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1 Introduction

In many contexts of economic interest, decision-making under uncertainty is difficult. In

belief formation, people may not know Bayes’ rule, succumb to computational errors, or

struggle to retrieve and integrate all relevant information. In choice under risk, people

may not know their true preferences, or fail at adequately combining probabilities and

utils. These issues, and potentially many more, may introduce cognitive noise, which we

use as a catch-all term for unsystematic errors that arise from cognitive imperfections in

the process of optimization.

Our basic premise is that people are often aware of their own cognitive noise, which

induces cognitive uncertainty: subjective uncertainty about what the optimal action or

solution to a decision problem is. For example, people may think that they do not really

know their own certainty equivalent of a lottery; they may have a nagging feeling that

they do not remember what their prior information is; or they may worry that they do

not know how to compute rational beliefs in light of new information. Indeed, recent

work in psychology and neuroscience on decision confidence suggests that people often

have a sense of how “good” their decision is.

The objective of this paper is to document empirically that cognitive uncertainty pre-

dicts economic beliefs and actions, and that it provides a unifying lens for understanding

well-known empirical regularities in how people think about probabilities. The key idea

is that noise and bias are linked: when people are cognitively noisy, they revert more

to a cognitive default, which introduces systematic bias. According to this argument,

the “second moment” of people’s decisions (their confidence in what they are doing)

is relevant for understanding the “first moment:” which decisions they take in the first

place.

Figure 1 illustrates the set of well-established empirical regularities that we focus

on. All four functions are estimated from experimental data and share in common a

characteristic inverse S-shape of subjective with respect to objective probabilities. First,

panel A depicts the well-known probability weighting function in choice under risk that

goes back to Tversky and Kahneman (1992). It illustrates how experimental subjects

implicitly treat objective probabilities in choosing between different monetary gambles.

Second, panel B shows an “ambiguity weighting function” that depicts the emerging

consensus that people are ambiguity averse for likely gains, yet ambiguity seeking for

unlikely gains. This reflects a compression effect that is labeled “a-insensitivity” in the lit-

erature (Trautmann and Van De Kuilen, 2015). Third, in panel C, we illustrate a perhaps

less well-known stylized fact, which is an inverse S-shaped relationship between partic-

ipants’ posterior beliefs and the Bayesian posterior in canonical “balls-and-urns” belief

updating tasks. Finally, panel D of Figure 1 shows the relationship between objectively
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Figure 1: “Weighting functions” in choices and beliefs. Panel A depicts a probability weighting function,
estimated from the data described in Section 3. Panel B illustrates an “ambiguity weighting function,”
where the x-axis represents the ambiguous likelihood of an event and the y-axis the matching probability
(adapted from Li et al., 2019). Panel C visualizes the relationship between stated beliefs and Bayesian
posteriors in binary-state balls-and-urns belief updating experiments, constructed from the data described
in Section 4. Finally, panel D depicts the relationship between stated subjective probabilities in a survey
on inflation expectations and objective probabilities, as described in Section 5.

correct probabilities and respondents’ probabilistic estimates in subjective expectations

surveys about, e.g., stock market returns, inflation rates, or the shape of the income

distribution. Here, again, people’s beliefs are compressed towards 50:50 (Fischhoff and

Bruine De Bruin, 1999). Why do these four functions, drawn from different decision

contexts and experimental paradigms, look so strikingly similar?

To address this question, we present a series of experiments in which we link choices

and beliefs to an empirical measure of cognitive uncertainty. While we view our primary

contribution as experimental, we structure our analysis through a theoretical framework
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that follows an emerging class of Bayesian noisy cognition models, in particular Gabaix

(2019) and Khaw et al. (2017). We take a broad interpretation of these models as cap-

turing cognitive noise that primarily results from high-level reasoning in optimization

rather than perceptual imperfections alone. In the model, people exhibit cognitive noise

in translating probabilistic information into an optimal response. This cognitive noise

induces people to shrink objective probabilities towards a prior, or cognitive default.

While the cognitive default in general likely depends on a multitude of factors, we as-

sume (and experimentally confirm) that in unfamiliar environments it is influenced by

an ignorance prior, which assigns equal probability to all states of the world.

Given this setup, we formally define an empirically measurable notion of cognitive un-

certainty as subjective uncertainty about the optimal action. Our model endogenizes the

well-known neo-additive weighting function: a decision-maker’s action can be expressed

as a linear combination of objective probabilities and the cognitive default, where the

relative weights are predicted by the magnitude of cognitive uncertainty. Endogenizing

the weighting function clarifies that (i) we expect it to accurately predict behavior not

just in choice under risk but also in belief formation and (ii) that the slope and elevation

parameters of this function will depend on the magnitude of cognitive noise and the

location of the cognitive default.

While our framework is deliberately kept stylized and does not feature the richness

of domain-specific models, it allows us to transparently illustrate the logic of cognitive

compression and to formally define cognitive uncertainty. Substantively, this theoreti-

cal framework makes six predictions: (a) people state positive cognitive uncertainty;

(b) subjective probabilities implied by average actions are biased towards the cognitive

default (50:50 in binary state spaces), which leads to a compression effect; (c) cor-

relationally, individuals with higher cognitive uncertainty compress probabilities more

towards 50:50; (d) an exogenous increase in cognitive uncertainty generates more com-

pression in subjective probabilities; (e) an exogenous decrease in the location of the

cognitive default shifts subjective probabilities downwards across the entire probabil-

ity range; and (f) individuals with higher cognitive uncertainty react more strongly to

exogenous variation in the location of the cognitive default.

To test these predictions, we implement a series of pre-registered experiments with a

total of N = 2, 800 participants on AmazonMechanical Turk (AMT). Like the motivating

examples, our experiments cover the domains of choice under risk and ambiguity, balls-

and-urns belief updating tasks, and survey expectations about economic variables. We

always work with a two-step procedure, whereby we first elicit experimental actions in

a standard fashion and then measure cognitive uncertainty about these actions.

In choice under risk, we first elicit participants’ certainty equivalents for two-outcome

gambles such as “Get $20 with probability 75%; get $0 with probability 25%” in a stan-
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dard price list format. Then, we measure cognitive uncertainty as participants’ subjec-

tively perceived uncertainty about the optimality of their own action.We ask participants

how certain they are that to them the lottery is worth exactly the same as their revealed

switching interval. To answer this question, participants use a slider to calibrate the

statement “I am certain that the lottery is worth betwen x and y to me.” If a subject

moves the slider to the very right, x and y collapse to the switching interval in the price

list. The further a subject moves the slider to the left, the wider the range of cognitive

uncertainty becomes. This measure of cognitive uncertainty (i) directly reflects subjects’

own assessment of uncertainty and (ii) is quantitative in nature. We discuss why for our

purposes this measure is conceptually preferable to alternative measures such as the

extent of across-task inconsistency.

In contrast to the predictions of rational or behavioral models without cognitive noise,

our data show that about 50% of the time, subjects exhibit cognitive uncertainty that is

strictly wider than the switching interval of $1. Such cognitive uncertainty is strongly

correlated with the magnitude of likelihood insensitivity in probability weighting. This

implies that, as predicted by our framework, cognitive uncertainty is positively corre-

lated with risk taking for low probability gains and high probability losses, yet nega-

tively correlated with risk taking for high probability gains and low probability losses.

Cognitive uncertainty is thus correlated with amore pronounced “fourfold pattern of risk

attitudes.” While our analyses explicitly embrace across-subject heterogeneity in cogni-

tive uncertainty, we further show that measured cognitive uncertainty even predicts the

magnitude of likelihood insensitivity across decisions within the same subject.

To exogenously increase cognitive uncertainty, we introduce compound and ambigu-

ous lotteries. To illustrate, a compound lottery is a lottery that pays a non-zero amount

with probability p ∼ U[0,0.2]. Similarly, an ambiguous lottery is a lottery that pays a

non-zero amount with unknown probability p ∈ [0, 0.2]. We show that compound and

ambiguous lotteries indeed induce substantially higher cognitive uncertainty than the

corresponding reduced lotteries. Our model predicts that this increase in cognitive uncer-

tainty translates into a more compressed and thus more insensitive weighting function.

Our experimental results support this hypothesis: the observed likelihood insensitivity

is substantially more pronounced with ambiguous or compound lotteries. As a result,

subjects act as if they are “compound risk seeking” and “ambiguity seeking” for low

probability gains and high probability losses.

In a final step of the analysis of choice under risk, we exogenously manipulate the

location of the cognitive default. To this effect, we leverage our assumption that in un-

familiar environments the default is influenced by an ignorance prior. In the two-states

lotteries discussed so far, this ignorance prior is given by 50:50. To manipulate the loca-

tion of the cognitive default, we implement a partition manipulation and translate the
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two-states lotteries into ten-states lotteries, without changing the objective payoff profile.

We hypothesize that this shifts the cognitive default to an ignorance prior of 10%, which

should decrease the elevation of the entire probability weighting function. In our data,

this treatment variation indeed shifts the estimated weighting function significantly to-

wards zero. Moreover, we find that decisions that are associated with higher cognitive

uncertainty respond more strongly to variation in the cognitive default, just like our

cognitive shrinkage model predicts. These results on the default manipulation are im-

portant because they show that the compressed response functions that motivate our

study are indeed generated by cognitive shrinkage towards a cognitive default, rather

than an extreme version of random choice.

In a second set of experiments, we conduct conceptually analogous exercises for

belief updating. Here, we implement canonical balls-and-urns updating tasks. In these

experiments, a computer randomly selects one of two bags according to a known base

rate, yet subjects do not observe which bag got selected. The two bags both contain 100

balls, where one bag contains q > 50 red and (100− q) blue balls, while the other bag

contains q blue and (100−q) red balls. The computer randomly draws one or more balls

from the selected bag and shows these balls to the subject, who is then asked to provide

a probabilistic assessment of which bag was actually drawn. Across experimental tasks,

the base rate, the signal diagnosticity q and the number of random draws vary, but are

always known to subjects. The standard finding in this literature is that participants’

posterior beliefs are insufficiently sensitive to variation in the Bayesian posterior.

In our experiments, we again elicit cognitive uncertainty after participants have

stated their posterior belief. In a conceptually very similar fashion to choice under risk

and ambiguity, we ask subjects to use a slider to calibrate the statement “I am certain that

the optimal guess is between x and y .” We explain that the optimal Bayesian guess relies

on the same information that is available to subjects. As a complementary, and financially

incentivized, measure of cognitive uncertainty, we also elicit subjects’ willingness-to-pay

to replace their own guess with the optimal guess.

Again, in contradiction to a large class of models in which agents do not exhibit

doubts about the rationality of their belief updating, in the vast majority of cases (86%),

subjects indicate strictly positive cognitive uncertainty. As predicted by our model, this

cognitive uncertainty is strongly correlated with compression of posterior beliefs to-

wards 50:50. Again, these results hold both when we embrace across-subject variation

in cognitive uncertainty and when we focus more narrowly on variation in cognitive

uncertainty across decisions made by the same subject. Furthermore, we explain and

document empirically how our account of cognitive uncertainty endogenizes many of

the empirical regularities that the experimental literature on belief updating has ac-

cumulated, including “extremeness aversion,” base rate insensitivity, likelihood ratio in-
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sensitivity (conservatism), and sample proportion effects. Our results suggest that these

empirical regularities derive from a single cognitive principle.

Similarly to our choice under risk experiments, we complement these correlational

belief updating results with exogenous manipulations of both cognitive uncertainty and

the cognitive default. First, we again exogenously shift cognitive uncertainty using a

compound manipulation, which substantially increases cognitive uncertainty and leads

the distribution of beliefs to become substantially more compressed towards 50:50, as

predicted by our framework. Second, we again manipulate the location of the cognitive

default using a partitionmanipulation, without changing the relevant Bayesian posterior.

Similarly to our choice under risk experiments, we again find that this treatment shifts

the entire distribution of responses, where high cognitive uncertainty decisions respond

more to the exogenous variation in the the cognitive default. Again, these results are

inconsistent with random choice and show that our results are driven by a cognitive

shrinkage towards a specific cognitive default, rather than to 50:50 per se.

In the third part of the paper, we study the relationship between cognitive uncer-

tainty and survey expectations about the performance of the stock market, inflation

rates, and the structure of the national income distribution. These expectations are con-

ceptually slightly different from the laboratory choice under risk and belief updating

tasks in that there is potentially information that participants do not have, while the lab

tasks are self-contained. Nevertheless, these data allow us to assess whether our cogni-

tive uncertainty measure also predicts compression in beliefs in more applied contexts.

We indeed find that subjects with higher cognitive uncertainty state expectations that

are more regressive towards 50:50.

All of our analyses have a structural interpretation in terms of the neo-additive

weighting function. According to this functional form, a decision-maker’s action can

be expressed as a linear combination of objective probabilities and the cognitive de-

fault, where the relative weights – and thus the slope of the weighting function – are

determined by the magnitude of cognitive noise. This linear functional form endoge-

nously arises because the baseline version of our model assumes that cognitive noise is

constant in objective probabilities. Yet, while this linear relationship explains the key

pattern of compression towards 50:50, it does not capture the nonlinearity of the canon-

ical inverse S-shaped response patterns summarized in Figure 1. Thus, we additionally

present structural exercises in which we relax the assumption that cognitive noise is con-

stant across the probability range. Indeed, in our data, measured cognitive uncertainty

exhibits a pronounced hump shape in objective probabilities: across all decision domains,

participants’ reported cognitive uncertainty reveals that they find it easier to think about

extreme probabilities than about intermediate ones. In a series of quantitative exercises,

we show that this non-linearity in the cognitive difficulty of thinking through probabili-
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ties directly produces inverse S-shaped response functions that quantitatively match our

data well.

In the last part of the paper, we document that participants appear to exhibit some-

what stable cognitive uncertainty “types:” stated cognitive uncertainty is highly corre-

lated across tasks, both within and across choice domains. For example, participants

with high cognitive uncertainty in choice under risk (or belief updating) also exhibit

high cognitive uncertainty in survey expectations.

The paper proceeds as follows. Section 2 lays out a theoretical framework. Sections 3

to 6 present the main experiments and corresponding structural exercises. Sections 7

and 8 study the correlates of cognitive uncertainty and present robustness checks. Sec-

tion 9 discusses related literature and concludes.

2 Theoretical Framework

Our stylized theoretical framework follows the Bayesian noisy cognition literature that

has gained widespread popularity outside of economics, and has recently also been ap-

plied to economic decision-making. Our exposition builds on Khaw et al. (2017) and

Gabaix (2019). The central assumption of this class of models is the existence of cog-

nitive noise in decision-making, which induces the decision-maker to form an implicit

update.¹ In contrast to some earlier work, we interpret this noise not necessarily as re-

flecting low-level perceptual imperfections, but as resulting primarily from higher-level

reasoning during optimization. We show that awareness of such cognitive noise creates

cognitive uncertainty: subjective uncertainty about what the optimal action is. To illus-

trate informally, suppose your prior belief that it rains tomorrow is 15%. Next, a weather

forecast predicts that it will rain. You know from experience that the weather forecast is

correct 80% of the time. What is your posterior belief that it will rain tomorrow? 45%?

Really? Not 40%? Or perhaps 52%? To take another example, suppose you were asked

to state your certainty equivalent of a 25% chance of getting $15. You announce $3. But

is it really $3? Or maybe $2.50 or $3.20? In these examples, the feeling of uncertainty

about a posterior belief or a certainty equivalent reflects cognitive uncertainty.

Cognitive Noise, Shrinkage and their Interpretation. Consider a setup in which the

rational action is given by ar = f (p) = Bp and a decision-maker takes an action a

that potentially differs from ar . Here, p is a probability and B a scaling parameter. We

do not explicitly model the first principles that determine the rational action. Instead,

by “action,” we generically refer to the solution to a decision problem such as a stated

¹See Viscusi (1989) for an early related model in the context of probability weighting.
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posterior belief or a stated certainty equivalent. In a first application, ar = p reflects

the Bayesian posterior in a belief updating task, while a is the subject’s stated posterior

belief. In a second application, p represents the payout probability of a binary lottery, ar

the subject’s true certainty equivalent, and a the actually revealed certainty equivalent.

In Appendix A, we generalize the exposition to rational actions ar = f (p) that are non-
linear functions of p, such as when the decision-maker is risk-averse.²

The decision-maker’s objective is to minimize the squared distance between his ac-

tion and the rational action:³

min
a

v(a, p) =
1
2
(a− Bp)2 . (1)

We assume that the process required to identify the rational action ar is subject to cogni-

tive noise. We model this as the agent receiving a signal s = p+ε instead of having direct

access to p, with ε ∼ N (0,σ2
ε
). We view this “noisy perception” formalization as if, in

that it arises in the process of optimizing. In choice under risk, cognitive noise arises

because combining probabilities, payouts and preferences into a certainty equivalent

may be difficult. In belief updating, cognitive noise arises in the process of combining

the available information into a posterior. Finally, in survey expectations, cognitive noise

arises through the process of retrieving and assessing information from memory.

We do not intend to take a strong stance on how across-agent differences in the

magnitude of cognitive noise σ2
ε
arise. Plausibly, cognitive noise is reduced through de-

liberation or “mental simulation” of the problem, as in models of sequential “evidence”

accumulation. According to such a perspective, lower cognitive skills, inattention, fast re-

sponses, cognitive load or a higher complexity of the decision problem could all increase

cognitive noise (see the discussion in Gabaix and Laibson, 2017). Below, we study some

of these factors empirically.

The agent holds a prior p ∼ N (pd ,σ2
p), where we refer to pd as the “cognitive

default.” We assume normally distributed variables throughout for tractability, but ac-

knowledge that this assumption has limited realism for the case of probabilities, which

are bounded by 0 and 1. While in general the prior is likely to be be influenced by a

multitude of factors, in our empirical applications we will operate under the assumption

that it is influenced by an ignorance prior that assigns equal mass to all states of the

world.⁴ This assumption is attractive in typical experimental applications, with which

²For instance, for a decision-maker with Bernoulli utility function u(x), the certainty equivalent of a
p% chance of receiving $1 is given by C E = u−1(p), so that f (·) = u−1(·). We explicitly incorporate risk
aversion in our estimations in Section 6.

³Our results do not depend on a quadratic loss function. The decision-maker plays the posterior mean
when loss is quadratic, the posterior median for the absolute loss function, and the posterior mode for the
relaxed 0-1 loss, all of which are identical in our Gaussian setup.

⁴Such an ignorance prior may be related to the well-known 1/N heuristic (Benartzi and Thaler, 2001).
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people have limited prior experience. In what follows, we assume that all agents have

the same prior distribution but potentially differ in the magnitude of cognitive noise σ2
ε
.

Agents account for their cognitive noise by forming an implicit update about p. For

a Bayesian agent, this creates a standard Gaussian signal extraction problem:

P(p|s)∼N (λs+ (1−λ)pd , (1−λ)σ2
p), (2)

with the shrinkage factor

λ=
σ2

p

σ2
p +σ2

ε

∈ [0, 1]. (3)

An agent with cognitive noise who is otherwise rational takes an action by solving:

maxaE
�

−1
2 (a− Bp)2 |s

�

, leading to an observed action

â = B(E[p|s]) = B
�

λp+λε + (1−λ)pd
�

. (4)

This should be compared with the rational action ar = Bp. We see that the agent damp-

ens his response to p by λ, generating shrinkage towards the cognitive default. The

takeaway is that cognitive noise makes the otherwise-rational action (i) less sensitive to

variation in p, yet (ii) excessively sensitive to the normatively irrelevant variation in pd .

Cognitive Uncertainty. Awareness of cognitive noise generates subjectively perceived

uncertainty about what the truly optimal action is. We label this cognitive uncertainty.

The agent’s cognitive uncertainty takes as given his individual draw of s, and reflects how

the truly optimal action ao|s (that is unknown to the agent) subjectively varies due to

his posterior uncertainty about p (equation (2)). While the agent’s loss function induces

him to play â = E [ao|s] (equation (4)), the underlying perceived posterior distribution

of the optimal action is

ao|s ∼N (Bλs+ B(1−λ)pd , B2(1−λ)σ2
p). (5)

Definition. The agent’s cognitive uncertainty is given by

σCU = σao|s = |B|
p

1−λσp = |B|
σεσp

q

σ2
ε
+σ2

p

. (6)

Under our maintained assumption that the prior distribution is fixed across agents,

all variation in σCU reflects heterogeneity in cognitive noise. Note from (6) that higher

cognitive uncertainty is associated with more shrinkage to the default (lower λ).
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Discussion of Setup. Our theoretical framework is evidently stylized in nature. It is

not meant to reflect a structural model of decision-making across the different decision

domains that we consider in this paper. For instance, when applied to choice under

risk, our model does not prescribe what the agent’s true certainty equivalent is. Simi-

larly, when applied to belief formation, our model does not involve an explicit formu-

lation of how the agent combines prior beliefs and signals into a posterior. Lastly, the

quadratic loss function does not directly correspond to the financial incentives present

in experiments. We do not intend to deny that modeling these elements is important

when the researcher’s interest is in understanding a specific decision domain in detail.

Our objective, however, is to highlight commonalities in how people process probabilities

across different decision domains. This implies that we focus on the response patterns that

emerge when the decision-maker struggles with identifying the rational action, regard-

less of the principles that underlie this rational action in the first place. Our deliberately

simple framework allows us to transparently spell out commonalities, to formalize the

link between cognitive noise and the compression of actions, and to formally define the

notion of cognitive uncertainty.

In terms of interpretation, in literal terms our model posits shrinkage of the “input”

quantity p. However, the model also permits an equivalent interpretation of shrinkage of

the action a.⁵ According to this interpretation, the agent has a cognitive default in action

space (e.g., a canonical posterior belief in a belief updating task) and then combines this

default with a noisy signal about the rational action.

Predictions. Normalizing B = 1, the expectation of equation (4) corresponds to the

neo-additive weighting function:

w(p)neo := [1−λ(σCU)] · pd +λ(σCU) · p = δ+λ · p. (7)

As discussed by Wakker (2010), this weighting function is appealing due its simplicity

and because it can be estimated through simple linear regressions. Our model motivates

this functional form by endogenizing its parameters, where the slope λ and the intercept

δ depend on cognitive noise.⁶

⁵Formally, using ar(p) = Bp and denoting ad = Bpd , we get E[â] = E
�

B
�

λp+λε + (1−λ)pd
��

=
λar(p) + (1−λ)ad .

⁶It may be helpful to contrast equation (7) with the response functions in traditional random choice
models. Applying these models to our context, the agent’s action is given by some version of a = Bp +
ε. Whenever the action scale is bounded (e.g., a ∈ [0,1]), these random choice models also generate
mechanical “compression” towards the center of the response scale, in expectation. The key differences
are that in our model (i) actions are compressed towards the cognitive default, not necessarily the center
of the response scale (we empirically distinguish between these two below); and (ii) compression of
average actions does not reflect bunching at the boundaries but instead the response to cognitive noise
that affects the entire distribution of stated responses (including the modal action).
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Prediction 1. Higher measured cognitive uncertainty is associated with more compressed

weighting functions (lower estimated λ). That is, higher cognitive uncertainty is associated

with a lower sensitivity of actions and beliefs to objective probabilities.

Prediction 2. An exogenous increase in cognitive noise induces more compressed weighting

functions (lower estimated λ).

Prediction 3. An exogenous decrease in the cognitive default induces weighting functions

with lower elevation (lower estimated δ).

Prediction 4. Higher cognitive uncertainty is associated with a higher sensitivity of actions

and beliefs to exogenous variation in the cognitive default.

It is worth comparing predictions 1 and 4. Because agents with higher cognitive un-

certainty place a higher weight on the cognitive default in their decisions, their actions

are less responsive to variation in objective probabilities but more responsive to varia-

tion in the (normatively irrelevant) cognitive default. This clarifies that high cognitive

uncertainty does not imply a generic “insensitivity to everything.”

3 Choice Under Risk

3.1 Experimental Design

Our experimental designs are guided by two objectives. First, to replicate standard

choice designs from the literature to make our results comparable. Second, to propose

a quantitative measure of cognitive uncertainty that is readily portable across decision

domains, and reasonably easy to implement. For these reasons, we work with a two-step

procedure, whereby we first elicit standard actions and then cognitive uncertainty.

3.1.1 Measuring Choice Behavior

To estimate a probability weighting function, we follow a large set of previous works

and implement price lists that elicit certainty equivalents for lotteries (see, e.g. Tversky

and Kahneman, 1992; Bruhin et al., 2010; Bernheim and Sprenger, 2019). In treatment

Baseline Risk, each subject completed a total of six price lists. On the left-hand side of the

decision screen, a simple lottery was shown that paid y with probability p and nothing

otherwise. On the right-hand side, a safe payment z was offered that increased by $1

for each row that one proceeds down the list. As in Bruhin et al. (2010) and Bernheim

and Sprenger (2019), the end points of the list were given by z = $0 and z = $y .

Throughout, we do not allow for multiple switching points. This facilitates a sim-

pler elicitation of cognitive uncertainty, as discussed below. To enforce unique switching
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points, we implemented an auto-completion mode: if a subject chose Option A in a given

row, the computer implemented Option A also for all rows above this row. Likewise, if

a subject chose Option B in a given row, the computer instantaneously ticked Option

B in all lower rows. However, participants could always revise their decision and the

auto-completion before moving on. See Figure 12 in Appendix C.1 for a screenshot.

The parameters y and p were drawn uniformly randomly and independently from

the sets y ∈ {15, 20,25} and p ∈ {5,10, 25,50, 75,90, 95}. We implemented both gain

and loss gambles, where the loss amounts are the mirror images of y . In the case of loss

gambles, the lowest safe payment was given by z = −$y and the highest one by z = $0.

In loss choice lists, subjects received a monetary endowment of $y from which poten-

tial losses were deducted. Out of the six choice lists that each subject completed, three

concerned loss gambles and three gain gambles. We presented either all loss gambles or

all gain gambles first, in randomized order.

Finally, with probability 1/3, a choice list in treatment Baseline Risk was presented

in a compound lottery format. We will describe, motivate and analyze these data in

Section 3.3. For now we focus on the baseline (reduced) lotteries.

3.1.2 Measuring Cognitive Uncertainty

When it comes to measuring cognitive uncertainty about an action, there are two ex-

treme benchmarks. The first is the traditional approach of not measuring it, which

amounts to implicitly or explicitly assuming that the decisionmaker is cognitively certain

about the action that he takes. The second benchmark is to elicit the decision-maker’s

full (probability) distribution around his action. This is tedious in practice. Instead, we

resort to measuring a summary statistic that captures the uncertainty implied in the

distribution, which is the analog of σCU in the model (equation (6)). However, many

people are not naturally familiar with the concept of a standard deviation. To strike a

balance between conceptual clarity and quantitative interpretation on the one hand and

participant comprehension on the other hand, we hence elicit an interval measure.

Figure 13 in Appendix C.1 provides a screenshot. Here, a participant was reminded of

their valuation (switching interval) for the lottery on the previous price list screen. They

were then asked to indicate how certain they are that to them the lottery is worth exactly

the same as their previously indicated certainty equivalent. To answer this question,

subjects used a slider to calibrate the statement “I am certain that the lottery is worth

between a and b to me.” If the participant moved the slider to the very right, a and b

corresponded to the previously indicated switching interval. For each of the 20 possible

ticks that the slider was moved to the left, a decreased and b increased by 25 cents, in

real time. In gain lotteries, a was bounded from below by zero and b bounded from
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above by the lottery’s upside. Analogously, for losses, a was bounded from below by

the lottery’s downside and b from above by zero. The slider was initialized at cognitive

uncertainty of zero, but subjects had to click somewhere on the slider in order to be able

to proceed.

Four remarks about this measure are in order. First, the measure only captures in-

ternal uncertainty about what the certainty equivalent is, rather than also external un-

certainty that arises due to stochasticity in the environment. Therefore, both traditional

and behavioral models that do not feature cognitive noise predict cognitive uncertainty

of zero: in canonical models, agents know their true valuation of a lottery, regardless of

which “behavioral” decision processes or preferences may generate that valuation.

Second, this measure approximates a subjective confidence interval. Our elicitation

procedure did deliberately not specify which particular confidence interval (e.g., 95%)

we are interested in. The reason is that (i) we aimed at keeping the elicitation simple and

(ii) we are operating precisely under the assumption that subjects do not really know

how to translate probabilities of 90% or 95% confidence into an appropriate certainty

equivalent. To support this conjecture, Appendix B reports on calibration experiments

in which we explicitly elicit 75%, 90%, 95%, 99% and 100% confidence intervals, and

compare them with our baseline measure. We find that subjects always state roughly

the same cognitive uncertainty ranges, regardless of which confidence interval we elicit.

Third, we deliberately do not financially incentivize our elicitation of cognitive un-

certainty. The reason is that we do not know subjects’ true valuation in the absence

of cognitive noise because we do not know subjects’ true preferences. Our approach

is therefore related to other recent work in behavioral economics that has highlighted

(i) that various non-choice data such as response times or eye-tracking can help better

understand choice behavior, and (ii) that unincentivized measurements of behavioral

constructs are often highly predictive of behavior (e.g., Falk et al., 2018; Enke et al.,

2019), including in the domain of bounded rationality (Stango and Zinman, 2020).

Fourth, our measure of cognitive uncertainty reflects subjectively perceived uncer-

tainty about the optimal action, rather than the actual magnitude of cognitive noise. A

perhaps intuitively plausible alternative procedure would be to estimate the magnitude

of actual, latent cognitive noise through across-task inconsistency in behavior. There

are four reasons that speak against the usefulness of such a measure in our framework.

First, in the model in Section 2 it is actually ambiguous whether higher cognitive noise

leads to more inconsistency.⁷ The intuition is that higher cognitive noise also increases

shrinkage (reduces λ), which can lead to less overall variability in behavior. In contrast,

the relationship between cognitive uncertainty and both cognitive noise and the degree

⁷From eq. (4), we have
∂ σ2

ao (s)

∂ σ2
ε
=

B2σ4
p(σ

2
p−σ

2
ε )

(σ2
p+σ2

ε )3
, which has an ambiguous sign.
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of shrinkage is unambiguously positive. A second reason against using across-task in-

consistency is that what matters for our logic of Bayesian shrinkage is not necessarily

actual but subjectively perceived noisiness. Third, prior work has shown that people some-

times randomize for reasons that are unrelated to cognitive noise (Agranov and Ortoleva,

2017), or exhibit preferences for behaving consistently (Falk and Zimmermann, 2017).

This would confound a measurement based on repeated elicitation. Fourth, we desire a

relatively simple measure of cognitive uncertainty at the level of a single price list.

Throughout the paper, we normalize cognitive uncertainty to be in [0, 1], where
one corresponds to the widest possible uncertainty interval. Figure 14 in Appendix C.1

shows a histogram of the distribution of cognitive uncertainty. 55% of our data indicate

cognitive uncertainty that is strictly larger than the one-dollar switching interval.⁸

3.1.3 Subject Pool

All experiments reported in this paper were conducted on Amazon Mechanical Turk

(AMT). AMT is becoming an increasingly used resource in experimental economics (e.g.

Imas et al., 2016; DellaVigna and Pope, 2018), including in work on bounded rationality

(Martínez-Marquina et al., 2019). Review papers suggest that experimental results on

AMT and in the lab closely correspond to each other (Paolacci and Chandler, 2014).

We took four measures to achieve high data quality. First, our financial incentives

are unusually large by AMT standards. Average realized earnings in the choice under

risk experiments are $6.10 for a median completion time of 20 minutes. This implies

average hourly earnings of $18, compared to a typical hourly wage of about $5 on AMT.

Second, we screened out inattentive prospective subjects through comprehension ques-

tions described below. Third, we pre-registered analyses that remove extreme outliers

and speeders. Fourth, subjects only completed six choice lists, which is considerably less

than in typical experiments.

3.1.4 Logistics and Pre-Registration

Based on a pre-registration, we recruited N = 700 completes for treatment Baseline Risk.

We restricted our sample to AMT workers that were registered in the United States, but

we did not impose additional participation constraints. After reading the instructions,

participants completed three comprehension questions. Participants who answered one

or more control questions incorrectly were immediately routed out of the experiment

and do not count towards the number of completes. In addition, towards the end of the

⁸As a basic validity check, in a small sample of 272 price lists, we implemented payout probabilities
of p = 0% or p = 100%, so that there is no external uncertainty. In these tasks, cognitive uncertainty
drops considerably to an average of 0.10 and a median of zero.
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experiment, a screen contained a simple attention check. Subjects that answered this

attention check incorrectly are excluded from the data analysis and replaced by a new

complete, as specified in the pre-registration. In total, 62% of all prospective participants

were screened out of the experiment in the comprehension checks. Of those subjects that

passed, 2% were screened out in the attention check. These procedures imply that, just

like all traditional lab experiments with undergraduates, we are working with a sample

that is positively selected in terms of cognitive abilities and / or attentiveness. Given the

link between cognitive uncertainty, cognitive ability and response times discussed in Sec-

tion 7, we would probably have identified even more variation in cognitive uncertainty

had we not restricted the sample. Screenshots of instructions and control questions can

be found in Appendix L.

In terms of timeline, subjects first completed six of the choice under risk tasks dis-

cussed above. Then, we elicited their survey expectations about various economic vari-

ables, as discussed in Section 5. Finally, participants completed a short demographic

questionnaire and an eight-item Raven matrices IQ test.

Participants received a completion fee of $1.70. In addition, each participant poten-

tially earned a bonus. The experiment comprised three financially incentivized parts:

the risky choice lists, the survey expectations questions, and the Raven IQ test. For each

subject, one of these parts of the experiment was randomly selected for payment. If

choice under risk was selected, a randomly selected decision from a randomly selected

choice list was paid out.

The experiments reported in this paper were pre-registered in the AEA RCT registry,

see https://www.socialscienceregistry.org/trials/4493. The pre-registration
includes (i) the sample size in each treatment; (ii) data exclusion criteria such as the

aforementioned attention checks or the handling of extreme outliers; and (iii) direc-

tional predictions about the relationship between cognitive uncertainty, our outcome

measures and experimental manipulations.

3.2 Cognitive Uncertainty and the Probability Weighting Function

Because of the simple structure of our lotteries with only one non-zero payout state, an

instructive way to visualize our data is to compute normalized certainty equivalents as

NC E = 100 ·C E/y , where the certainty equivalent C E is defined as the midpoint of the

switching interval and y is the non-zero payout. An attractive feature of NC E is that it

directly corresponds to the implied probability weight if one assumes that utility is linear.

For expositional reasons, we change the sign of these normalized certainty equivalents

to be weakly negative for loss lotteries.

For the purposes of the baseline analysis, we exclude extreme outliers as defined in
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the pre-registration: these are observations for which (i) the normalized certainty equiv-

alent is strictly larger than 95% while the objective payout probability is at most 10%, or

(ii) the normalized certainty equivalent is strictly less than 5% while the objective pay-

out probability is at least 90%. This procedure affects 3% of all data points. We report

robustness checks using all data in Appendix C.2.

Figure 2 plots average normalized certainty equivalents against objective payoff

probabilities to visualize the probability weighting function. The figure distinguishes

between subjects above and below average cognitive uncertainty within a given prob-

ability bucket. Focusing on the upper half of the figure (gain lotteries), first note that

we replicate prior findings on the shape of the weighting function. More importantly,

we find that subjects with higher cognitive uncertainty exhibit more pronounced proba-

bility weighting: high cognitive uncertainty decisions are slightly more risk seeking for

small probability gains and more risk averse for high probability gains. Thus, overall,

cognitive uncertainty is associated with more pronounced compression.⁹

The heuristic probability weighting function crosses the 45-degree line to the left of

p = 50%. This pattern is well-known in the literature and in line with our hypothesis as

long as subjects both (i) shrink towards 50:50 because of cognitive noise and (ii) exhibit

some version of genuine aversion against risky lotteries.

Next, we turn to the bottom panel of Figure 2, which summarizes the data for loss

lotteries. By construction of our figure, the weighting function is now given by the mir-

ror image of the weighting function in the gain domain. Again, we see that the implied

probability weights of subjects with higher cognitive uncertainty are more compressed.

An attractive feature of visualizing the data as in Figure 2 is that it highlights that the re-

lationship between cognitive uncertainty and risk aversion reverses in predictable ways

depending on whether the payouts are positive or negative and whether the payout

probability is high or low. For instance, subjects with higher cognitive uncertainty are

more risk seeking for small probability gains, but more risk averse for small probability

losses. Similarly, high cognitive uncertainty participants are more risk averse for high

probability gains, yet more risk seeking for high probability losses. Thus, high cogni-

tive uncertainty subjects exhibit a more pronounced “fourfold pattern of risk attitudes”

(Kahneman and Tversky, 1979).

⁹Strictly speaking, our model predicts that probability weighting will entirely disappear in the ab-
sence of cognitive noise. In our data, however, we observe some compression also for decisions that are
associated with the lowest possible cognitive uncertainty. This pattern is consistent with our model for
two reasons. First, because the cognitive uncertainty measure refers to the switching interval in the choice
list, the lowest cognitive uncertainty statement in our data does not imply cognitive uncertainty of zero,
but rather that cognitive uncertainty does not exceed the $1 switching interval. Second, because there is
plausibly some measurement error in the elicitation of cognitive uncertainty, some decisions will be coded
as being associated with the lowest possible level of cognitive uncertainty, while the true level of cognitive
uncertainty that governs these decisions is strictly positive. As a result of these two measurement issues, it
is unsurprising to see that even “low cognitive uncertainty” decisions reflect some probability weighting.
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Figure 2: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability × gains / losses bucket. The plot shows av-
erages and corresponding standard error bars. The figure is based on 2,525 certainty equivalents of 700
subjects.

Table 1 provides a regression analysis of these patterns, which directly corresponds

to estimating the neo-additive weighting function in equation (7). Our object of interest

is the extent to which a subject’s normalized certainty equivalent is (in)sensitive to vari-

ations in the probability of the non-zero payout state. Thus, we regress a participant’s

absolute normalized certainty equivalent on (i) the probability of receiving the non-zero

gain / loss; (ii) cognitive uncertainty; and (iii) an interaction term. In our baseline spec-

ification, we do not include subject fixed effects, meaning that we embrace the variation

that results from across-subject heterogeneity in cognitive uncertainty.

The results show that higher cognitive uncertainty is associated with lower respon-

siveness to variations in objective probabilities, in both the gains and the loss domain. In

terms of quantitative magnitude, the regression coefficients suggest that with cognitive

uncertainty of zero, the slope of the neo-additive weighting function is given by 0.65,

yet it is only 0.34 for maximum cognitive uncertainty of one. A different way to gauge

quantitative magnitudes is to standardize cognitive uncertainty into a z-score. When

doing so, the regression results (not reported) suggest that an one standard deviation

increase in cognitive uncertainty decreases the slope of the neo-additive weighting func-
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Table 1: Insensitivity to probability and cognitive uncertainty

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6) (7)

Probability of payout 0.68∗∗∗ 0.68∗∗∗ 0.59∗∗∗ 0.59∗∗∗ 0.65∗∗∗ 0.65∗∗∗ 0.66∗∗∗

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02)

Probability of payout × -0.41∗∗∗ -0.41∗∗∗ -0.20∗∗ -0.19∗∗ -0.31∗∗∗ -0.31∗∗∗ -0.26∗∗∗

Cognitive uncertainty (0.09) (0.09) (0.09) (0.09) (0.07) (0.07) (0.10)

Cognitive uncertainty 11.6∗∗ 11.4∗∗ 14.8∗∗∗ 14.6∗∗∗ 13.5∗∗∗ 13.9∗∗∗ 9.88∗

(5.19) (5.27) (5.26) (5.25) (3.84) (3.87) (5.85)

Session FE No Yes No Yes No Yes No

Demographic controls No Yes No Yes No Yes No

Subject FE No No No No No No Yes

Observations 1271 1271 1254 1254 2525 2525 2525
R2 0.54 0.55 0.41 0.42 0.47 0.47 0.66

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
The dependent variable is a subject’s absolute normalized certainty equivalent. The sample
includes choices from all baseline gambles with strictly interior payout probabilities. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

tion by about 0.11. These are arguably large effect sizes that underscore the quantitative

relevance of cognitive uncertainty in generating probability weighting.

Column (7) shows that the reduced sensitivity to objective probabilities for high cog-

nitive uncertainty decisions remains statistically highly significant and of a comparable

magnitude when we include subject fixed effects in the regression. That is, cognitive

uncertainty predicts the magnitude of compression even across decisions made by the

same subject. In Section 6, we return to this observation by studying how cognitive

uncertainty depends on objective probabilities.

3.3 Manipulations of Cognitive Uncertainty

To exogenously manipulate cognitive uncertainty, we operate with compound lotteries

and ambiguous lotteries. To illustrate, consider the case of compound lotteries, where

an example lottery is given by: “We randomly draw an integer between 60 and 80,

where each number is equally likely to be selected. Call this number n. With probability

n%, you receive $20. With probability 100%-n%, you receive $0.” The corresponding

reduced lottery has payout probability p = 70%. These two lotteries are identical under

expected utility theory because EU is linear in probabilities. Ambiguous lotteries follow

18



the same format as compound lotteries, except that the distribution from which pay-

off probabilities are drawn is unknown. An example is: “There is a number n that lies

between 60 and 80. With probability n%, you receive $20. Otherwise, you receive $0.”

Our hypothesis is that compound and ambiguous lotteries induce higher cognitive

uncertainty, which should lead to weighting functions with lower likelihood sensitiv-

ity. A causal interpretation of our experiments with respect to cognitive uncertainty re-

quires the assumption that the introduction of compound or ambiguous lotteries affects

choices only through cognitive uncertainty. While this is a strong assumption, we are not

aware of alternative theories that would predict the nuanced pattern of how risk aver-

sion changes as a function of reduced versus compound lotteries, depending on whether

the lottery features high or low probabilities and gains or losses.

As noted above, we implemented the compound lotteries as part of treatment Base-

line Risk, where each lottery had a 1 in 3 chance of being presented in compound form.

We collected 1,241 observations on compound lotteries. The ambiguity experiment was

added to the pre-registration after the initial set of experiments was implemented. 300

subjects completed these experiments, in which each subject completed both lotteries

with known payoff probabilities and ambiguous ones.¹⁰

Turning to the results, we find that, relative to reduced lotteries, compound and

ambiguous lotteries increase stated cognitive uncertainty by 23% and 26%, on average.

Figures 15 and 16 in Appendix C.1 show corresponding histograms.

Figure 3 shows the results for the compound manipulation. The analogous figure for

ambiguous lotteries is Figure 17 in Appendix C.1. We find that the probability weighting

function is substantially more compressed under compound than under reduced lotter-

ies, for both gains and losses. Consistent with many findings in the literature (Halevy,

2007; Gillen et al., 2019), subjects are compound lottery averse for high probability

gains (and low probability losses). However, as predicted by our framework, subjects

behave as if they are compound risk loving for low probability gains and high probabil-

ity losses. We are not aware of other theories that would predict such a pattern.

Table 2 provides a regression analysis, which again corresponds to estimating the

neo-additive weighting function. We find that subjects’ certainty equivalents are consid-

erably less responsive to the payout probabilities under compound and ambiguous lot-

teries than under reduced lotteries, for both gains and losses (in these regressions, the

payout probability for ambiguous lotteries is specified as the midpoint of the ambigu-

¹⁰Appendix J presents an additional ambiguity experiment that we pre-registered and implemented.
In these experiments, we do not elicit certainty equivalents for ambiguous lotteries but instead matching
probabilities. These experiments also deliver statistically significant evidence for a correlation between
cognitive uncertainty and “ambiguity-insensitivity.” We relegate these experiments to the appendix both
for brevity and, as we discuss in the Appendix, because we believe that they are conceptually more am-
biguous than the version that we present in the main text.
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Figure 3: Probability weighting function separately for reduced and compound lotteries. The plot shows
averages and corresponding standard error bars. The figure is based on 3,766 certainty equivalents of
700 subjects.

ous interval). Moreover, we again find a within-treatment correlation between respon-

siveness to payout probabilities and cognitive uncertainty. For example, even when we

restrict attention to ambiguous lotteries, the certainty equivalents of participants with

higher cognitive uncertainty are significantly less responsive to variation in ambiguous

likelihoods than those of subjects with low cognitive uncertainty. This further suggests

that the finding of “a-insensitivity” in the ambiguity literature (Trautmann and Van

De Kuilen, 2015; Li et al., 2019) reflects cognitive uncertainty. Moreover, we again find

that all of our results also hold when we exclusively leverage within-subject variation in

cognitive uncertainty, i.e., when subject fixed effects are included in the analyses.

In Appendix K, we report on a further set of experiments in which we exogenously

manipulate cognitive uncertainty using cognitive load. In these experiments, we find

very similar patterns to those reported above: under cognitive load, stated cognitive un-

certainty increases by 15%, and participants’ certainty equivalents become less sensitive

to variation in objective probabilities, for both gains and losses.

3.4 Manipulation of the Cognitive Default

In a final step of the analysis of choice under risk, we exogenously manipulate the lo-

cation of the cognitive default. Recall that we operate under the assumption that the
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Table 2: Choice under risk: Baseline versus compound / ambiguous lotteries

Dependent variable:
Absolute normalized certainty equivalent

Risk vs. compound risk Risk vs. ambiguity

Gains Losses Pooled Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.62∗∗∗ 0.56∗∗∗ 0.65∗∗∗ 0.74∗∗∗ 0.54∗∗∗ 0.69∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.04) (0.03)

Probability of payout × -0.30∗∗∗ -0.25∗∗∗ -0.29∗∗∗ -0.20∗∗∗ -0.16∗∗∗ -0.16∗∗∗

1 if compound / ambiguous lottery (0.03) (0.03) (0.03) (0.03) (0.04) (0.02)

Probability of payout × -0.24∗∗∗ -0.39∗∗∗

Cognitive uncertainty (0.07) (0.09)

1 if compound / ambiguous lottery 12.3∗∗∗ 12.3∗∗∗ 13.6∗∗∗ 6.91∗∗∗ 8.82∗∗∗ 6.72∗∗∗

(1.89) (1.84) (1.60) (1.14) (2.31) (1.35)

Cognitive uncertainty 10.5∗∗ 16.2∗∗∗

(4.12) (5.66)

Subject FE No No Yes No No Yes

Observations 1918 1848 3766 889 880 1769
R2 0.44 0.35 0.56 0.58 0.34 0.71

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The
dependent variable is a subject’s absolute normalized certainty equivalent. In columns (1)–(3), the
sample includes choices from the baseline and compound lotteries, where for comparability the
set of baseline lotteries is restricted to lotteries with payout probabilities of 10%, 25%, 50%, 75%,
and 90%, see Figure 3. In columns (4)–(6), the sample includes choices from the baseline and
ambiguous lotteries. For ambiguous lotteries, we define the payout “probability” as the midpoint of
the interval of possible payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

default is influenced by an ignorance prior. With two states of the world, the ignorance

prior is 50:50. To vary the default, we implement a partition manipulation (Starmer

and Sugden, 1993; Fox and Clemen, 2005) and increase the number of states to ten.

This means that the ignorance prior for each state is now given by 10%. We further

designed this treatment variation with the objective of holding cognitive uncertainty

fixed (which we verify below). Following the logic of Prediction 3 in Section 2, we pre-

dict that the elevation of the probability weighting function decreases as the number of

states increases.

To experimentally implement this manipulation, we replicate treatment Baseline Risk,

but now frame probabilities in terms of number of colored balls in an urn. For example,

we describe a lottery as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.

20 balls are blue. If a blue ball gets drawn: get $0.
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In addition to this treatment, labeled High Default Risk, we also implement treatment

Low Default Risk. Here, we implement the same lotteries as in High Default Risk, yet we

split the zero-payout state into nine payoff-equivalent states with different probability

colors. For example, the lottery above would be described as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.

2 balls are blue. If a blue ball gets drawn: get $0.

2 balls are black. If a black ball gets drawn: get $0.

2 balls are white. If a white ball gets drawn: get $0.

. . .

4 balls are yellow. If a yellow ball gets drawn: get $0.

It is important to note that these lotteries are identical in terms of objective payout pro-

files. Still, based on ourmodel, we predict (i) that this manipulation shifts the probability

weighting function towards zero and (ii) that high cognitive uncertainty decisions are

more responsive to variation in the cognitive default. In total, 300 subjects participated

in these two treatments, which we implemented in a between-subjects design with ran-

dom assignment to treatments within sessions.

Turning to the results, we find that cognitive uncertainty does not vary across the

two treatments (p = 0.898), see the histograms in Figure 18 in Appendix C.1. This lends

credence to our implicit assumption that our experimental manipulation only affects the

cognitive default but not cognitive uncertainty.

Figure 4 shows average normalized certainty equivalents, separately for treatments

High Default Risk and Low Default Risk. We find that, in the gain domain, the probability

weighting function is significantly shifted downwards towards zero with 10 states (a

low default), as hypothesized. In the loss domain, our framework would predict that

the weighting function is shifted upwards towards zero. We only find mixed evidence

for this prediction: the weighting function appears to move up for low and intermediate

probabilities but not for high probabilities.

Table 3 provides a regression analysis that confirms the visual patterns. Because the

treatment variations were conducted across subjects, we cannot include subject fixed

effects in the regressions. Columns (1)–(2) analyze gain lotteries. Here, normalized cer-

tainty equivalents (observed risk tolerance) are 10 percentage points lower in the Low

Default Risk condition. Moreover, as we can see in column (2), we find a statistically

significant interaction effect between cognitive uncertainty and the treatment manipu-

lation. This suggests that, as posited by our model, subjects with high cognitive noise

respond more to variation in the cognitive default. In the case of losses, the regression

coefficient of the low default condition is negative – as predicted by our framework – but

not statistically significant (p = 0.15). The same is true for the hypothesized interaction
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Figure 4: Probability weighting function separately for treatments High Default Risk and Low Default Risk.
The plot shows averages and corresponding standard error bars. The figure is based on 1,757 certainty
equivalents of 300 subjects.

coefficient. A potential (post-hoc) explanation for this null result is that, in all treat-

ments, the choice data in the loss domain appear to be considerably noisier than in the

gain domain. This can be inferrred from the difference in R2 between columns (1) and

(3) in Table 3 and similar patterns in all other tables above. Either way, both the treat-

ment effect of the default manipulation and its interaction with cognitive uncertainty

are statistically significant in the pooled gains and losses sample, see columns (5)–(7).

4 Belief Updating

4.1 Experimental Design

Our experimental design strategy for belief updating closely mirrors the one for choice

under risk: we (i) supplement an established experimental design from the literature

with a measurement of cognitive uncertainty; (ii) document a correlation between cog-

nitive uncertainty and the magnitude of compression of probabilities; (iii) exogenously

manipulate cognitive uncertainty using a compound manipulation; and (iv) vary the

location of the cognitive default using a partition manipulation.
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Table 3: Choice under risk: Treatments Low Default Risk and High Default Risk

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6) (7)

0 if High Default, 1 if Low Default -10.4∗∗∗ -6.70∗∗∗ -1.03 -2.33 -6.46∗∗∗ -4.37∗∗ -3.67∗

(1.84) (2.27) (2.45) (2.88) (1.50) (1.86) (1.87)

Probability of payout 0.52∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.53∗∗∗ 0.53∗∗∗ 0.53∗∗∗

(0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

1 if Low Default × Cognitive uncertainty -18.6∗∗ -0.64 -10.2∗ -11.7∗∗

(7.55) (9.14) (5.87) (5.95)

Cognitive uncertainty 4.63 10.6∗ 7.74∗ 8.18∗

(6.22) (5.84) (4.17) (4.26)

Session FE No No No No No No Yes

Demographic controls No No No No No No Yes

Observations 881 881 876 876 1757 1757 1757
R2 0.39 0.40 0.00 0.30 0.33 0.33 0.34

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s absolute normalized certainty equivalent. The sample includes choices from treatments
Low Default Risk and High Default Risk. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4.1.1 Measuring Belief Updating

In designing a structured belief updating task, we follow the recent review and meta-

study by Benjamin (2019) by implementing the workhorse paradigm of so-called “balls-

and-urns” or “bookbags-and-pokerchips” experiments. In treatment Baseline Beliefs, there

are two bags, A and B. Both bags contain 100 balls, some of which are red and some

of which are blue. The computer randomly selects one of the bags according to a pre-

specified base rate. Subjects do not observe which bag was selected. Instead, the com-

puter selects one or more of the balls from the selected bag at random (with replace-

ment) and shows them to the subject. The subject is then asked to state a probabilistic

guess that either bag was selected. We visualized this procedure for subjects using the

image at the top right of Figure 20 in Appendix D.1.

The three key parameters of this belief updating problem are: (i) the base rate r ∈
{10,30, 50,70, 90} (in percent), which we operationalized as the number of cards out

of 100 that had “bag A” or “bag B” written on them; (ii) the signal diagnosticity q ∈
{70,90}, which is given by the number of red balls in bag A and the number of blue

balls in bag B (we only implemented symmetric signal structures such that P(red|A) =
P(blue|B)); and (iii) the number of randomly drawn balls N ∈ {1,3}. These parameters

were randomized across trials but always known to participants.

Each subject completed six belief updating tasks. In each task, they were asked to
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state a probabilistic belief (0-100) that bag A got selected. The computer automatically

and instantaneously showed the corresponding subjective probability that bag B got

selected. See Figure 19 in Appendix D.1 for a screenshot.

Financial incentives were implemented through the binarized scoring rule (Hossain

and Okui, 2013). Here, subjects had a chance of winning a prize of $10. The probability

of receiving the prize was given by π=max
¦

0, 100−0.04·(b−t)2

100

©

, where b is the guess (in

%) and t indicates the true state (0 or 100).¹¹

With probability 5 in 6, a belief updating task was implemented using the design

discussed above, and with probability 1 in 6 in a compound design. We return to the

compound data in Section 4.3 and focus on the baseline problems for now.

4.1.2 Measuring Cognitive Uncertainty

Our main measure of cognitive uncertainty in belief updating is very similar to the one

for choice under risk, both conceptually and implementation-wise. The instructions in-

troduced the concept of an “optimal guess.” This guess, we explained to subjects, uses

the laws of probability to compute a statistically correct statement of the probability

that either bag was drawn, based on Bayes’ rule. We highlighted that this optimal guess

does not rely on information that the subject does not have.

After subjects had indicated their probabilistic belief that either bag was drawn, the

next decision screen elicited cognitive uncertainty. Here, we asked subjects how certain

they are that their own guess equals the optimal guess for this task. Operationally, simi-

larly to the case of choice under risk, subjects navigated a slider to calibrate the statement

“I am certain that the optimal guess is between a and b.”, where a and b collapsed to the

subject’s own previously indicated guess in case the slider was moved to the very right.

For each of the 30 possible ticks that the slider was moved to the left, a decreased and b

increased by one percentage point. a was bounded from below by zero and b bounded

from above by 100. Again, the slider was initialized at cognitive uncertainty of zero and

we forced subjects to click somewhere on the slider to be able to proceed. Figure 20

in Appendix D.1 shows a screenshot of the elicitation screen. For ease of interpretation,

we again normalize this measure to be between zero and one. As in choice under risk,

this measure only captures internal uncertainty about what the rational solution to the

decision problem is, rather than stochasticity in the environment.

Just like our measure of cognitive uncertainty in choice under risk, this one is not

financially incentivized. However, in the case of belief updating, it is possible to devise

an incentivized measure because here an objectively optimal response (the Bayesian

¹¹Recent evidence suggests that biases in probability judgment are largely invariant to the stake size
(Enke et al., 2020).
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posterior) exists. Thus, we additionally elicited a second measure of cognitive uncer-

tainty from each participant: their willingness-to-pay (WTP) for replacing their own

guess with the optimal (Bayesian) guess.¹² To this effect, before subjects stated their

own guess, they received an endowment of $3 for each task and then indicated how

much of this budget they would at most be willing to pay to replace their guess.¹³ Sub-

jects’ WTP was elicited using a direct Becker-deGroot-Marschak elicitation mechanism.

That is, we randomly drew a price p ∼ U[0, 3] and the guess was replaced iff p ≤WTP.

See Figure 21 in Appendix D.1 for a screenshot.

To maximize statistical power, subjects’ WTP and the resulting replacement of their

own decision was only implemented in randomly selected 10% of all tasks. To avoid

concerns about hedging, this uncertainty was resolved before subjects stated their own

posterior guess. The timeline of each task was hence as follows: (i) observe game param-

eters; (ii) indicate WTP; (iii) find out whether own guess or Bayesian guess potentially

counts for payment; (iv) state own posterior guess; and (v) indicate cognitive uncer-

tainty range. The analysis below excludes those tasks in which a subject’s guess got

replaced by the optimal guess (3% of all data), though we have verified that our analy-

ses yield virtually identical results if these (non-incentivized) guesses are included.

Figures 22 and 23 in Appendix D.1 show histograms of the cognitive uncertainty

measure as well as subjects’ WTP. Both measures exhibit considerable variation. 85% of

our data indicate strictly positive cognitive uncertainty. The average WTP is $0.85 with

a median of $0.50 and a standard deviation of 0.93.¹⁴

The two measures exhibit a correlation of ρ = 0.21. While not incentivized, we view

the cognitive uncertainty measure as our primary measure because (i) by its nature, and

as exemplified by this paper, it is easily portable across different experimental contexts

and decision situations and (ii) it is more fine-grained and exhibits more variation (26%

of all WTPs are zero, perhaps due to loss aversion vis-a-vis giving up safe money). Still,

below we verify that all of our results are robust to using the WTP measure.

¹²See Oprea (2020) for a related recent approach in the context of algorithmic rules.
¹³To see the intuition for why even risk-neutral subjects who have strictly positive cognitive uncertainty

but are otherwise rational would have a non-zero WTP for the Bayesian posterior, consider the following
contrieved example. Suppose the signal diagnosticity is one, i.e., signals are perfectly informative. The
subject states posterior p = 0.5, but actually believes that p = 0, p = 0.5 and p = 1 are all equally likely
to be the Bayesian posterior. Then, purchasing the Bayesian guess amounts to perfectly learning the true
state, while guessing 0.5 evidently has lower expected payoffs.

¹⁴As a basic validity check, in a small sample of 161 updating tasks, we implemented a signal diagnos-
ticity of d = 100, so that the selected bag is deterministically revealed. In these tasks, the distribution of
both the cognitive uncertainty range and subjects’ WTP has a median of zero, with means of 0.06 and
0.26.
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4.1.3 Logistics and Pre-Registration

Based on a pre-registration, we recruited N = 700 completes for treatment Baseline Be-

liefs. Participants who answered one or more of the four comprehension questions incor-

rectly were immediately routed out of the experiment. Similarly, subjects are excluded

from the analysis if they failed an attention check, as specified in the pre-registration. In

total, 49% of all prospective participants were screened out in the comprehension checks.

Of those subjects that passed, 6% were screened out based on the attention check.

In terms of timeline, subjects first completed the belief updating tasks discussed

above. Second, we elicited their survey expectations about economic variables, discussed

in Section 5. Finally, participants completed a short demographic questionnaire and an

eight-item Raven matrices IQ test. One of the three parts of the experiments (belief

updating, survey expectations, or Raven test) was randomly selected for payment.

Average earnings are $4.80 with a median completion time of 23 minutes. The ex-

periments were pre-registered under the same AEA RCT trial as discussed above. Screen-

shots of the instructions and control questions can be found in Appendix L.

4.2 Cognitive Uncertainty and Belief Updating

As in the analysis of choice under risk and as specified in the pre-registration, we begin by

excluding extreme outliers. These are defined for subjective posteriors ps and Bayesian

posteriors pb such that ps < 25∧ pb > 75 or ps > 75∧ pb < 25. This is the case for 5%

of all data. We report robustness checks using the full sample below.

Figure 1 in the Introduction depicts the “belief weighting function” that we estimate

in our data: the inverse S-shaped relationship between average stated and Bayesian

posteriors that is also documented in Ambuehl and Li (2018). Figure 5 replicates this

figure separately for subjects above or below average cognitive uncertainty as defined

by our unincentivized cognitive uncertainty range. We see that, over the entire support

of Bayesian posteriors, stated posteriors are more compressed towards 50:50 for sub-

jects with higher cognitive uncertainty.¹⁵ Thus, cognitive uncertainty endogenizes the

well-known phenomenon of “extremeness aversion” in belief updating. Figure 27 in Ap-

pendix D.2 replicates this figure based on the financially incentivized WTP measure,

with very similar results.

Columns (1)–(3) of Table 4 provide an econometric analysis, which again corre-

sponds to the neo-additive weighting function. Here, we regress a subject’s stated pos-

¹⁵A commonly observed error in belief updating experiments is that subjects report the signal diag-
nosticity. In our data, there are 4,289 belief statements for tasks in which the Bayesian posterior did not
equal the signal diagnosticity. Out of those, 374 (8.7%) directly reflect the signal diagnosticity. All of our
results are robust to excluding these observations.
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Figure 5: Relationship between average stated and Bayesian posteriors, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each Bayesian posterior. Bayesian
posteriors are rounded to the nearest integer. We only show buckets with at least 15 observations. The
figure is based on 3,187 beliefs of 700 subjects.

terior on (i) the Bayesian posterior; (ii) cognitive uncertainty; and (iii) their interac-

tion term. We find that with cognitive uncertainty of zero, the slope of the neo-additive

weighting function is given by 0.83 but it is only 0.41 with cognitive uncertainty of

one. Put differently, our data suggest that a one standard deviation increase in cognitive

uncertainty reduces the slope of the linear function by 0.10.¹⁶

Insensitivity to base rate and likelihood ratio (conservatism). A canonical finding

in the belief updating literature is that subjects exhibit underreaction (insensitivity) to

both the base rate and the likelihood ratio, which is also referred to as conservatism

(Benjamin, 2019). Note that our theory of cognitive uncertainty and belief updating

mechanically generates insensitivity to the base rate and the likelihood ratio because

– in our model – subjects only respond to variation in the Bayesian posterior (which is

determined by the base rate and the likelihood ratio) with weight λ < 1. Intuitively, if a

subject always states a belief of 50:50, the sensitivity of beliefs to the base rate and like-

¹⁶Table 11 in Appendix D.2 replicates Table 4 using the WTP instead of the cognitive uncertainty
measure, with very similar results.
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Table 4: Belief updating: Regression analyses

Dependent variable: Posterior belief

Sample: Baseline Compound Default

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Bayesian posterior 0.80∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.72∗∗∗ 0.80∗∗∗ 0.80∗∗∗ 0.64∗∗∗ 0.64∗∗∗ 0.64∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01)

Bayesian posterior × -0.39∗∗∗ -0.39∗∗∗ -0.39∗∗∗ -0.28∗∗∗ -0.26∗∗∗

Cognitive uncertainty (0.04) (0.04) (0.05) (0.05) (0.07)

Cognitive uncertainty 16.6∗∗∗ 16.4∗∗∗ 15.9∗∗∗ 10.4∗∗∗ 7.82∗

(2.32) (2.32) (3.09) (3.02) (4.62)

Bayesian posterior × -0.51∗∗∗ -0.47∗∗∗ -0.49∗∗∗

1 if compound problem (0.03) (0.03) (0.04)

1 if compound problem 26.4∗∗∗ 25.4∗∗∗ 26.8∗∗∗

(1.75) (1.77) (2.51)

0 if Baseline, 1 if Low Default -3.75∗∗∗ -1.94∗ -2.01∗

(0.71) (1.07) (1.14)

1 if Low Default × -5.78∗∗∗ -5.99∗∗∗

Cognitive uncertainty (2.15) (2.17)

Session FE No Yes No No Yes No No No Yes

Demographic controls No Yes No No Yes No No No Yes

Subject FE No No Yes No No Yes No No No

Observations 3187 3187 3187 1947 1947 1947 5372 5372 5372
R2 0.73 0.74 0.80 0.60 0.61 0.77 0.63 0.63 0.63

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns (1)–(3), the
sample includes the baseline tasks. In columns (4)–(6), the sample includes the baseline and compound tasks (where the
sample of baseline tasks is restricted to the same probabilities as in the compound tasks). In columns (7)–(9), the sample
includes the low and high default tasks. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

lihood ratio is zero. To show this empirically, we resort to so-called Grether regressions

(Grether, 1980). This specification is derived by expressing Bayes’ rule in logarithmic

form, which implies a linear relationship between the posterior odds, the prior odds,

and the likelihood ratio. Table 12 in Appendix D.3 presents such Grether regressions.

We find that insensitivity to the base rate and to the likelihood ratio are indeed signifi-

cantly more pronounced for subjects with higher cognitive uncertainty. These patterns

suggest that (at least a part of) what this literature has identified as base rate neglect or

conservatism are in fact not independent psychological phenomena but instead gener-

ated by cognitive noise.

Sample size effects. At the most basic level, our account of cognitive uncertainty pro-

vides a mapping from Bayesian posteriors to stated posteriors. As discussed above, this

endogenizes “extreme belief aversion” (Benjamin, 2019), base rate insensitivity and

conservatism. However, as is well known in the literature, experimental data also reveal

systematic variation in stated beliefs conditional on Bayesian posteriors. For instance, for

a given base rate, the draw of one blue ball gives rise to the same Bayesian posterior as
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the draw of two blue balls and one red ball, yet experimental participants consistently

update more strongly after observing one blue ball (Benjamin, 2019). The commonly

advanced intuition is that subjects update based on sample proportions (which are more

extreme for smaller samples), while Bayesian updating prescribes updating based on

sample differences. Our account of cognitive uncertainty also provides an explanation

for this pattern. The straightforward reason is that, in our data, stated cognitive uncer-

tainty significantly increases in the sample size, holding the sample difference fixed (see

Table 13 in Appendix D.4). That is, subjects appear to find it easier to form beliefs based

on one blue ball than based on two blue balls and one red ball. As a result of this system-

atic variation in cognitive noise, our model correctly predicts that subjects respond more

when the sample size is smaller (and therefore the sample proportion more extreme).

4.3 Manipulation of Cognitive Uncertainty

To manipulate cognitive uncertainty, we again resort to turning baseline problems into

compound problems. Consider belief updating problems in which the base rate is given

by 50:50 and the signal diagnosticity by d ≡ P(A|red) = P(B|blue). In the compound

version of these problems, the base rate is known and fixed at 50:50, but the diagnosticity

is the outcome of a random draw, k ∼ U {d − 10, d − 9, . . . , d + 10}. It is straightforward
to verify that these two problems give rise to the same Bayesian posterior.

As in choice under risk, we hypothesize that subjects exhibit higher cognitive uncer-

tainty in compound than in reduced updating problems. By the logic of our framework,

we expect that participants’ beliefs in compound problems will be more compressed

towards 50:50.¹⁷

We implemented these compound belief updating problems as part of treatment

Baseline Beliefs, where each belief updating problem had a 1 in 6 chance of being pre-

sented in a compound form. We collected 592 observations on compound problems.

We find that, relative to reduced updating problems, compound signal diagnosticities

increase stated cognitive uncertainty by 33% and subjects’ WTP for the Bayesian guess

by 43%, on average. Figures 24 and 25 in Appendix D.1 show corresponding histograms.

Figure 6 summarizes the results. Here, we plot average stated posteriors as a func-

tion of Bayesian posteriors, separately for baseline and compound problems. Because in

compound problems the base rate is always 50:50, the figure only includes data from

problems with a 50:50 base rate for the baseline tasks, too. We see that subjects’ posteri-

ors are substantially more compressed towards 50:50 in compound updating problems.

Columns (4)–(6) of Table 4 provide a regression analysis. The regression coefficients sug-

¹⁷In contemporaneous work, Liang (2019) identifies underreaction under compound relative to re-
duced updating problems. This is in line with our work, but he does not measure cognitive uncertainty.
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Figure 6: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and com-
pound belief updating problems. The plot shows averages and corresponding standard error bars. To allow
for a valid comparison between baseline and compound updating problems, the sample is restricted to
updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with at least 15 observations. The figure is based on 1,947 beliefs of 691 subjects.

gest that the sensitivity of stated posteriors to the Bayesian posterior is 0.81 in baseline

updating problem, yet only 0.35 in compound updating problems.

4.4 Manipulation of the Cognitive Default

To manipulate the location of the cognitive default, we again employ a partition manip-

ulation and increase the number of states to ten. Under our maintained assumption that

the default is influenced by an ignorance prior, our framework predicts that the entire

distribution of posterior beliefs shifts towards zero.

Recall that in treatment Baseline Beliefs, an example updating problem is that the

base rates for bags A and B are 70% and 30%, and the signal diagnosticity (number

of red balls in bag A and number of blue balls in bag B) 70%. Now, in treatment Low

Default Beliefs, we split the probability mass for bag B up into nine different bags. That

is, there are now ten bags, labeled A through J. In the specific example above, the base

rate for A would again be 70%, the one for B through I 3% each and the one for J 6%.

Bag A would contain 70 red and 30 balls, and all bags B through J 30 red and 70 blue

balls. That is, these bags have identical ball compositions.

Note that, regardless of what the actual draws of balls are, the Bayesian posterior

for bag A having been selected is identical in the baseline version and the version with
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Figure 7: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs. Bayesian posteriors are rounded to the nearest integer. We only show
buckets with at least 15 observations. The figure is based on 5,372 beliefs of 1,000 subjects.

10 bags. The reason is that under the state space {A; not A} the base rates and signal

diagnosticities are identical. Thus, in treatment LowDefault Beliefs, we asked participants

to indicate their belief that bag A got selected, and the computer automatically showed

the corresponding composite probability for one of the other bags having been selected.

300 subjects participated in treatment Low Default Beliefs, which was randomized

within the same experimental sessions as treatment Baseline Beliefs. All procedures other

than the ones described above were identical to the ones in Baseline Beliefs. Based on our

model, we predict (i) that the entire distribution of posterior beliefs shifts towards zero

and (ii) that high cognitive uncertainty decisions are more sensitive to the treatment

variation of the cognitive default.

We find that stated cognitive uncertainty is almost identical across conditions Base-

line Beliefs and Low Default Beliefs (p = 0.85). This corroborates our implicit assumption

that the experimental manipulation of increasing the number of bags only manipulates

the cognitive default but not cognitive uncertainty.

Figure 7 shows average stated posteriors as a function of Bayesian posteriors, sep-

arately for treatments Baseline Beliefs and Low Default Beliefs. As predicted, the entire

distribution of subjects’ beliefs is shifted towards zero. Columns (5)–(7) and (12)–(14)

of Table 4 provide regression analyses that confirm the visual patterns by showing that

the treatment dummy for the Low Default treatment is quantitatively large and statisti-

cally significant.
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Moreover, the regressions also confirm our second hypothesis, which is that the treat-

ment effect of the cognitive default variation is more pronounced among high cognitive

uncertainty subjects (see columns (7)–(9)). Overall, these results highlight that cogni-

tive uncertainty does not produce a general form of insensitivity. Instead, as predicted

by our model, it produces insensitivity to objective probabilities but excessive sensitivity

to variation in the normatively irrelevant cognitive default.

5 Survey Expectations

5.1 Experimental Design

Unlike the choice and belief updating contexts discussed so far, survey forecasts of eco-

nomic variables rely on information acquired outside of the experimental context. How-

ever, our concept of cognitive uncertainty nevertheless applies here: people oftentimes

do not know the answer to a probabilistic question, which may induce them to shrink

their reported beliefs to 50:50 (Lebreton et al., 2015). To illustrate the link between cog-

nitive uncertainty and survey expectations, we elicit beliefs about three variables that

have attracted attention in the literature: the structure of the national income distribu-

tion, inflation rates, and the development of the stock market.

To financially incentivize responses without going through the logistical hassle of

waiting for future variables to have realized, we elicited beliefs about contemporaneous

or past variables. Each participant was asked three questions that elicited their beliefs

about some specific aspect of the income distribution, stock returns, and the inflation

rate. The question about the inflation rate reads as:

[Explanation of inflation rates.] We randomly picked a year X between

1980 and 2018. Imagine that, at the beginning of year X, the set of products

that is used to compute the inflation rate cost $100. What do you think is the

probability that, at the end of that same year, the same set of products cost

less than $y? (In other words, what do you think is the probability that the

inflation rate in year X was lower than z%?)

Beliefs about the income distribution in the United States and the performance of

the S&P 500 stock market index were elicited in similar ways; see Appendix E.1.

The order of topics was randomized across participants. Across participants, y (and

hence z) varies randomly such that the true probability ranges fom 0% to 100%. Subjects’

beliefs were financially incentivized using the same binarized scoring rule as discussed

in Section 4, except that the prize a subject could win was $2. One of the three questions

was randomly selected for payment.
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To measure cognitive uncertainty, we make use of the same elicitation tool as before.

That is, subjects were asked how certain they are that their probabilistic guess is correct.

Subjects used a slider to calibrate the statement: “I am certain that the actual probability

that [...] is between a and b.”, where a and b collapsed to the subject’s own previously

indicated guess if the slider was moved to the very right. For each of the 30 possible ticks

that the slider was moved to the left, a decreased and b increased by one probability

point. Figure 28 in Appendix E.2 shows a screenshot of the elicitation screen.

The elicitation of survey expectations took place with the same set of subjects that

completed the choice under risk and belief updating tasks discussed in Sections 3 and

4. Thus, the total sample size is N = 2,000. Figures 29–31 in Appendix E.2 show his-

tograms of cognitive uncertainty for each question type.

In addition to these “backward-looking” beliefs, in separate pre-registered robust-

ness experiments with N = 400 participants, we also elicit expectations about future

realizations of inflation rates, stock market returns and the income distribution. These

questions are conceptually closer to “expectations” in that they ask about the future, but

they are not financially incentivized. The results in these robustness experiments are

almost identical to the ones that are reported here; we summarize them in Appendix F.

5.2 Results

As in Section 4 and according to our pre-registration, we begin by excluding extreme

outliers, defined as ps < 25 ∧ pb > 75 or ps > 75 ∧ pb < 25, where ps is the subjective

probability and pb the objectively correct one. This results in the exclusion of 5% of all

data. Figure 8 shows average beliefs as a function of objective probabilities, separately

for subjects with above and below average cognitive uncertainty.¹⁸ To conserve space,

we only show the results for inflation and stock market expectations; the results for

income distribution beliefs are similar and shown in Figure 32 in Appendix E.2. We see

that stated beliefs are compressed towards 50%, and that this pattern is substantially

more pronounced for subjects who indicate higher cognitive uncertainty. Table 16 in

Appendix E.3 provides a corresponding econometric analysis that confirms the statistical

significance of this pattern.

6 On Inverse S-Shapes

Our analyses thus far rely on linear regressions that are directly motivated by the neo-

additive weighting function that we endogenized in Section 2. While these linear repre-

sentations are popular due to their simplicity, they have the drawback that they do not

¹⁸“Objective probabilities” are backward-looking and correspond to the period 1980–2018.
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Figure 8: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty. The partition is done separately for each probability bucket. In the left
panel, the question asks for the probability that in a randomly selected year the S&P500 increased by less
than x% (N = 1, 887). In the right panel, the question asks for the probability that in a randomly selected
year the inflation rate was less than x% (N = 1, 842).

fully capture the canonical inverse S-shaped response patterns summarized in Figure 1.

Inverse S-shaped functions are steeper close to the boundaries of zero and one than in

the intermediate range of about p ∈ [0.25,0.75]. Linear fits of the data generate pre-

dicted values that lie (i) above the observed data for small probabilities close to zero

and (ii) below the observed data for high probabilities close to one.

The upshot of this discussion is that – in relative terms – there appears to be more

compression towards 50:50 for intermediate than for extreme probabilities. Indeed, in all of

our applications in Sections 3–5, joint Wald tests strongly reject the assumption that ob-

jective probabilities and implied subjective probabilities are linearly related. This section

aims at documenting that cognitive uncertainty explains not only the general pattern

of shrinkage towards 50:50 but also the non-linearities in this process, i.e., the different

degrees of compression in different probability ranges.
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6.1 Variable Cognitive Noise Across the Probability Range

The formal framework in Section 2 implicitly assumes that the variance of cognitive

noise σ2
ε
is constant in p. While this assumption is analytically convenient, it is strongly

and systematically rejected in the data. The three left-hand panels of Figure 9 show the

empirical relationship between measured cognitive uncertainty and objective probabili-

ties. In the top left panel, the x-axis shows the objective payout probability of a gamble.

In the center left panel, the x-axis denotes the Bayesian posterior in belief updating tasks

and in the lower left panel the objectively correct probability in survey estimation tasks.

Across domains, cognitive uncertainty always exhibits a pronounced hump shape. This

means, first, that reported cognitive uncertainty is substantially higher for intermediate

probabilities: our experimental participants tell us that they find it easier to think about

lotteries with extreme payout probabilities, or about belief formation tasks that have ex-

treme solutions. Second, measured cognitive uncertainty changes at a high rate close to

zero and one but is much less sensitive for intermediate probabilities.

To investigate the implication of this non-linearity for observed experimental actions

(certainty equivalents and stated beliefs), we conduct structural exercises that follow

from the simple model in Section 2. Recall from equations (4) and (7) that a decision-

maker’s expected action (= implied subjective probability) can be expressed as a linear

combination of p and the cognitive default pd , where the relative weights depend on

the magnitude of cognitive uncertainty. Again assuming B = 1 and setting pd = 1/2:

E [ao]≡ w(p) = (1−σ2
CU · D) · p+σ

2
CU · D ·

1
2

, (8)

where D ≡ 1/σ2
p is a parameter that linearly scales the square of measured cognitive

uncertainty σCU into an action. The slope of this implied “weighting function” with

respect to objective probabilities p is given by

∂ w(p)
∂ p

= 1−σ2
CU · D+

∂ σ2
CU

∂ p
· D ·

�

1
2
− p

�

. (9)

To illustrate the implication of this, consider the case of p < 1/2. Equation (9) says

that the implied weighting function will be steeper if (i) cognitive uncertainty is lower

and (ii) the sensitivity of cognitive uncertainty with respect to p is higher. Note that

empirically both of these effects point in the direction that the implied weighting function

is steeper close to the extremes.
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A1 Choice under risk: Cognitive uncertainty
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B1 Choice under risk: Probability weighting
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A2 Belief formation: Cognitive uncertainty
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B2 Belief formation: Stated posteriors
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A3 Survey expectations: Cognitive uncertainty
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B3 Survey expectations: Stated beliefs
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Figure 9: The observed non-linear relationship between measured cognitive uncertainty and probabilities
(Panels A1-A3) generates the inverse-S shaped patterns in predicted choices and beliefs (Panels B1-B3)
in a model of Bayesian shrinkage that is linear in p (see equations (4) and (8)). The samples include the
same observations as in the baseline analyses in Sections 3–5.
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To investigate whether the variation in measured cognitive uncertainty across ob-

jective probabilities could indeed produce the observed inverse S-shapes in certainty

equivalents and stated beliefs, we estimate equation (8) using standard non-linear least

squares techniques, and then plot predicted actions for each value of p. Recall that all

quantities in equation (8) except for the scaling parameter D are observed. In choice un-

der risk, we allow for potential curvature of the utility function by estimating both D̂ and

a CRRA parameter.¹⁹ Unlike in other recent work that structurally estimates behavioral

models, our primary interest is not so much in the estimated (nuisance) parameters

per se but rather in how well the actions that are predicted from measured cognitive

uncertainty fit the data.

Four remarks about this exercise are in order. First, conditional on σCU , the implied

“weighting function” in equation (8) is linear in p. Thus, all non-linearities in predicted

values must stem from the empirical dependence of σCU on p. Second, because self-

reported cognitive uncertainty is likely measured with error, we estimate (8) at the

population level after averaging a and σCU for each value of p. Third, our estimation

takes participants’ reported cognitive uncertainty at face value, up to a multiplicative

constant D. In other words, we treat the data as if the self-reports had cardinal mean-

ing, up to a scaling parameter. This scaling parameter is necessary both because we

don’t observe subjects’ prior variance σ2
p and because our cognitive uncertainty elicita-

tion does not specify whether participants are supposed to indicate, e.g., 95% or 99%

confidence intervals.²⁰ Fourth, it is worth highlighting that our procedure does not me-

chanically generate good predictions. A good fit would mechanically arise if we used

subjects’ actions (certainty equivalents and beliefs) to “reverse engineer” cognitive un-

certainty σ2
CU . Instead, we don’t estimate σ2

CU from subjects’ actions but directly use our

cognitive uncertainty data. We only use subjects actions’ to estimate one value for the

nuisance parameter D that is constant across p.

The solid blue line in the right-hand panels of Figure 9 plots predicted actions, i.e.,

the predicted values after estimating the scaling parameter D. Across decision domains,

we see non-linearities that visually fit the observed data well. Because equation (8) is

in principle linear in p, the characteristic inverse S-shape is entirely generated by how

p affects cognitive uncertainty.

To make this point even more explicit, Figure 9 also plots an additional set of pre-

dicted actions that do not rely on measured cognitive uncertainty but instead on values

¹⁹With x the lottery payout, the estimation equation becomes

a = (w(p) · xγ)
1
γ =

��

(1−σ2
CU · D) · p+σ

2
CU · D · 1/2

�

· xγ
�

1
γ . (10)

The non-linearity that results from γ is orthogonal to the non-linearity of w(p) that we are interested in.
²⁰As discussed in Section 3.1.2 and shown in Appendix B, subjects don’t appear to be able to distinguish

between these different confidence intervals in any case.
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that are predicted from the objective probability p. Motivated by the near-quadratic re-

lationships in the left-hand panels of Figure 9, we first generate predicted values of

cognitive uncertainty from regressing measured cognitive uncertainty on probabilities:

σCU = α+ β1 · p+ β2 · p2 + u. (11)

Then, we re-estimate equation (8) using the predicted values σ̂CU instead of measured

cognitive uncertainty. Again, it is worth pointing out that this procedure uses subjects’

actions only for the purposes of estimating the scaling parameter D (and the CRRA

parameter in choice under risk), while the variation in σ2
CU entirely stems from the esti-

mated relationship between measured cognitive uncertainty and objective probabilities.

As we can see from the dotted red lines in Figure 9, this procedure again delivers fit-

ted values that exhibit pronounced inverse S-shapes, purely as a result of the dependence

of cognitive uncertainty on objective probabilities. In summary, these results document

that variable cognitive noise plays a meaningful role in generating inverse S-shapes.

6.2 Log Coding and the Gonzalez-Wu Weighting Function

The previous analysis assumed that people perceive p linearly, so that any non-linearities

in w(p) had to result from a genuine non-linear relationship between p and cognitive

noise that occurs outside of the model. A complementary approach to shed light on this

non-linearity is to entertain the possibility that human brains do not encode probabil-

ities linearly. In particular, some work in cognitive science (Zhang and Maloney, 2012;

Zhang et al., 2020) has entertained the possibility that the brain encodes frequencies

and probabilities into a quantity q in log odds space by applying

q =Q(p) = ln
p

1− p
. (12)

As shown in the psychological literature, log-odds models fit observed behavior well. In

our context, the assumption of log coding is appealing for two reasons. First, cognitive

noise in log odds space delivers the specific non-linear relationship between measured

cognitive uncertainty and p that we document empirically. Second, as we derive in Ap-

pendix G.1, the combination of log coding and cognitive noise delivers the following

weighting function for the median decision maker (also see Khaw et al., 2017)):

w(p)G−W :=
δpλ

δpλ + (1− p)λ
, (13)
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where δ = exp
�

(1−λ)ln pd

1−pd

�

and λ is the same Bayesian shrinkage factor as in Sec-

tion 2. This formulation is instructive because it corresponds to – and endogenizes – the

well-known two-parameter specification of a probability weighting function popularized

by Gonzalez and Wu (1999) and going back at least to Goldstein and Einhorn (1987).

In Appendix G.2, we estimate the parameters of this weighting function across de-

cision domains. Comparing decisions that are associated with below (L) and above av-

erage (H) cognitive uncertainty, we estimate that the sensitivity parameter λ̂ is 64%

higher in choice under risk (λ̂L = 0.54 vs. λ̂H = 0.33). Likewise, the sensitivity parame-

ter is 57% higher in belief updating (λ̂L = 0.60 vs. λ̂H = 0.38) and 146% higher in the

pooled survey beliefs data (λ̂L = 0.59 vs. λ̂H = 0.24).

7 Subject-Level Heterogeneity in Cognitive Uncertainty

Next, we characterize heterogeneity in cognitive uncertainty across individuals. A natu-

ral starting point is to decompose the variation in our experimental data into between-

and within-subject variation. For this purpose, we regress the collection of cognitive un-

certainty statements on subject fixed effects, separately for each decision domain. We

find that the variance explained is 44% in choice under risk, 53% in belief updating,

and 60% in survey expectations. These numbers represent weak lower bounds for the

fraction of the true variation that is due to between-subject variation, as they do not

account for measurement error in cognitive uncertainty.

An additional way to investigate the existence of types is to look at subjects’ con-

sistency in cognitive uncertainty across decision domains. Recall that each subject com-

pleted the survey expectations tasks and additionally either the risky choice or the belief

updating experiments. The correlation between average subject-level cognitive uncer-

tainty in belief updating and average cognitive uncertainty in survey expectations is

ρ = 0.57. The correlation between cognitive uncertainty in risky choice and survey

expectations is ρ = 0.35. We conclude from these analyses that cognitive uncertainty

varies in meaningful and reasonably stable ways across participants.

Figure 10 shows correlates of this individual-level variation. We report standardized

beta coefficients, so that the y-axis shows the percent change in cognitive uncertainty

that is associated with a 1% increase in the explanatory variable of interest. While the

results are mixed overall, the strongest and most consistent correlations reflect that

women, people who take less time to complete the task, and people with lower cog-

nitive skills report higher cognitive uncertainty. The correlational evidence on response

times and cognitive skills suggests that the availability of cognitive resources may reduce

cognitive uncertainty. This is consistent with the view that cognitive noise is reduced as
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Figure 10: Correlates of average cognitive uncertainty. The figure shows the standardized beta coefficients
of regressions of a subject’s average cognitive uncertainty on different variables, controlling for treatment
fixed effects. Error bars denote +/− 1 s.e.m. The values on the y-axis show the percent change in cog-
nitive uncertainty that is associated with a 1% increase in the explanatory variable of interest. The beta
coefficients are estimated conditional on treatment fixed effects. Response times are computed as total
completion time within the relevant part of the experiment. N = 1, 000 observations for choice under risk
and belief updating and N = 2, 000 observations for survey expectations.

participants sequentially accumulate “evidence” about a decision problem, as in sequen-

tial sampling and drift diffusionmodels (Krajbich et al., 2010; Fudenberg et al., 2018).²¹

8 Robustness and Discussion of Potential Confounds

Additional pre-registered analyses. The pre-registration specified that we conduct our

analyses on three different samples: (i) excluding extreme outliers, as done thus far;

(ii) using all data; and (iii) excluding “speeders,” defined as subjects in the bottom

decile of the response time distribution. Appendices C.2 and C.3 reproduce the analysis

of choice under risk on the full sample and excluding speeders. Appendices D.5 and D.6

provide analogous analyses for belief updating and Appendices E.4 and E.5 for survey

expectations. The results are always very similar.

²¹At the same time, Appendix H reports on a set of experiments that suggest that a moderate increase
in incentives leads to longer response times but reduces cognitive uncertainty only marginally or not at
all.
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Random choice. Different literatures have proposed that the inverse S-shaped response

functions that motivate our study are mechanically generated by random choice in com-

bination with the fact that the response scale in choice and belief updating experiments

is typically bounded by p ∈ [0, 1].²² While our perspective is perhaps seemingly similar

in that it highlights the role of noise, we argue and document empirically that com-

pressed responses reflect the response to cognitive noise, rather than decision noise itself.

In particular, in all of our experimental contexts, random choice accounts always predict

compression towards 50%, whereas we have shown that people’s responses are generi-

cally compressed towards a cognitive default, evenwhen it is different from 50%. Indeed,

we have shown that decisions that are associated with higher cognitive uncertainty re-

spond more strongly to manipulations of the cognitive default. This is directly predicted

by our cognitive shrinkage model, but not by random choice models.²³

Censoring. A related potential concern is that censoring generates some of our results.

Censoring could either appear (i) in the action space (we did not allow participants to

state probabilities above 100%) and / or (ii) in the cognitive uncertainty elicitation. As

we discuss in detail in Appendix I, there is little indication of censoring in our data, and

our results are always robust to excluding seemingly-censored observations.

Cognitive ability. It is well-known that the presence of behavioral anomalies tends

to be correlated with low cognitive ability, including in the domains of belief updating

(e.g., Hoppe and Kusterer, 2011; Enke and Zimmermann, 2019) and probability weight-

ing (e.g., Choi et al., 2018). At the same time, the general notion that “low cognitive

ability generates biases” has been relatively atheoretical and unspecific in that it does

not explain how and why low cognitive ability should produce a specific behavioral pat-

tern rather than just unsystematic noise. As discussed in Sections 2 and 7, our view

is that cognitive noise is plausibly reduced through deliberation of the problem, such

that higher cognitive skills (increased ability to deliberate) reduce cognitive noise. We

therefore embrace the idea that our correlational results on cognitive uncertainty partly

reflect heterogeneity in cognitive ability.

²²See e.g. Blavatskyy (2007) and Blavatskyy and Pogrebna (2010) on decision noise in choice under
risk and Erev et al. (1994), Moore and Healy (2008) and Costello and Watts (2014) on random errors in
belief formation.

²³An additional problem with a random choice explanation in our data is that the random choice
component would have to be very large. While it may be plausible that – given decision bounds of [0,1] –
random choice generates biased beliefs when the Bayesian posterior is close to one of the boundaries, it is
considerably less plausible that subjects asymmetrically “hit the boundary” when the Bayesian posterior
is far away from either boundary, such as for Bayesian posteriors of 30% or 70%. This is even more true
given that we observe almost no censoring in our data. See also the discussion in Appendix I for additional
evidence in line with shrinkage but not random choice.
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At the same time, our paper provides ample evidence that the magnitude of cogni-

tive noise does not just depend on cognitive ability but also on features of the decision

problem: (i) our correlational results on choice under risk and belief updating remain sta-

tistically highly significant when we only consider within-subject-across-task variation

in cognitive uncertainty and choices, eliminating the potential role of cognitive ability;

(ii) our compound manipulations exogenously vary cognitive uncertainty within subject

by making the decision problem more complex; and (iii) as documented in Section 6,

cognitive uncertainty varies systematically over the probability range, which is crucial

in generating inverse S-shaped responses, but cannot be explained by subject-level vari-

ation in cognitive ability. Finally, an atheoretical account of low cognitive ability does

not explain the results of our default manipulations, while they are directly predicted

by our model.

9 Discussion and Related Literature

This paper has shown that cognitive uncertainty predicts economic beliefs and actions,

and that it allows us to bring together empirical regularities from decision tasks on

choice under risk and ambiguity, belief updating, and survey expectations. Across all

of these perhaps seemingly-unrelated decision domains, cognitive uncertainty strongly

predicts behavior, which allows us to tie together regularities including the probability

weighting function, the fourfold pattern of risk attitudes, ambiguity-insensitivity, base

rate insensitivity, conservatism, sample proportion effects, and predictable overoptimism

and -pessimism in economic forecasts.

Our work builds on the rich literatures that have studied probability weighting,

ambiguity-insensitivity, belief updating, and survey expectations. We view as one of our

primary contributions that we bring these voluminous literatures – that have hitherto

evolved in isolation from each other – together under a common umbrella. The liter-

atures on choice under risk and ambiguity have long speculated that insensitivity to

probabilities is due to cognitive limitations (Viscusi, 1989; Wakker, 2010; Baillon et al.,

2018). Similarly, the lab belief updating literature reviewed by Benjamin (2019) and

the survey expectations literature have long posited the idea that people avoid stating

extreme beliefs, and there is much evidence suggesting that 50:50 responses in surveys

reflect some version of “not knowing the answer” (Fischhoff and Bruine De Bruin, 1999).

Our paper endogenizes these and related ideas through cognitive noise and resulting

cognitive shrinkage processes. In doing so, our paper builds on a vibrant literature – first

in cognitive science and increasingly also in economics – on Bayesian noisy cognition.

Within economics, this literature is almost entirely theoretical in nature; the main idea
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behind these contributions is usually that noisy cognition induces agents to perform an

implicit Bayesian update about objectively known quantities, see Chater et al. (2008),

Woodford (2012, 2019), Khaw et al. (2017), Gabaix and Laibson (2017), Gabaix (2014,

2019), Frydman and Jin (2019), and Steiner and Stewart (2016).²⁴

Because we define and empirically measure cognitive uncertainty as awareness about

cognitive noise, our paper also connects to different lines of empirical work that have

entertained the possibility that people may not always perfectly know what to do. For

instance, research in psychology and neuroscience under the umbrella of “decision confi-

dence” shows that confident subjects exhibit lower across-task variability in actions (e.g.,

De Martino et al., 2013, 2017; Polania et al., 2019) and that ratings or probability as-

sessments typically exhibit a quadratic relationship with reported confidence (Lebreton

et al., 2015). The idea of measuring different types of cognitive imprecision or random-

ness in choice is also increasingly gaining traction in the economics literature, in both

choice under risk (Butler and Loomes, 2007; Cubitt et al., 2015; Agranov and Ortoleva,

2020; Agranov et al., 2020) and survey expectations (Giustinelli et al., 2019; Drerup et

al., 2017). Our approach contributes to these literatures by documenting that cognitive

uncertainty predicts the direction and magnitude of bias in different choice and belief

formation contexts that are typically studied by economists.

An attractive feature of studying (awareness of) cognitive noise is that it may hold

the promise of tying together empirical regularities from across the social and cognitive

sciences. While we and other economists typically focus on high-level economic deci-

sions, it is becoming increasingly clear that the idea of Bayesian noisy cognition and

resulting compression effects also explains a vast array of regularities from psycholog-

ical tasks (e.g., Chater et al., 2008; Petzschner et al., 2015). For instance, in building

on our work, Xiang et al. (2020) show empirically that awareness about cognitive noise

is strongly predictive of well-known compression (central tendency) effects in various

perceptual judgment tasks.

In light of this vibrant emerging line of work, we believe that measuring cognitive un-

certainty is likely to be productive for understanding economic decision-making going

forward. First, future research may measure cognitive uncertainty to explain economic

behavior also outside of the domain of probabilities that we study in this paper. Second,

future work my shed light on the psychological mechanisms that actually generate cog-

nitive noise, and to which extent this is affected by (implicit) cost-benefit considerations

as posited by the literature on rational inattention.

Despite the promise that the idea of Bayesian noisy cognition holds for connecting

²⁴In the psychology literature, Fennell and Baddeley (2012) present a model in which the probability
weighting function arises through a Bayesian updating process that is formally similar to our stylized
framework, except that the authors focus on objective (rather than cognitive) uncertainty, such as when
people do not perfectly know the objective payout probabilities of a lottery.

44



seemingly-unrelated literatures and empirical regularities, it is worth repeating here

that the mathematical framework upon which our analysis is based is stylized in na-

ture and does not feature the richness of domain-specific models. This means that our

approach will likely miss some relevant insights that domain-specific models can cap-

ture. These two approaches – identifying common principles and getting the full pic-

ture within a given domain right – are arguably both important and complement one

another.
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ONLINE APPENDIX

A Nonlinear Extension of Theoretical Framework

Complementing the basic framework presented in Section 2, we now allow the rational

action to be a nonlinear function of p. Specifically, the agent’s objective function is given

by

min
a

v(a, p) =
1
2
(a− f (p))2 . (14)

This formulation more realistically captures the key elements of choice under risk. In

particular, for a neoclassical agent, the certainty equivalent for a p% chance of getting

$1 is given by C E = u−1(p), so that f (·) = u−1(·).
Wemake the following simplifying assumptions. First, following some of the previous

literature (Gabaix, 2019, 2014), we assume that the agent still chooses an action based

on the posterior expectation about p,

ânl = f (E [p|s]), (15)

which is the analogue of equation (4). Second, we assume that the function f (·) is
strictly monotone, such we can use a standard feature of the median of strictly monotone

nonlinear functions. We derive properties of the median action ae,

ae(p) =Median(ânl |p) = f (λp+ (1−λ)pd). (16)

To ease notation, we set x = p− pd , i.e., x is defined as the deviation from the default.

This merely allows us to suppress the default in the expression for cognitive uncertainty.

We define cognitive uncertainty analogously to the linear case as the agent’s per-

ceived uncertainty about his optimal action. Instead of stating the standard deviation of

the subjective posterior distribution, we specify cognitive uncertainty as the interquartile

range around the observed action (which corresponds to 1.35 standard deviations):

σnl
CU(x) =

�

�

�

�

f
�

λx +
1
2

p

1−λσx

�

− f
�

λx −
1
2

p

1−λσx

�

�

�

�

�

. (17)

At the median, using ae(x) = f (λx) from equation (16 yields

σnl
CU(x) =

�

�

�

�

ae

�

x +
1
2

p
1−λ
λ

σx

�

− ae

�

x −
1
2

p
1−λ
λ

σx

��

�

�

�

. (18)
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A Taylor expansion of (18) gives

σnl
CU =

�

�ae′(x)
�

�

p
1−λ
λ

σx , (19)

which is the nonlinear equivalent of equation (6):

λ
p

1−λ
=
|ae′(x)|σx

σnl
CU

. (20)

This nonlinear extension therefore provides the same comparative static predictions

as the linear version.

B Calibrating the Cognitive Uncertainty Measurement

In all of our experiments, the elicitation of cognitive uncertainty did not specify which

particular version of a subjective confidence interval we intend to elicit, such as a 90%,

95%, 99% or 100% confidence interval. We deliberately designed our experiments in

this fashion because the hypothesis that underlines our research is that people have a

hard time translating “99% confidence” into a statement about e.g. their certainty equiv-

alent. In an attempt to trade off subject comprehension and quantitative interpretation,

we hence refrained from inducing a particular version of a confidence interval.

To provide evidence for our conjecture that respondents cannot really tell the dif-

ference between different types of confidence intervals, we implemented an additional

set of choice under risk experiments in which we elicited different versions of subjective

confidence intervals. In these experiments, subjects were specifically instructed to state

an interval such that they are “y% certain” that to them the lottery is worth between

a and b. Across experimental conditions, y varied from 75% to 90% to 95% to 99%

to 100%. To analyze these data, we compare average cognitive uncertainty within a

treatment with average cognitive uncertainty in our baseline treatments, in which we

did not provide a specific quantitative version of a confidence interval. In total, we ran

these experiments with N = 293 subjects.

Figure 11 summarizes the results. Here, we plot the coefficients of the different treat-

ment dummies in a regression with stated cognitive uncertainty as dependent variable.

In this regression, the omitted category is our (unspecific) baseline treatment. Each co-

efficient hence corresponds to the implied difference in cognitive uncertainty between

a treatment and our baseline treatment. There are two main results. First, cognitive un-

certainty does not vary in meaningful ways across conditions: subjects state statistically

indistinguishable cognitive uncertainty intervals, regardless of whether we specify them

as 75%, 90% etc. interval. Second, if anything, reported cognitive uncertainty is higher
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in the more precise quantitative versions relative to our baseline version, as can be in-

ferred from the positive point estimates. This again suggests that subjects have a harder

time thinking about specific quantitative versions of a confidence interval relative to our

more intuitive question. We conclude from this exercise that a more precise quantita-

tive implementation of our cognitive uncertainty interval is unlikely to deliver a more

helpful quantitative interpretation of our measure.

-.05

0

.05

.1

70 75 80 85 90 95 100
Elicited subjective confidence level (in %)

Regression coefficient 95% confidence interval

Figure 11: Comparison of average cognitive uncertainty across different elicitation modes in choice under
risk. Each dot represents the coefficient of a treatment dummy in a regressionwith cognitive uncertainty as
dependent variable. The explanatory variables are fixed effects for the different specifications of cognitive
uncertainty, where the omitted category is our baseline wording. The plot controls for lottery amount
fixed effects and probability of payout fixed effects.
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C Additional Details and Analyses for Choice under Risk

Experiments

C.1 Additional Figures

Figure 12: Decision screen to elicit certainty equivalents for lotteries
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Figure 13: Decision screen to elicit cognitive uncertainty in choice under risk
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Figure 14: Histogram of cognitive uncertainty in baseline choice under risk tasks
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Figure 15: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
compound lotteries
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Figure 16: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
ambiguous lotteries
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Figure 17: “Probability” weighting function separately for reduced and ambiguous lotteries. The payout
“probability” for ambiguous lotteries is denoted by the midpoint of the interval of possible payout prob-
abilities. The plot shows averages and corresponding standard error bars. The figure is based on 1,796
certainty equivalents of 300 subjects.
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Figure 18: Histograms of cognitive uncertainty in choice under risk tasks, separately for treatments High
Default Risk and Low Default Risk.
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C.2 Results with Full Sample

Table 5: Insensitivity to probability and cognitive uncertainty (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.67∗∗∗ 0.67∗∗∗ 0.46∗∗∗ 0.46∗∗∗ 0.57∗∗∗ 0.57∗∗∗

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02)

Probability of payout × Cognitive uncertainty -0.51∗∗∗ -0.51∗∗∗ -0.087 -0.073 -0.29∗∗∗ -0.28∗∗∗

(0.10) (0.10) (0.09) (0.09) (0.07) (0.07)

Cognitive uncertainty 16.1∗∗∗ 16.1∗∗∗ 13.7∗∗ 13.2∗∗ 14.9∗∗∗ 15.4∗∗∗

(5.77) (5.82) (5.34) (5.30) (4.09) (4.13)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1286 1286 1315 1315 2601 2601
R2 0.49 0.50 0.27 0.29 0.36 0.36

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Choice under risk: Baseline versus compound / ambiguous lotteries (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Risk vs. compound risk Risk vs. ambiguity

Gains Losses Pooled Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.59∗∗∗ 0.45∗∗∗ 0.57∗∗∗ 0.72∗∗∗ 0.51∗∗∗ 0.68∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.04) (0.03)

Probability of payout × -0.34∗∗∗ -0.25∗∗∗ -0.28∗∗∗ -0.22∗∗∗ -0.17∗∗∗ -0.17∗∗∗

1 if compound / ambiguous lottery (0.04) (0.04) (0.03) (0.03) (0.04) (0.02)

Probability of payout × Cognitive uncertainty -0.25∗∗∗ -0.45∗∗∗

(0.05) (0.10)

1 if compound / ambiguous lottery 13.6∗∗∗ 12.3∗∗∗ 12.2∗∗∗ 8.02∗∗∗ 9.09∗∗∗ 7.06∗∗∗

(2.09) (1.98) (1.44) (1.15) (2.40) (1.33)

Cognitive uncertainty 13.2∗∗∗ 20.7∗∗∗

(3.42) (6.16)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 1958 1947 3905 900 900 1800
R2 0.37 0.21 0.29 0.52 0.27 0.42

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s absolute normalized certainty equivalent. In columns (1)–(3), the sample includes
choices from the baseline and compound lotteries, where for comparability the set of baseline lotteries is re-
stricted to lotteries with payout probabilities of 10%, 25%, 50%, 75%, and 90%, see Figure 3. In columns (4)–
(6), the sample includes choices from the baseline and ambiguous lotteries. For ambiguous lotteries, we define
the payout “probability” as the midpoint of the interval of possible payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 7: Choice under risk: Treatments Low Default and High Default (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

0 if High Default, 1 if Low Default -11.9∗∗∗ -11.4∗∗∗ -3.28 -2.82 -7.61∗∗∗ -7.08∗∗∗

(1.93) (1.98) (2.28) (2.25) (1.60) (1.60)

Probability of payout 0.56∗∗∗ 0.56∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.54∗∗∗ 0.54∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.49∗∗∗ -0.50∗∗∗ -0.26∗∗ -0.28∗∗ -0.36∗∗∗ -0.38∗∗∗

(0.10) (0.10) (0.13) (0.13) (0.09) (0.09)

Cognitive uncertainty 16.7∗∗∗ 16.9∗∗∗ 22.3∗∗∗ 22.5∗∗∗ 19.1∗∗∗ 19.4∗∗∗

(6.08) (6.05) (8.21) (8.40) (5.19) (5.25)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 900 900 900 900 1800 1800
R2 0.35 0.36 0.23 0.26 0.27 0.29

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from treatments Low Default and High Default.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

C.3 Results excluding Speeders

Table 8: Insensitivity to probability and cognitive uncertainty (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.68∗∗∗ 0.68∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.58∗∗∗ 0.58∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.02) (0.02)

Probability of payout × Cognitive uncertainty -0.57∗∗∗ -0.56∗∗∗ -0.12 -0.10 -0.33∗∗∗ -0.32∗∗∗

(0.10) (0.10) (0.09) (0.09) (0.08) (0.08)

Cognitive uncertainty 19.0∗∗∗ 19.0∗∗∗ 15.1∗∗∗ 14.4∗∗ 17.0∗∗∗ 17.3∗∗∗

(6.29) (6.26) (5.62) (5.59) (4.38) (4.41)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1162 1162 1187 1187 2349 2349
R2 0.49 0.50 0.27 0.29 0.36 0.36

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Choice under risk: Baseline versus compound lotteries (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Risk vs. compound risk Risk vs. ambiguity

Gains Losses Pooled Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.59∗∗∗ 0.46∗∗∗ 0.57∗∗∗ 0.73∗∗∗ 0.51∗∗∗ 0.68∗∗∗

(0.02) (0.03) (0.02) (0.03) (0.04) (0.03)

Probability of payout × -0.32∗∗∗ -0.23∗∗∗ -0.25∗∗∗ -0.24∗∗∗ -0.18∗∗∗ -0.17∗∗∗

1 if compound / ambiguous lottery (0.04) (0.04) (0.03) (0.03) (0.04) (0.03)

Probability of payout × Cognitive uncertainty -0.26∗∗∗ -0.48∗∗∗

(0.06) (0.10)

1 if compound / ambiguous lottery 12.5∗∗∗ 11.6∗∗∗ 11.2∗∗∗ 8.52∗∗∗ 9.85∗∗∗ 7.07∗∗∗

(2.18) (2.05) (1.51) (1.29) (2.53) (1.46)

Cognitive uncertainty 14.2∗∗∗ 27.4∗∗∗

(3.70) (5.84)

Session FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 1766 1753 3519 774 834 1608
R2 0.38 0.22 0.30 0.54 0.27 0.42

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s absolute normalized certainty equivalent. In columns (1)–(3), the sample includes
choices from the baseline and compound lotteries, where for comparability the set of baseline lotteries is re-
stricted to lotteries with payout probabilities of 10%, 25%, 50%, 75%, and 90%, see Figure 3. In columns (4)–
(6), the sample includes choices from the baseline and ambiguous lotteries. For ambiguous lotteries, we define
the payout “probability” as the midpoint of the interval of possible payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 10: Choice under risk: Treatments Low Default and High Default (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

0 if High Default, 1 if Low Default -11.9∗∗∗ -11.4∗∗∗ -3.28 -2.82 -7.61∗∗∗ -7.08∗∗∗

(1.93) (1.98) (2.28) (2.25) (1.60) (1.60)

Probability of payout 0.56∗∗∗ 0.56∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.54∗∗∗ 0.54∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Probability of payout × Cognitive uncertainty -0.49∗∗∗ -0.50∗∗∗ -0.26∗∗ -0.28∗∗ -0.36∗∗∗ -0.38∗∗∗

(0.10) (0.10) (0.13) (0.13) (0.09) (0.09)

Cognitive uncertainty 16.7∗∗∗ 16.9∗∗∗ 22.3∗∗∗ 22.5∗∗∗ 19.1∗∗∗ 19.4∗∗∗

(6.08) (6.05) (8.21) (8.40) (5.19) (5.25)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 900 900 900 900 1800 1800
R2 0.35 0.36 0.23 0.26 0.27 0.29

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from treatments Low Default and High Default.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D Additional Details and Analyses for Belief Updating

Experiments

D.1 Additional Figures

Figure 19: Decision screen to elicit posterior belief in belief updating tasks
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Figure 20: Decision screen to elicit cognitive uncertainty in belief updating
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Figure 21: Decision screen to elicit willingness-to-pay for optimal guess in belief updating
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Figure 22: Histogram of cognitive uncertainty in baseline belief updating tasks
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Figure 23: Histogram of willingness-to-pay to replace own guess by Bayesian posterior in baseline belief
updating tasks
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Figure 24: Histograms of cognitive uncertainty in belief updating tasks, separately for baseline and com-
pound diagnosticities
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Figure 25: Histograms of willingness-to-pay to replace own guess by Bayesian posterior in belief updating
tasks, separately for baseline and compound diagnosticities
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Figure 26: Histograms of cognitive uncertainty in belief updating tasks, separately for treatments Baseline
and Low Default Beliefs.
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D.2 Results with WTP Measure
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Figure 27: Relationship between stated and Bayesian posteriors, separately for subjects above / below
median WTP for the Bayesian guess. The partition is done separately for each Bayesian posterior. The
plot shows averages and corresponding standard error bars.

Table 11: Belief updating: Baseline tasks: WTP measure

Dependent variable: Posterior belief

(1) (2) (3) (4)

Bayesian posterior 0.69∗∗∗ 0.76∗∗∗ 0.76∗∗∗ 0.76∗∗∗

(0.01) (0.01) (0.01) (0.01)

Bayesian posterior ×WTP for Bayes -0.096∗∗∗ -0.096∗∗∗ -0.11∗∗∗

(0.01) (0.01) (0.01)

WTP for Bayesian posterior 5.49∗∗∗ 5.47∗∗∗ 4.99∗∗∗

(0.76) (0.76) (1.01)

Session FE No No Yes No

Demographic controls No No Yes No

Subject FE No No No Yes

Observations 3187 3187 3187 3187
R2 0.72 0.73 0.73 0.80

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at
the subject level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3 Grether Regressions

Table 12: Belief updating: Grether regression

Dependent variable: Log [Posterior odds]

Sample: Baseline

(1) (2) (3) (4)

Log [Likelihood ratio] 0.41∗∗∗ 0.44∗∗∗ 0.44∗∗∗ 0.43∗∗∗

(0.01) (0.02) (0.02) (0.02)

Log [Prior odds] 0.42∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.54∗∗∗

(0.02) (0.03) (0.03) (0.04)

Log [Likelihood ratio] × Cognitive uncertainty -0.16∗∗∗ -0.16∗∗∗ -0.15∗∗∗

(0.04) (0.04) (0.05)

Log [Prior odds] × Cognitive uncertainty -0.34∗∗∗ -0.35∗∗∗ -0.39∗∗∗

(0.07) (0.07) (0.08)

Cognitive uncertainty -0.14∗∗ -0.16∗∗ -0.19
(0.07) (0.07) (0.13)

Session FE No No Yes No

Demographic controls No No Yes No

Subject FE No No No Yes

Observations 3104 3104 3104 3104
R2 0.62 0.63 0.63 0.72

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject
level. The sample includes the baseline tasks. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

D.4 Sample Size Effects

Table 13: Belief updating: Sample size effects

Dependent variable: Cognitive uncertainty

(1) (2) (3) (4)

Sample size 0.023∗∗∗ 0.023∗∗∗ 0.015∗∗ 0.016∗∗

(0.01) (0.01) (0.01) (0.01)

Sample difference FE Yes Yes No No

Bayesian posterior FE No No Yes Yes

Session FE No Yes No Yes

Demographic controls No Yes No Yes

Observations 3187 3187 3187 3187
R2 0.02 0.05 0.05 0.08

Notes. OLS estimates, robust standard errors (in parentheses) are
clustered at the subject level. The sample includes the baseline tasks.
The sample difference fixed effects are fixed effects for the difference
between the number of black and white balls that were randomly
drawn. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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E Additional Details and Analyses for Survey Expecta-

tions

E.1 Wording of questions

The question about the income distribution reads as:

Assume that in 2018, we randomly picked a household in the United States.

What do you think is the probability that this household earned less than USD

y in 2018, before taxes and deductions?

Beliefs about the performance of the stock market were elicited as:

The S&P 500 is an American stock market index that includes 500 of the

largest companies based in the United States. We randomly picked a year X

between 1980 and 2018. Imagine that someone invested $100 into the S&P

500 at the beginning of year X. What do you think is the probability that, at

the end of that same year, the value of the investment was less than $y? (In

other words, what do you think is the probability that the S&P 500 [lost more

than z% of its value / gained less than z%, or decreased in value]?

E.2 Additional Figures

Figure 28: Decision screen to elicit cognitive uncertainty in survey expectations
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Figure 29: Histogram of cognitive uncertainty in survey expectations about income distribution
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Figure 30: Histogram of cognitive uncertainty in survey expectations about the stock market
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Figure 31: Histogram of cognitive uncertainty in survey expectations about inflation rates
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Figure 32: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty. The partition is done separately for each probability bucket. The question
asks for the probability that a randomly selected U.S. household earns less than $x (N = 1,974).
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E.3 Additional Tables

Table 16: Survey expectations and cognitive uncertainty

Dependent variable: Probability estimate about:

Income distr. Stock market Inflation rate

(1) (2) (3) (4) (5) (6)

Objective probability 0.90∗∗∗ 0.90∗∗∗ 0.69∗∗∗ 0.69∗∗∗ 0.76∗∗∗ 0.76∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Objective probability × Cognitive uncertainty -0.41∗∗∗ -0.41∗∗∗ -0.53∗∗∗ -0.52∗∗∗ -0.60∗∗∗ -0.60∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Cognitive uncertainty 18.9∗∗∗ 18.6∗∗∗ 24.2∗∗∗ 24.6∗∗∗ 27.5∗∗∗ 27.0∗∗∗

(2.37) (2.41) (2.27) (2.30) (2.86) (2.89)

Session FE No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes

Observations 1980 1980 1892 1892 1848 1848
R2 0.83 0.84 0.52 0.53 0.54 0.54

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns
(1)–(2), the question about income distribution asks participants for the probability that a randomly selected
U.S. household earns less than $x. In columns (3)–(4), the question about the stock market asks participants
for the probability that in a randomly selected year the S&P500 increased by less than x%. In columns (5)–(6),
the question about inflation rates asks participants for the probability that in a randomly selected year the
inflation rate was less than x%. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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E.4 Results with Full Sample
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Figure 33: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (full sample). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 2, 000 observations each.
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E.5 Results excluding Speeders
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Figure 34: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (excl. speeders). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 1, 896 observations each.
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F Forward-Looking Survey Expectations

In Section 5 in the main text, we elicited respondents’ survey expectations about eco-

nomic variables with respect to past values, which allowed us to easily incentivize re-

sponses. In a pre-registered robustness check, we implemented the same type of survey

questions, but now regarding future values of these variables. These questions are hence

theoretically more appropriate in that they elicit actual expectations, but they are not

financially incentivized. The sample size is N = 400 for each of the three domains. We

apply the same criteria regarding the exclusions of outliers as in Section 5.

The results are shown in Figure 35. Here, we define “objective probabilities” based

on historical data, akin to Figure 8 in the main text. The results are almost identical to

those reported in the main text.
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Figure 35: Survey beliefs about future variables as a function of “objective” probabilities, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
bucket. “Objective” probabilities are defined using historical data, analogously to Figure 8. In the top
panel, the question asks for the probability that a randomly selected U.S. household will earn less than
$x (N = 491). In the middle panel, the question asks for the probability that the S&P500 will increase
by less than x% (N = 463) over the course of one year. In the bottom panel, the question asks for the
probability that the inflation rate will be than x% (N = 478).
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G Derivation of and Estimates for Gonzalez-Wu Weight-

ing Function

G.1 Additional Derivations for Weighting Function with Log Coding

We assume that a probability p is transformed into a quantity q in log odds space by

applying

q =Q(p) = ln
p

1− p
. (21)

This means we now assume that the decision-relevant quantity is a probability in log

odds space q about which an agent receives a signal s = q+ε. This will result in shrinkage
of probabilities in log odds space:

q(s) = λs+ (1−λ)qd . (22)

In the following, we will focus on medians, which have the attractive property that

for any strictly monotone function Y , Median(Y (x)) = Y (Median(x)). Over many draws

of s, the median posterior qe about probability p after encoding in log odds space and

shrinkage is:

qe(q) := Median (q(s)|q) = λq+ (1−λ)qd . (23)

From this we can derive the implied median posterior probability p by applying the

inverse log odds function P(q) =Q−1(q) = 1
1+e−q :

pe(p) = P(qe) =
1

1+ exp
�

−λln p
1−p − (1−λ)ln

pd

1−pd

� . (24)
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G.2 Estimation of Gonzalez-Wu function
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Figure 36: Estimates of equation (13), confidence bands indicate 95% confidence intervals (standard
errors clustered at subject level). Cognitive uncertainty is split at sample average. The samples include
the same observations as in the baseline analyses in Sections 3–5.
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H Results on Stake Size Increase

H.1 Stake Size and Choice Under Risk

To manipulate the size of financial incentives, we implement a within-subjects manipu-

lation. We implemented the same procedures as described in Section 3, except that we

only used gain lotteries. Subjects completed six choice lists, one of which determined a

subject’s payment in case the choice under risk part of the experiment got selected for

payment (probability 1/3). Across the six choice lists, the probability of being payout-

relevant varied in a transparent way. On top of the decision screen, we informed subjects

about the probability that this choice list would determine their payout. For five tasks,

this probability was given by 1% and for one task by 95%. As a measure of cognitive

effort, we recorded subjects’ (log) response times. 150 subjects participated in this treat-

ment, which was also pre-registered.

The results are reported in Table 17.²⁵ Exploiting variation within subjects across

tasks, we find that response times increase significantly from 25 seconds on average to

36 seconds on average in the high stakes task. However, this increase in response times

does not translate into a significant change in cognitive uncertainty (columns 3 and 4),

nor into less compression (columns 5 and 6).

Table 17: Effects of stake size increase in choice under risk

Dependent variable:
Log [Response time] Cognitive uncertainty Normalized CE

(1) (2) (3) (4) (5) (6)

1 if high stakes 0.26∗∗∗ 0.26∗∗∗ 0.0061 0.0065 0.41 -1.65
(0.06) (0.06) (0.02) (0.02) (2.27) (2.16)

Probability of payout 0.69∗∗∗ 0.68∗∗∗

(0.03) (0.03)

Probability of payout × 1 if high stakes 0.022 0.065∗

(0.04) (0.04)

Subject FE No Yes No Yes No Yes

Observations 893 893 893 893 893 893
R2 0.02 0.50 0.00 0.52 0.60 0.79

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

²⁵We again apply the same outlier exclusion criteria as in the main text.
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H.2 Stake Size and Belief Updating

To manipulate the size of financial incentives, we again implement a within-subjects

manipulation. We implemented the same procedures as described in Section 4, except

that we did not elicit the WTP for the optimal guess. Subjects completed six updating

tasks, one of which determined a subject’s payment in case the belief updating part

of the experiment got selected for payment (probability 1/3). Across the six tasks, the

probability of being payout-relevant varied in a transparent way. On top of the decision

screen, we informed subjects about the probability that this task would determine their

payout. For five tasks, this probability was given by 1% and for one task by 95%. As

a measure of cognitive effort, we recorded subjects’ (log) response times. 150 subjects

participated in this treatment, which was also pre-registered.

The results are reported in Table 18.²⁶ Exploiting variation within subjects across

tasks, we find that response times increase significantly. Cognitive uncertainty decreases

(columns 3 and 4) and people respond more to the Bayesian posterior (columns 5 and

6), but only very mildly so.

Table 18: Effects of stake size increase in belief updating

Dependent variable:
Log [Response time] Cognitive uncertainty Posterior belief

(1) (2) (3) (4) (5) (6)

1 if high stakes 0.19∗∗∗ 0.19∗∗∗ -0.025∗ -0.026 -2.76 -3.56
(0.06) (0.07) (0.01) (0.02) (2.53) (2.64)

Bayesian posterior 0.59∗∗∗ 0.58∗∗∗

(0.03) (0.03)

Bayesian posterior × 1 if high stakes 0.065 0.080∗

(0.04) (0.04)

Subject FE No Yes No Yes No Yes

Observations 869 869 869 869 869 869
R2 0.01 0.46 0.00 0.50 0.61 0.70

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

²⁶We again apply the same outlier exclusion criteria as in the main text.
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I Censoring and Random Choice

I.1 General Discussion

Below we discuss, first, evidence on censoring and, second, the role of random choice

in generating our findings.

In all our experiments, the use of a bounded response scale can lead to censoring

of both the choice or belief that a subject states and the range of cognitive uncertainty

indicated using the slider. This may affect the observed relationship between actions

and cognitive uncertainty in two ways. First, choices and beliefs may be influenced by

boundary effects. Assume, for example, that a subject in a belief updating task wants

to state a true posterior belief of 95%. However, some form of decision noise such as

trembling when submitting a response leads her to instead indicate a posterior belief

that is uniformly drawn from within ±10% of her true posterior, i.e., she would end up

with any posterior between 85% and 105% with equal probability. Since it is not pos-

sible to state a posterior greater than 100%, she will state 100% whenever she would

like to state something greater than 100%, leading to an observed posterior that is lower

than 95% in expectation. Importantly, this distortion in observed beliefs away from the

boundary will be greater for someone with greater decision noise. If subjects’ cognitive

uncertainty statements then accurately reflect the amount of trembling, i.e., the length

of the trembling interval in this case, this form of censoring will mechanically generate

a positive relationship between the extent of cognitive uncertainty and shrinkage. We

find that the actual amount of bunching at the upper and lower bounds of the response

scales, however, is small: it is 4.28% of observations in choice under risk, 2.6% of obser-

vations in belief updating, and 6.61% in survey expectations. In Appendix I.2 below, we

show that the observed relationship between cognitive uncertainty and choices or be-

liefs is virtually unaffected when excluding these observations. Moreover, note that we

generally observe a pronounced relationship between cognitive uncertainty and actions

for probabilities far away from the boundaries, e.g. at 25% and 75%. An even more gen-

erous interpretation of boundary effects is that people “shy away” from stating extreme

answers, even if these would not exactly correspond to one of the boundaries. Decision

noise would need to be (implausibly) extreme to rationalize our findings towards the

middle of the probability range. In addition, recall that the random choice account is

incompatible with the default manipulations reported in choice under risk and belief

formation.

Second, censoring might occur when choosing an interval on the response scale to

indicate cognitive uncertainty. While the interval increases symmetrically when moving

the slider to the left, it increases asymmetrically once it hits one of the response scale
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boundaries. One may think that subjects stop moving the slider to the left once they

hit a boundary. This implies that measured cognitive uncertainty tends to be smaller

for responses that are closer to a boundary, again leading to a mechanical relationship

between observed cognitive uncertainty and the amount of shrinkage. In our data, we

find that 23.25% of cognitive uncertainty intervals in choice under risk, 25.93% in belief

updating and 16.66% in survey expectations are censored at one of the boundaries. How-

ever, as we exclude those observations, the relationship between cognitive uncertainty

and choices or beliefs persists in the same way as before (see Appendix I.3 below), show-

ing that our findings are not an artifact of censoring due to bounded response scales.

Finally, note that our model of Bayesian shrinkage differs from models of random

choice. Specifically, a random choice model implies that people’s actions are subject to

random noise, but there is no directional shrinkage in response. In that case, cognitive

uncertainty might reflect the degree of decision noise. Pure decision choice in conjunc-

tion with boundary effects would create a statistical reversion of average decisions to

the middle of the response scale. As discussed before, this explanation is consistent with

some of our evidence, but cannot explain evidence from our default treatments. In the

following, we exploit that the empirical distribution of choices (for a given payoff prob-

ability) in choice under risk sheds light on the validity of a random choice explanation

as opposed to our shrinkage model. A random choice explanation of cognitive uncer-

tainty implies that differences in observed mean actions are driven by the tails of the

distribution. Specifically, with random choice (1) the mode of the empirical distribu-

tions of choices should be identical, (2) but because higher cognitive uncertainty (due

to higher decision noise) is associated with a flatter empirical distribution, there will

be more bunching close to the boundaries, which drives the effect on mean choices. By

contrast, the shrinkage model predicts a shift of the entire distribution due to cognitive

uncertainty, i.e., even the modal action should move in the direction of the default. Fig-

ure 37 displays histograms of normalized certainty equivalents from choice under risk,

separately for each payout probability and split by above vs. below median reported

cognitive uncertainty. The empirical distributions are clearly in line with the predictions

of our shrinkage model, but at odds with pure random choice. Specifically, note that (1)

in all but one case, the modal choice under high cognitive uncertainty differs (in the

predicted direction of 50) from that under low cognitive uncertainty, and (2) for each

payout probability, there is less bunching at the boundaries among observations with

higher cognitive uncertainty, rather than more bunching as implied by random choice.
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Figure 37: Histogram of normalized certainty equivalents for each payout probability, separately for sub-
jects above / below average cognitive uncertainty. The partition is done separately for each probability
bucket. Normalized certainty equivalents (implied probability weights) are computed as certainty equiv-
alent divided by payout probability. The figure is based on 1,102 certainty equivalents.
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I.2 Censored Choices and Beliefs
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Figure 38: Probability weighting function excluding censored choices, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each probability × gains / losses
bucket. The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure excludes 4.28% of the original data that is based on 2,525 certainty equivalents of 700 subjects.
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Figure 39: Relationship between average stated and Bayesian posteriors after excluding censored beliefs,
separately for subjects above / below average cognitive uncertainty. The partition is done separately for
each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets
with at least 15 observations. The figure excludes 2.6% of the original data that is based on 3,187 beliefs
of 700 subjects.

87



0

20

40

60

80

100

Be
lie

f

0 20 40 60 80 100
Objective probability

Income distribution

0

20

40

60

80

100

Be
lie

f

0 20 40 60 80 100
Objective probability

Stock market performance

0

20

40

60

80

100

Be
lie

f

0 20 40 60 80 100
Objective probability

Low cognitive uncertainty High cognitive uncertainty
±1 std. error of mean Rational expectations

Inflation rates

Figure 40: Survey beliefs as a function of objective probabilities after excluding censored beliefs, sepa-
rately for subjects above / below average cognitive uncertainty. The partition is done separately for each
probability bucket. In the top panel, the question asks for the probability that a randomly selected U.S.
household earns less than $x. In the middle panel, the question asks for the probability that in a randomly
selected year the S&P500 increased by less than x%. In the bottom panel, the question asks for the prob-
ability that in a randomly selected year the inflation rate was less than x%. The figure excludes 6.61% of
the original data that is based on 5,703 observations.
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I.3 Censored Cognitive Uncertainty Range
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Figure 41: Probability weighting function excluding censored cognitive uncertainty ranges, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
× gains / losses bucket. The plot shows averages and corresponding standard error bars. Normalized cer-
tainty equivalents (implied probability weights) are computed as certainty equivalent divided by payout
probability. The figure excludes 23.25% of the original data that is based on 2,525 certainty equivalents
from 700 subjects.
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Figure 42: Relationship between average stated and Bayesian posteriors after excluding censored cogni-
tive uncertainty ranges, separately for subjects above / below average cognitive uncertainty. The partition
is done separately for each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with at least 15 observations. The figure excludes 25.93% of the original data that is
based on 3,187 beliefs of 700 subjects.
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Figure 43: Survey beliefs as a function of objective probabilities after excluding censored cognitive un-
certainty ranges, separately for subjects above / below average cognitive uncertainty. The partition is
done separately for each probability bucket. In the top panel, the question asks for the probability that
a randomly selected U.S. household earns less than $x. In the middle panel, the question asks for the
probability that in a randomly selected year the S&P500 increased by less than x%. In the bottom panel,
the question asks for the probability that in a randomly selected year the inflation rate was less than x%.
The figure excludes 16.66% of the original data that is based on 5,703 observations.
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J Additional Ambiguity Experiment

In addition to the experiments reported in Section 3, we implemented an additional

set of pre-registered ambiguity experiments. These experiments delivered statistically

significant results in line with our pre-registered predictions. However, as explained be-

low, we now believe that these experiments are conceptually less-than-ideal from the

perspective of our framework, which is why we relegate them to an Appendix.

J.1 Experimental Design

The basic design builds on Dimmock et al. (2015) and aims at eliciting matching prob-

abilities for ambiguous lotteries. In a given choice list, the left-hand side option A was

constant and given by an ambiguous lottery. The ambiguous lottery was described as

random draw from an urn that comprises 100 balls of ten different colors, where the

precise composition of colors is unknown. A known number of these colors n were “win-

ning colors” that resulted in the same payout $x, while other colors resulted in a zero

payout. Option B, on the right-hand side, varied across rows in the choice list and was

also given by a lottery with upside $x. Here, the number of “winning balls” was known

and varied from 0% to 99% in 3% steps. Subjects were always given the option to pick

their preferred winning colors.

A subject completed six choice lists, where the payout x ∈ {15,20, 25} and the num-

ber of winning colors n ∈ {1, 2, . . . , 9} were randomly determined. Before each decision

screen, subjects were always given the opportunity to pick their winning colors.

Cognitive uncertainty was measured analogously to choice under risk. After subjects

had indicated their probability equivalent range for an ambiguous lottery, the subse-

quent screen asked them how certain they are that this range actually corresponds to

how much the lottery is worth to them. Operationally, subjects used a slider to calibrate

the statement “I am certain that to me the lottery is worth as much as playing a lottery

over $x with a known number of between x and y winning balls.” 200 AMT workers

participated in these experiments and earned an average of $7.20.

J.2 Results

In the baseline analysis, we again exclude extreme outliers, defined as matching proba-

bility strictly larger than 75% for at most two winning colors, and matching probability

strictly smaller than 25% for more than eight winning colors. This is the case for 1.6%

of our data. We find that the response function of subjects with higher cognitive uncer-

tainty is significantly less sensitive to variation in the number of winning colors (shal-

lower), see the regressions in Table 19. This reduction in sensitivity corresponds to our
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Table 19: Insensitivity to ambiguous “likelihood” and cognitive uncertainty

Dependent variable:
Matching probability

(1) (2)

Number of winning colors * 10 0.63∗∗∗ 0.63∗∗∗

(0.04) (0.04)

Number of winning colors * 10 × Cognitive uncertainty -0.12 -0.11
(0.11) (0.12)

Cognitive uncertainty 1.39 -0.35
(4.76) (4.75)

Session FE No Yes

Demographic controls No Yes

Observations 1181 1181
R2 0.49 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
The dependent variable is a subject’s matching probability, computed as midpoint of the switching
interval. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

main hypothesis, which is also what we re-registered. At the same time, we do not find

that high cognitive uncertainty subjects are more ambiguity seeking than low cognitive

uncertainty subjects for unlikely events.

J.3 Interpretive Problems

The analysis above focuses on whether reported matching probabilities of subjects with

higher cognitive uncertainty are less sensitive to the variation in winning colors. How-

ever, our framework in Section 2 onlymakes this prediction if one assumes that the state

space is binary (win-lose), so that subjects are hypothesized to “shrink” ambigious prob-

abilities towards 50:50. However, in the experiments, the state space was represented

through ten different colors, some of which are winning and some of which are losing

colors. As discussed in Section 3.4, a plausible alternative view is that in this situation

there are actually ten states of the world, one for each color. In this case, our framework

does not predict that subjects shrink their matching probabilities towards 50:50. To see

this, take the example that there are three winning colors. In this case, the ignorance

prior (for winning) would be given by 30%. In other words, subjects would be hypoth-

esized to shrink an ambiguous probability of three winning colors towards a cognitive

default of 30%, which does not produce any shrinking theoretically. For this reason, we

view these experiments as imperfect.

92



K Additional Cognitive Load Experiment

In this experiment, we manipulated cognitive load between subjects. Half of the sub-

jects were randomly selected to work on a separate task next to filling out the price lists.

Specifically, they had to sum up numbers that were flashed for 0.5 seconds in random in-

tervals on top of the screen. Specifically, integers between 3 and 8 appeared in intervals

of 1 to 5 seconds. On an additional screen that directly followed the price list, subjects

had to enter their guess of the sum of the flashed numbers. We hypothesized that this

task takes some attention away from the price list and increases subjects’ cognitive un-

certainty about their choices. To provide a financial incentive for the summation task,

subjects were paid $1 if they entered the correct sum in a randomly selected round.

These additional experiments were not pre-registered. We collected a sample of

N = 169 subjects (86 in load condition, 83 in no-load condition). The load manip-

ulation increased average cognitive uncertainty by 15%. In line with our hypothesis,

cognitive load is associated with more risk averse choices for high-probability gains and

low-probability losses, but with more risk seeking choices for low-probability gains and

high-probability gains. The data are displayed in Figure 44. In a regression of the nor-

malized absolute certainty equivalent (pooling gain and loss lotteries) on the payoff

probability, an indicator for the load condition, and the interaction of both, we find that

the interaction term is negative and significant at the 5% level.
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Figure 44: Probability weighting function, separately for subjects in the load condition and the no-load
condition. The plot shows averages and corresponding standard error bars. Normalized certainty equiv-
alents (implied probability weights) are computed as certainty equivalent divided by payout probability.
The figure is based on N = 86 subjects in the load condition and N = 83 subjects in no-load.
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L Experimental Instructions and Control Questions

L.1 Treatment Baseline Risk
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L.2 Treatment Low Default Risk
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L.3 Treatment Baseline Beliefs
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L.4 Treatment Low Default Beliefs
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L.5 Survey Expectations
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