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ABSTRACT

Physicians, judges, teachers, and agents in many other settings differ systematically in the
decisions they make when faced with similar cases. Standard approaches to interpreting and
exploiting such differences assume they arise solely from variation in preferences. We develop an
alternative framework that allows variation in both preferences and diagnostic skill, and show
that both dimensions are identified in standard settings under quasi-random assignment. We apply
this framework to study pneumonia diagnoses by radiologists. Diagnosis rates vary widely among
radiologists, and descriptive evidence suggests that a large component of this variation is due to
differences in diagnostic skill. Our estimated model suggests that radiologists view failing to
diagnose a patient with pneumonia as more costly than incorrectly diagnosing one without, and
that this leads less-skilled radiologists to optimally choose lower diagnosis thresholds. Variation
in skill can explain 44 percent of the variation in diagnostic decisions, and policies that improve
skill perform better than uniform decision guidelines. Failing to account for skill variation can
lead to highly misleading results in research designs that use agent assignments as instruments.
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1 Introduction

In a wide range of settings, agents facing similar problems make systematically different choices.
Physicians differ in their propensity to choose aggressive treatments or order expensive tests, even
when facing observably similar patients (Chandra et al. 2011; Van Parys and Skinner 2016; Molitor
2017). Judges differ in their propensity to hand down strict or lenient sentences, even when facing
observably similar defendants (Kleinberg et al. 2018). Similar patterns hold for teachers, managers,
and police officers (Bertrand and Schoar 2003; Figlio and Lucas 2004; Anwar and Fang 2006). Large
literatures examine the sources and implications of such variation (Bloom and Van Reenen 2010;
Syverson 2011), and also use it as a source of quasi-random variation for studying the effects of
decisions on outcomes (e.g., Kling 2006; Aizer and Doyle 2015; Bhuller et al. 2016; Tsugawa et al.
2017; Dobbie et al. 2018).

In all such settings, we can think of the decision process in two steps. First, there is an evaluation
step in which decision-makers assess the likely effects of the possible decisions given the case before
them. Physicians seek to diagnose a patient’s underlying condition and assess the potential effects
of treatment, judges seek to determine the facts of a crime and the likelihood of recidivism, and so
on. We refer to the accuracy of these assessments as an agent’s diagnostic skill. Second, there is a
selection step in which the decision-maker decides what preference weights to apply to the various
costs and benefits in determining the decision. We refer to these weights as an agent’s preferences. In
a stylized case of a binary decision d € {0,1}, we can think of the first step as ranking cases in terms
of their appropriateness for d = 1 and the second step as choosing a cutoff in this ranking.

While systematic variation in decisions could in principle come from either skill or preferences, a
large part of the prior literature we cite below assumes that agents differ only in the latter. This matters
for the welfare evaluation of practice variation, as variation in preferences would suggest inefficiency
relative to a social planner’s preferred decision rule whereas variation in skill need not. It matters for
the types of policies that are most likely to improve welfare, as uniform decision guidelines may be
effective in the face of varying preferences but counterproductive in the face of varying skill. And
it matters for research designs that use agents’ decision rates as a source of identifying variation, as
variation in skill will typically lead the key monotonicity assumption in such designs to be violated.

In this paper, we introduce a framework to separate heterogeneity in skill and preferences when
cases are quasi-randomly assigned, and apply it to study heterogeneity in pneumonia diagnoses made

by radiologists. Our framework starts with a classification problem in which both decisions and



underlying states are binary. As in the standard one-sided selection model, the outcome only reveals
the true state conditional on one of the two decisions. In our setting, the decision is whether to
diagnose a patient and treat her with antibiotics, the state is whether the patient has pneumonia,
and the state is only observed if the patient is not treated, since once a patient is given antibiotics it is
usually impossible to tell whether she actually had pneumonia or not. We refer to the share of patients
diagnosed as a radiologist’s diagnosis rate and the share of patients who leave with undiagnosed
pneumonia as her type II error rate.

We draw close connections between two different representations of agent decisions in this set-
ting: (i) the reduced-form relationship between diagnosis rates and type-II error rates, which we
observe directly in our data; and (ii) the relationship between true and false positive rates, commonly
known as the receiver operating characteristic (ROC) curve. Insights from these representations clar-
ify how the distribution of agent skill and preferences is identified under quasi-random assignment.
They also suggest testable restrictions imposed by the monotonicity conditions assumed in research
designs using agent assignments as instrumental variables. We note that the ROC curve has a natural
economic interpretation as a production possibilities frontier for “true positive” and “true negative”
diagnoses.

Pneumonia affects 450 million people and causes 4 million deaths every year worldwide (Ru-
uskanen et al. 2011). While it is more common and deadly in the developing world, it remains the
eighth leading cause of death in the US, despite the availability of antibiotic treatment (Kung et al.
2008; File and Marrie 2010). The primary method of diagnosing pneumonia is by chest X-ray, but
there is nevertheless considerable variability in the diagnosis of pneumonia based on the same chest
X-rays, both across and within radiologists (Abujudeh et al. 2010; Self et al. 2013).

More broadly, getting the right diagnosis is a central function of health care (Institute of Medicine
2015): It provides an explanation of a patient’s health problem and informs subsequent health care
decisions. While errors in diagnosis have, until recently, been a blind spot in health care delivery,
the potential impact of preventing or delaying appropriate treatment, or of prompting unnecessary or
harmful treatment, seems large. Diagnostic errors account for 7 to 17 percent of adverse events in
hospitals (Leape et al. 1991; Thomas et al. 2000). Postmortem examination research suggests that
diagnostic errors contribute to 9 percent of patient deaths (Shojania et al. 2003).

Using Veterans Health Administration (VHA) data on 5.5 million chest X-rays in the emergency
department, we examine variation in diagnostic decisions and outcomes related to pneumonia across

radiologists who are assigned imaging cases in a quasi-random fashion. We measure type II error



rates by the share of patients not diagnosed in the ED who have a subsequent pneumonia diagnosis
in the next 10 days. We begin by demonstrating significant variation in both diagnosis rates and type
II error rates across radiologists. Reassigning patients from a radiologist in the 10th percentile of
diagnosis rates to a radiologist in the 90th percentile would increase the probability of a diagnosis
from 6.3 percent to 11.2 percent. Reassigning patients from a radiologist in the 10th percentile of
type II error rates to a radiologist in the 90th percentile would increase the probability of a type II
error from 0 percent to 2.2 percent.

We then turn to the relationship between diagnosis rates and type II error rates. At odds with
the prediction of a standard model with no skill variation, we find that radiologists who diagnose at
higher rates actually have higher rather than lower type II error rates. Note that this means that the
unconditional probability of a missed diagnosis is increasing in the diagnosis rate—i.e., a patient who
arrives at the hospital and is assigned to a high-diagnosis radiologist is more likely to go home with
untreated pneumonia than one assigned to a low-diagnosis radiologist. This fact alone rejects the
hypothesis that all radiologists operate on the same production possibilities frontier, and it suggests a
large role for variation in skill. In addition, we find that there is substantial variation in the probability
of false negatives conditional on diagnosis rate. For the same diagnosis rate, a radiologist in the 90th
percentile of type II error rates has 2.2 percentage points higher type II error rate than a radiologist in
the 10th percentile.

This evidence suggests that interpreting our data through a standard model that ignores skill could
be highly misleading. At a minimum, it means that policies that focus on harmonizing diagnosis rates
could miss important gains in improving skill. Moreover, such policies could be counter-productive if
skill variation makes varying diagnosis rates optimal. If missing a diagnosis (a false negative) is more
costly than falsely diagnosing a healthy patient (a false positive), a radiologist with noisier diagnostic
information (less skill) may optimally diagnose more patients, and requiring her to do otherwise could
reduce efficiency. Finally, a standard research design that uses the assignment of radiologists as an
instrument for pneumonia diagnosis would fail badly in this setting. We show that our reduced-form
facts strongly reject the monotonicity conditions necessary for such a design. Applying the standard
approach would yield the nonsensical conclusion that diagnosing a patient with pneumonia (and thus
giving her antibiotics) makes her more likely to return to the emergency room with pneumonia in the
near future, and also increases her likelihood of adverse health events including mortality.

In the final part of the paper, we estimate a structural model of diagnostic decisions to permit

a more precise characterization of these facts. Following our conceptual framework, radiologists



first evaluate chest X-rays to form a signal of the underlying disease state and then select cases with
signals above a certain threshold to diagnose with pneumonia. Undiagnosed patients who in fact
have pneumonia will eventually develop clear symptoms, thus revealing false negative diagnoses.
But among cases receiving a diagnosis, those who truly have pneumonia cannot be distinguished
from those who do not. Radiologists may vary in their diagnostic accuracy, and each radiologist
endogenously chooses a threshold selection rule in order to maximize utility. Radiologist utility
depends on false negative and false positive diagnoses, and the relative utility weighting of these
outcomes may vary across radiologists.

We find that the average radiologist receives a signal that has a correlation of 0.84 with the pa-
tient’s underlying latent state, but that the diagnostic accuracy varies widely, from a correlation of
0.72 in the 10th percentile of radiologists to 0.93 in the 90th percentile. The disutility of missing
diagnoses is on average 8.07 times as high as that of an unnecessary diagnosis; this ratio varies from
6.79 to 9.43 between the 10th and 90th radiologist percentiles. Overall, 44 percent of the variation in
decisions and 83 percent of the variation in outcomes can be explained by variation in skill. We then
consider the welfare implications of counterfactual policies. While eliminating variation in diagnosis
rates always improves welfare under the (incorrect) assumption of uniform diagnostic skill, we show
that this policy may actually reduce welfare. In contrast, increasing diagnostic accuracy can yield
much larger welfare gains.

Finally, we document how diagnostic skill and type II error rates vary across groups of radiol-
ogists. In all groups, we find the same increasing relationship between diagnosis rates and type 11
error rates. In some groups, such as older radiologists or radiologists with higher chest X-ray volume,
diagnostic accuracy is generally higher. More accurate radiologists tend to issue shorter reports of
their findings but spend more time generating those reports, suggesting that effort (rather than raw
talent alone) may contribute to radiologist skill. Aversion to false negatives tends to be negatively
related to radiologist skill.

Our strategy for identifying causal effects relies on quasi-random assignment of cases to radi-
ologists. This assumption is particularly plausible in our emergency department setting because of
idiosyncratic variation in the arrival of patients and the availability of radiologists conditional on time
and location controls. In support of this assumption, we show that patients assigned to high- and
low-diagnosing radiologists are nearly identical across a range of observable characteristics. While
some of these small differences are statistically significant in our large sample, our key results are

invariant to the set of observables we include as controls. We also identify a subset of 44 out of 104



VHA health care stations (comprising 1.5 million chest X-rays) for which there is no statistically
significant evidence of imbalance, and show that our key results hold in this restricted sample.

Our findings relate most directly to a large and influential literature on practice variation in health
care (Fisher et al. 2003a,b; Institute of Medicine 2013). This literature has robustly documented
variation in spending and treatment decisions that has little correlation with patient outcomes. The
seeming implication of this finding is that spending in health care provides little benefit to patients
(Garber and Skinner 2008), a provocative hypothesis that has spurred an active body of research
seeking to use natural experiments to identify the causal effect of spending (e.g., Doyle et al. 2015).
In this paper, we build on Chandra and Staiger (2007) in investigating the possibility of heterogeneous
productivity (e.g., physician skill) as an alternative explanation. By exploiting the joint distribution of
decisions and outcomes, we find significant variation in productivity, which rationalizes a large share
of the variation in diagnostic decisions. The same mechanism may explain the weak relationship
between decision rates and outcomes observed in other settings.!

Perhaps most closely related to our paper are evaluations by Abaluck et al. (2016) and Currie and
MacLeod (2017), both of which examine diagnostic decision-making in health care. Abaluck et al.
(2016) assume that physicians have the same diagnostic skill (i.e., the same ranking of cases) but
may differ in where they set their thresholds for diagnosis. Currie and MacLeod (2017) assume that
physicians have the same preferences but may differ in skill. Also related to our paper is a recent
study of hospitals by Chandra and Staiger (2017), who allow for comparative advantage and different
thresholds for treatment but also assume a common ranking of cases. Relative to these papers, a key
difference of our study is that we use quasi-random assignment of cases to providers.

Our paper also contributes to the “judges-design” literature, which estimates treatment effects by
exploiting quasi-random assignment to agents with different treatment propensities (e.g., Kling 2006).
We show how variation in skill relates to the standard monotonicity assumption in the literature, which
requires that all agents order cases in the same way but may draw different thresholds for treatment
(Imbens and Angrist 1994; Vytlacil 2002). Monotonicity can thus only hold if all agents have the
same skill. Our empirical insight that we can test and quantify violations of monotonicity (or variation
in skill) relates to conceptual work that exploits bounds on potential outcome distributions (Kitagawa

2015) and more recent work to test instrument validity in the judges design (Frandsen et al. 2019) and

IFor example, Kleinberg et al. (2018) finds that the increase in crime associated with judges that are more likely to
release defendants on bail is about the same as if these more lenient judges randomly picked the extra defendants to release
on bail. Arnold et al. (2018) finds a similar relationship for black defendants being released on bail. Judges that are most
likely to release defendants on bail in fact have slightly lower crime rates than judges that are less likely to grant bail.



to detect inconsistency in judicial decisions (Norris 2019).2

The remainder of this paper proceeds as follows. Sections 2 sets up a high-level empirical frame-
work for our analysis. Section 3 describes the setting and data. Section 4 presents our reduced-form
analysis, with the key finding that radiologists who diagnose more cases also miss more cases of
pneumonia. Section 5 presents our structural analysis, separating radiologist diagnostic skill from

preferences. Section 6 considers policy counterfactuals. Section 7 concludes.

2 Empirical Framework

2.1 Setup

We consider a selection problem in which an agent j makes a binary decision d;; € {0,1} for a case i
(e.g., treat or not treat, convict or acquit). The goal is to align the decision with a binary state s; € {0,1}
(e.g., sick or healthy, guilty or innocent). The agent observes a signal w;; that is informative about
the underlying state s; of the case. She then chooses d;; based on this signal.

We define an agent’s diagnostic skill to be the informativeness of w;; in the Blackwell (1953)
sense, and we say that two radiologists have equal skill if their signal distributions are equal in infor-
mativeness.® A population of agents has uniform skill if all of the agents have equal skill; otherwise,
we say that they vary in skill. We define an agent’s preferences to be the factors that determine her
choice of d;; conditional on w;;. Assuming complete and transitive preferences over signals, we can
without loss of generality assign scalar values to w;; such that d;; = 1 (w;; > ;).

It will be helpful to represent this problem in the well-known framework of statistical classifi-
cation. Panel A in Figure 1 illustrates a standard “classification matrix” representing the probabil-
ities of four joint outcomes depending on decisions and states. For a given agent j with possibly
imperfect information and a decision rule, we can define the probabilities of four outcomes: true
negatives, or TN; = Pr (d;; = 0,s; = 0); false negatives or FN; = Pr(d;; = 0,s; = 1); true positives, or
TP;=Pr(d;; = 1,5; = 1); and false positives, or FP; = Pr(d;; = 1,s; = 0). The agent’s diagnosis rate
is P =TP; + FPj, and her type-II error rate is simply F'N;.

ZKitagawa (2015) develops a test of instrument validity based on an older insight in the literature noting that instrument
validity implies non-negative densities of compliers for any potential outcome (Imbens and Rubin 1997; Balke and Pearl
1997; Heckman and Vytlacil 2005). Recent work by Machado et al. (2019) also exploits bounds in a binary outcome to test
instrument validity and to sign average treatment effects.

3Note that the Blackwell ordering is incomplete, and agents who vary in skill may not be ordered by skill. Agent j’s
signal may be neither more nor less informative than the signal of agent j’, for example, if j has more accurate information
about some types of patients while j” has more accurate information about other types of patients.



2.2 ROC Curves and Agent Skill

A standard way to summarize the accuracy of classification is in terms of the receiver operating

. . . _ 3 N TP
characteristic (ROC) curve. This plots the true positive rate, or TPR; =Pr (d;; = 1|s; = 1) = W;”Vj’
against the false positive rate, or FPR; =Pr(d;; = 1|s; =0) = %. Panel B in Figure 1 shows

several possible ROC curves.

Each agent j can be associated with a single ROC curve, which gives the set of classification
outcomes she can achieve taking as given her population of cases and the distribution of her signal
w;;. If she diagnoses no case, she will have TPR; = 0 and FPR; = 0. If she diagnoses all cases, she
will have TPR; = 1 and FPR; = 1. As she increases P;, both TPR; and F'PR; must weakly increase
under the threshold rule d;; = 1 (wij > Tj). The ROC curve thus reveals a technological tradeoff
between the “sensitivity” (or TPR;) and “specificity” (or 1 — FPR;) of classification.

Higher ROC curves correspond to greater skill. By the definition of Blackwell (1953) informa-
tiveness, if j has higher skill than j’, any outcome that is feasible for j’ is also feasible for j. This
means that j’s ROC curve lies everywhere above that of j’, and that j” can achieve higher utility with
access to j’s technology regardless of her preferences. Finally, if agents have equal skill, their ROC

curves must be identical.

Remark 1. The ROC curve of agent j lies everywhere above the ROC curve of agent j’ if and only if

Jj has higher skill than j’. If j and j’ have equal skill, their ROC curves are identical.

This framework for selection is closely linked with the standard economic framework of produc-
tion. An ROC curve can be viewed as a production possibilities frontier of TPR; and 1 — FPR;.
Agents on higher ROC curves are more productive (i.e., more skilled) in the evaluation stage. Where
an agent chooses to locate on an ROC curve is determined by her preferences, or the tangency be-
tween the ROC curve and an indifference curve. It is possible that agents differ in preferences but not
skill, so that they would lie along identical ROC curves, and we would observe a positive correlation
between TPR; and FPR;. It is also possible that they differ in skill but not preferences, so that they
would lie at the tangency point on different ROC curves, and we could observe a negative correlation
between TPR; and FPR;. Figure 2 illustrates these two cases with hypothetical data on the joint
distribution of decisions and outcomes. This figure suggests some intuition, which we will formalize
later, for how skill and preferences may be separately identified.

In the empirical analysis below, we will visualize the data in two different spaces. The first

is the ROC space of Figure 2. The second is a plot of false negative rates F'N; against diagnosis



rates P;, which we will refer to as “reduced-form space.” Note that FN; = (1-TPR;)S; and P; =
TPR;S; + FPR; (1-S;), where S; = Pr(s; = 1|j (i) = j). When cases are randomly assigned so that
S; is the same for all agents, this implies a tight correspondence between these two ways of looking

at the data.

Remark 2. Suppose S; is equal to a constant S for all j. Then

1. Conditional on S, there is a one-to-one correspondence between points (TPR;,FPR;) in ROC

space and points (FN;,P;) in reduced-form space.

2. If agents have uniform skill, type II error rates FN; decrease in diagnosis rates P; in reduced-

form space, with a slope bounded between 0 and —1.

We can thus use variation in reduced-form space to make inferences about agent skill. If agents

can be ordered in terms of skill, and if they face the same population of cases, we can infer that

radiologist j has lower skill than j’ if F]Zj:—l;jyjl > 0 or has higher skill than j” if %

N;j—-FN

. .. .. FNj-FN; . .
thermore, we can obtain stronger restrictions on admissible slopes ——5—- between any radiologist
J J

< —1. Fur-

pair (j,j’) who have equal skill. First, if incremental diagnoses match the underlying state at least as

well as random decisions, then ROC curves should lie above the 45-degree line in Panel B of Figure

FN;j-FNjs
1, and _J "

PP, < —S. Second, if agents choose optimally to minimize a weighted average of FN;

and F'P;, then admissable slopes connecting agents with uniform skill in reduced-form space should

not only be negative but also convex, and ROC curves should be concave.*

2.3 Potential Outcomes and the Judges Design

When there is an outcome of interest y;; = y; (dij) that depends on the agent’s decision d;;, we can
map our classification framework to the potential outcomes framework with heterogeneous treatment
effects (Rubin 1974; Imbens and Angrist 1994). In the case where d;; is a judge’s bail decision, y;;
might be an indicator for whether a defendant commits a subsequent crime. In the case where d;;
is a medical treatment decision, y;; might be a measure of subsequent health outcomes or mortality.
The object of interest is some average of the treatment effects y; (1) — y; (0) across individuals. We

observe case i assigned to only one agent j(i), so the identification challenge is that we only observe

di=2%;1(j=j(@))dyand y; = 3;1(j = j (i) yij = yi (d;) corresponding to j = j (i).

“4In economics, the selection literature generally refers to rational expectations and utility maximization as “selection on
gains” or “Roy selection” (Heckman and Honore 1990). Specifically, under utility u;; (d;i j), J chooses d;; = 1 for case i if
and only if E [u;; (1) —u;; (0)] >0 (Cornelissen et al. 2016). In classification decisions, we may state u;; (d;;) as u; (d;j,s;),
such that u; (1,1) > u; (0,1) and u; (0,0) > u; (0,1) for all j. This implies linear indifference curves in ROC space, and agents
will never choose (FPR,TPR) outcomes within the convex hull of feasible (FPR,TPR).



A growing literature starting with Kling (2006) has proposed using heterogeneous decision propen-
sities of agents to identify these average treatment effects in settings where cases i are randomly
assigned to agents j with different propensities of treatment. This empirical structure is popularly
known as the “judges design,” as early applications were to settings where the agents were judges.
The literature typically assumes conditions of instrumental variable (IV) validity from Imbens and

Angrist (1994).5

Condition 1 (IV Validity). Consider the potential outcome y;; and the treatment response indicator
d;j € {0,1} for case i under judge j. Case i is assigned to judge j(i). For a random sample of i and

J, the following conditions hold:

(i) Exclusion: y;; = y;(d;;) with probability 1.
(ii) Independence: (y;(0),y;(1),d;;) is independent of j(i).
(iii) Strict Monotonicity: For any j and j', d;j > d;j» Vi, or d;j < d;j» Vi, with probability 1.

Vytlacil (2002) shows that Condition 1(iii) is equivalent to all agents ordering cases by the same
latent index w; and then choosing d;; =1 (w; > 7;), where 7; is an agent-specific cutoff. Lower cutoffs
must correspond to weakly higher rates of both true and false positives. This condition thus greatly

restricts the pattern of outcomes in the classification framework.

Remark 3. Suppose Condition 1 holds. Then the observed data must be consistent with all agents
having uniform skill. By Remark 2, this implies that type II error rates must be decreasing in diagnosis

rates with a slope bounded between 0 and —1.

An alternative way to see the same intuition is to note that for any outcome y;; the Wald estimand
comparing a population of cases assigned to agents j and j’ is g:—?’; =F [yi (1) =y (0)|d;; > d,:,v] ,
where Y; is the average of y;; among cases treated by j. If we define y; to be an indicator for a
false negative, or y; = fn; = 1(d; =0,s; = 1), we have E [y,»(l)—y,- 0)|d;; > dl-jf] € [-1,0], since
yi (1) = y:(0) € {-1,0}.

By Remark 3, strict monotonicity in Condition 1(iii) of the judges design implies uniform skill.
The converse is not true, however. It is possible for agents to have uniform skill yet violate strict
monotonicity. A simple example would be if the agents’ signals w;; are distributed identically but
contain independent noise. This is a violation because strict monotonicity requires agents to order all

cases the same way with probability one.

SIn addition to the assumption below, we also require instrument relevance, such that Pr (d; j= 1) # Pr(d; = 1) for
some j and j’. This requirement can be assessed by a first stage regression of d; on judge indicators.



One might ask whether a condition weaker than strict monotonicity might be both consistent with
our data and sufficient for the judges design to recover a well-defined local average treatment effect
(LATE). A more realistic condition might allow for idiosyncratic noise in the diagnostic signals that
agents receive, and require only that the probability that j diagnoses a patient is either higher or lower
than the probability j’ diagnoses a patient for all i. A yet weaker condition would allow for systematic
variation in the way agents order cases (and thus the relative probability that different agents diagnose
different patients), provided that differences in ordering (e.g., due to varying skill) are orthogonal to
agents’ diagnostic propensities. In Appendix A.1, we define these conditions formally and show that
they are indeed sufficient for the judges design to recover a well defined LATE.® We also show that

this weaker concept of monotonicity yields a testable implication.

Remark 4. Suppose that skill is not uniform but is independent of agents’ diagnostic propensities.

Then a regression of FN; on P; should yield a coefficient A € [-1,0].

This implies that the results we will show below reject not only the strict monotonicity of Condi-
tion 1(iii) but also the weaker monotonicity conditions as well. Not only can we reject uniform skill,
but skill must be systematically correlated with diagnostic propensities. In Section 5, we show that we
should expect these monotonicity conditions to be violated in our structural model: when radiologists
differ in skill and are aware of these differences, the optimal diagnostic threshold should depend on
radiologist skill. We also show that this relationship between skill and radiologist-chosen diagnostic

propensities raises the possibility that common diagnostic thresholds may reduce welfare.

3 Setting and Data

We apply our framework to study pneumonia diagnoses in the emergency department (ED). Pneumo-
nia is a common and potentially deadly disease that is primarily diagnosed by chest X-rays. Reading
chest X-rays requires skill, as illustrated in Figure 3 from the medical literature. We focus on out-
comes we observe from chest X-rays performed in the ED in the Veterans Health Administration
(VHA), the largest health care delivery system in the US.

In this setting, the diagnostic pathway for pneumonia is as follows:

1. A physician orders a radiology exam for a patient suspected to have the disease.

In Appendix A.1, we discuss the relationship of these monotonicity conditions to the “average monotonicity” concept
of Frandsen et al. (2019).
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2. Once the radiology exam is performed, the image is assigned to a radiologist. Exams are typi-
cally assigned to radiologists based on whoever is on call at the time the exam needs to be read.

We argue below that this assignment is quasi-random conditional on appropriate covariates.
3. The radiologist issues a report on her findings.

4. The patient may be diagnosed and treated by the ordering physician in consultation with the

radiologist.

Pneumonia diagnosis is a joint decision by radiologists and physicians. Physician assignment to pa-
tients may be non-random, and physicians can affect diagnosis both via their selection of patients to
order X-rays for in step 1 and their diagnostic propensities in step 4. However, so long as assignment
of radiologists in step 2 is as good as random, we can accurately measure the causal effect of radiolo-
gists on the probability that the joint decision-making process leads to a diagnosis. While interactions
between radiologists and ordering physicians are interesting, we abstract from them in this paper and
focus on a radiologist’s average effect, taking as given the set of physicians with whom she works.

VHA facilities are divided into local units called “stations.” A station typically has a single major
tertiary care hospital and a single ED location, together with some medical centers and outpatient
clinics. These locations share the same electronic health record and order entry system. We study the
103 VHA stations that have at least one ED.

Our primary sample consists of the roughly 5.5 million completed chest X-rays in these stations
that were ordered in the ED and performed between October 1999 and September 2015.7 We refer to
these observations as “cases.” Each case is associated with a patient and with a radiologist assigned
to read it. In the rare cases where a patient received more than one X-ray on a single day, we assign
the case to the radiologist associated with the first X-ray observed in the day.

To define our main analysis sample, we first omit the roughly 600,000 cases for which the patient
had at least one chest X-ray ordered in the ED in the previous 30 days. We then omit cases that:
(1) have missing radiologist identity; (ii) have missing patient age or gender; (iii) are associated with
patients older than 100 or younger than 20; (iv) are associated with a radiologist-month pair with
fewer than 5 observations; (v) are associated with a radiologist with fewer than 100 observations in
total. In Appendix Table A.1 we report the number of observations dropped at each of these steps.

The final sample contains 4,663,826 cases.

7We define chest X-rays by the Current Procedural Terminology codes 71010 and 71020.
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We define the diagnosis indicator d; for case i equal to one if the patient has a pneumonia diagnosis
recorded in outpatient or inpatient within a 24-hour window centered at the time stamp of the chest

X-ray order.?

We confirm that 92.6 percent of patients who are recorded to have a diagnosis of
pneumonia are also prescribed an antibiotic consistent with pneumonia treatment within five days
after the chest X-ray.

We define an indicator fn; = 1(d; =0,s; = 1) for a type II error or “missed diagnosis” for case
i equal to one if d; = 0 and the patient has a subsequent pneumonia diagnosis recorded between 12
hours and 10 days after the completion of the chest X-ray. Here we include diagnoses in both ED and
non-ED facilities, including outpatient, inpatient, and surgical encounters, as well as encounters that
began as transfers from other facilities.

We define the following patient characteristics for each case i: demographics (age, gender, marital
status, religion, race, veteran status, and distance from home to the VA facility where the X-ray
is ordered), prior health care utilization (counts of outpatient visits, inpatient admissions, and ED
visits in any VHA facility in the previous 365 days), prior medical comorbidities (indicators for
prior diagnosis of pneumonia and 31 Elixhauser comorbidity indicators in the previous 365 days),
vital signs (22 variables including blood pressure, pulse, pain score, and temperature), and and white
blood cell (WBC) count as of ED encounter.” We also measure for each case a vector of characteristics
associated with the chest X-ray request. This contains an indicator for whether the request was marked
as urgent and a vector of requesting physician characteristics that we define below.

For each radiologist in the sample, we record gender, the date of birth, the start date of em-
ployment at the VHA, medical school identity, and the proportion of radiology exams that are chest
X-rays. For each chest X-ray in the sample, we record the time that a radiologist spends to generate
the report in minutes and the length of the report in words. For each requesting physician in the sam-
ple, we record the number of X-rays ordered across all patients, an above-/below-median indicator for
the average predicted diagnosis rate, and an above-/below-median indicator for the average predicted

type II error rate. The predicted diagnosis rate and type II error rate are formed by running a linear

8Diagnoses do not have time stamps per se but are instead linked to visits, with time stamps for when the visits begin.
Therefore, the time associated with diagnoses is usually before the chest X-ray order; in a minority of cases, a secondary
visit (e.g., an inpatient visit) occurs shortly after the initial ED visit, and we will observe a diagnosis time after the chest
X-ray order. We include International Classification of Diseases, Ninth Revision, (ICD-9) codes 480-487 for pneumonia
diagnosis.

9The vital sign variables are systolic blood pressure, diastolic blood pressure, pulse rate, pain score, pulse oximetry,
respiration rate, temperature, an indicator for fever, an indicator for whether there is supplemental oxygen administration,
and given it is provided, the flow rate and the concentration of the supplemental oxygen. If a case has multiple vital sign
measures, we use the first measure recorded. We include WBC count in this group of variables for compactness, though it
is not a vital sign. We also include indicators for missing values in each of these variables.
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probability regression of d; and fn;, respectively, on the demographic variables described above and
calculating the linear fit for each patient. We then average the predictions within each requesting

physician and divide all requesting physicians into above-/below-median groups.

4 Model-Free Analysis

4.1 Quasi-Random Assignment

To study the effect of radiologists on diagnoses and type Il errors, we require that patients are as good
as randomly assigned to radiologists. Let T; be a vector consisting of indicators for the hour of day,
day of week, and month-year of patient visit i. Let £ (i) denote the station (i.e., the specific ED) that i
visits, J¢(;) denote the set of radiologists at that station, and j (i) € Jg(;) denote the radiologist assigned

toi.

Assumption 1 (Conditional Independence). Conditional on station € (i) and time of visit T;, the

state s; and potential diagnosis decisions {di j} : for patient i are independent of the patient’s

J€Jei
assigned radiologist j (i).

Our qualitative research suggests that the typical pattern is for patients to be assigned sequen-
tially to available radiologists at the time their physician orders the chest X-ray. Such assignment
will plausibly satisfy Assumption 1 if the timing of patient arrival at the ED is independent of radi-
ologist availability, conditional on interactions between £ (i) and T; that capture regular variation in
scheduling (e.g., Chan 2018).

To assess Assumption 1, we report balance on observable characteristics between patients as-
signed to radiologists with above- vs. below-median diagnosis rates and type II error rates. We first
divide radiologists into above- and below-median groups based on the radiologist fixed effects from
regressions of diagnosis and type-II error rates on the vector of patient characteristics, controlling
for all patient characteristics and interactions between £ (i) and T;. We next compute predicted val-
ues from patient-level regressions of diagnosis and type II error indicators on subsets of 77 patient
characteristic variables. We divide these variables into 5 groups: demographics, prior utilization,
prior diagnoses, vital signs and WBC count, and ordering characteristics. We then compute residuals
from regressions of these predicted values on ¢ (i) and T; interactions, and we assess balance in these
residual predictions between groups of radiologists. Appendix A.2.1 provides further details.

Table 1 shows that the actual diagnosis and type II error rates differ substantially between these
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groups as expected. In contrast, the differences in predicted values based on patient characteristics are
one to two orders of magnitude smaller, regardless of the characteristics used to form these predic-
tions. Given the large size of our sample, some of these differences are statistically significant despite
their small size economically. In our main analyses, we will control for all patient observables used
in Table 1, and in Section 4.4, we will show that our results are qualitatively unchanged regardless of
which patient characteristics that we control for.

A complementary approach would be to isolate a subset of stations where evidence for balance
is even stronger. Because organization and procedures differ across stations, there is reason to think
that we may capture better conditioning sets for quasi-random assignment in some stations but not
in others.!? In Appendix A.2.2, we evaluate quasi-random assignment station-by-station using para-
metric tests of joint significance and randomization inference. The concordance between these tests
is high. We begin by focusing just on patient age as an observable and identify 44 out of 104 stations
for which we do not see any significant imbalance. We then show in Appendix Table A.2 that these
same 44 stations also appear balanced on the full set of 77 patient characteristic variables. We show

below that our main results are robust to focusing on these 44 stations.

4.2 Identification and Empirical Strategy

The first goal of our descriptive analysis is to flexibly identify the four elements of the classification
matrix in Figure 1 Panel A for each radiologist. This will allow us to plot the actual data in both
reduced-form space and in ROC space as in Figure 2.

The challenge is that we do not observe all four elements: For each radiologist, we observe sample
estimates of the diagnosis rate P;, the false negative probability FN;, and the remaining true negative
probability TN;. These would be sufficient to estimate the full matrix if we also knew the share of j’s

patients who had pneumonia S; = Pr(s; = 1| j (i) = j) since

TP; = S;—FNj; ey
FPj = Pj—TPj; and (2)
TN; = 1-FN;-TP;-FP;. 3)

1011 our qualitative research, we identify at least two types of conditioning sets that are unobserved to us. One is that the
population of radiologists in some stations includes both “regular” radiologists who are assigned chest X-rays according
to the normal sequential protocol and other radiologists who only read chest X-rays when the regular radiologists are not
available or in other special circumstances. A second is that some stations consist of multiple sub-locations, and both
patients and radiologists sort systematically to sub-locations. Since our fixed effects do not capture either radiologist
“types” or sub-locations, either of these could lead Assumption 1 to be violated.
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Under Assumption 1, S; will be equal to the overall population share S = Pr(s; = 1) for all j.
Thus, knowing S would be sufficient for identification. Moreover, the observed data also provide
bounds on the possible values of S. If there exists a radiologist j such that P; = 0, we would be
able to learn S exactly as § = §; = FN;. Otherwise, letting j denote the radiologist with the lowest
diagnosis rate (i.e., j = argmin; P;) we must have S € | FN;,FN; +D;|. We show in Section 5.2 that
S is point identified under the additional functional form assumptions of our structural model.

The second goal of our descriptive analysis is to estimate the relationship between radiologists’
diagnosis rates P; and their type-II error rates F'N;. We focus on the coefficient A from a patient-
weighted regression of F'N; on P; in the population of radiologists. By Remark 4, A € [-1,0] is a
necessary condition for both the standard monotonicity of Condition 1(iii) and the weaker versions of
monotonicity we consider as well. In order for A ¢ [—1,0], radiologists must not have uniform skill,
and skill must be systematically correlated with diagnostic propensities.

Exploiting quasi-experimental variation under Assumption 1, we can recover a consistent estimate
of A from a 2SLS regression of fn; = 1(d; =0,s; = 1) on d; instrumenting for the latter with j (i). In
these regressions, we control for a full set of interactions between station € (i) and time categories T;
as well as the vector X; of 77 patient characteristics described in Section 4.1.

We consider two types of instruments. First, we simply use radiologist dummies. Second, we fol-
low the standard practice in the judges-design literature by using a jackknife instrument of diagnosis

rates:

Zl i 61(1) (4)
(l)“ i'#1

i =
where I; is the set of patients assigned to radiologist j. The intuition behind the jackknife instrument is
that it prevents overfitting the first stage in finite samples, which would otherwise bias the coefficient

toward an OLS estimate of the relationship between fn; and d; (Angrist et al. 1999).

4.3 Results

Figure 4 shows radiologist-specific true positive rates and false positive rates based on data of radiologist-
specific diagnoses and false negatives. For this figure, we use an estimate of S = 0.0374 as well as

other disease-specific parameters that we detail later in Section 5.'! The results show clearly that the

Ip Section 5, we introduce three disease-related parameters: the proportion of chest X-rays that are not at risk for
pneumonia, «; the proportion of at-risk chest X-rays with detectable pneumonia, 1 —® (v); and the proportion of at-risk cases
without detectable pneumonia at the time who subsequently develop pneumonia, A. For a given observed (Pj,F Nj), we
calculate the following adjustments: S’ =1-®(v); P]’. =P;/(1-k); TNJf =(TNj-«) /(1-x) /(1-2); FNJ( =FN;/(1-x)-

/lTNJf; TPR; =1 —FN;/S’; and FPR; = (P]’.+FN;—S') /(1=S"). We assume « = 0.196, 1 =0.021, and v = 1.781.
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data are inconsistent with the assumption of uniform skill.

Figure 5 shows the IV estimate as the slope in binned scatter plots, using radiologist dummies
as instruments (Panel A) and using the jackknife instrument (Panel B).!> The IV coefficient is sig-
nificantly positive in both cases. Under Assumption 1, this implies that the monotonicity conditions
discussed above cannot hold in our data.

The strong upward slope shown in these plots is striking. It implies that the false negative rate is
higher for high-diagnosing radiologists not only conditionally (in the sense that the patients they do
not diagnose are more likely to have pneumonia) but unconditionally as well. Thus, being assigned
to a radiologist who diagnoses patients more aggressively increases the likelihood of leaving the
hospital with undiagnosed pneumonia. The only explanation for this under our framework is that
high-diagnosing radiologists have less accurate signals, and that this is true to a large enough degree
to offset the mechanical negative relationship between diagnosis and type II errors.

In Appendix Figure A.3 we show the full visual IV scatterplot corresponding to Panel A of Figure
5. This plot reveals substantial heterogeneity in type II error rates among radiologists with similar
diagnosis rates. This provides further evidence against the standard monotonicity assumption, which
implies that all radiologists with a given diagnosis rate must also have the same type-II error rate.

In Appendix A.4, we show that our data pass informal tests of monotonicity that are standard in
the literature (Bhuller et al. 2016; Dobbie et al. 2018). These tests require that diagnosis consistently
increases in P; in a range of patient subgroups.'® Thus, together with evidence of quasi-random
assignment in Section 4.1, the standard empirical framework would suggest this as a plausible setting
in which to use radiologist assignment as an instrument for the treatment variable d;;.

Yet, were we to apply the standard approach and use radiologist assignment as an instrument to
estimate an average effect fn; (1) — fn; (0) of diagnosis d;; on type II errors, we would reach the
nonsensical conclusion that diagnosing a patient with pneumonia (and thus giving them antibiotics)
makes them more likely to return with untreated pneumonia in the following days. Appendix Table
A.3 shows similar judges-design results for other welfare-relevant outcomes, such as mortality and
intensive care unit (ICU) stays. Applying the standard approach to these outcomes suggests that
diagnosing and treating pneumonia implausibly increases mortality, repeat ED visits, patient-days in

the hospital, and ICU admissions. We find increases in counts of adverse events even conditional on

12We discuss details of producing binned scatter plots to reflect the IV estimate in Appendix A.3.

131n this appendix, we also show the relationship between these standard tests and our test. We discuss that these results
suggest that: (i) radiologists consider unobserved patient characteristics in their diagnostic decisions; (ii) these unobserved
characteristics predict s;; and (iii) their use distinguishes high-skilled radiologists from low-skilled radiologists.
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patients having type II errors, suggesting that skill could impact important outcomes not only through

the diagnosis decision but through other channels as well.#

4.4 Robustness

In Section 4.1, we detect small violations of quasi-random assignment (Assumption 1) in the overall
sample of stations; in Appendix A.2.2, we also show evidence that quasi-random assignment appears
to be satisfied statistically in 44 out of 104 stations, while we can reject quasi-random assignment in
the remainder of stations. With violations of quasi-random assignment, radiologists could systemati-
cally have higher probabilities of both diagnosis and false negatives not because they are less skilled
but because they are assigned more severe cases. Therefore, we examine the robustness of our results
to varying controls for patient characteristics as well as the set of stations we consider.

To examine robustness to controlling for patient characteristics, we first divide our 77 patient
characteristics into 10 groups: (i) age and gender; (i) marital status; (iii) religion indicators (3 vari-
ables); (iv) veteran status (given that some patients are relatives of veterans); (v) race indicators (5
variables); (vi) distance between the patient’s residence and the closest VHA hospital (2 variables,
including an indicator for missing distance); (vii) prior utilization; (viii) prior diagnoses; (ix) vital
signs and WBC count; and (x) ordering characteristics.'> Next, we run separate regressions using
each of the 2'° = 1,024 possible combinations of these 10 groups as controls.

Figure 6 shows the range of the coefficients A JIvEe across these specifications. The number
of different specifications that corresponds to a given number of patient controls may differ. For
example, controlling for either no patient characteristics or all patient characteristics each results in
one specification. However, more generally, controlling for n patient characteristics results in “10
choose n” specifications. For each number of characteristics on the x-axis, we plot the minimum,
maximum, and mean slope statistic. The relationship is only slightly less positive with more controls,
and no specification yields a slope that is close to 0. Panel A displays results using observations from
all stations, and Panel B displays results using observations only from the 44 stations in which we
find even stronger evidence of balance. As expected, slope statistics are even more robust in Panel B

but, if anything, slightly larger in magnitude than the range of slope statistics in Panel A.

14We also see increases in joint outcomes of adverse events and true negatives. This may suggest a violation of exclusion
in Condition 1(i). Note that increases in the joint outcome of being diagnosed and having an adverse event by themselves
do not imply violations of Condition 1, if the adverse event is binary and the increases are less than 1.

15variables in groups (Vvii)-(x) are described in Section 3.
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5 Structural Analysis

In this section, we define and estimate a structural model that allows variation in both skill and pref-
erences. It builds on the canonical selection framework by allowing radiologists to observe different
signals of patients’ true conditions, and so to rank cases differently in terms of their appropriateness

for diagnosis.

5.1 Model

Patient i’s true state s; is determined by a latent index v; ~ N'(0,1). If v; is greater than Vv, then the
patient has pneumonia:

Si=1(V[ >7)

We assume that ¥ > 0 so that the share S = 1 — ®(¥) of patients with pneumonia is less than one half.'®
The radiologist j assigned to patient i observes a noisy signal w;; correlated with v;, where the

strength of the correlation depends on the radiologist’s skill a; € [0,1]:

~N , : &)
Wij 0 a; 1
We assume that radiologists know both the cutoff value v and their own accuracies «;.

The radiologist’s utility is given by

—1, if d,'j = l,Si = 0,
Uujj = —ﬂj, if dij =0,s; =1, (6)

0, otherwise.

The key preference parameter §; captures the disutility of a false negative relative to a false positive.
Given that the health cost of undiagnosed pneumonia is potentially much greater than the cost of
inadvertently giving antibiotics to a patient who does not need them, we expect 5; > 1. We normalize
the utility of correctly classifying patients to zero.

In Appendix A.5, we show that the radiologist’s optimal decision rule reduces to a cutoff value 7;

such that d;; = 1 (w;; > 7;). The optimal cutoff 7* must be such that the agent’s posterior probability

16T his assumption is consistent with the data and simplifies exposition but is not imposed in estimation.
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that s; = 0 after observing w;; = 7* is equal to 1 fj -. The forumla for the optimal threshold is

J

* (.8)) = LT %)

@

7-J1-a2o (£

The cutoff value in turn implies F'P; and F'N;, which give expected utility
E [u;;]| == (FP;j+BFN;). )

The comparative statics of the threshold 7* with respect to v and S; are intuitive. The higher is v,
and thus the smaller the share S of patients who in fact have pneumonia, the higher is the threshold.
The higher is §;, and thus the greater the cost of a missed diagnosis relative to a false positive, the
lower is the threshold.

The effect of skill ; on the threshold is ambiguous. This arises because «; has two distinct effects
on the radiologist’s posterior on v;: (i) it shifts the posterior mean further from zero and closer to the

observed signal w;;; and (i1) it reduces the posterior variance. For «; ~ 0, the radiologist’s posterior is

Bj
l+ﬁj

diagnose any patients, implying 7* ~ co. As a; increases, effect (i) dominates. This makes any given

close to the prior N (0,1) regardless of the signal. Provided that v > ®~! ( ) she will prefer not to
w;; more informative and so causes the optimal threshold to fall. As a; increases further, effect (ii)
dominates. This makes the agent less concerned about the risk of false negatives and so causes the
optimal threshold to rise. Figure 7 shows the relationship between a; and TJ’.‘ for different values of
Bj-

In Appendix A.5.3, we consider a richer utility function in which radiologists’ utility functions
may also depend on the severity of a false negative (i.e., v; — ) and show that this formulation yields
a similar threshold-crossing model with equivalent empirical implications. In Appendix A.6.4, we
also explore an alternative formulation in which 7; depends on a potentially misinformed belief about
;. From a social planner’s perspective, deviations from 7* (@, 3°)—where B° represents the social
planner’s welfare weights on false negatives vs. false positives—yield equivalent welfare losses re-
gardless of whether they derive from deviations of ; from ° or from deviations of beliefs about a;
from the truth.

We also allow for two additional parameters that relate to our institutional setting and reconcile the
data with the restrictive joint-normal signal structure in Equation (5). First, we allow for a proportion

of cases « that are not at risk for pneumonia and are recognized as such by all radiologists. This
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reflects the fact that we cannot distinguish chest X-rays in our data ordered for reasons other than
suspicion of pneumonia. Second, given that we only observe false negatives after some delay, we
allow for a share A of cases that do not have pneumonia at the time of their visit to develop it and be
diagnosed subsequently, thus being incorrectly coded as false negatives.

If we know a radiologist’s FPR; and TPR; in ROC space, then we can identify her skill a; by
the shape of potential ROC curves, and her preference g; by her diagnosis rate and Equation (7).
Equation (5) determines the shape of potential ROC curves and implies that they are smooth. It also
guarantees that two ROC curves never intersect and that each (FPR;,TPR;) point lies on only one
ROC curve. We also note that utility maximization and rational expectations imply selection on gains,
or concave ROC curves.

To see how A is identified, note that under the joint-normal signal structure with A = 0 a radiologist
with FPR; ~ 0 must have a nearly perfectly informative signal and so should also have TPR; ~ 1.
We in fact observe TPR; < 1 at this limit (i.e., some radiologists with no false positives still have
some false negatives) and the value of A will be determined by the size of this gap. To see how « is
identified, note that with k = 0 we expect no radiologists with 0 < FPR; <1 and TPR; = max; TPR;.
That is, we expect no radiologists who have no false negatives (adjusting for 1) yet also have a non-
trivial number of false positives. Given these parameters and v, the expected observed prevalence of

pneumonia among all chest X-rays will be S = (1 —=® (V) + 1D (¥)) (1 — «).!”

5.2 Estimation

We estimate the model using observed data on diagnoses d; and false negatives fn;. Recall that we
observe fn; =0 for any i such that d; = 1, and fn; = 1 is only possible if d; = 0. We define the

following probabilities, conditional on y; = (@, 3;):

pijlyj) = Pr(w,-j >T;f’yj);
D2j (’yj) = PI‘(W,'J‘ <T;,Vl' >V|’}/j);
D3j (’yj) = PI‘(Wij <T;,Vl' <V|’)’j).

17Because we only observe data that include “false negatives” from later visits and chest X-rays that may not be at risk,
we refer to these reduced-form moments as P i» FNj, and S. To distinguish from the “observed prevalence” S, we denote
the actual prevalence at the time of the initial chest X-ray, only among cases at risk, to be §" = 1-®(v). By TPR; and
FPR;, we denote the respective true positive rate and false positive rate for a radiologist’s decisions on the initial chest
X-ray for patients at risk. In other words, TPR; and F PR; adjust the reduced-form moments P; and F'N; by parameters v,
&, and A.
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The likelihood of observing (d;, fn;) for a case i assigned to radiologist j (i) is

(1-©)p1j (¥j0), if d; = 1,
Zi (fridilyia) = Y(1= &) (p2) (vj) + Apsj (i), ifdi=0,fn; =1,
(I—K)(l—/l)pg,j (‘}’j(i))+K, ifdi=0,fl’li=0.

For the set of patients assigned to j, I; = {i: j(i) = j}, the likelihood of d; = {di}ie,j and fn; =
{fni}ielj is

Z; (fnj.d;|y;)

Hiﬂi (fnidilyw)

iEIj

d fn
J

(1=0)p1j (7j@)" (A=) (p2j (i) + Ap3j (i)™
d_ fn

(A=) A=) p3j (yji)) +&)

where nJ‘.’ = El.e,j d;, n{" = Zielj fni, and nj = ||I]|| From the above expression, n;’, nf", and n;

are sufficient statistics of the likelihood of d; and fn;, and we can write the radiologist likelihood as
Zj (njl,nfn,nj’)’j)-
Although a; and g; are flexibly identified in principle, we make an assumption on their population

distribution to improve power. Specifically, we assume

5 2
a; Mo (O POa0p
"‘N 5 ’

B tg | \ poeop 0
where a; = % (1+tanh@;) and B; = exp B 7. We set p = 0 in our baseline specification.

We calibrate « using a random forest algorithm that predicts pneumonia based on patient vital
signs, time categories, patient demographics, patient prior utilization, and words or phrases extracted
from the chest X-ray requisition. We conservatively set « = 0.196 equal to the proportion of patients
with a random forest predicted probability of pneumonia less than 0.01.

Finally, to allow for potential deviations from random assignment, we risk-adjust observations of
diagnosis and type II error. Specifically, instead of using counts of diagnoses n;l and false negative

fn

outcomes 1z; ", we first risk-adjust individual observations (d;, f n;) by patient characteristics X; as well

as a full set of interactions between time dummies T; and location identifiers € (i), as we do in Section
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4.2.'8 Denoting risk-adjusted counts as ﬁ;.l and ﬁjy. , we proceed in the second step by maximizing the

following log-likelihood to estimate the hyperparameter vector 6 = (1, g, 00,05, A, V):
6= arg(r)naleog/.i”j (ﬁ?,ﬁ;,nj’yj~) f(v;]0)dy;.
J

We compute the integral by simulation, described in further detail in Appendix A.6.2. Given our
estimate of y and each radiologist’s risk-adjusted data, (ﬁ?,ﬁ]y. ,nj), we can also form an empirical
Bayes posterior of each radiologist’s skill and preference (e;,(3;), which we describe in Appendix

A.6.3.

5.3 Results

Table 2 shows estimates of the hyperparameter vector € in our baseline specification. We report
asymptotic standard errors. We show in Appendix A.7 that estimates are stable across alternative
specifications and are also qualitatively similar regardless of whether or not we adjust for patient
characteristics. The stability with respect to patient controls is consistent with the stability of our
reduced-form results in Section 4.4.

In Appendix Figure A.4, we compare the distributions of observed data moments with those
simulated from the model at the estimated parameter values. The observed moments we consider are:
(1) the distribution of radiologist diagnosis rates; (ii) the distribution of radiologist type II error rates;
and (iii) the correlation between diagnosis rates and type II error rates.'® In all cases, the simulated
data match the observed data closely.

Table 2 also shows moments in the distribution of (;,3;) implied by the model parameters. In
the baseline specification, the mean radiologist accuracy is relatively high, at 0.84. This implies that
the average radiologist receives a signal that has a correlation of 0.84 with the patient’s underlying
latent state v;. A radiologist at the 10th percentile of this skill distribution receives a signal that has
a correlation of 0.72 with the state, while a radiologist at the 90th percentile of the skill distribution
receives a signal that has a correlation of 0.93 with the state. The average radiologist preference

weights a false negative 8.07 times as high as a false positive. The 10th percentile of the preference

18We describe this risk-adjustment procedure in further detail in Appendix A.6.1.

19We construct simulated moments as follows. We first fix the number of patients each radiologist examines to the
actual number. We then simulate patients at risk from a binomial distribution with the probability of being at risk of
1 — k. For patients at risk, we simulate their underlying true signal and the radiologist-observed signal, or v; and w;;,
respectively, using our posterior for a;. We determine which patients are diagnosed with pneumonia and which patients are
false negatives based on 7* (@ s B j), v;i, and v. We finally simulate patients who did not initially have pneumonia but later
develop it with A.
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distribution entails a false negative disutility that is 6.79 times as high as a false positive, while the
90th percentile of this distribution entails a false negative disutility that is 9.43 times as high as a false
positive. Table A.5 finally shows that these distributions of radiologist structural primitives are fairly
invariant to the specification of the structural estimation.

In Figure 7, we display predicted empirical Bayes posteriors for (a;,3;) in a space that represents
optimal diagnostic thresholds. The figure shows that, for the estimated parameters of the model (in
particular, for the preference parameters that we estimate), the relationship between accuracy and
diagnostic thresholds is mostly positive. As radiologists become more accurate, they diagnose fewer
people (their thresholds increase), since the costly possibility of making a false negative diagnosis
decreases. In Appendix Figure A.5, we show the distributions of the empirical Bayes posteriors for
@j, B;, and 7;, and the joint distribution of ; and S;. Finally, in Figure A.6, we transform empirical
Bayes posteriors for (a;,;) onto ROC space. The relationship between TPR; and FPR; implied by
the empirical Bayes posteriors is similar to that implied by the flexible projection shown earlier in

Figure 4.

5.4 Heterogeneity

To provide suggestive evidence on what may drive variation in skill and preferences, we project our
empirical Bayes posteriors for (a;,3;) onto observed radiologist characteristics. Figure 8 shows the
distribution of observed characteristics across bins defined by empirical Bayes posteriors of skill ;.
Appendix Figure A.7 shows analogous results for the preference parameter ;.

Panel A of Figure 8 shows that more skilled radiologists are older. This is the strongest rela-
tionship statistically among all the characteristics we consider. Panel B shows that higher-skilled
radiologists also tend to be more specialized in reading chest X-rays (in the sense that these account
for a larger share of the scans they read).

Panel C shows that those who are more skilled also spend more time generating their reports.
This suggests that skill may be a function of effort as well as characteristics like training or talent.
The median radiologist with 0.10 higher « (i.e., among radiologists who extract 10% more of the true
signal than another group of radiologists) spends 35.3% more time to generate her reports. Panel D
shows that more skilled radiologists also issue shorter rather than longer reports, perhaps suggesting
that clarity and efficiency of communication is more important than the volume of words produced.

Panel E shows that there is little correlation between skill and the rank of the medical school a

radiologist attended. If anything, the relationship is slightly negative. Finally, Panel F shows that
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higher skilled radiologists are more likely to be male, in part reflecting the fact that male radiologists
are older and tend to be more specialized in reading chest X-rays.

The results for the preference parameter §; shown in Appendix Figure A.7 tend to go in the
opposite direction. This reflects the fact that our empirical Bayes estimates of a; and j; are slightly
negatively correlated.

It is important to emphasize that large variation in characteristics remains even conditional on
skill or preference. This finding is broadly consistent with the physician practice-style and teacher
value-added literature, which demonstrate large variation in decisions and outcomes that appear un-
correlated with physician or teacher characteristics (Epstein and Nicholson 2009; Staiger and Rockoff

2010).

6 Policy Implications

6.1 Decomposing Observed Variation

To assess the relative importance of skill and preferences in driving observed decisions and outcomes,
we simulate counterfactual distributions of decisions and outcomes in which we eliminate variation
in skill or preferences separately. We first simulate model primitives (a;,;) from the estimated
parameters. Then we eliminate variation in skill by imposing a; = @, where @ is the median of «;,
while keeping B; unchanged. Similarly, we eliminate variation in preferences by imposing g; =
B, where B is the median of j3;, while keeping @; unchanged. For each of these counterfactual
distributions of underlying primitives— (@, ;) and (;,3)—we simulate counterfactual distributions
of observed decisions and outcomes and compare them with those generated by (a;,5;).

We find that eliminating variation in skill reduces variation in diagnosis rates by 44 percent and
variation in type II error rates by 83 percent. On the other hand, eliminating variation in preferences
reduces variation in diagnosis rates by 25 percent and has no significant effect on variation in type
I error rates. These decomposition results suggest that variation in skill can have first-order impacts
on variation in decisions, something the standard model of preference-based selection rules out by

assumption.

6.2 Policy Counterfactuals

We also evaluate the welfare implications of policies aimed at observed variation in decisions or at

underlying skill. Welfare depends on the overall false positive probability F'P and the overall false
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negative probability FN. We denote these objects under the status quo as FP? and FN?, respectively.

We then define an index of welfare relative to the status quo:

FP+B°FN

~ FPO+B5FNO’ ©)

where ° is the social planner’s relative welfare loss due to false negatives compared to false positives.
This index ranges from W = 0 at the status quo to W =1 at the first best of FP = FN =0. It is also
possible that W < 0 under a counterfactual policy that reduces welfare relative to the status quo.

We estimate FP° and FN° based on our model estimates as

1
FPY = niFP(a;, 7" (a,B;:7):V):
Z]_n},; jFP (0.7 (). B
1
0 _ . Lk . AN
FN" = Zjnj;n-’FN(af’T (), Bj:7) 7).

Here, 7*(a,8; V) denotes the optimal threshold given the evaluation skill @, the preference 3, and the
disease prevalence v. (a;,B;) are simulated model primitives from the estimated parameters. We
then consider welfare under counterfactual policies that eliminate diagnostic variation by imposing
diagnostic thresholds on radiologists.

In Table 3, we evaluate outcomes under two sets of counterfactual policies. Counterfactuals 1 and
2 focus on thresholds, while Counterfactuals 3 to 6 aim to improve skill.

Counterfactual 1 imposes a fixed diagnostic threshold to maximize welfare:

ﬁ Yinj (FP(aj,7;v) + B*FN (a;,7:7))
FPY+pSFN?

7(B°) =argmaxy 1 —
T

where {aj} and v are given by our baseline model in Section 5. Despite the objective to maximize
welfare, a fixed diagnostic threshold may actually reduce welfare relative to the status quo by impos-
ing this constraint. On the other hand, Counterfactual 2 allows diagnostic thresholds as a function of
@;, implementing 7;(38°) = v* (a;,8°; 7). This policy should weakly increase welfare and outperform
Counterfactual 1.

In Counterfactuals 3 to 6, we consider alternative policies that improve diagnostic skill, for ex-
ample by training radiologists, selecting radiologists with higher skill, or aggregating signals so that
decisions use better information. In Counterfactuals 3 to 5, we allow radiologists to choose their

own diagnostic thresholds, but we improve the skill a; of all radiologists at the bottom of the dis-
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tribution to a minimum level. For example, in Counterfactual 3, we improve skill to the 25th per-
centile @, so we set aj = a® for any radiologist below this level. The optimal thresholds are then
7; = t*(max (aj,a®),B;;v). Counterfactual 6 forms random two-radiologist teams and aggregates
signals of each team member under the assumption that the two signals are drawn independently.

Table 3 shows outcomes and welfare under 8° = 8, which is close to the median radiologist prefer-
ence ;. We find that imposing a fixed diagnostic threshold (Counterfactual 1) would actually reduce
welfare. Although this policy reduces aggregate false positive errors, it increases aggregate false neg-
ative errors, which are costlier. Imposing a threshold that varies optimally with skill (Counterfactual
2) must improve welfare, but we find that the magnitude of this gain is small. In contrast, improving
diagnostic skill reduces both false negative and false positive outcomes and substantially outperforms
threshold-based policies. Combining two radiologist signals (Counterfactual 6) improves welfare by
36% of the difference between status quo and first best. Counterfactual policies that improve ra-
diologist skill naturally reclassify a much higher number of cases than policies that simply change
diagnostic thresholds, since improving skill will reorder signals, while changing thresholds leaves
signals unchanged.?”

Figure 9 shows welfare changes as a function of the social planner’s preferences °. In this
figure, we consider Counterfactuals 1 and 4 from Table 3. We also show the welfare gain a planner
would expect if she set a fixed threshold under the incorrect assumption that radiologists have uniform
diagnostic skill. In this “mistaken policy counterfactual,” the planner would conclude that a fixed

threshold would modestly increase welfare.?!

In the range of 8° spanning radiologist preferences
(Table 2 and Figure A.5), the skill policy outperforms the threshold policy, regardless of the policy-
maker’s belief on the heterogeneity of skill. The threshold policy only outperforms the skill policy
when B3° diverges significantly from radiologist preferences. For example, if 8° = 0, the optimal
policy is trivial: no patient should be diagnosed with pneumonia. In this case, there is no gain to

improving skill but there is a large gain to imposing a fixed threshold if some radiologists do not

share the social planner’s preferences.

20Reclassified cases are those that have a different classification (diagnosed or not) under the counterfactual policy than
under the status quo. We compute reclassified cases by holding fixed the noise term @;; ~ N (0,1), independent of v;, for

all cases i across counterfactual policies. A radiologist with accuracy a; will observe the signal w;; = a;jv; + (/1 - an.J)ij.

Under this setup, if 7; and «; are unchanged for all j, then no case will be reclassified.
2lwe assume that the planner calculates a common diagnostic skill parameter @ that rationalizes F PO and FNO
with some estimate of disease prevalence ¥’. Specifically, we solve two equations for two unknowns, @ and v':

-1 -1
FpO = (Zj nj) XjniFP (@7;;v") and FNO = (Zj nj) XjnFN (@,7j;v"). The common diagnostic threshold that

maximizes welfare under this assumption is 7 (8%) = *(@, Bs; V).
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6.3 Discussion

We show that dimensions of “preferences” and “skill” have different implications for welfare and
policy. Each of these dimensions likely captures a range of underlying factors. In our framework,
“preferences” encompass any distortion from the optimal threshold implied by (i) the social planner’s
relative disutility of false negatives, or 5°, and (ii) the relationship between a patient’s underlying state
and a radiologist’s signals about that state, or @;. These distortions may arise from intrinsic prefer-
ences or external incentives that cause radiologist g; to differ from °. Alternatively, as we elaborate
in Appendix A.6.4, equivalent distortions may arise from radiologists having incorrect beliefs about
the population prevalence parameter v or their own skill ;.

What we call “skill” captures the relationship between a patient’s underlying state and a radi-
ologist’s signals about the state. We attribute this mapping to the radiologist since quasi-random
assignment to radiologists implies that we are isolating the causal effect of radiologists. As suggested
by the evidence in Section 5.4, “skill” may reflect not only underlying ability but also effort. Fur-
thermore, in this setting, radiologists may form their judgments with the aid of other clinicians (e.g.,
residents, fellows, non-radiologist clinicians) and must communicate their judgments to other physi-
cians. Skill may therefore reflect not only the quality of signals that the radiologist observes directly,
but also the quality of signals that she (or her team) passes on to other clinicians.

For purposes of welfare analysis, the mechanisms underlying “preferences” or “skill” do not
matter in so far as they map to an optimal diagnostic threshold and deviations from it. However,
practical policy implications (e.g., whether we train radiologists to read chest X-rays, collaborate

with others, or communicate with others) will depend on institution-specific mechanisms.

7 Conclusion

In this paper, we decompose the roots of practice variation in decisions across radiologists into di-
mensions of skill and preferences. While systematic variation in decisions across agents exists in a
wide range of settings, the standard view in much of the literature is to assume that of such variation
results from variation in preferences. We first show descriptive evidence that runs counter to this
view: radiologists who diagnose more cases with a disease are also the ones who miss more cases
that actually have the disease. We then apply a framework of classification and a model of decisions
that depend on both diagnostic skill and preferences. Using this framework, we demonstrate that the

source of variation in decisions can have important implications for how policymakers should view
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the efficiency of variation and for the ideal policies to address such variation. In our case, variation
in skill accounts for 44 percent of the variation in diagnostic decisions, and policies that select or
train providers to have higher skill result in potentially large welfare improvements, while policies to
impose uniform diagnosis rates may reduce welfare.

Our analysis relates not only to policy discussions centering on the causes and welfare implica-
tions of practice variation (e.g., Skinner 2012), but also to an active and growing literature that uses
variation across decision-makers to estimate the effect of a decision on outcomes (e.g., Kling 2006).
In the approach that we develop, we rely on prior information about the potential effect of the deci-
sion on outcomes. We show that such restrictions on potential outcomes may provide stronger tests of
monotonicity, particularly if potential outcomes capture important relationships with both unobserved
and observed case characteristics. Intuitively, the judges-design literature relies on comparisons be-
tween agents of the same skill. Thus, measuring skill may allow for research designs that correct for

bias due to monotonicity violations.
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Figure 2: Hypothetical Data Generated by Variation in Preferences vs. Skill

A: Varying Preferences
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Note: This figure demonstrates two possible models with hypothetical data. The top panel fixes the evaluation
skill and varies preferences. All agents are located on the same ROC curve and are faced with the tradeoff
between sensitivity (TPR) and specificity (1 — FPR). They draw different thresholds for selection as a result
of heterogeneous preferences. The bottom panel fixes the preference and varies diagnostic skills. Agents
are located on different ROC curves but have parallel indifference curves. They draw different thresholds for
selection as a result of heterogeneous skills.
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Figure 3: Example Chest X-rays

Note: This figure shows example chest X-rays reproduced from Figure 2 of Fabre et al. (2018). These chest X-
rays represent cases on which there is expert consensus and which are used for training radiologists. Only Panel
E represents a case of infectious pneumonia, and we have added a red oval to denote where the pneumonia lies,
in the right lower lobe. Panel A shows miliary tuberculosis; Panel B shows a lung nodule (cancer) in the left

upper lobe; Panel C shows usual interstitial pneumonitis; Panel D shows left upper lobe atelectasis; Panel E
shows right upper lobe atelectasis.
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Figure 4: Projecting Data on ROC Space
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Note: This figure plots the model-free true positive rate (T'PR;) and false positive rate (F PR;) for each radiolo-
gist across 3,199 radiologists who have at least 100 chest X-rays. The figure is based on risk-adjusted diagnosis
and type II error rates for each radiologist (D; and F'N;, respectively), which are shown in visual IV form in
Appendix Figure A.3 and as a binned scatter plot in Panel A of Figure 5. We then project these rates into ROC
space (i.e., onto TPR; and F PR;). This projection does not require any behavioral model but only uses disease-
related quantities, described in greater detail in Section 5. In brief, we use three disease-related parameters: (i)
the proportion of chest X-rays that are not at risk for pneumonia, «; (ii) the proportion of at-risk chest X-rays
with detectable pneumonia, 1 — @ (v); and (iii) the proportion of at-risk cases without detectable pneumonia at
the time who subsequently develop pneumonia, A. For a given observed (P;, FN;), we calculate the following
adjustments: S’ =1-®(v); PJ’. =P;/(1-x); TNjf = (TN;—«) /(1—k) /(1= 2); FNj’ = FN;/(1-x) —/lTNJf;

TPR; = 1—FNJf/S’; and FPR; = (PJ’ +FNJf —S’) /(1-5"). We use k =0.196, 1 = 0.021, and v = 1.781. For a
few radiologists, we impose additional restrictions that FPR; > 0 and TPR; > FPR;.
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Figure 5: Diagnosis and Type II Error Rates
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Note: This figure plots the relationship between the probability of pneumonia (PNA) diagnoses and type II
errors across radiologists. Under the assumption of IV validity in the judges design, this relationship represents
the effect of diagnosis on type II error. Panel A shows results using radiologist dummies as instruments, and
Panel B shows results using radiologist jackknife propensities to diagnose, given in Equation (4), as instru-
ments. In each panel, (first-stage) predictions of diagnoses due to radiologists are shown on the x-axis, and
(reduced-form) predictions of type II errors due to radiologists are shown on the y-axis. The coefficient in each
panel corresponds to the 2SLS estimate and standard error (in parentheses) for the corresponding I'V regression,
as well as the number of cases (N) and the number of radiologists (J). Controls include 77 variables for patient
characteristics and time dummies interacted with station dummies. Further details are given in Appendix A.3.
The visual IV corresponding to Panel A is shown in Appendix Figure A.3.
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Figure 6: Stability of Slope between Diagnosis and Type II Error Rates
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Note: This figure shows the stability of the jackknife IV estimate on the relationship between type II error rates
and diagnosis rates, shown in Panel B of Figure 5. This relationship compares diagnosis and false negative
rates, D; and FN;. Details on how we calculate this slope are given in Figure 5. The benchmark sample
generating results in Figure 5 uses observations from all stations. Stability results from this benchmark (full)
sample are shown in Panel A; results from an alternative sample restricted to 44 stations with statistical evidence
of quasi-random assignment are shown in Panel B. Appendix A.2.2 provides further details on how we select
the 44 stations with evidence of quasi-random assignment. In each panel, we recalculate the IV estimate from
Equation (A.9), varying the number of sets of patient characteristics we use as controls. We use 10 possible
sets of patient characteristics, altogether composed of 77 variables, that are described in Section 4.4. Therefore,
each panel summarizes 2'° = 1,024 different regression specifications. On the x-axis of each panel, we vary the
number of patient characteristic types that we control for. For x-axis values between 0 and 10 (the maximum),
we run more than one regression (10 choose x) and collect the slope statistic in each specification. In the figure,
we show the mean slope as a solid line and the minimum and maximum slopes as dashed lines.
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Figure 7: Optimal Diagnostic Threshold
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Note: This figure shows how the optimal diagnostic threshold as a function of skill & and preferences 8 with
iso-preference curves for § = 6,8, 10. Each iso-preference curve illustrates how the optimal diagnostic threshold
varies with the evaluation skill for a fixed preference, given by Equation (7), using v = 1.781 estimated from
the model. Dots on the figure represent the empirical Bayes posterior of @ (on the x-axis) and g for each
radiologist, and the corresponding optimal diagnostic threshold 7 (a,3;V) (on the y-axis) for each radiologist.
The empirical Bayes posteriors are the same as those shown in Figure A.5. Details on the empirical Bayes
procedure are given in Appendix A.6.3.
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Figure 8: Heterogeneity in Accuracy
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Note: This figure shows the relationship between a radiologist’s empirical Bayes posterior of her accuracy
(@) on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of the
radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate a
chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that the
radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from the usual regression. The dots are the median values of the variables on the y-axis within
each bin of a. 30 bins are used. Appendix Figure A.7 shows the corresponding plots with preferences (8) on
the x-axis.
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Figure 9: Counterfactual Policies
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Note: This figure plots the counterfactual welfare gains of different policies. Welfare is defined in Equation (9)
and is normalized to O for the status quo and 1 for the first best (no false positive or false negative outcomes).
The x-axis represents different possible disutility weights that the social planner may place on false negatives
relative to false positives, or 8°. The first policy imposes a common diagnostic threshold to maximize welfare.
The second policy also imposes a common diagnostic threshold to maximize welfare but incorrectly considers
implications under the assumption that radiologists have the same diagnostic skill. The third policy trains
radiologists to the 25th percentile of diagnostic skill (if their skills are below-median) and allows them to
choose their own diagnostic thresholds based on their preferences.
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Table 2: Estimation Results

Panel A: Model Parameter Estimates

Ha 0.897

(0.038)
Oa 0.332

(0.010)
Hp 2.080

(0.056)
o] 0.128

(0.006)
A 0.021

(0.000)
v 1.781

(0.020)
K 0.196

Panel B: Radiologist Primitives

a B T
Mean 0.839 8.067 1.361
10th percentile  0.720 6.790 1.270
25th percentile  0.793  7.339 1.313
Median 0.858  8.002 1.360
75th percentile  0.904  8.723 1.409
90th percentile  0.934  9.428 1.453

Note: This table shows model parameter estimates (Panel A) and radiologist primitives implied by the model
parameters (Panel B). Hyperparameters p, and o, determine the distribution of radiologist diagnostic skill «,
while hyperparameters pg and o determine the distribution of radiologist preferences S (the disutility of a
false negative relative to a false positive). In the baseline model, we assume that @ and S are uncorrelated.
k is the proportion of chest X-rays at risk for pneumonia. A is the proportion of at-risk chest X-rays with
no radiographic pneumonia at the time of exam but subsequent development of pneumonia. v describes the
prevalence of pneumonia at the time of the exam among at-risk chest X-rays. Standard errors are shown in
parentheses. « is calibrated as the proportion of patients with O probability of pneumonia on a random forest
model of pneumonia based on rich characteristics in the patient chart. Model parameters are described in

further detail in Section 5.
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Appendix

A.1 Sufficiency of Skill-Propensity Independence

We first define the notion of probabilistic monotonicity and a sufficient condition for the judges design
to recover a well defined LATE.

Definition (Probabilistic Monotonicity). Consider a set of judges J. There exists probabilistic
monotonicity among judges in g if, for any j and j' in [,

Pr(d;;j=1) >2Pr(d;»=1) or Pr(d;; =1) <Pr(d;» = 1), foralli. (A.1)
J J J J

Condition A.1 (Skill-Propensity Independence). There exists a function that assigns a skill a; to
each judge j € J such that (i) probabilistic monotonicity holds in all sets J< = {j €J aj= a};
(ii) P; is independent of a;.

In this section, we detail proofs of the sufficiency of Condition A.1 for the judges-design 2SLS
estimand to represent properly weighted treatment effects. Condition A.1 is a weaker version of the
standard (strict) monotonicity assumption of Imbens and Angrist (1994), stated in Condition 1(iii).
We also show that Condition A.1 implies the “average monotonicity” concept of Frandsen et al.
(2019).

We consider a population of cases 7 and a population of agents J. Assignment to agents drives
treatment decisions; we denote the potential treatment decision for case i € 7 under any agent j € J
by d;; € {0,1}. While we consider Condition A.1 in place of Condition 1(iii), we assume the other
conditions for IV validity, namely Condition 1(i)-(ii). Specifically, potential outcomes for a given
case depend only on treatment decisions y;; = y; (d;;) and potential outcomes and potential treatment
decisions are independent of agent assignments. As in the paper, we denote the assigned agent for case
i as j (i), and we denote an agent j’s treatment propensity as P; = Pr(d;; = 1| j (i) = j). For each case
i, we observe only one decision and one outcome: d; = };; 1(j = j (i) dij and y; = 23, 1(j = j (i) yij =
i (d;).

We adopt the concept of monotonicity-consistent skill ¢; such that Pr(d;; = 1) is characterized
for all i by a; and P;. The definition of monotonicity-consistent skill is such that, for any j and j’

with a; = a;, probabilistic monotonicity holds, or
Pr(d;; =1) >Pr(d;j»=1) or Pr(d;; =1) <Pr(d;y» = 1), forall i.

Therefore, if both @; = aj» and P; = Pj, then we must have Pr(d;; = 1) = Pr(d;;» = 1), for all i. We
denote the probability of treatment for case i, conditional on ;) = @ and P;(;) = p, as m; (a,p). We
work with the above concept of probabilistic monotonicity. Since probabilistic monotonicity is a
generalization of strict monotonicity, all proofs will also apply to the more specific case of skill being

defined by strict monotonicity.
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A.1.1 Proper Weighting of Treatment Effects in Estimand

Following Imbens and Angrist (1994), we consider a discrete distribution of a; € A and P; € P.
This setup reduces notation but is without loss of generality. As a first object, we define ¢ (p’,p) =
E; [yi|Pj(l-) = p’] —E; [yi|Pj(l-) = p]. Unlike the standard case, we first start with an infinite popula-
tion of judges at each p € P in order to exploit Condition A.1. We turn to a finite set of judges and
convergence properties as this set grows in Appendix A.1.2. §(p’,p) is the difference in average out-
comes comparing cases assigned to an agent with P; = p” with those assigned to an agent with P; = p;
this object is identified from data. We also define the treatment effect for case i as y; (1) — y; (0), which
is not identified from data, since only one of the potential outcomes y; (d;) is observed.

Proposition 5. Under Condition 1(i)-(ii) and Condition A.1, for p’ > p, § (p’,p) is a proper weighted
average of treatment effects, or E; [w; (y; (1) = y; (0))], where w; > 0 for all i.

Proof. By iteration of expectations, we have

o(p.p) E; | yil Pioy =p'| - Ei | yil Pjoy = p]
= Eol|Ei[vilajo =Py =p'||Pjoy = 1]

—Eq | Ei | yil @) = @, Py = p|| Pjiy = p| -

By Condition A.1, the distribution of «; is the same for P; = p” as it is for P; = p. Thus,
§(p'.p) = Ea |E; | yil @y = @.Pjiy = P’ - Ei | vil @jiiy = . Pjiy = p] | -
Condition 1(i)-(i1) and further operations yield

6(p'.p) = Eq|Ei[(m; (a.p") = mi (e, p)) (yi (1) = y: (0))]]
E;i[Eq [(mi (a,p") = mi (@,p)) (yi (1) = y; (0))]]

= Ei[w; (yi (1) =y (0)],

where w; = Eq [7; (a,p’) — i (a,p)] is the incremental probability of treatment for case i between
assignment to agents with P; = p’ and assignment to agents with P; = p. From the definition of

probabilistic monotonicity in Condition A.1, w; > 0 for all i. O

Note that §(p’,p) is the reduced-form numerator of a Wald estimand 61(,‘,{’5) which identifies

the average treatment effect for compliers induced into treatment when reassigned from judges with
P; = p to agents with P; = p’. Next, we consider the IV estimand. As in the standard case, the IV

estimand is a weighted average of the Wald estimands, with weights summing to 1.

Proposition 6. The judges-design IV estimand,

v _ Cov i Pin)
Cov (di’Pj(i)) ’
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is a weighted average of Wald estimands 6 (p’,p) [(p’ — p), where the weights are non-negative and

sum to 1.

Proof. Index p as py for k = 1,...,K, such that py > py for k' > k. Denote A = Pr(Pj(;) = px). The

IV estimand is given by
v _ Cov (i Piy)
Cov (dl,P](l))
_E [vi (Piy~ Eldi])]
E [d Py = ]

We will proceed by iterating expectations in the numerator and the denominator. In the numerator,

J(l | J@) _pk]

Mw

E; |yi (Pjiy—E
k=1

By definition, E; [y,| i) = pk] 6 (pr.p1)+E; [y,l i) = pl] Therefore, the numerator is equal to

K
Z@E ¥il Piioy = 1] (P = E[dil)+ ) 46 (piopt) (i — E[di])

k=2

0
Since 6 (px,p1) = Zi,zzé(pk/,pk/_l), we can also state the numerator as

K k K
DD 5 prpe-) (x—Eldi]) = D6 (propi- ozakf(pk»— [di]).
k=2

k=2 k'=2 k'=k

Similar operations in the denominator gives

S S (ProPr-1) X_i Ak (P — E [di])

v _
pes 2 Pk = Pr=t) Doy A (pr — E[di])
Thus,
i 0 (Pk> Pr— 1)’
= Pk = Pk-1
with weights
Q= (P = Pk=1) i Ak (P — E [d;])

S (e = pr-1) XK Ak (prr — E[d])

O

By construction, the weights € > 0, and Z,’fzz Q = 1. Since € is proportional to (pr — px-1),

Wald estimands corresponding to larger first-stage changes in treatment propensity receive higher

A3



weights. The second component of ; gives more weight to Wald estimands closer to the center of
the distribution of P.

A.1.2 Consistency of the Estimator

In practice, the judges-design estimator makes use of a finite number of judges. We now consider a
finite set J of judges and analyze the convergence properties of the judges-design estimator as || /||
increases to infinity.

We begin with the assumption that an infinite number of cases are assigned to each judge j €
J, denoting the probability of assignment to judge j as p; = Pr(j (i) = j). We partition the set by
propensity to treat, denoting J, = { JEJ: P;j= p}, such that J = (U, Jp. We denote the expected
outcome, conditional on assignment to J,, as E; [y,-l j@)e Jp]. As in Appendix A.1.1, we denote

the corresponding expected outcome in an infinite population of agents J, = { JEY :Pj= p} as
E; [ yil P; = p].

Assumption A.1. Suppose that an infinite number cases are assigned to each agent j in a finite

sample of agents, J. Let J, = { JEJ:Pi= p} and assume that as ||J|| approaches infinity, so does
”Jp”for all p.

Lemma 7. Under Assumption A.1, E; [yilj (i) e Jp] converges in probability to E; [y,-l Pjiy = p] as
|| J|| approaches infinity.

Proof. By iteration of expectations, the expectation conditional on assignment to J,, is

. 1(a;: =a) E; v =a,P-- —
Ei [yll,](l)E,]p] _ Z Z_IGJP Pj ( J ) i [yll (i) §10) p] .
aeA Zjejpp]

By the law of large numbers, as HJPH — oo, conditional on P; = p, the sample probability of

assignment to an agent with @; = @ converges to the population probability of assignment to an agent

with a;:
Zjejppjl((lj =oz)
=Pr(a;; =a|Pj; =p).
|75 || —e0 Zjejp Pj ( J(@) | J@) )
Thus,
||Jlilrln E; [)’i|j(i) € Jp] = Z Pr(a;u) = afle(l-) =p)E; [)’i|C¥j(i) = o, P = p]
P acEA

E; [ yilPioy=p].
O

Similarly, we can describe the convergence properties of the sample reduced-form estimate 6 (p’, p) =
E;[yilj () € Iy ] = Ei [ yil j (i) € Jp ).
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Lemma 8. Under Assumption A.1, for all p and p’ in P, 6 (p’,p) converges in probability to § (p’,p)
as ||J|| approaches infinity.

Proof. Under Lemma 7,

”lwl Ei[yiliG)ed,| = Eil|yilPio=p];
p—)oo
”lﬂl E[yili)edy] = EilyilPio=p'].
P —00

Under Assumption A.1, ||Jp|| and ||Jpr“ both approach infinity as ||J|| approaches infinity. Then
applying the continuous mapping theorem, we have

ﬁw16@4ﬂ s(p'.p).

O

We now consider the 2SLS estimator in a finite sample of agents. For now, we continue to assume

an infinite sample of cases. Define the finite-judge IV estimand as

v Eilyi(Pro —E L] @ € J]
T Edi(Pio~Eld)]j@) e T]

Lemma 9. Under Assumption A.1, B}V converges in probability to B'V as ||J|| approaches infinity.

Proof. Let Ay =Pr(Pj) = pk|ji) e J)= Y.jes Pj1(Pj = pi). Taking a similar approach as in Propo-
sition 6, we can show that

ZQ S Pk Pk- 1)’

= Pk — Pk-1

where

(P = Pk=1) Zpoei Ak (P — E [d;])
S (P = Prr—1) Do Ak (prr — E [d;])

By the law of large numbers, lim ;| Ak = Ax. From Lemma 8, lim |- 8 (p".p) = 5 (p’.p).

O =

Applying the continuous mapping theorem, we have

lim BV =gV,

I7]]—c0

O

We finally consider a finite sample of cases i = 1,...,N assigned to a finite sample of judges

J = J; j (i). Denote the set of cases assigned to j as I;. The IV estimator is

Xy (P - El41))
S di (P - 1))

BN =

B
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where ﬁj is a consistent estimator of P;, such as the jackknife instrument, and Eld;] = # Zf\i 1 d;i.

Proposition 10. Consider that both N and ||J|| approach infinity. Assume that ||I]|| approaches
infinity for all j € J, where I; = {i : j (i) = j} is the set of patients assigned to radiologist j. Assume
that ||Jp” approaches infinity for all p. Then

\/N(ﬁ{VYJ - ’V) L NO.3),

E[£2(d;-E[d;])*]

v — J_pIV(g. _ .
Cov*(di - Pys)) ,and g; = y;— E[y;|-p"" (d; - E|d;]).

where X =

Proof. First consider a finite sample J, but that N approaches infinity such that ||I]|| approaches
infinity for all j € J. Then Imbens and Angrist (1994) follows, and

5 A d ~
VN (B, =B ) 5 N (0.8),
E|e? ,@i-Eldili()er)?]

. _ L . o/ _’\IV L . o/
cor(anpen > ad ey =yi—Elyilj(@) € J1= ;" (di = E[di] j (i) € J]).

As ||J|| approaches infinity, such that ||Jp || approaches infinity for all p, and maintaining an infinite

where £ =

sample /; for each j, [%V LN B from Lemma 9, and £; %, ¥ from the continuous mapping theorem.

So under the assumed asymptotics,

lim «/N( Ly —5”) 4 NO,3).

I/ || —e0

A.1.3 Average Monotonicity (Frandsen et al. 2019)

We finally consider how Condition A.1 relates to “average monotonicity” in Frandsen et al. (2019).

We first define average monotonicity among a set of judges J.

Definition (Average Monotonicity). Consider a population of cases I. Average monotonicity exists
in a set of judges J if, for alli € T,

ij (Pj —ﬁ) (dij —Bi) Z 0,
jeJ
where p; = Pr(j (i) = j), P= ¥jc; pjPj, and D; = ¥ jc; pj Pr(dij = 1).

We show that in a large population of judges, Condition A.1 implies average monotonicity. We
begin by showing that under Condition A.l in a infinite population of judges, the probability of
treatment increases when randomly reassigning any case i from a judge with propensity p to a judge

with propensity p’ > p.
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Lemma 11. With an infinite population of judges at each propensity p € P, Condition A.l implies
that for all i and any pair p’ and p in P such that p’ > p,

Ej[dij|Pj=p'] > E; [ dyj| P; = p].
Proof. Iterating expectations, for case i and some p € P,

Ej|dij|Pj=p| = Eo|Ej|dij|e;=a.P;=p]|P;=p]
E, [7i(a.p)| P} = p|
Ey[mi(a,p)],

where the second equality makes use of the definition of skill-consistent monotonicity in Condition
A.1, and the third equality invokes independence between skill and propensities in Condition A.1.

For p’ > p, n; (a,p’) = n; (@, p) for all i and «. Therefore, for p” and p in P such that p’ > p,
Ej[dij| Py = p'] 2 E; [ dyj| P; = p].
i

Proposition 12. With an infinite population of judges at each propensity p € P, Condition A. 1 implies

average monotonicity.

Proof. We restate the expression in the definition of average monotonicity in a population of judges:
1|00 2=

5 -7

where the second equality makes use of the fact that E; [Bi (Pj - ﬁ)] =0.
Index p € P by k = 1,...,K, and define Ax = Pr(P; = py). Iteration of expectations yields

K p—
> AE; [(P,- —P) dij
k=1

K
Z/lk (pk—F) Ej [dij|Pj :pk] .
k=1

E; [(Pj—ﬁ) d,-j] P; :Pk]

Now consider P = inf<p|p > ﬁ). By Lemma 11, for all 7, E; [dij’P- :pk] > E; [dl-j|Pj = f’] for

AT



any py > P, while E; [dij|Pj :pk] <E; [d,-j|Pj = ﬁ] for any py < P. Thus, for all i,

E; [(Pj—ﬁ) dij] = 2k (Pk—?) Ej | dij| Py = pi

\%

D TP

Ak (Pk—ﬁ)Ej [ dij| Pj = P]

~
Il
—

K
= Ej[dij|Pf=ﬁ]Z/1k(Pk—F)
k=1

I
e

A.2 Quasi-Random Assignment

A.2.1 Balance Between Radiologist Groups

This appendix details the construction of Tables 1 and A.2. In the first step, we categorize each
radiologist as having either above- or below-median risk-adjusted diagnostic rates and as having either
above- or below-median risk-adjusted type II error rates. In particular, we calculate radiologist risk-
adjusted rates of diagnosis and type II error as fj 4 and fjf ", respectively, as described in Appendix
A.6.1.

In the second step, we form a predicted diagnosis and a predicted type II error, based on linear
regressions with sets of patient characteristics as predictors. We consider six sets of patient charac-
teristics: demographics (14 variables), prior utilization (3 variables), prior diagnoses (32 variables),
vital signs and WBC count (24 variables), ordering characteristics (4 variables), and all previously
listed characteristics (77 variables). In other words, for patient characteristics X¢, indexed by ¢, we

run the following linear probability models:

di = X{phe+el; (A2)
fri = X¢pC+el. (A3)

We then form predictions dAl? = X¢ B¢ and e =X¢ BYe.

In the third step, we compute average actual and predicted diagnoses and type II errors at the ra-
diologist level. Specifically, for each measure x; € {d,», fni, {cff P }C} , we average residual measures
for patients assigned to each radiologist j: X; = HIjH_l Dier; X;, where I; = {i : j (i) = j} is the set of

patients assigned to radiologist j. In Tables 1 and A.2, we display the respective patient-weighted
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average and standard deviation of x; for radiologists belonging in each group J:

Zje] ”IJHEJ
o= el (A4)
! e 0]l
. 0 e Il G- 15)° (A.5)
J =1 00

We also display the difference between the averages of two groups ,u§2 - pf} where J; and J, corre-

spond to a below-median and above-median pair of groups. For inference on this difference of means,

2 2
we calculate a standard error of \/ P (o-}‘l ) +1)7! (o’}‘2 ) , which focuses on variation at the

radiologist level.

A.2.2 Stations with Quasi-Random Assignment

In a complementary approach, we first identify stations with evidence of quasi-random assignment
based only on patient age and then assess robustness of this categorization by utilizing other “hold-
out” patient characteristics. For the latter assessment, we predict diagnosis and type II error using
the full matrix of 77 patient characteristic variables X; in Equations (A.2) and (A.3). Therefore, in
each station, we separately assess whether three patient-level measures appear as good as randomly
assigned to radiologists: age; predicted diagnosis; and predicted type II error.

For each of these assessments, we use two methods: a parametric F-test of the joint statistical
significance of radiologist fixed effects in each station; and a permutation (“randomization inference”)
test of whether variation in radiologist fixed effects is larger than what would be obtained under

random assignment.

1. F-test. For each measure x; € {Agei,cfi,jz,-} and for each station ¢, we regress observations in
{i: €(i) = £} as follows:
xi =Ty, + {ﬁi) +&7, (A.6)

Clustering at the radiologist level, we then assess quasi-random assignment of x; in station £
by an F-test of the joint significance of the set of fixed effects for the set of radiologists J, at

station ¢, or { x} .
é} JeJe

2. Randomization Inference. For each measure x; € {Agei, cfi, jzl-} and for each station ¢, we form
residual x7 = x; — T,-6A§ , where 5}5 is estimated from a station-specific regression x; = T;6; +n7.

We then regress these residual measures on radiologist fixed effects, as
¥ #X X
X =S e

and measure the case-weighted standard deviation of estimated fixed effects, similar to Equa-
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tion (A.5):

o —x \2
el Zies 4l (fj‘ —61,,,)
g, =
N S T

>

-=X
where &, = (s, 1
gists in station ¢, keeping the number of observations assigned to each j € J, fixed. Based on

.fjx ) / (Z_ie I ||I]||) . Next, we randomly assign the residuals to radiolo-

these random placebo assignments j (i;r), for each i in each iteration r, we re-estimate placebo
fixed effects g—cj"(l.;r) and we re-calculate the patient-weighted standard deviation of these fixed
effects O'Zf;r. We repeat this for iterations r = {1,2,...,100} and count the number of iterations
for which a'zf; . > 0,. This count is the randomization inference p-value for measure x and
station €.

First using age as the patient characteristic of interest, we identify stations that appear to feature quasi-
random assignment. In Figure A.1, we find a high degree of concordance across stations between p-
values from the F-test and from the randomization inference, based on age. Forty-four stations pass
their F-tests with a p-value greater than 0.10, while 52 stations pass their randomization inference
tests with a p-value greater than 0.10. The former set of stations is a strict subset of the latter set, so
that 44 stations pass both their F-tests and their randomization inference tests. Aside from the mass
of stations with a p-value of 0, the remaining distribution of p-values from both tests appears uniform.

We then test whether “hold-out” characteristics continue to suggest quasi-random assignment
among the 44 stations selected based on patient age. In Figure A.2, we show the distribution of F-test
and randomization inference p-values among these 44 stations, based on the 77 patient characteristic
variables projected onto predicted pneumonia diagnosis and predicted type II error. We find that the

p-values continue to be roughly uniformly distributed with little mass at the p-value of 0.

A.3 Graphical Presentation of IV Estimates

In our descriptive analysis, we evaluate the relationship between radiologist effects on diagnostic
decisions d; and type Il errors fn;. This evaluation corresponds to the following 2SLS first-stage and

reduced-form regressions:

di = Z;H+Xim + Ty +er; (A7)
fni Z:oH+Xim+ Tiya +ea, (A8)

where Z; is potentially a vector-valued instrument depending on the assigned radiologist j (i) assigned
to case i, X; is the full vector of 77 patient characteristic variables described in Section 4.1, and T is
a vector of time-station interactions.

Define Z, X, and T as matrices of stacked vectors Z;, X;, and T}, respectively; similarly define

d and fn as vectors of d; and fn;, respectively. Then the standard 2SLS estimator corresponding to
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Equations (A.7) and (A.8) is
A=(X'P,X)"'X'P,fn, (A.9)

where X = [dXT|, Z=[ZXT|, and P, = Z (Z’Z)_1 Z’. Under Assumptions 1 and A.1, A is a

consistent estimator of A in the following second-stage relationship:
fl’l,' = Ad, +X,'ﬁ+ T,'5 + €.

We estimate two versions of A: A[V, which uses radiologist dummies as instruments, and A JIVE,
which uses the jackknife instrument defined in Equation (4).
To show Ay graphically, we estimate radiologist fixed effects in the following reduced-form and

first-stage equations corresponding to Equations (A.7) and (A.8):

d;
Sni

& oy +Xim + Tiyr + e

& o+ Xim+ Tiya + &2,

This yields £ j and & ; for each j.

To each observation i, we assign values & ; = f 1,jG) and & = fz’ j@)- We residualize & ; and
&.; by X; and T;, calling the respective residuals §i"’i and §;’i. We average the residuals within each
radiologist:

E j = f l’
= o

i€l;

By = 26

i€l

We finally add a constant to all .;_51’ ; to ensure that the patient-weighted average of El’ ; is equal to
the observed overall diagnosis rate; we similarly add a constant to all Ez, ; to ensure that the patient-
weighted average of Ez, ; is equal to the observed overall type II error rate.?

To create the visual IV in Figure A.3, we plot each point with g_fl, ; on the x-axis and g_fz, ; on the
y-axis. The patient-weighted slope of the line fitting these points is equal to 37y using radiologist
dummies as instruments for d;. To create the binned scatter plot in Panel A of Figure 5, we first
residualize fn; by X; and T;, calling the residual f n;. We then divide the data at the patient level into
bins of ff’i, and we plot the mean fii for each bin on the x-axis and the mean fn; for each bin on the
y-axis.

To show A,y g graphically, we use the jackknife instrument,

Zl i El(l)

(l)“ [E3)

22Without adding these constants, the patient-weighted averages of El’ jand 22’ ;j would both be 0.



and estimate the first-stage regression,
dl' = G’Zi +Xl'7'[' +Ti’y +¢&;,

saving our estimate of «. We also residualize Z; by X; and T;, denoting this residual as Z:. To create
the binned scatter plot in Panel B of Figure 5, we divide the data at the patient level into bins of Z,

and we plot the mean @Z; for each bin on the x-axis and the mean fn: for each bin on the y-axis.

A.4 Informal Tests of Monotonicity

Under monotonicity, when comparing a radiologist j* who diagnoses more cases than radiologist j,
there cannot be a case i such that d;; = 1 and d;;» = 0. In this appendix, we conduct informal tests
of this assumption, along the lines of tests in Bhuller et al. (2016) and Dobbie et al. (2018). In the
judges-design literature, these monotonicity tests confirm whether the first-stage estimates are non-
negative in subsamples of cases. We first present results of implementing these standard tests. We
then draw relationships between these tests, which do not reject monotonicity, and our analysis in

Section 4, which strongly rejects monotonicity.

A.4.1 Results

We define subsamples of cases based on patient characteristics. We consider four characterstics:
probability of diagnosis (based on patient characteristics); age; arrival time; and race. We define two
subsamples for each of the characteristics, for a total of eight subsamples: (i) above-median age;
(i1) below-median age; (iii) above-median probability of diagnosis; (iv) below-median probability
of diagnosis; (v) arrival time during the day (between 7 a.m. and 7 p.m.); (vi) arrival time at night
(between 7 p.m. and 7 a.m.); (vii) white race; and (viii) non-white race.

The first testable implication follows from the following intuition: Under monotonicity, a radiol-
ogist who generally increases the probability of diagnosis should increase the probability of diagnosis
in any subsample of cases. Following the judges-design literature, we construct leave-out propensi-
ties for pneumonia diagnosis and use these propensities as instruments for whether an index case is

diagnosed with pneumonia. In other words, for our baseline jackknife instrument, we construct

GNP
J i€l \i
where I; = {i: j(i)=j}. This leave-out instrument for radiologist j averages diagnostic decisions
over other cases assigned to j, excluding the index case i.
In each of the 12 subsamples, defined by some patient characteristic m (e.g., age) and binary indi-
cator x (e.g., older vs. younger), we estimate the following first-stage regression, using observations
in subsample £y ,,):

di = e Z; + Xittem + Tivaem + &i. (A.10)
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Consistent with our quasi-experiment in Assumption 1, we control for time categories interacted with
station identities, or T;. We also control for patient characteristics X; as in our baseline first-stage
regression in Equation (A.7). Under monotonicity, we should have 7y ,, > 0 for (m, x).

The second testable implication is slightly stronger: Under monotonicity, an increase in the prob-
ability of diagnosis by changing radiologists in any subsample of patients should correspond to in-
creases in the probability of diagnosis in all other subsamples of patients. To capture this intuition,
we construct “reverse-sample” instruments that exclude any case with the same characteristic value x

of some characteristic function m:

J 15\ L i€\ Lix,m)

J

pC R d;,

where 1y ,,) = {i : m(i) = x} is the subsample of observations such that the characteristic value of m
is x. We estimate the first-stage regression, using observations in subsample J( ,,):

Z—(m,x) +Xi7Tx,m+Ti')/x,m+8i' (A1)

di = axmZ;;)

As before, we control for patient characteristics X; and time categories interacted with station dum-
mies T;, and we check whether Txe.m = 0 for all (x,m).

In Table A.4, we show results for these informal monotonicity tests, based on Equations (A.10)
and (A.11). Panel A shows results corresponding to the standard jackknife instrument, or 7y ,, from
the Equation (A.10). Panel B shows results corresponding to the reverse-sample instrument, or 7y,
from Equation (A.11). Each column corresponds to a different subsample. All 16 regressions yield

strongly positive first-stage coefficients.

A.4.2 Relationship with Reduced-Form Analysis

At a high level, the informal tests of monotonicity in the judges-design literature use information
about observable case characteristics and treatment decisions, while our analysis in Section 4 exploits
additional information about potential outcomes. In this subsection, we will clarify the relationship
between these analyses.

We begin with the standard condition for IV validity, Condition 1. Following Imbens and Angrist
(1994), we abstract from covariates, assuming unconditional random assignment in Condition 1(ii),
and consider a discrete multivalued instrument Z;. In the judges design, the instrument can be thought
of as the agent’s treatment propensity, or Z; = Pj;) € {p1,p2,...,pk }, which the jackknife instrument
approaches with infinite data. We assume that p; < py < --- < pg. We also introduce the notation
d; (Z;) € {0,1} to denote potential treatment decisions as a function of the instrument; in our main
framework, this amounts to d;; = d; (p) for all j such that P; = p.

Now consider some binary characteristic x; € {0,1}. We first note that the following Wald esti-
mand between two consecutive values px and px41 of the instrument characterizes the probability that

x; = 1 among compliers i such that d; (pr) > d; (pr+1):
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E[xidi|Zi = pr1] — E [ xidi| Z; = pi]
E[di|Zi = px1] - E[di| Zi = pi]
Since x; is binary, this Wald estimand gives us Pr(x;|d; (px+1) > di (px)) € [0,1].
Under Imbens and Angrist (1994), 2SLS of x;d; as an “outcome variable,” instrumenting d; with

= E[xi|d; (pr+1) > di (pr)].

all values of Z;, will give us a weighted average of the Wald estimands over k € {1,...,K — 1}. Specif-

ically, consider the following equations:

xid; = Axdi-l-l/t;c; (A12)
d; a*Z;+v}. (A.13)

The 2SLS estimator of A* in this set of equations should converge to a weighted average:
K-1
A* = Z Qi Pr(xi| di (pk+1) > di (pi)),
k=1

where weights . are positive and sum to 1. Therefore, we would expect that A* € [0,1].

The informal monotonicity tests we conducted above ask whether some weighted average of
Pr(d; (px+1) > d; (pr)| x;) is greater than 0. Since Pr(x;) > 0 and Pr(d; (px+1) > d; (px)) > 0, the two
conditions—Pr (d; (pr+1) > d; (pr)| x;) > 0 and Pr(x;| d; (pr+1) > d; (px)) > O—are equivalent. There-
fore, if we were to estimate Equations (A.12) and (A.13) by 2SLS, we would in essence be evaluating
the same implication as the informal monotonicity tests standard in the literature.

In contrast, in a stylized representation of Section 4, we are performing 2SLS on the following

equations:

fnl- = Adi+ui; (A14)
di = aZ;+v;. (AIS)

Recall that fn; = 1(d; = 0,s; = 1) = 5; (1 — d;). Following the same reasoning above, we can state the

estimand A as follows:
K-1

A=— Z Qp Pr(Sildi (Pk+]) > d; (pk)),
k=1

which is a negative weighted average of conditional probabilities. This yields the same prediction
that we stated in Remark 3, i.e., that A € [-1,0]. Weaker implications that we consider in Appendix
A.1 would leave this prediction unchanged, as in Remark 4.

More generally, we could apply the same reasoning to any binary potential outcome y; (d) € {0,1}
under treatment choice d € {0,1}. It is straightforward to show that, if we replace fn; with y;d; in
Equation (A.14), the 2SLS system of Equations (A.14) and (A.15), would yield

K-1

A=) QPr(y; (Dld:i(pr+1) > di(pr)) € [0,1].
k=1
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Alternatively, replacing fn; with —y; (1 — d;) in Equation (A.14) would imply

K-1
A= Z Qi Pr(yi (0)ld; (pr+1) > di (px)) € [0,1].
k=1

How might we interpret our results together in Section 4 and in this appendix? We show above that
the informal monotonicity tests are necessary for demonstrating that binary observable characteristics
have admissable probabilities among compliers. On the other hand, our analysis in Section 4 strongly
rejects that a potential outcome y; (0) = s; has admissable probabilities among compliers. Observable
characteristics may be correlated with s;, but s; is undoubtedly related to characteristics that are
unobservable to the econometrician but, importantly, observable to radiologists. The importance of
these unobservable characteristics will drive the difference between our analysis and the standard
informal tests for monotonicity, and it implies that an analysis based on a potential outcome should

generally be stronger than an analysis based only on observable characteristics.

A.S Optimal Diagnostic Threshold

A.5.1 Derivation

We provide a derivation of the optimal diagnostic threshold, given by Equation (7) in Section 5.1. We
start with a general expression for the joint distribution of the latent index for each patient, or v;, and
radiologist signals, or w;;. These signals determine each patient’s true disease status and diagnosis

status:

l(Vl' >V);

Si
dij =1 (Wij > Tj) .
We then form expectations of type I error rates and type Il error rates, or FP; = Pr(d;; = 1,5, = 0)

and FN; = Pr(d;; =0,s; = 1), respectively. Consider the radiologist-specific joint distribution of
(wij,vi) as f;(x,y). Then

Tj +00
FN]‘ Pr (W,’j <Tj,V> 7) =/ / fj(x,y)dydx;
—o0 JV

+00 v
FP; Pr(w;ij > 7j,vi <) =/ / fi(x,y)dydx.
7 —0co0

The joint distribution f; (x,y) and v are known to the radiologist. Given her expected utility function
in Equation (6),
E [uij] == (FP;+B;FNj).

where £; is the disutility of a type II error relative to a type I error, the radiologist sets 7; to maximize

her expected utility.
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Denote the marginal density of w;; as g;. Denote the conditional density of v; given w;; as

filx)= f; 5)Exy)) and the conditional cumulative distribution as F; (y|x) = f_ yoo fi(tlx)dr.

The first order condition is

OFN;

67']'

8E [uij] 8FPJ‘
T - o1 _IBj
Tj 7j

fi (7,y) dy = B; / fi (mi,y) dy

\ﬂg\

b (vl77) g (7)) dy—ﬁj/vmfj (vl7j) g (7j) dy
7 (VI7) 8 (7)) = B; (1= F; (VI75)) &5 (7)

1l |
SIS

The solution to the first order condition TJ*.‘ satisfies

F(7177) = 1fj[;j' (A.16)

Equation (A.16) can alternatively be stated as

gD (v17) |
1-F(7I7)

This condition intuitively states that at the optimal threshold, the likelihood ratio of a type I error over
a type Il error is equal to the relative disutility of a type II error.

As a special case, when (wi j,vi) follows a joint-normal distribution, as in Equation (5), we know
that v;[w;; ~ N (ajwij-,l —ajz.), or (vi —ajwl-j) /41 —ajz.|wl-j ~ N(0,1). This implies that F; (V| T]’.‘) =

() ((V— ajTJ’.‘) /A1 - asz.) . Plugging in Equation (A.16) and rearranging, we obtain Equation (7):
S_ [M_n2p-! (B
v— /1 a; ) ( I35, )

T (a).B85) = :

@y

In Section A.5.2, we verify that 9°E [ui j] / C')sz < 0at T;.‘ in a more general case, so T; is the optimal

threshold that maximizes expected utility.

A.5.2 Comparative Statics

Returning to the general case, we need to impose a monotone likelihood ratio property to ensure that

Equation (A.16) implies a unique solution and to analyze comparative statics.

A.16



Assumption A.2 (Monotone Likelihood Ratio Property). The joint distribution f;(x,y) satisfies

fi (x2,y2) . fi (x1,y2)
fi G,y fi(x,yn)

VX2 > X1,yY2 > yl,j.

We can rewrite the property using the conditional density:

fi (y2] x2) . fi (v2lx1)
filx2)  fi(lxr)

,sz > xl,yQ > yl’.]

That is, the likelihood ratio f;(y2|x2)/f; (y1]x2), for y» > y; and any j, always increases with x. In
the context of our model, when a higher signal w;; is observed, the likelihood ratio of a higher v;
over a lower v; is higher than when a lower w;; is observed. Intuitively, this means that the signal
a radiologist receives is informative of the patient’s true condition. As a special case, if f(x,y) is
a bivariate normal distribution, the monotone likelihood ratio property is equivalent to a positive
correlation coefficient.

Assumption A.2 implies first-order stochastic dominance. Fixing x, > x; and considering any

y2 > y1, Assumption A.2 implies

fi (v2lx2) fi (vl x1) > fj (vl x1) f5 (y1l x2). (A.17)

Integrating this expression with respect to y; from —co to y, yields

2 Y2
[ﬁ'(Y2|X2)ﬁ(y1|x1)dy1>[ £ (al ) £y Ol x2) .

Rearranging, we have
Ji(n2lx)  Fi(y2]x)
> sV Y2.
JiOnlx)) — Fi(y2lx1)

Similarly, integrating Equation (A.17) with respect to y, from y; to oo yields

+00 +00

fi (v2lx2) f; (vl x1) dyr > fi (v2lx1) f; (y1] x2) dy».
Y1 Y1

Rearranging, we have
1-F;j(yilx2) _ fi(nilx2)

1=F;(yilx1) g fi(lxr)’

Combining the two inequalities, we have

Vyi.

Fi(y|x1) > Fj (y]x2),Vy. (A.18)

Under Equation (A.18), for a fixed v, F; (V| 1) decreases with 7, i.e., dF; (v|7;) /07; < 0. We
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can now verify that

62E [l/tl'j]

a1?
J

aF; (v|7))

0.
aTj <

= (1+8))8 ()

*
— Tj=T:
Tj=T; I

Therefore, T; represents an optimal threshold that maximizes expected utility.
Using Equation (A.18) and the Implicit Function Theorem, we can also derive two reasonable

comparative static properties of the optimal threshold. First, T,’f decreases with f3;:

o 1 (51’1(7“./‘))_1 -0
6ﬁ] (1 +ﬁj)2 6Tj Tj=T} ‘
Second, TJ’.‘ increases with v:
ot} aF; (1)) -1
J — % J J
7 =4 (717 (—HT- ) 7
J ‘rj:‘r;f

In other words, holding fixed the signal structure, a radiologist will increase her diagnostic rate when
the relative disutility of false negatives increases and will decrease her diagnostic rate when pneumo-
nia is less prevalent.

We next turn to analyzing the comparative statics of the optimal threshold with respect to accu-

racy. For a convenient specification with single-dimensional accuracy, we return to the specific case

[ A )

Taking the derivative of the optimal threshold with respect to ; in Equation (7), we have

of joint-normal signals:

ot @‘l(ﬁ-’ )—V 1-a?

1+B; J
da; a2 [1-a?
J J

These relationships yield the following observations. When a; = 1, T; =v. When a; = 0, the radiolo-
gist diagnoses no one if 5; < 1?5:)‘7()?) (.e., T; = 00), and the radiologist diagnoses everyone if g; > I?C(DV()V)

(.e., T]’f‘ = —00). When «a; € (0,1), the relationship between TJ’.‘ and a; depends on the prevalence pa-

rameter v. Generally, if j; is greater than some upper threshold B, T;.‘ will always increase with a; if

Bj is less than some lower threshold j, T;f will always decrease with a;; if §; € (E,E) is in between

the lower and upper thresholds, T;? will first increase then decrease with ;. The thresholds for g;
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depend on v:

B - mm(ﬂ 1);

1—o®)
_ D)
ﬁ = max(?()(v),l).

The closer v is to 0, the less space there will be between the thresholds. The range of 3; between the
thresholds generally decreases as v decreases.

Intuitively, there are two forces that drive the relationship between T]’.k and a;. First, the threshold
radiologists with low accuracy will depend on the overall prevalence of pneumonia. If pneumonia is
uncommon, then radiologists with low accuracy will tend to diagnose fewer patients; if pneumonia is
common, then radiologists with low accuracy will tend to diagnose more patients. Second, the thresh-
old will depend on the relative disutility of type II errors, ;. If B; is high enough, then radiologists
with lower accuracy will tend to diagnose more patients with pneumonia. Depending on the size of

B;, this mechanism may not be enough to have T; always increasing in ;.

A.5.3 General Loss for Type II Error

While we consider a fixed loss for any type II error in our baseline specification of utility in Equation
(6), we show here that implications are qualitatively unchanged under a more general model with
losses for type Il errors that may increase for more “severe” cases. We consider the following utility
function:
-1, ifd;j=1,5;,=0,
uij=\1-Bih(v;), ifd;;=0,5;=1,

0, otherwise,
where £ (v;) is bounded, differentiable, and weakly increasing in v;.>> As before, s; = 1(v; > ¥), and
B; > 0. Without loss of generality, we assume h(v) = 1, so h(v;) > 1,Vv;.

Denote the conditional density of v; given w;; as fj (vi|w;;) and the corresponding conditional

cumulative density as F; (v;|w;;). Expected utility, conditional on w;; and d;; =0, is

Evl- [Ltij (Vi,dij = 0)|Wij] _ﬁjEvi [h(Vl)l (dij = O,Si = 1)|Wij]

8; / B0 (vl wig v

The corresponding expectation when d;; = 1 is

Ey, [uij (viodij = 1)|wis] = =Pr(si=0.ds; = 1|wy;)
+00

—/ fivilwip)dvi = [ fi(vilwij)dvi = 1.

4

23The boundedness assumption ensures that the integrals below are well-defined. This is a sufficient condition but not
necessary. The differentiability assumption simplifies calculation.
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The radiologist chooses d;; = 1 if and only if Ey, [ u;; (vi,dij = l)!wij] > Ey, [uij (vindij = O)| wij |, or

/ (1+,8jh(v,-))fj(vi|wij)dvi > 1.

If h(v;) = 1 for all v;, then this condition reduces to Pr(v; > V|w;;) = 1 = F; (v|w;;) > . In the

1
1+B;

general form, if the radiologist is indifferent in diagnosing or not diagnosing, we have

12/ (1+/3jh(vi))fj(vi|wij) dVi
=/ (1+ﬂj)fj(Vi|Wij)dVi+/ Bi (h(vi)=1) fi (vil wij) dvi
> (1+8;)(1 = Fi(¥|wij)),

as we assume h(v;) > 1. Now the marginal patient may have a lower conditional probability of having
penumonia than the case where h(v;) = 1,Vv;, as false negatives may be more costly.

Define the optimal diagnosis rule as

d (i) = 1 ( / (L4 By () f (vilwiy )i > 1))

Proposition 13 shows conditions under which the optimal diagnosis rule satisfies the threshold cross-

ing property.

Proposition 13. Suppose the following two conditions hold.:

1. For any wlfj > wij, the conditional distribution of v; given el.’j first-order dominates (FOSD) the
conditional distribution of v; given €;j, i.e., Fj(v,-lwlfj) < Fj(vilwij), Yvi,

2. 0 < Fj(vlw;j) < 1, Yw;;. W,-_}Lm_oon(ﬂwij) =1and Wi}i_)rr}rool*”j(ﬂwij) =0.
Then the optimal diagnosis rule satisfies the threshold-crossing property, i.e., for any radiologist j,
there exists Tj’.‘ such that

*

O, Wij <T.,
dj(wij) = !
1, Wij > Tj .
We first prove the following lemma.

Lemma 14. Suppose wlfj > wij. If Fj(v,~|wlfj) < Fj(vilwij), for each v;, then dj(w;;) =1 implies
di(w;;)=1.

Proof. Using integration by parts, we have
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/V+Oo (1+Bih(v) (fl (Vi|W£j) —Ji (Vilwij)) i

= (1+8;h(v)) (FJ (vi|wlfj) - F; (Vi|wij)) J_roo_‘/;mlgjh’(yi) (Fj(vi|wl.’j) —Fj(vl-|wij)) dv;
== (1) (5 (7wg,) = 71w - [ B ) (F il = F i) dvi > 0,

since Fj(vilwlfj) < Fj(vilwij), Yvi, h(v;) is bounded, A(v) = 1, and h’(v;) > 0.

We now proceed to the proof of Proposition 13. O

Proof. The second condition of Proposition 13 ensures that

+00
lim (1+B;h(v)) fi(vilwij)dvi < (1+MB)(1— lim Fj(¥|lw;;))=0<1;
wij o= J W;j——00
+0o0
liH}F (1 +th(vi))]§-(vi|wij)dvi > (1 +,BJ)(1 - IIII}_ Fj(ﬂlwij)) = 1+,8j > 1,
Wij o+ Jo Wi j—>+00

where M = sup h(v;). So Wi-}i_)m_oo dj(w;;) = 0 and Wijl_i_)mw0 dj(w;;) = 1. Using Lemma 14, the optimal
diagnosis rule satisfies the threshold-crossing property. In particular, the optimal threshold T; satisfies
+o0
‘/‘7 (1+8ih(v)) fivilt})dvi = 1.
O

Proposition 15. Suppose the conditions in Proposition 13 hold and f; is fixed. Then the optimal

threshold T; decreases with B;. In particular, TJ’.‘ — 400 as B; — 0" and T]’.k — —o00 as fj — +oo.
Proof. Consider radiologists j and j’with §; > g». Denote their optimal thresholds as T;.‘ and T;,,

respectively. We have f;w (1+B;h(v)) fivilt})dvi =1 and

+00

/ (1+,3j/h(vi))f}(V[|T;)dV[—/ (1+ﬁ_,~h(v,-))fj(v,~|7';)dv,~

== [ MO0l <0

So f;m (1+4Byh()) fiilt))dvi <1, or djr(1}) = 0. By Proposition 13, we know that 77 < 7.
Since TJ’.‘ decreases with g}, if bounded below or above, it must have limits as 3; approaches +oo

or 0*. We can confirm that this is not the case. For example, suppose TJ’.‘ is bounded below. The limit
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1
exists and is denoted by 7. Take §; > T(Vlz) Then

[ g0 soilean > 1+ )1 = F01)

F(I)

> (1+ T(Vlz))(l - F;(v|1)) =2~ F;(7|7).

The second inequality holds since T]’:‘ > 7. Take the limit and we have

+00

lim (l +,th(v,~)) f,'(V,'lT;)dVi >2-Fi(v|r) > 1.

Bj—+toeo Jp
This is a contraction, so T;‘ is not bounded below. Similarly, we can show T; is not bounded above. 0O

From now on, we assume w;; and v; follow a bivariate normal distribution:

(b )

Conditional on observing w;;, the true signal v; follows a normal distribution N(a;jw;;,1 - a/f). So

ViZ¥jWij
b
1-a?
J

where @ (-) is the CDF of the standard normal distribution.

Fi(vilwij) = @

Corollary 16. Suppose w;; and v; follow the bivariate normal distribution specified above. Then if

a;j > 0, the optimal diagnosis rule satisfies the threshold-crossing property.

Proof. When w;; and v; follow the bivariate normal distribution with the correlation coefficient being

Vi—ajw
a@;, we have Fj (vi|w;;) = ® ! . It is easy to verify that the two conditions in Proposition

l—a'z
J

13 hold if a; > 0.
Define the optimal threshold T; =71}, B;; h(-)) by

/ (1+,8jh(v,-))

Vi—a;T;
)dvl =1,

1
¢ (
1= ozjz. Vi-aj
where ¢(-) is the CDF of the standard normal distribution. O

Corollary 17. The optimal threshold satisfies

\/7‘1’_ (S ) R il A7,




where M = sup h(v;).

Proof. Since h(v;) > 1, we have

1=[ (1+Bjh(vi)) ¢ Vi_](jﬂ;)dw

Ji—a;(m
)/ \/7 ( “"T)dvl

J

Rearrange and we can get the upper bound of T;. Similarly, we can derive the lower bound of TJ’.‘ .

> (1+p;)

The proposition below summarizes the relation between the general case and case where h(v;) =
1,Vv;. O

Proposition 18. Let TJ’.‘ = 71j(a},B;j; h(-)). Define

o h(vi)o (V Y ) dv;
A

B} = Bi(e;.B;:h(:)) = B;

Then we can use the new ﬁj’. to characterize the optimal threshold:
(). By () = 7j(@;, B h() = 1).

Proof. Let TJ’.‘ = 71j(a},B;; h(-)) and Tj’f’ = Tj(aj,,Bj’.;h(-) =1). Then

oo 1 Vi—@;T; too 1 vieai T
(1+,3~h(vl~)) ¢>( ! )dvl—/ 1+ ¢(‘ J-z’)dvizl.
-/17 ! 1_012_ \/l—ozj v ( J) [1_012_ \/l—aj

Substitute the expression of [3]’. into the second equality and we have

+o00 —a;T
v h(vl)¢ / dVl
+oo / ( \/ 12 ) 1 V,'—(YJ'T;/
B R 2¢5 | i=
/;oo(p(%)dw I -a;
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2 4 B (v | Z2 ) av,
+00 ./;l J ( H—a]z_ ) 1 (Vi—cleT,)
¢ L dVi =1

=
v +00 Vi—Cle;f 1-as
A P ,
l—aj

(1 +ﬁjh(vl>>¢( )dv,- -
1- cx ‘/ j +oo [ vi—a;T;
Ty MR ] A P
l—aj
=1
too vi—a;Ty too vi—a
i i i J
= / ¢ lja; dVi - / ¢ 170/21 d !
v J v j
So we have TJ’." = Tj’f‘.
Proposition 19. For fixed 5; and h(-), ,B]’. = ﬁj’.(a/j,ﬁj; h(-)) decreases with a;.
Proof. The optimal threshold T]’.‘ = 71j(a;,B;; h(-)) is given by
+eo 1 Vi—a;Th
/ (1+8;h(v)) ¢ =L |dv; = 1.
v \ /1 - a/? 1-aj
By Proposition 18, we can write
/A h(w)gzs(v — ) dv; / "1+ () - 1>¢( )dvl
, yi-aj
ﬁj =B =
+00 Vi a, a]
[1- ozj
(1+B;h(v)¢ dvi— [ 9| D | av, 2
R v e v KA [

f”"qﬁ(v’% )dvl- /V+°°¢(V"_]_;j)dvl-

Vi—a;T
Define x; = ; . Then dv; = /1 —a?dx;. Using variable transformation, we have
1- a;
2
) 1- @; 1
ﬁj -1= -1.

/-+oo¢ Vi aj‘rj d l 1—® % aj‘rj’f

1-aj 1-aj



Vi — a/jT*
Denote Q(v;,a;,8;) = ———". For fixed f3;, the relationship between ﬁ and «; reduces the relation-

1-a?
J
ship between Q(v,a;,[;) and ;. Using integration by parts for the formula of the optimal threshold,

we have

@

Yoy i
+oo 1 Vi—ajTh 1_‘212'
1=[ (1+ﬁjh(v,~)) ¢ = 2’

\/1_702. ~ )dVl' =L (1 +ﬁjh(vl—)) —aw dVi

) / By (vi) F)dvl

= 1+:3jM_(1 +ﬁj)®(Q(Vaa'J’ﬁj)) BJ‘/ n (Vz)q)(Q(Viaajaﬂj))dVi,

= (1+Bh(v)® | -

where M = sup h(v;). Take the derivative with respect to «;,

00(v,;, )
0 = —(1+5)P(Q(7,0),p))— ==
L
e 0Q(vi.;.B;)
8 [ WOD0©uiapn I gy, (A19
v J
00(v,a;,B)) . .
We want to show that ————— < 0 for all a; € (0,1). We prove this by contradiction. Assume
a; ’
00(v,a;,Bi 020(v;,a i, B; a;
that for some «’, € (0,1), we have M > 0. Since AL = J >0, we
J da; aj=a, Ga/j(')vi (1 —a/j)3/2
J
know that —————— increases with v; for any fixed a; € (0,1), in particular for a; = ;. Then
a;
8 V',CY', i a 17,&', ] .
M > M > 0 for any v; > v. Since h’(v;) = 0, we have
aa/i aj=a’ aa’i aj=a’
J Jj K J
6Q(17’aj,ﬁ] aQ(Vl’ajvﬁj)

)|0j=a,’- > 0"[ h' (vi)p(Q(vi,a;. 85)) dVila;=a’, 2 0.

8&,‘ aaj

Then Equation (A.19) cannot hold for a; = a/J’., as the right hand is strictly negative, a contradiction.
aQ(V’ a’j;ﬁj)

a;

So, we must have <0,Va; €(0,1). Therefore,

06.0,.5)
B

da;  (1-0(Q(.a;.5))P
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A.6 Structural Estimation

A.6.1 Risk-Adjustment Procedure

Because quasi-random assignment is conditional and because we find that quasi-random assignment
does not strictly hold in all VHA stations, we use risk-adjusted data instead of raw data for the baseline

estimation of our structural model. We form the risk-adjusted data using the following procedure:

1. Estimate linear probability models of diagnoses, or d;, and type Il errors, or fn;, controlling

for patient characteristics X; and interactions between time categories T; and station identities

£(i):
di = gd +Xi,3d+Ti7g(i)+8d'

j (@) i
fni ;f(g+X,ﬂf”+T,~ygg)+a{".

Note that first equation is the same as the first-stage equation in reduced-form 2SLS regressions
using radiologist dummies as instruments. The estimates of s 4 and {Jf " are also the same as

those used for radiologist risk-adjusted rates in Appendix A.2.1.

2. Ensure that the patient-weighted average risk-adjusted rate in each station is equal to the popu-

lation rate:

d >d d
/Jg"'ZjeJ[njgj Zjnj
Zjes Zin’
n sfn n
W+ Sjesnl]" S
jes N xinj’

for all £, by setting /1? and ,uﬁ" to equalize the relevant station-specific rate to the population
rate. As in Section 5.2, we define nj’?’ = Zidj 1d; =1), nj" = Zidj 1(fn;=1),n; = ”Ij”, and
i=1{ij@)=j}.

3. Truncate the risk-adjusted rates at 0:

f]d max(O,f]4+Zl(j€Jg)u?);
‘

max (O,fjf"+21(j € Jg),u[’f").
7

&

4. Use the resulting rates to impute risk-adjusted diagnosis and type II error counts, which are not

necessarily integers: ﬁ;l = njfjfl and ﬁj" = njfjf"

Since JJ and y; are estimated objects, we redraw patient samples, stratified by radiologist, with re-

placement, in order to compute standard errors of our second-step structural estimates.
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A.6.2 Simulated Maximum Likelihood

In Section 5.2, we estimate the hyperparameter vector 6 = ( Uas ,uﬁ,o-a,dﬁ,/li) by maximum likeli-
hood:

6= argénaleog/%' (ﬁj’,ﬁf",n/|7/)f(n|0) dy;.
J
To calculate the radiologist-specific likelihood,
% (i nfo) = [ (3" )1 1),

we need to evaluate the integral numerically. We use Monte Carlo integration, which generates a large
number R of random draws 7]’. following the density f (y J-| 6), given any hyperparameter vector 6.
These draws are taken as the realizations of ;. Then we take the average across all realizations of

the likelihood as a simulated approximation of the integral:

i (wdl"mi|0) = = " 7 (il g

The overall log-likelihood becomes

g 2 (a0

j=1

A.6.3 Empirical Bayes Posteriors

After estimating , we want to find the empirical Bayes posterior mean 7 = (&j, /?,) for each radiol-

ogist j. Using Bayes’ theorem, the empirical conditional posterior distribution of y; is

_f(yj,ﬁ‘?,ﬁfn,nj|é) ~ f( i, f ”J|71) (7’1|9)
(" 0) ff(ﬁj’ﬁj lrs) 1 (vi10)av;

where f (ﬁ]‘.l,ﬁf ”,nj‘yj) is equivalent to .Z; (ﬁj’fl,ﬁf ",nj‘yj). The denominator is then equivalent to

the likelihood .Z; (ﬁ]‘?,ﬁf ",nj| 0). The empirical Bayes predictions are the posterior means

[t (5" i) £ (7118) v,
ff( ~f"”1’7’1) (71!9)6171' |

77,:/7, (%!”d )" ”j;é)dyj
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As above, the integrals are evaluated numerically. We generate R random draws yJ’. following the

distribution f ('y j| 9) and calculate the empirical Bayes posterior means as

7})

7,’-)

1 R r ~d ~fn

1 vR ~d ~fn
L3 (o,

i =

A.6.4 Potentially Incorrect Beliefs

Under the model of radiologist signals implied by Equation (5), we can identify each radiologist’s
skill @; and her diagnostic threshold 7;. The utility in Equation (6) implies the optimal threshold in
Equation (7), as a function of skill ; and preference g;. If radiologists know their skill, then this
allows us to infer B; from a; and 7;.

In this appendix, we allow for the possibility that radiologists may be misinformed about their
skills: A radiologist may believe she has skill on’. even though her true skill is ;. Since only (true) a;
and 7; are identified, we cannot separately identify a/]’. and B; from Equation (7). In this exercise, we
therefore assume £;, in order to infer ajf for each radiologist.

We start with our baseline model and form an empirical Bayes posterior of (a;,/3;) for each radi-
ologist. We use Equation (7) to impute the empirical Bayes posterior of 7;. Thus, for each radiologist,
we have an empirical Bayes posterior of (a;,3;,7;) from our baseline model; the distributions of the
posteriors for «;, B, and 7; are shown in separate panels of Appendix Figure A.5.

To extend this analysis to impute each radiologist’s belief about her skill, afj’., we perform the fol-
lowing two additional steps: First, we take the mode of the distribution of empirical Bayes posteriors
{aj}j e which we calculate as 8.1 within one decimal place. Second, we set all radiologists to have
B; = 8.1. We use each radiologist’s empirical Bayes posterior of 7; and the formula for the optimal
threshold in Equation (7) to infer her belief about her skill, a/J'..

The relationship between a]’., B;, and 7; is shown in Figure 7. As shown in the figure, for 8; ~ 8.1,
the comparative statics of T; are first decreasing and then increasing with a radiologist’s perceived
oz]’.. Thus, holding fixed §; = 8.1, an observed 7; does not generally imply with a single value of aJ’..
If 7; is too low, then there will not be a value of a/]’. to generate 7; with 5; = 8.1; this case occurs only
for a minority of radiologists. Other 7; generally can be consistent with either a value of a]’. on the
downward-sloping part of the curve or with a value of a/J’. on the upward-sloping part of the curve. In
this case, we take the higher value of a]’., since the vast majority of empirical Bayes posteriors of a;
are on the upward-sloping part of Figure 7.

Appendix Figure A.8 plots each radiologist’s perceived skill, or cx]’., on the y-axis and her actual
skill, or a;, on the x-axis. The plot shows that the radiologists’ perceptions of their skill generally
correlate well with their actual skill, particularly among higher-skilled radiologists. Lower-skilled

radiologists, however, tend to over-estimate their skill relative to the truth.

A28



A.7 Alternative Implementations

In this appendix, we discuss alternative empirical implementations from the baseline approach. Ap-

pendix Table A.5 presents results for the following empirical approaches, which vary with respect to

sample selection, risk adjustment, and outcome variable definition:

1.

Baseline. This column presents results for the baseline empirical approach. This approach
uses observations from all stations; the sample selection procedure is given in Appendix Table
A.1. We risk-adjust diagnosis and type II error by 77 patient characteristic variables, described
in Section 4.1, in addition to the controls for time dummies interacted with stations dummies
required for plausible quasi-random assignment in Assumption 1. We define a type II error as
a case that was not diagnosed initially with pneumonia but returned within 10 days and was

diagnosed at that time with pneumonia.

. Balanced. This approach modifies the baseline approach by restricting to 44 stations we select

in Appendix A.2.2 with stronger evidence for quasi-random assignment. Risk-adjustment and

the definition of a type II error are unchanged from baseline.

. No controls. This approach modifies the baseline approach by controlling for no patient char-

acteristics. The only controls for risk-adjustment are time dummies interacted with station
dummies, as specified by Assumption 1. The sample and outcome definition are unchanged

from baseline.

. VA users. This approach restricts attention to a sample of veterans who use VA care more than

non-VA care. We identify this sample among dual enrollees in Medicare and the VA. We access
both VA and Medicare records of care inside and outside the VA, respectively. We count the
number of outpatient, ED, and inpatient visits in the VA and in Medicare, and keep veterans
who have more total visits in the VA than in Medicare. The risk-adjustment and outcome

definition are unchanged from baseline.

. Admission. This approach redefines a type II error to only occur among patients with a greater

than 50% predicted chance of admission. Patients with a lower predicted probability of admis-
sion are all coded to have fn; = 0. The sample selection and risk adjustment are the same as in

baseline.

A.7.1 Rationale

Relative to the baseline approach, the “balanced” and “no controls” approaches respectively evaluate

the importance of selecting stations with stronger evidence of quasi-random assignment and of con-

trolling for rich patient observable characteristics. If results are qualitatively unchanged under these

approaches, then it is less likely that potential non-random assignment could be driving our results.

We evaluate results under the “VA users” approach in order to assess the potential threat that type

II errors may be unobserved if patients fail to return to the VA and therefore be detected as having a
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missed initial diagnosis. Although the process of returning to the VA is endogenous, it is only a con-
cern under non-random assignment of patients to radiologists or under exclusion violations in which
radiologists may influence the likelihood that a patient returns to the VA, regardless of actually incur-
ring a type II error. Veterans who predominantly use the VA relatively to non-VA options are more
likely to return to the VA for unresolved symptoms. Therefore, if results are qualitatively unchanged
from baseline, then exclusion violations and endogenous return visits are unlikely to explain our key
findings.

Similarly, we assess an alternative definition of a type Il error in the “admission” approach, requir-
ing that patients are highly likely to be admitted as an inpatient based on their observed characteristics.
Admitted patients have a built-in pathway for re-evaluation if signs and symptoms persist, worsen,
or emerge; they need not decide to return to the VA. This approach also addresses a related threat
that fellow ED radiologists may be more reluctant to contradict some radiologists than others, since

admitted patients typically receive radiological evaluation from other divisions of radiology.

A.7.2 Results

Table A.5 provides results for each empirical approach in four panels. Panel A reports sample statis-
tics and reduced-form moments. All empirical implementations result in similarly large variation in
diagnosis rates and type II error rates across radiologists. Weighted standard deviations for both rates
are calculated from Equation (A.5). More importantly, the standard deviation of residual type II error
rates, after controlling for radiologist diagnosis rates, reveals that substantial heterogeneity in out-
comes remains even after controlling for heterogeneity in decisions. This suggests violations, under
all approaches, in the strict version of monotonicity in Condition 1(iii). Finally, the slope statis-
tics corresponding to 2SLS (using radiologist dummies as instruments) and JIVE remain similarly
positive across approaches. This suggests consistently strong violations in the weaker monotonicity
condition in Condition A.1.

Panel B reports model parameter estimates under each approach. The estimates are very stable
across approaches. While point estimates under the “balanced” approach suggest that radiologists
may be more accurate than under the approaches, the set of radiologists measured under this ap-
proach are by construction different than the set of radiologists in the other approaches. Furthermore,
estimates are less precise in the “balanced” approach, likely because it involves fewer observations
and radiologists.

Panel C presents corresponding moments in the distribution of (;,5;) implied by the model
parameters. The implementations again suggest qualitatively similar distributions of «, S, and 7.
Interestingly, radiologists seem to incur higher relative disutility for a type II error among patients
who are likely to be admitted. This could reflect the fact that these patients are sicker and may suffer
worse outcomes under a type Il error than healthier patients.

Panel D summarizes policy implications from decomposing variation into skill and preference
components, as described in Section 6. In all implementations, more variation in diagnosis can be

explained by heterogeneity in skill than by heterogeneity in preferences. An even larger proportion of
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variation in type Il errors can be explained by heterogeneity in skill; essentially none of the variation

in type II errors can be explained by heterogeneity in preferences.
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Figure A.1: Concordance Between Tests of Quasi-Random Assignment

F-Test p-Value

2 4 .6 .8 1
Rl p-Value

Note: This figure shows the the concordance between p-values of tests of quasi-random assignment of patient
age across radiologists in each station. On the x-axis, we plot the p-value for randomization inference (RI); on
the y-axis, we plot the p-value of an F-test for the joint significance of radiologist dummies. We condition on
time dummies interacted with station dummies in both tests. Appendix A.2.2 provides further details.
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Figure A.2: Quasi-Random Assignment of Hold-Out Characteristics

A: Diagnosis, RI B: Diagnosis, F-test
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Note: This figure plots histograms of p-values of tests of quasi-random assignment across radiologists in each
station. Randomization inference (RI) p-values are shown in Panels A and C; F-test p-values are shown in
Panels B and D. Using either randomization inference or F-tests, we first test whether age is quasi-randomly
assigned across radiologists in a given station. From these tests, we identify 44 out of 104 stations in which
we cannot reject the null of quasi-random assignment. Among these 44 stations, we then confirm whether the
stations originally identified to feature quasi-random assignment with respect to age also pass tests with respect
to predicted diagnosis or predicted type II error. These predictions are based on 77 “hold-out” variables of
rich patient characteristics. In each panel, light gray bars represent station counts among the 60 stations that
failed the test according to age; dark gray bars represent station counts out of the 44 stations that passed the test
according to age. We condition on time dummies interacted with station dummies in all tests. Appendix A.2.2
provides further details.
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Figure A.3: Visual IV
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Note: This figure shows the visual IV plot corresponding to a 2SLS regression with radiologist dummies as
instruments. For each radiologist with more than 100 chest X-rays, we plot a dot with average risk-adjusted
predictions of diagnosis on the x-axis and average risk-adjusted predictions of type II error on the y-axis.
Diagnosis predictions correspond to a first-stage regression in Equation (A.7), and type II error predictions
correspond to a reduced-form regression in Equation (A.8). The best-fit line in the visual IV plot replicates the
coefficient from the 2SLS regression with radiologist dummies as instruments, which we perform to obtain the
standard error (in parentheses); the coefficient and standard error are identical to those shown in Panel A of
5. As in our baseline specification, we control for all patient characteristics and time dummies interacted with
station dummies. Further details are given in Appendix A.3.
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Figure A.5: Distributions of Radiologist Posterior Means
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Note: This figure plots the distributions of radiologist empirical Bayes posterior means of our main specifi-
cation. The first three subfigures plot the distributions of evaluation skills, the diagnostic thresholds, and the
preferences. The last subfigure plots the joint distribution of the evaluation skills and preferences.
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Figure A.6: ROC Curve with Model-Generated Moments
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Note: This figure presents the radiologist posterior means of our main specification in ROC space. Radiologist
posterior means are the same as shown in Figure A.5 and are formed using empirical Bayes posteriors. The
figure also plots the iso-preference curves for 8 = 6,8 and 10 from (0,0) to (0,1) in ROC space. Each iso-
preference curve illustrates how the optimal point in ROC space varies with the evaluation skill for a fixed
preference.
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Figure A.7: Heterogeneity in Preference
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Note: This figure shows the relationship between a radiologist’s empirical Bayes posterior of her accuracy
(@) on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of the
radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate a
chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that the
radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from the usual regression. The dots are the median values of the variables on the y-axis within
each bin of 5. 30 bins are used. Figure 8 shows the corresponding plots with diagnostic skills (@) on the x-axis.
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Figure A.8: Possibly Incorrect Beliefs about Accuracy
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Note: This figure plots the relationship between radiologists’ true accuracy and perceived accuracy, in an
alternative model in which variation in diagnostic thresholds for a given skill is driven by variation in perceived
skill, holding preferences fixed. This contrasts with the baseline model in which radiologists perceive their
true skill but may vary in their preferences. We calculate the modal preference from our benchmark estimation
results at 8 = 8, and we assign this preference parameter to all radiologists. We then use the formula for the
optimal threshold as a function of 8 = 8 and (perceived) accuracy to calculate perceived accuracy. Appendix
A.6.4 describes this procedure to calculate perceived accuracy in further detail.
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Table A.3: JIVE Estimates of Slopes between Diagnosis and Other Outcomes

Outcome All Diagnosed  False negative True negative
Admissions within 30 days 0.834 0.872 0.321 -0.358
(0.072) (0.019) (0.024) (0.069)
[0.633] [0.065] [0.027] [0.542]
Alive within 30 days -0.121 0.943 0.229 -1.294
(0.019) (0.008) (0.016) (0.024)
[0.967] [0.064] [0.019] [0.884]
ED visits within 30 days 0.162 0.297 0.108 -0.242
(0.072) (0.018) (0.016) (0.069)
[0.290] [0.020] [0.011] [0.260]
ICU visits within 30 days 0.170 0.088 0.042 0.040
(0.025) (0.009) (0.008) (0.022)
[0.044] [0.006] [0.004] [0.034]
Inpatient-days in initial admission 8.309 5.070 1.327 1.912
(0.950) (0.271) (0.216) (0.887)
[2.530] [0.333] [0.133] [2.064]
Inpatient-days within 30 days 8.798 5.655 2.015 1.128
(0.636) (0.199) (0.193) (0.580)
[3.330] [0.396] [0.183] [2.751]
Mortality within 30 days 0.121 0.057 0.034 0.030
(0.019) (0.008) (0.006) (0.016)
[0.033] [0.006] [0.003] [0.025]

Note: This table presents results for other outcomes, using the jackknife instrumental variable estimator (JIVE),
shown for the benchmark outcome of type II error in Panel B of Figure 5. The estimator uses the jackknife
instrument in Equation (4) to calculate the effect of diagnosis on each outcome. The formula for the estimator
is given in Equation (A.9) and controls for 77 variables for patient characteristics and time dummies interacted
with location dummies. Column 1 gives results for the main outcome. Columns 2-4 gives results for joint
dependent variables of the outcome interacted with diagnosis and type II error dummies. For example for
outcome y;, diagnosis decision d;, and disease state (only observed for undiagnosed patients upon a return
visit) s;, patients who are diagnosed have 1(d; = 1), patients who are a false negative have 1(d; =0,s; = 1),
and patients who are a true negative have 1(d; =0,s; =0). The joint outcomes in Columns 2-4 are then,
respectively, y;1(d; = 1), y;1(d; =0,s; = 1), and y;1(d; = 0,s; =0). Standard errors for the IV estimate are
given in parentheses, and mean dependent variables are given in brackets.
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Table A.5: Alternative Implementations

Baseline Balanced Nocontrols VA users Admission
Panel A: Data and Reduced-Form Moments
SD of diagnosis 1.060 1.037 1.229 1.125 1.064
SD of type II error 0.504 0.459 0.531 0.584 0.429
SD of residual type II error 0.496 0.456 0.510 0.580 0.427
Slope, 2SLS 0.094 0.064 0.140 0.063 0.060
Slope, JIVE 0.263 0.342 0.270 0.315 0.181
Number of observations 4,663,840 1,464,642 4,663,840 3,099,211 4,663,601
Number of radiologists 3,199 1,094 3,199 3,199 3,199
Panel B: Model Parameter Estimates
U 0.897 0.445 0.979 1.009 0.720
(0.038) (0.047) (0.034) (0.045) (0.027)
Oa 0.332 0.255 0.408 0.450 0.287
(0.010) (0.012) (0.010) (0.013) (0.007)
Hp 2.080 2.840 2.116 1.831 2.365
(0.056) (0.128) (0.044) (0.053) (0.055)
o] 0.128 0.073 0.144 0.190 0.125
(0.006) (0.007) (0.006) (0.008) (0.005)
A 0.021 0.024 0.022 0.018 0.014
(0.000) (0.001) (0.000) (0.000) (0.000)
1% 1.781 2.046 1.775 1.730 1.890
(0.020) (0.047) (0.016) (0.017) (0.019)
K 0.196 0.196 0.196 0.196 0.196
Panel C: Radiologist Primitives
Mean «a 0.839 0.699 0.851 0.853 0.794
10th percentile 0.719 0.558 0.713 0.703 0.669
90th percentile 0.934 0.824 0.953 0.960 0.898
Mean 8 8.063 17.156 8.380 6.349 10.724
10th percentile 6.795 15.602 6.901 4.898 9.078
90th percentile 9.416 18.769 9.971 7.944 12.480
Mean 7 1.362 1.325 1.363 1.411 1.361
10th percentile 1.270 1.253 1.249 1.296 1.269
90th percentile 1.453 1.403 1.479 1.516 1.453
Panel D: Variation Decomposition
Diagnosis
Uniform skill 0.563 0.576 0.463 0.601 0.636
Uniform preference 0.749 0.782 0.805 0.671 0.695
Type II error
Uniform skill 0.171 0.127 0.150 0.180 0.190
Uniform preference 0.979 0.990 0.981 0.977 0.976

Note: This table shows robustness of results under alternative implementations. “Baseline” presents our base-
line results. “Balanced” presents results estimated only on the 44 stations we identify with quasi-random

assignment. “No controls” performs no risk-adjustment. “VA users” restricts to a sample of veterans with
above-median VA usage. “Admission” requires a type II error to occur in a patient with a high probability of

admission. Appendix A.7 provides rationale for each of these implementations and further discussion.
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