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1. Introduction

Production possibilities in uncertain environments are usually modeled by augmenting stan-

dard production functions to include shocks. For example, we may write

y(s) = ε(s)f(k) (1)

where y(s) is output in state s, k is capital, and ε(s) is random productivity. The firm chooses

capital k, then nature chooses the state s, i.e. productivity ε(s), giving random output y(s).

Figure 1: Standard production possibility set in a two-state world. The technology is y(s) =
ε(s)f(k) for s = h, l, and y(0) = W − k.

Figure 1 illustrates the production set implied by this sort of technology for a two-period

world. A farmer has seeds W at time 0. He or she may plant them as k, or eat them as y(0) =

W − k. At time 1, the field generates wheat y(s) = ε(s)f(k) according to the state s, which can

take on two values s = h or s = l. The implied production set smoothly transforms wheat today

to a bundle of contingent wheat tomorrow, but it has a kink across the states of nature. No matter

how high the contingent claim price of wheat in the low state relative to the high state, there is
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nothing the producer can do to alter production in its favor.

Figure 2: Smooth production possibility set. The firm can change the distribution of output
across states of nature – the pattern of y(h) vs. y(l).

This paper explores a different representation for technology under uncertainty, in which

the firm has a smooth choice over the state-contingent pattern of its output. Figure 2 illustrates

the idea. Now, the farmer can also take actions which shift output from one state s = h to

another state s = l. If the relative contingent claim price of state l rises, for example, the farmer

can produce more in state l and less in state h, potentially leaving consumption at time 0,W − k

unchanged.

I explore smooth production sets generated by adding a choice of the productivity distri-

bution ε(s) to the conventional description of technology (1), constraining the random variable ε

to lie in a convex set with a smooth boundary. Most of this paper explores a parametric example,

that random productivity ε is constrained by

E

[(ε
θ

)1+α
]

=
∑
s

π(s)

[
ε(s)

θ(s)

]1+α

≤ 1 (2)

where θ are a set of weights, and α ≥ 0 is a curvature parameter. We can think of the weights θ as
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natural or underlying random productivity. The firm may deviate from this natural productivity

in some states, by accepting lower productivity in other states. I consider below whether we

need the θ weights and how to measure and identify them.

Letm denote a stochastic discount factor, equivalent to contingent claim prices scaled by

probabilities, m(s) = p(s)/π(s). If a firm maximizes contingent claim value

maxE [mεf(k)]

subject to (2), the first-order condition for choice of ε – choosing ε(s) in every state of nature s –

leads to

m = λ
εα

θ1+α
,

or, in the dynamic extension of the model,

mt+1 = λt

(
εt+1

εt

)α
/

(
θt+1

θt

)1+α

(3)

where λ is a constant. The firm chooses to produce more ε in states of nature with high con-

tingent claim prices or discount factors, and states in which the natural productivity shock θ is

larger.

Why is this representation of technology useful or interesting? My direct interest is the

construction of production-based asset pricing models. The central question of asset pricing is

to tie asset prices and returns to economic fluctuations. For example, such a tie is the only way

to address whether observed risk premiums are “rational” compensation for “fundamental” risk.

In production-based asset pricing we use firm first-order conditions and observations of real

choice variables such as ε to infer what the prices m must have been to generate the choices

ε. With that discount factor m we then understand economic fundamentals of asset prices, for

example from 0 = E(mRe) or equivalently E(Re) = −cov(m,Re)/E(m) where Re is an excess

return. We relate risk premiums to the covariance of excess returns with the discount factor.

Viewing assets as bundles of contingent claims, we understand asset prices from

asset price = E (m× payoff) .

Production-based asset pricing is deliberately parallel to the standard consumption-based

approach to this central question. That theory starts with consumer first-order conditions, that
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contingent-claim price ratios are proportional to marginal rates of substitution,

mt+1 = β
u′(ct+1)

u′(ct)
.

With the usual power utility, but adding the possibility of a preference shock φ, u(c) = (c/φ)1−γ ,

we have

mt+1 = β

(
ct+1

ct

)−γ
/

(
φt+1

φt

)1−γ
. (4)

Once we observe equilibrium consumption, and assume away or identify preference shocks, we

can link asset prices to the macroeconomy via consumption, ignoring the production technol-

ogy that generates observed consumption. Most theories of asset pricing come down to different

clever ways to substitute for consumption data in this expression. While a full understanding of

the economy requires general equilibrium – knowing where that consumption came from – one

can at least tie asset prices to half of the economy, and study preferences and the intermediation

between consumers and prices in isolation while others work on production technology.

“Production-based asset pricing” takes the parallel approach: Tie asset prices to eco-

nomic variables such as output, labor, and productivity via marginal rates of transformation,

ignoring preferences. While a full understanding of the economy requires general equilibrium –

understanding preferences, the consumer’s probability assessments, and market structure – one

can at least tie asset prices to half of the economy, and study production technology in isolation.

One can at least find if firms react to prices optimally, and see if the cyclical tie of asset prices to

firm data makes economic sense. Production-based asset pricing is also attractive because busi-

ness cycles are essentially phenomena of production – declines in investment, durable goods

output, and employment – and much less visible in nondurable and services consumption.

But Figure 1 makes clear why a pure production-based asset pricing model is not possible

using standard representations of technology extending (1). Since there is a kink in the produc-

tion set, many different contingent claims prices are consistent with any point the firm might

choose. The producer’s problem with a standard technology of the form (1) instructs the firm

to optimally invest at time 0 to produce a fixed bundle of contingent claims. The firm should

invest up to the point that the physical return on investment is correctly priced by the contin-

gent claims/stochastic discount factor m, 1 = E
[
mRI(k)

]
, with RI(k) = εfk(k) in this simple

example. We can therefore price payoffs that are perfectly spanned by investment returns. But

we cannot infer anything about other returns, or a general discount factor.

When we specify a smooth production set as in (2), on the other hand, we can construct

a pure production-based asset pricing model. The production-based discount factor (3) is obvi-
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ously an attractive parallel to the consumption-based version (4). It appears we just substitute

productivity for consumption and apply standard techniques.

The presence of random underlying productivity θ raises some practical difficulties how-

ever – just as preference shocks φ would do if we allowed them. If we allow free shocks, we

can explain anything, so allowing shocks means we need to think about their identification and

measurement.

We need shocks somewhere, however. If neither preferences nor technology had shocks,

asset prices would be constant. Preference shocks are becoming more common in asset pricing,

including risk aversion and discount rate shocks. Behavioral finance argues that much fluc-

tuation in asset prices comes from variation in probability assessments, that are equivalent to

preference shocks. Yet the difficulty behavioral finance has had in generating rejectable content

speaks to the difficulty of this identification and measurement question.

Basic correlations in the data argue that we need underlying technology shocks θ. If there

were no such shocks, then firms would produce more (higher ε) in high discount-factor states.

We usually associate high discount factors – high marginal utility – with low consumption and

low stock prices. But output is low in recessions, not the other way around. The fact that stock

prices, output, and consumption all comove positively tells us that the bulk of such fluctua-

tions must come from technology shocks, not preference or irrational-probability shocks. Thus,

production-based asset pricing (for the moment) seems to need underlying productivity shocks,

and face the shock-identification question that is so often brushed under the rug in macroeco-

nomics and finance. (And models with preference or belief shocks need to face the same ques-

tion, along with getting the sign of the correlation between asset returns and the business cycle

right.)

Though production-based asset pricing is my motivation and the focus of this paper, this

representation of technology should also be useful in many other applications. Study of firm’s

choices of risk exposure, and how those choices respond to asset prices, including commodity

futures and derivatives, is an attractive idea.

Why is a smooth representation of production possibilities such as (2) reasonable? First,

producers do seem to have some ability to control the pattern of their output across states of

nature, i.e. the distribution of the productivity shocks they face. A farmer may plant wheat on

ground that does better in rainy or dry weather, choose seeds that prosper in different weather

conditions, and so forth. Electric utilities may invest in equipment that produces electricity

most efficiently given today’s prices and regulatory treatment of coal, oil, gas, nuclear, solar, etc.,

or it may choose to invest in a variety of equipment, or more costly and flexible-fuel equipment
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that can adapt to different circumstances. This ability is not unlimited. Technology will nat-

urally have kinks across states of nature completely unrelated to the production process. But

technology will naturally not have kinks across many other states of nature that are related to

the production process.

Second, one may simply view that the lack of rigid kinks is the most natural production

set, and ask what empirical evidence there is for suck kinks. That is how we approach the choice

of inputs and in studying nonstochastic production functions. We would start by modeling the

farmer’s choice to produce wheat vs. corn, or to produce more today and less tomorrow, as a

smooth production set. So why is wheat in rainy weather vs. wheat in sunny weather naturally

fixed? A reader of Debreu (1959), say, encountering the idea of contingent claims would surely

start by writing down a smooth production set, mirroring smooth preferences across goods and

states, and mirroring smooth technologies across inputs and over time. Static production the-

ory in textbooks beautifully mirrors static preference theory. Why not production under uncer-

tainty?

Historically, it seems that aggregate production functions with kinks across states of na-

ture are not the result of such consideration and evidence. Instead, shocks were simply tacked

on to deterministic intertemporal functions familiar from growth theory. Real business cycle

models such as Kydland and Prescott (1982) and King, Plosser, and Rebelo (1988) use technolo-

gies of the form (1). None even considers the possibility of a smooth production set across states

of nature. That choice is entirely understandable. A smooth production set adds complications.

And these authors didn’t need to generalize. Tacking productivity shocks on to standard in-

tertemporal technologies was good enough for their uses. But that historical accident does not

carve the decision in stone, or argue for kinks against smoothness.

Third, smooth production sets can occur when one aggregates standard production func-

tions. Below, I explore a model in which a firm has access to several different technologies or

processes, each of which has a different, but fixed distribution of shocks. By varying its input

across the different processes, the firm can change the distribution of the shock in the aggregate

production function that relates the firm’s total output to its total input.

This approach is analogous the classic result that an aggregate of fixed-coefficient pro-

duction functions can produce a smooth production function such as the Cobb-Douglas. The

latter result is a standard justification for smooth input requirement sets, given that individual

machines or production processes may require fixed inputs (Houthakker (1955)).

I apply the same logic to the multiple outputs (across states of nature) of a firm that op-

erates in an uncertain environment. Since each firm, industry, or economy is an aggregate of an
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immense number of microscopic production activities, this aggregation view suggests a rich set

of possibilities for transforming output across states.

One response to this observation might be to argue for disaggregated data and explicit

aggregation theory. However, this is not practical advice. National, category, industry, firm and

plant-level aggregates are a useful and informative source of data. If, say, individual machines

are the ultimate fixed-coefficient producers, we don’t have data on individual machines.

I delay a discussion of the literature until after the main body of the paper. It will be much

easier to understand how this paper relates to other papers in the production-based enterprise

after the reader has a better idea of what is in this paper.

2. Production functions and discount factors

Our goal is to write plausible and tractable aggregate production functions that allow transfor-

mation across states. There are many ways to write general concave functions that are differ-

entiable across states of nature. However, it seems productive instead to incorporate standard

production theory, and forms that have proved useful in the past, as far as possible.

For that reason, I specify a production function that describes the firm’s ability to trans-

form goods over time in a conventional way, but adds to it the ability to transform output across

states. Additionally, I focus on and explore a particular CES functional form for this choice: out-

put y is given by a standard production function combining capital k and labor n,

y = εf(k, n) (5)

y(s) = ε(s)f [k, n(s)]

where ε satisfies.

E

[(ε
θ

)1+α
]
≤ 1 (6)

∑
s

π(s)

[
ε(s)

θ(s)

]1+α

= 1. (7)

The second equation in each group expresses random variables as functions of finite states

s = 1, 2...S. The finite state examples are easier to keep track of, but the analysis is valid for

continuously distributed random variables.

The firm can choose its productivity ε from the convex set of random variables described

by (6). Nature hands the firm an underlying or natural productivity θ, and the firm may choose

ε = θ. But the firm can choose a higher value ε(s) in some states s, if it accepts a lower value ε(s′)
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in some other state s′. The parameter α controls the firm’s ability to transform across sates of

nature. As α→∞, productivity necessarily converges to the natural shock θ. As α decreases, it is

easier and easier for the firm to transform output from one state to another. (Previous drafts of

this paper usedα in place of 1+α. I change notation here to more clearly mirror the risk aversion

coefficient of power utility.)

An alternative way to think of (6) is that we generalize a certainty production function

y = θf(k, n) to a CES aggregate of output across states on the left hand side,

E

[(y
θ

)1+α
] 1

1+α

=

[∑
s

π(s)

(
y(s)

θ(s)

)1+α
] 1

1+α

≤ f(k, n).

Defining ε = y/f(k, n) this is the same formulation as (6). This expression is perhaps more the-

oretically satisfying, as it describes a convex and smooth set of inputs and outputs. However, I

find the idea of “picking productivity” maintains better the connection to well-studied produc-

tion theory, so I use the former expression. The≤ allows for free disposal, but with positive state

prices the firm will always choose equality, so I drop the formalism.

Figure 3 plots the production set (7) in a two-state example, s = {h, l} with θ(h) = 2,

θ(l) = 1 and π (h) = 0.5. For α = 1, you see how (7) induces a convex set of possible {ε(h), ε(l)}

possibilities, and with them a convex set of y(s) = ε(s)f(k) possibilities we are looking for, as

graphed in Figure 2. As we raise α, the curve is more convex, and as we lower α, the curve is

flatter. Thus, higher α means that in response to a given contingent-claim price vector, the firm

will deviate less from the initial θ, while for lower α it will deviate more. The parameter α plays

a similar role to the risk aversion coefficient of utility theory. The natural shock θ biases the

production set towards state h in this case.

Probabilities do not naturally enter production technologies. A farmer’s ability to produce

more in a rainy state and less in a dry state, by moving planting to a field that does better in rainy

weather, does not have any natural connection to the probability that the rainy state occurs. Yet,

it is very convenient to sum across states of nature by some probability measure, and essentially

mandatory to do so with continuously distributed random variables.

Thus, the probabilities in (6) and (7) are arbitrary. They are not necessarily (say) the firm

manager’s subjective probabilities, as the probabilities in the consumer first-order condition are

the consumer’s subjective (rational or not) probabilities.

This arbitrariness of probabilities is one reason to include the shock θ. One might wish for

the simplicity of a model without natural productivity shocks, but then the probabilities them-

selves become the weights. Those probabilities might differ enormously from true or empirical
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Figure 3: Productivity choice sets. Each line gives the set of {ε(h), ε(l)} that the firm can choose
from, satisfying E[(ε/θ)1+α] ≤ 1. The base case is α = 1, θ = (2, 1), and π(h) = 0.5. The dashed
lines vary α to α = 0.5 and α = 2.

probabilities used in analysis. Thus, the weights θα can serve as transformation between the

probability weights, unrelated to actual probabilities, that define technological opportunities,

and whatever probabilities we wish to use in analysis. The parameters θ and π are not separately

identified, so any change in one can be made up by the other. In that sense the probabilities

really do not enter the production set.

This seeming arbitrariness is a virtue. We do not have to worry about rational or irrational,

conditional vs. unconditional, true vs. sample, real vs. risk-neutral probabilities, agents who see

more than we do, and so forth.

3. The simplest model

Consider a firm that maximizes the value of output ε. (I.e., fix f(k, n) = 1 to focus on the random

variable choice.) The firm’s problem is

max
ε
E(mε) s.t. E

[
(ε/θ)1+α

]
≤ 1. (8)
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To be clear, with finite states s, the latter expression means

max
{ε(s)}

∑
s

π(s)m(s)ε(s) s.t.
∑
s

π(s)ε(s)1+α/θ(s)1+α ≤ 1.

The variablem is the stochastic discount factor, or contingent claim price divided by probability,

m(s) = p(s)/ [p0π(s)], so the objective is the same thing as maximizing contingent claim value.

The firm chooses the random variable ε(s) in each state of nature s. Thus, a first-order condition

operates state-by-state inside the expectation.

Introducing a Lagrange multiplier λ, the first-order condition is

m = λ (1 + α)
εα

θ1+α
, (9)

i.e.

m(s) = λ (1 + α)
ε(s)α

θ(s)(1+α)
. (10)

in each state of nature s. The first-order condition directs the firm to rearrange output towards

states of nature with high discount factors or contingent claim prices, and towards states where

it is easier to produce with high θ.

In standard theory of the firm, we want to solve for choices given prices, for ε givenm. We

do that by imposing the constraint (8) to eliminate the Lagrange multiplier λ, which yields

εα

θ1+α
=

m{
E
[
(mθ)

1+α
α

]} α
1+α

. (11)

This condition expresses even more clearly the idea that the firm should produce more in states

with high contingent claim prices m and high natural productivity θ.

However, our objective is a production-based asset pricing model: We want to infer what

contingent claims prices m must have been in order to produce observed choices, ε. We want

to solve first-order conditions and constraints for the discount factor m given choices ε and cir-

cumstances θ.

Equation (9) already gives us a discount factor that can price all zero-cost portfolios or

excess returns. For this project, we need an m∗ such that 0 = E(m∗Re) for any excess return Re.

The level or scale of m∗ is irrelevant. If 0 = E(m∗Re) then 0 = E [(2m∗)Re]. Thus, the discount

factor

m∗ =
εα

θ1+α
(12)
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immediately prices all zero-cost portfolios. The analogy to the consumption-basedm∗ = c−γ/φ1−γ

with utility u(c) = (c/φ)1−γ is attractive.

When using discount factors for zero-cost portfolios, it is often useful to normalize them

so the mean discount factor and implied risk-free rateE(m) = 1/Rf is reasonable. This normal-

ization leads to

m∗ =
εα

θ1+α
/

[
RfE

(
εα

θ1+α

)]
. (13)

This problem does not lead to a full characterization of the discount factor, because we

have not given the firm any ability to transform output over time. Equation (11) gives the same

choice ε for a discount factor 2m as it does for a discount factor m, so we cannot invert (11) to

learn the level of the discount factor from ε.

4. A two-period model

To fully characterize the discount factor, we add the conventional f(k) part of production the-

ory, which allows the firm to transform output over time as well as across states. In this for-

mulation the intertemporal and risk aspects of the problem separate so equations like (12) and

(13) continue to describe risk premiums. The intertemporal problem adds a single return which

establishes the level of m and the level of returns.

Add capital and the possibility to invest at time 0. The firm’s objective is to maximize

contingent claim value,

max
{k,ε}

E [mεf(k)]− k s.t. E(ε1+α/θ1+α) ≤ 1.

The firm chooses capital k before the shock is realized. It chooses the value of productivity ε in

each state of nature, e.g. ε(s) for each s.

Introducing a Lagrange multiplier λ on the productivity-choice constraint, the first-order

conditions are

1 = E [mεfk(k)] (14)

mf(k) = λ(1 + α)
εα

θ1+α
. (15)

Equation (14) is the familiar condition that the discounted value of the production ac-

cruing to an additional unit of investment should equal its marginal cost. Equivalently, the firm

should invest until the physical investment return is correctly priced. We can write it 1 = E(mRI)

with RI ≡ εfk(k) denoting the (random) investment return. This first-order condition is the
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same as it is in the standard case that the firm has no ε choice. By observing ε and k, we can

learn one return RI , and we can learn any returns that can be priced by arbitrage with RI . But

we cannot learn about other returns or payoffs.

Equation (15) is essentially the same as the productivity choice first-order condition of

the simplest model without capital (9). A little more ε(s) in state of nature s would raise the

firm’s objective by π(s)m(s)f(k), at the cost of lowering output in some other states.

From (15), discount factor (12), m∗ = εα/θ1+α, and its scaled version (13) that describe

zero-price portfolios are unchanged with the addition of f(k) to the production technology.

Thus, this two-period model only adds the level of the discount factor to the previous descrip-

tion.

Now, let us incorporate (14) and fully solve for the discount factor. The level of the dis-

count factor is determined in this model by the condition (14) that the discount factor prices the

investment return.

1 = E [mεfk(k)] = E

[
λ (1 + α)

f(k)

εα

θ1+α
εfk(k)

]
= λ (1 + α)

fk(k)

f(k)
.

Equation (15) then becomes

m =
1

θfk(k)

(ε
θ

)α
=

1

εfk(k)

(ε
θ

)1+α
=

1

RI

(ε
θ

)1+α
. (16)

I can’t decide which form on the right hand side is prettier. Take your pick.

Since any asset or claim to a payoff x is a bundle of contingent claims, we can write asset

prices as price = E(mx) or

price = E

[
1

εfk(k)

(ε
θ

)1+α
x

]
.

The discount factor (16) is not the inverse of the investment return

m 6= 1/RI = 1/ [εfk(k)] .

The discount factor (16) adjusts that investment return as the payoff x differs from the payoffRI

as the firm has chosen to distort its productivity from the underlying shock θ.

The investment returnRI = εfk(k) is not riskfree. The model determines the riskfree rate

indirectly, through the investment return together with the ε first-order condition that deter-

mines risk premiums. From (16), the riskfree rate is

1

Rf
= E(m) =

1

fk(k)
E

[
εα

θ1+α

]
= E

[
1

RI

(ε
θ

)1+α
]
.
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This model separates the economics of intertemporal transformation and risk premiums.

The first-order condition (14) governs the allocation of output over time, the tradeoff at the mar-

gin of an initial k for a risky bundle εfk(k), and it determines the overall level of returns, the level

of the discount factor. First-order condition (15) governs the allocation of output across states

of nature and thus risk premiums. As we generalize the production technology f(k), this sim-

ple calculation (12) for characterizing risk premiums turns out to remain essentially unchanged,

while the characterization of the overall level of returns gets more complex.

That observation suggests that one may wish to separate levels of returns and risk premi-

ums in empirical applications as well. Since application of (12) (slightly generalized below) is

the same for different production technologies generalizing f(k), one may wish to focus on risk

premia and not tie the analysis to a specific intertemporal production technology, using (12) and

excess returns. Likewise, the study of intertemporal technologies that determine the investment

return RI = εf ′(k), which has comprised most “production-based asset pricing” to date, can

continue relatively unaltered. The fact that the ε might have been chosen from a larger set does

not change measurement of the investment return or arbitrage between investment returns and

asset returns. One may also wish to avoid the intertemporal question in a risk-premium appli-

cation by taking the risk-free rate from the data. One may simply treat the Lagrange multiplier λ

as another free parameter of the model, chosen each date by the observation of the risk free rate

or any other convenient return.

4.1 Production theory vs. asset pricing

In the theory of the firm, we usually solve such first-order conditions to give the producer’s

choices {k, ε} in terms of prices, i.e. the discount factor m. To this end, we solve the pair of

first-order conditions to give one equation describing k and another describes ε, each in terms

of m and θ. The resulting expression for optimal k is

1 =
{
E
[
(mθ)

1+α
α

]} α
1+α

fk(k) (17)

while the optimal productivity ε is given by

εα

θ1+α
=

m{
E
[
(mθ)

1+α
α

]} α
1+α

. (18)

Equation (18) expresses the same intuition, produce more in high discount factor and high ε

states, in purer form. It is the same expression as in the one-period model, (11), with time sub-
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scripts.

Looking at (18), the choice ε = θ emerges if m ∝ 1/θ. In this case, we do have that m =

1/[εfk(k)] = 1/RI , i.e. if the discount factor or contingent claim price vector equals the inverse

of the firm’s investment return. The ε = θ case does not emerge under risk neutrality or state

prices proportional to probabilities, m = β.

Though my motivating application is production-based asset pricing, a theory of the firm

with choice of productivity shocks would be interesting as well.

5. Labor

Adding labor changes the calculations in interesting ways. Adding other variable inputs, effort,

prices (such as a relative price of investment and output goods), and other complications to the

period production function has similar effects.

First, a disappointment: One might think that a firm which can adjust inputs after ob-

serving a shock can produce more or less output in response to that shock and thus achieve a

marginal rate of transformation. That intuition is false. The ability to produce more or less after a

shock is observed does not allow the firm to transform output across states of nature. Producing

more in one state does not make it harder to produce more in another.

To see this point, write the production function as

y(s) = ε(s)f [k, n(s)]

where n(s) is labor input or effort in state s. Without productivity choice, the firm’s problem is

max
{k,n(s)}

∑
s

p(s) {ε(s)f [k, n(s)]− w(s)n(s)} − p0k

where w can represent the wage, or the cost of providing effort. The first-order conditions are

p(s) [ε(s)fn [k, n(s)]− w(s)] = 0 (19)∑
s

p(s)ε(s)fk [k, n(s)] = p0. (20)

Condition (19) does not help us to identify contingent claim prices p(s) or the discount

factor m(s) = p(s)/π(s), as p(s) cancels from that equation. The firm adjusts ε(s)fn [k, n(s)] =

w(s) separately in each state. This observation gives us no information linking states.

The contingent claim price is not the output price. The contingent claim price applies
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equally to output and wages. The wage is w(s) relative to output in each state. Yes, the firm

will hire more labor if the output price is higher – relative to the wage. But that consideration

is already included in the real wage w. The first-order condition is not p(s)fn [k, n(s)] = w(s)

–that’s a different p(s), an output price not a contingent-claim price. Intuitively, the action of

hiring more labor in one state does not change the firm’s options in another state, so this margin

does not identify contingent claim prices.

Variable labor does however act like an additional productivity shock θ, so it gives us a

measurable source of such shocks and will be important in quantitative exercises. To see these

effects in the simplest model, return to the one-period model of Section 3. Now let the firm

maximize

max
{ε,n}

E {m [εf(n)− wn]} s.t. E
[
(ε/θ)1+α

]
≤ 1. (21)

The labor decision and the wage are both stochastic, i.e. w(s) and n(s) are random variables,

and the labor decision takes place after the firm observes the state of the world s. The first-order

conditions are now the pair

εfn(n) = w

f(n) = λαεα/θ1+α.

With a standard power functional form

f(n) = nσ

the first-order conditions become

εσnσ−1 = w (22)

mnσ = λ (1 + α) εα/θ1+α. (23)

We can construct a discount factor for zero-cost portfolios from (23):

m∗ =
εα

θ1+αnσ
. (24)

Comparing this result to (12), we add labor nσ. Labor n appears in the discount factor formula

just like another shock θ.

Alternatively, we may substitute from the first-order condition (22) to express the labor
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choice n as a function of wage w. From (22), the labor choice is

nσ =
(εσ
w

) σ
1−σ

. (25)

Substituting for nσ in (23), and solving for m,

m =

[
λ (1 + α)

σ
σ

1−σ

]
εα−

σ
1−σ

θ1+α
w

σ
1−σ

Thus, we have a discount factor for zero-cost portfolios

m∗ =
εα−

σ
1−σ

θ1+α
w

σ
1−σ . (26)

This is a little more elegant, as now the discount factor is expressed as a function of the

single choice variable ε and external circumstances w and θ. Times of high εwill induce the firm

to hire more labor, so ε and n are really not two separate influences in (24). We see the effect

of labor is to change the effective coefficient on ε, and to add the wage rate as a new shock. A

measurement of the coefficient on ε with constant wages is not the pure coefficient of substi-

tutability.

The discount factors (24) and (26) have important lessons going forward. The production-

based discount factor is not necessarily as simple as just productivity raised to a power, and

wages or labor inputs – or other inputs – appear as additional natural productivity shocks.

Solving for ε, and using the constraint to find the Lagrange multiplier λ, we can express

the productivity choice as

ε1+α

θ1+α
=

(
mθ

1
1−σw−

σ
1−σ
) 1+α
α− σ

1−σ

E

[(
mθ

1
1−σw−

σ
1−σ
) 1+α
α− σ

1−σ

] .
The firm chooses larger productivity in states with higher discount factors, higher natural pro-

ductivity shocks, and lower wages. Wages act like the natural productivity shocks.

6. Intertemporal production

Next we generalize the idea to a standard intertemporal context. The firm’s objective is

maxE
∞∑
t=1

Λt(yt − it).
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where Λt is the stochastic discount factor, with mt+1 = Λt+1/Λt, Λ0 = 1, y is output and i is

investment. Production possibilities are given by

yt = εtf(kt)

kt+1 = (1− δ)kt + it

1 = Eτ

[(
εt+1

θt+1

)1+α
]
. (27)

There is a separate constraint for each period t+1. In adapting the productivity choice set to this

dynamic context, I allow the expectation in (27) to be conditional, τ = t, unconditional, τ = 0, or

in between. The distinction matters for the dynamic properties of the chosen εt given a discount

rate process, which I explore below, but makes no difference to the discount rate formulas here.

Analogously to (14) and (15), the first-order conditions are

1 = Et {mt+1 [εt+1fk(kt+1) + (1− δ)]} (28)

and

Λt+1f(kt+1) = λt+1 (1 + α)
εαt+1

θ1+α
t+1

. (29)

The Lagrange multiplier λt+1 applies to the time t+ 1 constraint in (27). It is known at time τ . If

τ = 0, λt+1 varies over time, but is constant across states of nature at timet. If τ = t, then λt+1 is

a time-t random variable.

Equation (28) again says that the investment return should be correctly priced,

1 = Et
(
mt+1R

I
t+1

)
; RIt+1 ≡ εt+1fk(kt+1) + (1− δ). (30)

Given the choice of productivity εt+1, invest in capital as usual. The investment return now

includes the depreciated value of capital after a period. Equation (29) again says to produce

more in high marginal utility, discount factor or contingent claim price states, and in in high

natural productivity θ states.

A discount factor that prices zero-cost portfolios at time t has

0 = Et(m
∗
t+1R

e
t+1)

and can be scaled by any time t random variable; btm∗t+1 also prices zero cost portfolios. A con-
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venient zero-cost portfolio discount factor is thus

m∗t+1 =

(
εt+1

εt

)α
/

(
θt+1

θt

)1+α

. (31)

One could use the same discount factor as before,

m∗t+1 = btε
α
t+1/θ

1+α
t+1 , (32)

for any bt. However, productivity εt, like consumption, typically is very persistent and grows

over time, and θt should have similar properties. So, while (32) with bt = 1, say, prices zero-

cost portfolios, its conditional mean varies strongly over time, its implied risk-free rate is po-

tentially counterfactual and time-varying, and it is potentially non-stationary violating the as-

sumptions of all time-series empirical work. Choosing growth rates as at least an initial scal-

ing, as in (31) is wise at least for typical time-series applications. Analogously, we typically use

mt+1 = β (ct+1/ct)
−γ , though m∗t+1 = c−γt+1 prices zero cost portfolios just as well.

One can scale further by any convenient time-t random variable. For example, one can

produce a given shadow or measured risk-free rate Rft with

m∗t+1 =
1

Rft

(
εt+1

εt

)α
/
(
θt+1

θt

)1+α

Et

[(
εt+1

εt

)α
/
(
θt+1

θt

)1+α
] , (33)

with or without εt and θt in the denominators.

Substituting (29) into (14), we can scale the discount factor to price the investment re-

turn, and display a full discount factor that prices the investment return as well as the zero-cost

portfolios,

mt+1 =

(
εt+1

εt

)α
/
(
θt+1

θt

)1+α

Et

[(
εt+1

εt

)α
/
(
θt+1

θt

)1+α
RIt+1

]
.

. (34)

More complex models of intertemporal production just make the formula for the invest-

ment returnRI more complicated. They only change the discount factor for zero-cost portfolios

to the extent that variable inputs such as labor show up in the production function. For example,

add adjustment costs and variable labor supply to the intertemporal production function. The

firm’s problem is now

maxE
∞∑
t=1

Λt(yt − it − wtnt)
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subject to

yt = εtf(kt, nt)− ψ (it, kt)

kt+1 = (1− δ)kt + it

1 = Eτ

[
(εt+1/θt+1)1+α

]
.

The intertemporal first-order condition becomes

1 = Et

[
mt+1

εt+1fk(kt+1, nt+1)− ψk(it+1, kt+1) + (1− δ) [1 + ψi(it+1, kt+1)]

1 + ψi(it, kt)

]
(35)

which we can write as usual

1 = Et
(
mt+1R

I
t+1

)
.

We now have a labor first-order condition,

εt+1fn(kt+1, nt+1) = wt+1,

and productivity choice,

Λt+1f(kt+1, nt+1) = λt+1 (1 + α)
εαt+1

θ1+α
t+1

. (36)

Relative to (29), this productivity choice condition is only different by the substitution

of f(kt+1, nt+1) in place of f(kt+1). This substitution means we have an extra source of natural

productivity shock, which we can express in terms of employment n or wage, just as in the one-

period model with labor. Using a standard Cobb-Douglas production function

f(k, n) = k1−σ
t+1 n

σ
t+1

we have

εt+1σk
1−σ
t+1 n

σ−1
t+1 = wt+1,

so, substituting and eliminating time-t variables and constants, we can write zero-cost discount

factors as

m∗t+1 =
εαt+1

θ1+α
t+1

1

nσt+1

m∗t+1 =
ε
α− σ

1−σ
t+1

θ1+α
t+1

w
σ

1−σ
t+1 .

These are the same formulas as the one-period problem (24) (26), with time subscripts.
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In this intertemporal context it is likely to be useful to use growth rates, and thus

m∗t+1 = bt
(εt+1/εt)

α

(θt+1/θt)
1+α

1

(nt+1/nt)
σ

or

m∗t+1 = bt
(εt+1/εt)

α− σ
1−σ

(θt+1/θt)
1+α

(
wt+1

wt

) σ
1−σ

where bt can also be set as convenient.

6.1 Dynamic productivity choice

In this section, I consider the choice of productivity ε given discount factors and natural produc-

tivity θ. We want some assurance that the actual productivity choice described by this model is

sensible. The previous calculations just say how to construct a discount factor from the produc-

tivity choice.

We face some natural and related questions. First, macroeconomic models usually fea-

ture serially correlated productivity, say

log εt+1 = ρ log εt + vt+1,

often including a random walk ρ = 1 or a unit root component, such as a random walk plus

AR(1). Can our model produce this kind of productivity process? The answer is yes, but only un-

der some specifications. Second, each time t+ 1 has a separate constraint (27). The constraints

are not connected at all, and the distribution of εt can be entirely different from that of εt+1. This

behavior is particularly troublesome in continuous time.

An immediate resolution of both concerns is similar: Even though the firm can choose

wildly different distributions at adjacent moments of time, if circumstances move continuously

and persistently, so will the choices. A constraint set that is smoother over time is still desirable,

and I close with some thoughts on how to achieve it.

To express the productivity choice ε in terms of the discount factor in this intertemporal
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setting, we can impose the constraint and find 1

(
εt+1

θt+1

)α
=

Λt+1θt+1f(kt+1){
Eτ

[
(Λt+1θt+1f(kt+1))

1+α
α

]} α
1+α

. (38)

If we specify τ = t, then f(kt+1) drops out. But if the expectation is taken earlier, or when we

generalize to f(kt+1, nt+1), it remains inside the expectation. At this level of generality I don’t see

a way to separately express the productivity ε and capital k choice given only the discount factor

and natural shocks.

Let us simplify with f(kt) = 1, as in general this will not be a major source of dynamics

especially at high frequency. Start also with θ = 1, so we can see how productivity responds to

discount factors alone. We have

α log εt = log Λt+1 − log

{
Eτ

(
Λ

1+α
α

t+1

)} α
1+α

.

If τ = t, then indeed we will have an i.i.d. productivity level εt. If τ happens earlier though,

productivity εt follows a moving average. And fixing τ = 0, log εt is as persistent as the level

of discount rates. This is a practical argument for specifying τ = 0 and generalizing the two

period model to a dynamic model by using an unconditional expectation in (27) rather than

conditional.

To see these statements explicitly, suppose that the discount factor follows a log random

walk,

logmt = log Λt+1 − log Λt = −µΛ − σΛvt+1, vt+1 ∼ N (0, 1). (39)

Now (38) gives

α log εt = log Λt+1 − log Λτ +

(
µ− 1

2

1 + α

α
σ2

Λ

)
(t+ 1− τ) (40)

or

α log εt = −σΛ

t−τ+1∑
j=1

vτ+j ,−
1

2

1 + α

α
σ2

Λ(t+ 1− τ).

1Algebra: From (29),
Λt+1θt+1f(kt+1)

λt+1 (1 + α)
=
εαt+1

θαt+1

(37)

[
Λt+1θt+1f(kt+1)

λt+1 (1 + α)

] 1+α
α

=
ε1+αt+1

θ1+αt+1

Taking time 0 expectations, imposing the constraint, and raising the result to the α/(1 + α) power,

1

λt+1 (1 + α)

[
Eτ
{

[Λt+1θt+1f(kt+1)]
1+α
α

}] α
1+α

= 1.

Substituting back in (37), we have (38).
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If τ = t, and the constraint is purely conditional Et(ε
1+α
t+1 ) = 1, then indeed the level of tech-

nology εt is i.i.d., and responds only to growth in the discount factor Λt, or the level of εt+1 is

proportional to the level of mt+1. This behavior is unlike consumption-based models in which

logmt+1 = log β − γ log ∆ct+1, or log Λt = t log β − γ log ct. However, if τ comes earlier, then

productivity follows a longer and longer moving average. And if τ = 0, then productivity fol-

lows a random walk with drift, and productivity growth rates are proportional to the one-period

discount factor mt+1.

We also obtain a persistent productivity process if we specify a persistent natural or un-

derlying technology shock θt. Equation (38) then implies that εt+1 will inherit the persistence of

θt+1, modified in the direction of the discount factor. Now even if the constraint is conditional

τ = t, productivity will include the θ random walk component.

To see this explicitly, suppose the natural productivity shock follows

log θt+1 = ρ log θt + µθ + σθwt+1, wt+1 ∼ N (0, 1),

and keep ρ = 1 in mind as an important case. Keep f(kt) = 1, the random-walk discount factor

process (39) and consider the τ = t conditional case in which chasing the discount factor alone

produces an i.i.d. productivity choice εt. We then have

α

1 + α
log
{
Et

[
(Λt+1θt+1)

1+α
α

]}
= log Λt + (µθ − µΛ + ρ log θt) +

1

2

(
1 + α

α

)(
σ2
θ + σ2

Λ − 2σθΛ
)
,

so writing (38) in logs, the chosen productivity follows

α log εt+1 = α log θt+1 + (σθwt+1 − σΛvt+1)− 1

2

(
1 + α

α

)(
σ2
θ + σ2

Λ − 2σθΛ
)

(41)

Log productivity εt is composed of a persistent component, α log θt+1, which can be a random

walk if ρ = 1, plus an i.i.d. component from the discount factor. To the extent that the firm

wishes to distort εt+1 away from θt+1 for a period in order to chase a higher contingent claim

price, it must pay by accepting a lower mean of εt+1, represented in the final term.

Why is the time τ when we take expectations that define the productivity-choice con-

straint important? Figure 4 illustrates a simple example. Let there be two periods, and two states

in each period with probability 1/2 and an outcome x = A,B,C,D. If we impose a constraint

conditioned at time 1, E1(x2) = 1 that constraint is

A+B

2
= 1;

B + C

2
= 1. (42)
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If we impose a constraint conditioned at time 0, E0(x2) = 1 it is

A+B + C +D

4
= 1. (43)

Now, the conditional constraint (42) implies the unconditional constraint (43). But the condi-

tional constraint is more stringent. The unconditional constraint (43) allows the firm to switch

output from (A,B) to (C,D). For example, it allows

A+B

2
= 1.5;

B + C

2
= 0.5.

The pure conditional constraint does not allow the latter substitution.

Figure 4: Information tree.

The unconditional constraint is equivalent to a set of conditional constraints,

E1(x2) = z1; E0(z1) = 1. (44)

In our case, limiting the 1 + α moment, the unconditional constraint is similarly recursive. The

constraint [
E0(x1+α

2 )
] 1
1+α = 1

is equivalent to the sequence of constraints

z1 =
[
E1(x1+α

2 )
] 1
1+α

1 =
[
E0

(
z1+α

1

)] 1
1+α .
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So the τ < t assumption in the productivity choice constraint (27) amounts to applying the same

productivity-choice idea to the constraint itself. We can write it

zt,t+1 =

{
Et

[(
εt+1

θt+1

)1+α
]} 1

1+α

(45)

zt−j,t+1 =
{
Et−j

[
(zt−j+1,t+1)1+α

]} 1
1+α

; j = 1, 2, ...τ (46)

zτ,t+1 = 1. (47)

What is the more reasonable assumption? (Besides a desire to reverse-engineer the “right”

answer.) This dynamic model brings up the issue of time. The firm’s actions to transform across

states of nature also involve time. The farmer plants seeds in different fields in the spring, but

after that there is little he or she can do to transform output across weather states. The electric

utility buys flexible or fuel-optimized equipment, but after that there is little it can do to trans-

form output across states indexed by fuel costs. It makes sense to allow the firm more flexibility

across states of nature if it has more time to rearrange things.

Equivalently, thinking about a shock at time 2, the firm will want to take action at time

0 that expand or contract its constraint set z1 at time 1, just as intertemporal consumers worry

about state variables. The state variable zt,t+1 is as much of a shock as productivity εt+1,and one

whose distribution the firm wishes to modify in an intertemporal model.

With this thought in mind, E0 seems the reasonable choice. The process of adjusting the

time-tproductivity may begin anytime before t, and faced with random-walk states the firm may

want to take random-walk actions. Conversely, if there is nothing much the firm can do at time1

to alter the time-t distribution,then this fact will simply be reflected in choices zt that do not vary

much over time.

The recursion (45)-(47) also allows us to answer the question, what if the firm re-optimizes

at period τ < s < t? With a constraint
{
Es
[
(εt+1/θt+1)1+α

]} 1
1+α = zs,t+1, the firm makes the same

choices if it re-optimizes.

With τ < t, and most easily τ = 0, the dynamic problem generalizes to continuous time.

The firm’s problem is

maxE

∫ ∞
t=0

Λt [εtf(kt)− it] dt s.t.

dkt = −δkt + itdt
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1 = E

[(
εt
θt

)1+α
]
. (48)

There is a different constraint (48) for each time t.The productivity choice first-order condition

is

Λtf(kt) = λt(1 + α)
εαt
θ1+α
t

.

Given ε and θ, this condition identifies the discount factor Λt up to differentiable functions of

time f(kt)and λt. Explicitly, we can evaluate the constraint as before, yielding

εαt
θ1+α
t

=
Λtf(kt)(

E
{

[Λtθtf(kt)]
1+α
α

}) α
1+α

.

The denominator varies as a differentiable function of time. Thus, in the basic asset pricing

relation

EtdRt − rft dt = −Et
(
dRt

dΛt
Λt

)
with

rft dt = −Et
(
dΛt
Λt

)
,

we know the diffusion component, i.e.

dΛt
Λt

= −rft dt+ d

(
εαt
θαt

)
/

(
εαt
θαt

)
.

We can thus use any rft to describe excess returns. Defining

dRet = dRit − dR
j
t

then

Et (dRet ) = −Et
(
dRet

dΛt
Λt

)
= −Et

[
dRetd

(
εαt
θαt

)
/

(
εαt
θαt

)]
.

The intertemporal first order condition is standard.

7. Alternatives

This extension to dynamic problems is not as pretty as I would like it to be. Fundamentally,

the constraint E
[
(εt/θt)

1+α
]

= 1 allows completely different random variables εt at each date

t. One would suppose that the distribution of productivity at time t would not be that different

from the distribution of productivity at time t + ∆. In the farming and electric utility examples,
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the choice of fields and machines do not allow one exposure to shocks at one instant, and a

different exposure 10 minutes later.

The above examples gives some reassurance that the firm will not choose wildly different

productivity distributions at closely adjacent time periods, given that circumstances described

by the distribution of discount factors Λ and natural productivity θ do not move that quickly. So

the model will not generally produce crazy predictions. Still, the description of production sets

is inelegant.

7.1 Alternative 1: A growth constraint

This situation is analogous to utility theory. The utility function or E
∑
βtu(ct) or E

∫
eδtu(ct)dt

can value consumption streams that have different distributions at each instant. Consumers

facing continuous incentives do not choose such paths, but they could. The resolution of this

sort of puzzle for consumption is to recognize that all consumption goods are durable at short

enough horizon. Even a pizza is durable for 10 minutes.2 This modification tends not to be used

however, because the first-order conditions for durable goods are more complex.

A similar situation applies to production sets. We would like a productivity-choice set in

which productivity at nearby dates must have similar distributions, and the distributions can

more easily diverge from each other as the time between production events increases. Doing

so, however, complicates the first-order conditions. Changing productivity εt at time t now in-

fluences the set from which future productivity εt+τ is chosen. Future discount factors as well

as current ones enter the choice of εt, and inverting to find discount factors from productivity

choices involves unwinding that intertemporal choice.

For example, we might write the choice set as a constraint on the growth of productivity:

Eτ

[(
εt+∆

θt+∆
/
εt
θt

)1+α
]

= 1. (49)

Somewhat analogously, with no depreciation, a durable purchase changes the flow of consump-

tion services. This specification is equivalent to writing a natural shock θt+∆ that incudes the

previous actual productivity εt, as part of the natural starting point. If one buys machines with a

given state-contingent output, then the natural starting point for next period is just to use those

machines. (This discussion implicitly also writes the state of nature at time-t as a history plus a

stationary and repeated shock.“Rain” at time t+1 is the same addition to the cumulative state as

2See Hindy and Huang (1992) This discussion makes light of serious mathematical questions, such as what does
ctdt, or εtf(kt)dt mean, and how do you integrate

∫
u(ct)dt or E

∫
εtf(kt)dt if the distribution ct and εt can change

discontinouously at every instant.
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“rain” at time t is to that cumulative state. This is a common and useful restriction on uncertainty

facing the firm which I have not so far imposed.)

Specification (49) also leads to a natural continuous-time expression,

Eτ

[(
d (εt/θt)

θt/εt

)1+α
]

= 0. (50)

Specifications (49) or (50) naturally result in technology εt+τ that wanders further away from its

initial value εt, and from the underlying shock θ, for a longer time horizon, even when τ = t

which produced an i.i.d. productivity before.

So far so good, but the first-order conditions become more complicated, because chang-

ing εt changes the choice set for all subsequent εt+τ . The resulting first-order conditions are

harder to unwind to a discount factor. With a constraint on the growth of productivity (49), the

firm’s problem is

maxE
∞∑
t=0

Λt [εtf(kt)− it] s.t.

kt+1 = (1− δ)kt + it

1 = Eτ

[(
εt+1

θt+1
/
εt
θt

)1+α
]
.

Now the first-order condition with respect to εt+1 is

Λt+1f(kt+1) = λt(1 + α)

(
εαt+1

θ1+α
t+1

/
ε1+α
t

θ1+α
t

)
− λt+1(1 + α)Et+1

(
ε1+α
t+2

θ1+α
t+2

)
/
ε2+α
t+1

θ1+α
t+1

. (51)

This first-order condition is the same for the conditional τ = t and unconditional τ = 0 specifi-

cations. The only difference is that in the conditional case λt is a time t random variable, where

in the unconditional case it is a time-varying constant known at time 0.

We can use (51) recursively to write the productivity-choice first-order condition as

∞∑
j=1

Et+1 [Λt+jεt+jf(kt+j)] = λt(1 + α)

(
εt+1

θt+1
/
εt
θt

)1+α

.

In this form you can see more clearly that increasing εt+1 at time t + 1 makes the constraints

easier for all future times, and thus has a present discounted benefit.

In these first-order conditions, you see effects similar to those of internal habit or durable

goods models. For writing simulation or general equilibrium models, or even for estimation,
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they are no harder than those. But inferring the discount factor from productivity is not as pretty

as in the time-separable cases.

Going forward, we want something tractable, which I think involves a state variable, some-

thing like the stock of durable goods in consumption theory or the value function in recursive

utility theory, that tracks the distribution of productivity. Then the firm can invest resources to

change that state variable. Such a model might also want the tradeoff α to be easier at longer

horizons. I leave this as one of many hazy suggestions for future work.

7.2 Alternative 2: Treating time and state symmetrically

A second alternative goes back to first principles. To extend the production-based asset pricing

idea to multiple dates, why not treat time and states of nature symmetrically? Write the firm’s

two-period problem as

max c0 + E(mc1) s.t.

{(
c0

θ0

)1+α

+ ρE

[(
c1

θ1

)1+α
]} 1

1+α

≤ K, (52)

where c denotes the firm’s final output sold to consumers, i.e. c = y − i. This production set is

concave and smooth across time and across states of nature. Explicitly, in the finite-state case,

max c0 +
∑
s

π(s)m(s)c1(s) s.t.

{(
c0

θ0

)1+α

+ ρ
∑
s

π(s)

(
c1(s)

θ1(s)

)1+α
} 1

1+α

≤ K.

The first-order conditions to this problem lead immediately to

m1 = ρ

(
c1

c0

)α
/

(
θ1

θ0

)1+α

. (53)

This discount factor prices all returns, levels as well as risk premia. It’s simpler. The parallel to

power utility is immediate. We can generalize this approach to dynamic problems and continu-

ous time transparently.

It may be easier to transform across time than across states of nature, but we can capture

such an effect as well by using different CES aggregators for state and time. For example,

max c0 + E(mc1) s.t.


(
c0

θ0

)1+α

+ ρ

{
E

[(
c1

θ1

)1+α∗]} 1+α
1+α∗


1

1+α

≤ K. (54)
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Then we obtain

m = ρ

{
E

[(
c1

θ1

)1+α∗]}α−α∗
1+α∗ ( cα

∗
1

θ1+α∗
1

)
/

(
cα0
θ1+α

0

)
Zero-cost portfolios are priced using α∗ (drop all the time-0 variables). But E(m) = 1/Rf is now

distorted by the first term in brackets. Intertemporal transformation and risk-transformation

are separated.

Why not follow this more elegant approach? One answer is, we then lose the connection

to standard production theory. A standard intertemporal production function, say

yt = εtf(kt) (55)

kt+1 = (1− δ)kt + (yt − ct) (56)

does not produce a pretty CES intertemporal allocation (52). It is not the limit of (54) as α∗ →∞,

for example. It does imply a smooth convex set for allocations over time. Derivatives dct+1/dct =

(1−δ)εt+1fk(kt+1) are well defined, and dc2
t+1/dc

2
t = (1−δ)εtfkk(kt) < 0. But that set not express-

ible as a CES aggregator of final output {ct}, or any other pretty functional form g(c0, c1, ...) = 0

that invites generalization to include states ct(s) in parallel with time – or at least I have not been

able to express it in such a way and find that generalization.

So, we can follow elegance, and the beautiful symmetry of static utility and production

theory exactly. But in so doing we have to throw out the contact with classic production theory.

Alternatively, we can tack the choice of productivity on to standard production theory. That

leads to a less elegant result, but perhaps a more productive result at least in the short run. But

perhaps also better ways can be found to write smooth production sets integrating time and risk,

and to connect them to the lessons of classic production theory without throwing the latter out

and starting over.

However, there may also be good reason to abandon the symmetry between time and

state. The underlying economic stories are quite different. We think of transformation over time

with a story captured by the usual symbols – some output is put aside or invested to become

capita that later produces more output. We think of transformation across states by stories such

as planting in fields with different state-sensitivities, investing in machines with different sen-

sitivities, and so on. Until the distribution across states can be expressed with a state variable

similar to capital, perhaps keeping time and risk separate is wise.
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8. General equilibrium, identification and calibration

In its simplest form, our discount factor is

mt+1 = λt
εαt+1

θ1+α
t+1

.

What specifications of such a production-based model will be empirically successful? We know

from Hansen and Jagannathan (1991) and its many extensions such as Cochrane and Hansen

(1992) several properties that a successful discount factor must have. This section takes up this

question, as well as the troublesome question of whether and what kinds of natural production

shocks θ we need, and how to identify them.

The basic asset pricing formula for excess returns 0 = E(mRe) implies that the expected

return is proportional to the covariance of returns with the discount factor,

E(Re) = −cov(m,Re)

E(m)
.

This relation implies
E(Re)

σ(Re)
= − σ(m)

E(m)
ρ(m,Re). (57)

To generate the market Sharpe ratio of about 0.5, the discount factor must be volatile, with

σ(m) on the order of 0.50 or more. That requirement has posed a challenge for consumption-

based asset pricing, as consumption itself has a much lower than 50% volatility, and very high

risk aversions are hard to swallow. It is hard to generate σ(∆c−γ) on the order of 50%. Output

and productivity are more volatile than consumption, however, and we have little a-priori feel-

ing about the production curvature coefficient α. This paper is devoted to lowering α from its

previously standard value, α =∞. So it is likely that achieving a high σ(ε1+α) will not be difficult,

and the classic equity premium puzzle is not likely to cause much trouble for production-based

asset pricing.

The discount factor should have a low and fairly stable conditional mean, to generate a

low and relatively stable real riskfree rateEt(m) = 1/Rft . Since the conditional mean and the risk

premium are separated in these production-based formulas, with the level of the discount factor

generated by conventional investment returns, we may anticipate few problems in generating a

low and stable conditional mean discount factor.

Relation (57) also holds conditionally, with time t subscripts. Risk premiums vary over

time. It is generally felt that time-varying conditional variance, σt(mt+1) should vary over time,

as conditional variance σt(Ret+1) operates on a different time scale and in response to different
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variables, and time-varying correlations ρt(mt+1, R
e
t+1) are a headache. A time-varying variance

of productivity ε may be plausible, time-varying opportunity sets αt may be plausible, and one

can imagine mechanisms parallel to habits in preferences that generate such variation in αt en-

dogenously.

The most obvious obstacle, however, is the sign of the covariance term. To generate a pos-

itive risk premium E(Re), the discount factor must covary negatively with the ex-post return. In

consumption-based asset pricing, m = λc−γ , the positive correlation of consumption growth

with asset returns is consistent with this negative correlation of the discount factor with asset

returns and a positive risk premium. Its failure is one of magnitude, not of sign. In production-

based asset pricing we have m = λεα/θ1+α, however, with α > 0. If there are no natural pro-

ductivity shocks θ, productivity ε is positively correlated with the discount factor. A positive

correlation of productivity growth ε with asset returns Re produces counterfactual negative risk

premium E(Re).

Intuitively, the discount factor, contingent claims price, or marginal utility is high in “bad

times,” when consumption is low, the stock market is low, and people would really value a

marginal dollar. A firm without a θ, without a bias to one state or another, will rearrange its

output to produce more in such high-price “bad times” states.

Now, there are many possibilities to avoid this conundrum. It presumes a one-factor

model in which consumption, productivity, and asset returns all move together. Maybe produc-

tivity is indeed higher in bad times. Whether productivity is procyclical is a debated in macroe-

conomics. (Measuring productivity is a headache too.) Yes, real business cycle models generate

recessions by productivity shocks, but the rest of macroeconomics in the new-Keynesian DSGE

tradition is essentially devoted to disbelief of that proposition. In recessions, firms produce less,

but they also shed workers and machines – and especially unproductive workers and machines.

Maybe the extension to labor and other inputs will add wages, labor input or other cyclical vari-

ables to the discount factor formula with the right sign, as the discount factors with labor and

wages (24) (26) suggest.

Asset returns, productivity and consumption are not perfectly correlated. Maybe large

components of asset returns are not related to the business cycle, so asset returns can be nega-

tively correlated with productivity and positively correlated with consumption. And not all asset

returns are the same. Asset returns contain multiple orthogonal priced factors past the market,

including value, size, momentum, term spread, default spread, and others. Maybe productivity

is correlated negatively with these additional factors, generating their premiums at least, if not

the market premium.
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Moreover, the production-based discount factor formula applies to each firm, as the con-

sumption-based discount factor applies to each individual. But, unlike the consumption case,

we have detailed data on individual firms, industries, and sectors. The philosophy of production-

based asset pricing already says to take these detailed data seriously, and construct many in-

vestment returns at a disaggregated level. Who knows where disaggregated information about

production-based discount factors using firm-level productivity will lead.

Still, it is unpleasant that the basic model seems to produce the wrong sign. The simplest

answer is to include natural productivity shocks θ. A model driven, at least predominantly, by

natural productivity shocks θ and not preference shocks will produce the “right” sign – at the

cost that now we must face the problem of how to identify natural productivity shocks θ. If there

is a high productivity shock θ, other things constant, firms will produce more in that state. Con-

sumers will consume more in that state, and drive down the discount factor or contingent claim

price of that state. This lower price causes firms to back off – to lower productivity ε somewhat in

the high-θ, low-price state, and to raise productivity somewhat in low-θ, high-price states. The

firm essentially buys some insurance. But the insurance may not be (and, as we will see, typically

is not) complete. The productm = λεα/θ1+α still moves negatively with θ, so the discount factor

moves negatively with consumption and asset returns. Productivity ε and productivity shocks θ

are not uncorrelated – in fact, in this example, we expect them to be perfectly negatively corre-

lated.

By analogy, strawberry prices are higher in the winter, yet farmers produce fewer of them.

Well, winter is a bad time for producing strawberries. Producers do what they can, building

hothouses or growing strawberries in Chile. So they move production towards the high price

state. But we still observe higher prices in times of lower output. We also can observe that the

price of strawberries is equal to the marginal cost of producing them, and write a production-

based strawberry pricing model. But in doing so, we must recognize that the strawberry market

is dominated by natural productivity shocks, not preference or sentiment shocks.

8.1 A simple general equilibrium economy

To validate and flesh out this story, focusing on the novel and risk premium parts of these prob-

lems, I consider a general equilibrium of the simplest one period model, with a preference shock

φ as well as a natural productivity shock θ. The bottom line of the model is a formula for equilib-

rium consumption, productivity and discount factor as a function of both shocks,

log c = log ε = const. +
1 + α

α+ γ
log θ +

γ − 1

α+ γ
log φ. (58)
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logm = const.− γ 1 + α

α+ γ
log θ + α

γ − 1

α+ γ
log φ. (59)

To derive (58) and (59), add consumers with utility

Eu(c) =
∑
s

π(s)u [c(s)]

where

u(c) =
[c/φ]1−γ − 1

1− γ
.

Marginal utility is

u′(c) =
c−γ

φ1−γ =
c(s)−γ

φ(s)1−γ .

The variable φ is a preference shock. For each c(s), higher φ(s) lowers utility. For γ > 1,

higher φ raises marginal utility. Thus a higher φ is a negative preference shock. Keeping the

parallel with consumption-based asset pricing, driven by productivity shocks, it makes sense

to investigate a production-based asset pricing model driven by preference shocks. Preference

shocks are also increasingly popular in both finance and macroeconomics. Many new-Keynesian

models now include preference shocks, at least as a stand-in for financial intermediation shocks.

Changing risk aversion is sometimes modeled as a preference shock. Albuquerque et al. (2016)

is a good example of a macro-finance paper arguing that preference shocks are needed to under-

stand the data, and particularly the imperfect correlation between asset returns and economic

variables. And behavioral finance is all about preference shocks. “Sentiment” or irrationally as-

sessed probabilities are equivalent to φ shocks.

Consumers own the firms, and thus have a contingent claim that pays a random amount

e. The consumer’s budget constraint is

E(me) = E(mc).

The consumer’s first-order conditions are

m = λu′(c) = λc−γ/φ1−γ (60)

so consumption is

c = m
− 1
γ φ

γ−1
γ λ

1
γ .
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Evaluating λ via the budget constraint, the full solution to the consumer’s problem is

c = E(me)
m
− 1
γ φ

γ−1
γ

E
(
m

1− 1
γ φ

γ−1
γ

) . (61)

We cannot do better than (60) invertingm from c in this model. Doublingm has no effect on the

budget constraint, and no effect on consumption in (61).

Producers have a stock of capital with f(k) = 1. They maximize

E [mεf(k)] s.t. E(ε1+α/θ1+α) ≤ 1.

Producers’ first-order conditions are

m = λεα/θ1+α. (62)

Using the constraint to eliminate the Lagrange multiplier λ, the solution to the producer’s prob-

lem is

εα =
mθ1+α{

E
[
(mθ1+α)

1+α
α

]} α
1+α

We cannot do better than (62) to invert the discount factor from ε. Doubling m does not affect

the constraint, and has no effect on the productivity ε choice.

In equilibrium, consumers own the firm so their endowment equals the firm profit, e = ε,

and consumption equals the firm’s output, c = ε. (This equality is an important limitation of this

static analysis. In a dynamic model, equilibrium requires ct = yt− it. I leave general equilibrium

of a dynamic model as one of many loose ends for future work.)

We can find the equilibrium from the planning problem

maxEu(c) = (c/φ)1−γ s.t. E
[
(c/θ)1+α

]
≤ 1.

The first-order condition is

c−γ/φ1−γ = λcα/θ1+α

Imposing the productivity choice constraint, the full solution of the planning problem is

(α+ γ) log c =
α+ γ

1 + α
log
{
E
[
(θ/φ)

(1−γ) 1+α
α+γ

]}
+ (1 + α) log θ + (γ − 1) log φ.
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The constant is not interesting for us, however, so I write the equilibrium as (58)

log c = log ε = const. +
1 + α

α+ γ
log θ +

γ − 1

α+ γ
log φ. (63)

Using either discount factor formula (60) or (62), the equilibrium discount factor is as given buy

(59)

logm = const.− γ 1 + α

α+ γ
log θ + α

γ − 1

α+ γ
log φ. (64)

A claim to consumption, or the output of the firm, has price

p = E(mc) = E(mε)

and thus excess return

Re =
c

E(mc)
− 1

E(m)
.

In this model the return is perfectly positively correlated with consumption. Scaling by the risk

free rate to obtain a quantity independent of the level of the discount factor m,

E (Re)

Rf
=
E(m)E(c)

E(mc)
− 1

Assuming normal distributions, we have

E (Re)

Rf
= γσ2

[
1 + α

α+ γ
log θ

]
− ασ2

[
γ − 1

α+ γ
log φ

]
+ (γ − α)cov

[
1 + α

α+ γ
log θ,

γ − 1

α+ γ
log φ

]
. (65)

Together, (63) (64) and (65) characterize the general equilibrium of this economy.

8.2 Analysis

Under log utility γ = 1, the economy uses the productivity θ shocks unchanged, ignoring the

preference shock φ: log c = log ε = log θ, and logm = − log θ. Log utility also generates a positive

premium E(Re)/Rf = σ2 (log θ). This case shows immediately how ε and θ can be positively

correlated – perfectly, here – and how a production-based model can generate a negative corre-

lation between productivity and the discount factor and thus a positive risk premium.

Next, free up risk aversion, but turn off preference shocks φ, and consider an economy

driven only by natural productivity shocks θ. Depending on risk aversion γ, equation (63) shows

that chosen productivity ε can be either more or less volatile than natural productivity θ. If risk

aversion γ > 1, the (63) term in front of log θ is less than one. Producers reduce productivity

ε volatility compared to the natural θ shocks, reducing productivity ε in good, high θ, states, in
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order to raise productivity ε in bad, low θ states. If γ < 1, however, producers actually choose

more volatile ε productivity shocks than the natural θ shocks.

In all of these cases however, ε and θ move together, the discount factorm is negatively re-

lated to observed productivity and consumption, and the equity premium is positive. The signs

are normal, but we have to deal with unmeasured underlying productivity shocks θ, perfectly

correlated with measured productivity ε in m = λεα/θ1+α.

In the limit α → ∞, the standard case without productivity choice, we also have ε =

c = θ, and the standard consumption-based model with logm = −γ log θ and a positive equity

premium. The model with productivity choice maintains the same signs and intuition.

Suppose we parallel consumption-based asset pricing by modeling an economy with pure

preference shocks φ and no underlying technology shocks θ. For the realistic γ > 1 case, equilib-

rium consumption in (63) rises with the preference shock. However, the discount factor in (64)

also rises with the preference shock so the discount factor is high when consumption is high.

Firms have done what they can – with α < ∞, the rise in consumption is greater and the rise in

marginal utility less than it would be otherwise. But firm responses do not change the sign. The

equity premium is negative.

This case verifies our conjecture: a production-based asset pricing model driven by pref-

erence shocks and no underlying productivity shocks delivers the wrong sign – output is higher

in high marginal utility states, so a claim to consumption or the productivity shock provides

insurance and generates a negative risk premium.

This simple result suggests that productivity (and whatever complexities of the produc-

tion process that stands for) rather than preferences (and whatever complexities the latter stand

for, including intermediation and time-varying irrational probability assessments) must be the

dominant shock driving the joint behavior of asset returns and macroeconomic fluctuations.

This observation is not limited to models with an active production-based margin. If α =∞ but

θ = 1, consumption is constant. The discount factor is

logm = const. + (γ − 1) log φ.

and the expected return on the consumption claim is

E (Re)

Rf
= −σ2 [(γ − 1) log φ] .

Pure preference (or “sentiment”) shocks can give variation in prices, but they cannot generate

the positive association we see between returns and the macroeconomic cycle.
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In reality, we should be prepared to see a mixture of preference and productivity shocks.

Identification then follows exactly the standard supply and demand parable of economics 101 –

and reminds us of just how difficult identification really is, if we do not sweep it under the rug by

assuming one side lives in a shock-free world.

What relation between consumption or productivity and discount factors we will see in

equilibrium? If there are preference shocks but no productivity shocks, then (63) and (64) obey

logm = const. + α log c = const. + α log ε.

The data trace out the marginal rate of transformation curve and identify production curvature

α, for any value of risk aversion γ. The upward sloping line of Figure 5 illustrates this case.

If there are productivity shocks θ but no preference shocks, then (63) and (64) imply

logm = const.− γ log c = const.− γ log ε. (66)

The data trace out the marginal rate of substitution curve and identify risk aversion γ, whether

or not firms have a technology choice, i.e. for anyα. The downward-sloping line of Figure 5 illus-

trates this case. How did we lose the production-based discount factor and α? The production-

based discount factor formula

logm = const. + α log ε− (1 + α) log θ (67)

is still there. However, with productivity shocks and no preference shocks, ε and θ are perfectly

correlated in equilibrium, by (63).

I stress this case, because it seems like an important parable for what we may see in the

data. Several papers, discussed in the literature review below, use ad-hoc discount factors based

on productivity, and find such negative coefficients. If underlying productivity shocks domi-

nate, then although the discount factor has a positive and structural coefficient on productivity,

in (67), an approximate discount factor that uses productivity but does not (somehow) control

for the shock θ, will see a negative coefficient. That coefficient is the risk aversion coefficient

in this pure case, but in general, with both productivity and preference shocks, it is a mongrel

combination of parameters.

When there are both preference and productivity shocks, the data fill out between these

two options. The forward regression of logm on log c produces a line that is too flat, while the re-

verse regression of log c on logm produces a line that is too steep. Since the errors are not orthog-
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onal to right hand variables, neither regression offers a consistent estimate of either parameter.

The left-hand panel of Figure 5 shows an example in which productivity shocks dominate, while

the right hand panel shows an example in which preference shocks dominate. With preference

and productivity shocks of the same size, the data fill a cloud.

Conventional GMM estimation of consumption-based models hinges crucially on the as-

sumption that there are no preference shocks, and thus all variation comes form productivity

shocks. The difficulties of that model, and the imprecision and paradoxically high values of γ it

reports suggest that preference shocks may indeed be part of the story.

(The plot simplifies the story by graphing the relation between discount factor m and

productivity or consumption. We usually do not have data on m, but the same idea holds for

standard estimates. Examining the GMM objective E(c−γRe) = 0 , the GMM estimate of γ is

inconsistent when the true discount factor includes preference shocks, and likewise that a GMM

objective E(εαRe) = 0 leads to an inconsistent estimate of α when the discount factor includes

productivity shocks.)

To estimate γ or α consistently, we need identifying assumptions. Since all variables

shown so far depend on both shocks, and those shocks are unobservable, such assumptions

are not immediately obvious. It’s easy to make identifying assumptions. It’s harder to make cor-

rect identifying assumptions. The literature review includes some identification efforts, and the

final section includes some thoughts on how to address the issue.
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Figure 5: Discount factor logm vs. consumption log c in the general equilibrium model. The
downward sloping line plots the case of no preference shocks. The upward sloping line plots
the case of no productivity shocks. Left panel: The circles show artificial data from a case with
larger productivity than preference shocks, σ(θ) = (γ − 1)× 1, σ(φ) = (1 + α)× 0.4. Right panel:
The squares shod artificial data from a case with larger preference than productivity shocks,
σ(θ) = (γ − 1)× 0.4, σ(φ) = (1 + α)× 1.
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The discount factors with labor inputs (24) (26)

m∗ =
εα

θ1+αnσ
. (68)

m∗ =
εα−

σ
1−σ

θ1+α
w

σ
1−σ . (69)

provide additional sources of variation that might help to produce a procyclical discount factor.

Labor n enters negatively in (68): the discount factor is lower in times of high labor input. This

seems to be a helpful step towards the quest to produce a model with a countercyclical discount

factor. However, wages enter positively in (69), which suggests another force pulling us towards

a procyclical discount factor. How can the two expressions suggest different directions? Because

these are all endogenous variables and all correlated with each other, as θ and ε are. In response

to a natural productivity shock, firms hire more labor, drive up wages, and lower actual pro-

ductivity ε. Both (24) and (26) can hold at the same time because of the different coefficient on

ε.

I do not pursue general equilibrium with wages, or the necessarily more ambitious tech-

nologies one will need to seriously address data. Still, these simple expressions point to the

possibility that with labor and other inputs, including additional shocks or wedges, the natural

productivity shocks θ may not have to do all the work of producing a procyclical discount factor.

Equation (69) seems to offer another approach: perhaps for small α and large σ/(1 − σ),

the coefficient on ε can become negative, so that higher productivity comes with lower discount

factors, even without natural shocks θ or contemporaneous wage movement w. However, α >

σ/ (1− σ) the condition for a convex problem. (If α ≤ σ/(1 − σ), then the firm chooses all of its

production in one state, and one should state and impose the condition ε ≥ 0.)

8.3 An endowment-economy analogy for production-based asset pricing

This sort of general equilibrium excursion helps us to understand what data might look like

which we will face, and what kind of measurement or identifying assumptions for shocks θ and

φ might be useful. However, the guiding philosophy of a production-based asset pricing model

is to avoid computing a full general equilibrium. Figure 6 illustrates the idea.

One can approach data with a full general equilibrium economy, incorporating a pro-

duction function, productivity choice ε and a utility function. Then one finds contingent claim

prices or the discount factor from the tangency point of marginal rate of transformation or sub-

stitution, represented by the straight line.
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Figure 6: General equilibirum. The outward-bowed curve is a shock-choice set E
[
(ε/θ)1+α

]
≤ 1

with α = 1, θ = [2, 1]. The inward-bowed curve is an indifference curve for a power utility
consumer with u = (c/θ)1−γ , φ = [5, 1], γ = 2. The dashed lines give equivalent endowment
economies, i.e. fixed shocks ε or fixed-coefficient Leontief preferences that deliver the same
equilibrium quantities and prices.

Consumption-based asset pricing simplifies the computation. If one models the con-

sumption process, or the productivity ε process as if it were an endowment, or a fixed random

variable, then one can still read asset prices off marginal rates of substitution alone. Specifi-

cally, start with a general equilibrium with natural productivity θ, a curvature parameter α and a

chosen productivity ε. Construct a new economy consisting of a fixed-proportions production

function calibrated to the observed ε, ε∗ = θ∗ = ε, and α∗ =∞, but keeping preferences and the

preference shock φ∗ = φ unchanged. This new economy has the same asset pricing implications

as the old one, read off marginal rates of substitution alone. In Figure 6 one can model the pro-

duction side as the Northeast pointing box outlined by the dashed lines, keep the indifference

curve, and asset prices are unchanged.

One can create an analogous production-based asset pricing model. Again, measure or

model the consumption or productivity process ε∗ = ε. Leave productivity shocks θ∗ = θ and

keep the smooth production set α∗ = α. Marry this production process to fixed-coefficient

preferences. In place of the smooth utility function and preference shocks – both of which may
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be quite complex these days – let

u [c(h), c(l)] = min

[
c(h)

ε(h)
,
c(l)

ε(l)

]
. (70)

Then, measure contingent claim prices or the discount factor from the marginal rate of transfor-

mation alone. This new economy has the same asset prices and quantity implications as the full

general equilibrium – but spares the researcher having to model and measure the entire con-

sumption and intermediation side of the economy.

Fixed coefficient preferences (70) act like endowments. They generate a simplified gen-

eral equilibrium economy with the same asset pricing and quantity implications as the full equi-

librium – if one models the equilibrium consumption and productivity processes correctly. This

approach may be useful for simulation economies, as the endowment economy formulation has

been successful in consumption-based asset pricing.

9. A simple aggregation model

The main philosophy in this paper is to model the aggregated (smooth) production possibility

set directly, rather than to derive the structures of such sets from primitive traditional specifica-

tions. The primitives are typically unobservable, and, again, there was no particular reason for

specifying fixed patterns across states in the first place. However, it is useful as motivation, and

to help think about what a smooth production set might look like, to sketch a model in which a

smooth aggregated production set is derived from underlying traditional technologies.

Consider a two-state world in which the firm has two technologies. For example, a farmer

can plant in two fields. One field does well in wet weather, the other in dry weather. The farmer

can then shape the risk-exposure of his or total output to weather by varying the amount planted

in each of the two fields. I’ve told the story before, let’s write it in equations and make an accurate

picture.

Let the technologies of field i be

yi(s) = εi(s)k
η
i ; s = h or l, i = 1 or 2.

Total output is then

y(s) = y1(s) + y2(s); s = {h, l}
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and total inputs are constrained by initial capital less initial sales,

k = k1 + k2.

We want to know what this structure implies for the aggregates k and y(s). (Or, if we wish

to characterize the production set by outputs alone, y(0) = W − k and y(s).) Figure 7 plots the

answer. To produce the figure, I vary k1 from 0 to k = 1, I let k2 = k − k1. Then, I calculate

y(s) = ε1(s)kη1 + ε2(s)kη2 with ε1(h) = 2, ε1(l) = 1 and ε2(h) = 1, ε2(l) = 2. The far lower right

point on the curve, for example, puts all initial capital into technology 1 that does well in the

h state. The far upper left point puts all initial capital into technology 2 that does well in the

l state. The aggregate production possibility set is smooth. Free disposal allows the aggregate

production set to fill out the area indicated by dashed lines.

0 0.5 1 1.5 2 2.5

y(h)

0

0.5

1

1.5

2

2.5

y
(l
)

Figure 7: Aggregate production set {y(h), y(l)} induced by two technologies, y(s) = y1(s) +y2(s);
yi(s) ≤ θi(s)k0.5

i ; i = 1, 2; s = h, l; k1 + k2 = 1.

For this construction to work – for the marginal rate of transformation ∂y(h)/∂y(l) to exist,

so we can equate it to contingent claims price ratios ∂y(h)/∂y(l) = ph/pl for any such ratio – we
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need a spanning or invertibility condition, in this case that the matrix

 ε1(h) ε2(h)

ε1(l) ε2(l)


is non-singular. If there are more than two technologies, we need the rank of a larger shock ma-

trix to be at least two, the number of states. We also need sufficient concavity of the underlying

production function f(k). If not, the curve of Figure 7 is a straight line, and production ends up

at one of the corners for all but one contingent-claim price.

For continuous-state economies, we subdivide technology into finer units of analysis.

Each square foot of land may have slightly different sensitivity to weather. Thus, consider tech-

nologies indexed by z, and states of nature indexed by ω. Aggregate output is

y(ω) =

∫
dzε(ω, z)f [k(z)]

The corresponding invertibility or spanning condition is that we can invert this relation to

f [k(z)] =

∫
dΠ(ω)λ(ω, z)y(z).

Loosely, this condition expresses the idea that the number of states equals the number of tech-

nologies, or that there exists a distribution of capital k(z) that achieves any given state-contingent

output y(z). Here I integrate across states with a probability measure dΠ(ω).

Alternatively, we can derive smooth production sets by allowing the firm to vary its invest-

ment in a few technologies continuously over time, extending the classic Black-Scholes option

pricing approach to multiple risky and concave investment strategies.

I do not belabor necessary and sufficient conditions for spanning, as the major point of

this paper is to write down smooth technologies directly, just as we write down aggregate tech-

nologies y = f(k, l, .) that are smooth across inputs rather than derive them from deeper funda-

mentals. You can see from this discussion where such an aggregation theory would go.

We use an aggregation theory when we have good detailed evidence on foundations –

individual preferences, machine-specific production functions – and we wish to use that knowl-

edge to figure out representative-agent preferences or representative-firm production functions.

That is not (yet) the case here, so the aggregation theory just makes the point that the aggregate

production function may be smooth when machine-specific production functions are not.

With this basic idea, you can see many potential microfoundations for active tradeoffs
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across states. The firm could invest in capital or R&D to shift its output across states – buying

solar cells, or multifuel engines, for example, change the distribution of profits across states

indexed by energy price shocks. And thinking about such aggregation stories may be a useful

way to improve on the description of shock choices in an intertemporal context, as outlined

above.

The aggregation story emphasizes two points, however: First, technologies generated in

this way will vary only across states of nature that are related somehow to the production pro-

cess. The firm cannot transform output across states of nature that depend on a pure preference

shock, or other exogenous random variable such as who wins the Super Bowl. Second, since

probabilities do not enter the technology, probabilities do not enter the marginal rates of trans-

formation. There is no counterpart to the risk neutral benchmark in which marginal rates of

substitution are proportional to probabilities.

10. Literature

The idea of linking asset prices to quantities via producer first-order conditions, and thereby

studying the production side of the economy without having to specify preferences, goes back a

long way. My first effort was Cochrane (1988).

The word “production-based” has (in my view) become somewhat confused with “general

equilibrium models that include production.” A vast literature writes models with (often inter-

esting and elaborate) preferences, along with detailed (interesting and elaborate) production

technologies, and sometimes market frictions as well, calibrated to match asset pricing facts.

Though some such papers use the word “production-based” to describe their efforts (Croce

(2014), for example), I’ll limit discussion to the effort to link asset prices to production data with-

out, or with at most light, assumptions about consumers and market structure.

This effort swiftly ran in to the problem outlined in the introduction: standard production

technologies do not give a marginal rate of transformation across states.

Standard technologies do, however, give rise to investment returns, and production-based

asset pricing has to date largely linked macroeconomics to asset pricing via investment returns.

One can characterize the prediction of an essentially Q-theory model, as outlined in Section 6,

that production technology gives rise to a physical returnRI , measurable from investment, capi-

tal, output, and labor decisions (35). With adjustment costs, the investment return is dominated

by investment, and thus is approximately proportional to investment growth. As a result, mod-

els based on investment returns are often called “investment-based asset pricing,” and a cross-

sectional extension (discussed below) an “investment CAPM.” The investment return should be
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priced by any discount factor, 1 = E(mRI). Any asset returns or prices that can be determined

by arbitrage with the investment return should be so priced. When marginal Q equals average

Q, the firm’s stock (or stock and bond) return should equal the investment return, ex-post as well

as ex-ante.

This effort was remarkably successful, at least compared to the widespread view that Q

theory doesn’t work at all. Cochrane (1991) shows that an investment return based on aggre-

gate investment data is well correlated with stock returns at business-cycle frequencies, and that

variation in expected stock returns as forecast by the dividend yield, term spread, investment to

capital ratio and other variables matches well variation in expected investment returns. Lam-

ont (2000) shows that measures of investment plans offer even better correlations. When stock

prices rise it takes time to put investment into motion, but investment plans move quickly. One

could also specify a time-to-build technology, but investment plans show the correlation quickly

and transparently. Unlike many theories, the investment-return approach works better for big

movements than small ones: the 1990s stock boom corresponded to an investment boom; the

2008 stock price plummet coincided with an investment collapse. (See Cochrane (2017) Figure

4.)

This branch of production-based asset pricing is exactly the same as a very simple ver-

sion of Q theory. Yet it seems to work much better. This experience reflects an important lesson:

how theories are implemented empirically matters a lot. Traditional Q theory focuses on de-

tailed treatment of corporate taxes and measures of book values; it focuses on interest rates as

the central driver of cost of capital; it relates the level of investment to the level of Q; it includes

more complex production technologies (with marginal not equal to average Q, for example); it

often uses cash-flow forecasts and other detailed measurements beyond investment and stock

prices. It also focuses on failure: The theory predicts a 100% R2 – investment should be propor-

tional to Q, exactly, with no error. Any error is a formal rejection of the theory. That research

focuses on the correlation of Q theory errors with cashflow. Much of the research has a goal of

using Q theory only as a control to show what it can not explain, in order to advance a cashflow-

constraint agenda.

By contrast, investment-return work focuses on equity premiums as the central driver of

cost of capital, and we now know that equity premiums vary over time far more than riskfree

rates, and in the opposite direction. Equity premiums are high in recessions with low stock

prices, and low investment; interest rates are low in recessions. Investment-return work relates

business-cycle frequency measures of investment growth to stock returns, ignoring the obvious

high frequency failure (5 minute stock returns do not correlate with 5 minute investment growth)
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and ignoring low frequencies and the cross-section of levels where measurement issues allow

prices to diverge persistently from book values. And, admitting that anything less than 100% R2

is a formal rejection, it looks for the part of the glass that is half full. And finds it.

This lesson will be important in using the cross-sectional branch of production-based

asset pricing described in this paper. There are hundreds of implementation decisions. Formal

rejections of specific implementations will be easy. Figuring out where the theory is most useful

will be harder.

Relating variation in the market return over time to investment growth is interesting, but

the variation in average returns across assets and (especially) across portfolios sorted on various

characteristics is the heart of the asset pricing empirical challenge. Extending production-based

asset pricing to describe the cross-section of returns is the crucial next step.

The investment-return based literature took that step, constructing multiple investment

returns to extend asset pricing predictions to a larger cross-section. We have a wealth of data on

industry, portfolio, and firm-level production that can construct similarly detailed investment

returns. Though we still can only price by arbitrage from this set of returns, the more cross-

sectional information the better.

The literature that Zhang (2017) calls the “investment CAPM” made remarkable progress

by this approach. (Again, the normally forbidden adjective is merited, I think, relative to expec-

tations.) Each firm’s investment return should equal that firm’s asset return. Firms with higher

investment growth have higher investment returns and higher stock returns, both actual and

expected. The same prediction holds of portfolios of firms. Zhang (2017) shows that cross-

sectional variation in expected investment returns line up well with many of the “anomalous”

cross-sectional patterns in expected stock returns. (The iceberg of which this survey is a tip in-

cludes Lyandres, Sun, and Zhang (2008) Li, Livdan, and Zhang (2009), Liu, Whited, and Zhang

(2009), Wu, Zhang, and Zhang (2010), Li and Zhang (2010), Liu and Zhang (2014) and Goncalves,

Xue, and Zhang (2019). There are lots of anomalies and measurement issues to work out!)

Whether one can say this approach “explains” the anomalies and if so “rationally” is a

contentious question. It documents that firms adjust decisions properly in response to expected

returns, so investment decisions and expected returns are connected as economics says they

should be. But both investment and expected returns are endogenous variables. Both could be

driven by fads and irrationalities on the parts of consumers. Still, if expected returns line up with

consumption or factor betas, one can make the same objection to the word “explain,” as returns,

consumption and its betas are also endogenous variables. So, one can say that the investment

CAPM “explains” as well as a standard consumption CAPM would, if a consumption CAPM were
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successful.

I also think the word “investment CAPM” is a bit misleading. “CAPM” suggests that all

expected returns line up with covariances of returns with investment growth or investment re-

turns, and promises a theory that in principle can explain any asset return as the CAPM does.

That is not the case. The “investment CAPM” theory remains arbitrage between each return and

each investment return, by arbitrage, in isolation. But he or she who does the detailed work

gets to baptize the results, so just understand how the fundamental structure of an “investment

CAPM” remains different from that of a CAPM or consumption CAPM.

We still desire a general purpose model then, one that could in principle price a larger set

of returns. Cochrane (1996) investigates one way to extend a cross-section of investment returns

to price lots of assets. It uses a discount factor formed from two investment returns,

m = a+ brR
I,r
t+1 + bnrR

I,nr
t+1 (71)

where r denotes residential investment and nr denotes nonresidential investment, in order to

price a cross-section of stocks. (It is also where I first thought about conditional vs. uncon-

ditional factor models, scaling factors in GMM, and the somewhat dangerous plots of average

returns vs. predicted average returns.) Obviously, one should extend this approach with a much

larger set of investment returns on the right hand side.

Why are we allowed to extend observation of two returns to price other returns, which are

not connected by pure arbitrage? Arbitrage pricing theory, a limit on Sharpe ratios of strategies

that profit from the difference between asset returns and investment returns, leads to such an

approximate discount factor of the form (71) for asset returns highly correlated with combina-

tions of the two investment returns. (See Cochrane (2005), Chapter 9.4.) Or, the paper spec-

ulates, if the investment returns span the investment opportunity set then consumption and

marginal utility must be driven by the two investment returns. On p. 577,

Why should investment returns be factors for asset returns? Factor pricing models

are derived by arbitrage assumptions or by preference assumptions. We can assume

that the firms on the . . . NYSE are claims to different combinations of N production

technologies, plus idiosyncratic components that have small prices. Alternatively, we

can invoke preference assumptions under which the returns on the N active produc-

tion precesses, which are the only nondiversifiable payoffs in the economy and add

up to aggregate wealth, drive marginal utility growth and hence price assets. . .

Zhang (2005), and, citing Zhang, Jones and Tüzel (2013), İmrohoroğlu and Tüzel (2014),
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Belo and Lin (2012) and Belo and Yu (2013) follow a similar approach. They estimate or simulate

“production-based” models with discount factors

logm∗t+1 = constant− γtεt+1 (72)

where εt+1 is the shock to aggregate productivity and γt is a coefficient. (Belo, Lin, and Bazdresch

(2014) add a cost-shock second factor.) However, as presented, it is a bit of a stretch to call

these models “production based,” at least by the definition given here of pricing assets from

producer first-order conditions, leaving out preferences. These models really follow in the mode

of the second suggestion in Cochrane (1996), loosely suggesting that consumption should be a

function of the aggregate productivity shock. They really uses consumption-based asset pricing

to extend the discount factor from a single investment return to multiple returns. For example,

Zhang (p. 71) writes

“Suppose there is a fictitious consumer side of the economy featuring one rep-

resentative agent with power utility and a relative risk averse coefficient, A. The log

pricing kernel is then logMt+1 = log β + A(ct − ct+1), where ct denotes log aggregate

consumption. Since I do not solve the consumer’s problem that would be necessary

in a general equilibrium, I can link ct to the aggregate state variable in a reduced-form

way by letting ct = a+ bxt [εt in my notation] with b > 0.”

This paper can give a truly production-based view of where the model (72) comes from. As

we saw in Section 8, when underlying productivity shocks θ dominate, then actual productivity

ε is chosen in a way that is positively correlated with underlying productivity θ. The discount

factor logm = const. + α log ε − (1 + α) log θ then may load negatively on the observed ε in a

reduced form model that does not include θ. (I.e. θ is estimated from ε.)

Jermann (2013) used the idea that with two investment returns, one can span two states

of nature, by pure arbitrage with no reference to preferences. In essence, he implemented the

model of Section 9. He created a two-state simulation model, which captures salient features of

the term structure. The trouble is, this approach is limited to simulation economies as reality

seems to have more states of nature than investment returns.

This paper explores a fundamentally different approach to understanding marginal rates

of transformation across states of nature, than elaborating on investment returns and trying to

extend pricing from investment returns to other payoffs by preferences, arbitrage, or approxi-

mate arbitrage. It is a revision of the first part of Cochrane (1993). That paper sat a long time,

as I hoped to complete an empirical counterpart and cleanly solve the θ identification question.
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But bringing such a model to data, or constructing simulation models that may be compared

to data, is an extensive project in its own right, with numerous measurement, specification and

identification issues to face. So this will, for now, have to stand as it is.

Belo (2010) is the first paper to use this production technology with productivity choice

empirically. Belo proposed a clever approach to the identification problem, which could (and

should) be generalized to much larger groups of investment returns, of the sort used by Zhang

and coauthors. Discount factor formulas such asm∗ = λεα/θ(1+α) hold separately for each tech-

nology, just asmt+1 = βu′(ci,t+1)/u′(ci,t) holds separately for each individual i. Taking logs of the

discount factor (12),

log
(
m∗t+1

)
= α log(εi,t+1)− (1 + α) log(θi,t+1)

separately for each technology i. (Belo multiplies and divides by θ1+α
t and εαt to express the

model in growth rates. I simplify here to make the point clearer. Belo also uses α where I use

1 + α.) Belo then assumes that multiple technologies have a factor structure,

(1 + α) log(θi,t) =
J∑
j=1

λijFj,t.

With a single factor F , and two technologies 1 and 2, then,

log
(
m∗t+1

)
= α log(ε1,t+1)− (1 + α)λ1Ft+1 (73)

log
(
m∗t+1

)
= α log(ε2,t+1)− (1 + α)λ2Ft+1 (74)

Now, we can eliminate the latent factor F , to express the discount factor.

log
(
m∗t+1

)
=

α

λ1 − λ2
[λ1 log(ε2,t+1)− λ2 log(ε1,t+1)] . (75)

We observe log(εi) = log(yi) − log f(ki). Anything time t is soaked up into the constant and

identified by pricing the risk free rate or the investment returns. Normalizing λ1 = 1, we can

estimate λ2.

The model is identified, though we do not directly observe the natural productivity shock

θ. Intuitively, since the firms have different loadings on a common θ, they will choose produc-

tivity shocks ε that are perfectly correlated, but one moves more than the other. Then the differ-

ence between the shocks reveals the discount factor. Or, solving (73) and (74) for the shocks ε,

the shocks move by the same amount in response to m, but one moves more than the other in

response to F . Thus, watching the differences between the shocks, we can disentangle the two
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sources of ε movement, m and F .

The assumption may appear more plausible with more technologies. Across J technolo-

gies, there are J sources of unobserved movement θj and one additional source of movementm.

Reducing the dimensionality of the θ by only one via a factor structure assumption, we can iden-

tify m. To generalize, we need a J − 1 factor structure of technology shocks, not a single-factor

structure.

Since Belo assumes yt = εtf(kt) with kt predetermined, he uses yt in place of εt in (75).

The bottom line is a two-factor macro-pricing model, using output growth,

log(m∗t ) = a− b1∆y1
t − b2∆y2

t .

This bottom-line result is the same form as the Cochrane (1996) investment-based model, with

output growth in the place of investment growth. But Belo derives that otherwise ad-hoc model

from the pure production-based pricing idea with the clever factor structure assumption to

identify natural productivity shocks. He also adds a relative price of output and investment

goods, which adds a second set of factors, and prices a more up to date set of asset returns.

11. Concluding comments and speculation

This paper is clearly an exploratory step. There is lots to do to create production-based asset

pricing models that can unite asset pricing and macroeconomic facts.

I explored one particular functional form. Other functional forms, and a more general

theoretical treatment, beckon. We have already seen that once labor is included, the discount

factor includes either labor or wages, and not just productivity and its underlying shock. More

detailed production functions may well change that form.

One needs curvature across states, but one can put in that curvature in many ways. Gen-

eralizing the one-period model to many periods, I assumed that the productivity choice sets hold

independently at each point in time. I assumed {Eτ [(εt+1/θt+1)α]} ≤ 1 and {Eτ [(εt+2/θt+2)α]} ≤

1 separately. One could envision production choice sets that allow the firm to transform out-

put across states and time simultaneously. Here, such margins exist, but go entirely first across

states, then over time via capital accumulation, then back across states again. I offered a joint

CES form that treats state and time symmetrically, but that seemed to abandon too much the

capital accumulation story.

I write a concave set of random variables E
[
(ε/θ)1+α

]
≤ 1 by summing across states with

artificial probabilities. One might want to consider formulations that are not separable across
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states, as recursive utility does for preferences.

Bringing this production-based approach to data requires many choices, and most of all

addressing the question how to identify the underlying productivity shocks θ, or to find a specifi-

cation that does not need them. Initially, this task looks daunting. If θ is completely unobserved,

and likely to be correlated with ε, then how can we implement m = λεα/θ1+α? One can find a θ

at any date to generate any discount factor one wishes. The example from Section 8 in which θ

and ε are perfectly correlated, so the reduced form is m = λε−γ is not encouraging.

On second glance, this identification problem is no different or worse than the similar

identification issues that haunt all of macroeconomics and finance. That example is exactly

the same, with only a change in Greek letters, as the example in Cochrane (2011) in which the

interest-rate rule of New-Keynesian models has a right hand variable (inflation) perfectly corre-

lated with its (monetary policy) shock, so yields exactly the wrong coefficient. VARs are plagued

by the question whether interest rates cause inflation or expected inflation causes interest rates.

Yet new-Keynesian models and VARs are a thriving industry, solved and compared to data. How?

By thinking hard and making identification assumptions, finding something orthogonal or ex-

ogenous somewhere. All economic models include shocks somewhere, and usually must do so

if they want to avoid 100% R2 predictions. Yet a shock in any equation usually means that equa-

tion cannot be directly estimated – we need a shock somewhere else to do that, and an exclusion

restriction. Yet shocks have to be somewhere, and, if we are honest, most likely everywhere.

Medium scale empirical macro models contain shocks in every equation. The increasing pop-

ularity of preference shocks (risk aversion, discount factor, financial frictions) or their observa-

tional equivalents (taste, sentiment, probability) raises exactly the same identification problem

for conventional asset pricing.

The other approach to identification is to construct simulation economies. One may not

be able to measure natural productivity θ, but one can specify a θ process, simulate data, and

see what it takes for the simulated moments to match actual moments. That process includes

lots of unstated identification assumptions, or in fact isn’t identified at all – there may be other

assumptions that produce the same moments. But it is how we construct models. Getting a

model that can match the data is hard enough, and valuable, even if one cannot prove that some

other model or parameterization might fit the data as well.

Neither this paper nor the investment-return literature has, in my view, begun to properly

explore the cross-sectional richness of production data. Zhang (2017) makes the most progress,

computing the investment returns of sorted portfolios by computing the investment returns of

their component firms, and comparing the cross-section of investment returns to the cross-
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section of asset returns. In the project of extending asset pricing from the investment returns we

can observe to asset returns, surely we want to use as many investment returns as possible. In

applying APT logic – price a given asset return by finding close by, or near-replicating investment

returns – there is no reason to apply the APT philosophy, that hoped for a small number of fac-

tors. Conversely, in Zhang (2017), each firm’s investment return is a primitive. But surely there is

factor structure or other common movement in the investment returns, that may restore some-

thing like the APT philosophy, and not require 3000 separate fundamental quantities underlying

asset pricing.

The productivity choice approach here is fundamentally different from investment re-

turns in this respect. Each firms’ investment return RIi,t+1 is a separate object, giving us a sepa-

rate measurement and prediction for one part of the payoff space. A discount factor using invest-

ment returns loads on all of them,m = a+b1R
I
1,t+1 +b2R

I
2,t+1 + ...+biR

I
i,t+1. However, each firms’

productivity choice m = λiε
αi
i /θ

1+αi
i = λjε

αj
j /θ

1+αj
j should equal the common m. This propo-

sition mirrors the proposition that each individual consumer should set marginal utility growth

to equal the common discount factor, m = λc−γi /φ1−γ
i . Thus, while APT logic and investment

returns lead us to a discount factor m loading on many objects – essentially each firm’s invest-

ment return in the Zhang (2017) approach – productivity-choice logic leads us to many mea-

surements of a single discount factor. Disaggregated data should be useful for constructing that

discount factor. Individual firm data may have measurement error, of course, and as Belo (2010)

shows us, disaggregated data can help us to surmount the shock identification issue. Moreover,

as Constantinides and Duffie (1996) show us for consumers, the common discount factor can

look very different from aggregate productivity raised to a power. As in that case, cross-sectional

dispersion in productivity can show up in the aggregate. Moreover, one should ideally integrate

the investment-return and productivity-choice approaches, using both the cross-sectional in-

formation of many investment returns, and the many sources of cross-sectional information on

the common discount factor. The aggregation model of Section 9 already points to interesting

productivity choice in the aggregate production function that may not exist in firm-level pro-

duction. Now, extend that to multiple technologies that also have productivity choices.

Clearly, the investigation has just begun.
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