32,069 875,567
Albuquerque, NM (ABQ) 102 26,144 899,137
Allentown-Bethlehem-Easton, PA-NJ (ABE) 94 29,397 826,260
Asheville, NC (ASH) 82 26,023 433,204
Atlanta-Sandy Springs-Roswell, GA (ATL) 620 28,880 5,455,053
Augusta-Richmond County, GA-SC (AUG) 97 23,905 575,669
Austin-Round Rock, TX (AUS) 136 32,035 1,835,016
Bakersfield, CA (BAK) 81 20,467 857,730
Baltimore-Columbia-Towson, MD (BAL) 305 35,613 2,753,396
Baton Rouge, LA (BRI) 96 26,639 814,805
Birmingham-Hoover, AL (BIR) 104 26,706 1,135,534
Boise City, ID (BC) 78 24,715 639,616
Boston-Cambridge-Newton, MA-NH (BOS) 562 39,572 4,650,876
Bridgeport-Stamford-Norwalk, CT (BRI) 87 49,688 934,215
Buffalo-Cheektowaga-Niagara Falls, NY (BUF) 163 28,171 1,135,667
Canton-Massillon, OH (CAN) 67 24,646 403,629
Cape Coral-Fort Myers, FL (CC) 70 27,578 647,554
Charleston, WV (CHA) 56 26,851 225,248
Charleston-North Charleston, SC (CH) 104 28,033 697,281
Charlotte-Concord-Gastonia, NC-SC (CHA) 449 28,403 2,298,915
Chattanooga, TN-GA (CHA) 99 25,315 537,397
Chicago-Naperville-Elgin, IL-IN-WI (CHI) 1082 31,488 9,516,448
Cincinnati, OH-KY-IN (CIN) 259 29,008 2,131,793
Claremont-Lebanon, NH-VT (CLA) 50 30,451 217,906
Cleveland-Elyria, OH (CLE) 245 28,499 2,067,490
Colorado Springs, CO (CS) 76 29,398 669,070
Columbia, SC (COL) 127 25,615 784,698
Columbus, OH (CMH) 218 29,145 1,948,188
Dallas-Fort Worth-Arlington, TX (DAL) 705 29,766 6,703,020
Dayton, OH (DAY) 102 26,345 801,259
Deltona-Daytona Beach-Ormond Beach, FL (DAB) 89 23,935 597,824
Denver-Aurora-Lakewood, CO (DEN) 310 34,173 2,651,392
Des Moines-West Des Moines, IA (DM) 123 31,342 590,741
Detroit-Warren-Dearborn, MI (DET) 507 28,182 4,292,647
Durham-Chapel Hill, NC (DUR) 77 30,945 525,050
El Paso, TX (ELP) 94 18,684 827,206
Fayetteville, NC (PAY) 62 22,647 374,036
Fayetteville-Springdale-Rogers, AR-MO (FAY) 62 25,291 483,396

Continued on next page
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Continued from previous page

Store  Per Capita

CBSA Name Count Income Population
Flint, MI (FLI) 82 22,536 418,654
Fresno, CA (FRE) 86 20,231 948,844
Grand Rapids-Wyoming, MI (GRW) 91 25,786 1,007,329
Greensboro-High Point, NC (GHP) 117 24,619 735,777
Greenville-Anderson-Mauldin, SC (GRE) 157 24,583 842,817
Gulfport-Biloxi-Pascagoula, MS (GBP) 52 23,006 378,972
Harrisburg-Carlisle, PA (HAR) 66 30,404 555,154
Hartford-West Hartford-East Hartford, CT (HRT) 116 35,991 1,215,159
Hickory-Lenoir-Morganton, NC (HIC) 62 21,385 363,936
Houston-The Woodlands-Sugar Land, TX (HOU) 690 29,594 6,204,141
Huntington-Ashland, WV-KY-OH (HUN) 51 23,326 364,514
Indianapolis-Carmel-Anderson, IN (IND) 195 27,778 1,931,182
Jackson, MS (JAK) 68 24,311 574,998
Jacksonville, FL (JAC) 228 27,950 1,380,995
Kansas City, MO-KS (KC) 152 30,101 2,040,869
Kingsport-Bristol-Bristol, TN-VA (BRI) 56 23,471 308,800
Knoxville, TN (KNX) 136 25,833 847,765
Lafayette, LA (LAF) 67 25,781 475,457
Lakeland-Winter Haven, FL (LWH) 66 21,157 617,323
Lansing-East Lansing, MI (LAN) 53 26,126 467,122
Las Vegas-Henderson-Paradise, NV (LV) 205 26,040 2,003,613
Lexington-Fayette, KY (LEX) 72 28,216 483,997
Little Rock-North Little Rock-Conway, AR (LR) 85 26,222 716,849
Los Angeles-Long Beach-Anaheim, CA (LA) 906 29,506 13,060,534
Louisville/Jefferson County, KY-IN (LOU) 182 27,488 1,253,305
Madison, WI (MAD) 82 32,778 620,368
Manchester-Nashua, NH (MAN) 77 34,767 402,776
Memphis, TN-MS-AR (MEM) 228 25,191 1,337,014
Miami-Fort Lauderdale-West Palm Beach, FL. (MIA) 314 27,240 5,775,204
Milwaukee-Waukesha-West Allis, WI (MIL) 222 29,733 1,565,368
Minneapolis-St. Paul-Bloomington, MN-WI (MIN) 299 34,593 3,424,786
Mobile, AL (MOB) 69 23,009 414,045
Myrtle Beach-Conway-North Myrtle Beach, SC-NC (MYR) 86 24,709 396,187
Nashville-Davidson—Murfreesboro—Franklin, TN (NAS) 235 28,521 1,730,515
New Haven-Milford, CT (NH) 113 32,794 863,148
New Orleans-Metairie, LA (NO) 170 27,458 1,226,440
New York-Newark-Jersey City, NY-NJ-PA (NYC) 1697 36,078 19,865,045
North Port-Sarasota-Bradenton, FL (NP) 84 30,813 722,784
Ogden-Clearfield, UT (OGD) 56 24,890 614,521
Oklahoma City, OK (OKC) 94 26,994 1,297,998
Omaha-Council Bluffs, NE-IA (OM) 141 29,147 886,157
Orlando-Kissimmee-Sanford, FLL (ORL) 271 24,876 2,226,835
Oxnard-Thousand Oaks-Ventura, CA (OX) 75 33,308 835,790
Palm Bay-Melbourne-Titusville, FL (MEL) 71 27,360 548,891
Pensacola-Ferry Pass-Brent, FL (PEN) 52 25,199 462,339
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD (PHL) 802 32,850 6,015,336

59

Continued on next page



Continued from previous page

Store  Per Capita

CBSA Name Count Income Population
Phoenix-Mesa-Scottsdale, AZ (PHX) 505 26,893 4,337,542
Pittsburgh, PA (PIT) 361 30,272 2,358,793
Portland-South Portland, ME (POR) 112 32,001 518,387
Portland-Vancouver-Hillsboro, OR-WA (PVH) 232 30,560 2,288,796
Port St. Lucie, FL (PSL) 54 27,481 433,646
Providence-Warwick, RI-MA (PROV) 257 30,218 1,604,317
Raleigh, NC (RAL) 210 31,468 1,189,579
Richmond, VA (RIC) 202 30,944 1,234,058
Riverside-San Bernardino-Ontario, CA (RSB) 338 22,571 4,345,485
Roanoke, VA (ROA) 52 27,505 310,934
Rochester, NY (ROC) 115 28,320 1,082,578
Sacramento—Roseville-Arden-Arcade, CA (SAC) 189 29,252 2,197,422
St. Louis, MO-IL (STL) 272 30,024 2,797,737
Salisbury, MD-DE (SAL) 90 27,353 381,868
Salt Lake City, UT (SLC) 93 26,516 1,123,643
San Antonio-New Braunfels, TX (SA) 233 25,298 2,239,222
San Diego-Carlsbad, CA (SD) 238 31,043 3,183,143
San Francisco-Oakland-Hayward, CA (SF) 365 42,540 4,466,251
San Jose-Sunnyvale-Santa Clara, CA (SJ) 139 42,176 1,898,457
Savannah, GA (SAV) 55 25,818 361,161
Scranton—Wilkes-Barre-Hazleton, PA (SCR) 70 25,304 562,644
Seattle-Tacoma-Bellevue, WA (SEA) 390 36,061 3,557,037
Shreveport-Bossier City, LA (SHR) 78 24,833 445,305
Spartanburg, SC (SPA) 59 22,055 317,057
Spokane-Spokane Valley, WA (SPO) 54 25,685 533,456
Springfield, MA (SPR) 81 27,179 626,775
Springfield, MO (SGF) 78 23,233 444,728
Stockton-Lodi, CA (STL) 52 22,642 701,050
Syracuse, NY (SYR) 98 27,741 662,236
Tampa-St. Petersburg-Clearwater, FL. (TAM) 375 27,252 2,851,235
Toledo, OH (TOL) 97 25,312 608,847
Tucson, AZ (TUC) 150 25,524 993,144
Tulsa, OK (TUL) 109 26,635 954,055
Virginia Beach-Norfolk-Newport News, VA-NC (VB) 344 29,098 1,697,898
Washington-Arlington-Alexandria, DC-VA-MD-WV (WAS) 568 43,884 5,863,608
Wichita, KS (WIC) 66 25,848 636,095
Wilmington, NC (WIL) 54 28,435 263,804
Winston-Salem, NC (WS) 114 24,978 648,045
Worcester, MA-CT (WOR) 138 31,558 924,722
Youngstown-Warren-Boardman, OH-PA (YOU) 98 23,357 559,144

Notes: This table shows the number of Nielsen participating retailers, population, and per capita income in each of the 125 CBSAs with 50 or

more participating retailers. The population and per capita income data five-year averages from the 2010-2014 ACS.
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B Stylized Facts Appendix

B.1 Engel Curves in CBSAs with Different Per Capita Income

Figure A.4: Income-Specific Food Expenditure Shares Across Markets
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Note: This figure plots a kernel density of the Nielsen household expenditure share against size-adjusted income for panelists living in cities
with different per capita incomes. The household expenditure share is calculated as the annual reported expenditures (for households reporting
trips in all 12 months of the year) divided by their reported income.

B.2 Store-Level Product Availability and Price Levels
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Figure A.5: Difference in the Availability and Relative Price of High-Income and Low-Income
Baskets Across Stores

a. Availability
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b. Relative Price

Slope =-1.3, Standard Error = .03

2
1

0
1

1

-2

-4

1

Difference in Store Hedonic Price Index (%)

(.P °

T T T T T T
$15,000 $20,000 $30,000 $40,000 $60,000 $90,000
Local Per Capita Income (Log Scale)

Notes: Figure a. plots store-level data for the difference between the expenditure shares of high-income Nielsen HMS panelists represented in
the set of products sold by a store from the expenditure share of low-income Nielsen HMS panelists represented in that product set against
local per capita income. The panelist expenditure shares are calculated for 2012. Figure b. plots store-level data for the difference between the
average price level faced by consumers in the top income decile and the average price level faced by households in the bottom income decile
against local per capita income. The price level in each store for a given income decile is calculated as the weighted average ratio between the
price a product is sold for in a store relative to the price that product is sold at in the national sample where weights are defined as the value of
the purchases of that product made by households in the respective income decile in the Nielsen household-level panel. Panelists are defined
as high- (or low-) income if their size-adjusted income falls in the top (bottom) decile of panelist incomes. Local income is a
distance-weighted average size-adjusted household income across tracts within 30km of the centroid of the modal residential zip of Nielsen
panelist households that report shopping in the store. Household income adjusted for size using a square-root equivalence scale.
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C Model Appendix

C.1 Non-Homotheticity Condition

Suppose that consumers select grocery consumption quantities, Q = {{¢mg} ¢eG.. } mem , and non-
grocery expenditure, Z, by maximizing:

(A.1) fUic(Q.2),Z) subjectto > > prglmg+ Z <Yi, gmg >0V mg € G
meM geG,

I break this problem into two parts, first solving for the consumer’s optimal grocery consumption quan-
tities conditional on their non-grocery expenditure Z:

I(E,aZX UiG<@7 Z) = Z Z dmg eXp(’Ym(Z)ﬁmg + Mm(Z)Eimg)
meM | geG,,
(A.2) subject to Z Z Pmgmg <Yi — Z, @mg > 0V mg € G
meM geGm

where ¥, (Z) = (1 + v InZ) and p,,(Z2) = m Equations (8), and (9) define the optimal
grocery bundle, Q*(Z) = {{q;"ng(Z )} gcG. } mem and can be summarized as follows:

(Y; = Z)% [p g]l c,/p if g = arg max p;
Ging(Z) = A in oe8 e
0 otherwise

where

o—1|1-¢
~ ex A + AR
Pi(2) = (Z gHelaX pzmg) and Pimg = P(ym )B;ng pn(Z)eig)
mg

Plugging this solution into U;(Q, Z) yields the consumer’s indirect utility from grocery consumption,
conditional on their non-grocery expenditure:

Uic(Z) = Uic(Q"(2), Z)

{3 (-2l s o]}

meM
Y- Z N
= Dirmgl = Dim,
Bz {%4 {pzmg [9 arg max p gH }
}/i_Z 3 o—1 Y
e\ 3, ()|
Y- 2
A. -
A P(7)
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We can now express problem (A.T)) to be a choice over one variable, Z:
(A4) max f(Uic(2), Z)

The first order condition to the utility maximization problem defined in problem (A.4)) with respect to Z
is: _
~ oU;q(Z ~
f1Uia(2), Z)(;Z() + fo(Uic(2),Z) =0
Substituting the maximized grocery expenditure conditional on Z, Uic (Z), from equation (A.3)) into this
first order condition yields a function that implicitly defines the optimal non-grocery expenditure, Z;, in
terms of household income, Y;, the consumer’s idiosyncratic utility draws, €;, and model parameters:

P(2)  fUic(2),2) P(Z)?
P(Z)  HU(2),2) P(Z)

Taking the derivative of income with respect to non-grocery expenditure, Z, we can see that the non-
grocery will be normal if the price vector and aggregate utility function are such that:

(2),2) P(2)?
(2),2) Fi(2)

0 R’(Z)_i_fz(q

92 | P2 " 1@ <!

iG
iG

It is computationally infeasible to show that this condition holds generally (there will be a different
price index P;(Z) for each of universe of potential price vectors), but I can show that it holds in the data
by simply demonstrating that non-grocery expenditures are increasing in household income. I annualize
the observed grocery expenditure for each household and measure annual non-grocery expenditures as
the difference between the mid-point of each household’s reported income category and the household’s
annual grocery expenditures. After controlling for household demographics with dummies for household
size, marital status, education and age of the male and female heads of household, race, and Hispanic
origin, the elasticity of observed non-grocery expenditures, Z;, with respect to household income, Y, is
1.19 with a standard error of 0.003.

Figure [A.6] demonstrates that households earning higher incomes spend a smaller share of their
income on grocery products. Within income groups, however, the average grocery expenditure share
does not vary much across cities and, in particular, Table confirms that the average grocery share of
an income group in a city does not vary systematically with city income.
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Figure A.6: Income-Specific Grocery Expenditure Shares Across Markets
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Note: Each point reflects the mean grocery expenditure share of households in each income decile that reside in households at each CBSAs at
each vigntile of the CBSA per capita income distribution plotted against the mean CBSA per capital income of that vigntile. The household
expenditure share is calculated as the annual reported expenditures on groceries (for households reporting trips in all 12 months of the year)
divided by their reported income. For the purposes of visual clarity, only a representative sample of deciles are represented. The coefficient of
variation of household grocery expenditure shares is 71 across all households in the sample, but drops to between 42 and 52 when you only
consider households within each income decile. For the purposes of visual clarity, only a representative sample of deciles are represented.

Table A.3: Income-Specific Grocery Expenditure Shares Across Markets

Dependent Variable: Mean Grocery Expenditure Share of Households in Income Decile

(1] (2] (3] [4] [5] (6] (7] (8] [9] [10]

Ln(CBSA PC Income) 0.011 -0.0034  -0.0045  0.0059 0.0048 -0.0051 0.00046  0.0075* 0.0060 -0.0016
(0.019)  (0.012)  (0.013) (0.010) (0.0095) (0.0072)  (0.0061)  (0.0042)  (0.0056)  (0.0032)

Observations 383 321 325 356 316 318 313 356 170 225

Notes: Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001. This table reports the correlation between the grocery expenditure
share of Nielsen household panelists from each income decile and the per capita income of the CBSA where they reside. Observations are at
the decile-by-CBSA level. The nth column reports regression for nth income decile.
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C.2 Derivations

C.2.1 Within-Module Consumption Decision

Consumer 7, spending Z on the non-grocery items, chooses how to allocate expenditures between prod-
ucts within a module m conditional on their expenditure in that module, w,,, to maximize

Uimn (Wi, Z) = Z Gmg eXp(’Ym(Z)/Bmg + ﬂm(Z)Eimg)
geGn,

subject to the module-level budget constraint, Z Z DPmgGmg < W, and non-negativity constraints,

meM geGp
Gmg = 0 Vmg € G.
Recall that the additive log-logit functional form implies that consumers optimally purchase a posi-
tive quantity of only one product in a module. This product maximizes their marginal utility of expen-

diture in a module conditional on their non-grocery expenditure:®8

(AS) g* (Z) = arg max eXP(Vm(Z)Bmg + ,Um(Z)Ezmg)
im e -

Since all of a consumer’s module expenditure, w;y,, is allocated to this optimal product, g;, , the con-
sumer’s optimal module bundle, Q?, (wy,, Z), can be written as:

Qnwm:2) = (G (W D). - Ging, (W, Z))
Z e
wm/pmg lfg = arg max eXp(’ym( )57”9 + lum( )5zmg)
9EGm Pmg

(A.6) where ¢}, (wn) =
0 otherwise

That is, a consumer 4 optimally consumes as much of their optimal product, g} (Z), as their module
expenditure, w,,, will afford them and zero of any other product in the module.

C.2.2 Across-Module Consumption Decision

Consumer ¢, spending Z on non-grocery items, chooses how to allocate expenditures between modules
by selecting wq, ..., wys to maximize

1

Ui(wy, ..., wy) = { Z [ﬂim(wm,Z)]pi}pi = { Z [wm max exp(Ym(Z)Pmg +Nm(Z)5img)] S

cGm
meM meM g Pmg

subject to

Y wm<Yi-Z
meM

We simplify the expression for the target utility function by denoting consumer 7’s marginal utility

®Note that the marginal utility of expenditure in a module and, therefore, the optimal product choice, g;,,,,
depends on a consumer’s non-grocery expenditure, Z, but is independent of their module expenditure, w,,.
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from expenditure in module m as the inverse of A;,:

(A7) iy EPOm(Z)Bmg + i (Z)eimg) _ 1

9€Gm Pmg Azm

The within-module allocation decision now simplifies to:

Wm

A8 wi(Z)=(wh(Z),...wiy(Z) = argmax {Z[ ]}
meM

Aim
Y wm<Yi—Z
meM

The utility function over module expenditures is concave in module expenditure for each module m.
Therefore, there will be an interior solution to the maximization problem and it can be solved using the
first order conditions with respect to expenditure in each module m. The first order condition for each

module m is:
oU;(wy, ..., war) w1777 L [wn] " _

meM

where A is the marginal utility of expenditure. This implies that the marginal utility of expenditure must
be equal across modules. We use this equality across two modules, m and m/, to solve for the optimal
expenditure in module m/:

Z Wy, il 1 Wy — B Wy e 1 Wy, —
meM M

me
1 Wiy = 1 W, ~5
Aim’ Aim’ B Azm Azm
A, l1—0

Imposing the budget constraint, Z Wy = Z wy, <Y; — Z, yields an expression for w;, in terms

meM meM
of total expenditure, Y; — Z, and an index of the A;,, terms:

Y,i—Z= )Y wm

m’eM
w _
Yi—Z=—37 > [Awm] 7
im  m'eM
Al
Wy, = im — (Y; Z)
> [Aim]
m’'eM
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The solution to problem (A.8)) is, therefore,

-0

wwiy(Z)) where wj, = PT;(E—Z) Vm e M
K3

where P;(Z) is a CES price index over A, for all modules m € M defined as:

1

l1—0o

Pi(2) =

> AlLe

meM

Substituting from equation (A.7) for A;,,, yields consumer ¢’s optimal module expenditure vector,
*

wi(Z), as a function of total grocery expenditures, prices, and model parameters:

max

exp(Vm(2)Bmg + Mm(Z)eimg)} ot
9€Gm

Pmg
Pi(Z)1=

Wi (Z) = (W} (Z), . wiyy(2)) where W)y, = (Vi - 2) {

1

(max exp(Ym(Z) Bimg + Mm(Z)gimg)>U—1] —

>

eGm
meM g

Pmg

C.3 Connection to Nested CES Utility Function

In Section [ of the paper, I model consumer demand assuming that a consumer 4’s utility from gro-
cery consumption, conditional on their non-grocery expenditure Z, is a CES aggregate over consumer-
specific module-level utilities that are, in turn, additive in product-level log-logit utilities. This utility
function is presented in equations (1)), (2), and (3] and can be summarized as:

Uic(@,7) = {Z tim (@m,Zﬁ}a_l

meM

-1y

meM

- ¥

meM

(A9) =

D

meM

Z uimg(@ma Z)

ge€Gm

Z Gmg €XP(Ym(Z)Bmg + tm(Z)€imyg)
9€Gm

Eimg
D tmg 5D (n(2)mg + 5 )
9€Gm

where ¢4 is the consumption quantity of each product g in module m; 3,4 is the quality of product

g in module m; ;4 is the idiosyncratic utility of consumer ¢ from product g in module m; 7y, (2)

and p,,(2) = am(é)—l
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expenditure Z care about product quality and their idiosyncratic utility draws; and 0,,,(Z) is the elasticity
of substitution between products in the same module m and o > 1 is the elasticity of substitution
between products in different modules for a consumer with non-grocery expenditure Z.

Consider the utility of the representative agent for consumers with non-grocery expenditure Z. This
agent’s utility function from grocery consumption is defined in equation in Section[5.1] as follows:

(o) ()Y = °
om (Z)—1

(AIO) UgES (@7 Z) = Z Z [Q’mg eXp(Bmg’Ym(Z))] om(2) 5

meM | geGm

where ¢pg, Bmg, Ym(Z), om(Z), and o > 1 take the same definition as in equation (A.9) above. o
is the elasticity of substitution between products in different modules for a consumer with non-grocery
expenditure Z.

Suppose that this representative consumer with the nested-CES utility function U, g ES(Q, Z) defined
in equation (A.I0) faces the same prices P and has the same non-grocery expenditure Z as a group of
“idiosyncratic” consumers with the CES-nested log-logit utility U;c(Q, Z) defined in equation (A.9). A
simple extension of |Anderson et al.| (1987) shows that the representative consumer and the group of “id-
iosyncratic” consumers will allocate expenditures across products within modules and across modules
identically.

First consider the within-module expenditure allocations. Denote the share of module m expendi-
CES

tures that the representative consumer allocates to product g as Smglm

(Z) and the share of total grocery

expenditures the representative consumer allocates to module m as s$°(Z). This share is equal to

Pmg 17‘7‘"7/(Z)

exP(ﬁmy'ym (Z))

CES
7) = | Z2lmsimlZ)).
smoim( %) = | pCFS (7.5,

mg|m

where Pnc;ES (Z,P,,) is a module-level CES price index. The relative log share that the representative
consumer optimally allocates to product g in module m relative to some other product g in the same
module is, therefore,

A1) s (2) = sCES (2) = (1= 00(2)) (10 ping — 1Pmg) = (Bng — Bg) 1 (2))

The expected relative module expenditure share of a group of “idiosyncratic” consumers with non-
grocery expenditure Z facing the same prices py,,y and p,,5 is derived in Appendix as:
(A.12)

E. [ln(simg|m(z7 Pm)) - ln(simg\m(za Pm))] - (Um(Z) - 1) [(,Bmg - 57”!7)7771(2) - (hlpmg - h’lpmg)]

where I have substituted ¢,,,(Z) and ~,,(Z) for their log-linear parametric forms (1 + o, + o}, In Z)
and (1 + v, In Z), respectively. We can multiply both terms of the right-hand side of (A.12) to show
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that it is equivalent to the right-hand side of equation (A.TT):

Ee [I(Simglm (Z, Pm)) = W(Simglm(Z,Pm))] = (0m(Z) = 1) [(Bmg = Bimg)¥m(Z) — (0 pimg — I ppg)]
= (L =0m(2)) ((Inpmg = pmg) = (Bmg = Bmg)ym(Z2))
— nsCES (2) — sG55 (2)
whereby showing that the representative consumer allocates expenditures across products in the same
module identically to a group of the “idiosyncratic” consumers.
Now consider the between-module expenditure allocations. Denote the share of total grocery expen-
ditures the representative consumer allocates to module m as sC¥%(Z). The relative log share that the

m
representative consumer optimally allocates to module m relative to some other module m is

(A.13) Ins$F5(Z2) —Ins$P9(Z) = (1 - o) (In (PSE9(Z,Py,)) — In (PSFS(Z,Ps)))

where PCF9(Z,P,,) is a module-level CES price index defined as:

1
(1—om(2))

(1=0m(2))
pmg
(A.14) PCES (7 P,,) = ( )
@8 = 2 |\ o mgn @D

The expected relative module expenditure share of a group of “idiosyncratic” consumers with non-
grocery expenditure Z facing the same sets of prices PP, and P, faced by the representative consumer
is derived in Appendix (D.1.2) as:

(A.15) Ee Insim(Z,P) —Insim(Z,P)] = (0 —1)[InVn(Z,Pr) —In Ve (Z,Pm)]

where V;,,(Z, P,,,) is a CES-style index over price-adjusted product qualities:

maYm (2 (em(Z)—1) | om (=D

9€Gm Pmg

To see that the right-hand sides of equations (A.T3]) and (A.13) are identical first note that we can re-write
the equation (A.13)) as

E: In$im(Z,P) —Insim(Z,P)] = (1—0)[—InV(Z,Pp) + In Vi (Z,Pam)]
= (1=0) [0 (Vi Z.Pu)) ") = In (Vi (2, P)] )]
In fact, the right-hand sides of equations (A.13) and (A.T3) will be identical as long as the quality-

adjusted price levels defined in equation (A.T4) are equal to the inverse of the price-adjusted quality
levels defined in equation (A.16), i.e., PSS(Z,P) = [Vi(Z,P,)] "' We can see this is the case
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below:

The representative consumer therefore allocates expenditures across modules in identical proportions to

PES (Z,Py,)

2.

9€Gm

P (1-=om(2))
mg
(exp(ﬁmgvm(Z )))

(exp(ﬂmgmz»)<“m<Z>—1>

Pmg

Pmg

[Vm(zvﬂbm)]il

a group of the “idiosyncratic” consumers.

The algebra above has shown that the CES-nested log-logit utility function yields identical relative
expenditure share equations, both across and within modules, to the nested-CES utility function assumed
for the representative agent. In particular, note that the model parameters play identical roles in the
nested-CES and CES-nested log-logit expenditure share equations, so the parameter estimates identified
using moments based on these equations can be used as direct inputs into the nested-CES price indexes

that form the basis for the main results presented above.
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D Empirical Strategy Appendix

D.1 Derivations of Expenditure Share for Moment Equations
D.1.1 Within-Module Market Expenditure Shares

Equation states that:

N N N N wm/pmg lfg = arg HléX ﬁimg
Qim(wmv Z) = (Qiml (wmv Z)v < QGimaG,, (wm’ Z)) where Qimg(wm’ Z) = gEGm
0 otherwise

where Py = exp(vm(Z)quJmm(z) h)

If we rewrite consumer ¢’s optimal consumption quantity us-
ing an indicator function to 1dent1fy which product is selected by the consumer, consumer #’s optimal
consumption quantity of product g in module m is:

w
q;mg(wm, Z) = ]ﬁﬂ [g = arg gmgx plmg]

We can use this definition to derive consumer ¢’s expenditure on product g in module m:
Wimg(Win) = PingQimg(Wms Z) = wp,l [9 = arg max ﬁimg:|

Dividing through by w,, yields the consumer’s expenditure share on product g in module m, conditional
on their non-grocery expenditure 2 and the vector of module prices they face, P,,:

5img|m(Zu Pm) =1 |:g = arg glg%}i ﬁlmg:|

The expected value of this expenditure share is derived by integrating over the idiosyncratic utilities in
module m, €jm:

EE[ zmg|m<Z P )] Es I |:g = arg m(a}x ﬁimg:|:|

=p i
A — ) — (1 —1 /
= Pr |cimg — Eimg’ > Y (Z)(Bmg — Bmg') — (Inpmg — Inping ), Vg € Gm
pn(Z)
_ ﬁimg
ﬁimg/
g €Gm

The final equality holds because the idiosyncratic utilities, €;,, are iid draws from a type I extreme
value distribution. Imposing the parametric forms for v,,(Z) = (1 + v, In Z) and 1, (Z) = (a2, +
al In Z)~! from equations (@) and (5)), respectively, ensures that the consumer’s expected expenditure
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share is common with other consumers with the same income that face the same product prices:

exp[(a, + al, In Z)((1 + v In Z)Bmg — N pimg)]

>~ (expl(ab, + an 1 Z)((1+ Y 10 Z)Brng: — I ping)])
9€Gm

Ee [Simg|m<Z7 Pm)] =

I interpret the expected expenditure share function derived above as the expected share of expenditure
that a group of households with the same non-grocery expenditure, Z, facing identical prices for products
in module m spend on product g. If the group of households is in the same market, then this expected
expenditure share will be the income-specific market share of product g in module m, which I denote
bY Singim(Z; Pim). Simgim(Z, Pr) is the share of expenditure that a group of households with the non-
grocery expenditure, Z, and facing a common vector of module prices, P,,:

expl(ap, + ap, 10 Z) (Brng(1 +ym In Z) — Inping)]

Z (exp[(a?n + a}n InZ)(Bng (1 +vmInZ) — lnpmg/)])
g €Gm

Smg|m(Za Pm) = EE[Simg\m(Zv Pm)] =

Dividing this market share for product g in module m by the market share for a fixed product g, in
the same module m results in a relative market share that depends only on model parameters, consumer

income, and the prices of product g and g,,,:*

Smglm(Z, ) exp[(a%, + al, 1n Z)(Bmg(L + Ym In Z) — Inppyg)]
8m_¢7|m(Z7 ]P)m) exp[(a?n + a71n In Z)(Bmg(l +Ym In Z) - lnpmg)]

I linearize the relative expenditure share equation by taking the log of both sides:
(A.17)

1n(smg|m(Z7 Pm))_ln(smg\m(zﬂ Pm)) = (a9n+a71n In Z) [(ﬁmg - 57"‘@)(1 + Ym In Z) - (lnpmg B lnpmﬁ)]

Equation defines the expected within-module expenditure share of a set of households with non-
grocery expenditure Z facing prices py,4 and p,5,. on product g in module m relative to product gy,
in the same module m in terms of parameters .y, Ym, and (Bmg — Bmg,,). This equation is used to
calculate moments for each product g # g,,, in each module m, that are in turn used to estimate all of
the o, and v, parameters, as well as each 3,,4 parameter relative to S,,g,., i.e. {Bmg — Bmag,, } g€ G-

D.1.2 Between-Module Relative Market Expenditure Shares

I now want to generate a similar estimation equation that can be used to identify o and {3, }secG,. using
data on module-level income-specific market shares. Equations (8) and (9) together characterize the
optimal cross-module expenditure allocation for consumer ¢ conditional on this consumer’s idiosyncratic

%The utility function assumes weak separability between modules and the independence of irrelevant alterna-
tives (ITA) property both across modules and across products with the same quality parameter. Although neither
of these are realistic characteristics of consumer behavior, they are useful for the purposes of estimation as they
imply that relative market expenditure shares can be derived as functions of observed variables, such as household
income, expenditures, and transaction prices.
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utility draws for each product in each module. These equations are:

o—1
max ﬁzm
geGm g

Pi(Z)l_J

Wi(Z,P) = (w}(Z,P), ..., wy (Z,P)) where w}, = (Y; — Z) [

1

Pi(Z,P) = [Z (Iggx ﬁim9>a_1] e

meM 9=

_ exp(Yim (Z) Brmg+m
Pmg

erate consumer ¢’s optimal module m expenditure share, conditional on their non-grocery expenditure

where pim, (Z)zima)  Diyiding through by total grocery ex enditure, (Y; — Z), I gen-
Dimg g ghby g Y exXp g

Z and the vector of prices they face, P:

o—1
2 |

w;
Y,-Z B

Sim(Z, ]P)) =

When deriving the within-module relative market share, equation (A.17/) above, I take the expectation
of the consumer’s expected product expenditure share over the idiosyncratic errors, E¢ [Sigm (Z, Pm)],
to derive an expression for the market share of each product. I then divide these market shares by the
market share of a module specific base product and take logs to linearize the equation. I change the order
of this procedure when deriving the between-module relative market share equation, i.e. difference and
take the log of the individual’s expenditure shares before taking the expectation of these terms over the
idiosyncratic errors. The reason for this reordering is that the consumer’s module expenditure shares
include a term, P;, that depends non-linearly on all of the consumer’s idiosyncratic utility draws. This
term is common to all of the consumer’s module shares, and thus drops out of the consumer’s relative
module expenditure shares, so that these relative shares are functions of the consumer’s idiosyncratic
utility draws in the two relevant modules. The log of this relative module expenditure share term is
additive in terms that depend on the consumer’s idiosyncratic utility draws in only one module at a
time; that is, a term that depends on the consumer’s idiosyncratic utility draws in module m and a
term that depends on the consumer’s idiosyncratic utility draws in the base module m. This makes the
expectation of the consumer’s log expenditure share in module m relative to module m easier to derive

than the expectation of the consumer’s expenditure share for a single module m.”°

"0The order of the expectation, differencing, and log operations does not make a difference to the relative
market share equation in the within-module case, that is:

ln(smg\m(za ]P)m)) - ln(smgﬂm(za ]Pm)) =In [Es [simg\m(Z; ]P)m)]/]Es [Simg\m(Z» Pm)})]
= Ee [In(Simgim (Z: Prm)) = In($imglm (Z, Prm))]
= (o + @ M 2) [(Brmg — Bing) (1 + ¥ 0 Z) = (In g — I ppmg)]

I derive the expression for the Z-specific market share of product g, s,,g(m (Z, Prm) = Ec[Simgjm (Z, Prm )], before
taking logs and differencing to generate the estimation equation (A:17), as it demonstrates the relationship between
the term on the left-hand side of this equation, In(s,,g(rm (2, Pr)) — In(Sy5m (Z, P )), and its value in the data:
the difference between the log of the expenditure consumers spending Z on non-grocery items in a given market
on product g relative to the log of their expenditure on the base product g or, more succinctly, the log difference
between the Z-specific market shares on products g and g.
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I now generate the relative module market shares. As discussed above, I first divide consumer 4’s
module expenditure share, s;,,,(Z, P), by his/her expenditure share in some fixed base module m:

o—1
sim(Z,P) [gr?é},i P i’"g}

sim(Z, P) [

o—1
max Dim,
9€Gm g

Since P; does not vary across modules for a given consumer ¢, it drops out of the relative module
expenditure share expression. I take the log of this relative share expression to linearize the equation:

In Sim(27 P) —1In Siﬁz(Z; P) = (0’ — 1) In <gfélg)iﬁzmg> - (O' — 1) In <grélé)i ﬁiﬁzg) s

This equation is a linear function of two terms, the first of which depends on the consumer’s idiosyn-
cratic utility draws in only module m and the second of which depends on the consumer’s idiosyncratic
utility draws in only module m. The expectation of the log difference between the consumer’s module
expenditure shares can be split into the difference between two expected values:

(A.18)
E. [In sim(Z,P) — In 57 (Z,P)] = (0 — 1) {EE [m (mgx ﬁimgﬂ - E. [m <max ﬁz’mgﬂ }

9€Gm geGm

Consider the two expectation terms in equation (A.18]). Both take the same form, and thus I only solve
for the first expectation:

(A.19) E. [ln <gré1%>§] ﬁimg)]

The expectation term defined in equation is the expected value of the log of a maximum.
Since the log is a monotonically increasing function, we can switch the order of the log and maximum
functions inside the expectation and linearize to yield:

[ A AR
E. [ln (max ﬁimg)] =E; [In <max eXp(m( )ﬁmg + pim( >Ezmg )>}
eG 9€Gm Pmg

_E, : (exp(vm(Z)ﬂmg + um(Z)gimg)ﬂ

max In
_gEGm

Pmg

=E, glgéx ’Ym(Z)/Bmg - lnpmg + Mm(Z)5img]

(A.20) = Mm(Z)EE [grggx ('Ym(Z)Bmg - hlpmg)/:um(z) + 5img]

De Palma and Kilani| (2007) show that, for an additive random utility model with u; = v; + €;, ¢ =
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iid . . . . . e
1,...,nandg; ~ F(x) a continuous CDF with finite expectation, the expected maximum utility is:

00 n

E. [mzax vi+ei| = / zd¢(z) where ¢(z) = Pr[mgx vp < z] = H F(z — )
> k=1

Since the expectation in equation (A.20) takes the form E. [max vjpmg+Eimg], With Vimg = (Ym(Z) Bmg—
g

In pg)/tm(Z), and since I have assumed that €;,g by F(z) for F(x) = exp(—exp(—x)), I can use
the [de Palma and Kilani| (2007)) result to solve for the expectation as follows, dropping the ¢ and m
subscripts for the notational convenience:

E. [mgx vg + Eg} = /_Z zdo(z)

9€Gm
o0 G'm
= / zd H exp(—exp(vy — 2))
g=1

—00

o0 G m

= / zd |exp Z —exp(vg — 2)
o | pou
”YL G")’L
/ Z exp(vy — 2) | exp Z —exp(vg — 2) | dz
g=1

Gm m m

LetV =1In Z exp(vg) | and z = Zexp(vg —z) = Zexp(vg) exp(—z) = Vexp(—=z). I'solve
g=1 g=1 =

the above integral by substituting for z = V' — Inx, where dz = —(1/x)dx

w [Gn G,
E. [grggx Vg —{—69} = /_ooz Zexp(vg exp Z—exp dz
g=1 g=1
00 G Gm
:/ Z exp Z—exp( —2) Zexp —z) | dz
- g=1 g=1
0
:/ (V. —Inz)exp (—z)z(—1/x)dx
:/ (V —Inz)exp (—z)dzx
0
=V

Since we have defined vimg = (Ym(Z)Bmg — I pmg)/ptm(Z) and V = In Z exp(vg) |, we can use
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the above result to solve for the expectation in equation (A.T9):

E. [ln (glggiﬁimg>:| = pim(Z) In :gesz xp((Ym(Z)Bmg — I Pimg) / im (Z))
= ptm(Z) In :g;c;m <exp(%;fn g)ﬁmg)> e
(A.21) I Z (eXp(%;fng)ﬁmg)> S pm (2)

9E€EGm

Plugging this result back into equation (A.18)) yields the expected relative module expenditure share for
consumer ¢ in terms of product prices and model parameters:

E. [In $im(Z, P) — In s;(Z, P)]
— (0~ 1. [ e 220D D))

9€Gum Pmg
—(c—1E [ln (max exp(yi(Z)Bimg + “m(Z)Eimg)>]
) 9€Gm p’an
(i (Z)Bng) )
=(c—1)ln (exp Tm mg )“m<z)
gezc‘-:m Pmyg
o (Zma\ 77
—(c—1)In (exp mg > o (2)
gg}:ﬁ) pm_q

This function only varies by consumer through their non-grocery expenditure. All consumers with
the same non-grocery expenditure and facing the same prices, P, will have the same expected relative
module expenditure share:

(A22)  E:[Inspm(Z,P)—Insim(Z,P)] = —(c—1)InVp(Z,Pp) —InVi(Z,Pm)]

where V;,,(Z, P,,,) is a CES-style index over price-adjusted product qualities:

1

1—0o

(1-0)
(A.23) Vi(Z,Pp) = Z <exp(5mg(1+'ymln2)))

9€Gm Pmg

where I have substituted in the parametrizations for 7, (Z) = (1 + ym In Z) and p1,,(Z2) = 1/ (a9, + o}, In Z).
Equations (A.22)) and (A.23)) together define the expected relative module expenditure share of a set of
households with income Y; that face prices IP,,, and Py, in terms of parameters a?, al, as well as ayy,,

Yms Bmg for all g € Gy, and o, Y, Bimg forall g € G,
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D.1.3 Extracting Second Stage Estimates 0, From the Inclusive Value Function

The expected log expenditure share in module m relative to m for a group of households with the
same non-grocery expenditure, Z;, facing a common vector of grocery prices, [P, is defined above in
Equations (A.22) and (A.23). Adjusting these expressions to reflect time-varying store-specific pricing
and promotion activity yields:

(A.24) E. [ln Simst — 1N Siﬁzst] = (U - 1) In Vm(Ziy Prnst, Pﬁzst)

where Vi, (Zi, Ponst, Pinst) = Vi (Zi Prnst)/ Vi (Zi, Pinst). - Vin(Zi, Prnst) is a CES-style index over
price-adjusted product qualities:

1

—Qim —%im
g€Gm Pmgst
for aim = (O‘?n +ag, In Zi) and Vi, = (149, InZ;). Note that the inclusive value is a function

of the parameters estimated in both the first and second stage, i.e., 61 and 6. Specifically, each store-
specific product quality shock, fpgst, is the the sum of (Bpgst — Bmg,, st), estimated in stage 1, and an
unknown base product quality shock, 3,,5,.st. We can express the inclusive value function as the product
of the base product quality parameter, 3,5, st to be estimated in the second stage and an inclusive value
function calculated using only elements of 61, estimated in the first stage:

Vm<ZZ7 IP>mst) = eXp(PYimﬁmgmst)Vlm<Zi7 IP>mst)

where

(A.26) Vi (Zi, Prst) = | 3 (‘”‘P(%n%gt)> |

gcCGm Pmgst

and Bmgst = Bmgst — Bmg,.st- Under the normalization that 35,5 = 0 for all s,¢, and using the
decomposition of the inclusive value function above, we can now rewrite equation (A.24) as:

(A27) EE [ln Simst — In S'ir?Lst] = (U - 1) ('Yimﬂmgmst +In %mst(zia Pmsta Pmst))

where In Vipst(Zi, Prosts Prast) = In Vi (Zi, Prnst) — I Vi (Zi, Pist).-

The predicted log expenditure share of module m relative to module 7 at store s at time ¢ is obtained
by aggregating i-specific expected relative shares over the units purchased by customers at each non-
grocery expenditure level:

(A.28)

E, [Es [ln Simst — 1N Sifnst]] = / (U - 1) (’Yimﬁmgmst +1In f/1msi§(Z’ia Prst, P'Fnst)) dF(Z’37 t)

where F'(Z|s,t) is the distribution of non-grocery expenditures over the households shopping in store s
at time ¢.
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Notice that this function is linear in the unobserved base product quality for module m, ,,3,,st, and
the relative inclusive value function, so we can derive the following linear estimating equation:

(A.29) E, [EE [ln Simst — In SiTRstH = /Bmgmst (U - 1) Ymst T (J - 1) 5mst

where ¥, = [ YimdF(Z|s,t) and sy = [In Vimst(Zi, Posts Pst)AF (Z|s, t) can be calculated
using price data, estimates of the store-time-level income distributions, and stage 1 parameter estimates.
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D.2 Estimation Procedure

In this appendix I describe the details involved in the estimation and statistical inference of the parameter
vector 6. I estimate the parameters of the model sequentially. Recall that the full set of demand param-
eters, 6, are partitioned into M sets of lower-level module-specific parameters, 61, for each module
m, that are identified using module-specific sub-samples of the data, and a single set of parameters, 65,
whose identification requires data from all modules.

D.2.1 Step 1: Parallel Estimation of 0, = {a}),, @y, Y, { Bmg = Bmgon } oner.

The first step in my estimation is to obtain estimates for ¢; = {a?n, ak Ym, { Bmg} 9EGm,gEGm }

m:l,...,M’
where 3,,,4 denotes 3,y — Bing,,- I obtain ¢, using a two-stage GMM procedure based on the following
exogeneity restriction:

(A.30) E[g(X;61)] =0

where ¢(X;01)=[¢" (X;0), g>(X; ), g3(X;0)] consists of three vectors of module-specific moments,
9" (X;0) = [¢"(X1;61), ., ¢ (Xar; Oa))-
The first vector of moments is calculated using store-level data. They are defined as:

_ 1 1 - -
gl (vaelm) = ﬁ Z gvlngst<Xm;91m> = g Z gmgSt(Xm;Hlm)Zrlngst

mg,s,t mg,s,t

where n is the number of store-product-time observations; &p,gst (X G{VmL ) are transient store-time-
mgst 18 @ vector of Ly, pre-determined variables
including product fixed effects and price instruments. The tilde denotes that a variable has been dif-
ferenced from the respective value for the base product in each module, g,,, e.g., émgst(Xm; O1m) =
fmgst(Xnﬂ elm) - gmgmst (Xm; le)

The second and third vectors of moments are designed to employ the Nielsen data on household-

specific product taste shocks defined below; and Z

level product choices. The second set of moments equalizes the predicted uncentered covariance be-
tween product quality and household non-grocery expenditure for Nielsen HMS sample households.
The sample analog of this covariance is:

. 1 1 1 X
92(Xm; Hlm) = Ni Z gglg(Xm; Olm) = Ni Z ngﬁmg N79 Z Zimg - E[Z‘y =mg, 9}
m mg m mg m Tmg=1

where i,,, denotes one of the IV, 4 units of product g in module m that is purchased in the Nielsen HMS
sample; ¢ denotes one of the N, units of any product in module m that is purchased in the Nielsen
HMS sample; and Z; denotes the non-grocery expenditure of the Nielsen HMS panelist purchasing unit
7. Similarly, the third set of moments equalizes the predicted uncentered covariance between unit price
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paid and household non-grocery expenditure. The sample analog of this covariance is:

§3(Xm; elm) = ]\:[lm Z (Zz - Z) Z ((ﬁimst - E[ﬁzmst‘elm]) - NL Z Z (ﬁimst - E[ﬁzmsthm]))

. m 3
% s,t i 8.t

The sample analogs of the three moment conditions defined above are:

~ 1 2 -
gl (Xm7 elm) = ; Z gmgst(Xm; alm)zmgst

mg,s,t

1 1 1 Yo i
éQ(Xm;elm) = Niszg ﬁmg Ni Z Zimg - Nizzipmg(zivpstaelmyﬁst)

m g mg g .=l moi=1

§3(Xm; elm) = ]\}m Z (Zz - Z) Z ((ﬁimst - E@zmsthm]) - ]\}m Z Z (ﬁimst - Emzmst|91m])>

s,t 7

where Z = Ni > Z; is the unit-weighted mean non-grocery expenditure of sample households; B;ns; =
(pimgst — Dmst) 1s the relative unit value paid by a household 7 in module m in store s at time ¢, where

Dmst = degmst WmgstPmgst and Wmgst = Smg/ EQEG"LM
relative unit value paid by household i in module m in store s and time ¢ defined as:”!

Smg» and E[Pimst|01] is the predicted

E[ﬁimsthm] - Z ﬁmgstpmg(Zh ]P)st7 9177’17 Bst)
gEGmst

To obtain estimates for the quality parameters Bmg(G{VmL) that enter the micro moments, I first follow
Berry et al.| (1995) inverting simulated market shares to obtain the vector product- and market-specific
taste parameters Bmg st(Q{an) that rationalizes the observed product shares in each store and time period
conditional on a given set of non-linear parameter vector 912 = {a?n, ak, 'ym}. Details on the simula-

tion and inversion procedure are provided below.”? I project the estimated taste parameters, é’mgst (Q{an),
on brand as well as market dummies to control for market-level variation in the quality of the prod-
ucts included in the base good. The coefficients on the brand dummies are used as estimates for the
product-specific quality parameters, Bmg (L), employed in the quality micro moment. The residuals
from these regressions provide estimates for the transitory shocks, fmgst(ﬁfvnf ), which are in turn used
to calculate the macro (store-level) moment conditions.

The fact that all three sets of moments depend only on module-specific data, X,,,, and parameters,

"1 can only calculate the probability of purchase, Pp,q(Z;, Pst, 01m, Bst), employed in the calculation of the
micro moments (§%(Xn; 01m) and g3(Xn; 01, )), when I observe the full choice set available to the Nielsen
household panelist ¢; that is, the set of products and prices available to the customer in the store and time period
that they are observed to make their purchase (P,;). I observe these choice sets for the stores and time periods
in the Nielsen RMS data, so calculate the micro moments using household transactions in these stores and time
periods alone.

72 also attempted estimating these taste shocks using a fourth set of moments equalizing the predicted expen-
diture shares of a simulated set of customers at each store in each time period with the observed sales shares for the
respective stores and time periods following [Dubé et al.| (2009)’s implementation of Berry et al.[(1995). I ran into
difficulties getting this model to converge across many modules, however, given the non-linearity of the problem.
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01m, enables me to partition into module-specific auxiliary moments:

E[Q(XmE elm)] =0
This partition allows me to estimate the K7, parameters, 01, = {a?n, ak Yms {Bmg}geGm,g?fgm
for each module m in separate but parallel minimization procedures. Consistent estimates of the elas-

ticity parameters, 01V L =

{am, Oy s 'ym} are obtained by minimizing module-specific GMM objective
functions as follows:
oNE — ar%Nr?iné(Xm; 01m) W 13 (X 01m)
where §(Xm; 01m) is the sample analog of the L,ln + 1 > Ki,, moments, §(X,,; 01,,) and Wlm is the
efficient weighting matrix.
The weighting matrix, Wlm, is block-diagonal since the three moments are calculated using differ-
ent datasets:

- 4 -1
W}m = Wllr}@(Xm’ élm) 0 0
0 W1172n(Xma alm) 0
L 0 0 Wf%(xm, le) ]
for
. ~ 1 _
Wllr}l (Xim; bim) = n Z gmgst (X elm)grlngst (Xom; 91771)/
mg,s,t
A ~ 1
Wllgl (Xm; 91m) = Nim ng Img (Xma Hlm) (X’rm Hlm)
~ 1
Wi (Xomi O1m) = 5= > Ging (Xomi O1m) g (Ko O1m)’
m g

Each of these components is calculated using consistent first-stage estimates of H{VT,%:

é{\f"% = arg miné(Xm; elm)lwlmé(xm; Hlm)

oNE
for

-1

/

Wim = - ngst Z ngst ( mgst) 0 0

9EGm ¢
0 1
0 0

0
i 1

After estimating the non-linear parameters, 91m , I project the product-store-time specific taste
shocks implied by these parameters, ﬁmgst(elm ), onto brand dummies in order to extract estimates
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of the product quality parameters, {Bmg}gegmg#gm.
Assuming that the random components of the M module-specific auxiliary models are independent,
the variance-covariance matrix of 01, {21, can be written as:

1

where {2y, is the variance-covariance matrix of 6y, for each m = 1,..., M. The consistent estimator
for each of these sub-matrices is:

Qelm, = (Fglmvf}lpé1m)

’

where Fglm = Fellm Fezlm } for
~1 1 .1 A
F91m = E Z velmgmgst(xm; elm)
mg,s,t
and .
F921m = Ni Z velmg'?ng(xm7 elm)
m g
and
fo - % ng,s,t ngngSt (Xm’ alm)grlngst (Xm; elm)/ Q A
0 NLM ng ang (va 01m>§12ng (Xm7 elm)/

NL it

Inversion Algorithm In order to evaluate the objective function at a given parameter vector 67",

is necessary to invert the following system of non-linear equations:

(A.31) Bmgst(elm) — In Smgst (ﬁst; G{Vrr%) =In §mgst

where Spgst (Bt G{VmL) is the model predicted market share of product g in store s at time t, 0{% =

{ad,,a},,¥m} is the subset of elasticity parameters that must be estimated using non-linear moments,

NL

and 3,4 is the observed share. For each guess of 07,

I calculate the model predicted market share as
the average probability of purchase predicted for a quadrature of K points from the store-specific income
distribution (recall that income is used to proxy for non-grocery expenditure Z;) each with income Y}

and weight wy:

K
(A32) Smast(Bst; O ) = Y Wk Prng (Y, P, 01
k=1
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It is well known that this inversion does not work for products with small sales shares (see, e.g.,
Gandhi et al.| (2013)). I therefore group all of the products that fall into the left tail of the average sales
distribution an outside product. This grouping could impact my estimates in three ways. First, (Gandhi
et al.| (2013) have demonstrated that ignoring the low end of the sales distribution in this manner yields
a downward bias on price elasticity estimates. Second, variation in the quality of the outside goods sold
in different stores could bias my average product quality estimates as discussed under identification in
Section [5.3.1] Finally, I will not estimate product quality parameters for products that always appear
in the low end of the sales distribution and, therefore, am unable to include them in the market price
indexes. To test the impact of these biases on my results, I study how the estimated price elasticities
and product quality gradients vary depending on the share of products that are grouped into this outside
product, varying this set between 40, 60, and 80 percent of products in each store-week (reflecting 6, 15,
and 33 percent of aggregate product sales, respectively) in the robustness exercises presented in Section
E.3.5

Starting Values 1 estimate a linear approximation of the store-level market share equation to obtain
starting values for the non-linear parameters, Q{VW{J = {oz?m al 'ym}. When the optimization routine
returns estimates within 0.03 log units of the bounds for these non-linear estimates —aY, € (0.05, 30),

! € (-5,5), and v, € (—5,5) — or otherwise fails, I instead conduct a grid search. Specifically,

m
.. . . . . . .. tart
I run the optimization routine using a range of starting values for the mean price elasticity, ag;star

a

between 1 and 4, keeping the starting values for the non-homotheticity parameters of v3!%"* = 1.5 and
a}ﬁsmrt = 2 (or zero, in the constrained model). If this yields multiple sets of interior estimates, I select
the estimates minimize the objective function. If this routine does not yield interior estimates, I try
estimating demand using a less restrictive retention rule for the instrument PCA, using d=-1.4 instead
of 6=-2, where the eigenvalue cutoff is sum(latent)*(size(latent,1)"d ). The initial estimation with fixed
starting values yields interior estimates for between 300 and 400 modules out of 530, depending on
the model being estimated. The grid search yields interior estimates for between 50 and 100 additional
modules. Loosening the instrument retention rule yields the remaining interior estimates reported in

Table 3

D.2.2 Step 2: Sequential Estimation of 6> = {0, {3,.5,, }m=1.... Mmzm }

In the second step of the sequential estimation procedure, I estimate 6 = {o, {Bmg,. tm=1,....M,m=m }-
These Ko = 1 + M parameters are identified by the following exogeneity restriction:

(A33) G = E[h(X;6:,05)] =0
where h(X; 61,02) = Zo(X)-u(X; 01, 02). Zo(X) is aset of Lo instruments (Lo > Ko) and u(X; 61, 62)

is the error in the relative across-module expenditure share equation derived above.
Specifically, for module m and store s in time ¢ this error is derived above in equation (A.29) as:

A~ A~

umst(X; o1, 02) = In (Smst/sﬁ’bst) - /Bmgm (U - 1) Wmst(gl) - (U - 1)5mst(01)
where s, and s;,5 are data on the respective sales shares of module m and m in store s in time
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t; each Tpmst = [ @imstdF'(Z|s,t) is calculated by integrating ;s over the same local income dis-
tribution employed in the first-stage of estimation described above, for i, = (1 + v, InZ;) and
Umst = In ‘/1m<Zza Prist, le) —1In Vlfn(Zia Prst, Hlm) where

-
) ) —(ag,Fog, In Zi) | =(af ol n 2;)

exp(Vir B
Vin (Zi, Prnst, O1m) = | D (p(%mﬁmgst
g€Gm pmgst

is the inclusive value for a household with non-grocery expenditure Z; in module m in market st calcu-
lated using first-stage parameter estimates, 0; .

Z5(X) is a vector of pre-determined variables including module fixed effects interacted with the
market average quality weight, 7,,,;, and an instrument for the average relative inclusive value, ¥, st (671)
faced by the store’s customers. This instrument is identical to the data analog of Emst(éﬂ but calculated
using the same contemporaneous chain-specific national cost shock instruments that are used in the
module-level estimation in place of store-time-specific price data.

The upper-level parameters are estimated using two-step GMM:

é2 = arg min iL<X7 é1, 92)IW2E(X; éla 02)
02

-1

where Wy = Z:lN Z Z hmst (X él, ég)hmst(X; él, ég)/ is the optimal weighting matrix,
st s,t meM,,
st

for 05 the consistent first-stage estimates of 62 that minimize a GMM objective function as follows:
0y = arg min iL(X7 él, 92)’W2E(X; él, 62)
0>

-1

where Wy = | —1 — Z Z Z2m8tZ/2mst
Z NSt 8t mGMst
k.t
Newey and McFadden| (1994) show how to obtain a consistent covariance matrix for estimates that
are obtained sequentially and Murphy and Topel (1985) describe the assumptions under which this
method can be extended to the case in which the first-step estimates are obtained from different models
estimated using sub-samples of the data. The naive variance-covariance matrix of the 05 estimates that
does not account for the measurement error from the use of the first stage estimates, treating 67 as known,
is defined as: .
A o1
Co, = (Ho,V3 1)
where

1 PO
Hpy = —=—>_ Y. Vo, hunat(X;01,02) (Kax Ly)
ZNst s;t meM,,
s,t
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and
Vi = Wa =

Z Z hmst X 91792)hm5t(x 01792) (LQXLQ)

E :Nst s,t meM,,

In order to account for the measurement error from the use of first stage estimates, we need to treat
f1 as unknown, calculating the variance-covariance of the full vector of § estimates:

Qg, g0,

—1
o = [99192 Q,

] = (CyV.'Cy)

where:

Cy = ! and V. =
’ [H o, H 02] [th Vi,

The correct covariance matrix for the second stage estimates is the lower right-hand block of this full
covariance matrix, {2, .13 1 obtain it by estimating the full covariance matrix, Qp,, where Q. , Qp,, Hp,,
and Fp, are as defined above;

Hy, =

1 ZN;; Zl\jd Vo, hinst (X5 01, 02) (K1 % La);
St s, meMgy

and

Vig="Vyr = Z Z hanst(X; 91792) Z Fgst(X; 01m)] (Lax L1).
ZNst st mEM.,  9€Gm.,

D.3 Model Selection Criterion

In the Section [6.1] I present estimates of the parameters that govern the within-module product choice
for each module m, élm, in a separate GMM estimation procedure under different sets of parameter
restrictions. For the most flexible “full” version of the model, all elements of 61, are estimated. These
include a9, all., v, and a relative quality parameter (Bmg — Bmg) for each brand represented in the
module except for the brand of the base product g. The full model allows for non-homotheticity in both
the price sensitivity and the demand for quality by letting both . and ,,, be non-zero.

73Newey (1984) shows that, when L; = K; and Ly = Ko, the asymptotic covariance matrix {2¢, of the second
step estimator 0 is given by:

o, = oy + By Ho,Qa,, Hy, (HyY — By (Hou By, Vi + Vg (B (D)

where le, 5292, 1%2, and Fgl are as defined above and flgl = L Z Z Vo, bmst (X; é1,92). This

2 Net 57 wiwh,

S,
equation cannot be applied directly to estimate 2y, here since both models estimated here are over-identified, such
that L; > K, and Ly > K (and neither Fy, or Hy, are invertible).
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In Section [6.2] I compare the GMM-BIC criterion for this model with the other models that allow
for only one form of non-homotheticity by restricting either o}, or 7, to be zero. The selection criterion
minimizes the following GMM-BIC function:

(A34)  GMM-BIC/(61,) = nunGum (03, 1) Wi G (817, 017) — () (L, — K3))

1m>»

where Gy, (éM M ) are the moments for model M evaluated at the estimated values for free parameters

1m> ¥1m
63, and zero for the restricted parameters, 627 ;

M . KM is the number of free parameters in model M

for module m; and n,, and L}, are the number of observations and instruments, respectively, used
to estimate all models for module m. The same set of instruments is used to calculate each moment
condition, and thus the number of moments is also common between models for each module. W}, is
the optimal weighting matrix for the full model.

I evaluate models by calculating the unweighted and sales-weighted share of modules for which a
given model minimizes the GMM-BIC criterion. The results of this model selection test are presented
in Table [5|and Appendix Table[A.4]below.

Table A.4: Bilateral Model Comparisons

Model A
NHQ NHP Both
m NHQ - 0.14 0.26
%; NHP 0.82 - 052

= Both 0.79 0.59 -

Note: This table shows the share of modules in which Model 1 (the column model) has a lower Bayesian Information Criterion (BIC) statistic
to Model 2 (the row model). The numbers above the diagonal are weighted by 2012 module sales in the RMS data. Those below the diagonal
are unweighted. Attention is limited to the set of modules that have interior estimates for all three non-homothetic models.

D.4 Integrating the Feenstra (1994) Methodology

For robustness of the main model estimates (which allow the demand for quality but not price sensitivity
to vary with income), I employ the Feenstra method to calculate the within-module substitution elastic-
ities and, re-estimate the other model parameters, holding these mean elasticities fixed. I first apply the
Feenstra method to estimating elasticities with store-level data. The moments for this estimation method
are built from the following system of demand and supply equations:

Agm ln SmgSt = — (O‘m — 1) Agm lnpmgst + Eg;ngst
DPmgst = 77— 0 Smgst T Omygst
m

where 5,45t and py,gs¢ are the sales share and unit price of product g in module m in store s in
month ¢ and each equation is twice-differenced over time and relative to a module-specific base product
Jm, selected from the set that is observed most frequently across store-month markets (Ag’"xmgst =
%t, include the impact of
ABmgst (since the level is differenced out) as well as a second component, related to the fact that the

AZmgst — ATpmg, st and AZpgst = Tmgst — Tmgst—1). Demand shocks, €
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Feenstra method does not account for any variation in tastes across incomes. The GMM objective func-

tion is:
’
Fm = arg min G* (k) WG* (k)
rm €K
7. g. Om . .
where G* (k) = D, e siOmusts Kim = , and W weights moments using product-level
Wm
sales.

0

This procedure yields price elasticity estimates, a,

= o, — 1, that are then held fixed in a second
estimation step where the remaining parameters, ,,, B4, and o, are estimated using same within- and
across-module estimation procedure described above. This procedure results in higher estimates for the
price elasticity, but also higher estimates for the income-quality gradient (7). On net, indexes calculated
using these “Feenstra-method” estimates demonstrate the same qualitative patterns across households

and cities with different incomes as we observe in the baseline indexes.
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E Results Appendix

E.1 Identification

E.1.1 Summary Statistics for Estimation Data Across Modules

JO SUWN[Od YIINOJ PUB PAIY) AY) UT SAUI[ [BONIAA Y, "SISA[BUE A[NPOW-UIYIIM JY) UI Pasn BIep 3y JO SONSIIL)S AIBWWNS [SAS[-[NPOU Y} JO SHUSWOW JO uonnqrusip ay) Jo1dep aroqe sjofd oy, :s9JoN

"(A1oAnoadsal ‘¢ pue () UONINQLISIP [EULIOU B JO SISOJINY Pue Mays Y} moys sjofd

o0 o 02 O o 0 % v ost 1§ ; 0 5
|||||| - e \ o o o
W e o N
: N}
[EEN IS
w
[y
B o ?
o N ©
SISOUNY SSaUM3NS uoneInaq plepuels uea
juswiniisuj adlld mO|_
¥ 0 & o 3 o (I IS S ; 0 s
—— — — — e |/ o — o o
\ = - o N
ViR - .
! w
—L
A S Mo o
v o BN ©
SISOUNY uoneIAa( prepuels uesi\
aold 6o
8 9 14 14 0 T- - - ST T g 0 T- - - -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o - o o
\\
. L o o
N =
L -
N |~ o
. o N
\ N
o - N o
SISOUNY SSaUM3NS uoneInaq plepuels uea

aleys sajes bo

sonsnels Arewwung vleq mey Ly I3

0

S v ez T

0

S v ez T



E.1.2 Distribution of First-Stage Regression Results Across Modules

Figure A.8: Summary Statistics for First Stage Results
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Notes: The above plots depict the distribution of the price instrument coefficients and F-statistics in the module-level first-stage regression of
log relative price paid against price instruments, brand dummies, and all of the above interacted with the log median income of the county in

which a store is located.

E.1.3 Measurement Error in Product Quality Estimates

In practice, the quality of each product, relative to the outside good, Bmg = Bmg — Bmg,.» 1S calculated
as the mean of store-month-specific quality shocks, Bmgst(é{\;f) = ﬁmgst(é{% ) — Bmg. st(éfvnf ), that
rationalize the relative sales shares on that product relative to the outside product given the non-linear pa-
rameter estimates, across the store-months in which the product is sold; i.e., Bmg = N% > st Bmgst (é{vnf ).
Variation in the quality of the outside product across store-months will generate measurement error in
the quality estimates. ﬁng, for example, may understate the relative quality of products that tend to be
sold in stores that sell higher quality outside products. If this measurement error is correlated with the
relative purchase probability of high- vs. low-income households, it might yield biases in the income-
quality elasticity gradient ().

To gauge the degree of this error and associated bias, I calculate the relative qualities of “inside”
products in two ways. First, I difference the base quality estimate for each product g from the quality
estimate for a common product in each module, g}n, 1.e., Bmg - Bmg,}”- This relative quality estimate will
be subject to the measurement error noted above (i.e., if g is sold in stores with higher quality outside
products than the stores in which g}n is sold, Bmg - Bmﬁ,ln will be biased downwards than the true relative
quality of product g relative to product g,).

I then calculate an alternative measure of the quality of g relative to g., that is not subject to this
measurement error. Specifically, I difference the market-level quality estimates for product g relative to
that for product g, within each market and then take the average of this mean across the Nyg: stores

that sell both g and and the common product g}, i.e., ﬁ D st (Bmgst(é{\[nf ) — Bmg,}”st(é{\]ﬁ%)) This

99m,
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procedure purges the relative quality estimate from any variation in the outside product quality level
across markets, which appears in both the ﬁngst(H{an) and Bmghst(ﬁﬁf ) so is differenced out before
averaging.”*

Comparing these two quality measures assuages concerns that measurement error induced by the
variable quality of the outside good across markets generates biases in the estimates. Figure [A.9|shows
that the two quality measures are highly correlated: the median correlation coefficient across products
within modules is 0.8 and over 0.5 in more than 90 percent of modules). More importantly, Figure[A.10|
shows that there is no systematic variation in the implicit errors in the base quality estimates (i.e., the
difference between the base and alternative relative quality measures) across the consumption baskets of
high- and low-income households that might generate a bias in the +,,, estimates.

Figure A.9: Correlation between Base and Alternative Relative Product Quality Estimates

™

2
1

Sales-Weighted Density
1
1

T T T

0
Correlation within Module

Notes: The above plots depict the distribution of the module-level correlations between two relative quality measures. The first is equal to the

mean quality for each product across the stores in which it is sold differenced from the mean quality for a common product across the stores in
which it is sold. The second is the difference of the quality of each product in the module in a store from the quality of the common product in

that store, averaged over all of the stores in which both products are sold. Module-level correlations are weighted by sales.

741 do not obtain my base quality estimates via this procedure because it limits the sample of markets I can use
for estimation to those that have a common product. To maximize the number of store-month markets included
in the calculations described above and, in turn, the number of products for which this alternate quality measure
is feasible, I select as the common product, ., the product in each module that appears in the highest number of
sample markets. Still, over twenty percent of products are dropped from the analysis entirely because they are not
sold in any of the subset of the 5000 randomly-sampled markets that sell the most commonly-sold product for that
module. In over a quarter of modules, less than half of the subset of the 5000 randomly-sampled markets that sell
the most commonly-sold product for that module. Limiting the sample in this respect might result in the sample
becoming biased towards one or two chains that carry similar products.
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Figure A.10: Correlation between Base and Alternative Relative Product Quality Estimates
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Notes: The above plot shows the elasticity of the expenditure of RMS panelists in different deciles of size-adjusted income with respect to the

errors in relative product quality estimated using the method outlined in Appendix Section[E-T.3]

E.1.4 Distribution of Price Elasticities Estimated in OLS and IV

Figure A.11: Distribution Price Coefficients Across Modules with Different Price Instruments

0 10 20 30

Base ———-—- Residualized Instruments

Notes: The above plot depicts the distribution of estimates of the module-level o, parameters in the baseline model that allows for

non-homotheticity in the demand for quality but not in price sensitivity (i.e., restricting that o>, =0). The three kernel densities show the
distribution of estimates obtained in OLS specification as well as instead using the two different price instruments described under

Identification in Section[5.3.1]of the paper.
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E.2 Parameter Estimates

E.2.1 Distribution of Non-Homotheticity Parameters Across Modules

Table A.5: Summary Statistics for Parameter Estimates with abs(t — statistic) > 1.96

Model: Homothetic NH in Quality NH in Price NH in Quality and Price
Restrictions: o) =0& 7, =0 al =0 Y = 0 None

(1] (2] (3] 41 [5]1 [6] [7] [8]
Parameter: al al Y a ol Al al Y
Count 375 463 466 421 417 433 405 438
p25 1.09 0.89 038 0.72 -028 1.04 -1.44 1.35
pS0 1.73 1.71 .16 1.36 0.15 1.69 -0.82 1.99
p75 2.45 2.41 252 206 080 250 -0.23 2.74

Notes: These tables report the summary statistics for the main module-level parameter estimates governing the elasticity of substitution and
non-homotheticities in demand. Attention is limited to modules for which the estimation procedure converged at interior estimates for all
relevant parameters. The mean and percentile statistics are weighted by module sales in the Nielsen store-level data.
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Figure A.12: Distribution of +,,, Parameter Estimates Across Modules
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Notes: The plots above depict the distribution of the 7., estimates, for the model allowing for non-homotheticity in the demand for quality
alone (i.e., restricting that a1, =0) on the left and for the model allowing non-homotheticity in both the demand for quality and price

sensitivity (i.e., allowing both y,, and v}, to be non-zero) on the right. Attention is limited to modules for which the estimation procedure

converged at interior estimates for all parameters.

Figure A.13: Distribution of «}, Parameter Estimates Across Modules
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Notes: The plots above depict the distribution of the o}, estimates, for the model allowing for non-homotheticity in price sensitivity alone
(i.e., restricting that ,,, =0) on the left and for the model allowing non-homotheticity in both the demand for quality and price sensitivity (i.e.,
allowing both 7y, and o}, to be non-zero) on the right. Attention is limited to modules for which the estimation procedure converged at
interior estimates for all relevant parameters.
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E.2.2 Out-of-Sample Fit

The model is currently estimated using data describing sales in a sample of 5000 store-month markets
for each product module. This leaves plenty of data to study the out-of-sample fit. The analysis below
studies the out-of-sample fit for the baseline model used for the price index analysis (i.e., the model that
allows non-homotheticity in the demand for quality, but not price sensitivity).

Figure [A.T4] compares the distribution of the unexplained component of store-month sales, which
take the structural interpretation of transient taste shocks, in the estimation sample with that in a sec-
ondary sample of 5000 store-month markets for each product module. The two distributions—truncated
at the 1st and 99th percentiles—are very similar to one another.

This fit is summarized in the J-statistics of the macro moments.” Figure compares the J-
statistics calculated using the model estimates for a, and 1, in the secondary sample to the J-statistics
for the estimation sample. The average fit is, as expected, worse out-of-sample, but, barring some
outliers, the fit of the macro moments is highly correlated across modules between the estimation and
secondary samples.

73The store-month sampling procedure prioritizes store-months where HMS households are observed to make
product purchases, so there is not a secondary sample of household purchases with which I can calculate out-of-
sample micro moments.
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Figure A.14: Transient Taste Shocks (&,4st — Bmg) Predicted In-Sample and Out-of-Sample
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Notes: This plot shows the distribution of transient store-month tastes for products, estimated using sales in the base sample of 5000

store-month markets (in-sample) and then calculated using the same non-linear parameter estimates in a hold-back sample of 5000 different

store-month markets (out-of-sample). This out-of-sample check is for the baseline model that allows for non-homotheticity in the demand for

quality but not in price sensitivity (i.e., restricting that o, =0).

Figure A.15: J-Statistics for Store-Level Moments In-Sample and Out-of-Sample
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Notes: This plot compares the fit of the store-level moments estimated using sales in the base sample of 5000 store-month markets (the

“estimation” sample) and then calculated using the same non-linear parameter values but for a hold back sample of 5000 different store-month

markets (the “secondary” sample) across different modules. The fit of these moments in each sample is summarized with a module-level J

statistic calculated with the weighting matrix and store-level moment conditions described above in Appendix Section @ This

out-of-sample check is for the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity (i.e.,

restricting that o}, =0).
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E.3 Price Indexes

E.3.1 Variation in Non-Parametric Price Index Results Across Bootstrap Samples
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Figure A.16: Variation Across Bootstrap Samples in the Elasticity of Grocery Price Index with
respect to CBSA Income for Households at Different Size-Adjusted Income Levels
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Notes: This plot shows the elasticity of income- and CBSA-specific price indexes with respect to CBSA per capita income for households at
compares the different income levels. The point shows the mean elasticity estimated across 100 bootstrap iterations of price index calculations
(each drawing a random sample of 50 stores in each CBSA) and the bands show the 95 percent confidence intervals around this mean. The
price indexes are calculated using the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity

: g 1
(i.e., restricting that c;;,=0).

Figure A.17: Variation Across Bootstrap Samples in the Elasticity of Grocery Price Index with
respect to Household Income for CBSAs with Different Per Capita Income
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Notes: This plot shows the elasticity of household income- and CBSA-specific price indexes with respect to household income in CBSAs with
different per capita incomes. The point shows the mean elasticity estimated across 100 bootstrap iterations of price index calculations (each
drawing a random sample of 50 stores in each CBSA) and the bands 88y the 95 percent confidence intervals around this mean. The price
indexes are calculated using the baseline model that allows for non-homotheticity in the demand for quality but not in price sensitivity (i.e.,

restricting that o}, =0). The marker labels for each CBSA are acronyms linked to the full CBSA name in Appendix



E.3.2 Price Indexes in High- vs. Low-Coverage CBSAs

Table A.6: City-Income Specific Price Index Regressions in High- and Low-Coverage CBSAs

Dependent Variable: Ln(Price Index for Household in Income Group k in CBSA c)

Sample: All CBSAs High Coverage Low Coverage
(1] (2] (3] (4] [5] (6]
Ln(Per Capita -0.32 -0.30 -0.81***  -0.75** -0.16 -0.20
Income,) 0.21) (0.20) (0.20) (0.23) (0.35) (0.40)
Ln(Per Capita -0.25%**%  0.27*** -0.29 -0.30  -0.31***  -0.38***
Income.)* Demeaned Ln(HH Income;)  (0.040) (0.045) (0.23) (0.23) (0.047) (0.053)
Ln(Population,.) -0.0075 -0.037 0.0088
(0.047) (0.041) (0.076)
Ln(Population,. ) 0.0050 0.0091 0.019***
Demeaned Ln(HH Incomey) (0.0031) (0.023) (0.0010)
Income Group k*Bootstrap Sample FEs Yes Yes Yes Yes Yes Yes
Number of CBSAs (¢) 125 125 28 28 44 44
Observations 98,920 98,920 22,400 22,400 34,656 34,656
adj. R? 0.03 0.03 0.14 0.14 0.03 0.03

Notes: **#* p< 0.01, ** p<0.05, * p<0.10; standard errors, clustered by CBSA and bootstrap sample, are in parentheses. The table replicates
columns [1] and [2] of Tablemfrom the main text using data for different samples of CBSAs. Columns [1] and [2] present results of the
regression estimated in a sample containing 125 with 50 or more participating retailers. Columns [3] and [4] show results estimated in a
sub-sample of these CBSAs that are identified as being located in DMAs where the Nielsen sample has high-coverage (accounts for over 50
percent of sales, on average across grocery, drug, and mass-merchandisers). Columns [5] and [6] show the results estimated on the sub-sample

of CBSAs that are located in DMAs where the Nielsen has low-coverage (accounts for less than 50 percent of sales). Observations are

weighted by CBSA population.
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E.3.3 Analysis of Price Indexes Based on Full Model with Non-Homotheticity in Price
and Quality

Table A.7: City-Income Specific Price Index Regressions Accounting for Non-Homotheticity
in Price and Quality

Dependent Variable: Ln(Price Index for Household in Income Group k in CBSA c¢)

Local Prices National Prices
(11 [2] [3] [4]
Ln(Per Capita -0.47 -0.66* -0.33 -0.55
Income.) (0.29) (0.29) (0.29) (0.29)
Ln(Per Capita -0.45%** 071 -0.44%** -0.70%**
Income.)* Demeaned Ln(HH Incomey) (0.078) (0.14) (0.076) (0.14)
Ln(Population.) 0.058 0.065
(0.067) (0.067)
Ln(Population,)* 0.079 0.079
Demeaned Ln(HH Incomey) (0.045) (0.045)
Income Group k*Bootstrap Sample FEs Yes Yes Yes Yes
Number of CBSAs (c) 125 125 125 125
Observations 97,856 97,856 97,856 97,856
adj. R? 0.03 0.05 0.02 0.04

Notes: *#* p< 0.01, ** p<0.05, * p<0.10; standard errors, clustered by CBSA, are in parentheses. The table replicates Table[A.7]from the main

text using price indexes that allow for non-homotheticities in both price and quality (i.e., allowing both ., and ., to take non-zero values).

E.3.4 Price Indexes in Large CBSAs

101



(0 = *{0 Supowsaring O # “A Suwmoyre <o'1) ooud ur jou Jnq Apenb 103 puewap

3y} ut AJONAYOWOY-UOU SMO[R Jey) [9po paLajaid oy 10§ pajewnsa s1olowered [Spow oY) uISn PR[NO[ed dIv SAXIPUL ONAYIOWOY-UoU Y, *019Z [enbo 03 WA pue “{0 JunoLnsal udym pajewnsd swjowrered

[opour 3y} SuISn pAJE[NO[ed ST XAPUT ONAYIOWOY AL, "BIEP SOV +107-0T0T Y UI pajiodor SJUSPISAI UOT[[TW | UBY) 2IOW [JIM saNIO ddures oy J0J paje[nofed saxapur a011d oy smoys 9[qe) SIY [, 910N

%6€ 66" 680 260 860 90°1 140! 0Tl 171 oI'l So'1 809°€98°S ¥88°cr$ AM-TN-VA-DJ ‘BUPUEXI[Y-UOISUIIY-UOIBUIYSEAY
%bSL'ST- 60'1 vl 611 STl 8C'1 9C'1 0Tl el Pel 868°L69°1 860°6C$ ON-VA ‘ssaN ModmaN-Y[OFON-oeag eruISna
%660 00°1 660 860 L6°0 L60 L60 860 00°1 L60 SETIS8T TSTLTS T4 “IPIeMIEd[)-5Ings1a1od IS-eduwe,
%95 EL SO'1 €0'1 660 ¥6°0 68°0 ¢80 £8°0 ¢80 68°0 LEL'LOLT ¥20°0€$ TI-ON ‘SIoT 1S
PbLT €8T 6L°1 OL'T LS'T ol LT 40! 90°l 10°T LT1 LEO'LSSE 190°9¢$ VAA “ONAS[[9g-BWOIR] -9[NBIS
%91°9¢ ¢80 18°0 9L°0 Lo 69°0 690 IL°0 9L°0 890 LSY'868°1 OLITYS$ VO ‘BIg[) BIUES-O[EAKUUNG-OSO[ UL
%8TLS ¥6°0 680 ¥8°0 8L°0 SLO L0 SLO 6L°0 6L°0 1ST99%'Y ovsSTr$ VO ‘premAeH-puBp{e(-09SIdURL] ULg
BES'IL el 11 60'1 90°1 Y0'1 €0'1 660 €60 40! EVIE8IE €V01€S VD ‘Pras[E)-0391(] ueg
%6 66" 70 0’0 00 170 70 0s0 860 890 S0 TTT6ETT 867°ST$ XL ‘S[oJuneig MON-OMOuyY Ues
BEL'ETT LS'T el 0S'l 'l Iz 'l 8¢'1 9C'l 9C'1 EV9ETI’T 915°9¢$ LN KD e Ies
%S1°9% 0’1 86°0 S6'0 160 88°0 98°0 L8°0 68°0 16°0 TTYL6T'T TST6C$ VD OprIIY-UPIY—I[[IAdS0Y—O0IUdWERIORS
%9816~ 99°0 S9'0 ¥9°0 ¥9°0 ¥9°0 99°0 Lo 18°0 §9°0 8LS°T80°1 0TE'8T$ AN 12159400y
BIYTH1 €51 o'l 6¢'1 43! 8C'1 8T'1 YTl vl 'l SSYSreEY 1LS°TT$ VD ‘OLRIUQ-OUIPIBUIO UBS-OPISIOAR]
%S VT (! 171 'l €'l 'l 61’1 ! [4N! SI'1 8S0VET'T Yr6°0€$ VA ‘puowiyory
%bSS € SI'1 9I'l 811 1T1 €'l €l 171 oI'l 140! 6LS°681°1 89V 1€$ ON ‘ySrorey
Pt 98- 890 690 L0 9L°0 18°0 G8°0 680 260 $8°0 LIEY09'T 81C°0€$ VIN-TY JOIMIBA\-90USPIACI]
%89 SEY §Ce I1'C 16'1 89'1 Syl 9C'1 er'l SO'1 LET 96L°88T°T 095°0€$ VAA-JO ‘0I0qS[[IH~IPANOJUBA -pUB[IIO]
PbLETY- SLO 9L'0 LLO 080 ¥8°0 L8°0 06'0 260 98°0 €6L°8SET TLT0ES Vd ‘ysmgsnid
BYTSIE 96°1 88’1 oLl [N Ly'1 £e’l 0C'l 60°1 L91 TWS'LEEY £68°9C$ ZV ‘9[ePSN00S-BSIN-XIU0YJ
%LY 66" L80 260 660 60'1 0C'1 9’1 €Tl 40! 'l 9€€°S10°9 0S8°TE$ AW-AA-IN-Vd ‘uoiSuruiip -uspure)-erydopeqiyd
%61°9- 96°0 €60 060 88°0 88°0 68°0 €60 L6°0 €60 $€8°9TTT 9LSVT$ T4 ‘PIOJURS-S3WWISSIY-OPUBLIQ
%98°'SS- S0 €50 IS0 1$°0 (40 960 90 69°0 S0 866'L6T' 1 766°9T$ 3O A1) pwoyepO
%91°09- 890 690 Lo 9L°0 080 £8°0 780 780 8L°0 S¥0°698°61  8LO'9ES Vd-IN-AN ‘K10 AdSIof-YIEMON-YIOK MON
%60°0¢- 1.0 0L0 690 69°0 69°0 IL°0 L0 6L°0 L0 ovr'9TT’1 8SH°LTS VT “QUIBION-SUBIIO) MIN
%SO vl 24! or'1 el 0¢'1 9’1 €Tl 611 611 SIS0ELT 125°82$ NL ‘UIP[UB1]—-0I0GSIILINA—UOSPIAR-[[IAUSEN
%9T €8 Lyl 'l 9¢'1 £ 6C'1 6C'1 8C'1 ! 9C'1 98LYTi'E €65 7ES IM-NIA ‘uoiSurwoojg-ined "1§-stjodeauurjy
%E9’ 1Y el 8C'1 vl 0Tl 811 611 171 0Tl 90°1 89€°C9S°1 €€L'6TS IA ‘SHIV 1S9M -BUSDINEAL -0NEM[IN
%S9'91- L0 Lo 0L0 690 890 690 €L’0 8L°0 8L°0 YOT'SLL'S ovT'LT$ T ‘yoeaq wied 1S9M -9[epIopne ] LOoJ-IWeIA
%eV'C 260 S6°0 L60 L60 $6°0 €60 260 260 760 PI0°LEE T 161°5T$ AV-SIA-NL ‘styduway
BY6O'LL 611 LT'1 40! 60°1 Y0'1 00°1 86'0 L6°0 S6°0 SOEEST'T 88Y°LT$ NI-AY “AIUno)) U0SIAHa[/3[[IASINO]
%LT 6T €01 €0'1 [N (40! €01 €0'1 10°T S6°0 erl $ES090°CT  90S°6T$ VO ‘Widyeuy-yoedq Suo-sa[asuy so']
%e6°'161 o'l €9'1 861 4! Yl Se'l STl erl LS'T €19°€00°C 0v0°9Z$ AN ‘OSIPEIE]-UOSIOPUSH-SESIA ST
DY LY1 0L'T LT w1 ST Lyl 171 SE'l 6C'1 el 698°0v0°C 101°0€$ SM-ON A1) sesuey|
%08°L8- 801 80°1 801 AN} oI'l VTl 0¢'l (4! 0¢'1 S66°08E°1 0S6°LT$ 14 ‘S[prauosyoef
%S0°S8 or'1 8¢'1 143! 6C'1 YTl 11 61’1 9I'l ST'1 8I°1€6°] SLL'LTS NI ‘uosIopuy-[outie))-srjodeuerpuy
%16'L91 8Vl o'l (! el 'l 4! 90°[ [{0n! 0C'1 71409 v65°6C$ X1, ‘pue] 1ESNG-SPUBIPOOAY OY[-UOISNOH
%6V Y- 150 00 6¥°0 8%°0 6¥°0 1S°0 S9] €90 0s0 6S1°61T°1 166°5¢$ 1D ‘plojirey 1sed-pIojiIeH 1S9M-pIojlieq
%01°8¢C- SLO €L0 Lo L0 0L°0 1.0 SLO €80 69°0 6TE°L00°T 98L°ST$ TN “Sutwofp-sprdey] puein
%0S¥S or't 60’1 901 €0'1 00'1 L60 S6'0 $6'0 $6'0 LY9°T6T Y 781°8C$ TN ‘wI0gIes-udirepm-yonaq
%L6'09C 181 LL'T 69°1 861 A 1e1 6l'1 60°1 8v'1 T6E1S9T ELTVES 0D ‘POOMINET-BIOINY~12AUJ
%08°€91 4! 6v'1 vl 9¢'1 LT1 611 [4! LO'T 9Tl 020°€0L’9 99L°6C$ X.L ‘Uoi3urjry-yriop Hog-se[eq
%CO vy~ 00°T [{0! 0'1 90°1 801 60'1 [N 48! LO'T 88I°8Y6°1 SY1°6T$ HO ‘snqum[o)
BYS VY- 8L°0 080 18°0 £8°0 ¥8°0 ¢80 ¢80 ¢80 80 067°L90°C 667°8C$ HO ‘euA[g-puejoesal)
%L999 LT'T LT'T 91l 48! LO'T [{n! 00°1 66°0 10°T €6LTETT 800°6C$ NI-AM-HO ‘Beuurour)
%BSYEl 00°1 00°1 00'1 10°1 'l w1 00°1 L6°0 SI'1 8¥¥°915°6 88 1€S IM-NI-TI ‘WIS[g-9[[1A1edeN-05eor)
%STSIT- 80 780 880 ¥6'0 0’1 11 SI'T vI'l 66'0 S16'86C°C €0v°'8T$ DS-DN ‘BIUO}ISEH-PIOJUO)-SNO[IRYD)
%0T0C- 090 860 9¢°0 S0 <0 990] 650 $9°0 €5°0 L99°SET’T 1L1°8T$ AN ‘S[[ed eIeseIN-eSemopeayd-ofeyng
%€6'0S1- L9°0 0L0 9L°0 80 ¥6°0 y0'1 60’1 60'1 96°0 9L8°0S9‘y LS 6ES HN-VIA ‘U0IMaN-25pLIqUIE)-U0ISOgq
%eV'SE €01 660 $6°0 260 060 68°0 16'0 €60 $6°0 PESCET'T 90L°9¢$ TV “I9ACOH-WeySuruIg
%eE 06~ ¢80 68°0 96°0 ! el 8I'1 91’1 or't [AN! 96€°€SLT €19°6¢€$ AN ‘UoSmQ[-elquInjo)-sIown[eg
%9T' S8 4! 80'1 [{n! 96'0 060 L8°0 L8°0 680 96°0 910°6€8°l Se0°ceS XL 00y punoy-unsny
%SE18 LS'T 8S'1 861 LS'T 2! IS°1 'l el vl €50°SSH'S 088°8¢$ VD ‘[lomsoy-ssunds Apueg-viuepy

(d)roprs/ 000002  000°091$  000°STI$  000°S6$  000°0L$  000°0S$  000°SE$  000°ST$  Xopupadug  uonendod uwodug SWEN VSdD
I1s2)d — (3708T)d) 1WOOU] P[OYISNOH JB XdPU] L] dNYIOWOH-UON dNAYIOWOH ende) 104

UOT[[IA [ I9AQ uonendod Yirm sani)) J0j Saxapu] 2911d dy10ads-A1) 18V 9[qeL,

102



E.3.5 Variation in Price Indexes based on Alternative Specifications
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