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1. Introduction

Like two trains running on different railroads, studies of the natural rate and bond risk premia in

the macroeconomic and finance literatures have tended to follow their own line even if ostensibly

headed for the same place. The destination is clear and important: rates of interest, across all

maturities, matter for saving, investment, capital allocation, economic growth, and monetary policy.

But passengers on each route see different landscapes: on the macro track, a panoramic debate

about time-series patterns with slow-moving trends in natural rate Wicksellian models and their

fundamental drivers (e.g, Holston, Laubach, and Williams, 2017; Rachel and Summers, 2019; Jordà

and Taylor, 2019); on the asset pricing track, a more tightly-framed look at cross-section patterns

with a no-arbitrage pricing approach using factors typically built from yields (e.g, Litterman and

Scheinkman, 1991; Piazzesi, 2010; Adrian, Crump, and Moench, 2013).

But the two tracks converge and a collision has been unavoidable. Workhorse finance models of

bond risk premia and inflation expectations generate a path for the natural rate dramatically at odds

with the macro literature. Equivalently, workhorse macro models of the natural rate and inflation

expectations generate a path for bond risk premia equally at odds with the finance literature. We

call this the natural rate puzzle. To get on the same track, the two approaches must be somehow

shunted together. A consensus unified model should not fail these consistency tests and this is

a first-order challenge for macro-finance research. We build on a long literature and make new

headway. We explore the international aspect of this problem with newly-constructed data from the

U.S. and other advanced economies and we advance a new empirical approach which disciplines

estimates of the natural rate and risk premia with both financial market and macro information.

We first document the puzzle, for both the U.S. and other countries. For clarity, we do nothing

analytically new here: we rely only on off-the-shelf models and data. The analysis revolves around

three trend estimates. For the U.S., we construct an estimate of the bond risk premium following the

canonical model (Adrian, Crump, and Moench, 2013) used by academic and financial professionals,

and also by the Federal Reserve. We estimate inflation expectations following recent research

incorporating trend inflation into models of bond yields and risk premia (Cieslak and Povala, 2015).

And we construct an estimate of the natural rate following the seminal model in the macroeconomic

literature (Laubach and Williams, 2003). We then use directly-observed long-dated forward rate

data to show the contradiction. Using bond premia, inflation, and forwards, the implied natural

rate is nearly flat over six decades, inconsistent with the rise and fall seen in macro estimates

(with the implication that changes in the bond risk premium mostly explain long-yield changes).

Conversely, using natural rates, inflation, and forwards, the implied bond risk premium is nearly

flat, inconsistent with the rise and fall seen in finance estimates (with the implication that changes in

natural rates mostly explain long-yield changes). Both models cannot be true. The puzzle is not an

artifact of these particular estimates, and obtains using other well-respected estimates of U.S. bond

risk premia, trend inflation, and the natural rate from multiple credible sources. The same puzzle

also exists internationally in data we have newly compiled from five other advanced economies.
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Why does the puzzle matter for macro and for finance? Because our understanding of recent

history hinges on whether one or the other story is more accurate. One narrative (macro) is of

steadily declining natural real rates from the 1980s to the present, arguably culminating in a global

secular stagnation trap, with active debate over a wide range of causal factors including demography

and aging, productivity growth, inequality, and safe-asset demand from emerging economies, and

all the attendant problems (Caballero, Farhi, and Gourinchas, 2008; Summers, 2015; Carvalho,

Ferrero, and Nechio, 2016; Holston, Laubach, and Williams, 2017; Rachel and Smith, 2017; Rachel

and Summers, 2019). The pure finance bond-pricing model undercuts this macro story. The other

narrative (finance) is of a sweeping rise and fall in risk premia, from sometime in the 1970s to the

1980s, the backwash of the Great Inflation episode, accounting for most of the trajectory of nominal

rate with little or no movement in the natural rate (Kim and Wright, 2005; Wright, 2011; Adrian,

Crump, and Moench, 2013; Bernanke, 2015) The pure macro bond-pricing model undercuts this

finance story. Something has to give.

To tackle this conflict we set out a unified macro-finance model to ground the empirical work that

follows. We build on the idea that term structure models should allow all nominal rates to include

a stochastic trend, as seen in early work by Campbell and Shiller (1987) and developed further in

the seminal paper of Kozicki and Tinsley (2001). We follow the key contribution of Cieslak and

Povala (2015) and allow two trends in a nominal and a real factor, with yields and expected returns

to bonds of different maturities derived under no-arbitrage constraints from a short-rate process

linked to the two macroeconomic factors, r∗ and π∗. The model crystallizes the uncontroversial

view—among macroeconomists, at least—that nominal bond returns are not explained simply as a

compensation for the compounded benchmark rate, as the failure of the expectations hypothesis

shows. Rather, there must be extra compensation for macroeconomic risks linked to real factors and

inflation (Ang and Piazzesi, 2003; Ludvigson and Ng, 2009; Cieslak and Povala, 2015).

Next, in the empirical core of the paper, we take the model to the data. Trend inflation is treated

as an observable, as in prior work, but the unobservable natural rate is estimated from a unified

state-space model with the Kalman filter. However, we make a unifying link to natural rate research,

by also including a macroeconomic growth factor in a state equation, in addition to yield and return

measurement equations, so our model utilizes information from both macro and financial market

data.1 We therefore refer to our r∗ estimate as the market-implied natural rate.

We apply the model to the postwar data for the U.S. and five other advanced economies, an

historical laboratory as large as any previously explored in the study of these questions as far as we

know. We find strong support for the model. Dropping either trend variable significantly worsens

1A related paper is the contemporaneous, independent work by Bauer and Rudebusch (2019), which favors
a modeling approach based on a single stochastic trend, a nominal natural rate factor i∗. Their estimation
uses yield-based factors and restrictions in the model structure, but omits information on macroeconomic
variables like growth in the state-space model (see their Appendix C). In contrast, as explained below, we
enforce an r∗ = g + z equation; that is, we bring in GDP growth data, and so restrict the model by tying it
into the canonical latent-variable natural rate formulation in the macro side of the literature. Each approach
takes a stand, and these are two different ways to discipline model estimates.
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the model fit: the baseline R2 statistics are relatively high, but fit worsens one or both trends are

removed, especially in return forecast regressions. Indeed, the macroeconomic factors subsume

much of the relevant information needed to price bonds as compared with benchmark yield-only

term-structure models, leaving only detrended yields to play a role, amplifying the insight of Cieslak

and Povala (2015), but now for two trends and more countries. Finally, we explore the model’s

out-of-sample performance. Here, the model is applied recursively, now with one-sided filtering, for

a cross-section portfolio of advanced economy bonds in recent years. The model with two macro

trends r∗ and π∗ outperforms all its main rivals in out-of-sample fit.

The main contribution of this paper is a step toward a unified model which bridges the

methodological divide and exploits fully all the information used in previous finance and macro

approaches. Finance models of unobserved bond risk premia have utilized yield-based factors,

macro models of the unobserved natural rate have utilized macroeconomic variables like growth.

The two produce inconsistent results and we argue that a unified approach using both sets of

information is necessary. To get there, our paper makes a number of specific points along the way,

touching on questions that have emerged from distinct literatures. First, we document for many

countries, over many decades, an important macro-finance puzzle which the separate paths of risk

premia research and natural rate research have often skirted around. Second, to operationalize

the model, we apply a one-step joint estimation strategy; though novel, and computationally more

difficult, this should be preferred to approaches which draw natural rate and risk premia estimates

from disparate models, which can lead to inconsistency. Third, we present estimates from a broader

sample of six advanced economies, as this is not just a U.S. story and it allows us to address diverse

global trends. Fourth, this matters, as inflation and natural rate factors follow quite distinct paths

in other economies, and attract very different yield loadings. Fifth, behind that, our estimation

rests on a new, comprehensive database of zero-coupon bond yield time series for the five non-U.S.

economies, a valuable data contribution for future researchers in its own right. Sixth, our method

produces improved predictions for bond yields and returns in the U.S. and international samples,

including out of sample based on the R2
OS statistic (Campbell and Thompson, 2008).

By the end, we are in a position to assay the natural rate puzzle, and we get a clear answer:

across advanced economies, most of the long-term variation in yields in recent decades has come

from shifts in the natural rate and inflation trend components, not from shifts in bond risk premia.

The key takeaway is that macro and finance models can go their separate ways no longer.

2. The natural rate puzzle

The natural rate puzzle is the observation that standard finance models of bond risk premia and

inflation expectations generate a path for the natural rate at odds with the macro literature.

To document this we use a general framework. In a wide class of standard affine asset pricing

models, the term structures (of bond yields, prices, excess returns, and forwards) are affine functions

of the model’s vector of risk factors (Ft), which will be made precise in the next section. Then, if
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f (n,m)
t is the horizon n, maturity m, forward interest rate at time t in the future, we can write

f (n,m)
t = r∗t + π∗t + Γ(n,m)(Ft) , (1)

where r∗t is the trend of the real natural rate, π∗t is the trend of inflation, and Γ(n,m)(Ft) is a bond

risk premium term, defined implicitly here, and explored in more detail below in a formal model.

This expression is quite intuitive, especially in the case when r∗t and π∗t follow processes which

are unit root. Investors buying forward rates must be compensated by the sum of the trend real

natural rate and trend inflation, plus a term that is by definition the bond risk premium. But

the modeling challenge comes in the selection of the factor set Ft and other choices needed to

operationalize the idea.

Suppose we naı̈vely take Γ(n,m)(Ft) from benchmark models in the finance literature where Ft is

a set of yield factors, take r∗t and π∗t from benchmark macro models, and take f (n,m)
t from market

data. Having constructed these four terms for multiple countries, we show that the above equation

fails to hold. This section documents this fact across the advanced economies and the rest of the

paper explores a hybrid macro-finance model which may offer a way out. As might be anticipated,

Equation 1) offers only two escape routes. Given that the forward rate is an observed trending

variable, and that the inflation trend π∗t is not subject to large estimation error, or can be treated

as quasi-observable, then either the trend in the unobserved natural rate r∗t is mismeasured, or the

trend in the unobserved bond risk premium Γ(n,m)(Ft) is mismeasured, or both. It turns out that,

while both matter, we argue that mismeasurement of the risk premium has dominated in reality.

2.1. U.S. evidence

To see the puzzle, we take Equation 1 directly to the data. In Figure 1, Panel (a), the U.S. time-series

estimates for each of the four terms are shown. We simply take these estimates from canonical

models in the finance and macro literatures. The bond risk premium term Γ is constructed as in the

baseline five-factor model of Adrian, Crump, and Moench (2013) [henceforth abbreviated ACM]; the

inflation expectations term π∗ as in Cieslak and Povala (2015) [CiP]; and the (one-sided) real natural

rate term r∗ as in Laubach and Williams (2003) [LW]. Finally, we have the 10-year, 10-year forward

rate ( f ) which is directly-observed raw data taken from Bloomberg, with n = m = 120 months here.

The first version of the consistency test rearranges Equation 1 to obtain a formula for the real

natural rate r∗t = f (n,m)
t − π∗t − Γ(n,m)(Ft), and Panel (b) plots both sides of this expression using the

above data sources: the left-hand side is taken directly from an LW model and the right-hand side is

the implied value using an ACM model. The equality is violated, and the disparity is often quite

large. The ACM-implied r∗ does not match the LW r∗. The ACM series starts around +2% in the

1960, displays a sharp decline to a level below −2% during the Great Inflation period of the 1970s,

returns to +2% in the 1990s, drops to near zero after the financial crisis, and then shows a consistent

increase after 2013 to a level close to 2% in 2019. In contrast, the familiar LW estimate of r∗ has
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fallen gradually from a +4% level in the 1960s and 1970s, with the sharpest decline occurring after

the mid-2000s, and since 2010 it has sat in the 0.5%–1.0% range, and never turned negative. The

difference between the two series, before the last decade, is often large, between 100 and 600 basis

points (bps), with the LW r∗ much higher than the ACM r∗, on average. Around 2012 the two series

intersected and then the difference inverted to about −100 bps in the other direction.

A second, equivalent, version of the test is shown in Panel (c). We rearrange again to obtain

a formula for the bond risk premium Γ(n,m)(Ft) = f (n,m)
t − r∗t − π∗t , and Panel (b) plots both sides

of this expression using the aforementioned data sources. Now the left-hand side is direct from

an ACM model and the right-hand side is the implied value using an LW model. This equality is,

of course, also violated, and the same large disparity is seen. The ACM bond risk premium starts

near zero in the 1960s, rises sharply in the Great Inflation period of the 1970s to about 6%, then

gradually falls back, reaching zero again in the mid-2010s. The LW bond risk premium behaves very

differently, and is almost flat by comparison. It actually starts at a negative level in the 1960s, rises

much later, but only to a modest 2% by the early 1980s, then declines by a small amount up to the

mid 2000s. After that the two series cross, with LW signaling a small positive bond risk premium,

but ACM turning negative.

The puzzle is vividly apparent in these charts. Persistent inconsistencies of several hundred

basis points are quantitatively just too large to ignore. Both approaches cannot be simultaneously

right. A substantial contradiction thus emerges from the heart of benchmark macro and finance

models once they are studied in unison. The rest of this paper is devoted to building theory and

empirics to help resolve the puzzle.

2.2. Alternative trend measures

As a robustness check, Figure 2 examines whether the existence of the puzzle for the U.S. is sensitive

to the source data used. For a variety of widely used and respected sources we compute the

discrepancy in Equation 1 as discrepancy = r∗ − f + π∗ + Γ, and plot the series over time.

The same forward rate data f from Bloomberg are used in all cases. The sources of the other

three series rotate through all possible combinations, with the sources are abbreviated as follows:

• Natural rate estimates r∗: Laubach and Williams (2003) [LW]; Holston, Laubach, and Williams

(2017) [HLW]; Del Negro, Giannone, Giannoni, and Tambalotti (2017) [DGGT]; and Lubik and

Matthes (2015) [LM].

• Inflation estimates π∗: Cieslak and Povala (2015) [CiP]; the University of Michigan Inflation

Expectations from FRED [MI]; the Survey of Professional Forecasters from the Federal Reserve

Bank of Philadelphia [SPF]; and the TIPS 10-Year Breakeven Inflation Rate from FRED [TIPS].

• Bond risk premium estimates Γ: Adrian, Crump, and Moench (2013), 5-factor model [ACM5];

the same authors’ 3-factor model [ACM3]; and Kim and Wright (2005), 3-factor model [KW].
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Figure 1: The natural rate puzzle in U.S. data

This figure displays market data ( f ) and existing trend data (other variables) based on other studies in Panel
(a), and then displays the puzzle in the form of the difference between existing trend data and implied data in
Panels (b) and (c). The presentation is based on Equation 1, which we can rewrite in simplified form, omitting
subscripts and expectations, and taking them as understood, with the notation f = r∗ + π + Γ. The puzzle is
that existing benchmark estimates violate this equation.

In Panel (a), the four terms are shown: the bond risk premium Γ from Adrian, Crump, and Moench
(2013); inflation expectations π from Cieslak and Povala (2015); and the real natural rate r∗ from Laubach and
Williams (2003). We also show the 10-year, 10-year forward rate ( f ) from from Bloomberg. The sample period
is June 1961–May 2019. In Panel (b), we compare the real natural rate r∗ from Laubach and Williams (2003) to
that implied by r∗ = f −π∗ − Γ. There is a large difference between these two series. In Panel (c), we compare
the bond risk premium Γ from Adrian, Crump, and Moench (2013) to that implied by Γ = f − r∗ − π∗. There
is the same large difference between these two series.
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Figure 2: The natural rate puzzle in U.S. data using alternative trend measures

This chart displays the discrepancy between implied and existing trend data for the natural rate. The
presentation is based on Equation 1 and the series computed is discrepancy = r∗ − f + π∗ + Γ. The puzzle is
that this term is not zero. See text.

-.0
4

-.0
2

0
.0

2
.0

4
.0

6
.0

8

1960m1 1970m1 1980m1 1990m1 2000m1 2010m1

LW CiP ACM5 (baseline) LW MI ACM5 LW SPF ACM5 LW TIPS ACM5

HLW CiP ACM5 HLW MI ACM5 HLW SPF ACM5 HLW TIPS ACM5

DGGT CiP ACM5 DGGT MI ACM5 DGGT SPF ACM5 DGGT TIPS ACM5

LM CiP ACM5 LM MI ACM5 LM SPF ACM5 LM TIPS ACM5

LW CiP ACM3 LW MI ACM3 LW SPF ACM3 LW TIPS ACM3

HLW CiP ACM3 HLW MI ACM3 HLW SPF ACM3 HLW TIPS ACM3

DGGT CiP ACM3 DGGT MI ACM3 DGGT SPF ACM3 DGGT TIPS ACM3

LM CiP ACM3 LM MI ACM3 LM SPF ACM3 LM TIPS ACM3

LW CiP KW LW MI KW LW SPF KW LW TIPS KW

HLW CiP KW HLW MI KW HLW SPF KW HLW TIPS KW

DGGT CiP KW DGGT MI KW DGGT SPF KW DGGT TIPS KW

LM CiP KW LM MI KW LM SPF KW LM TIPS KW

Note that because quite a few of these series (e.g., TIPS, KW) are only available for a shorter

span of recent years, full-sample comparisons across all trend estimates are not always possible.

The figure reveals that the natural rate puzzle is a quite robust phenomenon in recent U.S. data.

A discrepancy arises in all cases. It is often more than 100 bps, and at certain times it exceeds 500

bps. It is present in a wide variety of trend estimates currently used in the macro-finance literatures.

The figure shows that, as in the baseline variant above, the extent of the puzzle varies from year to

year, and over decades. Most series combinations make errors in one direction, but a few go the

other way. The discrepancies are large in the 1970s, and often surge to their highest levels around

1980. The discrepancies are smaller by the late 1990s and early 2000s, but they open up again for

some series, in the opposite direction to almost −400 bps, after the global financial crisis.
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Table 1: The natural rate puzzle in international data

This table applies the approach of Figure 1, Panel (b), extended to a sample of 6 advanced economies, showing
sample means. We compare the real natural rate r∗ from an LW-type estimation to that implied by the
risk premium from an ACM type estimation and inflation expectations from a CiP type estimation plus the
forward rate. There is a large difference between these two series, given by discrepancy = r∗ − f + π∗ + Γ.

(1) (2) (3) (4) (5) (6)
Mean (bps) U.S. Japan Germany U.K. Canada Australia
LW r∗ 303 104 175 215 236 219

ACM implied r∗ 78 −129 −26 −195 −48 −30

Difference 225 232 201 410 284 249

Absolute difference 241 233 211 410 284 249

Observations 695 411 560 472 400 321

2.3. International evidence

We also sought evidence for or against the natural rate puzzle in 5 other advanced economies: Japan,

Germany, the U.K., Canada, and Australia. Table 1 and Figure 3 present these findings.

Again, we compare the real natural rate r∗ from an LW-type estimation to that implied by the

risk premium from an ACM-type estimation, inflation expectations from a CiP-type estimation,

and the forward rate. For the LW-type natural rate estimates we use LW itself for the U.S. as

above, Holston, Laubach, and Williams (2017) (one-sided estimates) for the Germany, U.K., Canada,

Okazaki and Sudo (2018) (two-sided estimates) for Japan, and McCririck and Rees (2017) (two-sided

estimates) for Australia. We then replicate the ACM and CiP methodologies and construct forward

rates from zero-coupon bonds, as described later in this paper, and compute the discrepancy for all

the countries to complete the analysis.

Table 1 shows the mean level of each natural rate estimate, from LW and implied by ACM, along

with the mean discrepancy, and the mean absolute discrepancy. The mean absolute discrepancy is

241 bps for the U.S., reaches a maximum of 410 bps for the U.K., and a minimum of 211 bps for

Japan. The mean absolute discrepancy is in the range 200–300 bps in all cases.

So the discrepancy can be visualized over time, Figure 3 presents the time-series data for each

natural rate estimate. The U.S. pattern is fairly typical: the LW estimates lie well above the ACM

implied estimates, and the latter often dips implausibly far into negative territory. In general, the

paths are quite far apart and they only get closer, and in rare cases cross, near the end of the sample.

In short, the natural rate puzzle is not simply a U.S. puzzle. It applies to many advanced

economies, suggesting a deeper and more general pattern posing problems for standard models.
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Figure 3: The natural rate puzzle in international data

These charts apply the approach of Figure 1, Panel (b), extended to a sample of 6 advanced economies. We
compare the real natural rate r∗ from an LW-type estimation to that implied by the risk premium from an
ACM type estimation, inflation expectations from a CiP-type estimation, and the forward rate, f − π∗ − Γ.
There is a large difference between these two series.
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3. A term-structure model with two trends

For comparability, we use the model setup of Cieslak and Povala (2015) which features two trends

for inflation and the real rate, building on the earlier insights of Kozicki and Tinsley (2001). At time

t, we denote the nominal yield on an n-period Treasury bond by y(n)t , trend inflation by πt, and the

trend real natural rate by rt. (Stars are dropped in this section for clarity and consistency with the

prior work.) Nominal yields across all maturities are driven by the two trends and other factors

contained in a price-of-risk factor xt vector, so the full set of factors is Ft = (πt, rt, xt)>.

The core of the model is the specification of the short-rate process and the stochastic discount

factor, from which all other pricing relationships follow. The short-rate process is assumed to depend

on the factors, which in turn follow independent AR(1) processes, with

y(1)t = δ0 + δππt + δrrt , (2)

rt = µr + φrrt−1 + σrεr
t , (3)

πt = µπ + φππt−1 + σπεπ
t , (4)

where δπ > 0, δr > 0, with δx = 0, as shown, and επ
t , εr

t are standard normal, i.i.d.

Concerning Equation 2, a natural benchmark is δ0 = 1, δπ = δr = 1, i.e., the Fisher equation, and

rt is the ex-ante real rate. Alternatively, δπ > 1, δr < 1 might reflect a Taylor rule, where the natural

rate is dominated by growth shocks at high frequency. Concerning Equation 3 and Equation 4, it

is well known that inflation follows a process that is unit root or very close, so we expect φπ < 1

but close to unity. Estimates of the natural rate also tend to be highly persistent, with φr < 1 and

somewhat close to unity. We find this to be the case in our estimates for all countries.

The price-of-risk factor is assumed to follow its own AR(1) process with i.i.d. normal shocks,

xt = µx + φxxt−1 + σxεx
t . (5)

The model economy is then compactly described by the equations

Ft = µ + ΦFt−1 + Σεt , (6)

y(1)t = δ0 + δ>1 Ft , (7)

with Φ and Σ diagonal, δ1 = (δπ, δr, 0)>, and εt = (επ
t , εr

t , εx
t , )>.

We assume the log nominal stochastic discount factor is exponentially affine in the risk factors,

mt+1 = −y(1)t −
1
2

Λ>t Λt −Λ>t εt+1 , (8)

where Λt is the compensation for risk of shock εt+1, with Λt = Σ−1(λ0 + Λ1Ft).

We need more structure to make progress. In Cieslak and Povala (2015), xt is taken to be a single
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yield-based factor, and the loadings in Λt are assumed to take the following form

λ0 =


λ0r

λ0π

0

 , Λ1 =


0 0 λπx

0 0 λrx

0 0 0

 . (9)

This baseline setup is motivated by the Cochrane and Piazzesi (2005) finding that a single-factor

based on a combination of yields can explain bond pricing quite well, but the x could be expanded

to a vector to include widely used three-factor yield models (Nelson and Siegel, 1987; Litterman and

Scheinkman, 1991) or even five-factor yield models (Adrian, Crump, and Moench, 2015).

The model can then be solved as a set of affine equations for bond prices, yields, excess returns,

and forwards in terms of the factors:

y(n)t = An + B>n Ft , (10)

p(n)t = An + B>n Ft , (11)

f (n,m)
t = (An − An+m) + (Bn − Bn+m)

>Ft , (12)

rx(n)t+1 = B>n Ft + vn
t , (13)

where An = − 1
nAn, Bn = − 1

nBn, vn
t = B>n−1Σεt+1.

Solutions are derived from Riccati equations, where the factor loadings of log bond prices are

Bπ
n = −δπ

1− φn
π

1− φπ
, (14)

Br
n = −δr

1− φn
r

1− φr
, (15)

Bx
n = −Bπ

n−1λπx −Br
n−1λrx + Bx

n−1φx, (16)

and the factor loadings of excess returns are

Bn = B>n−1(λ0 + Λ113)xt −
1
2
B>n−1ΣΣ>Bx

n−1 . (17)

Note that our earlier forward Equation 1 can be recovered here by rewriting Equation 12 in the

form f (n,m)
t = rt + πt + [(An− An+m) + (B̃n− B̃n+m)>Ft], where B̃π

n = Bπ
n − 1, B̃r

n = Br
n− 1, B̃x

n = Bx
n,

and the term in brackets represents the bond risk premium term Γ(n,m)(Ft).

As is common in the literature, one could choose to define xt = ȳt, so the price-of-risk factor is

the average level of yields, ȳt =
1
N ∑N

1 y(n)t . But to better describe the role of the trends in driving

bond pricing we build on the key innovation in Cieslak and Povala (2015), who switch to yield

factors x which have been detrended to orthogonalize them relative to the trends, with their focus

being on the inflation trend. We extend this idea here to apply both trends, and we will define the

detrended yield by c(n)t = y(n)t − Ân− B̂r
nrt− B̂π

n πt , which is the residual from the regression defined

11



by Equation 10 with the yield factor x suppressed. Now let the average of this detrended yield be

c̄t =
1
N ∑N

1 c(n)t . The model can then be expressed in our preferred form in terms of xt = c̄t and the

full set of factors consists of the two trends and the detrended average yield, and so, henceforth we

will be assuming Ft = (πt, rt, c̄t)>, except in a few cases where otherwise indicated.

4. Estimation and model evaluation

An innovation in this paper is to use two sets of information rather than one to extract long run

trends. In state-space models of the natural rate typically a single measurement equation on bond

yields is employed to estimate the single latent trend. We argue that information on yield curve

disturbances will also be embedded, as risk premia, in forward-looking excess bond returns, which

provides a second measurement equation to discipline the estimation of latent trends.

Formally, we proceed as follows, where from now on, we restore the stars, and denote by r∗t the

trend natural rate, and by π∗t trend inflation. We will extract r∗ from average bond yields and bond

excess returns by using state-space estimation with two affine measurement equations of the form

yt = ay + bππ∗t + brr∗t + ε
cyc
t , (18)

rxt+1 = d0 + dππ∗t + drr∗t + dcycε
cyc
t + εrx

t+1 , (19)

where π∗t is trend inflation, a variable which is treated as an observable, and is set equal to the

Cieslak and Povala (2015) measure π∗t = (1− ν)∑t−1
i=0 νiπt−i , where πt denotes year-on-year CPI

inflation reported in month t. We include the detrended yields ε
cyc
t in the excess return equation

to account for the effect of a cyclical factor as driver of bond returns. Going beyond the U.S., we

compute exactly the same constant-gain learning estimate π∗ for each one of our six economies.

We further assume that the error terms εrx
t+1 and ε

cyc
t+1 follow AR(1) processes of the form

εrx
t+1 = ρrxεrx

t + erx
t+1 , erx

t+1 ∼ N(0, σ2
rx) , (20)

ε
cyc
t+1 = ρyε

cyc
t + ey

t+1 , ecyc
t+1 ∼ N(0, σ2

cyc) . (21)

Now let gt denote trend GDP growth. We also treat this variable as observable, set equal to the

exogenously detrended rate of GDP growth using a Hodrick-Prescott filter. We then define the state

variable zt as a “headwinds” factor related to the natural rate through the state transition equation

r∗t = zt + gt , (22)

as is standard in state-space models of the natural rate, such as Laubach and Williams (2003).

Finally, we also assume that the headwinds factor follows an AR(1) process, so that

zt+1 = ρzzt + ez
t+1 , ez

t+1 ∼ N(0, σ2
z ) . (23)
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Including two equations linking r∗t to bond market data, Equation 18 and Equation 19, and

one equation linking r∗t to growth, Equation 22, is the distinctive feature of our unified empirical

macro-finance model, as we bring information from both financial and macroeconomic data to bear

on estimating the natural rate.

The Kalman system is thus defined by the following state equation,
zt

εrx
t

ε
cyc
t

 =


ρz 0 0

0 ρrx 0

0 0 ρcyc




zt−1

εrx
t−1

ε
cyc
t−1

+


ez

t

erx
t

eye
t

 . (24)

The associated measurement equation is

(
yt

rxt+1

)
=

(
ay

d0

)
+

(
bπ br∗

dπ dr∗

)(
π∗t
gt

)
+

(
br∗ 0 1

dr∗ 1 dcyc

)
zt

εrx
t

ε
cyc
t

 . (25)

This fully describes the state-space model, which has then to be estimated. The estimation

algorithm is described in the Appendix.

4.1. Construction of new zero-coupon yields

We estimate our bond pricing model using monthly data for zero-coupon yields for six advanced

economies: the U.S., Japan, Germany, the U.K., Canada, and Australia. For this purpose, we need

estimates of zero-coupon yields at all monthly maturities, from 1 to 180 months, in all countries,

and these have to be recovered from market data on government bond yields.

For the U.S. we use a standard source, the estimates of Gürkaynak, Sack, and Wright (2007),

comprising data from 1961 published by the Federal Reserve Board, and extended to the present.

We then extend their approach to other countries as follows. We use data for a subset of maturities

as an input to estimate time-varying parameters β0, β1, β2, β3, τ1, and τ2 of a Svensson (1994) model

that expresses the yield y(n)t , at any given time t, of a maturity n zero-coupon bond as

y(n)t = β0 + β1
1− e−n/τ1

n/τ1
+ β2

(
1− e−n/τ1

n/τ1
− e−n/τ1

)
+ β3

(
1− e−n/τ2

n/τ2
− e−n/τ2

)
. (26)

Obtaining the parameters of a Svensson model allows us to generate zero-coupon yields for all

maturities at each point in the time series, circumventing the problem of data sparsity in some parts

of the curve. (Note that this model is estimated separately on the cross-section of yields at every

date t, but for notational clarity the time indices of the parameters have been suppressed here.)2

2There are alternatives to the influential Svensson model. In recent work, Andreasen, Christensen, and
Rudebusch (2019) propose an Arbitrage-Free Nelson-Siegel (AFNS) model which may approximate the true
curve better at the very short end, below two years, a region of interest to central bank policymakers. However,
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For the five-country international yield data, we employ sources as follows:

• For the U.K., we use Bank of England data on the yield curve; this allows us to recover

complete yield curves from January 1980 to the present.

• For Japan, yields come from the Ministry of Finance starting in September 1974, and compris-

ing maturities from 1 to 40 years, in yearly maturity increments.

• For Germany, we use the parameters of the Svensson model estimated by the Deutsche

Bundesbank from 1972 to 2019.

• For Canada, we use of Bank of Canada data comprising estimates of yield curves for maturities

ranging from 0.25 years to 30 years and covering the period January 1986 to the present.

• For Australia, we employ data from the Reserve Bank of Australia dating from August 1992,

where yields are available from 0 to 10 years in quarterly maturity increments.

To the best of our knowledge, these estimations provide a new and unique set of zero-coupon data

unmatched in the literature by extending the Gürkaynak, Sack, and Wright (2007) methodology

consistently to other developed markets and over many more years.3

4.2. Short rate process

In this subsection, we take the first step in the empirical assessment of the model by asking whether

it can provide a useful description of the short-rate process, as specified by by Equation 2, as an

affine function of two factors, the observable expected inflation rate π∗t and the latent model-implied

real natural rate r∗t , which we write as y(1)t = δ0 + δrr∗t + δππ∗t . We first report results for the U.S.,

and then for the international sample.

4.2.1 U.S. short rate

Table 2 reports the ordinary least squares (OLS) estimates of the short-rate equation for the U.S.

Here, Column (1) contains results for the baseline specification with r∗t and π∗t , and Column (2) with

only π∗t included as a factor (δr = 0) for comparison with the earlier literature.

The results show a good fit for the baseline model, with an R2 of 0.644, and both factors

significant at the 1% level. The coefficient on the natural rate is 1.180, and the coefficient on inflation

is 0.986. A null Fisher hypothesis of the both coefficients equal to one could not be rejected here.

The model using only the inflation trend does not fit the data quite as well. The R2 is only 0.484.

The coefficient on inflation is somewhat larger, at 1.192. In prior work, Kozicki and Tinsley (2001)

our interest is primarily in bond pricing and excess return forecasts in maturity buckets in the belly of the
curve, from 5 to 15 years. In that range the Svensson model outperforms to AFNS (see their Table 3).

3The closest prior work was a decade ago. Wright (2011) compiled a 10-country panel of zero-coupon
yields with the data series ending in 2009, using Svensson, Nelson-Siegel, and spline models.
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Table 2: U.S. short rate, y(1)

The table reports OLS estimates on U.S. monthly data of the short rate process y(1)t = δ0 + δrr∗t + δππ∗t .
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(1) (2)
U.S. U.S.
y(1) y(1)

r∗ 1.180
∗∗∗

(0.146)

π∗ 0.986
∗∗∗

1.192
∗∗∗

(0.131) (0.116)

Constant −0.012
∗∗∗

0.005

(0.004) (0.005)
N 669 711

R2
0.644 0.484

reported an inflation coefficient of 1.44 in this specification (N = 41, quarterly, 1980–1990, based on

Hoey survey inflation measures), and Cieslak and Povala (2015) reported an inflation coefficient of

1.43, with an R2 of 0.71 (N = 470, monthly, 1971–2011), using shorter samples of data.4

We conjecture that a lower inflation coefficient in our longer sample may in part reflect the

inclusion in our estimation window of more observations from eras of low and stable inflation (the

1960s plus the recent decade or so), in contrast to, say, the 1980s Volcker-Greenspan era when short

policy rates were made to respond more aggressively in a period of dogged inflation fighting.

Our findings for the restricted specification in Column (2) still echo these earlier works, but the

restriction is clearly rejected in Column (1). The real natural rate trend adds important predictive

information for the short rate, and the fact that the coefficient on inflation changes little between

these two specifications, shows that this information is distinct and largely orthogonal to the

information contained in the inflation trend.

4.2.2 International short rate

Table 3 presents estimates of the short-rate process for the six-country sample. As explained

above, sample periods vary by country given the available zero-coupon yield data. Panel (a) shows

estimates with the natural rate and inflation trends, and Panel (b) with inflation trends only. The

U.S. results are reproduced for comparison.

These results confirm the importance of allowing for both trends, rather than the inflation trend

only, when modeling the short-rate process. In Panel (a) both trends are statistically significant in 11

out of 12 cases, the exception being the natural rate for Japan. The results also show that loadings

4Note that Bauer and Rudebusch (2019) do not report a short-rate regression, and their assumed short-rate
process is expressed in a different form.
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on the two trends vary quite a bit by country. The Fisher hypothesis would be rejected in general.

Comparing Panel (a) with Panel (b) we again see a significant improvement in model fit for the

model that allows for two trends rather than one, again with the exception of Japan. In Germany

and the U.K., the model R2 increases by a factor of almost 1.5 times when the natural rate trend is

added, and by somewhat less for Canada and Australia.

4.3. Bond pricing

In this subsection, we now apply the affine bond pricing model as given by Equation 10, y(n)t =

An + Br
nr∗t + Bπ

n π∗t + B c̄ c̄t. This is the specification in Cieslak and Povala (2015), but with a second

trend for the estimated natural rate. We also report results that add a short-rate regressor, which was

used by Cieslak and Povala (2015) to proxy real trend shifts. These results are not greatly different

and this short-rate term contributes little, confirming that the inflation and real rate trends do most

of the work. We first report results for the U.S., and then move to the international sample.

4.3.1 U.S. yields

Table 4 presents estimates of U.S. yields at the 2-, 5-, and 10-year points. In Panel (a), we take

the traditional approach and use a raw yield factor ȳ, and in Panel (b) we employ our preferred

approach and use a detrended yield factor c̄, as in Cieslak and Povala (2015). Obviously, these two

regressions are equivalent: the detrended yield factor is just the projection of the raw yield factor on

the other two factors. In other words, this is an attribution exercise, where movements in yields not

associated with the two rate trends are captured in the detrended (“cyclical”) yield factor.

In Panels (a) and (b) the first three columns show these results, and the last three columns

augment the regression with the short-rate term as an extra factor in raw form as y(1) or in detrended

form as c(1). This provides a point of comparison with the specification in Cieslak and Povala (2015),

who include this extra factor, but have no natural rate term.

We find that once the natural rate term is included, the marginal explanatory power of the

short-rate term is small for yields, but not zero, and later we will see that is virtually zero for excess

returns. For the basic three-factor model, the model fit gives an R2 of 0.973, 0.998, and 0.991 at the 2-,

5-, and 10-year points, respectively. This improves only marginally to 0.981, 0.998, and 0.994, with

the inclusion of the short-rate term as a fourth factor, with no new information at the 5-year point.

At first glance, the loadings in Panel (a) might seem to suggest that the trend factors r∗ and

π∗ play a weak role, but that is because their indirect impact—via the shifts that they induce in

the entire yield curve—are not properly accounted for in the trend coefficients. The key insight

in Cieslak and Povala (2015) was to orthogonalize yields to get the correct attribution. Thus our

preferred specification in Panel (b), in the first three columns, uses detrended yields and shows that

large and statistically significant loadings now attach to both the natural rate and inflation trend at

all maturities. This result is displayed more clearly in Figure 4, which shows the coefficient loadings
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Table 3: International short rate, y(1), baseline

The table reports OLS estimates on six-country monthly data of the short rate process y(1)t = δ0 + δrr∗t + δππ∗t .
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) With natural rate and inflation trends
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
y(1) y(1) y(1) y(1) y(1) y(1)

r∗ 1.180
∗∗∗ −1.514 1.329

∗∗∗
1.393

∗∗∗
0.751

∗∗∗
1.162

∗∗∗

(0.146) (1.288) (0.110) (0.112) (0.129) (0.080)

π∗ 0.986
∗∗∗

6.832
∗

1.018
∗∗∗

0.451
∗∗∗

1.252
∗

0.458
∗∗∗

(0.131) (2.853) (0.207) (0.064) (0.517) (0.137)

Constant −0.012
∗∗∗ −0.012 −0.014

∗∗∗ −0.014
∗∗∗ −0.013 0.011

∗∗

(0.004) (0.006) (0.003) (0.003) (0.009) (0.004)
N 669 453 549 453 382 351

R2
0.644 0.198 0.674 0.838 0.288 0.758

(b) With inflation trend only
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
y(1) y(1) y(1) y(1) y(1) y(1)

π∗ 1.192
∗∗∗

3.630
∗∗

2.108
∗∗∗

0.938
∗∗∗

1.603
∗∗∗

1.541
∗∗∗

(0.116) (1.278) (0.211) (0.075) (0.224) (0.230)

Constant 0.005 −0.009 −0.012
∗

0.011
∗ −0.008 −0.003

(0.005) (0.008) (0.005) (0.005) (0.005) (0.007)
N 711 477 576 489 417 382

R2
0.484 0.143 0.395 0.624 0.303 0.648
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Table 4: U.S. yields

The table reports OLS estimates on U.S. monthly data of the yield equation y(n)t = Ãn + B̃r
nr∗t + B̃π

n π∗t + B̃ c̄ c̄t.
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(a) With yield factors
(1) (2) (3) (4) (5) (6)

U.S. U.S. U.S. U.S. U.S. U.S.
y(2) y(5) y(10) y(2) y(5) y(10)

r∗ −0.147
∗

0.018 0.067 −0.105
∗

0.020 0.043

(0.069) (0.020) (0.035) (0.052) (0.019) (0.024)

π∗ −0.300
∗∗∗ −0.045

∗
0.142

∗∗∗ −0.183
∗∗∗ −0.040

∗
0.075

∗∗∗

(0.053) (0.019) (0.026) (0.048) (0.019) (0.022)

ȳ 1.321
∗∗∗

1.063
∗∗∗

0.850
∗∗∗

1.051
∗∗∗

1.050
∗∗∗

1.004
∗∗∗

(0.049) (0.015) (0.024) (0.067) (0.016) (0.032)

y(1) 0.183
∗∗∗

0.008 −0.104
∗∗∗

(0.039) (0.006) (0.019)

Constant −0.011
∗∗∗ −0.004

∗∗∗
0.005

∗∗∗ −0.009
∗∗∗ −0.004

∗∗∗
0.004

∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.000) (0.001)
N 669 669 669 669 669 669

R2
0.973 0.998 0.991 0.981 0.998 0.994

(b) With detrended yield factors
(1) (2) (3) (4) (5) (6)

U.S. U.S. U.S. U.S. U.S. U.S.
y(2) y(5) y(10) y(2) y(5) y(10)

r∗ 1.115
∗∗∗

1.033
∗∗∗

0.879
∗∗∗

1.115
∗∗∗

1.033
∗∗∗

0.879
∗∗∗

(0.046) (0.014) (0.024) (0.035) (0.013) (0.017)

π∗ 1.156
∗∗∗

1.126
∗∗∗

1.079
∗∗∗

1.156
∗∗∗

1.126
∗∗∗

1.079
∗∗∗

(0.025) (0.007) (0.013) (0.017) (0.007) (0.008)

c̄ 1.321
∗∗∗

1.063
∗∗∗

0.850
∗∗∗

1.051
∗∗∗

1.050
∗∗∗

1.004
∗∗∗

(0.049) (0.015) (0.024) (0.067) (0.016) (0.032)

c(1) 0.183
∗∗∗

0.008 −0.104
∗∗∗

(0.039) (0.006) (0.019)

Constant −0.014
∗∗∗ −0.006

∗∗∗
0.003

∗∗∗ −0.014
∗∗∗ −0.006

∗∗∗
0.003

∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.000) (0.000)
N 669 669 669 669 669 669

R2
0.973 0.998 0.991 0.981 0.998 0.994
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for yields at points along the zero-coupon curve from 1 to 15 years (i.e., 12, 24, 36,. . . , 180 months).

Moving to robustness checks, Table 5 revisits our preferred specification but alternates between

dropping the trend and cycle factors to see where the bulk of the explanatory power lies. The lesson

is clear. The model fit gives an R2 of around 0.86–0.93 when only the trend factors are used, as in

the last three columns, but only 0.07–0.12 when just the cyclical factor is used, as in the first three

columns. That is, about 90% of the predictive power of the U.S. bond pricing model stems from

correctly accounting for just two factors, the slow moving trends in inflation and the natural rate.

In contrast, the remaining cyclical movements in yields, cleansed of these trend factors, contribute

about 10% of predictive power.

Finally, Table 6 revisits the specification with raw yields but drops the trend factors to see

whether the different forms of detrending matter. This choice will be important for excess return

prediction (see below). In the case of fitting the yield curve, here the costs are not as great in terms

of worse fit when one or both factor trends are omitted, but the R2 is certainly reduced when the

yields are detrended only by inflation as in the first three columns, or not detrended at all as in the

last three columns. But the attribution is clear: it is the trend factors subsumed in yields at work.

Figure 4: U.S. yield loadings on macro factors, using detrended yields

The figure shows loading estimates B̂r
n and B̂π

n at maturity n from Equation 10 using U.S. data.
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Table 5: U.S. yields, additional results

The table reports OLS estimates on U.S. monthly data of the yield equation y(n)t = Ãn + B̃r
nr∗t + B̃π

n π∗t + B̃ c̄ c̄t.
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(1) (2) (3) (4) (5) (6)
U.S. U.S. U.S. U.S. U.S. U.S.
y(2) y(5) y(10) y(2) y(5) y(10)

c̄ 1.051
∗

1.050
∗

1.004
∗

(0.429) (0.417) (0.393)

c(1) 0.183 0.008 −0.104

(0.144) (0.132) (0.125)

r∗ 1.115
∗∗∗

1.033
∗∗∗

0.879
∗∗∗

(0.088) (0.066) (0.056)

π∗ 1.156
∗∗∗

1.126
∗∗∗

1.079
∗∗∗

(0.072) (0.055) (0.050)

Constant 0.053
∗∗∗

0.057
∗∗∗

0.062
∗∗∗ −0.014

∗∗∗ −0.006
∗∗

0.003
∗

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002)
N 669 669 669 669 669 669

R2
0.122 0.084 0.068 0.860 0.913 0.927

Table 6: U.S. yields, additional results

The table reports OLS estimates on U.S. monthly data of the yield equation y(n)t = Ãn + B̃r
nr∗t + B̃π

n π∗t + B̃ȳȳt.
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(1) (2) (3) (4) (5) (6)
U.S. U.S. U.S. U.S. U.S. U.S.
y(2) y(5) y(10) y(2) y(5) y(10)

ȳ 1.232
∗∗∗

1.079
∗∗∗

0.890
∗∗∗

1.095
∗∗∗

1.037
∗∗∗

0.956
∗∗∗

(0.032) (0.011) (0.016) (0.018) (0.006) (0.009)

π∗ −0.223
∗∗∗ −0.068

∗∗∗
0.108

∗∗∗

(0.039) (0.015) (0.020)

Constant −0.011
∗∗∗ −0.003

∗∗∗
0.005

∗∗∗ −0.011
∗∗∗ −0.004

∗∗∗
0.005

∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.000) (0.001)
N 711 711 711 712 712 712

R2
0.972 0.997 0.991 0.968 0.997 0.989
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4.3.2 International yields

We next show results for the international six-country sample in Table 7, again keeping the U.S.

results for reference. For brevity we report results at the 10-year maturity point, but similar findings

apply at the 2- and 5-year points. And for reasons of space we here report results using only c̄, and

omit c(1), but the results are not sensitive to this choice.

Supportive results obtain in all six economies with an R2 ranging from 0.989 to 0.996. Yields load

strongly on the two trend factors, inflation and the natural rate. Coefficients are positive, usually

greater than one, and highly statistically significant. We see that the cyclical factor also attracts

statistically significant loadings, but here again its explanatory power is not as strong. To see this,

Table 8 repeats the exercise of dropping the trend factors and keeping only the cyclical factor. Once

more, as in the U.S. case, the explanatory power is poor, with an R2 less than 0.1 in all cases.

For a fuller picture, Figure 5 again shows coefficient loadings for yields along the curve from 1

to 15 years (12, 24, 26,..., 180 months). The main takeaway from this section is that, all across the

curve, and all around the world, bond yields are largely driven by investors’ best estimates of the

two key slow-moving trend factors, inflation and the natural rate. In contrast, the cyclical factor in

yields, summarized by the detrended average yield, is of relatively little importance.

Table 7: International yields

The table reports OLS estimates on international monthly data of yields y(n)t = Ãn + B̃r
nr∗t + B̃π

n π∗t + B̃ c̄ c̄t.
Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(1) (2) (3) (4) (5) (6)
U.S. Japan Germany U.K. Canada Australia
y(10) y(10) y(10) y(10) y(10) y(10)

r∗ 0.879
∗∗∗

1.159
∗∗∗

1.311
∗∗∗

1.032
∗∗∗

0.938
∗∗∗

1.065
∗∗∗

(0.024) (0.024) (0.022) (0.021) (0.024) (0.013)

π∗ 1.079
∗∗∗

0.458
∗∗∗

0.784
∗∗∗

0.524
∗∗∗

1.181
∗∗∗

1.002
∗∗∗

(0.013) (0.025) (0.024) (0.009) (0.039) (0.013)

c̄ 0.850
∗∗∗

0.576
∗∗∗

0.739
∗∗∗

0.851
∗∗∗

0.844
∗∗∗

0.926
∗∗∗

(0.024) (0.128) (0.041) (0.042) (0.045) (0.025)

Constant 0.003
∗∗∗

0.002
∗∗∗

0.004
∗∗∗

0.002
∗∗∗

0.001 0.003
∗∗∗

(0.001) (0.000) (0.001) (0.001) (0.001) (0.000)
N 669 453 549 453 382 351

R2
0.991 0.989 0.992 0.992 0.992 0.996
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Table 8: International yields, additional results

The table reports OLS estimates on international monthly data of yields y(n)t = Ãn + B̃ c̄ c̄t. Newey-West
standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(1) (2) (3) (4) (5) (6)
U.S. Japan Germany U.K. Canada Australia
y(10) y(10) y(10) y(10) y(10) y(10)

c̄ 0.850
∗

0.576 0.739 0.851 0.844 0.926
∗

(0.365) (0.621) (0.457) (0.472) (0.604) (0.409)

Constant 0.062
∗∗∗

0.027
∗∗∗

0.052
∗∗∗

0.057
∗∗∗

0.049
∗∗∗

0.053
∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.004) (0.003)
N 669 453 549 453 382 351

R2
0.064 0.012 0.023 0.032 0.035 0.087

Figure 5: International loadings on macro factors, using detrended yields

The figure shows loading estimates B̂r
n and B̂π

n at maturity n from Equation 10 using international data.
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4.4. Return predictability

We just saw that accounting for trends can make some improvements in modeling yields, but we

now see how they matter a great deal for predicting bond returns. This was shown for the U.S. case

in Cieslak and Povala (2015) with just an inflation trend extracted, and also in the contemporaneous

work of Bauer and Rudebusch (2019) with trends for inflation and the real natural rate, or a nominal

natural rate trend. We show that the same applies more generally at the international level.

The intuition is quite straightforward. The trend factors, being slow moving and near unit-root,

are mainly priced in one-period ahead and contain little useful information about short-run returns.

In contrast, the cyclical factor, being the driver of the high-frequency error-correction part of the

bond price process, is very informative about how bond prices revert to trend in the short run.

Formally, in this section we will be presenting estimates for the excess return Equation 13,

rx(n)t+1 = B>n Ft + vn
t . These one-step ahead predictions are noisy but we shall see that their small

explanatory power is almost entirely due to the role of the detrended, or cyclical, yield factor c̄.

4.4.1 U.S. excess returns

Table 9 and Table 10 show excess return regressions for the U.S. case. We show the 1-, 2-, and 5-year

maturities, and an average return across all maturities. Starting with Table 9, Panel (a) uses yield

factors, and Panel (b) uses detrended yield factors. Again, these two sets of regressions are identical

models, with the same fit, predictions, residuals, etc. They differ only in that the detrended yields

are orthogonalized relative to the two trends to give full attribution of trend movements to inflation

and natural rate movements, again following Cieslak and Povala (2015).

Columns (1) to (4) include the additional short rate term, but Columns (5) to (8) contain only

the average yield factor, our baseline model. The latter is our preferred specification because the

short-rate term is not statistically significant in any specifications. In our preferred specification in

Panel (a) excess returns can load on all three terms, but the orthogonalization of yields in Panel (b)

makes clear that this is rather an illusion. The trend terms in the specifications using raw yield in

Panel (a) merely serve to soak up the trends in yields. But once the trends are projected out, with the

yields detrended in Panel (b), it is only the cyclical component of yields c̄ that has highly significant

explanatory power for excess bond returns in all cases. The loading is positive: a cyclically high

yield curve, relative to the trends, will be expected to revert down to trend at all maturities; thus,

yields are predicted fall, and bond returns are expected to be higher. In terms of attribution, all the

explanatory power comes from the average detrended yield, as we see in the last four columns.

Finally, Table 10 shows that the form of detrending matters. The baseline preferred model uses

both inflation and natural rates to detrend yields. Here we explore excess return forecasts using

inflation-only detrending of yields in Panel (a), and using yields with no detrending in Panel (b).

To achieve this parsimoniously we simply perform regressions with raw yield factors as in Table 9,

Panel (a), and then omit the trend terms, first just the inflation trend and then both trends. In the
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Table 9: U.S. excess returns

The table reports OLS estimates on U.S. monthly data of the excess return equation rx(n)t+1 = B>n Ft + vn
t .

Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(a) With yield factors
(1) (2) (3) (4) (5) (6) (7) (8)

U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.
rx(1) rx(2) rx(5) rx rx(1) rx(2) rx(5) rx

r∗ −0.063
∗ −0.069

∗∗ −0.071
∗∗∗ −0.068

∗∗ −0.061
∗ −0.065

∗ −0.065
∗∗ −0.063

∗∗

(0.027) (0.026) (0.021) (0.022) (0.028) (0.027) (0.022) (0.023)

π∗ −0.078
∗∗ −0.087

∗∗ −0.090
∗∗∗ −0.085

∗∗∗ −0.073
∗ −0.077

∗∗ −0.074
∗∗ −0.073

∗∗

(0.030) (0.029) (0.023) (0.024) (0.029) (0.029) (0.023) (0.024)

ȳ 0.082
∗

0.096
∗∗

0.102
∗∗∗

0.095
∗∗∗

0.070
∗∗

0.072
∗∗

0.067
∗∗∗

0.067
∗∗

(0.032) (0.030) (0.025) (0.026) (0.026) (0.025) (0.020) (0.021)

y(1) −0.007 −0.017 −0.024 −0.019

(0.016) (0.015) (0.013) (0.013)
N 668 668 668 668 668 668 668 668

R2
0.021 0.025 0.035 0.031 0.020 0.021 0.023 0.024

(b) With detrended yield factors
(1) (2) (3) (4) (5) (6) (7) (8)

U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.
rx(1) rx(2) rx(5) rx rx(1) rx(2) rx(5) rx

r∗ 0.007 0.004 −0.001 0.001 0.007 0.004 −0.001 0.001

(0.012) (0.013) (0.012) (0.011) (0.012) (0.013) (0.012) (0.012)

π∗ 0.005 0.003 −0.001 0.001 0.005 0.003 −0.001 0.001

(0.015) (0.013) (0.011) (0.012) (0.015) (0.014) (0.012) (0.012)

c̄ 0.082
∗

0.096
∗∗

0.102
∗∗∗

0.095
∗∗∗

0.070
∗∗

0.072
∗∗

0.067
∗∗∗

0.067
∗∗

(0.032) (0.030) (0.025) (0.026) (0.026) (0.025) (0.020) (0.021)

c(1) −0.007 −0.017 −0.024 −0.019

(0.016) (0.015) (0.013) (0.013)
N 668 668 668 668 668 668 668 668

R2
0.021 0.025 0.035 0.031 0.020 0.021 0.023 0.024
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Table 10: U.S. excess returns, additional results

The table reports OLS estimates on U.S. monthly data of the excess return equation rx(n)t+1 = B>n Ft + vn
t .

Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample is 1961/6 to 2020/9.

(a) With yield factors, omit natural rate trend
(1) (2) (3) (4) (5) (6) (7) (8)

U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.
rx(1) rx(2) rx(5) rx rx(1) rx(2) rx(5) rx

π∗ −0.034 −0.039 −0.041
∗ −0.037

∗ −0.031 −0.033 −0.030 −0.030

(0.022) (0.021) (0.017) (0.018) (0.020) (0.020) (0.017) (0.017)

ȳ 0.036 0.046
∗

0.050
∗∗

0.045
∗

0.030
∗

0.029
∗

0.023
∗

0.025
∗

(0.023) (0.022) (0.019) (0.020) (0.013) (0.013) (0.012) (0.011)

y(1) −0.004 −0.013 −0.020 −0.015

(0.015) (0.014) (0.011) (0.012)
N 700 700 700 700 700 700 700 700

R2
0.011 0.012 0.017 0.014 0.010 0.009 0.008 0.009

(b) With yield factors, omit natural rate and inflation trends
(1) (2) (3) (4) (5) (6) (7) (8)

U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.
rx(1) rx(2) rx(5) rx rx(1) rx(2) rx(5) rx

ȳ 0.010 0.016 0.020 0.016 0.011 0.009 0.005 0.007

(0.016) (0.015) (0.012) (0.013) (0.009) (0.008) (0.007) (0.007)

y(1) 0.000 −0.007 −0.014 −0.010

(0.013) (0.012) (0.010) (0.011)
N 700 700 700 700 700 700 700 700

R2
0.005 0.005 0.007 0.005 0.005 0.004 0.002 0.003
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former case, this regression is identical to using yields projected onto inflation to construct the

cyclical components, and in the latter case it amounts to no detrending at all.

The results are clear. Note that the short-rate terms continue to be statistically insignificant.

Looking back for comparison, when we used both the inflation and natural rate to detrend yields,

the excess return predictions had moderately good fit. In Table 9, Panel (b), Columns (1) to (3),

the R2 values are 0.021, 0.025, and 0.035 at the 1, 2 and 5 year maturities, respectively. This is a

respectably good fit for a return forecast model. Table 10 shows that when only an inflation trend is

used as in Panel (a), the measures of fit decline to 0.011, 0.012, and 0.017, respectively. That is, the

R2 is cut in half when we only use the inflation trend of Cieslak and Povala (2015). Finally, when no

detrending is allowed as in Panel (b), the measures of fit collapse even more to 0.005, 0.005, and

0.007, respectively. Using only the single level factor ȳ the fit falls even further, to 0.005 or less.

Not accounting for the important macro trends thus destroys about three-quarters of the model’s

explanatory power. Conversely, accounting for the trends improves return predictability more than

fourfold for each of these bond maturities, with inflation and the natural rate each making similarly

substantive contributions to the fit.

4.4.2 International excess returns

We now take the bond return forecast model to international data. Our preferred results in Table 11

are the baseline results for six countries. These estimates omit the short-rate factor. Table 12 and

Table 13 report additional results. The former shows that the short-rate factor, if included is never

statistically significant, confirming our baseline choice, as in the U.S. case. The latter shows that

omitting the natural rate trend, or omitting both trends, comes at the cost of much worse model

performance, with R2 statistics collapsing to near zero when trends are removed, again as we saw

for the U.S. In all tables the U.S. results are shown for comparability.

The detrending approach is also supported. In Table 12, Panel (a) shows again how loadings

attach to the trend terms (6 out of 12 coefficients are statistically significant), but Panel (b) again

confirms that this is an artifact of failing to detrend the yield factor. Once that is done, only the

detrended average yield term has consistent predictive power, and this is best seen in our preferred

results in Table 11 with the insignificant short-rate term omitted.

Returning then to the baseline results in Table 11, we find that the most reliable predictor of

excess bond returns is again the cyclical component of yields c̄ (5 out of 6 coefficients are statistically

significant, and z-score for Germany is 1.2). Residual loadings on the trend terms are generally not

important (only 1 out of 12 coefficients is statistically significant). Measures of fit range from a low

R2 of 0.010 for Germany, up to 0.043 for Australia. Overall, the average fit here is again around 3%,

a respectable in-sample fit for a return forecasting model.
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Table 11: International excess returns

The table reports OLS estimates on international data of the excess return equation rx(n)t+1 = B>n Ft + vn
t .

Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(1) (2) (3) (4) (5) (6)
U.S. Japan Germany U.K. Canada Australia
rx rx rx rx rx rx

r∗ 0.001 0.007 −0.008 −0.004 0.005 −0.016

(0.012) (0.016) (0.008) (0.008) (0.009) (0.010)

π∗ 0.001 −0.005 0.012 0.002 0.001 0.032
∗

(0.012) (0.018) (0.015) (0.006) (0.021) (0.015)

c̄ 0.067
∗∗

0.088
∗

0.032 0.066
∗

0.073
∗∗

0.054
∗

(0.021) (0.036) (0.027) (0.026) (0.023) (0.023)
N 668 453 549 453 382 351

R2
0.024 0.032 0.010 0.026 0.029 0.043
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Table 12: International excess returns, additional results

The table reports OLS estimates on international data of the excess return equation rx(n)t+1 = B>n Ft + vn
t .

Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) With yield factors
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
rx rx rx rx rx rx

r∗ −0.068
∗∗ −0.103

∗ −0.061 −0.082
∗∗ −0.061

∗ −0.083
∗∗

(0.022) (0.042) (0.039) (0.029) (0.024) (0.026)

π∗ −0.085
∗∗∗ −0.058

∗ −0.015 −0.036
∗ −0.092

∗
0.000

(0.024) (0.026) (0.018) (0.015) (0.036) (0.024)

ȳ 0.095
∗∗∗

0.098
∗

0.051 0.085
∗∗

0.075
∗∗

0.012

(0.026) (0.038) (0.029) (0.031) (0.023) (0.036)

y(1) −0.019 0.000 −0.012 −0.013 −0.002 0.047

(0.013) (0.001) (0.007) (0.017) (0.003) (0.032)
N 668 453 549 453 382 351

R2
0.031 0.033 0.019 0.029 0.030 0.060

(b) With detrended yield factors
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
rx rx rx rx rx rx

r∗ 0.001 0.007 −0.008 −0.004 0.005 −0.016

(0.011) (0.016) (0.008) (0.008) (0.009) (0.009)

π∗ 0.001 −0.005 0.012 0.002 0.001 0.032
∗

(0.012) (0.017) (0.015) (0.006) (0.021) (0.014)

c̄ 0.095
∗∗∗

0.098
∗

0.051 0.085
∗∗

0.075
∗∗

0.012

(0.026) (0.038) (0.029) (0.031) (0.023) (0.036)

c(1) −0.019 0.000 −0.012 −0.013 −0.002 0.047

(0.013) (0.001) (0.007) (0.017) (0.003) (0.032)
N 668 453 549 453 382 351

R2
0.031 0.033 0.019 0.029 0.030 0.060
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Table 13: International excess returns, additional results

The table reports OLS estimates on international data of the excess return equation rx(n)t+1 = B>n Ft + vn
t .

Newey-West standard errors, 6 lags, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. The sample varies by country.

(a) With yield factors, omit natural rate trend
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
rx rx rx rx rx rx

π∗ −0.037
∗ −0.025 0.011 −0.004 −0.045

∗
0.028

(0.018) (0.015) (0.016) (0.010) (0.021) (0.016)

ȳ 0.045
∗

0.015 −0.001 0.008 0.025
∗∗ −0.013

(0.020) (0.012) (0.011) (0.018) (0.009) (0.028)

y(1) −0.015 0.001 0.000 −0.001 −0.003 0.014

(0.012) (0.001) (0.008) (0.016) (0.003) (0.025)
N 700 467 566 478 406 371

R2
0.014 0.021 0.002 0.002 0.016 0.033

(a) With yield factors, omit natural rate and inflation trends
(1) (2) (3) (4) (5) (6)

U.S. Japan Germany U.K. Canada Australia
rx rx rx rx rx rx

ȳ 0.016 −0.001 0.003 0.003 0.006 0.006

(0.013) (0.006) (0.010) (0.017) (0.005) (0.026)

y(1) −0.010 0.001 0.000 0.000 −0.003 0.009

(0.011) (0.001) (0.008) (0.015) (0.004) (0.025)
N 700 468 567 479 407 372

R2
0.005 0.011 0.001 0.002 0.003 0.025
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4.5. Out-of-sample performance

The results so far rely on in-sample measures of model performance, principally the R2 measure of

fit. For example, in return regressions, we typically find an R2 in the two-trend models utilizing

estimates of r∗ and π∗ that is about twice as high as in a one-trend π∗ model (Cieslak and Povala,

2015); the latter is in turn higher than in models using only yield-based factors (Cochrane and

Piazzesi, 2005). But in-sample measures are not the gold standard for predictive performance, so we

now ask if the two-trend model also excels in out-of-sample performance tests. We find that it does.

To construct out-of-sample forecasted excess returns we re-estimate our baseline model each

period using a one-sided Kalman filter to estimate r∗ recursively. To allow for a burn-in period of

reasonable sample size, and given the short span of the Australian data, the out-of-sample window

starts in 2004/1. We include in the baseline model, as before, inflation expectations π∗ (one-sided by

construction), and also ȳ and y(1) (real-time yield information) as regressors. For the analog of the

CiP type model, a level-slope model, and a level-only model, we do likewise and in each case omit

the natural rate trend (r∗), or both trends (r∗, π∗), or both trends and the short-rate (r∗, π∗, y(1)). For

a broader comparison, we also construct out-of-sample forecasted excess returns using a recursively

estimated ACM3 three-factor model (Adrian, Crump, and Moench, 2013) using lagged principal

components of yields Ft = (PC1t, PC2t, PC3t) and estimated VAR(1) residuals v̂ from a first stage

Ft = µ + ΦFt−1 + vt. The comparison group of five out-of-sample recursive forecasts is then

r̂xBaseline
t+1 = d̂0 + d̂1yt + d̂2y(1)t + d̂ππ∗t + d̂rr∗t , (27)

r̂xCiP
t+1 = d̂0 + d̂1yt + d̂2y(1)t + d̂ππ∗t , (28)

r̂xLevel+Slope
t+1 = d̂0 + d̂1yt + d̂2y(1)t , (29)

r̂xLevel
t+1 = d̂0 + d̂1yt , (30)

r̂xACM3

t+1 = â0 + b̂v̂t + ĉFt−1 . (31)

An initial sign of good performance by the baseline two-trend model is given in Table 14. The

table shows simple correlation coefficients for all model forecasts and the actual ex-post return rxt+1,

for the pooled sample of 6 countries and out-of-sample window 2004/1 to 2020/8. Two things stand

out. First, in panel (a), the correlation between forecast and ex-post return is higher for the baseline

model (0.21) than in any competing model (0.18 for ACM, 0.05 or less for others). Second, in panel

(b), the baseline forecast has typically lower correlation with competing model forecasts (0.40 or

less), evidence that the second trend contains additively-valuable predictive information orthogonal

to that already present in the ensemble of models in the existing literature. Looking at competing

model forecasts, Level+Slope is highly correlated with Level (0.95), consistent with the Cochrane

and Piazzesi (2005) finding that adding more yield factors contributes little new information. We

also see that both CiP and ACM forecasts correlate less with each other, but more so with Level and

Level+Slope. The baseline forecast has some correlation with CiP (0.40), which is unsurprising as it

nests the one-trend model, but it is virtually uncorrelated with the other models.
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Table 14: Out-of-sample performance: Correlations of model forecasts and actual returns

This table shows the correlation matrix of actual returns rxt+1 and five out-of-sample model forecasts r̂xt+1,
including our baseline model and four alternatives. See text. Pooled sample of 6 countries, 2004/1 to 2020/8.

(a) with actual
returns

(b) Correlations with other model forecasts

rxt+1 r̂xBaseline
t+1 r̂xCiP

t+1 r̂xLevel+Slope
t+1 r̂xLevel

t+1 r̂xACM3

t+1

rxt+1 1.00

r̂xBaseline
t+1 0.22 1.00

r̂xCiP
t+1 0.03 0.40 1.00

r̂xLevel+Slope
t+1 0.05 0.06 0.49 1.00

r̂xLevel
t+1 0.04 0.15 0.52 0.95 1.00

r̂xACM3

t+1 0.18 0.10 0.18 0.43 0.41 1.00

N 1200

However, whilst suggestive of performance improvement in the baseline two-trend model, these

correlation results are not conclusive. Thus we turn to a strict out-of-sample testing procedure,

using the clean concept of an out-of-sample R-squared or R2
OS proposed by Campbell and Thompson

(2008). Using their definition, let the model’s recursive return forecast at time t be denoted by r̂xt+1,

and let the recursive return forecast at time t using purely historical mean returns be denoted by

rxt+1. Then at any time t ∈ {1, . . . , T} in the out-of-sample period we define

R2
OS(t) = 1− ∑t

τ=1(rxτ+1 − r̂xτ+1)
2

∑t
τ=1(rxτ+1 − rxτ+1)2

.

This is then a rolling, cumulative measure of fit, starting at the beginning of the out-of-sample

evaluation window at time 1 and running to its end at time T. Of course, one can also compute

an in-sample analog of this statistic R2
IS(t) where full-sample estimates are used, but the same

cumulation is employed in the window t ∈ {1, . . . , T}. We present both.

The measures of fit R2
OS and R2

IS for the five models are shown in Figure 6. Note that both

measures can be negative, unlike conventional R-squared statistics, as shown by Campbell and

Thompson (2008), and as happens here. One reason is because the cumulation window is a subset

of the full-sample model window, so fit can be inferior to the historical mean in some periods,

even for the latter IS measure. This is even more likely at the start of the expanding window, of

course, and for this reason we discard the first 6 months of the window to exclude erratic and often

wildly negative values that are uninformative in such small samples. In addition, note that the OS
measure excludes future information, and so at any time, unlike the correlations discussed above, it

is possible for the model to perform even worse than a historical mean extrapolation.
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Figure 6: Out-of-sample performance: R2
OS and R2

IS statistics of Campbell and Thompson (2008)

These charts show, for our baseline model and four alternatives, the out-of-sample R-squared or R2
OS proposed

by Campbell and Thompson (2008),

R2
OS(t) = 1− ∑t

τ=1(rxτ+1 − r̂xk
τ+1)

2

∑t
τ=1(rxτ+1 − rxτ+1)2

.

We present these recursive out-of-sample estimates in the upper panel, and in the lower panel the in-sample
analog R2

IS(t) using full-sample estimates. Each one is a rolling, cumulative measure of fit, starting at
beginning of the out-of-sample evaluation window at time 1 and running to its end at time T. See text. Pooled
sample of 6 countries, 2004/1 to 2020/8.
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What do these results show? The more important R2
OS statistics in the upper chart show that all

the models perform similarly at the start of the evaluation window from 2004 to 2007. The trajectories

all overlap, with no clear winner. Forecast performance deteriorates for all models when the Global

Financial Crisis period starts in mid-2007, but more or less equally. The stark differences emerge

after mid-2008. After that, our baseline two-trend model is the only model to deliver a consistently

positive and stable R2
OS statistic in the entire evaluation window. The closest rival is the ACM3

model, which loses explanatory power consistently as more of the sample encompasses the post-2008

period. All other models fall below zero in 2009, indicating that out-of-sample performance has not

held up well in the post–Global Financial Crisis period, as they fail to outperform simple historical

mean forecasts. The in-sample R2
IS statistics in the lower chart confirm that more flattering results

are achieved using full-sample estimation but even here there are still many negative values, and

again it is still the baseline two-trend model which performs best out of all five models.

Our findings align with Sarno, Schneider, and Wagner (2016). As we do at Equation 18 and

Equation 19, they propose an estimation strategy for affine term structure models that jointly fits

yields and bond excess returns to capture predictive information otherwise hidden to standard

estimations. However, they do not use any macro trends, and fit pure yield-based models. They

find no performance improvement in forecasting bond returns with such models, as we do here.

Our contribution is to show that performance is improved with a two-trend macro-finance model.

How can we interpret and make sense of these findings? Why does a noticeable outperformance

by the baseline model emerge after 2008 and why should a model which adds a natural rate

trend display such behavior? These results reveal how the fundamental drivers of bond pricing

shifted after 2008. In the previous two decades, π∗ was falling and volatile as advanced economies

converged on their nominal anchors, typicaly an inflation target near 2% per annum. Yields also fell.

But the natural rate r∗ was more stable and less volatile. After the global financial crisis, π∗ was

more sticky, at or below target, with central banks struggling to prop it up, and yields languished

near the ZLB, especially at the short end. Meanwhile, the natural rate r∗ collapsed rapidly as poor

growth prospects (and other factors, like demography) brought on a putative secular stagnation

scenario. Perhaps not surprisingly, models of the bond market that ignored the natural rate coped

better with the former epoch than the latter. But once the times changed, our two-factor model came

into its own as natural rate shocks emerged as the main drivers of bond market trends, a shift that

comes to the fore in the next, concluding section.

5. Conclusion: Resolving the puzzle

Benchmark finance models imply a natural rate inconsistent with estimates from benchmark macro

models. We call this the natural rate puzzle.

We presented a general equilibrium macro-finance model with real and nominal factors in which

bond yields and excess returns are explained by two slow-moving latent trend factors, the real

natural rate trend r∗ and the inflation trend π∗, in an arbitrage-free affine term structure model.
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Empirically, we take the model to the data using state-space estimation and the Kalman filter. The

model succeeds on multiple dimensions. The pricing regressions for yields improve somewhat and

estimates of excess returns are far more accurate than when one or both macro factors are excluded,

in and out of sample. Moreover, in our approach the model is forced to estimate “correct” paths of

bond risk premia, the natural rate, and inflation that are consistent with forward rates. Thus our

approach delivers a resolution of the natural rate puzzle.

Looking again at the U.S. case where we began this paper, Figure 7 displays our model-consistent,

market-implied estimates of the real natural rate r∗ and the bond risk premium Γ. In panel (a), we

compare our real natural rate with those from LW and implied by ACM, as in Figure 1. In panel (b),

we compare our bond risk premium with those from ACM and implied by LW, also as in Figure 1.

The various approaches provide radically different historical narratives of the postwar history of

the U.S. bond market. Note the important differences here: the ACM model (like any yield-only

model) attributes the big rise and fall of interest rates in the 1970–2000 period to large up and

down shifts in the bond risk premium, which peaks in the 1980s; but our market-implied estimates

produce no such dramatic shifts, and instead the movements in interest rates are attributed to

changes in macro trends, r∗ and π∗. When we turn to the international data in Figure 8, we see that

broadly the same result obtains in other advanced economies. In all cases, we are much closer to the

LW estimates, in levels and trends, over the whole sample window, although here there are some

noticeable differences relative to the LW estimates as well. Our our macro-finance approach clearly

differs strongly from the pure finance approach, and somewhat from the pure macro approach.

Finally, in Figure 9 we better see how our macro-finance approach is meaningfully different from

the pure macro approach, by looking at the path of the headwinds factor z = r∗ − g for six countries.

This residual difference between the natural rate and the real growth rate accounts for shifts in any

non-growth factors that move the natural rate. In our model estimation results this factor moves very

differently than in the LW model. It falls considerably less steeply in the U.S. (around 100 bps in 60

years, not 200 bps). It falls considerably more steeply in the other five countries (about 200–300 bps

in 60 years, not 0–150 bps). We conjecture that our z is picking up starker non-growth differences

between the U.S. and other advanced economies; this may reflect in part trends of demography and

aging which are most acute in this sample in Europe and Japan.

In sum, our results differ from both the prior macro and finance approaches, but they resolve

the puzzle by coming down closer to the macro view. Our market-implied estimates of the natural

rate are closer to those of benchmark macro models and further from those of benchmark finance

models. Our market-implied natural rate has trends and turning points much like consensus macro

estimates, but differs in being typically somewhat lower in the most recent years—and negative

in all six countries in 2020—intensifying concerns about secular stagnation and proximity to the

effective lower-bound on monetary policy in advanced economies.

The canonical finance approach to bond pricing and return forecasting using term structure

models traditionally excludes macro factors. Our findings suggest a new track is needed, and the

powerful effects around the world of macro factors should play an important part in future studies.
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Figure 7: Market-implied natural rate r∗ and bond risk premium Γ in U.S. data

The top chart displays our market-implied estimates of the U.S. real natural rate r∗. Our real natural rate
estimate is close to the LW level throughout the sample, and far from the ACM-implied level. The bottom
chart displays our market-implied estimates of the U.S. bond risk premium Γ. By construction, this is close to
the LW-implied level throughout the sample, and far from the ACM level.
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Figure 8: Market-implied natural rates r∗ in international data

The charts display our market-implied estimates of the real natural rate r∗ for six countries. Our real natural
rate estimate is close to LW level throughout the sample, and far from the ACM implied level.
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Figure 9: Market-implied headwinds factor z in international data

This chart displays our market-implied estimates of the headwinds factor z = r ∗ −g for six countries. Our
headwinds estimate drops less steeply than the LW-implied headwinds for the U.S. but drops more steeply in
the other five cases.
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A. Appendix

Bayesian estimation of the state-space model
We estimate the model using Bayesian methods. We run a random-walk Metropolis-Hastings
(RWMH) algorithm on the model parameter vector for each country. This algorithm starts from a
drawing from a prior distribution as specified in the next section, and builds a Markov chain to
approximate the distribution of the posterior. At each step i of this algorithm, conditional on the
parameter vector θi−1 in the previous step, we accept a drawing ϑ with probability

α (ϑ|θ) = min
{

p(Y|ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y|θi−1)p(θi−1)/q(θi−1|ϑ)

}
, (32)

where p(Y|ϑ) can be computed using the Kalman filter on the state-space representation of the
model determined by equations Equation 24 and Equation 24. The RWMH version of the algorithm
sets the proposal distribution to

q
(
·|θi−1

)
= N

(
θi−1|c · Σ̂

)
. (33)

Our algorithm sets the constant c = 0.075 and Σ̂ to a constant diagonal matrix equal to a diagonal
matrix with entries calculated from the empirical variance of the drawn parameters for the first 1000

draws. The chosen value of c yields an acceptance rate of 23.4 percent.
Our estimation is calculated with a number of simulations equal to 50,000, and assumes the

same prior distribution for all countries. We run our RWMH in four parallel chains, which gives us
a total of 200,000 iterations for the posterior distribution characterization.

For each country, we use as input information the inflation expectations measure π∗t and the
real GDP series. We obtain the trend GDP series by applying the HP filter over quarterly GDP data
with a smoothing parameter equal to 25, 600 = 1600 · 16. The series thus obtained is interpolated to
monthly data, and the trend growth rate gt is then calculated. We use the time series of the estimated
parameters of the yield curve (discussed below) to recover zero-coupon curves for all maturities
ranging from 1 to 180 months, in a monthly grid. The time span covered is country-specific and
determined by data availability.

Our identification assumption is r∗ cointegrates with the trend GDP series, and that the difference
has mean reversion properties compatible with a half-life within business cycle frequency, and not
higher. This avoids the problem of r∗ acting as a residual term that would capture high frequency
oscillations in bond markets.

Prior specification
We specify tight priors for the parameters of the headwinds factor zt, and relatively loose priors for
other parameters in the model, as detailed in Table A.1. The prior distribution is common for all
countries.

• The persistence parameter ρz is chosen to be close to unit root, but within the unitary circle to
prevent an explosive solution. Its magnitude is taken to match a half life of around 60 months.
This keeps the headwinds factor within business cycle frequency and not higher. In a freer
setting, this term would act as a residual in the Kalman system and would tend to capture
high frequency variations that are hard to identify given the data.
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Table A.1: Prior specification for model parameters

Parameter Distribution Mean Variance
ρz Beta 0.997 2.00×10

-6

ρrx Normal 1.00×10
-12

1.00×10
-14

ρy Normal 0.9 0.025

σz Log-Normal 1.00×10
-4

1.00×10
-5

σrx Log-Normal 1.00×10
-4

1.00×10
-4

σy Log-Normal 1.00×10
-3

5.00×10
-4

dr∗ Normal 0.00 0.10

br∗ Normal 0.30 0.05

d0 Normal 0.00 5.00×10
-3

ay Normal 0.00 7.50×10
-4

dcyc Normal 0.28 0.01

bπ Normal 1.25 0.10

dπ Normal 0.00 0.01

σbr Log-Normal 0.10 0.05

σay Log-Normal 0.03 5.00×10
-3

σdr Log-Normal 0.01 7.50×10
-3

σd0 Log-Normal 0.00 1.00×10
-4

σdcyc Log-Normal 0.10 0.01

• The volatility of the headwinds factor σz is set to match a relatively small range of variation for
the frequency of the headwinds factors. While the drawing process allows for certain range
around the 60 months business frequency, it imposes the view that this variable should not
deviate largely from that horizon. Similarly, we impose relatively tight priors on σrx and σy

• The volatility terms σbr , σay , σdr , σd0 , and σdcyc are drawn from a log-normal distribution as it is
standard in the literature, with relatively variances that make them largely uninformative.

• The model coefficients dr∗ , br∗ , d0, ay, dcyc, bπ, and dπ are set to have large variances with
coefficients centered around values that calibrate the U.S. experience relatively well in a simple
regression context.
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