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1 Introduction

In many contexts of economic interest, behaving optimally is difficult. Consider decision-
making under uncertainty: forming and updating beliefs, and making choices among
risky options. In belief formation, people need to combine prior beliefs with new infor-
mation to arrive at a posterior. However, people may not know Bayes rule, succumb to
computational errors, or fail to retrieve relevant information from memory. In choice un-
der risk, people need to combine probabilities, payoffs and preferences into a certainty
equivalent. However, people may not know their true preferences, or fail at adequately
combining probabilities and utils. All of these issues, and potentially many more, may
introduce cognitive noise, which we use as a catch-all term for the noisiness that arises
from cognitive imperfections in the process of optimization.

The basic premise of our paper is that people are often aware of their own cognitive
noise, which induces cognitive uncertainty: subjective uncertainty about what the opti-
mal action or solution to a decision problem is. For example, people may think that they
do not really know their own certainty equivalent of a lottery; they may have a nagging
feeling that they do not remember what their prior information is; or they may worry
that they do not know how to compute rational beliefs in light of new information. This
stands in contrast to the vast majority of economic models, in which people potentially
make errors, but do not exhibit deliberate doubts about the optimality of their solution.
Because cognitive uncertainty reflects internal noise rather than stochasticity in the en-
vironment, it is distinct from standard notions of confidence. For example, an individual
may assign a subjective probability of 95% to the event that the stock market will go
up tomorrow (and hence be confident according to standard definitions), yet still be
cognitively uncertain about whether the rational posterior belief is indeed 95%, or 84%,
or 97%.

The objective of this paper is to propose and document empirically that cognitive un-
certainty shapes economic behavior in systematic and quantitatively meaningful ways,
and that it provides a unifying lens for understanding behavioral anomalies across dif-
ferent decision domains. To this effect, we first provide a formal definition and a corre-
sponding structured experimental measurement of cognitive uncertainty. We then use
these tools to bring together and partially explain a set of well-known but previously-
unconnected anomalies across four economic decision domains: choice under risk, choice
under ambiguity, belief updating, and survey expectations about economic variables.

Figure 1 depicts the set of behavioral anomalies that we focus on. All four functions
are estimated from experimental data and share in common a characteristic inverse S-
shape. First, panel A depicts the well-known probability weighting function in choice un-
der risk that goes back to Kahneman and Tversky’s (1979) prospect theory. It illustrates
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Figure 1: “Weighting functions” in choices and beliefs. Panel A depicts a probability weighting function in
choice under risk, estimated from the data described in Section 3; also see Tversky and Kahneman (1992)
and O’Donoghue and Somerville (2018). Panel B illustrates an “ambiguity weighting function,” where the
x-axis represents the ambiguous likelihood of an event and the y-axis the matching probability (adapted
from Li et al., 2019). Panel C visualizes the relationship between Bayesian posteriors and stated beliefs in
binary-state balls-and-urns belief updating experiments, constructed from the data described in Section 4;
also see Ambuehl and Li (2018). Finally, panel D depicts the relationship between objective probabilities
and stated subjective probabilities in a survey on inflation expectations, described in Section 5; also see
Fischhoff and Bruine De Bruin (1999).

how experimental subjects implicitly treat objective probabilities in choosing between
different monetary gambles. Relative to an expected utility maximizer, people behave
as if small probabilities were larger than they really are, and high probabilities as if they
were smaller than they really are, leading to a compression effect. Second, depicted in

panel B is an “ambiguity weighting function” that depicts the emerging consensus that,
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in choices between monetary gambles over gains, people are ambiguity averse for likely
events, yet ambiguity seeking for unlikely events. This reflects a compression effect that
is labeled “a-insensitivity” in the literature (Trautmann and Van De Kuilen, 2015). Third,
in panel C, we illustrate a less well-known stylized fact, which is an inverse S-shaped
relationship between participants’ posterior beliefs and the Bayesian posterior in canon-
ical “balls-and-urns” belief updating tasks of the type recently reviewed by Benjamin
(2019). Finally, panel D of Figure 1 shows the relationship between objectively correct
probabilities and the level of respondents’ probabilistic estimates in subjective expecta-
tions surveys about, e.g., stock market returns, inflation rates, or the shape of the income
distribution. Here, again, people’s beliefs are compressed towards 50:50 (Fischhoff and
Bruine De Bruin, 1999).

Each of these empirical findings represents a large and influential literature in be-
havioral economics. Yet, why do these four functions, drawn from different decision
contexts and experimental paradigms, look so strikingly similar? Thus far, attempts to
conceptualize these anomalies have focused on each decision domain in isolation.

This paper proposes cognitive uncertainty as a new lens through which these pat-
terns can be interpreted and unified. Our experimental analysis is based on a theoretical
framework that builds on the mathematical machinery of noisy Bayesian cognition mod-
els, in particular Gabaix (2019) and Khaw et al. (2017). We take a broad interpretation
of these models as capturing (i) noise that primarily results from high-level reasoning in
optimization rather than perceptual imperfections alone and (ii) measurable awareness
of the resulting subjective uncertainty about the optimal action. In the model, people
exhibit cognitive noise in translating probabilistic information into an optimal response.
Similarly to standard Bayesian signal extraction models, this cognitive noise induces
people to shrink objective probabilities towards a prior, or mental default. While we ac-
knowledge that the mental default in general likely depends on a multitude of factors,
we assume that in unfamiliar environments this default is influenced by an ignorance
prior, which assigns equal probability mass to all states of the world ex ante.

Given this setup, we formally define and characterize an empirically measurable no-
tion of cognitive uncertainty as subjective uncertainty about the optimal action. We show
that this cognitive uncertainty in turn governs an individual’s degree of insensitivity to
variation in probabilities, in both choice and belief formation. Building on insights from
the noisy cognition literature, we then demonstrate that under the additional assump-
tion that people perceive probabilities in log-odds space, cognitive uncertainty endoge-
nizes the sensitivity parameter in the familiar two-parameter version of the probability
weighting function proposed by Gonzalez and Wu (1999). However, our framework clar-
ifies that we expect this weighting function to apply not only to choice under uncertainty

but also to belief formation. Moreover, endogenizing the weighting function parameters



suggests that the precise shape of these functions will depend on the magnitude of cog-
nitive noise and the location of the mental default.

This theoretical framework makes three predictions: (a) correlationally, individuals
with higher cognitive uncertainty exhibit response functions that are more compressed
towards 50:50 and hence more insensitive; (b) an exogenous increase in cognitive uncer-
tainty generates more compressed response functions; and (c) an exogenous decrease
in the location of the mental default shifts the entire response function downwards. All
of these predictions have both a reduced-form and a structural interpretation in terms
of Gonzalez and Wu’s weighting function.

To test these predictions, we implement a series of pre-registered experiments with a
total of N = 2,800 participants on Amazon Mechanical Turk (AMT). Like the motivating
examples, our experiments cover the domains of choice under risk and ambiguity, balls-
and-urns belief updating tasks, and survey expectations about economic variables. Our
analysis rests on a new experimental paradigm to measure cognitive uncertainty. This
measure is readily portable across decision domains, fast and easy to implement, and
could in principle be added to a large set of experiments at little cost.

In choice under risk, each participant completes two decision screens per lottery.
On the first screen, we elicit subjects’ certainty equivalents for two-outcome gambles
such as “Get $20 with probability 75%; get $0 with probability 25%” in a standard
price list format. On the next screen, participants are asked how certain they are that to
them the lottery is worth exactly the same as the switching interval that they stated on
the previous screen. To answer this question, participants use a slider to calibrate the
statement “I am certain that the lottery is worth betwen x and y to me.” If a subject
moves the slider to the very right, x and y collapse to their own switching interval in
the price list. The further a subject moves the slider to the left, the wider the range of
cognitive uncertainty becomes. Thus, our measure of cognitive uncertainty (i) directly
reflects subjects’ own assessment of uncertainty and (ii) is quantitative in nature. It
is worth highlighting that existing theories — both traditional and behavioral — predict
that people know their certainty equivalent. However, our data show that about 50% of
the time, subjects exhibit cognitive uncertainty that is strictly wider than the switching
interval of $1.

As a test of prediction (a), we show that cognitive uncertainty is strongly correlated
with the magnitude of probability weighting, in both the gain and loss domains. Specif-
ically, as would be expected from the perspective of shrinking towards 50:50, cognitive
uncertainty is positively correlated with risk taking for low probability gains and high
probability losses, yet negatively correlated with risk taking for high probability gains
and low probability losses. These findings refute a plausible alternative hypothesis about

the effect of cognitive uncertainty, which is that people act cautiously in response to it
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and hence appear universally more risk averse.

We test prediction (b) from above by introducing compound and ambiguous lotteries,
which we hypothesize increase cognitive uncertainty. To illustrate, a compound lottery
is a lottery that pays a non-zero amount with probability p ~ U[0, 20]. Similarly, an am-
biguous lottery is a lottery that pays a non-zero amount with probability p € [0,20]. We
verify that compound and ambiguous lotteries indeed induce substantially higher cogni-
tive uncertainty than the corresponding reduced lotteries. Our model predicts that this
increase in cognitive uncertainty translates into a more compressed weighting function.
This again implies predictions about how compound or ambiguous lotteries should in-
duce higher or lower risk aversion depending on whether one considers gains or losses,
and high or low probabilities. In our experiments, we find consistent support for this
hypothesis: while subjects act as if they are aversive to compound lotteries or ambigu-
ity under high probability gains and low probability losses, they are more risk seeking
under compound lotteries (and “ambiguity seeking”) over small probability gains and
high probability losses.

In a final step of the analysis of choice under risk, we test prediction (c) from above by
exogenously manipulating the location of the mental default. To this effect, we leverage
our assumption that in unfamiliar environments the default is influenced by an igno-
rance prior. In the two-states lotteries discussed so far, this ignorance prior is given by
50:50. To manipulate the location of the mental default, we implement a partition ma-
nipulation and translate the two-states lotteries into ten-states lotteries, without chang-
ing the objective payoff profile. We hypothesize that this shifts the mental default to
an ignorance prior of 10%, which should move the entire probability weighting func-
tion closer towards zero. Our experimental results show that the probability weighting
function with ten states is indeed significantly shifted towards zero, although these pat-
terns are more pronounced for gains than for losses. These results also show that our
experimental results do not just reflect a “click-in-the-middle” heuristic because we can
manipulate people’s mental default in predictable ways.

In a second set of experiments, we conduct conceptually analogous exercises for be-
lief updating. Here, we implement canonical balls-and-urns updating tasks of the type
recently reviewed by Benjamin (2019). In these experiments, a computer randomly se-
lects one of two bags according to a known base rate, yet subjects do not observe which
bag got selected. The two bags both contain 100 balls, where one bag contains g > 50
red and (100 —q) blue balls, while the other bag contains g blue and (100—q) red balls.
The computer randomly draws one or more balls from the selected bag and shows these
balls to the subject, who is then asked to provide a probabilistic assessment of which bag
was actually drawn. Across experimental tasks, the base rate, the signal diagnosticity g

and the number of random draws from the bags vary, but are always known to subjects.



After subjects state their posterior belief, we again elicit cognitive uncertainty. In a
conceptually very similar fashion to choice under risk and ambiguity, we ask subjects to
use a slider to calibrate the statement “I am certain that the optimal guess is between
x and y.” We explain that the optimal Bayesian guess relies on the same information
that is available to subjects, and combines this information in a statistically optimal way.
Again, if a subject moves the slider to the very right, x and y collapse to the subject’s
own previously stated belief. The further the slider is moved to the left, the wider the
cognitive confidence interval becomes. In addition, we also elicit subjects’ willingness-to-
pay to replace their own guess by the optimal guess as a complementary and incentivized
measure of cognitive uncertainty.

Again, in contradiction to a large class of models in which agents do not exhibit
doubts about the rationality of their belief updating, the vast majority of subjects in-
dicate strictly positive cognitive uncertainty. As predicted by our model, this cognitive
uncertainty is strongly correlated with compression of posterior beliefs towards 50:50.
Moreover, we document that cognitive uncertainty strongly predicts the magnitude of
base rate insensitivity and likelihood ratio insensitivity, two of the key underreaction
anomalies highlighted in Benjamin’s (2019) meta-analysis.

To exogenously shift cognitive uncertainty, we implement compound belief updat-
ing tasks. We again hypothesize that cognitive uncertainty will be higher in compound
problems, hence giving rise to more compressed belief distributions. In our experimental
data, we find that cognitive uncertainty indeed increases by 33% under compound diag-
nosticities. Moreover, the distribution of beliefs becomes substantially more compressed
towards 50:50, as predicted by our framework.

In a last step of the analysis of belief updating tasks, we exogenously vary the location
of the mental default. Here, we once more employ the same partition methodology
as in our risky choice experiments: we increase the number of states (bags) from two
to ten, without changing the relevant Bayesian posterior. The results show that this
manipulation induces a substantial and statistically significant downward shift of the
entire distribution of posterior beliefs towards zero.

In the third part of the paper, we study the relationship between cognitive uncer-
tainty and survey expectations about the performance of the stock market, inflation
rates, and the structure of the national income distribution. For instance, we ask respon-
dents to guess the probability that in a randomly selected year between 1980 and 2018
the inflation rate was less than x%, where x varies across respondents. We measure cog-
nitive uncertainty after we elicit these beliefs, using the same methodology as before.
Again, we find that subjects with higher cognitive uncertainty exhibit survey expecta-
tions that are more regressive towards 50:50.

Next, we turn to estimating our model. For each decision domain, we structurally



estimate the two-parameter “weighting function” that our model endogenized, sepa-
rately for above- and below-average cognitive uncertainty observations. The estimates
reveal that the structural sensitivity parameter estimates of low-cognitive uncertainty
observations are 60-150% higher across decision domains. Moreover, even though the
underlying decision domains and experimental paradigms are very different, we always
estimate fairly similar parameter values.

In the last part of the paper, we study whether variation in cognitive uncertainty is
largely due to between- or within-subject variation. In a heuristic decomposition exer-
cise, we find that — as a weak lower bound - at least 50% of the variation in our data
is due to between-subjects heterogeneity. Moreover, participants’ cognitive uncertainty
is highly correlated across domains, i.e., participants with high cognitive uncertainty in
choice under risk (or belief updating) also exhibit high cognitive uncertainty in survey
expectations. Across our different sets of experiments, this subject-level heterogeneity is
correlated with observables: women, participants with low cognitive skills, and subjects
with faster response times exhibit higher cognitive uncertainty.

In summary, the central contributions of our paper are (i) to introduce a formal
definition and a new experimental measure of cognitive uncertainty and (ii) to provide
both correlational and causal evidence for the role of cognitive uncertainty and a mental
default across four domains of economic decision making, each of which has received
substantial interest in the literature on its own.

Our paper builds on recent theoretical work on cognitive noise and resulting shrink-
age processes, see Woodford (2012, 2019), Khaw et al. (2017), Gabaix and Laibson
(2017), Gabaix (2019), Frydman and Jin (2019), Gershman and Bhui (2019) and Steiner
and Stewart (2016). In contrast to some of these theories, we posit that cognitive un-
certainty arises in the mental process of optimizing rather than from perceptual dis-
tortions of numeric quantities. We also do not require the neural coding of noise to be
Bayes-optimal. Abstracting from these interpretive differences, we view our experiments
as providing encouraging support for this emerging body of theoretical work. We show
that cognitive noise is not just a low-level subconscious phenomenon but instead mea-
surable and that it applies to, and unifies anomalies across, a broader range of economic
settings than prior literature has theorized.

In the experimental literature, Butler and Loomes (2007) propose a measurement
of preference imprecision in choice under risk, which is related in spirit to our mea-
sure. Agranov and Ortoleva (2017) show that experimental subjects often deliberately
randomize between lottery options. However, these authors do not conceptualize their
measures as cognitive uncertainty and resulting shrinking processes, and do not study
the types of behavioral anomalies that we focus on. Our paper also builds on various ex-

perimental literatures on the anomalies that we attempt to bring together in this paper,



which are too voluminous to review here, such as Benjamin’s (2019) belief updating sur-
vey and his discussion of underreaction and “extreme belief aversion.” More broadly, our
paper fits into the recent theoretical and experimental literature on bounded rationality
that has focused on the mechanisms behind different behavioral anomalies (Bordalo et
al., 2012, 2017; Enke, 2017; Enke and Zimmermann, 2019; Enke et al., 2019; Esponda
and Vespa, 2016; Graeber, 2019; Martinez-Marquina et al., 2019).

The paper proceeds as follows. Section 2 lays out a theoretical framework of the
role of cognitive uncertainty. Sections 3 to 5 present the experiments on choice under
risk, choice under ambiguity, belief updating, and survey expectations. Section 6 pro-
vides parametric estimations of our model. Section 7 studies the correlates of cognitive

uncertainty, Section 8 provides robustness checks, and Section 9 concludes.

2 A Model of Cognitive Uncertainty

2.1 Overview

Our formal framework directly builds on the cognitive imprecision models of Khaw et
al. (2017) and Gabaix (2019). Following these contributions, our central assumption
is the existence of cognitive noise in decision-making. In contrast to some earlier work,
we interpret this noise not necessarily as reflecting low-level perceptual imperfections,
but as resulting primarily from higher-level reasoning during optimization.! Translating
a set of problem inputs (e.g., probabilities) into an optimal response (e.g., a certainty
equivalent) is often difficult, which could introduce noise through various psychologi-
cal mechanisms, including computational errors, retrieval from memory, or even from
reading off and implementing one’s own preferences. Such cognitive noise creates cog-
nitive uncertainty: subjective uncertainty about what the optimal action is. We focus on
a notion of cognitive uncertainty that people have access to through introspection. To
illustrate informally, suppose your prior belief that it rains tomorrow is 15%. Next, a
weather forecast predicts that it will rain. You know from experience that the weather
forecast is correct 80% of the time. What is your posterior belief that it will rain tomor-
row? 45%? Really? Not 40%? Or perhaps 52%? To take another example, suppose you
were asked to state your certainty equivalent of a 25% chance of getting $15. Suppose
you are small-stakes risk averse. You announce that your certainty equivalent is $3. But
is it really $3? Or maybe $2.50 or $3.20?

Our second key assumption is that people represent quantities (probabilities) in log

odds space, which is closely linked to the notion of a Weber’s Law that describes percep-

1We hence follow the behavioral science tradition going back to at least Prospect Theory of recognizing
that evidence about low-level processes can shed light on high-level decision-making.
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tual patterns across various domains (Izard and Dehaene, 2008; Zhang and Maloney,
2012). The model’s key prediction about the effect of cognitive uncertainty on decisions
(which is a form of insensitivity) does not depend on the assumption of log coding.
However, as we show below, the assumption of log coding is instructive because in com-
bination with cognitive noise it endogenously produces a canonical inverse S-shaped
response function from the literature.

In this paper, we focus on noisy processing of probabilities. However, since cogni-
tive noise may also stem from processing other problem inputs, our general notion of
cognitive uncertainty could also be applied to other contexts.

2.2 Cognitive Noise, Shrinkage and their Interpretation

We focus our presentation on the case with normally distributed data and linear-quadratic
utility but provide a generalization in Appendix A. Assume a decision-maker takes an

action a and derives utility u(a, x) that depends on a one-dimensional quantity x:
1 2
u(a, x) =—3 (a—Bx)". (D

The quantity x may be a problem parameter explicitly presented to the decision-maker,
or a value calculated by or retrieved form the agent’s memory. By “action,” we generically
refer to the solution to a decision problem such as a stated posterior belief or a stated
certainty equivalent. Here, x may correspond to the payout probability of a gamble in
choice under risk, or to the Bayesian posterior in a belief updating task. We abstract
away from both taste-based risk aversion and systematic biases in belief updating and
choice — not because we think that they are unimportant but merely to keep our stylized
framework as simple as possible.
The rational action is
a"(x) =Bx. (2)

We assume that the cognitive process required to identify an optimal action a is subject
to cognitive noise. We model this as the agent receiving a signal s = x + ¢ instead of
having direct access to x.

It is important to emphasize that we view this “noisy perception” formalization as
if, in that it arises in the process of optimizing. In choice under risk, we think of x as
payout probability. Here, cognitive noise arises because combining probabilities, pay-
outs and preferences into a certainty equivalent is hard. In belief updating, x represents
the Bayesian posterior belief that the agent attempts to compute. Here, cognitive noise
arises in the complicated process of combining the available information into a ratio-

nal belief. Finally, in survey expectations, x represents the true probability of an avent.



Here, cognitive noise arises through the process of retrieving information from memory
(Azeredo da Silveira and Woodford, 2019).

The agent is aware of the existence of cognitive noise. He perceives the noise term to
be distributed according to € ~ A(0, a?). The agent’s subjectively perceived cognitive
noise need not be equal to the true noise that he is exposed to, £ ~ A (0,0?). This
assumption highlights that we do not require that an agent’s cognitive uncertainty as
defined below reflects the objective level of noise in his internal processing.

The agent holds a prior x ~ A/ (x4, 0?2), where we refer to x? as the “mental default.”
The prior may be influenced by a multitude of factors and we do not model how exactly
it is determined. As we discuss in greater detail below, in all of our applications x will
represent a probability and we will specify x¢ as influenced by a discrete ignorance prior
that assigns equal probability mass to all possible states.

This assumption is plausible in our particular set of experiments because these are
setups that are unfamiliar to most participants. We do not posit that the prior is always
shaped by an ignorance prior.

Agents account for their cognitive noise by forming an implicit update about x. For
a Bayesian agent, this creates a standard Gaussian signal extraction problem:

P(x|s) ~ A (As + (1 —A)x?, (1 —2A)o2), (3)

with the shrinkage factor
2

o
rA=—>=—€J0,1]. 4
R [0,1] 4

A rational agent takes an action by solving: max,E [—% (a —Bx)? |s]. Only expectations

matter in the linear first-order condition, leading to a rational action
a’(s) = B(E[x]|s]) = BAs + B(1 — A)x* 5)

For a given x, the median action a® across many agents with individual realizations of

cognitive noise is then
a’(x) = Median (a’(s)|x) = BAx + B(1 — A)x¢, (6)

which should be compared with equation (2). We see that the agent dampens his re-
sponse by A, generating shrinkage towards the default (prior). The key takeaway is that
the existence of cognitive noise makes the rational action insensitive to variations in the
problem parameter x.
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2.3 Cognitive Uncertainty

Awareness of cognitive noise generates subjectively perceived uncertainty about what
the optimal action is. We label this cognitive uncertainty. Our objective is to characterize
this uncertainty at the level of an individual action, and derive empirical implications.
The agent’s subjective uncertainty about his optimal action takes as given his individ-
ual draw of s, and reflects how the agent’s rational action a” (equation (2)) subjectively

varies due to the agent’s own posterior distribution of x (equation (3)), i.e., based on2
P(a"(x)|s) ~ A (BAs +B(1—7L)xd,Bz(1—7L)ai). (7)

Definition. The agent’s cognitive uncertainty is given by
Usax

2 2
Vo2+o2

In our applications, cognitive uncertainty will reflect the agent’s subjective uncer-

Ocy = O-ar(x)|s = |B| v1 _Ao-x = |B| (8)

tainty about (i) what exactly their certainty equivalent for a lottery is; (ii) what exactly
the Bayesian posterior in a belief updating task is; and (iii) what (their knowledge of)
the probability of some economic event is.

It is worth pointing out that cognitive uncertainty exclusively refers to a form of
internal uncertainty about what the optimal response or behavior is. This is what dis-
tinguishes this concept from the notion of confidence, which usually involves external
uncertainty. For example, an individual may assign a subjective probability of 95% to
the event that the stock market will go up tomorrow (and hence be confident according
to standard definitions), yet still be cognitively uncertain about whether the rational
posterior belief is indeed 95%, or 84%, or 97%.

In our empirical analysis, we will measure a variant of (8). We reiterate that we do
not require cognitive uncertainty to reflect the true amount of cognitive noise. Because
we are concerned with empirical applications, all that matters for us is subjectively per-
ceived cognitive uncertainty.

We make the following observation about the shrinkage factor A:

2

. Ocy
A=1-— ©)

That is, higher cognitive uncertainty generates more shrinking towards the default and

makes people more insensitive to variation in x.3

2Note that the mean of a’(x)|s is B(As + (1 — A)x?) as in equation (5).
3While in literal terms our model posits shrinkage of the “input” quantity x, it also permits an equiv-
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2.4 Log Coding

Following prior work in both cognitive science and economics (Gabaix, 2019; Zhang and
Maloney, 2012), we assume that a probability p is transformed into a quantity q in log

odds space by applying
p
1-p

q=Q(p)=1In (1D

In our model of probabilistic reasoning, people process probabilities with cognitive noise
that occurs in log odds space. This means we now assume that the decision-relevant
quantity x from (1) is a probability in log odds space g about which an agent receives

a signal s = q + €. This will result in shrinkage of probabilities in log odds space:
q(s) = As+(1—2)qg". (12)

In the following, we will focus on medians, which have the attractive property that for
any strictly monotone function Y, Median(Y (x)) = Y (Median(x)). Over many draws of
s — fixing x, but varying ¢ — the median posterior q° about probability p after encoding

in log odds space and shrinkage is:
q°(q) := Median(q(s)lg) = Aq + (1 — A)q". (13)

From this we can derive the implied median posterior probability p by applying the

1 .
1+e9°

inverse log odds function P(q) =Q !(q) =

1
1+ exp (—Mnl%p —(1- A)ln%) '

p°(p)=P(q°) = 14

2.5 Empirical Applications and Predictions: “Weighting” Functions

Equation (14) delivers the microfoundation for our empirical analysis. Similarly to the

models in Khaw et al. (2017), equation (14) can be reformulated as

5p*
5p*+(1—p)*’

w(p) :=p°(p) = (15)

d
where 6 = exp ((1 — A)lnlf 7 ) This reformulation is instructive because it corresponds

to the well-known two-parameter specification of a probability weighting function sug-

alent interpretation of shrinkage of the response a. Using a”(x) = Bx and letting a? = Bx? we get

a®(x) =BAx +B(1—Vx?=2Aa"(x)+ (1 —A)a’. (10)
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gested by Gonzalez and Wu (1999). The original motivation by Gonzalez and Wu (1999)
is that the log odds transformation allows a convenient characterization of the weighting
function in which one parameter, A, primarily represents the sensitivity of the weighting
function to changes in probabilities, while another parameter, &, controls the function’s
elevation. Our model motivates this functional form by endogenizing its parameters: A
directly corresponds to our shrinkage factor (and hence implicitly depends on cognitive
uncertainty), while & is a transformation of the constant term that jointly reflects the
default and A.

An implication of our approach, however, is that we expect this “weighting” function
to adequately capture decision making not just in choice under risk, but also in choice
under ambiguity, laboratory belief updating tasks, and survey expectations about eco-
nomic variables. In all of these applications, we will operate under the assumption that
the mental default about probabilities is influenced by an ignorance prior. We do not
posit that the default is always affected by this ignorance prior — we just posit that this is
the case in our experimental applications, with which people have no or very little prior

experience.

Prediction 1. Higher cognitive uncertainty is associated with more compressed weighting

functions.

Prediction 2. An exogenous increase in cognitive uncertainty induces more compressed

weighting functions.

Prediction 3. An exogenous decrease in the mental default induces the entire weighting
function to move closer towards zero. That is, if the response is in the positive domain, a

lower default leads to lower responses, holding fixed other problem parameters.

Figures 13 and 14 in Appendix A illustrate these predictions graphically. We test
the predictions in both reduced-form and structural analyses in which we estimate the

“weighting function” from equation (15) across decision domains.

3 Choice Under Risk

3.1 Experimental Design

All experiments reported in this paper were designed with the same objective in mind:
replicate standard experimental designs from the literature to elicit choices and beliefs,

and supplement these tasks with a measurement of cognitive uncertainty.
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3.1.1 Measuring Choice Behavior

To estimate a probability weighting function, we follow a large set of previous works and
implement price lists that elicit certainty equivalents for lotteries (see, e.g. Bernheim
and Sprenger, 2019; Bruhin et al., 2010; Tversky and Kahneman, 1992). Recent work
suggests that these types of price lists are particularly easy for subjects to understand and
give rise to more internally consistent and externally predictable choices than alternative
measurement tools (Andreoni and Kuhn, 2019).

In treatment Baseline Risk, each subject completed a total of six price lists. On the
left-hand side (Option A), a simple lottery was shown that paid y with probability p and
nothing otherwise. On the right-hand side (Option B), a safe payment s was offered that
increased by $1 for each row that one proceeds down the list. As in Bruhin et al. (2010)
and Bernheim and Sprenger (2019), the end points of the list were given by s = $0 and
s = $y. Thus, each decision screen required y + 1 choices. A subject would typically
start out by preferring Option A at the top of the list and then switch to Option B at
some point as the safe payment increases.

Throughout, we enforce that subjects behave in internally consistent ways within
a given choice list. That is, we do not allow for multiple switching points. This facili-
tates a simpler elicitation of cognitive uncertainty, as discussed below. To aid subjects’
decision-making, we implemented an auto-completion mode: if a subject chose Option
A in a given row, the computer implemented Option A also for all rows above this row.
Likewise, if a subject chose Option B in a given row, the computer automatically and
instantaneously ticked Option B in all lower rows. However, participants could always
revise their decision and the auto-completion before moving on. See Figure 15 in Ap-
pendix B.1 for a screenshot of a decision screen.

The non-zero payout of the lottery y and the payout probability p were drawn ran-
domly and independently from the sets y € {15,20,25} and p € {5, 10, 25,50, 75,90, 95}.
These lotteries are rather simple and well in line with previous work on probability
weighting. We implemented both gain and loss gambles, where the loss amounts are
the mirror images of y. In the case of loss gambles, the lowest safe payment was given
by s = —$y and the highest one by s = $0. In loss choice lists, subjects received a mone-
tary endowment of $y from which potential losses were deducted. Out of the six choice
lists that each subject completed, three concerned loss gambles and three gain gambles.
We presented either all loss gambles or all gain gambles first, in randomized order.

Finally, with probability 1/3, a lottery choice list in treatment Baseline Risk was pre-
sented in a compound lottery format. We will describe, motivate and analyze these data

in Section 3.3. For now we focus on the baseline (reduced) lotteries discussed above.
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3.1.2 Measuring Cognitive Uncertainty

After a participant had completed a choice list, the next screen elicited their cognitive un-
certainty with respect to this decision. Conceptually, we are interested in measuring the
analog of o in the model (equation (8)). However, many people are not naturally fa-
miliar with the concept of a standard deviation. To strike a balance between conceptual
clarity and quantitative interpretation on the one hand and participant comprehension
on the other hand, we hence elicit an intuitive version of a subjective confidence interval.

Figure 2 provides a screenshot. Here, a participant was reminded of their valuation
(switching interval) for the lottery. They were then asked to indicate how certain they are
that to them the lottery is worth exactly the same as their previously indicated certainty
equivalent. To answer this question, subjects used a slider to calibrate the statement “I
am certain that the lottery is worth between a and b to me.” If the participant moved the
slider to the very right, a and b corresponded to the previously indicated switching in-
terval. For each of the 20 possible ticks that the slider was moved to the left, a decreased
and b increased by 25 cents, in real time. In gain lotteries, a was bounded from below
by zero and b bounded from above by the lottery’s upside. Analogously, for losses, a was
bounded from below by the lottery’s downside and b from above by zero. The slider did
not have a default value, meaning that subjects had to click somewhere on the slider in
order to proceed.

This measure of cognitive uncertainty can be thought of as a subjective confidence
interval.* We note that we deliberately did not financially incentivize the elicitation of
cognitive uncertainty. The reason is that we do not know the objective truth (subjects’
valuation for a lottery) because we do not know subjects’ true preferences.

Two remarks are in order. First, this measure of cognitive uncertainty only captures
internal uncertainty about what the certainty equivalent is, rather than also external
uncertainty that arises due to stochasticity in the environment. Second, both traditional
and behavioral models that do not feature cognitive uncertainty would predict a cogni-
tive uncertainty of zero: in these models, people may be loss averse, engage in proba-
bility weighting or be otherwise behavioral, yet they are always assumed to know their
valuation for a lottery.

Throughout the paper, we normalize cognitive uncertainty to be in [0,1], where

4QOur elicitation procedure did deliberately not specify which particular confidence interval (e.g., 95%)
we are interested in. The reason is that (i) we aimed at keeping the elicitation simple and (ii) we are op-
erating precisely under the assumption that subjects do not really know how to translate 90% or 95%
confidence into an appropriate certainty equivalent. In Appendix H, we report on “calibration” experi-
ments in which we explicitly elicit 70%, 90%, 95%, 99% and 100% confidence intervals, and compare
them with our baseline measure. We find that subjects always indicate approximately identical cognitive
uncertainty ranges, on average, regardless of which confidence interval we elicit. This supports our belief
that providing a specific interval would not be helpful to subjects.
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Decision screen 2

You will receive a bonus of $0.25 for a careful consideration of the question below.

With probability 90%: Get $ 20
With probability 10%: Get $0

On the previous decision screen you indicated that this lottery is worth between getting $17 and getting $18 to you.

How certain are you that to you this lottery is worth exactly the same as getting between $17 and $18B for sure?

1 |
very uncertain completely certain

| am certain that the lottery is worth between getting $15.00 and getting $20.00 to me.

Figure 2: Decision screen to elicit cognitive uncertainty in choice under risk

one corresponds to the widest possible uncertainty interval. Figure 16 in Appendix B.1
shows a histogram of the distribution of cognitive uncertainty, which shows considerable
variation. Average cognitive uncertainty is 0.24, with a median of 0.14 and a standard
deviation of 0.21. 55% of our data indicate cognitive uncertainty that is strictly larger
than the one-dollar switching interval.s

3.1.3 Subject Pool

All experiments reported in this paper were conducted on Amazon Mechanical Turk
(AMT). AMT is becoming an increasingly used resource in experimental economics (e.g.
DellaVigna and Pope, 2018; Imas et al., 2016), including in work on bounded rationality
(Martinez-Marquina et al., 2019). Review papers suggest that experimental results on
AMT and in the lab closely correspond to each other (Paolacci and Chandler, 2014).
An important advantage of AMT that we also leverage in this study is that the pool of
potential subjects is very large, which allows for high-powered analyses and a relatively
large number of different treatments and tasks (Robinson et al., 2019).

We took four measures to achieve high data quality. First, our financial incentives are
unusually large by AMT standards. Average realized earnings in the choice under risk
experiments are $6.10 for a median completion time of 20 minutes. This implies average
hourly earnings of $18, compared to a typical hourly wage of about $5 on AMT. Second,

5As a basic validity check, in a small sample of 272 price lists, we implemented payout probabilities
of p = 0% or p = 100%, so that there is no external uncertainty. In these tasks, cognitive uncertainty
drops considerably to an average of 0.10.
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we aggressively screened out inattentive prospective subjects through comprehension
questions and attention checks, described in detail below. Third, we pre-registered anal-
yses that remove extreme outliers and speeders. Fourth, as explained above, subjects
only completed six choice lists, which is considerably less than in typical choice under

risk experiments.

3.1.4 Logistics and Pre-Registration

Based on the pre-registration (see below), we recruited N = 700 completes for treat-
ment Baseline Risk. In all experiments, we restricted our sample to AMT workers that
were registered in the United States, but did impose additional participation constraints
such as a minimal approval rating. The common practice of selectively sampling AMT
workers based on their reputation has recently been called into question as it limits the
sample to the group of most experienced workers without increasing data quality (Robin-
son et al., 2019). After reading the instructions, participants completed a set of three
comprehension questions that tested their understanding of the choice lists and the cog-
nitive uncertainty question. Participants who answered one or more control questions
incorrectly were immediately routed out of the experiment and do not count towards
the number of completes. In addition, towards the end of the experiment, a screen con-
tained a simple attention check. Subjects that answered this attention check incorrectly
are excluded from the data analysis and replaced by a new complete, as specified in
the pre-registration. In total, 62% of all prospective participants were screened out in
the comprehension checks. Of those subjects that passed, 2% were screened out in the
attention check. Thus, all of our results should be understood as being conditional on
a pretty attentive participant pool — given the link between cognitive uncertainty and
response times discussed in Section 7, we imagine that we would have identified even
more variation in cognitive uncertainty had we not restricted the sample. Screenshots
of instructions and control questions can be found in Appendix J.

In terms of timeline, subjects first completed six of the choice under risk tasks dis-
cussed above. Second, we elicited their survey expectations about various economic vari-
ables, as discussed in Section 5. Finally, participants completed a short demographic
questionnaire and an eight-item Raven matrices IQ test.

Participants received a completion fee of $1.70. In addition, each participant poten-
tially earned a bonus. The experiment comprised three financially incentivized parts:
the risky choice lists, the survey expectations questions, and the Raven IQ test. For each
subject, one of these parts of the experiment was randomly selected for payment. If
choice under risk was selected, a randomly selected decision from a randomly selected

choice list was paid out.
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All experiments reported in this paper were pre-registered in the AEA RCT registry,
seehttps://www.socialscienceregistry.org/trials/4493. The pre-registration
includes (i) the sample size in each treatment; (ii) data exclusion criteria such as the
aforementioned attention checks or the handling of extreme outliers; and (iii) predic-

tions about the relationship between cognitive uncertainty and our outcome measures.

3.2 Cognitive Uncertainty and the Probability Weighting Function

Because of the simple structure of our lotteries with only one non-zero payout state,
an instructive non-parametric way to visualize our data is to compute normalized cer-
tainty equivalents as NCE = CE/x, where the certainty equivalent CE is defined as the
midpoint of the switching interval® and x is the non-zero payout. This measure hence ef-
fectively only represents the raw data, normalized by the non-zero payout. An attractive
feature of NCE is that it directly corresponds to subjects’ implied probability weights
if one assumes that utility is linear. Because this will be instructive, these normalized
certainty equivalents are negative for lotteries with losses.

For the purposes of the baseline analysis, we exclude extreme outliers as defined in
the pre-registration: these are observations for which (i) the normalized certainty equiv-
alent is strictly larger than 95% while the objective payout probability is at most 10%,
or (ii) the normalized certainty equivalent is strictly less than 5% while the objective
payout probability is at least 90%. For example, this excludes observations that state
that the certainty equivalent for a 5% chance of receiving $20 is strictly larger than $19.
This procedure of excluding outliers affects 3% of all data points. We report robustness
checks using all data below.

Because the normalized certainty equivalents reflect implied probability weights, Fig-
ure 3 plots these normalized certainty equivalents against objective payout probabilities
to visualize a heuristic version of the probability weighting function in our data. The
figure distinguishes between subjects above and below average cognitive uncertainty
within a given payoff probability bucket.

Focusing on the upper half of the figure (gain lotteries), first note that we replicate
prior findings on the shape of the weighting function: implied probability weights are
above the risk-neutral prediction for low probabilities but below the risk-neutral predic-
tion for intermediate and high probabilities. Thus, our subject pool doesn’t seem to be
unusual in this regard.

More importantly, we find that subjects with higher cognitive uncertainty exhibit
more pronounced probability weighting functions: still focusing on the top half, high

cognitive uncertainty subjects are slightly more risk seeking for small probability gains

6We restrict normalized certainty equivalents to be between zero and one.
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Figure 3: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty. The partition is done separately for each probability x gains / losses bucket. The plot shows
averages and corresponding standard error bars. Normalized certainty equivalents (implied probability
weights) are computed as certainty equivalent divided by payout probability. The figure is based on 2,525
certainty equivalents of 700 subjects.

and more risk averse for high probability gains. Thus, overall, cognitive uncertainty is
associated with more pronounced shrinking and hence a flatter relationship between
implied probability weights and objective payout probabilities.”

Note that the heuristic probability weighting function depicted in Figure 2 crosses
the 45-degree line to the left of p = 50%. This pattern is well-known in the literature
and in line with our hypothesis as long as subjects both (i) shrink towards 50:50 because
of cognitive uncertainty and (ii) exhibit genuine preference-based risk or loss aversion,
which shifts the function towards zero.

Next, we turn to the bottom panel of Figure 3, which depicts the analogous observed
data for losses. By the construction of our figure, the weighting function is now given by
the mirror image of the weighting function in the gain domain. Again, we see that the
implied probability weights of subjects with higher cognitive uncertainty are more com-

pressed. An attractive feature of visualizing the data as in Figure 3 is that it highlights

7This result resonates with the findings reported in Bruhin et al. (2010), who uncover substantial het-
erogeneity in individual-level probability weighting. Our notion of heterogeneity in cognitive uncertainty
provides a possible micro-foundation for their results.
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Table 1: Insensitivity to probability and cognitive uncertainty

Dependent variable:

Absolute normalized certainty equivalent

Gains Losses Pooled
€h) 2 3) 4@ 5) )

Probability of payout 0.77°%  0.76"*  0.68"* 0.68"* 0.74™*  0.74**
(0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

Probability of payout x Cognitive uncertainty -0.67** -0.67** -0.56* -0.55"" -0.64"* -0.64"**
(0.09) (0.09) (0.09) (0.09) (0.07) (0.07)

Cognitive uncertainty 25.2%* 253" 35.7** 355" 31.6"* 32.1"*
(5.88) (5.91) (5.26) (5.33) (412) (4.13)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1271 1271 1254 1254 2525 2525
R? 0.55 0.56 0.42 0.43 0.48 0.48

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent

variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
payout probabilities. * p < 0.10, ** p < 0.05, " p < 0.01.

that the relationship between cognitive uncertainty and risk aversion reverses in pre-
dictable ways depending on whether the payouts are positive or negative and whether
the payout probability is high or low. For instance, subjects with higher cognitive uncer-
tainty are more risk seeking for small probability gains, but less risk seeking for small
probability losses. Similarly, high cognitive uncertainty participants are more risk averse
for high probability gains, yet less risk averse for high probability losses. In other words,
as predicted, high cognitive uncertainty subjects exhibit a more pronounced fourfold
pattern of risk attitudes, by the logic of shrinking towards 50:50.

Table 1 provides a regression analysis of these patterns. Our object of interest is the
extent to which a subject’s normalized certainty equivalent is (in)sensitive to variations
in the probability of the non-zero payout state. Thus, we regress a participant’s absolute
normalized certainty equivalent on (i) the probability of receiving the non-zero gain /
loss; (ii) cognitive uncertainty; and (iii) a corresponding interaction term. The regres-
sion analysis hence immediately corresponds to the setup of Figure 2.

The results show that higher cognitive uncertainty subjects respond less to variations
in objective probabilities, in both the gains and the loss domain. In terms of quantitative
magnitude, the regression coefficients suggest the following: if one were to increase
the probability of the non-zero payout state from zero to one, then, on average, the
increase in valuation for that lottery of subjects with cognitive uncertainty of zero is

55-67 percentage points higher than for subjects with cognitive uncertainty of one.
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3.3 Exogenous Manipulation of Cognitive Uncertainty
3.3.1 Experimental Design

To exogenously manipulate cognitive uncertainty, we operate with compound lotteries
and ambiguous lotteries. To illustrate, consider the case of compound lotteries, where an
example lottery is given by: “We randomly draw an integer between 60 and 80, where
each number is equally likely to be selected. Call this number n. With probability n%,
you receive $20. With probability 100%-n%, you receive $0.” The analogous reduced
lottery has payout probability p = 70%. These two lotteries are identical under expected
utility theory because EU is linear in probabilities.

Our hypothesis is that compound lotteries induce higher cognitive uncertainty. As per
the model, compound lotteries should lead to more shrinking towards 50:50 — greater
risk aversion under high probability gains (Halevy, 2007) and low probability losses, yet
less risk aversion under low probability gains and high probability losses.

A causal interpretation of our experiments with respect to cognitive uncertainty re-
quires the assumption that the introduction of compound lotteries affects choices only
through cognitive uncertainty. While this is a strong assumption, we are not aware of
alternative theories that would predict the nuanced pattern of how risk aversion changes
as a function of reduced versus compound lotteries, depending on whether the lottery
features high or low probabilities and gains or losses. As noted above, we implemented
these compound lotteries as part of treatment Baseline Risk, where each lottery had a 1
in 3 chance of being presented in compound form. We collected 1,241 observations on
compound lotteries.

To supplement this analysis of compound lotteries, and to link back to our discussion
of an “ambiguity-weighting” function in the Introduction, we also ran separate exper-
iments in which we implemented both reduced and ambiguous lotteries in a within-
subjects design. Ambiguous lotteries follow the same format as compound lotteries, ex-
cept that the precise distribution from which payoff probabilities are drawn is unknown.
An example is: “There is a number n that lies between 60 and 80. With probability n%,
you receive $20. Otherwise, you receive $0.” We hypothesize that the introduction of
ambiguity has the same effects as compound lotteries.8 These experiments were added
to the pre-registration after the initial set of experiments was implemented. 300 sub-
jects completed these experiments, in which each subject completed both lotteries with

known payoff probabilities and ambiguous ones.?

8Consistent with our reasoning, Halevy (2007) and Gillen et al. (2019) report that the correlation
between ambiguity and compound attitudes aproaches one, once measurement error is accounted for.

9Appendix F presents an additional ambiguity experiment that we pre-registered and implemented.
In these experiments, we do not elicit certainty equivalents for ambiguous lotteries but instead matching
probabilities. These experiments also deliver statistically significant evidence for a correlation between
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3.3.2 Results

Relative to the baseline reduced lotteries, compound and ambiguous lotteries increase
stated cognitive uncertainty by 32% and 20%, on average. Figures 17 and 18 in Ap-
pendix B.1 show corresponding histograms. Thus, our experiments produce a strong
“first stage.”

Figure 4 shows the results. In the top panel, we plot average normalized certainty
equivalents separately for the baseline lotteries discussed above and for compound lot-
teries. We find that the probability weighting function is substantially more compressed
under compound than under reduced lotteries, for both gains and losses. Consistent
with many findings in the literature (Gillen et al., 2019; Halevy, 2007), subjects are
compound lottery averse for high probability gains (and low probability losses). How-
ever, as predicted by our framework, subjects behave as if they are compound lottery
loving for low probability gains and high probability losses.

The bottom panel presents analogous results for the comparison between risky and
ambiguous gambles. The results are very similar to the ones for compound lotteries: sub-
jects behave as if they are ambiguity loving for small probability gains and high proba-
bility losses, so that overall subjects’ certainty equivalents are less sensitive to variation
in payout “probabilities” under ambiguity.

Table 2 provides a corresponding regression analysis. We find that subjects’ certainty
equivalents are considerably less responsive to the objective payout probabilities under
compound and ambiguous lotteries than under reduced lotteries, for both gains and
losses. Moreover, we again find a within-treatment correlation between responsiveness
to payout probabilities and cognitive uncertainty. For example, even when we restrict
attention to ambiguous lotteries, the certainty equivalents of participants with higher
cognitive uncertainty are significantly less responsive to variation in ambiguous likeli-
hoods than those of subjects with low cognitive uncertainty (p < 0.01). This further
suggests that the finding of “a-insensitivity” in the ambiguity literature (Li et al., 2019;
Trautmann and Van De Kuilen, 2015) partly reflects cognitive uncertainty.

3.4 Exogenous Manipulation of the Mental Default
3.4.1 Experimental Design

In a final step of the analysis of choice under risk, we exogenously manipulate the loca-
tion of the mental default. Recall that we operate under the assumption that the default

is influenced by the ignorance prior. With two states of the world, the ignorance prior

cognitive uncertainty and “ambiguity-insensitivity.” We relegate these experiments to the appendix both
for brevity and, as we discuss in detail in the Appendix, we now believe that they are less clean than the
version that we present in the main text.
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Figure 4: Top panel: Probability weighting function separately for reduced and compound lotteries. Bot-
tom panel: “Probability” weighting function separately for reduced and ambiguous lotteries. In the bottom
panel, the payout “probability” for ambiguous lotteries is denoted by the midpoint of the interval of pos-
sible payout probabilities. The plot shows averages and corresponding standard error bars. Normalized
certainty equivalents (implied probability weights) are computed as certainty equivalent divided by pay-
out probability. The top panel is based on 3,766 certainty equivalents of 700 subjects. The bottom panel
is based on 1,796 certainty equivalents of 300 subjects.
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Table 2: Choice under risk: Baseline versus compound / ambiguous lotteries

Dependent variable:

Absolute normalized certainty equivalent

Risk vs. compound risk

Risk vs. ambiguity

Gains  Losses Pooled Gains Losses Pooled
€3] 2 3 C) (5) )]
Probability of payout 0.62**  0.56"* 0.72"* 0.74™ 0.54"* 0.81"*
(0.02) (0.02) (0.02) (0.03) (0.04) (0.03)
Probability of payout x 1 if compound lottery -0.30** -0.25"* -0.24**
(0.03) (0.03) (0.02)
Probability of payout x Cognitive uncertainty -0.54* -0.80"**
(0.05) (0.09)
1 if compound lottery 12.3%*  12.3**  10.8**
(1.89) (1.84) (1.31)
Cognitive uncertainty 27.6%* 39.5%
(3.46) (6.05)
Probability of payout x 1 if ambiguous lottery -0.20™*  -0.16"* -0.13***
(0.03) (0.04) (0.02)
1 if ambiguous lottery 6.91%*  8.82"*  5.39**
(1.14) (2.31) (1.23)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 1918 1848 3766 889 880 1769
R? 0.44 0.35 0.42 0.58 0.34 0.50

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching
interval divided by the non-zero payout. In columns (1)-(3), the sample includes choices from the baseline
and compound lotteries, where for comparability the set of baseline lotteries is restricted to lotteries with
payout probabilities of 10%, 25%, 50%, 75%, and 90%, see Figure 4. In columns (4)-(6), the sample includes
choices from the baseline and ambiguous lotteries. For ambiguous lotteries, we define the payout “probability”
as the midpoint of the interval of possible payout probabilities. * p < 0.10, ** p < 0.05, ** p < 0.01.

is 50:50. To vary the default, we implement a partition manipulation and increase the

number of states to ten. Under the maintained assumption that the default is given by

the ignorance prior, this means that the ignorance prior for each state is now given by

10%. We further designed this treatment variation with the objective of holding cog-

nitive uncertainty fixed (which we verify below). Following the logic of the model in

Section 2, we hence predict that the entire probability weighting function shifts towards

zero as the number of states increases. This means that for the ten states lotteries we

predict higher risk aversion for gains but lower risk aversion for losses.

To experimentally implement this manipulation, we replicate treatment Baseline Risk,

but now frame probabilities in terms of number of colored balls in an urn. For example,

we describe a lottery as:
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Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.
20 balls are blue. If a blue ball gets drawn: get $0.

In addition to this treatment, labeled High Default Risk, we also implement treatment
Low Default Risk. Here, we implement the same lotteries as in High Default Risk, yet we
split the zero-payout state into nine payoff-equivalent states with different probability
colors. For example, the lottery above would be described as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.
2 balls are blue. If a blue ball gets drawn: get $0.

2 balls are black. If a black ball gets drawn: get $0.

2 balls are white. If a white ball gets drawn: get $0.

4 balls are yellow. If a yellow ball gets drawn: get $0.

This lottery is identical to the one described above in terms of the objective payout profile.
Still, we hypothesize that this manipulation shifts the probability weighting function
towards zero.

In total, 300 subjects participated in these two treatments, which we implemented in
a between-subjects design with random assignment to treatments within experimental
sessions. All procedures other than the ones described here (and corresponding compre-
hension questions) were identical to the ones in condition Baseline Risk.

3.4.2 Results

First note that cognitive uncertainty does not vary across these two treatments (p =
0.898), see the histograms in Figure 19 in Appendix B.1. This lends credence to our
implicit assumption that our experimental manipulation only affects the mental default
but not cognitive uncertainty.

Figure 5 shows average normalized certainty equivalents, separately for treatments
High Default Risk and Low Default Risk. We find that, in the gain domain, the probability
weighting function is significantly shifted downwards towards zero with 10 states (a
low default), as hypothesized. In the loss domain, our framework would predict that
the weighting function is shifted upwards towards zero. We only find mixed evidence
for this prediction: the weighting function appears to move up for low and intermediate
probabilities but not for high probabilities.

Table 3 provides a corresponding regression analysis that confirms these visual pat-
terns. Columns (1)—(3) analyze gain lotteries. Here, normalized certainty equivalents
(observed risk tolerance) are 10 percentage points lower in the Low Default Risk con-

dition. In the case of losses, the regression coefficient of the low default condition is
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Figure 5: Probability weighting function separately for treatments High Default Risk and Low Default
Risk. The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure is based on 1,757 certainty equivalents of 300 subjects.

negative — as predicted by our framework — but not statistically significant (p = 0.15). A
potential (post-hoc) explanation for this null result is that, in all treatments, the choice
data in the loss domain appear to be considerably more noisy than in the gain domain.
This can be inferrred from the difference in R?> between columns (1) and (3) in Table 3
and similar patterns in all other tables above. Either way, the treatment effect of the low

default is statistically significant in the pooled gains and losses sample.

4 Belief Updating

4.1 Experimental Design

Our experimental design strategy for belief updating closely mirrors the one for choice
under risk: we (i) supplement an established experimental design from the literature
with a measurement of cognitive uncertainty; (ii) document a correlation between cog-
nitive uncertainty and the magnitude of compression in subjects’ beliefs; (iii) exoge-

nously manipulate cognitive uncertainty using a compound manipulation; and (iv) vary
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Table 3: Choice under risk: Treatments Low Default Risk and High Default Risk

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
(€h) (2) 3) 4 (5) (6)
0 if High Default, 1 if Low Default -10.4*  -10.0%*  -2.02 -1.87  -6.21"* -5.89"*
(1.81) (1.84) (2.11) (2.09) (1.47) (1.47)
Probability of payout 0.66™*  0.66"* 0.63"* 0.63"* 0.65"* 0.65"*

(0.04) (0.04) (0.05) (0.05) (0.03) (0.03)

Probability of payout x Cognitive uncertainty -0.59** -0.58"* -0.48"* -0.48"* -0.51"** -0.52**
(0.12) (0.12) (0.13) (0.13) (0.09) (0.09)

Cognitive uncertainty 25. 7% 252"% 433" 43.1%* 343"  34.1**
(5.86) (5.85) (7.59) (7.79) (4.95) (5.01)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 881 881 876 876 1757 1757
R? 0.41 0.42 0.32 0.34 0.35 0.36

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent

variable is a subject’s absolute normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from treatments Low Default Risk and High
Default Risk. * p < 0.10, ™ p < 0.05, *** p < 0.01.

the location of the mental default by increasing the number of states of the world.

4.1.1 Measuring Belief Updating

In designing a structured belief updating task, we follow the recent review and meta-
study by Benjamin (2019) on so-called “balls-and-bags” or “bookbags-and-pokerchips”
experiments. In treatment Baseline Beliefs, there are two bags, A and B. Both bags con-
tain 100 balls, some of which are red and some of which are blue. The computer ran-
domly selects one of the bags according to a pre-specified base rate. Subjects do not
observe which bag was selected. Instead, the computer selects one or more of the balls
from the selected bag at random (with replacement) and shows them to the subject.
The subject is then asked to state a probabilistic guess that either bag was selected. We
visualized this procedure for subjects using the image at the top right of Figure 6.

The three key parameters of this belief updating problem are: (i) the base rate r €
{10,30,50,70,90} (in percent), which we operationalized as the number of cards out
of 100 that had “bag A” or “bag B” written on them; (ii) the signal diagnosticity q €
{70,90}, which is given by the number of red balls in bag A and the number of blue
balls in bag B (we only implemented symmetric signal structures such that P(red|A) =
P(blue|B)); and (iii) the number of randomly drawn balls N. These parameters were

randomized across trials.
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Each subject completed six belief updating tasks. In each task, they were asked to
state a probabilistic belief (0-100) that bag A got selected. The computer automatically
and instantaneously showed the corresponding subjective probability that bag B got
selected. The decision screen contained information on the base rate, the signal diag-
nosticity, the number of drawn balls, and their color, see Figure 29 in Appendix C.1 for
a decision screenshot.

Financial incentives were implemented through the binarized scoring rule (Hossain
and Okui, 2013). Here, subjects had a chance of winning a prize of $10. The probability
of receiving the prize was given by m = 100 — 0.04 x (b — t)?, where b is the guess (in
%) and t the truth (0 or 100).

With probability 5 in 6, a belief updating task was implemented using the design
discussed above, and with probability 1 in 6 in a compound design. We return to the

compound data in Section 4.3 and focus on the baseline problems for now.

4.1.2 Measuring Cognitive Uncertainty

Our main measure of cognitive uncertainty in belief updating is very similar to the one
for choice under risk, both conceptually and implementation-wise. The instructions ex-
plained the concept of an “optimal guess.” This guess, we explained to subjects, uses the
laws of probability to compute a statistically correct statement of the probability that
either bag was drawn, based on Bayes’ rule. We highlighted that this optimal guess does
not rely on information that the subject does not have.

After subjects had indicated their probabilistic belief that either bag was drawn, the
next decision screen elicited cognitive uncertainty. Here, we asked subjects how certain
they are that their own guess equals the optimal guess for this task. Operationally, simi-
larly to the case of choice under risk, subjects navigated a slider to calibrate the statement
“I am certain that the optimal guess is between a and b.”, where a and b collapsed to
the subject’s own previously indicated guess in case the slider was moved to the very
right. For each of the 30 possible ticks that the slider was moved to the left, a decreased
and b increased by one unit. a was bounded from below by zero and b bounded from
above by 100. Again, we did not set a default: subjects had to click somewhere on the
slider in order to proceed. Figure 6 shows a screenshot of the elicitation screen. For ease
of interpretation, we again normalize this measure to be between zero and one.

Just like our measure of cognitive uncertainty in choice under risk, this one is not fi-
nancially incentivized. However, in the case of belief updating, it is possible to devise an
incentivized measure because here an objectively optimal response (the Bayesian pos-
terior) exists. Thus, we additionally elicited a second measure of cognitive uncertainty

from each participant: their willingness-to-pay (WTP) for replacing their own guess with
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This decision is about the same problem as the one on the previous two screens:

Number of "bag A" cards: 90 bl W’:’*
Number of "bag B" cards: 10 E
Bag A contains 90 red balls and 10 blue balls. i o
Bag B contains 10 red balls and 80 blue balls. 1 . \
A B
Next:
1. The computer randomly selected one bag by drawing a card from the l 1
deck. H’f 3 ? f ?
& . ‘ B "ﬂ
2. Then, the computer randomly drew 1 ball from the secretly selected I.-:,O'_ | /:-:::‘
bag: Frrl e

| 1red ball was drawn. |

Decision 3

You will receive a bonus of $0.25 for a careful consideration of the question below.

On the previous screen you stated that you think it is 32% likely that bag A has been selected and 68% likely that bag B has
been selected in this task.

How certain are you that the optimal guess is exactly 32%?

Use the slider to complete the statement below.

| 1
very uncertain completely certain

I am certain that the optimal guess of the probability that bag A was drawn is between 22 % and 42 %.
Next

Figure 6: Decision screen to elicit cognitive uncertainty in belief updating

the optimal (Bayesian) guess. To this effect, before subjects stated their own guess, they
received an endowment of $3 for each task and then indicated how much of this budget
they would at most be willing to pay to replace their guess. Subjects’ WTP was elicited
using a direct Becker-deGroot-Marschak elicitation mechanism. That is, we randomly
drew a price p ~ U[0,3] and the guess was replaced iff p < WTP. See Figure 30 in
Appendix C.1 for a screenshot.

It is worth reiterating that — just like in choice under risk — leading behavioral theo-
ries of biased belief updating predict no cognitive uncertainty: in tehse models, people
may neglect the base rate, exhibit conservatism or be non-Bayesian in other ways, yet
they never exhibit deliberate doubt about the rationality of their posterior belief. More-
over, as in choice under risk, our cognitive uncertainty measures only captures internal
uncertainty about the rational solution to the decision problem, rather than also exter-
nal uncertainty that is due to the stochasticity of the environment (here: which bag is
selected).
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To maximize statistical power, subjects’ WTP and the resulting replacement of their
own decision was only implemented in randomly selected 10% of all tasks. To avoid
concerns about hedging, this uncertainty was resolved before subjects stated their own
posterior guess. The timeline of each task was hence as follows: (i) observe game param-
eters; (ii) indicate WTP; (iii) find out whether own guess or Bayesian guess potentially
counts for payment; (iv) state own posterior guess; and (v) indicate cognitive uncer-
tainty range. The analysis below excludes those tasks in which a subject’s guess got
replaced by the optimal guess (3% of all data), though we have verified that virtually
identical results hold if these (non-incentivized) guesses are included.

Figures 31 and 32 in Appendix C.1 show histograms of the cognitive uncertainty
measure as well as subjects’ WTP. Both measures exhibit considerable variation. Average
cognitive uncertainty is 0.31, with a median of 0.33 and a standard deviation of 0.27.
85% of our data indicate strictly positive cognitive uncertainty. The average WTP is
$0.85 with a median of $0.50 and a standard deviation of 0.93.10

The two measures exhibit a correlation of p = 0.21. While not incentivized, we view
the cognitive uncertainty measure as our primary measure because (i) by its nature, and
as exemplified by this paper, it is easily portable across different experimental contexts
and decision situations; (ii) it is more fine-grained and exhibits more variation (26% of
all WTPs are zero, perhaps due to some loss aversion vis-a-vis giving up safe money);
and (iii) it is not confounded by risk aversion. Still, below we verify that all of our results

are robust to using the WTP measure.

4.1.3 Logistics and Pre-Registration

Based on a pre-registration, we recruited N = 700 completes for treatment Baseline Be-
liefs. After reading the instructions, participants completed a set of four comprehension
questions. Participants who answered one or more questions incorrectly were imme-
diately routed out of the experiment and do not count towards the number of com-
pletes. Similarly, subjects are excluded from the analysis if they failed an attention
check, as specified in the pre-registration. In total, 49% of all prospective participants
were screened out in the comprehension checks. Of those subjects that passed, 6% were
screened out based on the attention check.

In terms of timeline, subjects first completed the belief updating tasks discussed
above. Second, we elicited their survey expectations about various economic variables,

discussed in Section 5. Finally, participants completed a short demographic question-

10As a basic validity check, in a small sample of 161 updating tasks, we implemented a signal diagnos-
ticity of d = 100, so that the selected bag is deterministically revealed. In these tasks, cognitive uncertainty
essentially drops to zero: the distribution of both the cognitive uncertainty range and subjects’ WTP has
a median of zero, with means of 0.06 and 0.26.
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naire and an eight-item Raven matrices IQ test. One of the three parts of the experi-
ments (belief updating, survey expectations, or Raven test) was randomly selected for
payment.

Average earnings are $4.80 with a median completion time of 23 minutes. The ex-
periments were pre-registered under the same AEA RCT trial as discussed above. Screen-

shots of the instructions and control questions can be found in Appendix J.

4.2 Cognitive Uncertainty and Belief Updating

As in the analysis of choice under risk, we begin by excluding extreme outliers to keep
the analysis clean. As specified in the pre-registration, these are defined as subjective
probability p, and Bayesian posteriors p, such that p;, < 25Ap, > 75 or p, > 75Ap, < 25.
This is the case for 5% of all data. We report robustness checks using the full sample
below.

Figure 1 in the Introduction depicts the “belief weighting function” that we estimate
in our data: the inverse S-shaped relationship between average stated and Bayesian
posteriors that is also documented in Ambuehl and Li (2018). Figure 7 replicates this
figure separately for subjects above or below average cognitive uncertainty as defined by
our unincentivized cognitive uncertainty range. We see that, over the entire support of
Bayesian posteriors, stated posteriors are more compressed towards 50:50 for subjects
with higher cognitive uncertainty. Figure 36 in Appendix C.1 replicates this figure based
on the financially incentivized WTP measure, with very similar results.

Columns (1)-(3) of Table 4 provide a corresponding econometric analysis. Here,
we regress a subject’s stated posterior on (i) the Bayesian posterior; (ii) cognitive un-
certainty; and (iii) their interaction term. We find that subjects with higher cognitive
uncertainty respond considerably less to variation in the objectively correct answer: the
quantitative magnitude of the regression coefficients suggests that the slope of the re-
gression line between stated posterior and Bayesian posterior is 0.80 for subjects with
measured cognitive uncertainty of zero, yet only 0.40 for subjects who state maximal

cognitive uncertainty of one.

Grether regressions. A different way of analyzing our data is through the lens of so-
called Grether regressions, see Grether (1992), El-Gamal and Grether (1995), and Ben-
jamin (2019). This specification is derived by expressing Bayes’ rule in logarithmic form,
which implies a linear relationship between the posterior odds, the prior odds, and the

likelihood ratio:

() nn (D) sn(2), o
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Figure 7: Relationship between average stated and Bayesian posteriors, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each Bayesian posterior. Bayesian
posteriors are rounded to the nearest integer. We only show buckets with more than ten observations. The
figure is based on 3,187 beliefs of 700 subjects.

where b(-) denotes the stated posterior belief, A and B the two bags (states of the world),
s a signal history, the first fraction on the right-hand side the prior odds, and the second
term on the right-hand side the likelihood ratio. This formulation is attractive because
it allows an assessment of the sensitivity of people’s posteriors to variation in both the
base rate and the likelihood ratio in a simple linear regression framework. The standard
finding in the literature is that /31 < 1 and [32 < 1, even though Bayesian updating
implies coefficients of one. This evidence hence points to paramount underreaction (in-
sensitivity) to both the prior odds and the likelihood ratio (Benjamin, 2019).

Columns (4)—-(7) of Table 4 implement these regressions using our data. As shown in
column (4), similarly to past work, we find regression coefficients that are substantially
smaller than one. In fact, our estimates are well within the range of results discussed in
Benjamin’s (2019) meta-study. However, as shown in columns (5)—-(7), these insensitivi-
ties are significantly more pronounced for subjects with higher cognitive uncertainty: the
responsiveness to the likelihood ratio (prior odds) decreases by 36% (65%) for subjects
with maximal cognitive uncertainty relative to those with zero cognitive uncertainty.

These patterns suggest that (at least a part of) what this literature has identified as
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Table 4: Belief updating: Baseline tasks

Dependent variable:

Posterior belief

Log [Posterior odds]

(1 (2) (3) C)) (5) (6)
Bayesian posterior 0.69** 0.83**  0.83"*
(0.01) (0.01) (0.01)
Bayesian posterior x Cognitive uncertainty -0.53"*  -0.53**
(0.04) (0.04)
Cognitive uncertainty 24.8*  24.6"* -0.058 -0.075
(2.43) (2.44) (0.07) (0.07)
Log [Likelihood ratio] 0.41%*  0.46"*  0.46™*
(0.01) (0.02) (0.02)
Log [Prior odds] 0.42** (0.55** (0.55"*
(0.02) (0.03) (0.03)
Log [Likelihood ratio] x Cognitive uncertainty -0.27%*  -0.27"*
(0.05) (0.05)
Log [Prior odds] x Cognitive uncertainty -0.46"*  -0.46™*
(0.07)  (0.07)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 3187 3187 3187 3104 3104 3104
R? 0.72 0.74 0.74 0.62 0.64 0.64

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p <0.05, ™ p <0.01.

base rate neglect or conservatism are in fact not independent psychological phenomena
but instead generated by people shrinking their responses towards 50:50 due to cogni-
tive uncertainty. Table 14 in Appendix C.2 replicates Table 4 using the WTP instead of
the cognitive uncertainty measure, with very similar results.

4.3 Exogenous Manipulation of Cognitive Uncertainty
4.3.1 Experimental Design

To manipulate cognitive uncertainty, we again resort to turning “reduced” problems
into compound problems. Consider belief updating problems in which the base rate
is given by 50:50 and the signal diagnosticity by d = P(A|red) = P(B|blue). In the
compound version of these problems, the base rate is again 50:50, yet the diagnosticity
is the outcome of a random integer draw, d ~ U[d — 10,d + 10]. It is straightforward
to verify that these two problems give rise to the same mean Bayesian posterior. For
instance, if a red ball gets drawn, the posterior in the reduced version equals the signal
diagnosticity d because the prior is 50:50. In the compound version, the posterior is
equally likely to be d —10,d —9,...,d + 10, hence d in expectation.
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As in choice under risk, we hypothesize that subjects exhibit higher cognitive un-
certainty in compound than in reduced updating problems. Hence, by the logic of our
framework, we expect that participants’ beliefs in compound problems will be more
compressed towards 50:50.11

As noted above, we implemented these compound belief updating problems as part
of treatment Baseline Beliefs, where each belief updating problem had a 1 in 6 chance
of being presented in a compound form. We collected 592 observations on compound

belief updating problems.

4.3.2 Results

Relative to reduced updating problems, compound signal diagnosticities increase stated
cognitive uncertainty by 33% and subjects’ WTP for the Bayesian guess by 43%, on
average. Figures 33 and 34 in Appendix C.1 show corresponding histograms. Thus, as
in choice under risk, the compound manipulation produces a strong “first stage.”

Figure 8 shows the results on stated beliefs. Here, we plot average stated posteriors
as a function of Bayesian posteriors, separately for baseline and compound updating
problems. Because in compound problems the base rate is always 50:50, the figure only
includes data from tasks with a 50:50 base rate also for the baseline updating problems.
We see that subjects’ posteriors are substantially more compressed towards 50:50 in
compound updating problems.

Columns (1) and (2) of Table 5 provide a corresponding regression analysis. The
regression coefficients suggest that the sensitivity of stated posteriors to the Bayesian
posterior is 0.72 in baseline updating problem, yet only 0.21 in compound updating
problems. To provide an alternative perspective on the data, we again resort to Grether
regressions, see columns (4)—(6). Because in compound updating problems the base rate
is fixed at 50:50, the only explanatory variable of interest here is the log likelihood ratio.
The results show that subjects always underreact to variations in the likelihood ratio (the
regression coefficient is smaller than one in both reduced and compound updating tasks),
yet this underreaction is substantially more pronounced under compound lotteries.

4.4 Exogenous Manipulation of the Mental Default
4.4.1 Experimental Design

In a final step of the analysis of belief updating, we exogenously manipulate the loca-

tion of the mental default. We again employ a partition manipulation and increase the

11In contemporaneous work, Liang (2019) identifies underreaction under compound relative to re-
duced updating problems. This is in line with our work, but he does not measure cognitive uncertainty.
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Figure 8: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and com-
pound belief updating problems. The plot shows averages and corresponding standard error bars. To allow
for a valid comparison between baseline and compound updating problems, the sample is restricted to
updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 1,947 beliefs of 691 subjects.

number of states to ten. Under the maintained assumption that the default is influenced
by an ignorance prior, our framework predicts that the entire distribution of posterior
beliefs shifts downwards.

Recall that in treatment Baseline Beliefs, an example updating problem is that the
base rates for bags A and B are 70% and 30%, and the signal diagnosticity (number
of red balls in bag A and number of blue balls in bag B) 70%. Now, in treatment Low
Default Beliefs, we split the probability mass for bag B up into nine different bags. That
is, there are now ten bags, labeled A through J. In the specific example above, the base
rate for A would again be 70%, the one for B through I 3% each and the one for J 6%.
Again, bag A would contain 70 red and 30 balls, and all bags B through J 30 red and 70
blue balls. That is, these bags have identical ball compositions.

Note that, regardless of what the actual draws of balls are, the Bayesian posterior
for bag A having been selected is identical in the baseline version and the version with
10 bags. The reason is that under the state space {A; not A} the base rates and signal

diagnosticities are identical. Thus, in treatment Low Default Beliefs, we asked participants
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Table 5: Belief updating: Reduced versus compound signal diagnosticities

Dependent variable:

Posterior belief Log [Posterior odds]
M (2) €))] (€] (5) (6)
Bayesian posterior 0.57** 0.72%*  0.72"**
(0.01) (0.02) (0.02)
Bayesian posterior x 1 if compound problem -0.51"*  -0.51***
(0.03) (0.03)
1 if compound problem 26.4"*  26.5™ 0.0058 0.0091
(1.75)  (1.74) (0.05) (0.05)
Log [Likelihood ratio] 0.37%* 0.45"*  0.45"*
(0.01) (0.02) (0.02)
Log [Likelihood ratio] x 1 if compound problem -0.28**  -0.27**
(0.02) (0.02)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 1947 1947 1947 1890 1890 1890
R? 0.51 0.60 0.60 0.47 0.53 0.53

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p < 0.05, ** p < 0.01.

to indicate their belief that bag A got selected, and the computer automatically showed
the corresponding composite probability for one of the other bags having been selected.

300 subjects participated in treatment Low Default Beliefs, which was randomized
within the same experimental sessions as treatment Baseline Beliefs. All procedures other
than the ones described above were identical to the ones in Baseline Beliefs.

4.4.2 Results

Stated cognitive uncertainty is almost identical across conditions Baseline Beliefs and
Low Default Beliefs, p = 0.85. This corroborates our implicit assumption that the exper-
imental manipulation of increasing the number of bags only manipulates the mental
default but not cognitive uncertainty.

Figure 9 shows average stated posteriors as a function of Bayesian posteriors, sepa-
rately for treatments Baseline Beliefs and Low Default Beliefs. The results show that the
entire distribution of subjects’ beliefs is shifted down towards zero, consistent with our
hypothesis that a larger state space induces shrinking towards a lower mental default.

Table 6 provides a corresponding regression analysis that confirms these visual patterns.
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Figure 9: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs. Bayesian posteriors are rounded to the nearest integer. We only show
buckets with more than ten observations. The figure is based on 5,372 beliefs of 1,000 subjects.

5 Survey Expectations

5.1 Experimental Design
5.1.1 Measuring Beliefs

Miscalibrated survey expectations about economic variables have been documented in a
wide range of contexts, including beliefs about the macroeconomy, the stock market, or
personal life experiences (Hurd, 2009; Manski, 2004). A common theme is the presence
of 50:50 answers (Fischhoff and Bruine De Bruin, 1999).12

Survey expectations are different from the contexts discussed above in that respon-
dents are not confronted with all problem parameters that they need to provide a well-
informed response. Instead, people may have limited information or imperfect memory
about the value of (past or future) economic variables. However, our concept of cognitive

uncertainty nevertheless applies here: people oftentimes do not know the answer to a

2Drerup et al. (2017) suggest that the low explanatory power of survey expectations for economic
behavior might reflect that some people do not even hold meaningful belief distributions, which is remi-
niscent of cognitive uncertainty.
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Table 6: Belief updating: Low versus high mental default

Dependent variable:

Posterior belief Log [Posterior odds]
(1) (2) (3 “@ (5) (6)
0 if Baseline, 1 if Low Default -3.75% 24,127 426" -0.25"* -0.27* -0.28**
(0.71) (0.69) (0.74) (0.05) (0.04) (0.05)
Bayesian posterior 0.64**  0.78"*  0.78"*
(0.01) (0.01) (0.01)
Bayesian posterior x Cognitive uncertainty -0.54"*  -0.54**
(0.03) (0.03)
Cognitive uncertainty 2427 24.0"** -0.057  -0.062
(1.94) (1.96) (0.06)  (0.06)
Log [Likelihood ratio] 0.36"*  0.43"**  0.43**
(0.01) (0.01) (0.01)
Log [Prior odds] 0.48™* 0.61"* 0.61"**
(0.02) (0.03) (0.03)
Log [Likelihood ratio] x Cognitive uncertainty -0.27%*  -0.27%*
(0.03) (0.03)
Log [Prior odds] x Cognitive uncertainty -0.50"* -0.50***
(0.06)  (0.06)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 5372 5372 5372 5226 5226 5226
R? 0.63 0.65 0.65 0.57 0.59 0.59

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p <0.05, "™ p <0.01.

probabilistic question, which may induce them to shrink their reported beliefs to 50:50.
To illustrate the link between cognitive uncertainty and survey expectations, we elicit
beliefs about three variables that have attracted attention in the literature: the structure
of the national income distribution, inflation rates, and the development of the stock
market.

To be able to financially incentivize participants without going through the logistical
hassle of waiting for future variables to have realized, we elicited beliefs about contem-
poraneous or past variables. Each participant was asked three questions that elicited
their beliefs about some specific aspect of the income distribution, stock returns, and
the inflation rate. The question about the income distribution reads as:

Assume that in 2018, we randomly picked a household in the United States.
What do you think is the probability that this household earned less than USD
y in 2018, before taxes and deductions?

Beliefs about the performance of the stock market were elicited as:
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The S&P 500 is an American stock market index that includes 500 of the
largest companies based in the United States. We randomly picked a year X
between 1980 and 2018. Imagine that someone invested $100 into the S&P
500 at the beginning of year X. What do you think is the probability that, at
the end of that same year, the value of the investment was less than $y?

(In other words, what do you think is the probability that the S&P 500 [ lost more

than z% of its value / gained less than z%, or decreased in value]?
Finally, beliefs about the inflation rate were measured as:

The inflation rate in the United States measures the percentage change in
the consumer price index, which reflects the price level of a comprehensive set of
consumer goods and services purchased by households. The inflation rate in a
given time period captures how much more or less expensive goods and services
have become on average. We randomly picked a year X between 1980 and 2018.
Imagine that, at the beginning of year X, the set of products that is used to
compute the inflation rate cost $100. What do you think is the probability
that, at the end of that same year, the same set of products cost less than $y?
(In other words, what do you think is the probability that the inflation rate in year X

was lower than 2%7?)

The order of topics was randomized across participants. Across participants, y (and
hence z) varies randomly such that the true probability ranges fom 0% to 100%. Subjects’
beliefs were financially incentivized using the same binarized scoring rule as discussed
in Section 4, except that the prize a subject could win was $2. One of the three questions

was randomly selected for payment.

5.1.2 Measuring Cognitive Uncertainty

To measure cognitive uncertainty, we again make use of the same elicitation tool as
before. That is, subjects were asked how certain they are that their probabilistic guess is
correct. Subjects used a slider to calibrate the statement: “I am certain that the actual
probability that [...] is between a and b.”, where a and b collapsed to the subject’s own
previously indicated guess if the slider was moved to the very right. For each of the 30
possible ticks that the slider was moved to the left, a decreased and b increased by one
probability point. a was bounded from below by zero and b bounded from above by 100.
Figure 44 in Appendix D.1 shows a screenshot of the elicitation screen.

Figures 45-47 in Appendix D.1 show histograms of cognitive uncertainty for each
question type. Overall, cognitive uncertainty is substantial in these contexts, in particu-

lar regarding the stock market and inflation rates.
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5.1.3 Logistics and Pre-Registration

The elicitation of survey expectations took place with the same set of subjects that com-
pleted the choice under risk and belief updating tasks discussed in Sections 3 and 4.
Thus, the total sample size is N = 2,000. As explained above, one of the three parts
of the experiments (choice under risk or belief updating, survey expectations, or Raven
matrices test) was randomly selected for payment.

In addition to these “backward-looking” beliefs, in separate pre-registered robust-
ness experiments with N = 400 participants, we also elicit expectations about future
realizations of inflation rates, stock market returns and the income distribution. These
questions are conceptually more appropriate in that they ask about the future, but they
are not financially incentivized. The results in these robustness experiments are almost

identical to the ones that are reported here; we summarize these results in Appendix E.

5.2 Results

As in Section 4, and as pre-registered, we begin by excluding extreme outliers, defined
as p, <25Ap,>75o0rp,>75Ap, <25, where p, is the subjective probability and p,
the objective one. This results in the exclusion of 5% of all data.

Figure 10 shows average beliefs as a function of objective probabilities, separately
for subjects with above and below average cognitive uncertainty. Again, we see that
these “survey belief weighting functions” exhibit an inverse S-shape, yet this pattern is
substantially more pronounced for subjects who indicate higher cognitive uncertainty.
Table 21 in Appendix D.2 provides a corresponding non-parametric econometric analysis

that confirms the statistical significance of this pattern.

6 Parametric Estimations

Estimating the weighting functions. To supplement the non-parametric estimations
for Sections 3-5, we now turn to estimating the model in Section 2. The most straightfor-
ward way to do so is to estimate Gonzalez and Wu’s two-parameter weighting function
that we endogenized in equation (15), separately for decisions that are associated with
high and low cognitive uncertainty.

As called for by our framework, we estimate this function not just for choice under
uncertainty, but also for belief updating and survey expectations. In doing so, for sim-
plicity, we again abstract away from taste-based risk or ambiguity aversion. While our
data strongly suggest the presence of risk aversion, this procedure has the advantage

that we estimate exactly the same function across decision domains, hence allowing for
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Figure 10: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty. The partition is done separately for each probability bucket. In the top
panel, the question asks for the probability that a randomly selected U.S. household earns less than $x
(N =1,974). In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x% (N = 1,887). In the bottom panel, the question asks for the probability

that in a randomly selected year the inflation rate was less than x% (N = 1, 842).
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Table 7: Estimates of equation (15) across decision domains

Treatment / group Sensitivity A~ Elevation &
Baseline Choice under risk: all observations (ggg) (882)
Baseline Choice under risk: high CU observations (833) (8(7)3)
Baseline Choice under risk: low CU observations (883) (882)
Choice under ambiguity: all observations (832) (822)
Choice under ambiguity: high CU observations (8(2)2) (ggg)
Choice under ambiguity: low CU observations (833) (882)
Baseline Belief updating: all observations (83(1)) (égg)
Baseline Belief updating: high CU observations (83?) (883)
Baseline Belief updating: low CU observations (883) ((1)83)
Survey expectations pooled: all observations (83% (8(9);)
Survey expectations pooled: high CU observations (83‘1}) (833)
Survey expectations pooled: low CU observations (gg?) ((1)82)

Notes. Estimates of equation (15), standard errors (clustered at subject level) reported in
parentheses. CU = cognitive uncertainty (split at average). The samples include the same
observations as in all baseline analyses in Sections 3-5.

a comparison of parameter estimates across domains.

Formally, for each decision domain, we estimate the parameters A and & by mini-
mizing the sum of squared residuals for the non-linear equation (15). In choice under
risk and ambiguity, the dependent variable is a subject’s normalized certainty equiva-
lent, while in belief updating and survey expectations it is a participant’s stated belief.
Table 7 summarizes the estimates for the baseline conditions in each set of experiments.

In choice under risk, pooled across all subjects, we estimate a sensitivity parameter
of A = 0.47 and an elevation parameter of 5 = 0.68. These estimates are close to the
estimates of A = 0.44 and § = 0.77 in the classic by Gonzalez and Wu (1999), which

again suggests that our sample and results are similar to previous findings. Comparing
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subjects with above and below average cognitive uncertainty, we estimate that the sen-
sitivity parameter A is 58% higher for low than for high cognitive uncertainty subjects.
We find similar patterns for choice under ambiguity, though of course a lower estimated
sensitivity parameter as per the discussion in Section 3.3.

For belief updating, we again find that Ais significantly lower for subjects with above-
average cognitive uncertainty (A = 0.38) than for those with below-average cognitive
uncertainty (A = 0.60). Furthermore, the estimate of the insensitivity parameter A is
strikingly similar to that estimated in choice under risk.

Finally, for the survey expectations data, we again estimate fairly similar parameter
values. In these analyses, the data are pooled across the three types of expectations.
Table 22 in Appendix D.2 reports the estimates for inflation rates, stock market returns
and the national income distribution separately.

In summary, the structural estimations deliver sensible parameter estimates that vary
in meaningful ways with cognitive uncertainty. Moreover, even though the underlying
decision domains and experimental paradigms are very different, we always estimate

fairly similar parameter values, in particular regarding the sensitivity parameter A.

Decision-level analysis. The preceding analysis focused on estimating population-level
parameters. Structurally estimating the Gonzalez-Wu weighting functions at the level of
individual subjects is infeasible given the small number of decisions in our experiments.
However, we can make progress even at the level of individual decisions by restricting

attention to the sensitivity parameter A. In particular, recall that

q(a) = 2q(s) + (1 = )q(p?),

where q(-) denotes the logit function. If we now explicitly impose that the mental default
is given by 50% (the ignorance prior) and noting that E[s] = x, one can back out the
sensitivity parameter A that is implied in each decision using a (very) heuristic back-of-

the-envelope calculation:
q(a)—q(5) _ gq(a)
q(x)—q(.5)  q(x)’

where g(a) is a participant’s logit response (belief or normalized certainty equivalent)

A 17

and g(x) the logit objective probability in the respective decision domain.

Our model predicts that this sensitivity parameter A is decreasing in cognitive un-
certainty, see equation (9). Figure 11 provides binscatters of the implied A against mea-
sured cognitive uncertainty. Despite the fact that our estimates of A are very heuristic
and ignore any form of decision noise or non-linear utility, we find the expected relation-

ship: the implied A are always negatively correlated with stated cognitive uncertainty.
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Figure 11: Correlations between implied decision-level sensitivity parameter (shrinkage factor) A and
decision-level cognitive uncertainty. The estimate of A is computed using equation (17). The plots rep-
resent binscatters. The top left panel includes decisions from treatment Baseline Risk and the top right
panel decisions from the treatment with ambiguous lotteries. The bottom left panel includes beliefs from
treatment Baseline Beliefs and the bottom right panel all survey expectations. In each panel, we exclude
observations with implied A < —1or A> 2, which roughly corresponds to the 1st and 99th percentiles
across decision domains.

The correlations are p = —0.18 for choice under risk, p = —0.24 for choice under am-
biguity, p = —0.19 for belief updating, and p = —0.33 for survey expectations, all of
which are statistically significant at the 1% level.

7 Heterogeneity in Cognitive Uncertainty

In the final part of the paper, we shed some more light on the variation in cognitive
uncertainty. From an ex ante perspective, there are two plausible accounts. First, it is
conceivable that individuals exhibit reasonably stable cognitive uncertainty “types,” so
that a large part of the variation in cognitive uncertainty is between rather than within
subjects. Second, it is conceivable that cognitive uncertainty varies dramatically across
tasks, with little evidence for consistent types at the individual level.
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To decompose cognitive uncertainty into between- and within-subject variation, we
separately look at the choice under risk, belief updating, and survey expectations data
(we exclude choice under ambiguity here because we only have 200 subjects, much
less than for the other experiments). Within each dataset, we regress the collection of
cognitive uncertainty statements on subject fixed effects.1®> We find that the variance
explained is 44% in choice under risk, 53% in belief updating, and 60% in survey expec-
tations. It is worth pointing out that these numbers represent fairly weak lower bounds
for the fraction of the true variation that is due to between-subject variation, as all mea-
surement error gets soaked up by the residual and hence by “within-subject variation.”

An additional way to investigate the existence of types is to look at subjects’ consis-
tency in cognitive uncertainty across task domains. Recall that each subject completed
the survey expectations tasks and additionally either the risky choice or the belief updat-
ing experiments. We now compute the correlation between average subject-level cog-
nitive uncertainty in choice under risk, belief updating and survey expectations for all
subjects in the respective baseline tasks. The correlation between average cognitive un-
certainty in belief updating and average cognitive uncertainty in survey expectations
is p = 0.57. The correlation between cognitive uncertainty in risky choice and survey
expectations is p = 0.35. Thus, subjects exhibit a reasonable degree of consistency even
across different types of experiments. We conclude from these analyses that cognitive
uncertainty varies in meaningful and reasonable stable ways across participants.

Next, we investigate correlates of this variation in cognitive uncertainty across indi-
viduals. For this purpose, we relate subjects’ cognitive uncertainty in each of the three
decision domains to a vector of individual characteristics: the score on an eight-item
Raven matrices IQ test as a proxy for cognitive skills, educational attaiment, response
times as a proxy for cognitive effort, gender, and age. All of these correlational analy-
ses except for the one with response times were pre-registered. Figure 12 summarizes
the results, separately for each of the types of experiments reported above. The figure
shows the results of different regressions, each of which relates average (subject-level)
cognitive uncertainty to a different subject-level variable, controlling for treatment fixed
effects. The figure reports standardized beta coefficients, so that the y-axis shows the
percent change in cognitive uncertainty that is associated with a 1% increase in the ex-
planatory variable of interest. While the results are mixed overall, the strongest and most
consistent correlations reflect that women, people who take less time to complete the
experiment, and people with lower IQ test scores report higher cognitive uncertainty.

This correlational evidence suggests that the availability of cognitive resources — cog-
nitive skills and cognitive effort — may reduce cognitive uncertainty. This raises the ques-

tion whether an increase in financial incentives would increase effort and hence reduce

13Treatment fixed effects always explain less than 1% of the variation in the data.
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Figure 12: Correlates of average cognitive uncertainty. The figure shows the standardized beta coefficients
of regressions of a subject’s average cognitive uncertainty on different variables, controlling for treatment
fixed effects. The values on the y-axis show the percent change in cognitive uncertainty that is associated
with a 1% increase in the explanatory variable of interest. The beta coefficients are estimated conditional
on treatment fixed effects. Response times are computed as total completion time within the relevant
part of the experiment. N = 1,000 observations for choice under risk and belief updating and N = 2,000
observations for survey expectations.

cognitive uncertainty. To test this, we ran a final set of experiments on choice under
risk (N = 150) and belief updating (N = 150). These experiments followed the same
procedure as outlined in Sections 3 and 4, except that across the six tasks the probabil-
ity of being payout-relevant varied within subjects. For five tasks, the probability that a
task would determine payment was 1% and for one task it was 95%. In both sets of ex-
periments, we find that subjects’ response times are about 20-30% higher under higher
incentives. Cognitive uncertainty, on the other hand, either remains unaffected (choice

under risk) or decreases only marginally (belief updating). See Appendix G for details.

8 Robustness Checks

Additional pre-registered analyses. The pre-registration specified that we will con-
duct our analyses on three different samples: (i) excluding extreme outliers, as done
thus far; (ii) using all data; and (iii) excluding “speeders,” defined as subjects in the
bottom decile of the response time distribution. Appendices B.2 and B.3 reproduce the
analysis of choice under risk on the full sample and excluding speeders. Appendices C.3
and C.4 provide analogous analyses for belief updating and Appendices D.3 and D.4 for
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survey expectations. The results are always very similar. Two minor exceptions are that
(i) the treatment difference between Low Default Risk and High Default Risk is statisti-
cally significant also for losses when we exclude speeders (the p-value was p = 0.15 in
the baseline analysis above) and (ii) the interaction between cognitive uncertainty and

payout probability in treatment Baseline Risk is marginally not significant for losses.

Censoring. In all our experiments, the use of a bounded response scale can lead to
censoring of both the choice or belief that a subject states and the range of cognitive un-
certainty indicated using the slider. This may affect the observed relationship between
actions and cognitive uncertainty in two ways. First, choices and beliefs may be influ-
enced by boundary effects. Assume, for example, that a subject in a belief updating task
wants to state a true posterior belief of 95%. However, some form of decision noise such
as trembling when submitting a response leads her to instead indicate a posterior belief
that is uniformly drawn from within +/— 10% of her true posterior, i.e., she would end
up with any posterior between 85% and 105% with equal probability. Since it is not pos-
sible to state a posterior greater than 100%, she will state 100% whenever she would
like to state something greater than 100%, leading to an observed posterior that is lower
than 95% in expectation. Importantly, this distortion in observed beliefs away from the
boundary will be greater for someone with greater decision noise. If subjects’ cognitive
uncertainty statements then accurately reflect the amount of trembling, i.e., the length
of the trembling interval in this case, this form of censoring will mechanically generate
a positive relationship between the extent of cognitive uncertainty and shrinkage. We
find that the actual amount of bunching at the upper and lower bounds of the response
scales, however, is small: it is 4.28% of observations in choice under risk, 2.6% of obser-
vations in belief updating, and 6.61% in survey expectations. In Appendix .1, we show
that the observed relationship between cognitive uncertainty and choices or beliefs is
virtually unaffected when excluding these observations.

Second, censoring might occur when choosing an interval on the response scale to
indicate cognitive uncertainty. While the interval increases symmetrically when moving
the slider to the left, it increases asymmetrically once it hits one of the response scale
boundaries. One may think that subjects stop moving the slider to the left once they hit
a boundary. This implies that measured cognitive uncertainty tends to be smaller for re-
sponses that are closer to a boundary, again leading to a mechanic relationship between
observed cognitive uncertainty and the amount of shrinkage. In our data, we find that
23.25% of cognitive uncertainty intervals in choice under risk, 25.93% in belief updat-
ing and 16.66% in survey expectations are censored at one of the boundaries. However,
as we exclude those observations, the relationship between cognitive uncertainty and

choices or beliefs persists in the same way as before (see Appendix 1.2), showing that
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our findings are not an artifact of censoring due to bounded response scales.

9 Conclusion

This paper has formally defined and introduced an experimental measurement of cogni-
tive uncertainty: people’s subjective uncertainty about the rational solution to a decision
problem. As we have documented using belief updating and survey expectations data,
such cognitive uncertainty does not just reflect preference uncertainty but captures a
more general uncertainty about how to behave optimally.

Based on a simple formal framework that draws from existing theories, we have ar-
gued that cognitive uncertainty induces people to shrink probabilities towards a simple
ignorance prior. This idea both reconciles existing evidence and makes new predictions.
To argue our case, the paper has brought together decision tasks on choice under risk
and ambiguity, belief updating, and survey expectations, all of which generate a stylized
pattern of inverse S-shaped response functions. Across all of these perhaps seemingly-
unrelated decision domains, participants with higher cognitive uncertainty exhibit more
strongly compressed response functions. Moreover, in an attempt to provide causal ev-
idence for our framework, we have exogenously manipulated both the magnitude of
cognitive uncertainty and the location of the ignorance prior, and have identified pre-
dictable changes in subjects’ beliefs and behaviors in response to these treatments.

We believe that the concept of cognitive uncertainty is likely to be important also
outside of the domains that we study in this paper. By providing a simple and portable
experimental tool that allows to measure cognitive uncertainty in a quantitative fashion,
our paper opens up the possibility for future experimental work on the relationship

between cognitive uncertainty and economic decision-making.
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ONLINE APPENDIX

A Model Extensions and Illustrations

A.1 Nonlinear Version

We now allow the rational action to be a nonlinear function of x, so that
a” =A(x). (18)

We make the simplifying assumptions that, first, the agent still chooses an action based

on the posterior expectation about x, as has been done in prior literature (Gabaix, 2019),
a(s) =A(E[x]s]), (19)

second, that the function A is strictly monotone, such that it can again be identified from
the median action a®,

a®(x) = Median(a(s)|x) = A(Ax + (1 — A)x9), (20)

and third, that x¢ = 0, which is merely a notational simplification. In our empirical ap-
plications we will slightly deviate from this and elicit a different type of interval that is
wider than the interquartile range, but we here stick to the notation of cognitive uncer-
tainty as denoting one perceived standard deviation around the action for simplicity.

We define cognitive uncertainty analogously to (8) as the agent’s perceived uncer-
tainty about his rational action,

1 1
ocy(x) = ‘A(Ax+§v1—kox) —A(AX—E\/l—AGX) . 2n
At the median, using a®(x) = A(Ax) yields
ocy(x)=|a’ x+1 1_10 —a® x—1 1_Ao (22)
CcU - 2 A, X 2 )' X *
A Taylor expansion of (22) gives
v1i—2A
Ocy = |ae’(x)| o Ox (23)

which is the nonlinear equivalent of equation (8):
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(24)

A.2 Illustration of Model Predictions
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Figure 13: Illustration of model predictions 1 and 2
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Figure 14: Illustration of model prediction 3
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B Additional Details and Analyses for Choice under Risk

Experiments

B.1 Additional Figures

Decision screen 1

Option A Option B

With certainty: Get $0
With certainty: Get $1
With certainty: Get $ 2
With certainty: Get $3
With certainty: Get $ 4
With certainty: Get $5
With certainty: Get $6
With certainty: Get $7
With certainty: Get $8
With certainty: Get $9
With certainty: Get $10
With certainty: Get $11
With certainty: Get $12
With certainty: Get $13
With certainty: Get $ 14
With certainty: Get $15
With certainty: Get $16
With certainty: Get $17
With certainty: Get $18
With certainty: Get $19
With certainty: Get $ 20

With probability 90% : Get $ 20

With probability 10%: Get $0

0000000000000 00000

000

Figure 15: Decision screen to elicit certainty equivalents for lotteries
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Figure 16: Histogram of cognitive uncertainty in baseline choice under risk tasks
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Figure 17: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
compound lotteries
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Figure 18: Histograms of cognitive uncertainty in choice under risk tasks, separately for reduced and
ambiguous lotteries
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Figure 19: Histograms of cognitive uncertainty in choice under risk tasks, separately for treatments High
Default Risk and Low Default Risk.
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Figure 20: Estimated probability weighting functions across treatments and groups of subjects.

B.2 Results with Full Sample
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Figure 21: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty (full sample). The partition is done separately for each probability x gains / losses bucket. The
plot shows averages and corresponding standard error bars. Normalized certainty equivalents (implied
probability weights) are computed as certainty equivalent divided by payout probability. The figure is
based on 2,601 certainty equivalents of 700 subjects.

Table 8: Insensitivity to probability and cognitive uncertainty (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
(@) 2 (3 @ 5) (6)

Probability of payout 0.74** 0.73"* 0.51" 0.51"* 0.63"* 0.63***
(0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Probability of payout x Cognitive uncertainty -0.68** -0.68"* -0.29"* -0.28"* -0.49"** -0.49**
(0.10) (0.10) (0.10) (0.10) (0.07) (0.07)

Cognitive uncertainty 25.1%* 253" 285" 27.7%*  27.6™ 28.0"*
(6.17) (6.17) (5.68) (5.75) (4.35) (4.37)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1286 1286 1315 1315 2601 2601
R? 0.49 0.50 0.28 0.29 0.36 0.36

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. * p < 0.10, ** p < 0.05, ** p < 0.01.
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Figure 22: Probability weighting function separately for reduced and compound lotteries (full sample).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 3,905 certainty equivalents of 700 subjects.
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Figure 23: “Probability” weighting function separately for reduced and ambiguous lotteries (full sample).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 1,800 certainty equivalents of 300 subjects.
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Table 9: Choice under risk: Baseline versus compound lotteries (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
M (2 3 @ (5) 6
Probability of payout 0.59** 0.70™*  0.45** 0.50"* 0.52*** 0.61*"*
(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)
Probability of payout x 1 if compound lottery -0.34** -0.31*** -0.25* -0.23"* -0.29"* -0.27**
(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)
Probability of payout x Cognitive uncertainty -0.49* -0.24"* -0.38"**
(0.08) (0.08) (0.06)
1 if compound lottery 13.6™ 12.6** 12.3** 10.5" 12.9** 11.7*
(2.09) (2.08) (1.98) (1.99) (1.46) (1.49
Cognitive uncertainty 19.3™ 24.8"* 22.9*
(4.87) (4.67) (3.70)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1958 1958 1947 1947 3905 3905
R? 0.37 0.40 0.21 0.24 0.28 0.30

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent

variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from the baseline and compound gambles, where for
comparability the set of baseline gambles is restricted to gambles with payout probabilities of 10%, 25%, 50%,
75%, and 90%, see Figure 4. * p < 0.10, * p < 0.05, ** p < 0.01.

Table 10: Choice under risk: Treatments Low Default and High Default (full sample)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
€y} (2) (3 “) (5) (6)
0 if High Default, 1 if Low Default -12.1% -11.5"*  -2.96 -2.63  -7.53"* -7.05"**
(1.93) (1.98) (2249 (2.22) (1.58) (1.58)
Probability of payout 0.59"*  0.60** 0.54"* 0.54"* 0.57** 0.57"*
(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)
Probability of payout x Cognitive uncertainty -0.53** -0.53"** -0.38** -0.39"* -0.43"** -0.45*"*
(0.12) (0.12) (0.13) (0.149) (0.09) (0.10)
Cognitive uncertainty 23.2%*  23.1**  39.7%*  39.6" 31.2"* 31.1"
(6.000 (6.01) (764 (790) (5.14) (5.26)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 900 900 900 900 1800 1800
R? 0.34 0.35 0.25 0.27 0.27 0.29

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from treatments Low Default and High Default.* p < 0.10,
* p <0.05, " p <0.01.
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Figure 24: Probability weighting function separately for treatments High Default Risk and Low Default
Risk (full sample). The plot shows averages and corresponding standard error bars. Normalized certainty
equivalents (implied probability weights) are computed as certainty equivalent divided by payout proba-
bility. The figure is based on 1,800 certainty equivalents of 700 subjects.

B.3 Results excluding Speeders

Table 11: Insensitivity to probability and cognitive uncertainty (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
1 2) 3 4 5) (6)

Probability of payout 0.74™*  0.74**  0.52* 0.51"* 0.64™* 0.64™
(0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Probability of payout x Cognitive uncertainty -0.70** -0.70** -0.32** -0.30"* -0.52"** -0.51**
(0.10) (0.10) (0.10) (0.10) (0.08) (0.08)

Cognitive uncertainty 26.6*  27.1™* 293" 283" 28.8"* 29.1"*
(6.61) (6.55) (5.84) (5.90) (4.57) (4.58)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1162 1162 1187 1187 2349 2349
R? 0.49 0.50 0.28 0.29 0.36 0.37

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The depen-
dent variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval
divided by the non-zero payout. The sample includes choices from all baseline gambles with strictly interior
probabilities. * p < 0.10, ** p < 0.05, ** p < 0.01.

62



100 .

- -7 = -
g =TT ¥ X
< -
z 50 -5 ¥
2 -
o E3 xr -
L
5 -
£ 0 =I__
S ra--
ol X X T~=_
S -
= --_x
g -50 T + ¥ £
= =~
O T~ ~
Z S~
-100 T
| | | | | |
0 20 40 60 80 100
Payoff probability
° Low cognitive uncertainty x High cognitive uncertainty
f——— £1 std. error of mean ———— Risk-neutral prediction

Figure 25: Probability weighting function separately for subjects above / below average cognitive uncer-
tainty (excl. speeders). The partition is done separately for each probability x gains / losses bucket. The
plot shows averages and corresponding standard error bars. Normalized certainty equivalents (implied
probability weights) are computed as certainty equivalent divided by payout probability. The figure is
based on 2,349 certainty equivalents of 630 subjects.
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Figure 26: Probability weighting function separately for reduced and compound lotteries (excl. speeders).
The plot shows averages and corresponding standard error bars. Normalized certainty equivalents (im-
plied probability weights) are computed as certainty equivalent divided by payout probability. The figure
is based on 3,519 certainty equivalents of 700 subjects.
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Figure 27: “Probability” weighting function separately for reduced and ambiguous lotteries (excl. speed-
ers). The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure is based on 1,608 certainty equivalents of 268 subjects.

Table 12: Choice under risk: Baseline versus compound lotteries (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
M (2 3 €] (5) 6
Probability of payout 0.59"* 0.70"* 0.46™* 0.51" 0.53** 0.61"*
(0.02) (0.03) (0.03) (0.03) (0.02) (0.02)
Probability of payout x 1 if compound lottery -0.32"* -0.29"** -0.23** -0.21"™* -0.27** -0.25"*
(0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Probability of payout x Cognitive uncertainty -0.49* -0.26™* -0.39**
(0.08) (0.08) (0.06)
1 if compound lottery 12,5 11.5** 11.6®™* 9.55** 12.0® 10.7**
(2.18) (2.18) (2.05) (2.06) (1.52) (1.50)
Cognitive uncertainty 19.9% 25.7* 23.6"*
(5.23) (4.92) (3.95)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1766 1766 1753 1753 3519 3519
R? 0.38 0.40 0.22 0.25 0.29 0.30

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent

variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from the baseline and compound gambles, where for
comparability the set of baseline gambles is restricted to gambles with payout probabilities of 10%, 25%, 50%,
75%, and 90%, see Figure 4. * p < 0.10, * p < 0.05, ** p < 0.01.
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Figure 28: Probability weighting function separately for treatments High Default Risk and Low Default
Risk (excl. speeders). The plot shows averages and corresponding standard error bars. Normalized cer-
tainty equivalents (implied probability weights) are computed as certainty equivalent divided by payout
probability. The figure is based on 1,620 certainty equivalents of 270 subjects.

Table 13: Choice under risk: Treatments Low Default and High Default (excl. speeders)

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled
€h) (2) €))] C)) (5) 6
0 if High Default, 1 if Low Default -12.5  -12.1%*  -4.86"  -4.53* -8.67"* -8.24"*
(2.06) (2.12) (2.35) (2.35) (1.68) (1.69)
Probability of payout 0.59"* 0.59** 0.54"* 0.55"* 0.57** 0.57"*
(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)
Probability of payout x Cognitive uncertainty -0.54"* -0.53"* -0.36"* -0.38"* -0.44** -0.45""*
(0.13) (0.13) (0.14) (0.14) (0.10) (0.10)
Cognitive uncertainty 22.6%* 2217  39.3"*  39.0%"* 31.2"* 31.2"%
(6.60) (6.57) (7.82) (8.11) (5.38) (5.47)
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 810 810 810 810 1620 1620
R? 0.33 0.35 0.26 0.28 0.28 0.29

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s normalized certainty equivalent, computed as midpoint of the switching interval divided
by the non-zero payout. The sample includes choices from treatments Low Default and High Default. * p < 0.10,

* p < 0.05,** p < 0.01.
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C Additional Details and Analyses for Belief Updating

Experiments

C.1 Additional Figures

This decision is about the same problem as the one on the previous screen:

Number of "bag A" cards: 90 100 cards
Number of "bag B" cards: 10

Bag A contains 90 red balls and 10 blue balls.
Bag B contains 10 red balls and 90 blue balls.

Next:
1. The computer randomly selected one bag by drawing a card from the
deck.

2. Then, the computer randomly drew 1 ball from the secretly selected
bag:

| 1 red ball was drawn. |

Decision 2

Your task is to guess which bag was selected in this case.

Your guess:

Select a probability (between 0 and 100) that expresses how likely you think it is that bag A as opposed to bag B has been
selected:

Probability of bag A: | 32/%

Probability of bag B: 68 %

Submit your guess

Figure 29: Decision screen to elicit posterior belief in belief updating tasks
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In this task:

Number of "bag A" cards: 90
Number of "bag B" cards: 10

Bag A contains 90 red balls and 10 blue balls.
Bag B contains 10 red balls and 90 blue balls.

Next:
1. The computer randomly selected one bag by drawing a card from the
deck.

2. Then, the computer randomly drew 1 ball from the secretly selected
bag: (i

I 1 red ball was drawn. |

Decision 1

By replacing your guess with the optimal guess you may increase your chances of winning $10.00. You have a budget of $3.00
to purchase the optimal guess in this task.

How much of your $3.00 budget are you willing to pay to replace your guess with the optimal guess jn this task?

Your willingness to pay for the optimal guess: 1.54%

$0 $1.00 $2.00 $3.00
Do not replace, Most likely
own guess counts to replace own guess

Figure 30: Decision screen to elicit willingness-to-pay for optimal guess in belief updating
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Figure 31: Histogram of cognitive uncertainty in baseline belief updating tasks
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Figure 32: Histogram of willingness-to-pay to replace own guess by Bayesian posterior in baseline belief
updating tasks
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Figure 33: Histograms of cognitive uncertainty in belief updating tasks, separately for baseline and com-
pound diagnosticities
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Figure 34: Histograms of willingness-to-pay to replace own guess by Bayesian posterior in belief updating
tasks, separately for baseline and compound diagnosticities
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Figure 35: Histograms of cognitive uncertainty in belief updating tasks, separately for treatments Baseline
and Low Default Beliefs.
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Figure 36: Relationship between stated and Bayesian posteriors, separately for subjects above / below
median WTP for the Bayesian guess. The partition is done separately for each Bayesian posterior. The
plot shows averages and corresponding standard error bars.
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37: Estimated belief weighting functions across treatments and groups of subjects.
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C.2 Additional Tables

Table 14: Belief updating: Baseline tasks: WTP measure

Dependent variable:

Posterior belief Log [Posterior odds]
€} (2) (3 4 (5) (6)
Bayesian posterior 0.69**  0.76** 0.76**
(0.01) (0.01) (0.01)
Bayesian posterior x WTP for Bayes -0.096"*  -0.096"**
(0.01) (0.01)
WTP for Bayesian posterior 5.49%* 5.47+ 0.027 0.024
(0.76) (0.76) (0.02) (0.02)
Log [Likelihood ratio] 0.41*  0.43*** 0.43"**
(0.01) (0.01) (0.01)
Log [Prior odds] 0.42*  0.44* 0.44"
(0.02) (0.03) (0.03)
Log [Likelihood ratio] x WTP for Bayes -0.042"*  -0.043"*
(0.01) (0.01)
Log [Prior odds] x WTP for Bayes -0.028 -0.027
(0.02) (0.02)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 3187 3187 3187 3104 3104 3104
R? 0.72 0.73 0.73 0.62 0.63 0.63

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p < 0.05, " p < 0.01.
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C.3 Results with Full Sample
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Figure 38: Relationship between average stated and Bayesian posteriors, separately for subjects above
/ below average cognitive uncertainty (full sample). The partition is done separately for each Bayesian
posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets with more than
ten observations. The figure is based on 3,310 beliefs of 700 subjects.

Table 15: Belief updating: Baseline tasks (full sample)

Dependent variable:

Posterior belief

Log [Posterior odds]

(€8] 2 3) @ (5) (6)
Bayesian posterior 0.62** 0.77"* 0.77"*
(0.01) (0.02) (0.02)
Bayesian posterior x Cognitive uncertainty -0.56"*  -0.56"**
(0.05) (0.05)
Cognitive uncertainty 25.37*  25.3"* -0.12 -0.12
(3.15) (3.18) (0.08) (0.08)
Log [Likelihood ratio] 0.36™*  0.42"*  0.42"*
(0.01) (0.02) (0.02)
Log [Prior odds] 0.36"* 0.51** 0.51"*
(0.02) (0.03) (0.03)
Log [Likelihood ratio] x Cognitive uncertainty -0.28%*  -0.28"*
(0.05) (0.05)
Log [Prior odds] x Cognitive uncertainty -0.55"*  -0.54"
(0.07)  (0.07)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 3310 3310 3310 3222 3222 3222
R? 0.57  0.60 0.60 0.48 0.51 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,

** p <0.05, " p <0.01.

72



100

s
£ *3
-
8 =
Lo
1
2]
]
£<
< =
¢ [}
X
s ¢
= I I I I I
0 20 40 60 80 100
Bayesian posterior
4 Baseline x

F——1 +1 std. error of mean

Compound diagnosticity
Bayes

Figure 39: Stated average posteriors as a function of
compound belief updating problems (full sample). The

Bayesian posteriors, separately for reduced and
plot shows averages and corresponding standard

error bars. To allow for a valid comparison between baseline and compound updating problems, the

sample is restricted to updating tasks in which the base

rate is 50:50. Bayesian posteriors are rounded to

the nearest integer. We only show buckets with more than ten observations. The figure is based on 2,056

beliefs of 697 subjects.

Table 16: Belief updating: Reduced versus compound signal diagnosticities (full sample)

Dependent variable:

Posterior belief Log [Posterior odds]

M (2 (3) 4 (5) (6)
Bayesian posterior 0.44** 0.67"** 0.67***
(0.02) (0.02) (0.02)
Bayesian posterior x 1 if compound problem -0.69"*  -0.69"*
(0.04) (0.04)
1 if compound problem 34.5%%  34.7% -0.046  -0.043
217y (2.15) (0.06) (0.06)
Log [Likelihood ratio] 0.31%*  0.40"*  0.40"*
(0.01) (0.02) (0.02)
Log [Likelihood ratio] x 1 if compound problem -0.32"*  -0.32"**
(0.03) (0.03)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 2056 2056 2056 1954 1954 1954
R? 0.29 0.45 0.46 0.33 0.40 0.41

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,

* p <0.05, ** p <0.01.

73



100

‘P
o
g 7
. = III
5® T s 17
2]
o
%
s 3 I * T
[
& I T 5 $ =
£
g 3 ¢
L'y
= | I I I I
0 20 40 60 80 100
Bayesian posterior
° Baseline (2 states) x Low default (10 states)
F——— +1 std. error of mean Bayes

Figure 40: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs (full sample). Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 5,668 beliefs of 1,000 subjects.

Table 17: Belief updating: Low versus high mental default (full sample)

Dependent variable:

Posterior belief Log [Posterior odds]

ey (2 (3 €] ) (6)

0 if Baseline, 1 if Low Default

Bayesian posterior

Bayesian posterior x Cognitive uncertainty

Cognitive uncertainty

Log [Likelihood ratio]

Log [Prior odds]

Log [Likelihood ratio] x Cognitive uncertainty

Log [Prior odds] x Cognitive uncertainty

Session FE

Demographic controls

-6.94** 722" -.7.67""  -0.41"* -0.43"" -0.46"*
(0.97) (0.94) (1.00) (0.06) (0.06) (0.06)

0.54"*  0.66™*  0.66™*
(0.01) (0.02) (0.02)

-0.47**  -0.47"*
(0.04) (0.04)

19.5%*  19.4** -0.12* -0.12
(2.46) (2.49) (0.07)  (0.07)
0.31"*  0.38™* 0.38"*
(0.01) (0.02) (0.02)
0.41** 0.56™* 0.56"*
(0.02) (0.03) (0.03)
-0.29%*  -0.29**
(0.04) (0.04)
-0.56"*  -0.56""*
(0.07) (0.07)
No No Yes No No Yes
No No Yes No No Yes

Observations
RZ

5668 5668 5668 5473 5473 5473
0.44 0.46 0.46 0.42 0.45 0.45

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10, **

p <0.05, ™ p <0.01.
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C.4 Results excluding Speeders
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Figure 41: Relationship between average stated and Bayesian posteriors, separately for subjects above /
below average cognitive uncertainty (excl. speeders). The partition is done separately for each Bayesian
posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets with more than
ten observations. The figure is based on 3,006 beliefs of 635 subjects.

Table 18: Belief updating: Baseline tasks (excl. speeders)

Dependent variable:

Posterior belief Log [Posterior odds]
(€8] 2 3) @ ) (6)
Bayesian posterior 0.63™* 0.78"*  0.78"*
(0.01) (0.02) (0.02)
Bayesian posterior x Cognitive uncertainty -0.57%*  -0.57"**
(0.05) (0.05)
Cognitive uncertainty 27.1%  27.3% -0.066  -0.066
(3.20) (3.21) (0.09) (0.09)
Log [Likelihood ratio] 0.36™*  0.42"*  0.42"*
(0.01) (0.02) (0.02)
Log [Prior odds] 0.38"* 0.53** 0.52"*
(0.02) (0.04) (0.09)
Log [Likelihood ratio] x Cognitive uncertainty -0.29"*  -0.29**
(0.05) (0.05)
Log [Prior odds] x Cognitive uncertainty -0.55"*  -0.55"**
(0.08) (0.08)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 3006 3006 3006 2925 2925 2925
R? 0.59 0.62 0.62 0.49 0.51 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
** p <0.05, " p <0.01.
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Figure 42: Stated average posteriors as a function of Bayesian posteriors, separately for reduced and com-
pound belief updating problems (excl. speeders). The plot shows averages and corresponding standard
error bars. To allow for a valid comparison between baseline and compound updating problems, the sam-
ple is restricted to updating tasks in which the base rate is 50:50. Bayesian posteriors are rounded to
the nearest integer. We only show buckets with more than ten observations. The figure is based on 1,874
beliefs of 632 subjects.

Table 19: Belief updating: Reduced versus compound signal diagnosticities (excl. speeders)

Dependent variable:

Posterior belief Log [Posterior odds]
€] (2) 3 @ (5) (6)
Bayesian posterior 0.45"* 0.68™*  0.68"**
(0.02) (0.02) (0.02)
Bayesian posterior x 1 if compound problem -0.68**  -0.68**
(0.04) (0.04)
1 if compound problem 33.9% 341" -0.071  -0.069
(2.25) (2.24) (0.06) (0.06)
Log [Likelihood ratio] 0.31%*  0.41" 0.41"*
(0.02) (0.02) (0.02)
Log [Likelihood ratio] x 1 if compound problem -0.31"*  -0.31"*
(0.03) (0.03)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 1874 1874 1874 1779 1779 1779
R? 0.30 0.46 0.46 0.34 0.40 0.41

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p < 0.05, ** p < 0.01.
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Figure 43: Stated average posteriors as a function of Bayesian posteriors, separately for treatments Baseline
Beliefs and Low Default Beliefs (full sample). Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure is based on 5,107 beliefs of 899 subjects.

Table 20: Belief updating: Low versus high mental default (excl. speeders)

Dependent variable:

Posterior belief

Log [Posterior odds]

M (2 3 4 (5) 6)
0 if Baseline, 1 if Low Default -6.64"*  -6.88"* -7.16™* -0.40"* -0.42"* -0.43**
(0.98) (0.96) (1.02) (0.06) (0.06) (0.06)
Bayesian posterior 0.55"*  0.67"*  0.67***
(0.01) (0.02) (0.02)
Bayesian posterior x Cognitive uncertainty -0.48*  -0.48**
(0.04) (0.04)
Cognitive uncertainty 21.0%*  20.9"** -0.065  -0.057
(2.56) (2.59) (0.07)  (0.08)
Log [Likelihood ratio] 0.32"*  0.38™* 0.38**
(0.01) (0.02) (0.02)
Log [Prior odds] 0.43"*  0.58™* 0.58**
(0.02) (0.03) (0.03)
Log [Likelihood ratio] x Cognitive uncertainty -0.28"* -0.28"*
(0.04) (0.04)
Log [Prior odds] x Cognitive uncertainty -0.57%*  -0.57**
(0.07) (0.07)
Session FE No No Yes No No Yes
Demographic controls No No Yes No No Yes
Observations 5107 5107 5107 4930 4930 4930
R? 0.45 0.47 0.48 0.44 0.46 0.46

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10, **

p <0.05, ™ p <0.01.
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D Additional Details and Analyses for Survey Expecta-

tions

D.1 Additional Figures

Your certainty about your estimate

On the previous screen, you indicated that you think that in 2018, a randomily selected household in the United States earned

less than $ 236,000 with a probability of 32 %.

How certain are you that this probability is exactly 32 %?

Use the slider to complete the statement below.

| |
very uncertain completely certain

| am certain that the actual probability that a household earned less than $ 236,000 is between 15 % and 49 %.

Figure 44: Decision screen to elicit cognitive uncertainty in survey expectations
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Figure 45: Histogram of cognitive uncertainty in survey expectations about income distribution

78



15-

Fraction

1-

05| | | |

. ||II |II-I IIII Illllllllllll_lll
o 2 a4 s s

!
. . . . 1
Cognitive uncertainty stock market beliefs

Figure 46: Histogram of cognitive uncertainty in survey expectations about the stock market
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Figure 47: Histogram of cognitive uncertainty in survey expectations about inflation rates
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D.2 Additional Tables

Table 21: Survey expectations and cognitive uncertainty

Dependent variable: Probability estimate about:

Income distr. Stock market Inflation rate
€Y ) 3) “@ ) (6)
Objective probability 0.92%*  0.93"*  0.74* 0.74"* 0.80™" 0.80*"*

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
Objective probability x Cognitive uncertainty -0.60** -0.60** -0.70** -0.70™* -0.81** -0.80"**
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Cognitive uncertainty 29.4%*  29.0"*  34.2"* 346" 39.1"* 38.5"*
(2.44) (2500 (2.09) (2.13) (2.67) (274
Session FE No Yes No Yes No Yes
Demographic controls No Yes No Yes No Yes
Observations 1980 1980 1892 1892 1848 1848
R? 0.84 0.84 0.54 0.55 0.56 0.56

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns
(1)-(2), the question about income distribution asks participants for the probability that a randomly selected
U.S. household earns less than $x. In columns (3)—(4), the question about the stock market asks participants
for the probability that in a randomly selected year the S&P500 increased by less than x%. In columns (5)-(6),

the question about inflation rates asks participants for the probability that in a randomly selected year the
inflation rate was less than x%. * p < 0.10, ™ p < 0.05, ** p < 0.01.

Table 22: Estimates of “survey expectations weighting function”

Task / group Sensitivity A Elevation &
Income distribution: high CU (8(5);) ((1)82)
Income distribution: low CU (8(7);) ((l)ézr)
Stock market performance: high CU (8(1)?) (823)
Stock market performance: low CU (833) (821)
Inflation rates: high CU (8(2)?) (gg;)
Inflation rates: low CU (ggg) (832)

Notes. Estimates of equation (15) for survey expectations, standard errors
(clustered at subject level) reported in parentheses. CU = cognitive uncer-
tainty (split at average).
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D.3 Results with Full Sample
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Figure 48: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (full sample). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 2,000 observations each.
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D.4 Results excluding Speeders
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Figure 49: Survey beliefs as a function of objective probabilities, separately for subjects above / below
average cognitive uncertainty (excl. speeders). The partition is done separately for each probability bucket.
In the top panel, the question asks for the probability that a randomly selected U.S. household earns less
than $x. In the middle panel, the question asks for the probability that in a randomly selected year the
S&P500 increased by less than x%. In the bottom panel, the question asks for the probability that in a
randomly selected year the inflation rate was less than x%. N = 1,896 observations each.
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E Forward-Looking Survey Expectations

In Section 5 in the main text, we elicited respondents’ survey expectations about eco-
nomic variables with respect to past values, which allowed us to easily incentivize par-
ticipants. In a pre-registered robustness check, we implemented the same type of survey
questions, but now regarding future values of these variables. These questions are hence
theoretically more appropriate in that they elicit actual expectations, but they are not
financially incentivized. The sample size is N = 400 for each of the three domains. We
apply the same criteria regarding the exclusions of outliers as in Section 5.

The results are shown in Figure 50. Here, we define “objective probabilities” based
on historical data, akin to Figure 10 in the main text. The results are almost identical to

those reported in the main text.
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Figure 50: Survey beliefs about future variables as a function of “objective” probabilities, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
bucket. “Objective” probabilities are defined using historical data, analogously to Figure 10. In the top
panel, the question asks for the probability that a randomly selected U.S. household will earn less than
$x (N = 491). In the middle panel, the question asks for the probability that the S&P500 will increase
by less than x% (N = 463) over the course of one year. In the bottom panel, the question asks for the

probability that the inflation rate will be than x% (N =
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F Additional Ambiguity Experiment

In addition to the experiments reported in Section 3, we implemented an additional
set of pre-registered ambiguity experiments. These experiments delivered statistically
significant results in line with our pre-registered predictions. However, as explained be-
low, we now believe that these experiments are conceptually less-than-ideal from the

perspective of our framework, which is why we relegate them to an Appendix.

F.1 Experimental Design

The basic design builds on Dimmock et al. (2015) and aims at eliciting matching prob-
abilities for ambiguous lotteries. In a given choice list, the left-hand side option A was
constant and given by an ambiguous lottery. The ambiguous lottery was described as
random draw from an urn that comprises 100 balls of ten different colors, where the
precise composition of colors is unknown. A known number of these colors n were “win-
ning colors” that resulted in the same payout $x, while other colors resulted in a zero
payout. Option B, on the right-hand side, varied across rows in the choice list and was
also given by a lottery with upside $x. Here, the number of “winning balls” was known
and varied from 0% to 99% in 3% steps. Subjects were always given the option to pick
their preferred winning colors.

A subject completed six choice lists, where the payout x € {15, 20,25} and the num-
ber of winning colors n € {1,2,...,9} were randomly determined. Before each decision
screen, subjects were always given the opportunity to pick their winning colors.

Cognitive uncertainty was measured analogously to choice under risk. After subjects
had indicated their probability equivalent range for an ambiguous lottery, the subse-
quent screen asked them how certain they are that this range actually corresponds to
how much the lottery is worth to them. Operationally, subjects used a slider to calibrate
the statement “I am certain that to me the lottery is worth as much as playing a lottery
over $x with a known number of between x and y winning balls.” 200 AMT workers

participated in these experiments and earned an average of $7.20.

F.2 Results

In the baseline analysis, we again exclude extreme outliers, defined as matching proba-
bility strictly larger than 75% for at most two winning colors, and matching probability
strictly smaller than 25% for more than eight winning colors. This is the case for 1.6%
of our data. We find that the response function of subjects with higher cognitive uncer-
tainty is significantly less sensitive to variation in the number of winning colors (shal-

lower), see the regressions in Table 23. This reduction in sensitivity corresponds to our
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Table 23: Insensitivity to ambiguous “likelihood” and cognitive uncertainty

Dependent variable:
Matching probability
e)) (2)
Number of winning colors * 10 0.68** 0.67
(0.04) (0.04)
Number of winning colors * 10 x Cognitive uncertainty -0.26™** -0.25*

(0.10) (0.10)

Cognitive uncertainty 5.90 3.87
(5.19) (5.149)
Session FE No Yes
Demographic controls No Yes
Observations 1181 1181
R? 0.50 0.51

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
The dependent variable is a subject’s matching probability, computed as midpoint of the switching
interval. * p < 0.10, ™ p < 0.05, ** p < 0.01.

main hypothesis, which is also what we re-registered. At the same time, we do not find
that high cognitive uncertainty subjects are more ambiguity seeking than low cognitive
uncertainty subjects for unlikely events.

F.3 Interpretive Problems

The analysis above focuses on whether reported matching probabilities of subjects with
higher cognitive uncertainty are less sensitive to the variation in winning colors. How-
ever, our framework in Section 2 only makes this prediction if one assumes that the state
space is binary (win-lose), so that subjects are hypothesized to “shrink” ambigious prob-
abilities towards 50:50. However, in the experiments, the state space was represented
through ten different colors, some of which are winning and some of which are losing
colors. As discussed in Section 3.4, a plausible alternative view is that in this situation
there are actually ten states of the world, one for each color. In this case, our framework
does not predict that subjects shrink their matching probabilities towards 50:50. To see
this, take the example that there are three winning colors. In this case, the ignorance
prior (for winning) would be given by 30%. In other words, subjects would be hypoth-
esized to shrink an ambiguous probability of three winning colors towards a mental
default of 30%, which does not produce any shrinking theoretically. For this reason, we

view these experiments as imperfect.
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G Results on Stake Size Increase

G.1 Stake Size and Choice Under Risk

To manipulate the size of financial incentives, we implement a within-subjects manip-
ulation. We implemented the same procedures as described in Section 3, except that
we only implemented gain lotteries. Subjects completed six choice lists, one of which
determined a subject’s payment in case the choice under risk part of the experiment
got selected for payment (probability 1/3). Across the six choice lists, the probability of
being payout-relevant varied in a transparent way. On top of the decision screen, we in-
formed subjects about the probability that this choice list would determine their payout.
For five tasks, this probability was given by 1% and for one task by 95%. As a measure
of cognitive effort, we recorded subjects’ (log) response times. 150 subjects participated
in this treatment, which was also pre-registered.

The results are reported in Table 24.14 Exploiting variation within subjects across
tasks, we find that response times increase significantly from 25 seconds on average to
36 seconds on average in the high stakes task. However, this increase in response times

does not translate into a significant change in cognitive uncertainty.

Table 24: Effects of stake size increase in choice under risk

Dependent variable:
Log [Response time] Cognitive uncertainty Normalized CE

€] (2) 3) “@ 5) (6)
1 if high stakes 0.26"** 0.26"** -0.0041 -0.0037 0.41 -1.65
(0.06) (0.06) (0.01) (0.01) (2.27) (2.16)
Probability of payout 0.69"* 0.68™*
(0.03) (0.03)
Probability of payout x 1 if high stakes 0.022  0.065*
(0.04) (0.04)
Subject FE No Yes No Yes No Yes
Observations 893 893 893 893 893 893
R? 0.02 0.50 0.00 0.53 0.60 0.79

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,
* p < 0.05, * p < 0.01.

14We again apply the same outlier exclusion criteria as in the main text.
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G.2 Stake Size and Belief Updating

To manipulate the size of financial incentives, we again implement a within-subjects
manipulation. We implemented the same procedures as described in Section 4, except
that we did not elicit the WTP for the optimal guess. Subjects completed six updating
tasks, one of which determined a subject’s payment in case the belief updating part
of the experiment got selected for payment (probability 1/3). Across the six tasks, the
probability of being payout-relevant varied in a transparent way. On top of the decision
screen, we informed subjects about the probability that this task would determine their
payout. For five tasks, this probability was given by 1% and for one task by 95%. As
a measure of cognitive effort, we recorded subjects’ (log) response times. 150 subjects
participated in this treatment, which was also pre-registered.

The results are reported in Table 25.15 Exploiting variation within subjects across
tasks, we find that response times increase significantly. Cognitive uncertainty decreases,

but only mildly so.

Table 25: Effects of stake size increase in belief updating

Dependent variable:

Log [Response time] Cognitive uncertainty  Posterior belief

€] 2 (3) “@ (5) (6)
1 if high stakes 0.19* 0.19* -0.024* -0.025 -2.76 -3.56
(0.06) (0.07) (0.01) (0.02) (2.53) (2.64)
Bayesian posterior 0.59** 0.58"*
(0.03) (0.03)
Bayesian posterior x 1 if high stakes 0.065 0.080*
(0.04) (0.04)
Subject FE No Yes No Yes No Yes
Observations 869 869 869 869 869 869
R? 0.01 0.46 0.00 0.51 0.61 0.70

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. * p < 0.10,

* p <0.05,* p<0.01.

15We again apply the same outlier exclusion criteria as in the main text.
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H Calibrating the Cognitive Uncertainty Measurement

In all of our experiments, the elicitation of cognitive uncertainty did not specify which
particular version of a subjective confidence interval we intend to elicit, such as a 90%,
95%, 99% or 100% confidence interval. We deliberately designed our experiments in
this fashion because the hypothesis that underlines our research is that people have a
hard time translating “99% confidence” into a statement about e.g. their certainty equiv-
alent. In an attempt to trade off subject comprehension and quantitative interpretation,
we hence refrained from inducing a particular version of a confidence interval.

To provide evidence for our conjecture that respondents cannot really tell the dif-
ference between different types of confidence intervals, we implemented an additional
set of choice under risk experiments in which we elicited different versions of subjective
confidence intervals. In these experiments, subjects were specifically instructed to state
an interval such that they are “y% certain” that to them the lottery is worth between
a and b. Across experimental conditions, y varied from 75% to 90% to 95% to 99%
to 100%. To analyze these data, we compare average cognitive uncertainty within a
treatment with average cognitive uncertainty in our baseline treatments, in which we
did not provide a specific quantitative version of a confidence interval. In total, we ran
these experiments with N = 293 subjects.

Figure 51 summarizes the results. Here, we plot the coefficients of the different treat-
ment dummies in a regression with stated cognitive uncertainty as dependent variable.
In this regression, the omitted category is our (unspecific) baseline treatment. Each co-
efficient hence corresponds to the implied difference in cognitive uncertainty between
a treatment and our baseline treatment. There are two main results. First, cognitive un-
certainty does not vary in meaningful ways across conditions: subjects state statistically
indistinguishable cognitive uncertainty intervals, regardless of whether we specify them
as 75%, 90% etc. interval. Second, if anything, reported cognitive uncertainty is higher
in the more precise quantitative versions relative to our baseline version, as can be in-
ferred from the positive point estimates. This again suggests that subjects have a harder
time thinking about specific quantitative versions of a confidence interval relative to our
more intuitive question. We conclude from this exercise that a more precise quantita-
tive implementation of our cognitive uncertainty interval is unlikely to deliver a more

helpful quantitative interpretation of our measure.
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Figure 51: Comparison of average cognitive uncertainty across different elicitation modes in choice under
risk. Each dot represents the coefficient of a treatment dummy in a regression with cognitive uncertainty as
dependent variable. The explanatory variables are fixed effects for the different specifications of cognitive
uncertainty, where the omitted category is our baseline wording. The plot controls for lottery amount
fixed effects and probability of payout fixed effects.

I Censoring

In this section we replicate our weighting functions for subjects above and below average
cognitive uncertainty after excluding observations that are affected by the boundaries
of the response scales. Specifically, in the figures reported in section 1.1 we exclude all
observations in which the choices or beliefs exactly equaled one of boundaries of the
response scale, whereas in section 1.2 we exclude all observations in which the cognitive
uncertainty range included one of the boundaries. The observed differences between
high and low cognitive uncertainty choices or beliefs remain virtually unaffected by
these exclusions.

I.1 Censored choices and beliefs
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Figure 52: Probability weighting function excluding censored choices, separately for subjects above /
below average cognitive uncertainty. The partition is done separately for each probability x gains / losses
bucket. The plot shows averages and corresponding standard error bars. Normalized certainty equivalents
(implied probability weights) are computed as certainty equivalent divided by payout probability. The
figure excludes 4.28% of the original data that is based on 2,525 certainty equivalents of 700 subjects.
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Figure 53: Relationship between average stated and Bayesian posteriors after excluding censored beliefs,
separately for subjects above / below average cognitive uncertainty. The partition is done separately for
each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We only show buckets
with more than ten observations. The figure excludes 2.6% of the original data that is based on 3,187

beliefs of 700 subjects.
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Income distribution
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Figure 54: Survey beliefs as a function of objective probabilities after excluding censored beliefs, sepa-
rately for subjects above / below average cognitive uncertainty. The partition is done separately for each
probability bucket. In the top panel, the question asks for the probability that a randomly selected U.S.
household earns less than $x. In the middle panel, the question asks for the probability that in a randomly
selected year the S&P500 increased by less than x%. In the bottom panel, the question asks for the prob-
ability that in a randomly selected year the inflation rate was less than x%. The figure excludes 6.61% of

the original data that is based on 5,703 observations.
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I.2 Censored cognitive uncertainty ranges
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Figure 55: Probability weighting function excluding censored cognitive uncertainty ranges, separately for
subjects above / below average cognitive uncertainty. The partition is done separately for each probability
x gains / losses bucket. The plot shows averages and corresponding standard error bars. Normalized cer-
tainty equivalents (implied probability weights) are computed as certainty equivalent divided by payout
probability. The figure excludes 23.25% of the original data that is based on 2,525 certainty equivalents
from 700 subjects.
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Figure 56: Relationship between average stated and Bayesian posteriors after excluding censored cogni-
tive uncertainty ranges, separately for subjects above / below average cognitive uncertainty. The partition
is done separately for each Bayesian posterior. Bayesian posteriors are rounded to the nearest integer. We
only show buckets with more than ten observations. The figure excludes 25.93% of the original data that

is based on 3,187 beliefs of 700 subjects.
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Figure 57: Survey beliefs as a function of objective probabilities after excluding censored cognitive un-
certainty ranges, separately for subjects above / below average cognitive uncertainty. The partition is
done separately for each probability bucket. In the top panel, the question asks for the probability that
a randomly selected U.S. household earns less than $x. In the middle panel, the question asks for the
probability that in a randomly selected year the S&P500 increased by less than x%. In the bottom panel,
the question asks for the probability that in a randomly selected year the inflation rate was less than x%.
The figure excludes 16.66% of the original data that is based on 5,703 observations.



J Experimental Instructions and Control Questions

J.1 Treatment Baseline Risk

Welcome

Thank you for participating in this study.
This study will take approximately 25 minutes to complete.

You will earn a fixed reward of $0.50. In addition, you can earn a bonus for completing the study. To complete the study, you will
need to read all instructions carefully and answer the corresponding comprehension questions correctly. You receive a minimum
bonus of $1.20 when you complete the study.

You can earn an additional bonus. At the end of the study, one of the tasks will be randomly selected and your decision in this
task determines your additional bonus. The chance that you get paid an additional bonus for the first partis 1in 3.

Important information

= You should think about each task independently of all other tasks in this study. There is no point in strategizing across
tasks.

= You will note that we sometimes ask you te work on similar-sounding tasks. Theses tasks might have similar answers, or
very different ones. Please consider each individual task carefully.

Part 1: Instructions

Please read these instructions carefully. There will be comprehension checks. If you fail these, you will be excluded from the study
and only receive the reward of $0.50.

In this study, there are various lotteries, all of which pay different amounts of money with different probabilities. An example

lottery is:

With probability 70%: Get $ 20
With probability 30%: Get $ 5

This means that the lottery pays either $20 or $5 (with different probabilities), but a lottery always only pays out one of the dollar
amounts. The lotteries will actually be played out by the computer and determine your earnings in exactly the way we describe on
the following pages.

In total, we have created 6 lotteries. For each lottery, you will make decisions on two consecutive decision screens.

» Decision screen 1: You will make various choices to indicate how much a lottery is worth to you.
= Decision screen 2; You will indicate how certain you are about how much exactly a lottery is worth to you.

Throughout the experiment, there are no right or wrong answers, because how much you like a lottery depends on your
personal taste. We are only interested in learning about what you prefer.
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Decision screen 1

On decision screen 1, you will be asked to choose which of two payment options you prefer. You will see choice lists such as
the one below, where each row is a separate choice. In every list, the left-hand side option (Optien A) is one of the lotteries
that we generated, which is identical in all rows. The right-hand side option (Option B) is a safe payment that you would
receive with certainty, so there is no risk attached. This safe payment in Option B increases as you go down the list.

You should consider the choice in each row independently of all other rows, because in the end one row will be randomily
selected for payout and you will receive the option that you selected in that row. In some choice lists that you complete, you
will receive a budget. If so, this budget will be listed at the top of your screen and paid out to you along with the payouts
from the lottery.

Usually, people start by preferring Option A for small certain amounts (at the top of the list). At some point they switch to
Cption B as they proceed down the list, because the certain amount associated with Option B increases, so that Option B
becomes more attractive. Thus, an effective way to complete these choice lists is to determine in which row you would
like to switch from Option A to Option B.

Based on your decisions in this choice list, we assess how much the lottery is worth to you by using those certain
payments where you switch from Option A to Option B. For example, in the example choice list below, the lottery would
be worth between $13 and $14 to you, because this is where switching occurs.

Option A Option B

With certainty: Get $0
With certainty: Get $1
With certainty: Get $2
with certainty: Get 3
With certainty: Get 4
With certainty: Get $8
With certainty; Get $6
With certainty: Get 87
With certainty: Get $8
With certainty: Get 59
With certainty: Get 510
Wwith certainty: Get $11
With certainty: Get $12
With certainty: Get $13
With certainty: Get 514
With certainty: Get $15
With cartainty: Gat $186
With certainty: Get $17
With certainty: Get $18
With certainty: Get $18
With certainty: Get $20

‘With probability 70% : Get $20

With probability 30%: Get $6

00000000 CO0O0QOD

0000000

Click "Next" to read about decision screen 2.
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Decision screen 2 (for the same lottery)

For any given lottery, you may actually be uncertain about how much money it is really warth to you. For some lotteries,
you may know exactly how much they are worth to you. For other lotteries, you may feel uncertain about whether a lottery is
worth, say, $12, 813, 14, $15, or $16 to you.

On the second decision screen for a given lottery, we will hence ask you to use a slider to indicate how certain you are that
your decisions on the first decision screen correspond exactly to how much the lottery is worth to you.

= The slider is linked 1o the sitatement below the slider. &s you move around the slider, the values in this statement
change. Your task is to position the slider in such a way that the statement corresponds to how you feel about the
lottery.

= The further you move the slider to the right, the more certain you are about how much exactly the lottery is worth
1o you.

= For every step that you move the slider further to the left (the less certain you are), the range of dollar values that
you consider possible increases by $0.50.

Example

Suppose that on the first decision screen you indicated that the lottery below is worth between $13 and $14 to you (because
you switched from Option A to B between $13 and $14). Your screen would then look like this:

Example lottery:

With probability 70%: Get $ 20
With probability 30%: Get$ 5

How certain are you that to you this lottery is worth exactly the same as getting between $13 and $14 for sure?

)
1

very uncertain completely certain

1 am certain that the lottery is worth Use the slider! to me,

Your payment for part 1

If this part is randomly selected for payment in the end, your additional bonus will be determined as follows:

The computer will randomly select one choice list for payout, with equal probability. We then randomly select one of your
decisions from this choice list (with equal probabllity), and this decision will be implemented for real payment.

Thus, you should take each decision independently of all other decisions as if it’s the one that counts, because it may

be.
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Comprehension questions

The questions below test your understanding of the instructions.

Important: If you fail to answer any one of these questions correctly, you will not be allowed to participate in the rest

of the study, and you will not be able to earn a bonus.

1. Which one of the following statements is correct if the following lottery is played for you?

With probability 60%: Get $ 15
With probability 40%: Get $ 5

Please select one of the statements:

It is possible that | get paid both $15 and %5, i.e., | may receive a total amount of $20 from this lottery.

| receive EITHER $15 OR $5 from this lottery.

It is possible that | receive no money from this lottery.

2. Suppose a person made the decisions shown in the picture below. Which of the following statements is correct

regarding these decisions?

Option A

With probability 60% : Get $15

000000000

With probability 40%: Get $5

0000000

Please select one of the statements:

' This person indicated that the lottery is worth more to them than $9.
© This person indicated that the lottery is worth between $3 and $7 to
' This person indicated that the lottery is worth between $8 and $9 to

Option B

With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
‘With certainty:

them.

them.

Get $0
Get §1
Get $2
Get $3
Get $4
Get $6
Get $6
Get §7
Get $8
Get $9
Get $10
Get $11
Get $12
Get $13
Get $14
Get $15

3. Now imagine that the person who made the decisions above is uncertain about how much exactly the lottery is

worth to them.

This person is certain, however, that the lottery is worth between $6 and $11 to them. Please position the slider

to accurately reflect this level of certainty:

I
very uncertain

This person is certain that the lottery is worth Use the slider! to them.

100

completely certain



J.2 Treatment Low Default Risk

Welcome

Thank you for participating in this study.
This study will take approximately 25 minutes to complete.

You will earn a fixed reward of $0.50. In addition, you can earn a bonus for completing the study. To complete the study, you will
need to read all instructions carefully and answer the corresponding comprehension questions correctly. You receive a minimum
bonus of $1.20 when you complete the study,

You can earn an additional bonus. At the end of the study, one of the tasks will be randomly selected and your decision in this
task determines your additional bonus. The chance that you get paid an additional bonus for the first part is 1in 3.

Important information

= You should think about each task independently of all other tasks in this study. There is no point in strategizing across
tasks.

+ You will note that we sometimes ask you to work on similar-sounding tasks. Theses tasks might have similar answers, or
very different ones. Please consider each individual task carefully.

Next

Part 1: Instructions

Please read these instructions carefully. There will be comprehension checks. If you fail these, you will be excluded from the study
and only receive the reward of $0.50.

In this study, there are various lotteries, all of which pay different amounts of money with different probabilities. To illustrate these
probabilities, we will use the metaphor of colored balls in a bag. Imagine that there is a bag that contains 100 balls. Each of these
balls has one of the following ten colors:

* red
* blue
* green

* brown
= black

¢ gray
* purple

The computer selects one of the 100 balls at random, where each ball is equally likely to get selected. Across lotteries, the
number of balls of a given color might vary. Each color is associated with its own corresponding payout for you, An example
lottery is:
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70 out of 100 balls are red.
If a red ball is drawn: Get $ 20

3 out of 100 balls are blue.
If a blue ball is drawn: Get $5

3 out of 100 balls are green.
If a green ball is drawn: Get $ 5

3 out of 100 balls are orange.
If a orance ball is drawn: Get $5

3 out of 100 balls are brown.
If a brown ball is drawn: Get $5

3 out of 100 balls are
Ifa ballis drawn: Get $5

3 out of 100 balls are black.
If a black ball is drawn: Get $5

3 out of 100 balls are
Ifa ball is drawn: Get $5

3 out of 100 balls are gray.
If a gray ball is drawn: Get $5

6 out of 100 balls are purple.
If a purple ball is drawn: Get $5

You will always know how many balls of a given color are contained in the bag before making your decision. The lotteries will
actually be played out by the computer and determine your earnings in exactly the way we describe on the following page.

In total, we have created 6 lotteries. For each lottery, you will make decisions on two consecutive decision screens.

» Decision screen 1: You will make various choices to indicate how much a lottery is worth to you.
+ Decision screen 2: You will indicate how certain you are about how much exactly a lottery is worth to you.

Throughout the experiment, there are no right or wrong answers, because how much you like a lottery depends on your
personal taste. We are only interested in learning about what you prefer.

Decision screen 1

On decision screen 1, you will be asked to choose which of two payment options you prefer. You will see choice lists such as the
one below, where each row is a separate choice. In every list, the left-hand side option (Option A) is one of the lotteries that we
generated, which is identical in all rows. Here, you can see how many balls of each color are contained in the bag that
determines your payment. The right-hand side option (Option B) is a safe payment that you would receive with certainty, so
there is no risk attached. This safe payment in Option B increases as you go down the list.

You should consider the choice in each row independently of all other rows, because in the end one row will be randomly
selected for payout and you will receive the option that you selected in that row. In some choice lists that you complete, you will
receive a budget. If so, this budget will be listed at the top of your screen and paid out to you along with the payouts from the
lottery.

Usually, people start by preferring Option A for small certain amounts {at the top of the list). At some point they switch to Option
B as they proceed down the list, because the certain amount associated with Option B increases, so that Option B becomes
more attractive. Thus, an effective way to complete these choice lists is to determine in which row you would like to
switch from Option A to Option B.

Based on your decisions in this choice list, we assess how much the lottery is worth to you by using those certain payments
where you switch from Option A to Option B. For example, in the example choice list below, the lottery would be worth
between $13 and $14 to you, because this is where switching occurs.
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Option A Option B

With certainty: Get $0
With certainty: Get $1
With certainty: Get $2

70 out of 100 balls are red.
i a red ball is drawn: Get %20

With certainty: Get $3

With certainty: Get $4
3 out of 100 balls are blue.

If a blue ball is drawn: Get $5 With certainty: Get $6
3 out of 100 balls are green,

It a green ball is drawn: Get §5

With certainty: Get $6

With certainty: Get $7
3 out of 100 balls are « .

Ifa oranae ball ls drawn: Get $8 With certainty: Get $8

3 out of 100 balis are brown.

With certainty: Get $9
It & brown ball is drawn: Get $6

3 out of 100 balls are With certainty: Get $10

ita ball Is drawn: Get $5 With certainty: Get $11
3 aut af 100 balls are black,

If a black ball is drawn: Get $ 5 With certainty: Get $12

0 0 00 000D OO0CODOOOO

3 out of 100 balls are With certainty: Get $13

ita ballis drawn; Get § 5 " ;
With certainty: Get $14
3 out of 100 balls are gray.

if 2 gray ball is drawn: Get § 6 With certainty: Get $15

6 out of 100 balls are purple. With certainty: Get $16

If & purple ball s drewn: Get $5
With certainty: Get $17

With certainty: Get $18

With certainty: Get $19

0000 O0CO

With certainty: Get $20

Click "Next" to read about decision screen 2.

Decision screen 2 (for the same lottery)

For any given lottery, you may actually be uncertain about how much money it is really worth to you. For some lotteries, you
may know exactly how much they are worth to you. For other lotteries, you may feel uncertain about whether a lottery is worth,
say, $12, $13, $14, $15, or $16 to you.

On the second decision screen for a given lottery, we will hence ask you to use a slider to indicate how certain you are that
your decisions on the first decision screen correspond exactly to how much the lottery is worth to you.

¢ The slider is linked to the statement below the slider. As you move around the slider, the values in this statement change.
Your task is to position the slider in such a way that the statement corresponds to how you feel about the lottery.

s The further you move the slider to the right, the more certain you are about how much exactly the lottery is worth to
you.

» For every step that you move the slider further to the left (the less certain you are), the range of dollar values that you
consider possible increases by $0.50.
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Example

Suppose that on the first decision screen you indicated that the lottery below is worth between $13 and $14 to you (because

you switched from Option A to B between $13 and $14). Your screen would then look like this:

Example lottery:

70 out of 100 balls are red.
If a red ball is drawn: Get $20

3 out of 100 balls are blue.
If a blue ball is drawn: Get §5

3 out of 100 balls are green.
If a green ball is drawn: Get $5

3 out of 100 balls are orange.
Ifa orange ball is drawn: Get $ 5

3 out of 100 balls are brown.
If a brown ball is drawn: Get $5

3 out of 100 balls are
Ifa ball is drawn: Get $5

3 out of 100 balls are black.
If a black ball is drawn: Get $5

3 out of 100 balls are ;
If a ball is drawn: Get $5

3 out of 100 balls are gray.
If a gray ballisdrawn: Get $5

6 out of 100 balls are purple.
If a purple ball is drawn: Get $5

How certain are you that to you this lottery is worth exactiy the same as getting between $13 and $14 for sure?

[
very uncertain

| am certain that the lottery is worth Use the slider! to me.

Your payment for part 1

If this part is randomly selected for payment in the end, your additional bonus will be determined as follows:

completely certain

The computer will randomly select one choice list for payout, with equal probability. We then randomly select one of your
decisions from this choice list (with equal probability), and this decision will be implemented for real payment.

Thus, you should take each decision independently of all other decisions as if it's the one that counts, because it may be.
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Comprehension questions

The guestions below test your understanding of the instructions.

Important: If you fail to answer any one of these questions correctly, you will not be allowed to participate in the rest of the
study, and you will not be able to earn a bonus.

1. Which one of the following statements is correct if the following lottery is played for you?

60 out of 100 balls are red.
If a red ball is drawn: Get %15

4 out of 100 balls are blue.
If a blue ball is drawn: Get $5

4 out of 100 balls are green.
If a green ball is drawn: Get $5

4 out of 100 balls are orange.
If a orange ballis drawn: Get $5

4 out of 100 balls are brown.
If a brown ball is drawn: Get $5

4 out of 100 balls are
Ifa ballis drawn: Get $5

4 out of 100 balls are black.
If a black ball is drawn: Get $5

4 out of 100 balls are
If a ball is drawn: Get $5

4 out of 100 balls are gray.
If a gray ball is drawn: Get $5

8 out of 100 balls are purple.
If a purple ball is drawn: Get $5
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Please select one of the statements:

It is possible that | get paid both $15 and $5, i.e., | may receive a total amount of $20 from this lottery.

Only one of the colors will be drawn, hence | receive EITHER $15 OR $5 from this lottery.

It is possible that | receive no money from this lottery.

2. Suppose a person made the decisions shown in the picture below. Which of the following statements is correct regarding

these decisions?

Option A
60 out of 100 balls are red
If a red ballis drawr: Get $ 16

4 out of 100 balls are biue.
If a blue ball isdrawn. Get $5

4 out af 100 balls are green.
If 2 green ballis drawn: Get $5

4 out of 100 balls are orange.
Ifa orange ball is drawn: Get $5

4 out of 100 balls are brown.
If & brown ball Is drawn: Get $5

4 cut of 00 balls ars
fa ball isdrawn: Get 85

4 out of 100 balls are black,
If a black ball iz drawn: Get £5

4 out of 100 balls are
ITa ball is drawn: Get §5

4 out of 100 balls are gray.
If a gray ball is drawmn: Get $6

8 out af 100 balis are purple.
If @ purple ball is drawn: Get $5

Please select one of the statements:

This person indicated that the lottery is worth more to them than $9.
This person indicated that the lottery is worth between $3 and $7 to them.

~ This person indicated that the lottery is worth between $8 and $9 to them.

0 © 00 000 0 0O

© 00 0 000

Option B

With certainty:
With certainty:
With cartainty:
With certainty:
With certainty:
With certainty:
With certainty:
With certainty:
With cartainty:

With certainty:

With certainty:
With certainty:
With certainty:
With certainty:
With certainty:

With certainty:

Get $0
Get $1
Get §2
Get $3
Cet $4
Get §5
Get $6
Get $7
Get $8
Get $9
Get $10
Get 1
Get $12
Cet $13
Get $14

Get $15

3. Now imagine that the person who made the decisions above is uncertain about how much exactly the lottery is worth to

them.

This person is certain, however, that the lottery is worth between $6 and $11 to them. Please position the slider to
accurately reflect this level of certainty:

|
very uncertain

This person is certain that the lottery is worth Use the slider! to them.
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J.3 Treatment Baseline Beliefs

Welcome

Thank you for participating in this study.
This study will take approximately 25 minutes to complete.

You will earn a fixed reward of $0.50. In addition, you can earn a bonus if you complete the study. To complete the study, you will
need to read all instructions carefully and answer the corresponding comprehension questions correctly, You receive a minimum
bonus of $1.20 when you complete the study.

You can earn an additional bonus. At the end of the study, one of the tasks will be randomly selected and your decision in this
task determines your additional bonus. The chance that you get paid an additional bonus for the first part is 1in 3.

Important information

= You should think about each task independently of all other tasks in this study. There is no point in strategizing across
tasks.

* You will note that we sometimes ask you to work on similar-sounding tasks. Theses tasks might have similar answers, or
very different ones, Please consider each individual task carefully.

* Whenever a task involves a random draw, then this random draw will actually be implemented for you by the computer in

exactly the way it is described to you in the task.
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Part 1: The guessing tasks

Please read these instructions carefully. We will test your understanding of them later.

In this study, you will be asked to complete 6 guessing tasks.

In each guessing task, there are two bags, "bag A" and "bag B". Each bag contains 100 balls, some of which are red and some
of which are blue. One of the bags is selected at random by the computer as described below. You will not observe which bag
was selected. Instead, the computer will then randomly draw one or several balls from the secretly selected bag, and will
show these balls to you. Your task is to guess which bag was selected based on the available information. The exact
procedure is described below:

Task setup 100 ecards

+ There Is a deck of cards that consists of 100 cards. Each card in the
deck either has "bag A" or "bag B" written on it. You will be informed

about how many of these 100 cards have "bag A" or "bag B" written - or
on them. 1 5 / \

» There are two bags, "bag A" and "bag B". You will be informed about
how many red and blue balls each bag contains.

Sequence of events

1. The computer randomly selects one of the 100 cards, with equal
probability.

If a "bag A" card was drawn, bag A is selected.
If a "bag B" card was drawn, bag B is selected.

2. Next, the computer randomly draws one or more balls from the
secretly selected bag. Each ball is equally likely to get selected.
Importantly, if more than one ball is drawn, the computer draws these 2'
balls with replacement. This means that after a ball has been drawn
and taken out of the bag, it gets replaced by a ball of the same color.
Thus, the probability of a red or blue ball being drawn does not
depend on whether previous draws were red or blue.

The computer will inform you about the color of the randomly drawn
balls.

You then make your guess by stating a probability between 0% and 100% that bag A was drawn. The corresponding
probability that bag B was drawn is 100 minus your stated probability that bag A was drawn.

Please note:

# The number of "bag A" and "bag B" cards varies across the guessing tasks.

= The number of red and blue balls in each bag varies across the guessing tasks,

= The computer draws a new card in each task, so you should think about which bag was selected in a task
independently of all other tasks.

Your payment for part 1

There is a prize of $10.00. Whether or not you receive the $10.00 depends on how much probability you assigned to the bag that
was actually drawn in that problem.

This means: if bag A was selected, your chances of receiving $10.00 are greater the higher the probability you assigned to bag A.
If bag A was not selected, your chances of receiving $10.00 are greater the lower the probability you assigned to bag A. In case
you're interested, the specific method that determines whether you get the prize is explained below:

A number g between 0 and 2500 is randomly drawn by the computer.

If bag A was selected in that problem, you receive $10.00 if the square of the probability (in percent) that you assigned to bag B is
lower than q.

If bag A was not selected in that problem, you receive $10.00 if the square of the probability (in percent) that you assigned to bag
A is lower than g.

All this means that, in order to earn as much money as possible, you should try to give your best estimate of the probability that
each bag was drawn. For example, if you are 8B0% sure that bag A was selected and 20% sure that bag B was selected, you
should allocate probability 80% to bag A and 20% to bag B.
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Your certainty about your guess

The optimal guess

Using the laws of probability, the computer computes a statistically correct statement of the probability that bag A was
drawn, based on all the information available to you. This optimal guess does not rely on information that you do not have. It is
just the best possible (this means: payoff-maximizing) estimate given the available information. In technical terms, this guess is
based on a statistical rule called Bayes' Law.

Your certainty about your guess

In any given task, you may actually be uncertain about whether your probability guess corresponds to the optimal guess. On
a separate decision screen, we will hence ask you to use a slider to indicate how certain you are that your guess equals the
optimal guess.

* The slider is linked to the statement below the slider. As you move around the slider, the values in this statement change.
Your task is to position the slider in such a way that the statement corresponds to how close you think your guess is to the
optimal guess.

+ The further you move the slider to the right, the more certain you are that your guess is close to the optimal guess.

« For every step that you move the slider further to the left (the less certain you are), the range of probability values that you
consider possible increases by 2.

Example

Suppose that you stated a guess of 80%. Your screen would then look like this:

How certain are you that the optimal guess is exactly 80%?

Use the slider to complete the statement below.

)
I |

very uncertain completely certain

I am certain that the optimal guess of the probability that bag A was drawn is Use the slider!.

Replacing your guess by the optimal guess

In each task, if you are uncertain about what you should guess, you may increase your chances of winning the prize of
$10.00 by paying money to replace your guess with the optimal guess.

For this purpose, in each task, you receive a budget of $3.00. You then have to state the highest amount (between $0.00 and
$3.00) that you are willing to pay to replace your guess with the optimal guess. In the end, a price p between $0.00 and
$3.00 will be randomly determined by the computer. You will purchase the optimal guess at price p if p is below your stated
amount, and you will not purchase the optimal guess and keep your endowment otherwise. If you buy the optimal guess, your own
guess is replaced with the optimal guess with 10% probability. You only have to pay for the optimal guess if your guess actually

gets replaced.
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Sequence of events in each task

You will be asked to complete 6 guessing tasks. For each task, there will be 3 decision screens:

Decision screen 1

You will be asked to state the highest amount that you are willing to pay to replace your own guess (that you will make on
decision screen 2) with the optimal guess in this task.

Decision screen 2

You have to guess which bag was selected by entering a probability (between 0 and 100) that expresses how likely you think it is
that bag A as opposed to bag B have been selected.

Decision screen 3

You will be asked te indicate how certain you are that the guess you provided on decision screen 1 equals the optimal guess in

this task.

Comprehension questions

The following questions test your understanding of the instructions.

Important: If you fail to answer any one of these questions correctly, you will not be allowed to participate in the rest of the study,
and you will not be able to earn a bonus.

Which statement about the number of cards corresponding to each bag is correct?
The number of "bag A" cards is the same in all tasks.

The exact number of cards corresponding to each bag may vary across tasks.

Which statement about the allocation of red and blue balls in the bags is correct?
The exact fractions of red and blue balls in each bag may vary across tasks.

The fraction of red balls in each bag is the same in all tasks, and bag A always contains the most red balls.

Which statement about your bonus payment is correct?
Purchasing the optimal guess always means that | would make a loss.

By purchasing the optimal guess | can potentially increase my earnings in the guessing tasks if my own guess is not
sufficiently good.

In order to maximize your overall profit, how should you determine how much you are willing to pay for the optimal guess?
I should be willing to pay a high amount if | think that my own guess will probably not be optimal.
I should be willing to pay a high amount if | think that my own guess will probably be optimal.

I should never pay money for the optimal guess because it costs money but has no benefits.
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J.4 Treatment Low Default Beliefs

Welcome

Thank you for participating in this study.
This study will take approximately 25 minutes to complete.

You will earn a fixed reward of $0.50. In addition, you can earn a bonus if you complete the study. To complete the study, you will
need to read all instructions carefully and answer the corresponding comprehension questions correctly. You receive a minimum
bonus of $1.20 when you complete the study.

You can earn an additional bonus. At the end of the study, one of the tasks will be randomly selected and your decision in this
task determines your additional bonus. The chance that you get paid an additional bonus for the first partis 1in 3.

Important information

* You should think about each task independently of all other tasks in this study. There is no point in strategizing across
tasks.

+ You will note that we sometimes ask you to work on similar-sounding tasks. Theses tasks might have similar answers, or
very different ones. Please consider each individual task carefully.

* Whenever a task involves a random draw, then this random draw will actually be implemented for you by the computer in
exactly the way it is described to you in the task.

Part 1: The guessing tasks

Please read these instructions carefully. We will test your understanding of them later.

In this study, you will be asked to complete 6 guessing tasks.

In each guessing task, there are ten bags, "bag A", "bag B", "bag C", "bag D", "bag E", "bag F", "bag G", "bag H", "bag |" and "bag
J" Each bag contains 100 balls, some of which are red and some of which are blue. One of the bags is selected at random by the
computer as described below. You will not observe which bag was selected. Instead, the computer will then randomly draw one or
several balls from the secretly selected bag, and will show these balls to you. Your task is to guess which bag was selected
based on the available information. The exact procedure is described below:

Task setup

* There is a deck of cards that consists of 100 cards. Each card in the deck either has "bag A", "bag B", "bag C", "bag D", "bag
E", "bag F", "bag G", "bag H", "bag I" or "bag J" written on it.

= You will be informed about how many of these 100 cards have "bag A", "bag B", ..., or "bag J" written on them,

= There are ten bags, "bag A" through "bag J". You will be informed about how many red and blue balls each bag contains.

Sequence of events

1. The computer randomly selects one of the 100 cards, with equal probability.

If a "bag A" card was drawn, bag A is selected.
If a "bag B" card was drawn, bag B is selected.
e BTC,

2. Next, the computer randomly draws one or more balls from the secretly selected bag. Each ball is equally likely to get
selected. Importantly, if more than one ball is drawn, the computer draws these balls with replacement. This means that
after a ball has been drawn and taken out of the bag, it gets replaced by a ball of the same color. Thus, the probability of a
red or blue ball being drawn does not depend on whether previous draws were red or blue.

The computer will inform you about the color of the randomly drawn balls.
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100 cards
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You then make your guess by stating a probability between 0% and 100% that bag A was drawn. The corresponding probability
that one of bag B, C, D, E, F, G, H, | or J was drawn is 100 minus your stated probability that bag A was drawn.

Please note:
= The number of "bag A", "bag B", ..., and "bag J" cards varies across the guessing tasks.
= The number of red and blue balls in each bag varies across the guessing tasks.
* The computer draws a new card in each task, so you should think about which bag was selected in a task
independently of all other tasks.

Next

Your payment for part 1

There is a prize of $10.00. Whether or not you receive the $10.00 depends on how much probability you assigned to the bag that
was actually drawn in that problem.

This means: if bag A was selected, your chances of receiving $10.00 are greater the higher the probability you assigned to bag A.
If bag A was not selected, your chances of receiving $10.00 are greater the lower the probability you assigned to bag A. In case
you're interested, the specific method that determines whether you get the prize is explained below:

A number q between 0 and 2500 is randomly drawn by the computer.

If bag A was selected in that problem, you receive $10.00 if the square of the probability (in percent) that you assigned to all other
bags is Jower than q.

If bag A was not selected in that problem, you receive $10.00 if the square of the probability (in percent) that you assigned to bag
A is lower than q.

All this means that, in order to earn as much money as possible, you should try to give your best estimate of the probability that
each bag was drawn. For example, if you are 80% sure that bag A was selected and 20% sure that any bag other than bag A was
selected, you should allocate probability 80% to bag A and 20% to bag B.
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Your certainty about your guess

The optimal guess

Using the laws of probability, the computer computes a statistically correct statement of the probability that bag A was
drawn, based on all the information available to you. This optimal guess does not rely on information that you do not have. It is
just the best possible (this means: payoff-maximizing) estimate given the available information. In technical terms, this guess is
based on a statistical rule called Bayes' Law.

Your certainty about your guess

In any given task, you may actually be uncertain about whether your probability guess corresponds to the optimal guess. On
a separate decision screen, we will hence ask you to use a slider to indicate how certain you are that your guess equals the
optimal guess.

* The slider is linked to the statement below the slider. As you move around the slider, the values in this statement change.
Your task is to position the slider in such a way that the statement corresponds to how close you think your guess is to the
optimal guess.

+ The further you move the slider to the right, the more certain you are that your guess is close to the optimal guess.

» For every step that you move the slider further to the left (the less certain you are), the range of probability values that you
consider possible increases by 2.

Example

Suppose that you stated a guess of 80%. Your screen would then look like this:

How certain are you that the optimal guess is exactly 80%?

Use the slider to complete the statement below.

| |
very uncertain completely certain

| am certain that the optimal guess of the probability that bag A was drawn is Use the slider!.

Replacing your guess by the optimal guess

In each task, if you are uncertain about what you should guess, you may increase your chances of winning the prize of
$10.00 by paying money to replace your guess with the optimal guess.

For this purpose, in each task, you receive a budget of $3.00. You then have to state the highest amount (between $0.00 and
$3.00) that you are willing to pay to replace your guess with the optimal guess. In the end, a price p between $0.00 and
$3.00 will be randomly determined by the computer. You will purchase the optimal guess at price p if p is below your stated
amount, and you will not purchase the optimal guess and keep your endowment otherwise. If you buy the optimal guess, your own
guess is replaced with the optimal guess with 10% probability. You only have to pay for the optimal guess if your guess actually
gets replaced.

Next
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Sequence of events in each task

You will be asked to complete 6 guessing tasks. For each task, there will be 3 decision screens:

Decision screen 1

You will be asked to state the highest amount that you are willing to pay to replace your own guess (that you will make on
decision screen 2) with the optimal guess in this task.

Decision screen 2

You have to guess which bag was selected by entering a probability (between 0 and 100} that expresses how likely you think it is
that bag A as opposed to any bag other than bag A have been selected.

Decision screen 3

You will be asked to indicate how certain you are that the guess you provided on decision screen 1 equals the optimal guess in
this task.

Next

Comprehension questions

The following guestions test your understanding of the instructions.

Important: If you fail to answer any one of these questions correctly, you will not be allowed to participate in the rest of the study,
and you will not be able to earn a bonus.

Which statement about the number of cards corresponding to each bag is correct?
The number of "bag A" cards is the same in all tasks.

The exact number of cards corresponding to each bag may vary across tasks.

Which statement about the allocation of red and blue balls in the bags is correct?
The exact fractions of red and blue balls in each bag may vary across tasks.

The fraction of red balls in each bag is the same in all tasks, and bag A always contains the most red balls.

Which statement about your bonus payment is correct?
Purchasing the optimal guess always means that | would make a loss.

By purchasing the optimal guess | can potentially increase my earnings in the guessing tasks if my own guess is not
sufficiently good.

In order to maximize your overall profit, how should you determine how much you are willing to pay for the optimal guess?
I should be willing to pay a high amount if | think that my own guess will probably not be optimal.
I should be willing to pay a high amount if | think that my own guess will probably be optimal.

I should never pay money for the optimal guess because it costs money but has no benefits.
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J.5 Survey Expectations

Part 2 of this study

You have completed part 1. We will now continue with part 2 of this study.

Next
Your payment for part 2

In this part, there will be 3 tasks. At the end, one of the tasks will be randomly selected to count for your potential bonus. The
chance that you get paid an additional bonus for this part is 1in 3.

In each task, you will be asked to state a guess in the form a probability estimate (between 0 and 100).

There is a prize of $2.00. In each guessing task, there are two possible events, call them A and B. One of the two events actually
occurred, the other did not. Whether or not you receive the $2.00 depends on how much probability you assigned to the event
that actually occurred.

If event A occurred, your chances of receiving $2.00 are greater the higher the probability you assigned to event A. If event B
occurred, your chances of receiving $2.00 are greater the higher the probability you assigned to event B.

In case you're interested, the specific method that determines whether you get the prize is explained below:
A number g between 0 and 2,500 is randomly drawn by the computer.

* |f event A occurred in that problem, you receive $2.00 if the square of the probability (in percent) that you assigned to event
B is lower than g.

= |f event B occurred in that problem, you receive $2.00 if the square of the probability (in percent) that you assigned to event
Ais lower than q.

All this means that, in order to earn as much money as possible, you should try to provide your best probability estimate
in each task.

The study begins on the next page

We will now start with part 2 of study.

Next
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