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1 Introduction 

Blockchains rely on the validation of blocks (or transactions) using ‘consensus 

mechanisms.’ These mechanisms involve distributed nodes ‘agreeing’ as to whether a 

block is valid and whether it should be added to a chain. However, in order to prevent 

attacks, some cost must be placed on becoming a node in the network; critically, there must 

be a cost in proposing a block to add to the chain. 

At present, the main consensus mechanisms are based on proof of work (PoW). 

This involves a cost of being a proposer in terms of real resources. In the Bitcoin protocol, 

for example, to be a proposer requires winning a computational game. The prize for 

winning is a block reward and transaction fee. The former is set by protocol and, if it is in 

cryptocurrency, the value of the currency. The latter is often set by users of the network. 

The cost of the contest is performing the computational task – that is, having computer 

hardware and energy resources.  

PoW schemes have been criticized for the high level of energy resources required. 

In the Bitcoin network, these have been estimated to exceed the energy requirements of 

small countries. For this reason, alternative ways of imposing costs on becoming proposers 

have been explored.  

The main alternative is proof of stake (PoS). This involves proposers proving their 

‘worthiness’ by holding a stake – in terms of cryptocurrency – in the network. It is costly 

because they essentially make their holdings illiquid.2 

The economic question is whether PoS type systems can perform more efficiently 

than PoW systems. We show, using the methodology for examining blockchain 

sustainability developed by Budish (2018), that the (perhaps) surprising answer is no! In 

the case of Permissionless blockchains (i.e. free entry,) the cost of PoW schemes are 

identical to the cost of PoS schemes.   

We then examine Permissioned blockchains to see whether they can result in lower 

resource costs than Permissionless blockchains.  The answer depends on whether the block 

                                                           
2 Proponents of PoS argue that security is achieved not only through incentive alignment, but also because 
attackers need to be significant stakeholders and as such are required to have “skin in the game.” Thus, the 
argument goes, they would be reluctant to attack the system. In practice, this consideration may be important, 
but in the model we develop, if attackers gain more from the attack than they lose from the devaluation of 
their stake, they will indeed attack. 
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reward is an exogenous or endogenous variable. If the block award is exogenous, then 

under certain conditions, Permissioned blockchains have lower costs than Permissionless 

blockchains. However, importantly, when the block reward is endogenous, the cost of 

Permissioned blockchains is again identical to that of Permissionless blockchains. We 

discuss the implications of this result in the conclusion. 

2 The Economics of Permissionless Blockchains 

In a Permissionless blockchain, ‘hostile nodes’ have to harness/acquire enough 

computing power in order to ‘attack’ and fork the blockchain. The PoW protocol that was 

developed for Bitcoin has proven robust to various attacks but has shown difficulties in 

allowing potential upgrades in the operation of its blockchain.  

While Permissionless blockchains facilitate exchange on decentralized systems 

without central authorities, they are not “tamper proof boxes.” There are postulated means 

by which they could be disrupted – most notably through what is called a ‘majority attack’ 

whereby one entity controls a majority of nodes and can fork the blockchain according to 

their own preferences. Budish (2018) shows that fears of disruption have a strong basis. 

That paper examines when Bitcoin and other cryptocurrencies (i.e., digital currencies) 

using PoW would be vulnerable to being hijacked. Budish develops an equilibrium model 

that includes the (i) mining game (i.e., the supply side,) and (ii) incentive compatibility (the 

demand side). He concludes that Bitcoin “would be majority attacked if it became 

sufficiently economically important.” (Budish, 2018, abstract) 

In related work, Biais et.al. (2018) examine the “blockchain folk theorem.” Their 

paper demonstrates that miners have an incentive to coordinate on the blockchain they are 

working on. At the same time, if a sufficient number of miners chose to do so, the same 

incentive to coordinate can lead them to shift quickly to a fork and work on that. In other 

words, coordination does not necessarily imply stability. Forks are likely to be driven by 

information delays and also software upgrades.3 Similarly, Barrera and Hurder (2018) 

consider coordination as a driving force in blockchain stability. For a hard fork to arise, a 

                                                           
3 In economics, a folk theorem is a theorem many believe to hold even if a perfect proof of that theorem does 
not exist. In this case, it is the belief that miners will have incentives to work on one blockchain and that this 
will be the blockchain with the largest number of verified blocks. 



 4 

large number of miners need to back the fork even in situations where not all miners follow. 

The basic model is similar to ‘one CPU, one vote.’ However, they argue that governance 

rules can smooth the process and lead to compromise solutions that would maximise the 

surplus of the community.4 

3 A Simple Model of Sustainability using PoW: Permissionless 
Blockchain 

In this paper, we expand the work of Budish (2018) to consider PoS systems and 

permissioned blockchains. But first we review his model for permissionless PoW 

blockchains. In doing this, we set up the conditions of sustainability so as to extend them 

to PoS as well as permissioned networks.  

The PoW protocol requires that nodes perform a computational puzzle in order to 

add a valid block to the chain of transactions. To simplify matters, we suppose the 

following throughout the analysis: 

• Blockchain nodes have a dollar cost, c, of competing for a block reward (or 

transaction fee). In the case of PoW, this is essentially the marginal cost of 

electricity plus equipment rental.  

• The block reward is paid out as P tokens.  

• The exchange rate of tokens to dollars is e. Thus, the dollar block reward is eP.  

3.1 Free Entry 

A permissionless network implies that anybody can become a node (or miner) and 

will do so if it is profitable. If there are N nodes with identical costs, c, the probability that 

a node earns the block reward is 1/N. This means that a node’s expected payoff is 1𝑁𝑁𝑒𝑒𝑒𝑒 − 𝑐𝑐. 

Assuming that all nodes are honest, their number (N) in equilibrium is determined 

by a free entry constraint whereby the equilibrium number of nodes, 𝑁𝑁� will be the highest 

N such that 1𝑁𝑁𝑒𝑒𝑒𝑒 ≥ 𝑐𝑐. Ignoring integer constraints, this implies: 

(FE)  𝑐𝑐 = 𝑒𝑒𝑒𝑒
𝑁𝑁�

 

                                                           
4 See also Carlsten et. al (2018) for work on the instability of bitcoin without block rewards and 
Deirmentzoglou et. al (2019) for a survey on long-range attacks for Proof of Stake protocols. 
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We will denote this condition as “free entry” (FE). 

The (FE) condition has a strong implication for the resource cost per block, Nc: it 

is no higher than eP. This means that a fall in c (possibly caused by a reduction in electricity 

prices or a choice to reduce the difficulty of computational puzzles) will not reduce the 

economic cost of mining since N will rise. That is, given P and e, Nc is constant. This 

constraint arises in more detailed models where the mining process is modelled as a contest 

and where the difficulty of the computational task requirements adjusts as more computing 

power comes into the market (e.g., Ma, Gans and Tourky, 2019). 

3.2 Incentive Compatibility 

The (FE) condition dictates what drives miners to enter when they are ‘honest’ in 

the sense of being interested in processing transactions and validating blocks. However, 

miners could also be ‘dishonest’ in the sense of having other goals that cause them to want 

to append blocks with information they know to be false (e.g., as might arise in a double 

spend attack or in an attempt to sabotage the network for other reasons). A sustainable 

blockchain has to be robust against such agents; deterring their entry. That is, we have to 

check whether the PoW protocol implies that dishonest miners will have no incentive to 

enter. Budish (2018), the first researcher to consider this, terms this the incentive 

compatibility or (IC) constraint.  

To derive this constraint, assume that there are N honest miners. Conducting 

activities that are dishonest requires effective control of the network. At a minimum, in 

PoW, this requires a dishonest miner to control a majority of computing capacity – 

specifically, they need to add computing power equivalent to 𝑁𝑁 + 𝜀𝜀. This means that the 

cost of conducting dishonest activities on the network is at least Nc per block.  

One example of this is forking a network beyond a certain point. This involves 

mining a private network for a certain period of time until it has the longest chain (which 

is the coordinating device most used to form consensus on most PoW networks) and then 

making the network public attracting other miners. It is the fact of more computing power 

being applied to the private network by a dishonest miner that means that it will eventually 

generate the longest chain and be able to ‘infect’ the primary blockchain with its fork. This 
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procedure is a precursor to a dishonest miner engaging in multiple spends on 

cryptocurrency. 

Budish (2018) considers two limiting factors on a simple majority attack. First, 

some activities from dishonest miners may require more than a simple majority to 

implement. For instance, control to achieve a fork may require control of 𝐴𝐴
𝐴𝐴+1 percent of the 

nodes. Thus, the cost per block for entry by a dishonest miner would be ANc (where A > 

1).  

Second, for some activities that involve interaction outside the blockchain (such as 

a multi-spend attack), control of the blockchain cannot be confined to just the block in 

question but may require a time period to elapse. Thus, the dishonest node may have to 

control the network for a time which translates into adding t blocks.  

Offsetting these limiting factors is the fact that, while controlling a network, a block 

reward (eP) that will be earned for each block added. That reward accrues to the dishonest 

miner. Putting these together, the net cost to the dishonest miner is (𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑒𝑒𝑒𝑒)𝑡𝑡. The entry 

decision of a dishonest miner will be driven by the benefits they receive from such control 

– that is, from dishonest activities. Suppose that the private benefit for an attacker is V(e). 

Given these costs and benefits to a dishonest miner, we can see that dishonest entry 

to a blockchain network consisting of N nodes will not be profitable if: 

(IC)    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑉𝑉(𝑒𝑒) ⟹ 𝑐𝑐 ≥ 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴

 

We call this the (IC) condition and it comes from Budish (2018.) The left-hand side 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑡𝑡) is the cost of controlling NA nodes for t periods less the block reward earned 

during the control period. The right-hand side, 𝑉𝑉(𝑒𝑒), is the benefit of exercising that control 

for personal benefit. In the analysis that follows, we suppose that the private benefit for an 

attacker is V(e); a non-decreasing function; that is, the more valuable is cryptocurrency, the 

greater is the private benefit from dishonest activities. 

3.3 Stability 

To summarize, the (FE) condition describes how many nodes will be established by 

miners for a given cost, c, involved in PoW while the (IC) constraint describes how high 

that cost, c, has to be to deter entry by dishonest miners. The challenge for sustainability 
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arises because there is instrument in the design of the PoW protocol that can be used to 

guarantee that both the (FE) and (IC) conditions to be simultaneously satisfied. 

To explore this, note that there are two parameters that can be embedded into a 

blockchain protocol (c and P) that can impact on both the FE and IC conditions. Let’s begin 

with c – which can be set by changing the nature and likely energy requirements of any 

computational puzzle. Figure One shows what happens if c is chosen to be a specific level, 

such as c*. Note that the FE condition implies that, given this choice, the number of (honest) 

nodes will be N*. As plotted, at this N*, the IC constraint is satisfied. In other words, the 

blockchain is sustainable and, moreover, it is sustainable for a large range of c because the 

FE constraint lies above the IC constraint. 

Figure One 

 

 

By contrast, in Figure Two, the IC constraint is above the FE condition. In this case, 

for any choice of c, the number of honest nodes that would enter (as implied by the FE 

condition) would be too few and would create an incentive for dishonest miners to enter. 

Thus, in this case, there is no value of c that would make the blockchain sustainable.  
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Figure Two 

 

The reason for this can be seen by noting that both the FE and IC conditions are, in 

effect, defined relative to the total cost of PoW. The FE condition implies that 𝑁𝑁𝑁𝑁 = 𝑒𝑒𝑒𝑒 

while the IC constraint requires that 𝑁𝑁𝑁𝑁 > 𝑉𝑉(𝑒𝑒)+𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝐴𝐴 . Notice that the right-hand sides of these 

conditions do not depend on N or c. Thus, sustainability is determined solely by whether: 

(B)  (𝐴𝐴 − 1)𝑒𝑒𝑒𝑒𝑒𝑒 > 𝑉𝑉(𝑒𝑒) 

This is the stability condition derived by Budish (2018); we refer to it as the Budish (B) 

condition. If (𝐴𝐴 − 1)𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑉𝑉(𝑒𝑒), there is no permissionless system that satisfies the IC 

constraint. In other words, the only way mining pays is if there is a private benefit. Thus, 

we can conclude the following:  

• If (B) holds, the FE condition lies above the IC constraint and the permissionless 

blockchain is stable for all values of c. 

• If (B) does not hold, the FE condition lies below the IC constraint and the 

permissionless blockchain is not stable for any values of c. 

Thus, the ability to control c does not matter for stability. This is determined by other 

factors. 

If c cannot be used to create a sustainable permissionless blockchain, what about 

P? Note that, as P increases, both the IC and FE conditions shift upwards. There are more 

nodes in equilibrium on the network and a higher aggregate cost (Nc). However, when P 

rises, the net effect is to increase the FE curve by more than IC curve and promote 
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sustainability.5 Thus, we can conclude that, other things being equal, as P rises, the 

likelihood of stability is increased.6 

In designing a permissionless blockchain (and assuming c is exogenous), the 

minimum block reward that will create a sustainable outcome is 𝑃𝑃 = 𝑉𝑉(𝑒𝑒)
𝑒𝑒(𝐴𝐴−1)𝑡𝑡. Thus, so long 

as the block reward can be adjusted to ‘market’ conditions (notably e), it is possible to 

create a sustainable blockchain. 

This result says that the block reward should change as the exchange rate, e, 

changes. But in which direction should the change go? Note that, as e increases, the impact 

on sustainability depends on the relationship between e and V. If V is non-decreasing in e, 

the effect of an increase in e depends upon the sign of (𝑒𝑒𝑒𝑒′(𝑒𝑒) − 𝑉𝑉(𝑒𝑒))/𝑒𝑒2 or whether the 

elasticity of V with respect to e is greater than 1. In this case, a higher value for the 

cryptocurrency, increases the probability that the blockchain will be vulnerable to attack. 

Therefore, if e rises, to ensure that the blockchain is sustainable, P has to rise as well if the 

elasticity of V with respect to e (that is, 𝑒𝑒
𝑉𝑉(𝑒𝑒)𝑉𝑉

′(𝑒𝑒)) is greater than unity implying that an 

increase in e causes a higher proportionate increase in V.   

To put this another way, for Bitcoin, P is set to fall over time as part of the protocol 

while e is expected to be higher (at least by bitcoin enthusiasts).7 The only way these two 

changes would imply long-term sustainability of the blockchain is if 𝑒𝑒
𝑉𝑉(𝑒𝑒)𝑉𝑉

′(𝑒𝑒) < 1 or that 

the private payoff from an attack rises proportionately less than an increase in the value of 

bitcoin. Note that for multiple-spend attacks, this may be a reasonable assumption as the 

scale of such attacks is capped by real world motivations.8 For other issues (such as 

                                                           
5 This is because the partial derivative of N with respect to P from the FE equation is e/c, while the partial 
derivative of N with respect to P from the incentive compatibility constraint (when it binds with equality) is 
e/(Ac,) where A > 1.  
6 Thus the prize “P” is not just an award for winning the tournament. It is also the “security cost” required to 
insure stability of the ecosystem. 
7 We have not explicitly addressed transaction fees in the analysis, but it is straightforward to include them.  
Thus “P” can be thought of as a combination of the block award and the transaction fees. The analysis is 
exactly the same, since dishonest miners will also receive the transaction fees when they successfully fork 
the blockchain. Over time, the block awards will decline. In order to insure that (B) holds, the transaction 
fees will have to be raised over time. Thus, as Budish points out, higher transaction fees will be necessary 
over time as the block reward falls. 
8 For instance, for a double-spend attack, the value of a transaction will drive incentives to attack the network 
and, in effect, defraud a ‘real world’ payor. For instance, at a Bitcoin exchange rate of $10,000 (= e), a simple 
majority value for A (= 1.01) and a block reward of 12.5 BTC, then, if the required time is 6 hours (so 
assuming 10 minutes per block, t = 36), the value (V) must be greater than $45,000 to be worthwhile. If the 
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sabotage of the network), that may not be the case and Bitcoin has to be robust to them all. 

Without more knowledge regarding V, it is not possible to assess whether these changes in 

the block reward make Bitcoin more or less sustainable. 

4 Proof of Stake 

PoS protocols are an attempt to allow for consensus mechanisms without relying 

on real resources (as in PoW).9 This is achieved by requiring nodes to stake a sufficient 

quantity of tokens in order to be considered as a validator for a new block of transactions. 

There are, however, different ways in which validator nodes are selected.  

One class of methods is chain-based. In that method, a validator is chosen at 

random from nodes that hold the requisite stake. In effect, this means that validators have 

a probability of proposing a block (and receiving a block reward) based on the amount they 

have staked to the network. Like PoW, it typically takes some time (in terms of t blocks) 

before a block is treated as final and relied upon.10  

In a PoS network, suppose that S tokens are required for a stake and that the dollar 

interest rate is r, then (in terms of our PoW notation) 𝑐𝑐 = 𝑟𝑟𝑟𝑟𝑟𝑟; that is, the opportunity cost 

per period of resources a node must hold to be ‘staked’ (e.g., the lost earnings on fiat 

currency that is held in tokens). The stake, S, can be chosen in a permissionless PoS 

protocol which means that, potentially like c, it is a design decision.  

This allows us to write a (FE) condition for a PoS network. Like in a PoW network, 

any node has a probability 1/N of earning a block reward. Thus, the expected per block 

payoff to a node is 1
𝑁𝑁𝑒𝑒𝑒𝑒 − 𝑟𝑟𝑟𝑟𝑟𝑟. Thus, the (FE) condition becomes (ignoring integer 

constraints): 

(FE)’  𝑆𝑆 = 𝑃𝑃
𝑟𝑟𝑟𝑟

 

                                                           
required time is just 1 hour (t = 6,) that threshold falls to $7,500. It is this type of calculation that caused 
Budish (2018) to conclude that Bitcoin may not be sustainable.  
9 Formally, PoW and PoS are “Sybil” control mechanisms, rather than consensus protocols.  These 
mechanisms need to be combined with consensus protocols to make the system work.  For example, in the 
case of Bitcoin, the longest chain in the blockchain is the consensus rule. 
10 Another class of methods is based on Byzantine Fault Tolerance. In these methods, a node is chosen at 
random to be a validator but a block is only considered final if a supermajority (A) other staked nodes agree 
that it is valid. The advantage is that the block can be relied upon without having to wait t periods of time. In 
order to compare PoS and PoW, we do not examine this alternative in the paper. 
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Note that, unlike PoW, the (FE) condition does not depend on the exchange value (e) of 

tokens. However, like PoW, the total network ‘cost’ (that is, SrN) is fixed – that is, an 

increase in S, causes a proportionate reduction in the number of nodes (N). 

What about protection against attacks by dishonest nodes? Both PoS methods are 

vulnerable to attack forms based on establishing a private chain with altered transactions 

before releasing to publicly. With PoW, this entails a cost as a dishonest node is required 

to perform the PoW of the entire network in order to obtain the longest chain upon 

publication. With PoS, there is no such cost. The main challenge comes, however, that 

when the alternative chain is published there is the challenge of getting other nodes to 

accept it. For nodes that were online while the alternative chain was being written, they 

will be able to identify the alternative chain. For new nodes or ones that were offline, they 

cannot tell which is the legitimate chain. Thus, for an attack to be successful, the dishonest 

node needs to take actions that would shift the share of online versus other nodes. We 

assume that this takes time (t periods.) 

Such attacks rely on the attacker building on both the main chain and their 

alternative at the same time. This is something that is possible with PoS but costly for PoW. 

However, networks have implemented various methods to guard against this. One such 

method is called ‘slashing.’ This involves the stake of a node being reduced or destroyed 

if it is found that they have worked on multiple chains. This is something that can be 

algorithmically detected. 

That said, while such methods can prevent ‘low scale’ attacks on the network, PoS 

networks are still vulnerable to a majority-attack – as we examined for PoW. Such an attack 

requires the attacker to stake a supermajority of nodes for t periods. If the value of an attack 

is V(e) as before, then the cost of the attack is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 less the block reward 𝑡𝑡𝑡𝑡𝑡𝑡 earned on 

the alternative chain. Note that block reward accrues to the attacker precisely because 

slashing or other mechanisms penalizes others if they work on the alternative chain leaving 

all of the block rewards to the attacker.  

Given this, the (IC) constraint is  

(IC)’  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑉𝑉(𝑒𝑒) ⟹ 𝑆𝑆 ≥ 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Thus, so long as the stake, S, is sufficiently high, an attack can be prevented.  
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We can now perform a comparable exercise to that for PoW to examine what will 

determine the sustainability of a PoS blockchain. In particular, using (FE)’ and (IC)’, if the 

(IC)’ constraint is to be satisfied while the equilibrium number of nodes is determined by 

the (FE)’ condition that requires: 

(B)’ (𝐴𝐴 − 1)𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑉𝑉(𝑒𝑒) 

Note, critically, that this condition is identical to the PoW Budish condition (B). Moreover, 

it is independent of the level of the stake (S).  

In other words, despite the ability to control S, there are no levers under proof of 

stake that will lead to greater sustainability than under proof of work. In fact, in 

designing a permissionless blockchain (even though S can be chosen), the minimum block 

reward that will create a sustainable outcome is 𝑃𝑃 = 𝑉𝑉(𝑒𝑒)
𝑒𝑒(𝐴𝐴−1)𝑡𝑡. This also means that the same 

elasticity condition on V(e) drives whether, for a fixed block reward, the network will be 

more sustainable as e grows.  

It is useful to note, however, that the mechanism is different. In particular, under 

PoS, the FE condition is independent of the exchange rate (e). In other words, the number 

of nodes will not change as the exchange rate changes and will be pinned down by the level 

of the stake. Thus, the size of the permissionless network can be controlled by changing 

the stake. This is not the case in PoW, since given P and e, c (which is a design variable) 

determines the network size (N) in the permissionless PoW mechanism.11 

5 Permissioned Blockchains 

PoW and PoS involve the same ‘dollar’ cost in running under permissionless 

protocols. If the goal was to set up a sustainable blockchain at a lower cost, this suggests 

that a permissioned network that regulated the number of nodes (N) might be a means of 

lowering cN; the total cost of running the network. Here we consider what happens when 

N (in addition to c, S, and P) can be chosen. We will not presume anything about the 

                                                           
11 Of course, it can be argued that in addition to the real resources used to sustain stability, PoW causes 
negative externalities. Using large amounts of electricity, most of which is not generated by renewable 
sources, but rather by methods (like burning coal) that cause pollution and perhaps global warming.  Thus 
PoW mechanisms have higher total costs (internal plus external costs) than PoS mechanisms. 
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selection process for node operators – that is, none of them will presumed to be trusted – 

and, thus, participation and incentive constraints will have to continue to hold.12 

Given this, in a PoW blockchain, the protocol designer solves the following 

problem: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑁𝑁,𝑃𝑃𝑐𝑐𝑐𝑐 subject to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑉𝑉(𝑒𝑒) and 𝑁𝑁𝑁𝑁 ≤ 𝑒𝑒𝑒𝑒 

The IC constraint, when it binds, pins down the aggregate cost at 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴 . Note that this is 

increasing in the block reward (P). Thus, the designer will want to reduce the block reward. 

This reduction will be constrained by the FE condition (as it needs to be so that nodes are 

not making losses); that is, 𝑃𝑃 = 1
𝑒𝑒𝑁𝑁𝑁𝑁 = 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒
⟹ 𝑃𝑃 = 𝑉𝑉(𝑒𝑒)

𝑒𝑒(𝐴𝐴−1)𝑡𝑡 where the last substitution 

comes from the substitution of the IC constrained aggregate cost. This the same block 

reward as in a permissionless system and, thus, there or no aggregate cost savings from a 

permissioned system.   

Intuitively, when the Budish condition (B) holds, the FE condition lies above the 

IC constraint and the question is whether, by choosing N, the network can operate on the 

IC constraint at a lower cN. This would give a total cost of 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴  which is increasing in 

P. Thus, the designer will want to reduce P to be as small as possible. This is precisely 

what a designer would want to achieve if the network were permissionless and (B) held. If 

(B) does not hold, in both the permissioned and permissionless cases, the designer wants 

to increase P so that the FE and IC constraints both bind. 

Changing N will not improve prospects for sustainability if (B) does not hold. In 

such a case, there is no (c, N) for which both the FE and IC constraints hold. It is only by 

increasing the block reward (P) and adjusting it to ‘market’ conditions that network costs 

can be minimized while allowing for a sustainable blockchain. 

Under PoS, the network chooses (S, N) in addition to P. In this case, the IC 

constraint implies that total cost, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉(𝑒𝑒)+𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴𝐴𝐴

. Once again, this shows that there are no 

gains from having a permissioned system.  

                                                           
12 In practice, "permissioned blockchains" usually are private or consortium networks in which members are 
both limited in number and individually selected. Therefore the members’ identities are known. This may 
generate additional security since “bad actors” may be liable under civil and criminal law. This effect is not 
included in the model, but it is an additional factor to consider as research on the topic moves forward. 
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Note that if P is fixed, then regulating N will reduce costs if (B) holds by allowing 

the network to operate on the IC rather than the FE constraint. The intuition can be seen by 

examining Figure One. In this case, the FE constraint lies above the IC constraint. (Recall 

that this does not depend on (c, N)). Since the FE lies above the IC constraint, we have 

sustainability for a Permissionless blockchain.  

Now consider a Permissioned blockchain. For a given c, N can be chosen so that 

the IC constraint binds exactly. This results in lower costs cN. Hence, a Permissioned 

blockchain can reduce the costs relative to a Permissionless blockchain, but only in the 

case in which P is fixed.13  

6 Conclusion 

In summary, this analysis shows that there is no difference between proof of work 

and proof of stake in terms of resource cost. Further, when the block reward is endogenous, 

there is no difference in costs between Permissionless and Permissioned blockchains. 

Regardless of whether it is PoW or PoS or permissioned/permissionless, being able to have 

a block reward that can be adjusted to market conditions is the way to insure sustainable 

blockchains. The results of this analysis suggest that when the block reward is a choice 

variable, a hybrid system will not have lower resources cost than Permissionless on 

Permissioned blockchains.14 Thus, while Permissioned and hybrid systems may be 

attractive for other reasons, cost savings is not one of them. 

  

                                                           
13 Of course, N cannot be chosen too small. Otherwise, the combination of (c, N) leads us to a point below 
the IC curve. This bounds the cost saving from a permissioned blockchain. 
14 Several papers examine how such hybrid systems might work. See Pass and Shi (2017) and Jiang et al 
(2018) to see how such hybrid systems might work. 
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