
NBER WORKING PAPER SERIES

SELECTION WITH VARIATION IN DIAGNOSTIC SKILL:
EVIDENCE FROM RADIOLOGISTS

David C. Chan Jr
Matthew Gentzkow

Chuan Yu

Working Paper 26467
http://www.nber.org/papers/w26467

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2019

We thank Hanming Fang, Amy Finkelstein, Karam Kang, Pat Kline, Jon Kolstad, Pierre-Thomas 
Leger, Jesse Shapiro, Chris Walters, and numerous seminar and conference participants for 
helpful comments and suggestions. We also thank Zong Huang, Vidushi Jayathilak, Kevin 
Kloiber, Douglas Laporte, Uyseok Lee, Christopher Lim, and Lisa Yi for excellent research 
assistance. The Stanford Institute for Economic Policy Research provided generous funding and 
support. Chan gratefully acknowledges support from NIH DP5OD019903-01. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by David C. Chan Jr, Matthew Gentzkow, and Chuan Yu. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Selection with Variation in Diagnostic Skill: Evidence from Radiologists
David C. Chan Jr, Matthew Gentzkow, and Chuan Yu
NBER Working Paper No. 26467
November 2019
JEL No. C26,D81,I1,J24

ABSTRACT

Physicians, judges, teachers, and agents in many other settings differ systematically in the 
decisions they make when faced with similar cases. Standard approaches to interpreting and 
exploiting such differences assume they arise solely from variation in preferences. We develop an 
alternative framework that allows variation in both preferences and diagnostic skill, and show 
that both dimensions are identified in standard settings under quasi-random assignment. We apply 
this framework to study pneumonia diagnoses by radiologists. Diagnosis rates vary widely among 
radiologists, and descriptive evidence suggests that a large component of this variation is due to 
differences in diagnostic skill. Our estimated model suggests that radiologists view failing to 
diagnose a patient with pneumonia as more costly than incorrectly diagnosing one without, and 
that this leads less-skilled radiologists to optimally choose lower diagnosis thresholds. Variation 
in skill can explain 44 percent of the variation in diagnostic decisions, and policies that improve 
skill perform better than uniform decision guidelines. Failing to account for skill variation can 
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1 Introduction

In a wide range of settings, agents facing similar problems make systematically different choices.

Physicians differ in their propensity to choose aggressive treatments or order expensive tests, even

when facing observably similar patients (Chandra et al. 2011; Van Parys and Skinner 2016; Molitor

2017). Judges differ in their propensity to hand down strict or lenient sentences, even when facing

observably similar defendants (Kleinberg et al. 2018). Similar patterns hold for teachers, managers,

and police officers (Bertrand and Schoar 2003; Figlio and Lucas 2004; Anwar and Fang 2006). Large

literatures examine the sources and implications of such variation (Bloom and Van Reenen 2010;

Syverson 2011), and also use it as a source of quasi-random variation for studying the effects of

decisions on outcomes (e.g., Kling 2006; Aizer and Doyle 2015; Bhuller et al. 2016; Tsugawa et al.

2017; Dobbie et al. 2018).

In all such settings, we can think of the decision process in two steps. First, there is an evaluation

step in which decision-makers assess the likely effects of the possible decisions given the case before

them. Physicians seek to diagnose a patient’s underlying condition and assess the potential effects

of treatment, judges seek to determine the facts of a crime and the likelihood of recidivism, and so

on. We refer to the accuracy of these assessments as an agent’s diagnostic skill. Second, there is a

selection step in which the decision-maker decides what preference weights to apply to the various

costs and benefits in determining the decision. We refer to these weights as an agent’s preferences. In

a stylized case of a binary decision d ∈ {0,1}, we can think of the first step as ranking cases in terms

of their appropriateness for d = 1 and the second step as choosing a cutoff in this ranking.

While systematic variation in decisions could in principle come from either skill or preferences, a

large part of the prior literature we cite below assumes that agents differ only in the latter. This matters

for the welfare evaluation of practice variation, as variation in preferences would suggest inefficiency

relative to a social planner’s preferred decision rule whereas variation in skill need not. It matters for

the types of policies that are most likely to improve welfare, as uniform decision guidelines may be

effective in the face of varying preferences but counterproductive in the face of varying skill. And

it matters for research designs that use agents’ decision rates as a source of identifying variation, as

variation in skill will typically lead the key monotonicity assumption in such designs to be violated.

In this paper, we introduce a framework to separate heterogeneity in skill and preferences when

cases are quasi-randomly assigned, and apply it to study heterogeneity in pneumonia diagnoses made

by radiologists. Our framework starts with a classification problem in which both decisions and
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underlying states are binary. As in the standard one-sided selection model, the outcome only reveals

the true state conditional on one of the two decisions. In our setting, the decision is whether to

diagnose a patient and treat her with antibiotics, the state is whether the patient has pneumonia,

and the state is only observed if the patient is not treated, since once a patient is given antibiotics it is

usually impossible to tell whether she actually had pneumonia or not. We refer to the share of patients

diagnosed as a radiologist’s diagnosis rate and the share of patients who leave with undiagnosed

pneumonia as her type II error rate.

We draw close connections between two different representations of agent decisions in this set-

ting: (i) the reduced-form relationship between diagnosis rates and type-II error rates, which we

observe directly in our data; and (ii) the relationship between true and false positive rates, commonly

known as the receiver operating characteristic (ROC) curve. Insights from these representations clar-

ify how the distribution of agent skill and preferences is identified under quasi-random assignment.

They also suggest testable restrictions imposed by the monotonicity conditions assumed in research

designs using agent assignments as instrumental variables. We note that the ROC curve has a natural

economic interpretation as a production possibilities frontier for “true positive” and “true negative”

diagnoses.

Pneumonia affects 450 million people and causes 4 million deaths every year worldwide (Ru-

uskanen et al. 2011). While it is more common and deadly in the developing world, it remains the

eighth leading cause of death in the US, despite the availability of antibiotic treatment (Kung et al.

2008; File and Marrie 2010). The primary method of diagnosing pneumonia is by chest X-ray, but

there is nevertheless considerable variability in the diagnosis of pneumonia based on the same chest

X-rays, both across and within radiologists (Abujudeh et al. 2010; Self et al. 2013).

More broadly, getting the right diagnosis is a central function of health care (Institute of Medicine

2015): It provides an explanation of a patient’s health problem and informs subsequent health care

decisions. While errors in diagnosis have, until recently, been a blind spot in health care delivery,

the potential impact of preventing or delaying appropriate treatment, or of prompting unnecessary or

harmful treatment, seems large. Diagnostic errors account for 7 to 17 percent of adverse events in

hospitals (Leape et al. 1991; Thomas et al. 2000). Postmortem examination research suggests that

diagnostic errors contribute to 9 percent of patient deaths (Shojania et al. 2003).

Using Veterans Health Administration (VHA) data on 5.5 million chest X-rays in the emergency

department, we examine variation in diagnostic decisions and outcomes related to pneumonia across

radiologists who are assigned imaging cases in a quasi-random fashion. We measure type II error

2



rates by the share of patients not diagnosed in the ED who have a subsequent pneumonia diagnosis

in the next 10 days. We begin by demonstrating significant variation in both diagnosis rates and type

II error rates across radiologists. Reassigning patients from a radiologist in the 10th percentile of

diagnosis rates to a radiologist in the 90th percentile would increase the probability of a diagnosis

from 6.3 percent to 11.2 percent. Reassigning patients from a radiologist in the 10th percentile of

type II error rates to a radiologist in the 90th percentile would increase the probability of a type II

error from 0 percent to 2.2 percent.

We then turn to the relationship between diagnosis rates and type II error rates. At odds with

the prediction of a standard model with no skill variation, we find that radiologists who diagnose at

higher rates actually have higher rather than lower type II error rates. Note that this means that the

unconditional probability of a missed diagnosis is increasing in the diagnosis rate—i.e., a patient who

arrives at the hospital and is assigned to a high-diagnosis radiologist is more likely to go home with

untreated pneumonia than one assigned to a low-diagnosis radiologist. This fact alone rejects the

hypothesis that all radiologists operate on the same production possibilities frontier, and it suggests a

large role for variation in skill. In addition, we find that there is substantial variation in the probability

of false negatives conditional on diagnosis rate. For the same diagnosis rate, a radiologist in the 90th

percentile of type II error rates has 2.2 percentage points higher type II error rate than a radiologist in

the 10th percentile.

This evidence suggests that interpreting our data through a standard model that ignores skill could

be highly misleading. At a minimum, it means that policies that focus on harmonizing diagnosis rates

could miss important gains in improving skill. Moreover, such policies could be counter-productive if

skill variation makes varying diagnosis rates optimal. If missing a diagnosis (a false negative) is more

costly than falsely diagnosing a healthy patient (a false positive), a radiologist with noisier diagnostic

information (less skill) may optimally diagnose more patients, and requiring her to do otherwise could

reduce efficiency. Finally, a standard research design that uses the assignment of radiologists as an

instrument for pneumonia diagnosis would fail badly in this setting. We show that our reduced-form

facts strongly reject the monotonicity conditions necessary for such a design. Applying the standard

approach would yield the nonsensical conclusion that diagnosing a patient with pneumonia (and thus

giving her antibiotics) makes her more likely to return to the emergency room with pneumonia in the

near future, and also increases her likelihood of adverse health events including mortality.

In the final part of the paper, we estimate a structural model of diagnostic decisions to permit

a more precise characterization of these facts. Following our conceptual framework, radiologists
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first evaluate chest X-rays to form a signal of the underlying disease state and then select cases with

signals above a certain threshold to diagnose with pneumonia. Undiagnosed patients who in fact

have pneumonia will eventually develop clear symptoms, thus revealing false negative diagnoses.

But among cases receiving a diagnosis, those who truly have pneumonia cannot be distinguished

from those who do not. Radiologists may vary in their diagnostic accuracy, and each radiologist

endogenously chooses a threshold selection rule in order to maximize utility. Radiologist utility

depends on false negative and false positive diagnoses, and the relative utility weighting of these

outcomes may vary across radiologists.

We find that the average radiologist receives a signal that has a correlation of 0.84 with the pa-

tient’s underlying latent state, but that the diagnostic accuracy varies widely, from a correlation of

0.72 in the 10th percentile of radiologists to 0.93 in the 90th percentile. The disutility of missing

diagnoses is on average 8.07 times as high as that of an unnecessary diagnosis; this ratio varies from

6.79 to 9.43 between the 10th and 90th radiologist percentiles. Overall, 44 percent of the variation in

decisions and 83 percent of the variation in outcomes can be explained by variation in skill. We then

consider the welfare implications of counterfactual policies. While eliminating variation in diagnosis

rates always improves welfare under the (incorrect) assumption of uniform diagnostic skill, we show

that this policy may actually reduce welfare. In contrast, increasing diagnostic accuracy can yield

much larger welfare gains.

Finally, we document how diagnostic skill and type II error rates vary across groups of radiol-

ogists. In all groups, we find the same increasing relationship between diagnosis rates and type II

error rates. In some groups, such as older radiologists or radiologists with higher chest X-ray volume,

diagnostic accuracy is generally higher. More accurate radiologists tend to issue shorter reports of

their findings but spend more time generating those reports, suggesting that effort (rather than raw

talent alone) may contribute to radiologist skill. Aversion to false negatives tends to be negatively

related to radiologist skill.

Our strategy for identifying causal effects relies on quasi-random assignment of cases to radi-

ologists. This assumption is particularly plausible in our emergency department setting because of

idiosyncratic variation in the arrival of patients and the availability of radiologists conditional on time

and location controls. In support of this assumption, we show that patients assigned to high- and

low-diagnosing radiologists are nearly identical across a range of observable characteristics. While

some of these small differences are statistically significant in our large sample, our key results are

invariant to the set of observables we include as controls. We also identify a subset of 44 out of 104
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VHA health care stations (comprising 1.5 million chest X-rays) for which there is no statistically

significant evidence of imbalance, and show that our key results hold in this restricted sample.

Our findings relate most directly to a large and influential literature on practice variation in health

care (Fisher et al. 2003a,b; Institute of Medicine 2013). This literature has robustly documented

variation in spending and treatment decisions that has little correlation with patient outcomes. The

seeming implication of this finding is that spending in health care provides little benefit to patients

(Garber and Skinner 2008), a provocative hypothesis that has spurred an active body of research

seeking to use natural experiments to identify the causal effect of spending (e.g., Doyle et al. 2015).

In this paper, we build on Chandra and Staiger (2007) in investigating the possibility of heterogeneous

productivity (e.g., physician skill) as an alternative explanation. By exploiting the joint distribution of

decisions and outcomes, we find significant variation in productivity, which rationalizes a large share

of the variation in diagnostic decisions. The same mechanism may explain the weak relationship

between decision rates and outcomes observed in other settings.1

Perhaps most closely related to our paper are evaluations by Abaluck et al. (2016) and Currie and

MacLeod (2017), both of which examine diagnostic decision-making in health care. Abaluck et al.

(2016) assume that physicians have the same diagnostic skill (i.e., the same ranking of cases) but

may differ in where they set their thresholds for diagnosis. Currie and MacLeod (2017) assume that

physicians have the same preferences but may differ in skill. Also related to our paper is a recent

study of hospitals by Chandra and Staiger (2017), who allow for comparative advantage and different

thresholds for treatment but also assume a common ranking of cases. Relative to these papers, a key

difference of our study is that we use quasi-random assignment of cases to providers.

Our paper also contributes to the “judges-design” literature, which estimates treatment effects by

exploiting quasi-random assignment to agents with different treatment propensities (e.g., Kling 2006).

We show how variation in skill relates to the standard monotonicity assumption in the literature, which

requires that all agents order cases in the same way but may draw different thresholds for treatment

(Imbens and Angrist 1994; Vytlacil 2002). Monotonicity can thus only hold if all agents have the

same skill. Our empirical insight that we can test and quantify violations of monotonicity (or variation

in skill) relates to conceptual work that exploits bounds on potential outcome distributions (Kitagawa

2015) and more recent work to test instrument validity in the judges design (Frandsen et al. 2019) and

1For example, Kleinberg et al. (2018) finds that the increase in crime associated with judges that are more likely to
release defendants on bail is about the same as if these more lenient judges randomly picked the extra defendants to release
on bail. Arnold et al. (2018) finds a similar relationship for black defendants being released on bail. Judges that are most
likely to release defendants on bail in fact have slightly lower crime rates than judges that are less likely to grant bail.
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to detect inconsistency in judicial decisions (Norris 2019).2

The remainder of this paper proceeds as follows. Sections 2 sets up a high-level empirical frame-

work for our analysis. Section 3 describes the setting and data. Section 4 presents our reduced-form

analysis, with the key finding that radiologists who diagnose more cases also miss more cases of

pneumonia. Section 5 presents our structural analysis, separating radiologist diagnostic skill from

preferences. Section 6 considers policy counterfactuals. Section 7 concludes.

2 Empirical Framework

2.1 Setup

We consider a selection problem in which an agent j makes a binary decision di j ∈ {0,1} for a case i

(e.g., treat or not treat, convict or acquit). The goal is to align the decision with a binary state si ∈ {0,1}

(e.g., sick or healthy, guilty or innocent). The agent observes a signal wi j that is informative about

the underlying state si of the case. She then chooses di j based on this signal.

We define an agent’s diagnostic skill to be the informativeness of wi j in the Blackwell (1953)

sense, and we say that two radiologists have equal skill if their signal distributions are equal in infor-

mativeness.3 A population of agents has uniform skill if all of the agents have equal skill; otherwise,

we say that they vary in skill. We define an agent’s preferences to be the factors that determine her

choice of di j conditional on wi j . Assuming complete and transitive preferences over signals, we can

without loss of generality assign scalar values to wi j such that di j = 1
(
wi j > τj

)
.

It will be helpful to represent this problem in the well-known framework of statistical classifi-

cation. Panel A in Figure 1 illustrates a standard “classification matrix” representing the probabil-

ities of four joint outcomes depending on decisions and states. For a given agent j with possibly

imperfect information and a decision rule, we can define the probabilities of four outcomes: true

negatives, or T Nj ≡ Pr
(
di j = 0,si = 0

)
; false negatives or FNj ≡ Pr

(
di j = 0,si = 1

)
; true positives, or

TPj ≡ Pr
(
di j = 1,si = 1

)
; and false positives, or FPj ≡ Pr

(
di j = 1,si = 0

)
. The agent’s diagnosis rate

is Pj ≡ TPj +FPj , and her type-II error rate is simply FNj .

2Kitagawa (2015) develops a test of instrument validity based on an older insight in the literature noting that instrument
validity implies non-negative densities of compliers for any potential outcome (Imbens and Rubin 1997; Balke and Pearl
1997; Heckman and Vytlacil 2005). Recent work by Machado et al. (2019) also exploits bounds in a binary outcome to test
instrument validity and to sign average treatment effects.

3Note that the Blackwell ordering is incomplete, and agents who vary in skill may not be ordered by skill. Agent j’s
signal may be neither more nor less informative than the signal of agent j ′, for example, if j has more accurate information
about some types of patients while j ′ has more accurate information about other types of patients.
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2.2 ROC Curves and Agent Skill

A standard way to summarize the accuracy of classification is in terms of the receiver operating

characteristic (ROC) curve. This plots the true positive rate, or TPRj ≡ Pr
(
di j = 1 |si = 1

)
=

TPj

TPj+FN j
,

against the false positive rate, or FPRj ≡ Pr
(
di j = 1 |si = 0

)
=

FPj

FPj+TN j
. Panel B in Figure 1 shows

several possible ROC curves.

Each agent j can be associated with a single ROC curve, which gives the set of classification

outcomes she can achieve taking as given her population of cases and the distribution of her signal

wi j . If she diagnoses no case, she will have TPRj = 0 and FPRj = 0. If she diagnoses all cases, she

will have TPRj = 1 and FPRj = 1. As she increases Pj , both TPRj and FPRj must weakly increase

under the threshold rule di j = 1
(
wi j > τj

)
. The ROC curve thus reveals a technological tradeoff

between the “sensitivity” (or TPRj) and “specificity” (or 1−FPRj) of classification.

Higher ROC curves correspond to greater skill. By the definition of Blackwell (1953) informa-

tiveness, if j has higher skill than j ′, any outcome that is feasible for j ′ is also feasible for j. This

means that j’s ROC curve lies everywhere above that of j ′, and that j ′ can achieve higher utility with

access to j’s technology regardless of her preferences. Finally, if agents have equal skill, their ROC

curves must be identical.

Remark 1. The ROC curve of agent j lies everywhere above the ROC curve of agent j ′ if and only if

j has higher skill than j ′. If j and j ′ have equal skill, their ROC curves are identical.

This framework for selection is closely linked with the standard economic framework of produc-

tion. An ROC curve can be viewed as a production possibilities frontier of TPRj and 1− FPRj .

Agents on higher ROC curves are more productive (i.e., more skilled) in the evaluation stage. Where

an agent chooses to locate on an ROC curve is determined by her preferences, or the tangency be-

tween the ROC curve and an indifference curve. It is possible that agents differ in preferences but not

skill, so that they would lie along identical ROC curves, and we would observe a positive correlation

between TPRj and FPRj . It is also possible that they differ in skill but not preferences, so that they

would lie at the tangency point on different ROC curves, and we could observe a negative correlation

between TPRj and FPRj . Figure 2 illustrates these two cases with hypothetical data on the joint

distribution of decisions and outcomes. This figure suggests some intuition, which we will formalize

later, for how skill and preferences may be separately identified.

In the empirical analysis below, we will visualize the data in two different spaces. The first

is the ROC space of Figure 2. The second is a plot of false negative rates FNj against diagnosis
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rates Pj , which we will refer to as “reduced-form space.” Note that FNj =
(
1−TPRj

)
Sj and Pj =

TPRjSj +FPRj

(
1− Sj

)
, where Sj ≡ Pr (si = 1| j (i) = j). When cases are randomly assigned so that

Sj is the same for all agents, this implies a tight correspondence between these two ways of looking

at the data.

Remark 2. Suppose Sj is equal to a constant S for all j. Then

1. Conditional on S, there is a one-to-one correspondence between points
(
TPRj,FPRj

)
in ROC

space and points
(
FNj,Pj

)
in reduced-form space.

2. If agents have uniform skill, type II error rates FNj decrease in diagnosis rates Pj in reduced-

form space, with a slope bounded between 0 and −1.

We can thus use variation in reduced-form space to make inferences about agent skill. If agents

can be ordered in terms of skill, and if they face the same population of cases, we can infer that

radiologist j has lower skill than j ′ if
FN j−FN j′

Pj−Pj′
> 0 or has higher skill than j ′ if

FN j−FN j′

Pj−Pj′
< −1. Fur-

thermore, we can obtain stronger restrictions on admissible slopes
FN j−FN j′

Pj−Pj′
between any radiologist

pair ( j, j ′) who have equal skill. First, if incremental diagnoses match the underlying state at least as

well as random decisions, then ROC curves should lie above the 45-degree line in Panel B of Figure

1, and
FN j−FN j′

Pj−Pj′
< −S. Second, if agents choose optimally to minimize a weighted average of FNj

and FPj , then admissable slopes connecting agents with uniform skill in reduced-form space should

not only be negative but also convex, and ROC curves should be concave.4

2.3 Potential Outcomes and the Judges Design

When there is an outcome of interest yi j = yi
(
di j

)
that depends on the agent’s decision di j , we can

map our classification framework to the potential outcomes framework with heterogeneous treatment

effects (Rubin 1974; Imbens and Angrist 1994). In the case where di j is a judge’s bail decision, yi j

might be an indicator for whether a defendant commits a subsequent crime. In the case where di j

is a medical treatment decision, yi j might be a measure of subsequent health outcomes or mortality.

The object of interest is some average of the treatment effects yi (1) − yi (0) across individuals. We

observe case i assigned to only one agent j(i), so the identification challenge is that we only observe

di ≡
∑

j 1 ( j = j (i))di j and yi ≡
∑

j 1 ( j = j (i)) yi j = yi (di) corresponding to j = j (i).

4In economics, the selection literature generally refers to rational expectations and utility maximization as “selection on
gains” or “Roy selection” (Heckman and Honore 1990). Specifically, under utility ui j

(
di j

)
, j chooses di j = 1 for case i if

and only if E
[
ui j (1)−ui j (0)

]
> 0 (Cornelissen et al. 2016). In classification decisions, we may state ui j

(
di j

)
as u j

(
di j,si

)
,

such that u j (1,1) ≥ u j (0,1) and u j (0,0) ≥ u j (0,1) for all j. This implies linear indifference curves in ROC space, and agents
will never choose (FPR,TPR) outcomes within the convex hull of feasible (FPR,TPR).
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A growing literature starting with Kling (2006) has proposed using heterogeneous decision propen-

sities of agents to identify these average treatment effects in settings where cases i are randomly

assigned to agents j with different propensities of treatment. This empirical structure is popularly

known as the “judges design,” as early applications were to settings where the agents were judges.

The literature typically assumes conditions of instrumental variable (IV) validity from Imbens and

Angrist (1994).5

Condition 1 (IV Validity). Consider the potential outcome yi j and the treatment response indicator

di j ∈ {0,1} for case i under judge j. Case i is assigned to judge j (i). For a random sample of i and

j, the following conditions hold:

(i) Exclusion: yi j = yi(di j) with probability 1.

(ii) Independence:
(
yi(0),yi(1),di j

)
is independent of j(i).

(iii) Strict Monotonicity: For any j and j ′, di j ≥ di j′ ∀i, or di j ≤ di j′ ∀i, with probability 1.

Vytlacil (2002) shows that Condition 1(iii) is equivalent to all agents ordering cases by the same

latent index wi and then choosing di j = 1
(
wi > τj

)
, where τj is an agent-specific cutoff. Lower cutoffs

must correspond to weakly higher rates of both true and false positives. This condition thus greatly

restricts the pattern of outcomes in the classification framework.

Remark 3. Suppose Condition 1 holds. Then the observed data must be consistent with all agents

having uniform skill. By Remark 2, this implies that type II error rates must be decreasing in diagnosis

rates with a slope bounded between 0 and −1.

An alternative way to see the same intuition is to note that for any outcome yi j the Wald estimand

comparing a population of cases assigned to agents j and j ′ is
Yj−Yj′

Pj−Pj′
= E

[
yi (1)− yi (0)| di j > di j′

]
,

where Yj is the average of yi j among cases treated by j. If we define yi to be an indicator for a

false negative, or yi = f ni = 1 (di = 0,si = 1), we have E
[
yi (1)− yi (0)| di j > di j′

]
∈ [−1,0], since

yi (1)− yi (0) ∈ {−1,0}.

By Remark 3, strict monotonicity in Condition 1(iii) of the judges design implies uniform skill.

The converse is not true, however. It is possible for agents to have uniform skill yet violate strict

monotonicity. A simple example would be if the agents’ signals wi j are distributed identically but

contain independent noise. This is a violation because strict monotonicity requires agents to order all

cases the same way with probability one.

5In addition to the assumption below, we also require instrument relevance, such that Pr
(
di j = 1

)
, Pr

(
di j′ = 1

)
for

some j and j ′. This requirement can be assessed by a first stage regression of di on judge indicators.
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One might ask whether a condition weaker than strict monotonicity might be both consistent with

our data and sufficient for the judges design to recover a well-defined local average treatment effect

(LATE). A more realistic condition might allow for idiosyncratic noise in the diagnostic signals that

agents receive, and require only that the probability that j diagnoses a patient is either higher or lower

than the probability j ′ diagnoses a patient for all i. A yet weaker condition would allow for systematic

variation in the way agents order cases (and thus the relative probability that different agents diagnose

different patients), provided that differences in ordering (e.g., due to varying skill) are orthogonal to

agents’ diagnostic propensities. In Appendix A.1, we define these conditions formally and show that

they are indeed sufficient for the judges design to recover a well defined LATE.6 We also show that

this weaker concept of monotonicity yields a testable implication.

Remark 4. Suppose that skill is not uniform but is independent of agents’ diagnostic propensities.

Then a regression of FNj on Pj should yield a coefficient ∆ ∈ [−1,0].

This implies that the results we will show below reject not only the strict monotonicity of Condi-

tion 1(iii) but also the weaker monotonicity conditions as well. Not only can we reject uniform skill,

but skill must be systematically correlated with diagnostic propensities. In Section 5, we show that we

should expect these monotonicity conditions to be violated in our structural model: when radiologists

differ in skill and are aware of these differences, the optimal diagnostic threshold should depend on

radiologist skill. We also show that this relationship between skill and radiologist-chosen diagnostic

propensities raises the possibility that common diagnostic thresholds may reduce welfare.

3 Setting and Data

We apply our framework to study pneumonia diagnoses in the emergency department (ED). Pneumo-

nia is a common and potentially deadly disease that is primarily diagnosed by chest X-rays. Reading

chest X-rays requires skill, as illustrated in Figure 3 from the medical literature. We focus on out-

comes we observe from chest X-rays performed in the ED in the Veterans Health Administration

(VHA), the largest health care delivery system in the US.

In this setting, the diagnostic pathway for pneumonia is as follows:

1. A physician orders a radiology exam for a patient suspected to have the disease.

6In Appendix A.1, we discuss the relationship of these monotonicity conditions to the “average monotonicity” concept
of Frandsen et al. (2019).
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2. Once the radiology exam is performed, the image is assigned to a radiologist. Exams are typi-

cally assigned to radiologists based on whoever is on call at the time the exam needs to be read.

We argue below that this assignment is quasi-random conditional on appropriate covariates.

3. The radiologist issues a report on her findings.

4. The patient may be diagnosed and treated by the ordering physician in consultation with the

radiologist.

Pneumonia diagnosis is a joint decision by radiologists and physicians. Physician assignment to pa-

tients may be non-random, and physicians can affect diagnosis both via their selection of patients to

order X-rays for in step 1 and their diagnostic propensities in step 4. However, so long as assignment

of radiologists in step 2 is as good as random, we can accurately measure the causal effect of radiolo-

gists on the probability that the joint decision-making process leads to a diagnosis. While interactions

between radiologists and ordering physicians are interesting, we abstract from them in this paper and

focus on a radiologist’s average effect, taking as given the set of physicians with whom she works.

VHA facilities are divided into local units called “stations.” A station typically has a single major

tertiary care hospital and a single ED location, together with some medical centers and outpatient

clinics. These locations share the same electronic health record and order entry system. We study the

103 VHA stations that have at least one ED.

Our primary sample consists of the roughly 5.5 million completed chest X-rays in these stations

that were ordered in the ED and performed between October 1999 and September 2015.7 We refer to

these observations as “cases.” Each case is associated with a patient and with a radiologist assigned

to read it. In the rare cases where a patient received more than one X-ray on a single day, we assign

the case to the radiologist associated with the first X-ray observed in the day.

To define our main analysis sample, we first omit the roughly 600,000 cases for which the patient

had at least one chest X-ray ordered in the ED in the previous 30 days. We then omit cases that:

(i) have missing radiologist identity; (ii) have missing patient age or gender; (iii) are associated with

patients older than 100 or younger than 20; (iv) are associated with a radiologist-month pair with

fewer than 5 observations; (v) are associated with a radiologist with fewer than 100 observations in

total. In Appendix Table A.1 we report the number of observations dropped at each of these steps.

The final sample contains 4,663,826 cases.

7We define chest X-rays by the Current Procedural Terminology codes 71010 and 71020.
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We define the diagnosis indicator di for case i equal to one if the patient has a pneumonia diagnosis

recorded in outpatient or inpatient within a 24-hour window centered at the time stamp of the chest

X-ray order.8 We confirm that 92.6 percent of patients who are recorded to have a diagnosis of

pneumonia are also prescribed an antibiotic consistent with pneumonia treatment within five days

after the chest X-ray.

We define an indicator f ni = 1 (di = 0,si = 1) for a type II error or “missed diagnosis” for case

i equal to one if di = 0 and the patient has a subsequent pneumonia diagnosis recorded between 12

hours and 10 days after the completion of the chest X-ray. Here we include diagnoses in both ED and

non-ED facilities, including outpatient, inpatient, and surgical encounters, as well as encounters that

began as transfers from other facilities.

We define the following patient characteristics for each case i: demographics (age, gender, marital

status, religion, race, veteran status, and distance from home to the VA facility where the X-ray

is ordered), prior health care utilization (counts of outpatient visits, inpatient admissions, and ED

visits in any VHA facility in the previous 365 days), prior medical comorbidities (indicators for

prior diagnosis of pneumonia and 31 Elixhauser comorbidity indicators in the previous 365 days),

vital signs (22 variables including blood pressure, pulse, pain score, and temperature), and and white

blood cell (WBC) count as of ED encounter.9 We also measure for each case a vector of characteristics

associated with the chest X-ray request. This contains an indicator for whether the request was marked

as urgent and a vector of requesting physician characteristics that we define below.

For each radiologist in the sample, we record gender, the date of birth, the start date of em-

ployment at the VHA, medical school identity, and the proportion of radiology exams that are chest

X-rays. For each chest X-ray in the sample, we record the time that a radiologist spends to generate

the report in minutes and the length of the report in words. For each requesting physician in the sam-

ple, we record the number of X-rays ordered across all patients, an above-/below-median indicator for

the average predicted diagnosis rate, and an above-/below-median indicator for the average predicted

type II error rate. The predicted diagnosis rate and type II error rate are formed by running a linear

8Diagnoses do not have time stamps per se but are instead linked to visits, with time stamps for when the visits begin.
Therefore, the time associated with diagnoses is usually before the chest X-ray order; in a minority of cases, a secondary
visit (e.g., an inpatient visit) occurs shortly after the initial ED visit, and we will observe a diagnosis time after the chest
X-ray order. We include International Classification of Diseases, Ninth Revision, (ICD-9) codes 480-487 for pneumonia
diagnosis.

9The vital sign variables are systolic blood pressure, diastolic blood pressure, pulse rate, pain score, pulse oximetry,
respiration rate, temperature, an indicator for fever, an indicator for whether there is supplemental oxygen administration,
and given it is provided, the flow rate and the concentration of the supplemental oxygen. If a case has multiple vital sign
measures, we use the first measure recorded. We include WBC count in this group of variables for compactness, though it
is not a vital sign. We also include indicators for missing values in each of these variables.
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probability regression of di and f ni, respectively, on the demographic variables described above and

calculating the linear fit for each patient. We then average the predictions within each requesting

physician and divide all requesting physicians into above-/below-median groups.

4 Model-Free Analysis

4.1 Quasi-Random Assignment

To study the effect of radiologists on diagnoses and type II errors, we require that patients are as good

as randomly assigned to radiologists. Let Ti be a vector consisting of indicators for the hour of day,

day of week, and month-year of patient visit i. Let ` (i) denote the station (i.e., the specific ED) that i

visits, J`(i) denote the set of radiologists at that station, and j (i) ∈ J`(i) denote the radiologist assigned

to i.

Assumption 1 (Conditional Independence). Conditional on station ` (i) and time of visit Ti, the

state si and potential diagnosis decisions
{
di j

}
j∈J`(i)

for patient i are independent of the patient’s

assigned radiologist j (i).

Our qualitative research suggests that the typical pattern is for patients to be assigned sequen-

tially to available radiologists at the time their physician orders the chest X-ray. Such assignment

will plausibly satisfy Assumption 1 if the timing of patient arrival at the ED is independent of radi-

ologist availability, conditional on interactions between ` (i) and Ti that capture regular variation in

scheduling (e.g., Chan 2018).

To assess Assumption 1, we report balance on observable characteristics between patients as-

signed to radiologists with above- vs. below-median diagnosis rates and type II error rates. We first

divide radiologists into above- and below-median groups based on the radiologist fixed effects from

regressions of diagnosis and type-II error rates on the vector of patient characteristics, controlling

for all patient characteristics and interactions between ` (i) and Ti. We next compute predicted val-

ues from patient-level regressions of diagnosis and type II error indicators on subsets of 77 patient

characteristic variables. We divide these variables into 5 groups: demographics, prior utilization,

prior diagnoses, vital signs and WBC count, and ordering characteristics. We then compute residuals

from regressions of these predicted values on ` (i) and Ti interactions, and we assess balance in these

residual predictions between groups of radiologists. Appendix A.2.1 provides further details.

Table 1 shows that the actual diagnosis and type II error rates differ substantially between these
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groups as expected. In contrast, the differences in predicted values based on patient characteristics are

one to two orders of magnitude smaller, regardless of the characteristics used to form these predic-

tions. Given the large size of our sample, some of these differences are statistically significant despite

their small size economically. In our main analyses, we will control for all patient observables used

in Table 1, and in Section 4.4, we will show that our results are qualitatively unchanged regardless of

which patient characteristics that we control for.

A complementary approach would be to isolate a subset of stations where evidence for balance

is even stronger. Because organization and procedures differ across stations, there is reason to think

that we may capture better conditioning sets for quasi-random assignment in some stations but not

in others.10 In Appendix A.2.2, we evaluate quasi-random assignment station-by-station using para-

metric tests of joint significance and randomization inference. The concordance between these tests

is high. We begin by focusing just on patient age as an observable and identify 44 out of 104 stations

for which we do not see any significant imbalance. We then show in Appendix Table A.2 that these

same 44 stations also appear balanced on the full set of 77 patient characteristic variables. We show

below that our main results are robust to focusing on these 44 stations.

4.2 Identification and Empirical Strategy

The first goal of our descriptive analysis is to flexibly identify the four elements of the classification

matrix in Figure 1 Panel A for each radiologist. This will allow us to plot the actual data in both

reduced-form space and in ROC space as in Figure 2.

The challenge is that we do not observe all four elements: For each radiologist, we observe sample

estimates of the diagnosis rate Pj , the false negative probability FNj , and the remaining true negative

probability T Nj . These would be sufficient to estimate the full matrix if we also knew the share of j’s

patients who had pneumonia Sj = Pr ( si = 1| j (i) = j) since

TPj = Sj −FNj ; (1)

FPj = Pj −TPj ; and (2)

T Nj = 1−FNj −TPj −FPj . (3)

10In our qualitative research, we identify at least two types of conditioning sets that are unobserved to us. One is that the
population of radiologists in some stations includes both “regular” radiologists who are assigned chest X-rays according
to the normal sequential protocol and other radiologists who only read chest X-rays when the regular radiologists are not
available or in other special circumstances. A second is that some stations consist of multiple sub-locations, and both
patients and radiologists sort systematically to sub-locations. Since our fixed effects do not capture either radiologist
“types” or sub-locations, either of these could lead Assumption 1 to be violated.
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Under Assumption 1, Sj will be equal to the overall population share S ≡ Pr (si = 1) for all j.

Thus, knowing S would be sufficient for identification. Moreover, the observed data also provide

bounds on the possible values of S. If there exists a radiologist j such that Pj = 0, we would be

able to learn S exactly as S = Sj = FNj . Otherwise, letting j denote the radiologist with the lowest

diagnosis rate (i.e., j = argminj Pj) we must have S ∈
[
FNj,FNj +Dj

]
. We show in Section 5.2 that

S is point identified under the additional functional form assumptions of our structural model.

The second goal of our descriptive analysis is to estimate the relationship between radiologists’

diagnosis rates Pj and their type-II error rates FNj . We focus on the coefficient ∆ from a patient-

weighted regression of FNj on Pj in the population of radiologists. By Remark 4, ∆ ∈ [−1,0] is a

necessary condition for both the standard monotonicity of Condition 1(iii) and the weaker versions of

monotonicity we consider as well. In order for ∆ < [−1,0], radiologists must not have uniform skill,

and skill must be systematically correlated with diagnostic propensities.

Exploiting quasi-experimental variation under Assumption 1, we can recover a consistent estimate

of ∆ from a 2SLS regression of f ni = 1 (di = 0,si = 1) on di instrumenting for the latter with j (i). In

these regressions, we control for a full set of interactions between station ` (i) and time categories Ti

as well as the vector Xi of 77 patient characteristics described in Section 4.1.

We consider two types of instruments. First, we simply use radiologist dummies. Second, we fol-

low the standard practice in the judges-design literature by using a jackknife instrument of diagnosis

rates:

Zi =
1

Ij(i)


−1

∑
i′,i

1
(
i′ ∈ Ij(i)

)
di′, (4)

where Ij is the set of patients assigned to radiologist j. The intuition behind the jackknife instrument is

that it prevents overfitting the first stage in finite samples, which would otherwise bias the coefficient

toward an OLS estimate of the relationship between f ni and di (Angrist et al. 1999).

4.3 Results

Figure 4 shows radiologist-specific true positive rates and false positive rates based on data of radiologist-

specific diagnoses and false negatives. For this figure, we use an estimate of S = 0.0374 as well as

other disease-specific parameters that we detail later in Section 5.11 The results show clearly that the

11In Section 5, we introduce three disease-related parameters: the proportion of chest X-rays that are not at risk for
pneumonia, κ; the proportion of at-risk chest X-rays with detectable pneumonia, 1−Φ (ν); and the proportion of at-risk cases
without detectable pneumonia at the time who subsequently develop pneumonia, λ. For a given observed

(
Pj,FNj

)
, we

calculate the following adjustments: S′ = 1−Φ (ν); P′j = Pj/(1− κ); T N ′j =
(
T Nj − κ

)
/(1− κ)/(1−λ); FN ′j = FNj/(1− κ)−

λT N ′j ; TPRj = 1−FN ′j/S
′; and FPRj =

(
P′j +FN ′j − S′

)
/(1− S′). We assume κ = 0.196, λ = 0.021, and ν = 1.781.
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data are inconsistent with the assumption of uniform skill.

Figure 5 shows the IV estimate as the slope in binned scatter plots, using radiologist dummies

as instruments (Panel A) and using the jackknife instrument (Panel B).12 The IV coefficient is sig-

nificantly positive in both cases. Under Assumption 1, this implies that the monotonicity conditions

discussed above cannot hold in our data.

The strong upward slope shown in these plots is striking. It implies that the false negative rate is

higher for high-diagnosing radiologists not only conditionally (in the sense that the patients they do

not diagnose are more likely to have pneumonia) but unconditionally as well. Thus, being assigned

to a radiologist who diagnoses patients more aggressively increases the likelihood of leaving the

hospital with undiagnosed pneumonia. The only explanation for this under our framework is that

high-diagnosing radiologists have less accurate signals, and that this is true to a large enough degree

to offset the mechanical negative relationship between diagnosis and type II errors.

In Appendix Figure A.3 we show the full visual IV scatterplot corresponding to Panel A of Figure

5. This plot reveals substantial heterogeneity in type II error rates among radiologists with similar

diagnosis rates. This provides further evidence against the standard monotonicity assumption, which

implies that all radiologists with a given diagnosis rate must also have the same type-II error rate.

In Appendix A.4, we show that our data pass informal tests of monotonicity that are standard in

the literature (Bhuller et al. 2016; Dobbie et al. 2018). These tests require that diagnosis consistently

increases in Pj in a range of patient subgroups.13 Thus, together with evidence of quasi-random

assignment in Section 4.1, the standard empirical framework would suggest this as a plausible setting

in which to use radiologist assignment as an instrument for the treatment variable di j .

Yet, were we to apply the standard approach and use radiologist assignment as an instrument to

estimate an average effect f ni (1) − f ni (0) of diagnosis di j on type II errors, we would reach the

nonsensical conclusion that diagnosing a patient with pneumonia (and thus giving them antibiotics)

makes them more likely to return with untreated pneumonia in the following days. Appendix Table

A.3 shows similar judges-design results for other welfare-relevant outcomes, such as mortality and

intensive care unit (ICU) stays. Applying the standard approach to these outcomes suggests that

diagnosing and treating pneumonia implausibly increases mortality, repeat ED visits, patient-days in

the hospital, and ICU admissions. We find increases in counts of adverse events even conditional on

12We discuss details of producing binned scatter plots to reflect the IV estimate in Appendix A.3.
13In this appendix, we also show the relationship between these standard tests and our test. We discuss that these results

suggest that: (i) radiologists consider unobserved patient characteristics in their diagnostic decisions; (ii) these unobserved
characteristics predict si ; and (iii) their use distinguishes high-skilled radiologists from low-skilled radiologists.
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patients having type II errors, suggesting that skill could impact important outcomes not only through

the diagnosis decision but through other channels as well.14

4.4 Robustness

In Section 4.1, we detect small violations of quasi-random assignment (Assumption 1) in the overall

sample of stations; in Appendix A.2.2, we also show evidence that quasi-random assignment appears

to be satisfied statistically in 44 out of 104 stations, while we can reject quasi-random assignment in

the remainder of stations. With violations of quasi-random assignment, radiologists could systemati-

cally have higher probabilities of both diagnosis and false negatives not because they are less skilled

but because they are assigned more severe cases. Therefore, we examine the robustness of our results

to varying controls for patient characteristics as well as the set of stations we consider.

To examine robustness to controlling for patient characteristics, we first divide our 77 patient

characteristics into 10 groups: (i) age and gender; (ii) marital status; (iii) religion indicators (3 vari-

ables); (iv) veteran status (given that some patients are relatives of veterans); (v) race indicators (5

variables); (vi) distance between the patient’s residence and the closest VHA hospital (2 variables,

including an indicator for missing distance); (vii) prior utilization; (viii) prior diagnoses; (ix) vital

signs and WBC count; and (x) ordering characteristics.15 Next, we run separate regressions using

each of the 210 = 1,024 possible combinations of these 10 groups as controls.

Figure 6 shows the range of the coefficients ∆̂JIVE across these specifications. The number

of different specifications that corresponds to a given number of patient controls may differ. For

example, controlling for either no patient characteristics or all patient characteristics each results in

one specification. However, more generally, controlling for n patient characteristics results in “10

choose n” specifications. For each number of characteristics on the x-axis, we plot the minimum,

maximum, and mean slope statistic. The relationship is only slightly less positive with more controls,

and no specification yields a slope that is close to 0. Panel A displays results using observations from

all stations, and Panel B displays results using observations only from the 44 stations in which we

find even stronger evidence of balance. As expected, slope statistics are even more robust in Panel B

but, if anything, slightly larger in magnitude than the range of slope statistics in Panel A.

14We also see increases in joint outcomes of adverse events and true negatives. This may suggest a violation of exclusion
in Condition 1(i). Note that increases in the joint outcome of being diagnosed and having an adverse event by themselves
do not imply violations of Condition 1, if the adverse event is binary and the increases are less than 1.

15Variables in groups (vii)-(x) are described in Section 3.
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5 Structural Analysis

In this section, we define and estimate a structural model that allows variation in both skill and pref-

erences. It builds on the canonical selection framework by allowing radiologists to observe different

signals of patients’ true conditions, and so to rank cases differently in terms of their appropriateness

for diagnosis.

5.1 Model

Patient i’s true state si is determined by a latent index νi ∼ N (0,1). If νi is greater than ν, then the

patient has pneumonia:

si = 1 (νi > ν) .

We assume that ν > 0 so that the share S = 1−Φ(ν) of patients with pneumonia is less than one half.16

The radiologist j assigned to patient i observes a noisy signal wi j correlated with νi, where the

strength of the correlation depends on the radiologist’s skill αj ∈ [0,1]:

©­«
νi

wi j

ª®¬ ∼ N ©­«©­«
0

0
ª®¬,©­«

1 αj

αj 1
ª®¬ª®¬ . (5)

We assume that radiologists know both the cutoff value ν and their own accuracies αj .

The radiologist’s utility is given by

ui j =


−1, if di j = 1,si = 0,

−βj, if di j = 0,si = 1,

0, otherwise.

(6)

The key preference parameter βj captures the disutility of a false negative relative to a false positive.

Given that the health cost of undiagnosed pneumonia is potentially much greater than the cost of

inadvertently giving antibiotics to a patient who does not need them, we expect βj > 1. We normalize

the utility of correctly classifying patients to zero.

In Appendix A.5, we show that the radiologist’s optimal decision rule reduces to a cutoff value τj

such that di j = 1
(
wi j > τj

)
. The optimal cutoff τ∗ must be such that the agent’s posterior probability

16This assumption is consistent with the data and simplifies exposition but is not imposed in estimation.
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that si = 0 after observing wi j = τ
∗ is equal to

βj

1+ βj
. The forumla for the optimal threshold is

τ∗
(
αj, βj

)
=
ν−

√
1−α2

jΦ
−1

(
β j

1+β j

)
αj

. (7)

The cutoff value in turn implies FPj and FNj , which give expected utility

E
[
ui j

]
= −

(
FPj + βFNj

)
. (8)

The comparative statics of the threshold τ∗ with respect to ν and βj are intuitive. The higher is ν,

and thus the smaller the share S of patients who in fact have pneumonia, the higher is the threshold.

The higher is βj , and thus the greater the cost of a missed diagnosis relative to a false positive, the

lower is the threshold.

The effect of skill αj on the threshold is ambiguous. This arises because αj has two distinct effects

on the radiologist’s posterior on νi: (i) it shifts the posterior mean further from zero and closer to the

observed signal wi j ; and (ii) it reduces the posterior variance. For αj ≈ 0, the radiologist’s posterior is

close to the prior N (0,1) regardless of the signal. Provided that ν > Φ−1
(
β j

1+β j

)
she will prefer not to

diagnose any patients, implying τ∗ ≈ ∞. As αj increases, effect (i) dominates. This makes any given

wi j more informative and so causes the optimal threshold to fall. As αj increases further, effect (ii)

dominates. This makes the agent less concerned about the risk of false negatives and so causes the

optimal threshold to rise. Figure 7 shows the relationship between αj and τ∗j for different values of

βj .

In Appendix A.5.3, we consider a richer utility function in which radiologists’ utility functions

may also depend on the severity of a false negative (i.e., νi − ν) and show that this formulation yields

a similar threshold-crossing model with equivalent empirical implications. In Appendix A.6.4, we

also explore an alternative formulation in which τj depends on a potentially misinformed belief about

αj . From a social planner’s perspective, deviations from τ∗
(
αj, β

s
)
—where βs represents the social

planner’s welfare weights on false negatives vs. false positives—yield equivalent welfare losses re-

gardless of whether they derive from deviations of βj from βs or from deviations of beliefs about αj

from the truth.

We also allow for two additional parameters that relate to our institutional setting and reconcile the

data with the restrictive joint-normal signal structure in Equation (5). First, we allow for a proportion

of cases κ that are not at risk for pneumonia and are recognized as such by all radiologists. This
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reflects the fact that we cannot distinguish chest X-rays in our data ordered for reasons other than

suspicion of pneumonia. Second, given that we only observe false negatives after some delay, we

allow for a share λ of cases that do not have pneumonia at the time of their visit to develop it and be

diagnosed subsequently, thus being incorrectly coded as false negatives.

If we know a radiologist’s FPRj and TPRj in ROC space, then we can identify her skill αj by

the shape of potential ROC curves, and her preference βj by her diagnosis rate and Equation (7).

Equation (5) determines the shape of potential ROC curves and implies that they are smooth. It also

guarantees that two ROC curves never intersect and that each
(
FPRj,TPRj

)
point lies on only one

ROC curve. We also note that utility maximization and rational expectations imply selection on gains,

or concave ROC curves.

To see how λ is identified, note that under the joint-normal signal structure with λ = 0 a radiologist

with FPRj ≈ 0 must have a nearly perfectly informative signal and so should also have TPRj ≈ 1.

We in fact observe TPRj < 1 at this limit (i.e., some radiologists with no false positives still have

some false negatives) and the value of λ will be determined by the size of this gap. To see how κ is

identified, note that with κ = 0 we expect no radiologists with 0 < FPRj < 1 and TPRj =maxj′TPRj′.

That is, we expect no radiologists who have no false negatives (adjusting for λ) yet also have a non-

trivial number of false positives. Given these parameters and ν, the expected observed prevalence of

pneumonia among all chest X-rays will be S = (1−Φ (ν)+λΦ (ν)) (1− κ).17

5.2 Estimation

We estimate the model using observed data on diagnoses di and false negatives f ni. Recall that we

observe f ni = 0 for any i such that di = 1, and f ni = 1 is only possible if di = 0. We define the

following probabilities, conditional on γ j ≡
(
αj, βj

)
:

p1j
(
γ j

)
≡ Pr

(
wi j > τ

∗
j

���γ j

)
;

p2j
(
γ j

)
≡ Pr

(
wi j < τ

∗
j ,νi > ν

���γ j

)
;

p3j
(
γ j

)
≡ Pr

(
wi j < τ

∗
j ,νi < ν

���γ j

)
.

17Because we only observe data that include “false negatives” from later visits and chest X-rays that may not be at risk,
we refer to these reduced-form moments as Pj , FNj , and S. To distinguish from the “observed prevalence” S, we denote
the actual prevalence at the time of the initial chest X-ray, only among cases at risk, to be S′ = 1−Φ (ν). By TPRj and
FPRj , we denote the respective true positive rate and false positive rate for a radiologist’s decisions on the initial chest
X-ray for patients at risk. In other words, TPRj and FPRj adjust the reduced-form moments Pj and FNj by parameters ν,
κ, and λ.
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The likelihood of observing (di, f ni) for a case i assigned to radiologist j (i) is

Li

(
f ni,di |γ j(i)

)
=


(1− κ) p1j

(
γ j(i)

)
, if di = 1,

(1− κ)
(
p2j

(
γ j(i)

)
+λp3j

(
γ j(i)

) )
, if di = 0, f ni = 1,

(1− κ) (1−λ) p3j
(
γ j(i)

)
+ κ, if di = 0, f ni = 0.

For the set of patients assigned to j, Ij ≡ {i : j (i) = j}, the likelihood of dj = {di}i∈Ij and fnj =

{ f ni}i∈Ij is

Lj

(
fnj,dj

��γ j

)
=

∏
i∈Ij

Li

(
f ni,di |γ j(i)

)
=

(
(1− κ) p1j

(
γ j(i)

) )nd
j
(
(1− κ)

(
p2j

(
γ j(i)

)
+λp3j

(
γ j(i)

) ) )n f n
j

·
(
(1− κ) (1−λ) p3j

(
γ j(i)

)
+ κ

)n j−n
d
j −n

f n
j ,

where nd
j =

∑
i∈Ij di, n f n

j =
∑

i∈Ij f ni, and nj =


Ij



. From the above expression, nd
j , n f n

j , and nj

are sufficient statistics of the likelihood of dj and fnj , and we can write the radiologist likelihood as

Lj

(
nd
j ,n

f n
j ,nj

���γ j

)
.

Although αj and βj are flexibly identified in principle, we make an assumption on their population

distribution to improve power. Specifically, we assume

©­«
α̃j

β̃j

ª®¬ ∼ N ©­«©­«
µα

µβ

ª®¬,©­«
σ2
α ρσασβ

ρσασβ σ2
β

ª®¬ª®¬,
where αj =

1
2
(
1+ tanh α̃j

)
and βj = exp β̃j . We set ρ = 0 in our baseline specification.

We calibrate κ using a random forest algorithm that predicts pneumonia based on patient vital

signs, time categories, patient demographics, patient prior utilization, and words or phrases extracted

from the chest X-ray requisition. We conservatively set κ = 0.196 equal to the proportion of patients

with a random forest predicted probability of pneumonia less than 0.01.

Finally, to allow for potential deviations from random assignment, we risk-adjust observations of

diagnosis and type II error. Specifically, instead of using counts of diagnoses nd
j and false negative

outcomes n f n
j , we first risk-adjust individual observations (di, f ni) by patient characteristics Xi as well

as a full set of interactions between time dummies Ti and location identifiers ` (i), as we do in Section
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4.2.18 Denoting risk-adjusted counts as ñd
j and ñyj , we proceed in the second step by maximizing the

following log-likelihood to estimate the hyperparameter vector θ ≡
(
µα, µβ,σα,σβ,λ,ν

)
:

θ̂ = argmax
θ

∑
j

log
∫

Lj

(
ñd
j , ñ

y
j ,nj

���γ j

)
f
(
γ j

��θ ) dγ j .

We compute the integral by simulation, described in further detail in Appendix A.6.2. Given our

estimate of γ and each radiologist’s risk-adjusted data,
(
ñd
j , ñ

y
j ,nj

)
, we can also form an empirical

Bayes posterior of each radiologist’s skill and preference
(
αj, βj

)
, which we describe in Appendix

A.6.3.

5.3 Results

Table 2 shows estimates of the hyperparameter vector θ in our baseline specification. We report

asymptotic standard errors. We show in Appendix A.7 that estimates are stable across alternative

specifications and are also qualitatively similar regardless of whether or not we adjust for patient

characteristics. The stability with respect to patient controls is consistent with the stability of our

reduced-form results in Section 4.4.

In Appendix Figure A.4, we compare the distributions of observed data moments with those

simulated from the model at the estimated parameter values. The observed moments we consider are:

(i) the distribution of radiologist diagnosis rates; (ii) the distribution of radiologist type II error rates;

and (iii) the correlation between diagnosis rates and type II error rates.19 In all cases, the simulated

data match the observed data closely.

Table 2 also shows moments in the distribution of
(
αj, βj

)
implied by the model parameters. In

the baseline specification, the mean radiologist accuracy is relatively high, at 0.84. This implies that

the average radiologist receives a signal that has a correlation of 0.84 with the patient’s underlying

latent state νi. A radiologist at the 10th percentile of this skill distribution receives a signal that has

a correlation of 0.72 with the state, while a radiologist at the 90th percentile of the skill distribution

receives a signal that has a correlation of 0.93 with the state. The average radiologist preference

weights a false negative 8.07 times as high as a false positive. The 10th percentile of the preference

18We describe this risk-adjustment procedure in further detail in Appendix A.6.1.
19We construct simulated moments as follows. We first fix the number of patients each radiologist examines to the

actual number. We then simulate patients at risk from a binomial distribution with the probability of being at risk of
1− κ. For patients at risk, we simulate their underlying true signal and the radiologist-observed signal, or νi and wi j ,
respectively, using our posterior for αj . We determine which patients are diagnosed with pneumonia and which patients are
false negatives based on τ∗

(
αj, βj

)
, νi , and ν. We finally simulate patients who did not initially have pneumonia but later

develop it with λ.
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distribution entails a false negative disutility that is 6.79 times as high as a false positive, while the

90th percentile of this distribution entails a false negative disutility that is 9.43 times as high as a false

positive. Table A.5 finally shows that these distributions of radiologist structural primitives are fairly

invariant to the specification of the structural estimation.

In Figure 7, we display predicted empirical Bayes posteriors for
(
αj, βj

)
in a space that represents

optimal diagnostic thresholds. The figure shows that, for the estimated parameters of the model (in

particular, for the preference parameters that we estimate), the relationship between accuracy and

diagnostic thresholds is mostly positive. As radiologists become more accurate, they diagnose fewer

people (their thresholds increase), since the costly possibility of making a false negative diagnosis

decreases. In Appendix Figure A.5, we show the distributions of the empirical Bayes posteriors for

αj , βj , and τj , and the joint distribution of αj and βj . Finally, in Figure A.6, we transform empirical

Bayes posteriors for
(
αj, βj

)
onto ROC space. The relationship between TPRj and FPRj implied by

the empirical Bayes posteriors is similar to that implied by the flexible projection shown earlier in

Figure 4.

5.4 Heterogeneity

To provide suggestive evidence on what may drive variation in skill and preferences, we project our

empirical Bayes posteriors for
(
αj, βj

)
onto observed radiologist characteristics. Figure 8 shows the

distribution of observed characteristics across bins defined by empirical Bayes posteriors of skill αj .

Appendix Figure A.7 shows analogous results for the preference parameter βj .

Panel A of Figure 8 shows that more skilled radiologists are older. This is the strongest rela-

tionship statistically among all the characteristics we consider. Panel B shows that higher-skilled

radiologists also tend to be more specialized in reading chest X-rays (in the sense that these account

for a larger share of the scans they read).

Panel C shows that those who are more skilled also spend more time generating their reports.

This suggests that skill may be a function of effort as well as characteristics like training or talent.

The median radiologist with 0.10 higher α (i.e., among radiologists who extract 10% more of the true

signal than another group of radiologists) spends 35.3% more time to generate her reports. Panel D

shows that more skilled radiologists also issue shorter rather than longer reports, perhaps suggesting

that clarity and efficiency of communication is more important than the volume of words produced.

Panel E shows that there is little correlation between skill and the rank of the medical school a

radiologist attended. If anything, the relationship is slightly negative. Finally, Panel F shows that
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higher skilled radiologists are more likely to be male, in part reflecting the fact that male radiologists

are older and tend to be more specialized in reading chest X-rays.

The results for the preference parameter βj shown in Appendix Figure A.7 tend to go in the

opposite direction. This reflects the fact that our empirical Bayes estimates of αj and βj are slightly

negatively correlated.

It is important to emphasize that large variation in characteristics remains even conditional on

skill or preference. This finding is broadly consistent with the physician practice-style and teacher

value-added literature, which demonstrate large variation in decisions and outcomes that appear un-

correlated with physician or teacher characteristics (Epstein and Nicholson 2009; Staiger and Rockoff

2010).

6 Policy Implications

6.1 Decomposing Observed Variation

To assess the relative importance of skill and preferences in driving observed decisions and outcomes,

we simulate counterfactual distributions of decisions and outcomes in which we eliminate variation

in skill or preferences separately. We first simulate model primitives (αj, βj) from the estimated

parameters. Then we eliminate variation in skill by imposing αj = ᾱ, where ᾱ is the median of αj ,

while keeping βj unchanged. Similarly, we eliminate variation in preferences by imposing βj =

β̄, where β̄ is the median of βj , while keeping αj unchanged. For each of these counterfactual

distributions of underlying primitives—
(
ᾱ, βj

)
and

(
αj, β̄

)
—we simulate counterfactual distributions

of observed decisions and outcomes and compare them with those generated by (αj, βj).

We find that eliminating variation in skill reduces variation in diagnosis rates by 44 percent and

variation in type II error rates by 83 percent. On the other hand, eliminating variation in preferences

reduces variation in diagnosis rates by 25 percent and has no significant effect on variation in type

II error rates. These decomposition results suggest that variation in skill can have first-order impacts

on variation in decisions, something the standard model of preference-based selection rules out by

assumption.

6.2 Policy Counterfactuals

We also evaluate the welfare implications of policies aimed at observed variation in decisions or at

underlying skill. Welfare depends on the overall false positive probability FP and the overall false
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negative probability FN . We denote these objects under the status quo as FP0 and FN0, respectively.

We then define an index of welfare relative to the status quo:

W = 1−
FP+ βsFN

FP0+ βsFN0 , (9)

where βs is the social planner’s relative welfare loss due to false negatives compared to false positives.

This index ranges from W = 0 at the status quo to W = 1 at the first best of FP = FN = 0. It is also

possible that W < 0 under a counterfactual policy that reduces welfare relative to the status quo.

We estimate FP0 and FN0 based on our model estimates as

FP0 =
1∑
j nj

∑
j

njFP
(
αj,τ

∗
(
αj, βj ; ν̄

)
;ν

)
;

FN0 =
1∑
j nj

∑
j

njFN
(
αj,τ

∗
(
αj, βj ; ν̄

)
;ν

)
.

Here, τ∗(α,β; ν̄) denotes the optimal threshold given the evaluation skill α, the preference β, and the

disease prevalence ν̄. (αj, βj) are simulated model primitives from the estimated parameters. We

then consider welfare under counterfactual policies that eliminate diagnostic variation by imposing

diagnostic thresholds on radiologists.

In Table 3, we evaluate outcomes under two sets of counterfactual policies. Counterfactuals 1 and

2 focus on thresholds, while Counterfactuals 3 to 6 aim to improve skill.

Counterfactual 1 imposes a fixed diagnostic threshold to maximize welfare:

τ (βs) = argmax
τ

1−
1∑
j n j

∑
j nj

(
FP

(
αj,τ;ν

)
+ βsFN

(
αj,τ;ν

) )
FP0+ βsFN0

 ,
where

{
αj

}
and ν are given by our baseline model in Section 5. Despite the objective to maximize

welfare, a fixed diagnostic threshold may actually reduce welfare relative to the status quo by impos-

ing this constraint. On the other hand, Counterfactual 2 allows diagnostic thresholds as a function of

αj , implementing τj(βs) = τ∗
(
αj, β

s; ν̄
)
. This policy should weakly increase welfare and outperform

Counterfactual 1.

In Counterfactuals 3 to 6, we consider alternative policies that improve diagnostic skill, for ex-

ample by training radiologists, selecting radiologists with higher skill, or aggregating signals so that

decisions use better information. In Counterfactuals 3 to 5, we allow radiologists to choose their

own diagnostic thresholds, but we improve the skill αj of all radiologists at the bottom of the dis-
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tribution to a minimum level. For example, in Counterfactual 3, we improve skill to the 25th per-

centile α25, so we set αj = α
25 for any radiologist below this level. The optimal thresholds are then

τj = τ
∗(max

(
αj,α

25) , βj ; ν̄). Counterfactual 6 forms random two-radiologist teams and aggregates

signals of each team member under the assumption that the two signals are drawn independently.

Table 3 shows outcomes and welfare under βs = 8, which is close to the median radiologist prefer-

ence βj . We find that imposing a fixed diagnostic threshold (Counterfactual 1) would actually reduce

welfare. Although this policy reduces aggregate false positive errors, it increases aggregate false neg-

ative errors, which are costlier. Imposing a threshold that varies optimally with skill (Counterfactual

2) must improve welfare, but we find that the magnitude of this gain is small. In contrast, improving

diagnostic skill reduces both false negative and false positive outcomes and substantially outperforms

threshold-based policies. Combining two radiologist signals (Counterfactual 6) improves welfare by

36% of the difference between status quo and first best. Counterfactual policies that improve ra-

diologist skill naturally reclassify a much higher number of cases than policies that simply change

diagnostic thresholds, since improving skill will reorder signals, while changing thresholds leaves

signals unchanged.20

Figure 9 shows welfare changes as a function of the social planner’s preferences βs. In this

figure, we consider Counterfactuals 1 and 4 from Table 3. We also show the welfare gain a planner

would expect if she set a fixed threshold under the incorrect assumption that radiologists have uniform

diagnostic skill. In this “mistaken policy counterfactual,” the planner would conclude that a fixed

threshold would modestly increase welfare.21 In the range of βs spanning radiologist preferences

(Table 2 and Figure A.5), the skill policy outperforms the threshold policy, regardless of the policy-

maker’s belief on the heterogeneity of skill. The threshold policy only outperforms the skill policy

when βs diverges significantly from radiologist preferences. For example, if βs = 0, the optimal

policy is trivial: no patient should be diagnosed with pneumonia. In this case, there is no gain to

improving skill but there is a large gain to imposing a fixed threshold if some radiologists do not

share the social planner’s preferences.

20Reclassified cases are those that have a different classification (diagnosed or not) under the counterfactual policy than
under the status quo. We compute reclassified cases by holding fixed the noise term ω̃i j ∼ N (0,1), independent of νi , for

all cases i across counterfactual policies. A radiologist with accuracy αj will observe the signal wi j = αjνi +
√

1−α2
j
ω̃i j .

Under this setup, if τj and αj are unchanged for all j, then no case will be reclassified.
21We assume that the planner calculates a common diagnostic skill parameter α that rationalizes FP0 and FN0

with some estimate of disease prevalence ν′. Specifically, we solve two equations for two unknowns, α and ν′:

FP0 =
(∑

j nj
)−1 ∑

j njFP
(
α,τj ;ν′

)
and FN0 =

(∑
j nj

)−1 ∑
j njFN

(
α,τj ;ν′

)
. The common diagnostic threshold that

maximizes welfare under this assumption is τ (βs) = τ∗(α,βs ; ν̄′).
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6.3 Discussion

We show that dimensions of “preferences” and “skill” have different implications for welfare and

policy. Each of these dimensions likely captures a range of underlying factors. In our framework,

“preferences” encompass any distortion from the optimal threshold implied by (i) the social planner’s

relative disutility of false negatives, or βs, and (ii) the relationship between a patient’s underlying state

and a radiologist’s signals about that state, or αj . These distortions may arise from intrinsic prefer-

ences or external incentives that cause radiologist βj to differ from βs. Alternatively, as we elaborate

in Appendix A.6.4, equivalent distortions may arise from radiologists having incorrect beliefs about

the population prevalence parameter ν or their own skill αj .

What we call “skill” captures the relationship between a patient’s underlying state and a radi-

ologist’s signals about the state. We attribute this mapping to the radiologist since quasi-random

assignment to radiologists implies that we are isolating the causal effect of radiologists. As suggested

by the evidence in Section 5.4, “skill” may reflect not only underlying ability but also effort. Fur-

thermore, in this setting, radiologists may form their judgments with the aid of other clinicians (e.g.,

residents, fellows, non-radiologist clinicians) and must communicate their judgments to other physi-

cians. Skill may therefore reflect not only the quality of signals that the radiologist observes directly,

but also the quality of signals that she (or her team) passes on to other clinicians.

For purposes of welfare analysis, the mechanisms underlying “preferences” or “skill” do not

matter in so far as they map to an optimal diagnostic threshold and deviations from it. However,

practical policy implications (e.g., whether we train radiologists to read chest X-rays, collaborate

with others, or communicate with others) will depend on institution-specific mechanisms.

7 Conclusion

In this paper, we decompose the roots of practice variation in decisions across radiologists into di-

mensions of skill and preferences. While systematic variation in decisions across agents exists in a

wide range of settings, the standard view in much of the literature is to assume that of such variation

results from variation in preferences. We first show descriptive evidence that runs counter to this

view: radiologists who diagnose more cases with a disease are also the ones who miss more cases

that actually have the disease. We then apply a framework of classification and a model of decisions

that depend on both diagnostic skill and preferences. Using this framework, we demonstrate that the

source of variation in decisions can have important implications for how policymakers should view
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the efficiency of variation and for the ideal policies to address such variation. In our case, variation

in skill accounts for 44 percent of the variation in diagnostic decisions, and policies that select or

train providers to have higher skill result in potentially large welfare improvements, while policies to

impose uniform diagnosis rates may reduce welfare.

Our analysis relates not only to policy discussions centering on the causes and welfare implica-

tions of practice variation (e.g., Skinner 2012), but also to an active and growing literature that uses

variation across decision-makers to estimate the effect of a decision on outcomes (e.g., Kling 2006).

In the approach that we develop, we rely on prior information about the potential effect of the deci-

sion on outcomes. We show that such restrictions on potential outcomes may provide stronger tests of

monotonicity, particularly if potential outcomes capture important relationships with both unobserved

and observed case characteristics. Intuitively, the judges-design literature relies on comparisons be-

tween agents of the same skill. Thus, measuring skill may allow for research designs that correct for

bias due to monotonicity violations.
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Figure 2: Hypothetical Data Generated by Variation in Preferences vs. Skill
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A: Varying Preferences
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B: Varying Skill

Note: This figure demonstrates two possible models with hypothetical data. The top panel fixes the evaluation
skill and varies preferences. All agents are located on the same ROC curve and are faced with the tradeoff
between sensitivity (TPR) and specificity (1− FPR). They draw different thresholds for selection as a result
of heterogeneous preferences. The bottom panel fixes the preference and varies diagnostic skills. Agents
are located on different ROC curves but have parallel indifference curves. They draw different thresholds for
selection as a result of heterogeneous skills.
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Figure 3: Example Chest X-rays

Radiology  resident  chest  x-ray  reading  363

Figure 1. Flow chart. Forty selected CXR were divided into 3 categories (selection phase) and presented to experts (validation phase).
Sixteen CXR did not reach experts’ consensus and were rejected of the analysis. The 24 CXR with experts’ consensus were presented to
residents (experiment phase) and then included in analysis.

Figure 2. Typical examples of radiographs expected to mobilize detection skills (A—C) and interpretation skills (D—F). Experts’ consensus
diagnoses were: miliary tuberculosis — CXR#6 (A), lung nodule (cancer) in left upper lobe — CXR#19 (B), usual interstitial pneumonia —
CXR#27 (C), left upper lobe atelectasis — CXR#3 (D), right lower lobe infectious pneumonia — CXR#14 (E) and right upper lobe atelectasis
with Golden sign — CXR#36 (F).

Note: This figure shows example chest X-rays reproduced from Figure 2 of Fabre et al. (2018). These chest X-
rays represent cases on which there is expert consensus and which are used for training radiologists. Only Panel
E represents a case of infectious pneumonia, and we have added a red oval to denote where the pneumonia lies,
in the right lower lobe. Panel A shows miliary tuberculosis; Panel B shows a lung nodule (cancer) in the left
upper lobe; Panel C shows usual interstitial pneumonitis; Panel D shows left upper lobe atelectasis; Panel E
shows right upper lobe atelectasis.
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Figure 4: Projecting Data on ROC Space
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Note: This figure plots the model-free true positive rate (TPRj) and false positive rate (FPRj) for each radiolo-
gist across 3,199 radiologists who have at least 100 chest X-rays. The figure is based on risk-adjusted diagnosis
and type II error rates for each radiologist (Dj and FNj , respectively), which are shown in visual IV form in
Appendix Figure A.3 and as a binned scatter plot in Panel A of Figure 5. We then project these rates into ROC
space (i.e., onto TPRj and FPRj). This projection does not require any behavioral model but only uses disease-
related quantities, described in greater detail in Section 5. In brief, we use three disease-related parameters: (i)
the proportion of chest X-rays that are not at risk for pneumonia, κ; (ii) the proportion of at-risk chest X-rays
with detectable pneumonia, 1−Φ (ν); and (iii) the proportion of at-risk cases without detectable pneumonia at
the time who subsequently develop pneumonia, λ. For a given observed

(
Pj,FNj

)
, we calculate the following

adjustments: S′ = 1−Φ (ν); P′j = Pj/(1− κ); T N ′j =
(
T Nj − κ

)
/(1− κ)/(1−λ); FN ′j = FNj/(1− κ) − λT N ′j ;

TPRj = 1−FN ′j/S
′; and FPRj =

(
P′j +FN ′j − S′

)
/(1− S′). We use κ = 0.196, λ = 0.021, and ν = 1.781. For a

few radiologists, we impose additional restrictions that FPRj > 0 and TPRj > FPRj .
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Figure 5: Diagnosis and Type II Error Rates
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Note: This figure plots the relationship between the probability of pneumonia (PNA) diagnoses and type II
errors across radiologists. Under the assumption of IV validity in the judges design, this relationship represents
the effect of diagnosis on type II error. Panel A shows results using radiologist dummies as instruments, and
Panel B shows results using radiologist jackknife propensities to diagnose, given in Equation (4), as instru-
ments. In each panel, (first-stage) predictions of diagnoses due to radiologists are shown on the x-axis, and
(reduced-form) predictions of type II errors due to radiologists are shown on the y-axis. The coefficient in each
panel corresponds to the 2SLS estimate and standard error (in parentheses) for the corresponding IV regression,
as well as the number of cases (N) and the number of radiologists (J). Controls include 77 variables for patient
characteristics and time dummies interacted with station dummies. Further details are given in Appendix A.3.
The visual IV corresponding to Panel A is shown in Appendix Figure A.3.
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Figure 6: Stability of Slope between Diagnosis and Type II Error Rates
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Note: This figure shows the stability of the jackknife IV estimate on the relationship between type II error rates
and diagnosis rates, shown in Panel B of Figure 5. This relationship compares diagnosis and false negative
rates, Dj and FNj . Details on how we calculate this slope are given in Figure 5. The benchmark sample
generating results in Figure 5 uses observations from all stations. Stability results from this benchmark (full)
sample are shown in Panel A; results from an alternative sample restricted to 44 stations with statistical evidence
of quasi-random assignment are shown in Panel B. Appendix A.2.2 provides further details on how we select
the 44 stations with evidence of quasi-random assignment. In each panel, we recalculate the IV estimate from
Equation (A.9), varying the number of sets of patient characteristics we use as controls. We use 10 possible
sets of patient characteristics, altogether composed of 77 variables, that are described in Section 4.4. Therefore,
each panel summarizes 210 = 1,024 different regression specifications. On the x-axis of each panel, we vary the
number of patient characteristic types that we control for. For x-axis values between 0 and 10 (the maximum),
we run more than one regression (10 choose x) and collect the slope statistic in each specification. In the figure,
we show the mean slope as a solid line and the minimum and maximum slopes as dashed lines.
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Figure 7: Optimal Diagnostic Threshold
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Note: This figure shows how the optimal diagnostic threshold as a function of skill α and preferences β with
iso-preference curves for β = 6,8,10. Each iso-preference curve illustrates how the optimal diagnostic threshold
varies with the evaluation skill for a fixed preference, given by Equation (7), using ν = 1.781 estimated from
the model. Dots on the figure represent the empirical Bayes posterior of α (on the x-axis) and β for each
radiologist, and the corresponding optimal diagnostic threshold τ (α,β;ν) (on the y-axis) for each radiologist.
The empirical Bayes posteriors are the same as those shown in Figure A.5. Details on the empirical Bayes
procedure are given in Appendix A.6.3.
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Figure 8: Heterogeneity in Accuracy
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Note: This figure shows the relationship between a radiologist’s empirical Bayes posterior of her accuracy
(α) on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of the
radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate a
chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that the
radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from the usual regression. The dots are the median values of the variables on the y-axis within
each bin of α. 30 bins are used. Appendix Figure A.7 shows the corresponding plots with preferences (β) on
the x-axis.
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Figure 9: Counterfactual Policies
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Note: This figure plots the counterfactual welfare gains of different policies. Welfare is defined in Equation (9)
and is normalized to 0 for the status quo and 1 for the first best (no false positive or false negative outcomes).
The x-axis represents different possible disutility weights that the social planner may place on false negatives
relative to false positives, or βs . The first policy imposes a common diagnostic threshold to maximize welfare.
The second policy also imposes a common diagnostic threshold to maximize welfare but incorrectly considers
implications under the assumption that radiologists have the same diagnostic skill. The third policy trains
radiologists to the 25th percentile of diagnostic skill (if their skills are below-median) and allows them to
choose their own diagnostic thresholds based on their preferences.
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Table 2: Estimation Results

Panel A: Model Parameter Estimates
µα 0.897

(0.038)
σα 0.332

(0.010)
µβ 2.080

(0.056)
σβ 0.128

(0.006)
λ 0.021

(0.000)
ν̄ 1.781

(0.020)
κ 0.196

Panel B: Radiologist Primitives
α β τ

Mean 0.839 8.067 1.361

10th percentile 0.720 6.790 1.270
25th percentile 0.793 7.339 1.313
Median 0.858 8.002 1.360
75th percentile 0.904 8.723 1.409
90th percentile 0.934 9.428 1.453

Note: This table shows model parameter estimates (Panel A) and radiologist primitives implied by the model
parameters (Panel B). Hyperparameters µα and σα determine the distribution of radiologist diagnostic skill α,
while hyperparameters µβ and σβ determine the distribution of radiologist preferences β (the disutility of a
false negative relative to a false positive). In the baseline model, we assume that α and β are uncorrelated.
κ is the proportion of chest X-rays at risk for pneumonia. λ is the proportion of at-risk chest X-rays with
no radiographic pneumonia at the time of exam but subsequent development of pneumonia. ν describes the
prevalence of pneumonia at the time of the exam among at-risk chest X-rays. Standard errors are shown in
parentheses. κ is calibrated as the proportion of patients with 0 probability of pneumonia on a random forest
model of pneumonia based on rich characteristics in the patient chart. Model parameters are described in
further detail in Section 5.
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Appendix

A.1 Sufficiency of Skill-Propensity Independence

We first define the notion of probabilistic monotonicity and a sufficient condition for the judges design

to recover a well defined LATE.

Definition (Probabilistic Monotonicity). Consider a set of judges J . There exists probabilistic

monotonicity among judges in J if, for any j and j ′ in J ,

Pr
(
di j = 1

)
≥ Pr

(
di j′ = 1

)
or Pr

(
di j = 1

)
≤ Pr

(
di j′ = 1

)
, for all i. (A.1)

Condition A.1 (Skill-Propensity Independence). There exists a function that assigns a skill αj to

each judge j ∈ J such that (i) probabilistic monotonicity holds in all sets Jα ≡
{

j ∈ J : αj = α
}
;

(ii) Pj is independent of αj .

In this section, we detail proofs of the sufficiency of Condition A.1 for the judges-design 2SLS

estimand to represent properly weighted treatment effects. Condition A.1 is a weaker version of the

standard (strict) monotonicity assumption of Imbens and Angrist (1994), stated in Condition 1(iii).

We also show that Condition A.1 implies the “average monotonicity” concept of Frandsen et al.

(2019).

We consider a population of cases I and a population of agents J . Assignment to agents drives

treatment decisions; we denote the potential treatment decision for case i ∈ I under any agent j ∈ J

by di j ∈ {0,1}. While we consider Condition A.1 in place of Condition 1(iii), we assume the other

conditions for IV validity, namely Condition 1(i)-(ii). Specifically, potential outcomes for a given

case depend only on treatment decisions yi j = yi
(
di j

)
and potential outcomes and potential treatment

decisions are independent of agent assignments. As in the paper, we denote the assigned agent for case

i as j (i), and we denote an agent j’s treatment propensity as Pj ≡ Pr
(
di j = 1

�� j (i) = j
)
. For each case

i, we observe only one decision and one outcome: di ≡
∑

j 1 ( j = j (i))di j and yi ≡
∑

j 1 ( j = j (i)) yi j =

yi (di).

We adopt the concept of monotonicity-consistent skill αj such that Pr
(
di j = 1

)
is characterized

for all i by αj and Pj . The definition of monotonicity-consistent skill is such that, for any j and j ′

with αj = αj′, probabilistic monotonicity holds, or

Pr
(
di j = 1

)
≥ Pr

(
di j′ = 1

)
or Pr

(
di j = 1

)
≤ Pr

(
di j′ = 1

)
, for all i.

Therefore, if both αj = αj′ and Pj = Pj′, then we must have Pr
(
di j = 1

)
= Pr

(
di j′ = 1

)
, for all i. We

denote the probability of treatment for case i, conditional on αj(i) = α and Pj(i) = p, as πi (α,p). We

work with the above concept of probabilistic monotonicity. Since probabilistic monotonicity is a

generalization of strict monotonicity, all proofs will also apply to the more specific case of skill being

defined by strict monotonicity.
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A.1.1 Proper Weighting of Treatment Effects in Estimand

Following Imbens and Angrist (1994), we consider a discrete distribution of αj ∈ A and Pj ∈ P.

This setup reduces notation but is without loss of generality. As a first object, we define δ (p′,p) ≡

Ei

[
yi |Pj(i) = p′

]
−Ei

[
yi |Pj(i) = p

]
. Unlike the standard case, we first start with an infinite popula-

tion of judges at each p ∈ P in order to exploit Condition A.1. We turn to a finite set of judges and

convergence properties as this set grows in Appendix A.1.2. δ (p′,p) is the difference in average out-

comes comparing cases assigned to an agent with Pj = p′ with those assigned to an agent with Pj = p;

this object is identified from data. We also define the treatment effect for case i as yi (1)− yi (0), which

is not identified from data, since only one of the potential outcomes yi (di) is observed.

Proposition 5. Under Condition 1(i)-(ii) and Condition A.1, for p′ > p, δ (p′,p) is a proper weighted

average of treatment effects, or Ei [ωi (yi (1)− yi (0))], where ωi ≥ 0 for all i.

Proof. By iteration of expectations, we have

δ (p′,p) ≡ Ei

[
yi |Pj(i) = p′

]
−Ei

[
yi |Pj(i) = p

]
= Eα

[
Ei

[
yi |αj(i) = α,Pj(i) = p′

] ��Pj(i) = p′
]

−Eα
[
Ei

[
yi |αj(i) = α,Pj(i) = p

] ��Pj(i) = p
]
.

By Condition A.1, the distribution of αj is the same for Pj = p′ as it is for Pj = p. Thus,

δ (p′,p) = Eα
[
Ei

[
yi |αj(i) = α,Pj(i) = p′

]
−Ei

[
yi |αj(i) = α,Pj(i) = p

] ]
.

Condition 1(i)-(ii) and further operations yield

δ (p′,p) = Eα [Ei [(πi (α,p′)− πi (α,p)) (yi (1)− yi (0))]]

= Ei [Eα [(πi (α,p′)− πi (α,p)) (yi (1)− yi (0))]]

= Ei [ωi (yi (1)− yi (0))],

where ωi = Eα [πi (α,p′)− πi (α,p)] is the incremental probability of treatment for case i between

assignment to agents with Pj = p′ and assignment to agents with Pj = p. From the definition of

probabilistic monotonicity in Condition A.1, ωi ≥ 0 for all i. �

Note that δ (p′,p) is the reduced-form numerator of a Wald estimand δ(p′,p)
p′−p which identifies

the average treatment effect for compliers induced into treatment when reassigned from judges with

Pj = p to agents with Pj = p′. Next, we consider the IV estimand. As in the standard case, the IV

estimand is a weighted average of the Wald estimands, with weights summing to 1.

Proposition 6. The judges-design IV estimand,

βIV =
Cov

(
yi,Pj(i)

)
Cov

(
di,Pj(i)

) ,
A.2



is a weighted average of Wald estimands δ (p′,p)/(p′− p), where the weights are non-negative and

sum to 1.

Proof. Index p as pk for k = 1, . . . ,K , such that pk′ > pk for k ′ > k. Denote λk = Pr
(
Pj(i) = pk

)
. The

IV estimand is given by

βIV =
Cov

(
yi,Pj(i)

)
Cov

(
di,Pj(i)

)
=

Ei

[
yi

(
Pj(i)−E [di]

) ]
Ei

[
di

(
Pj(i)−E [di]

) ] .
We will proceed by iterating expectations in the numerator and the denominator. In the numerator,

Ei

[
yi

(
Pj(i)−E [di]

) ]
=

K∑
k=1

λkEi

[
yi

(
Pj(i)−E [di]

) ��Pj(i) = pk
]
.

By definition, Ei

[
yi |Pj(i) = pk

]
= δ (pk,p1)+Ei

[
yi |Pj(i) = p1

]
. Therefore, the numerator is equal to

K∑
k=1

λkEi

[
yi |Pj(i) = p1

]
(pk −E [di])︸                                          ︷︷                                          ︸

0

+

K∑
k=2

λkδ (pk,p1) (pk −E [di]) .

Since δ (pk,p1) =
∑k

k′=2 δ (pk′,pk′−1), we can also state the numerator as

K∑
k=2

λk

k∑
k′=2

δ (pk′,pk′−1) (pk −E [di]) =
K∑
k=2

δ (pk,pk−1)

K∑
k′=k

λk′ (pk′ −E [di]) .

Similar operations in the denominator gives

βIV =

∑K
k=2 δ (pk,pk−1)

∑K
k′=k λk′ (pk′ −E [di])∑K

k=2 (pk − pk−1)
∑K

k′=k λk′ (pk′ −E [di])
.

Thus,

βIV =

K∑
k=2
Ωk

δ (pk,pk−1)

pk − pk−1
,

with weights

Ωk =
(pk − pk−1)

∑K
k′=k λk′ (pk′ −E [di])∑K

k′=2 (pk′ − pk′−1)
∑K

k′′=k′ λk′′ (pk′′ −E [di])
.

�

By construction, the weights Ωk ≥ 0, and
∑K

k=2Ωk = 1. Since Ωk is proportional to (pk − pk−1),

Wald estimands corresponding to larger first-stage changes in treatment propensity receive higher
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weights. The second component of Ωk gives more weight to Wald estimands closer to the center of

the distribution of P.

A.1.2 Consistency of the Estimator

In practice, the judges-design estimator makes use of a finite number of judges. We now consider a

finite set J of judges and analyze the convergence properties of the judges-design estimator as ‖J‖

increases to infinity.

We begin with the assumption that an infinite number of cases are assigned to each judge j ∈

J, denoting the probability of assignment to judge j as ρj ≡ Pr ( j (i) = j). We partition the set by

propensity to treat, denoting Jp ≡
{

j ∈ J : Pj = p
}
, such that J =

⋃
p Jp. We denote the expected

outcome, conditional on assignment to Jp, as Ei

[
yi | j (i) ∈ Jp

]
. As in Appendix A.1.1, we denote

the corresponding expected outcome in an infinite population of agents Jp =
{

j ∈ J : Pj = p
}

as

Ei

[
yi |Pj = p

]
.

Assumption A.1. Suppose that an infinite number cases are assigned to each agent j in a finite

sample of agents, J. Let Jp ≡
{

j ∈ J : Pj = p
}

and assume that as ‖J‖ approaches infinity, so does

Jp


 for all p.

Lemma 7. Under Assumption A.1, Ei

[
yi | j (i) ∈ Jp

]
converges in probability to Ei

[
yi |Pj(i) = p

]
as

‖J‖ approaches infinity.

Proof. By iteration of expectations, the expectation conditional on assignment to Jp is

Ei

[
yi | j (i) ∈ Jp

]
=

∑
α∈A

∑
j∈Jp ρj1

(
αj = α

)
Ei

[
yi |αj(i) = α,Pj(i) = p

]∑
j∈Jp ρj

.

By the law of large numbers, as


Jp



→ ∞, conditional on Pj = p, the sample probability of

assignment to an agent with αj = α converges to the population probability of assignment to an agent

with αj :

lim
‖Jp ‖→∞

∑
j∈Jp ρj1

(
αj = α

)∑
j∈Jp ρj

= Pr
(
αj(i) = α

��Pj(i) = p
)
.

Thus,

lim
‖Jp ‖→∞

Ei

[
yi | j (i) ∈ Jp

]
=

∑
α∈A

Pr
(
αj(i) = α

��Pj(i) = p
)

Ei

[
yi |αj(i) = α,Pj(i) = p

]
= Ei

[
yi |Pj(i) = p

]
.

�

Similarly, we can describe the convergence properties of the sample reduced-form estimate δ̂ (p′,p) ≡

Ei

[
yi | j (i) ∈ Jp′

]
−Ei

[
yi | j (i) ∈ Jp

]
.

A.4



Lemma 8. Under Assumption A.1, for all p and p′ in P, δ̂ (p′,p) converges in probability to δ (p′,p)

as ‖J‖ approaches infinity.

Proof. Under Lemma 7,

lim
‖Jp ‖→∞

Ei

[
yi | j (i) ∈ Jp

]
= Ei

[
yi |Pj(i) = p

]
;

lim
‖Jp′ ‖→∞

Ei

[
yi | j (i) ∈ Jp′

]
= Ei

[
yi |Pj(i) = p′

]
.

Under Assumption A.1,


Jp



 and


Jp′



 both approach infinity as ‖J‖ approaches infinity. Then

applying the continuous mapping theorem, we have

lim
‖J ‖→∞

δ̂ (p′,p) = δ (p′,p) .

�

We now consider the 2SLS estimator in a finite sample of agents. For now, we continue to assume

an infinite sample of cases. Define the finite-judge IV estimand as

β̂IVJ =
Ei

[
yi

(
Pj(i)−E [di]

) �� j (i) ∈ J
]

Ei

[
di

(
Pj(i)−E [di]

) �� j (i) ∈ J
] .

Lemma 9. Under Assumption A.1, β̂IVJ converges in probability to βIV as ‖J‖ approaches infinity.

Proof. Let λ̂k ≡ Pr
(
Pj(i) = pk

�� j (i) ∈ J
)
=

∑
j∈J ρj1

(
Pj = pk

)
. Taking a similar approach as in Propo-

sition 6, we can show that

β̂IVJ =

K∑
k=2
Ω̂k

δ̂ (pk,pk−1)

pk − pk−1
,

where

Ω̂k =
(pk − pk−1)

∑K
k′=k λ̂k′ (pk′ −E [di])∑K

k′=2 (pk′ − pk′−1)
∑K

k′′=k′ λ̂k′′ (pk′′ −E [di])
.

By the law of large numbers, lim‖J ‖→∞ λ̂k = λk . From Lemma 8, lim‖J ‖→∞ δ̂ (p′,p) = δ (p′,p) .
Applying the continuous mapping theorem, we have

lim
‖J ‖→∞

β̂IVJ = β
IV .

�

We finally consider a finite sample of cases i = 1, . . . ,N assigned to a finite sample of judges

J ≡
⋃

i j (i). Denote the set of cases assigned to j as Ij . The IV estimator is

β̂IVN ,J =

∑N
i=1 yi

(
P̂j(i)− Ê [di]

)
∑N

i=1 di
(
P̂j(i)− Ê [di]

) ,
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where P̂j is a consistent estimator of Pj , such as the jackknife instrument, and Ê [di] = 1
N

∑N
i=1 di.

Proposition 10. Consider that both N and ‖J‖ approach infinity. Assume that


Ij



 approaches

infinity for all j ∈ J, where Ij = {i : j (i) = j} is the set of patients assigned to radiologist j. Assume

that


Jp



 approaches infinity for all p. Then

√
N

(
β̂IVN ,J − β

IV
)

d
→N (0,Σ),

where Σ =
E[ε2

i (di−E[di ])
2]

Cov2(di ,Pj(i))
, and εi = yi −E [yi]− βIV (di −E [di]) .

Proof. First consider a finite sample J, but that N approaches infinity such that


Ij



 approaches

infinity for all j ∈ J. Then Imbens and Angrist (1994) follows, and

√
N

(
β̂IVN ,J − β̂

IV
J

)
d
→N

(
0,Σ̂J

)
,

where Σ̂J =
E

[
ε2
i ,J (di−E[ di | j(i)∈J])

2
]

Cov2( di ,Pj(i) | j(i)∈J)
, and εi,J = yi −E [ yi | j (i) ∈ J]− β̂IVJ (di −E [di | j (i) ∈ J]).

As ‖J‖ approaches infinity, such that


Jp



 approaches infinity for all p, and maintaining an infinite

sample Ij for each j, β̂IVJ
p
→ βIV from Lemma 9, and Σ̂J

p
→ Σ from the continuous mapping theorem.

So under the assumed asymptotics,

lim
‖J ‖→∞

√
N

(
β̂IVN ,J − β

IV
)

d
→N (0,Σ) .

�

A.1.3 Average Monotonicity (Frandsen et al. 2019)

We finally consider how Condition A.1 relates to “average monotonicity” in Frandsen et al. (2019).

We first define average monotonicity among a set of judges J.

Definition (Average Monotonicity). Consider a population of cases I. Average monotonicity exists

in a set of judges J if, for all i ∈ I, ∑
j∈J

ρj

(
Pj −P

) (
di j −Di

)
≥ 0,

where ρj ≡ Pr ( j (i) = j), P ≡
∑

j∈J ρjPj , and Di ≡
∑

j∈J ρj Pr
(
di j = 1

)
.

We show that in a large population of judges, Condition A.1 implies average monotonicity. We

begin by showing that under Condition A.1 in a infinite population of judges, the probability of

treatment increases when randomly reassigning any case i from a judge with propensity p to a judge

with propensity p′ > p.
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Lemma 11. With an infinite population of judges at each propensity p ∈ P, Condition A.1 implies

that for all i and any pair p′ and p in P such that p′ > p,

Ej

[
di j

��Pj = p′
]
≥ Ej

[
di j

��Pj = p
]
.

Proof. Iterating expectations, for case i and some p ∈ P,

Ej

[
di j

��Pj = p
]
= Eα

[
Ej

[
di j

��αj = α,Pj = p
] ��Pj = p

]
= Eα

[
πi (α,p)|Pj = p

]
= Eα [πi (α,p)],

where the second equality makes use of the definition of skill-consistent monotonicity in Condition

A.1, and the third equality invokes independence between skill and propensities in Condition A.1.

For p′ > p, πi (α,p′) ≥ πi (α,p) for all i and α. Therefore, for p′ and p in P such that p′ > p,

Ej

[
di j

��Pj = p′
]
≥ Ej

[
di j

��Pj = p
]
.

�

Proposition 12. With an infinite population of judges at each propensity p ∈ P, Condition A.1 implies

average monotonicity.

Proof. We restate the expression in the definition of average monotonicity in a population of judges:

lim
‖J ‖→∞

∑
j∈J

ρj

(
Pj −P

) (
di j −Di

)
= Ej

[(
Pj −P

) (
di j −Di

)]
= Ej

[(
Pj −P

)
di j

]
,

where the second equality makes use of the fact that Ej

[
Di

(
Pj −P

)]
= 0.

Index p ∈ P by k = 1, . . . ,K , and define λk ≡ Pr
(
Pj = pk

)
. Iteration of expectations yields

Ej

[(
Pj −P

)
di j

]
=

K∑
k=1

λkEj

[ (
Pj −P

)
di j

���Pj = pk
]

=

K∑
k=1

λk

(
pk −P

)
Ej

[
di j

��Pj = pk
]
.

Now consider P̃ = inf
(

p| p > P
)
. By Lemma 11, for all i, Ej

[
di j

��Pj = pk
]
≥ Ej

[
di j

��Pj = P̃
]

for
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any pk > P, while Ej

[
di j

��Pj = pk
]
≤ Ej

[
di j

��Pj = P̃
]

for any pk < P. Thus, for all i,

Ej

[(
Pj −P

)
di j

]
=

K∑
k=1

λk

(
pk −P

)
Ej

[
di j

��Pj = pk
]

≥

K∑
k=1

λk

(
pk −P

)
Ej

[
di j

��Pj = P̃
]

= Ej

[
di j

��Pj = P̃
] K∑
k=1

λk

(
pk −P

)
= 0.

�

A.2 Quasi-Random Assignment

A.2.1 Balance Between Radiologist Groups

This appendix details the construction of Tables 1 and A.2. In the first step, we categorize each

radiologist as having either above- or below-median risk-adjusted diagnostic rates and as having either

above- or below-median risk-adjusted type II error rates. In particular, we calculate radiologist risk-

adjusted rates of diagnosis and type II error as ζ̂dj and ζ̂
f n
j , respectively, as described in Appendix

A.6.1.

In the second step, we form a predicted diagnosis and a predicted type II error, based on linear

regressions with sets of patient characteristics as predictors. We consider six sets of patient charac-

teristics: demographics (14 variables), prior utilization (3 variables), prior diagnoses (32 variables),

vital signs and WBC count (24 variables), ordering characteristics (4 variables), and all previously

listed characteristics (77 variables). In other words, for patient characteristics Xc
i , indexed by c, we

run the following linear probability models:

di = Xc
i β

d,c + εdi ; (A.2)

f ni = Xc
i β

y,c + ε
y
i . (A.3)

We then form predictions d̂c
i = Xc

i β̂
d,c and ŷci = Xc

i β̂
y,c.

In the third step, we compute average actual and predicted diagnoses and type II errors at the ra-

diologist level. Specifically, for each measure xi ∈
{
di, f ni,

{
d̂c
i , ŷ

c
i

}
c

}
,we average residual measures

for patients assigned to each radiologist j: x j =


Ij



−1 ∑
i∈Ij x∗i , where Ij = {i : j (i) = j} is the set of

patients assigned to radiologist j. In Tables 1 and A.2, we display the respective patient-weighted
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average and standard deviation of x j for radiologists belonging in each group J:

µxJ =

∑
j∈J



Ij


 x j∑

j∈J



Ij


 ; (A.4)

σx
J =

√√√
‖J‖
‖J −1‖

∑
j∈J



Ij


 (

x j − µ
x
J

)2∑
j∈J



Ij


 . (A.5)

We also display the difference between the averages of two groups µxJ2
− µxJ1

where J1 and J2 corre-

spond to a below-median and above-median pair of groups. For inference on this difference of means,

we calculate a standard error of

√
‖J1‖

−1
(
σx
J1

)2
+ ‖J2‖

−1
(
σx
J2

)2
, which focuses on variation at the

radiologist level.

A.2.2 Stations with Quasi-Random Assignment

In a complementary approach, we first identify stations with evidence of quasi-random assignment

based only on patient age and then assess robustness of this categorization by utilizing other “hold-

out” patient characteristics. For the latter assessment, we predict diagnosis and type II error using

the full matrix of 77 patient characteristic variables Xi in Equations (A.2) and (A.3). Therefore, in

each station, we separately assess whether three patient-level measures appear as good as randomly

assigned to radiologists: age; predicted diagnosis; and predicted type II error.

For each of these assessments, we use two methods: a parametric F-test of the joint statistical

significance of radiologist fixed effects in each station; and a permutation (“randomization inference”)

test of whether variation in radiologist fixed effects is larger than what would be obtained under

random assignment.

1. F-test. For each measure xi ∈
{
Agei, d̂i, ŷi

}
and for each station `, we regress observations in

{i : ` (i) = `} as follows:

xi = Tiγ
x
` + ζ

x
j(i)+ ε

x
i , (A.6)

Clustering at the radiologist level, we then assess quasi-random assignment of xi in station `

by an F-test of the joint significance of the set of fixed effects for the set of radiologists J` at

station `, or
{
ζ xj

}
j∈J`

.

2. Randomization Inference. For each measure xi ∈
{
Agei, d̂i, ŷi

}
and for each station `, we form

residual x∗i = xi −Ti δ̂
x
`
,where δ̂x

`
is estimated from a station-specific regression xi = Tiδ

x
`
+ηxi .

We then regress these residual measures on radiologist fixed effects, as

x∗i = ξ
x
j(i)+ ε

x
i ,

and measure the case-weighted standard deviation of estimated fixed effects, similar to Equa-
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tion (A.5):

σx
` =

√√√√√
‖J` ‖
‖J` −1‖

∑
j∈J`



Ij


 (
ξ̂xj − ξ

x

J`

)2∑
j∈J`



Ij


 ,

where ξ
x

` =
(∑

j∈J`



Ij


 ξ̂xj ) /(∑j∈J`



Ij


) . Next, we randomly assign the residuals to radiolo-

gists in station `, keeping the number of observations assigned to each j ∈ J` fixed. Based on

these random placebo assignments j (i;r), for each i in each iteration r , we re-estimate placebo

fixed effects ξ̂x
j(i;r) and we re-calculate the patient-weighted standard deviation of these fixed

effects σx
`;r . We repeat this for iterations r = {1,2, . . . ,100} and count the number of iterations

for which σx
`;r > σx

`
. This count is the randomization inference p-value for measure x and

station `.

First using age as the patient characteristic of interest, we identify stations that appear to feature quasi-

random assignment. In Figure A.1, we find a high degree of concordance across stations between p-

values from the F-test and from the randomization inference, based on age. Forty-four stations pass

their F-tests with a p-value greater than 0.10, while 52 stations pass their randomization inference

tests with a p-value greater than 0.10. The former set of stations is a strict subset of the latter set, so

that 44 stations pass both their F-tests and their randomization inference tests. Aside from the mass

of stations with a p-value of 0, the remaining distribution of p-values from both tests appears uniform.

We then test whether “hold-out” characteristics continue to suggest quasi-random assignment

among the 44 stations selected based on patient age. In Figure A.2, we show the distribution of F-test

and randomization inference p-values among these 44 stations, based on the 77 patient characteristic

variables projected onto predicted pneumonia diagnosis and predicted type II error. We find that the

p-values continue to be roughly uniformly distributed with little mass at the p-value of 0.

A.3 Graphical Presentation of IV Estimates

In our descriptive analysis, we evaluate the relationship between radiologist effects on diagnostic

decisions di and type II errors f ni. This evaluation corresponds to the following 2SLS first-stage and

reduced-form regressions:

di = Ziζ1+Xiπ1+ T̃iγ1+ ε1,i; (A.7)

f ni = Ziζ2+Xiπ2+ T̃iγ2+ ε2,i, (A.8)

where Zi is potentially a vector-valued instrument depending on the assigned radiologist j (i) assigned

to case i, Xi is the full vector of 77 patient characteristic variables described in Section 4.1, and T̃i is

a vector of time-station interactions.

Define Z, X, and T̃ as matrices of stacked vectors Zi, Xi, and T̃i, respectively; similarly define

d and fn as vectors of di and f ni, respectively. Then the standard 2SLS estimator corresponding to
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Equations (A.7) and (A.8) is

∆̂ =
(
X̃′PZX̃

)−1 X̃′PZ fn, (A.9)

where X̃ ≡
[
d X T̃

]
, Z̃ ≡

[
Z X T̃

]
, and PZ ≡ Z̃

(
Z̃′Z̃

)−1 Z̃′. Under Assumptions 1 and A.1, ∆̂ is a

consistent estimator of ∆ in the following second-stage relationship:

f ni = ∆di +Xiβ+Tiδ+ εi .

We estimate two versions of ∆̂: ∆̂IV , which uses radiologist dummies as instruments, and ∆̂JIVE ,

which uses the jackknife instrument defined in Equation (4).

To show ∆̂IV graphically, we estimate radiologist fixed effects in the following reduced-form and

first-stage equations corresponding to Equations (A.7) and (A.8):

di = ζ1, j(i)+Xiπ1+ T̃iγ1+ ε1,i;

f ni = ζ2, j(i)+Xiπ2+ T̃iγ2+ ε2,i .

This yields ζ̂1, j and ζ̂2, j for each j.

To each observation i, we assign values ξ1,i = ζ̂1, j(i) and ξ2,i = ζ̂2, j(i). We residualize ξ1,i and

ξ2,i by Xi and T̃i, calling the respective residuals ξ∗1,i and ξ∗2,i. We average the residuals within each

radiologist:

ξ1, j =
1

Ij


 ∑
i∈Ij

ξ∗1,i;

ξ2, j =
1

Ij


 ∑
i∈Ij

ξ∗2,i .

We finally add a constant to all ξ1, j to ensure that the patient-weighted average of ξ1, j is equal to

the observed overall diagnosis rate; we similarly add a constant to all ξ2, j to ensure that the patient-

weighted average of ξ2, j is equal to the observed overall type II error rate.22

To create the visual IV in Figure A.3, we plot each point with ξ1, j on the x-axis and ξ2, j on the

y-axis. The patient-weighted slope of the line fitting these points is equal to β̂IV using radiologist

dummies as instruments for di. To create the binned scatter plot in Panel A of Figure 5, we first

residualize f ni by Xi and T̃i, calling the residual f n∗i . We then divide the data at the patient level into

bins of ξ∗1,i, and we plot the mean ξ∗1,i for each bin on the x-axis and the mean f n∗i for each bin on the

y-axis.

To show ∆̂JIVE graphically, we use the jackknife instrument,

Zi =
1

Ij(i)


−1

∑
i′,i

1
(
i′ ∈ Ij(i)

)
di′,

22Without adding these constants, the patient-weighted averages of ξ1, j and ξ2, j would both be 0.

A.11



and estimate the first-stage regression,

di = αZi +Xiπ+ T̃iγ+ εi,

saving our estimate of α. We also residualize Zi by Xi and T̃i, denoting this residual as Z∗i . To create

the binned scatter plot in Panel B of Figure 5, we divide the data at the patient level into bins of Z∗i ,

and we plot the mean α̂Z∗i for each bin on the x-axis and the mean f n∗i for each bin on the y-axis.

A.4 Informal Tests of Monotonicity

Under monotonicity, when comparing a radiologist j ′ who diagnoses more cases than radiologist j,

there cannot be a case i such that di j = 1 and di j′ = 0. In this appendix, we conduct informal tests

of this assumption, along the lines of tests in Bhuller et al. (2016) and Dobbie et al. (2018). In the

judges-design literature, these monotonicity tests confirm whether the first-stage estimates are non-

negative in subsamples of cases. We first present results of implementing these standard tests. We

then draw relationships between these tests, which do not reject monotonicity, and our analysis in

Section 4, which strongly rejects monotonicity.

A.4.1 Results

We define subsamples of cases based on patient characteristics. We consider four characterstics:

probability of diagnosis (based on patient characteristics); age; arrival time; and race. We define two

subsamples for each of the characteristics, for a total of eight subsamples: (i) above-median age;

(ii) below-median age; (iii) above-median probability of diagnosis; (iv) below-median probability

of diagnosis; (v) arrival time during the day (between 7 a.m. and 7 p.m.); (vi) arrival time at night

(between 7 p.m. and 7 a.m.); (vii) white race; and (viii) non-white race.

The first testable implication follows from the following intuition: Under monotonicity, a radiol-

ogist who generally increases the probability of diagnosis should increase the probability of diagnosis

in any subsample of cases. Following the judges-design literature, we construct leave-out propensi-

ties for pneumonia diagnosis and use these propensities as instruments for whether an index case is

diagnosed with pneumonia. In other words, for our baseline jackknife instrument, we construct

Z−ij =
1

Ij


−1

∑
i′∈Ij\i

di′,

where Ij ≡ {i : j (i) = j}. This leave-out instrument for radiologist j averages diagnostic decisions

over other cases assigned to j, excluding the index case i.

In each of the 12 subsamples, defined by some patient characteristic m (e.g., age) and binary indi-

cator x (e.g., older vs. younger), we estimate the following first-stage regression, using observations

in subsample I(x,m):

di = αx,mZ−ij +Xiπx,m+ T̃iγx,m+ εi . (A.10)
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Consistent with our quasi-experiment in Assumption 1, we control for time categories interacted with

station identities, or T̃i. We also control for patient characteristics Xi as in our baseline first-stage

regression in Equation (A.7). Under monotonicity, we should have πx,m ≥ 0 for (m,x).

The second testable implication is slightly stronger: Under monotonicity, an increase in the prob-

ability of diagnosis by changing radiologists in any subsample of patients should correspond to in-

creases in the probability of diagnosis in all other subsamples of patients. To capture this intuition,

we construct “reverse-sample” instruments that exclude any case with the same characteristic value x

of some characteristic function m:

Z−(m,x)j =
1

Ij \I(x,m)



 ∑
i∈Ij\I(x ,m)

di,

where I(x,m) ≡ {i : m (i) = x} is the subsample of observations such that the characteristic value of m

is x. We estimate the first-stage regression, using observations in subsample I(x,m):

di = αx,mZ−(m,x)
j(i)

+Xiπx,m+ T̃iγx,m+ εi . (A.11)

As before, we control for patient characteristics Xi and time categories interacted with station dum-

mies T̃i, and we check whether πx,m ≥ 0 for all (x,m).

In Table A.4, we show results for these informal monotonicity tests, based on Equations (A.10)

and (A.11). Panel A shows results corresponding to the standard jackknife instrument, or πx,m from

the Equation (A.10). Panel B shows results corresponding to the reverse-sample instrument, or πx,m
from Equation (A.11). Each column corresponds to a different subsample. All 16 regressions yield

strongly positive first-stage coefficients.

A.4.2 Relationship with Reduced-Form Analysis

At a high level, the informal tests of monotonicity in the judges-design literature use information

about observable case characteristics and treatment decisions, while our analysis in Section 4 exploits

additional information about potential outcomes. In this subsection, we will clarify the relationship

between these analyses.

We begin with the standard condition for IV validity, Condition 1. Following Imbens and Angrist

(1994), we abstract from covariates, assuming unconditional random assignment in Condition 1(ii),

and consider a discrete multivalued instrument Zi. In the judges design, the instrument can be thought

of as the agent’s treatment propensity, or Zi = Pj(i) ∈ {p1,p2, . . . ,pK }, which the jackknife instrument

approaches with infinite data. We assume that p1 < p2 < · · · < pK . We also introduce the notation

di (Zi) ∈ {0,1} to denote potential treatment decisions as a function of the instrument; in our main

framework, this amounts to di j = di (p) for all j such that Pj = p.

Now consider some binary characteristic xi ∈ {0,1}. We first note that the following Wald esti-

mand between two consecutive values pk and pk+1 of the instrument characterizes the probability that

xi = 1 among compliers i such that di (pk) > di (pk+1):
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E [ xidi | Zi = pk+1]−E [ xidi | Zi = pk]
E [di | Zi = pk+1]−E [di | Zi = pk]

= E [ xi | di (pk+1) > di (pk)] .

Since xi is binary, this Wald estimand gives us Pr ( xi | di (pk+1) > di (pk)) ∈ [0,1].
Under Imbens and Angrist (1994), 2SLS of xidi as an “outcome variable,” instrumenting di with

all values of Zi, will give us a weighted average of the Wald estimands over k ∈ {1, . . . ,K −1}. Specif-

ically, consider the following equations:

xidi = ∆
xdi +ux

i ; (A.12)

di = αxZi + v
x
i . (A.13)

The 2SLS estimator of ∆x in this set of equations should converge to a weighted average:

∆
x =

K−1∑
k=1
Ωk Pr ( xi | di (pk+1) > di (pk)),

where weights Ωk are positive and sum to 1. Therefore, we would expect that ∆̂x ∈ [0,1].
The informal monotonicity tests we conducted above ask whether some weighted average of

Pr (di (pk+1) > di (pk)| xi) is greater than 0. Since Pr (xi) > 0 and Pr (di (pk+1) > di (pk)) > 0, the two

conditions—Pr (di (pk+1) > di (pk)| xi) > 0 and Pr ( xi | di (pk+1) > di (pk)) > 0—are equivalent. There-

fore, if we were to estimate Equations (A.12) and (A.13) by 2SLS, we would in essence be evaluating

the same implication as the informal monotonicity tests standard in the literature.

In contrast, in a stylized representation of Section 4, we are performing 2SLS on the following

equations:

f ni = ∆di +ui; (A.14)

di = αZi + vi . (A.15)

Recall that f ni = 1 (di = 0,si = 1) = si (1− di). Following the same reasoning above, we can state the

estimand ∆ as follows:

∆ = −

K−1∑
k=1
Ωk Pr ( si | di (pk+1) > di (pk)),

which is a negative weighted average of conditional probabilities. This yields the same prediction

that we stated in Remark 3, i.e., that ∆ ∈ [−1,0]. Weaker implications that we consider in Appendix

A.1 would leave this prediction unchanged, as in Remark 4.

More generally, we could apply the same reasoning to any binary potential outcome yi (d) ∈ {0,1}
under treatment choice d ∈ {0,1}. It is straightforward to show that, if we replace f ni with yidi in

Equation (A.14), the 2SLS system of Equations (A.14) and (A.15), would yield

∆ =

K−1∑
k=1
Ωk Pr ( yi (1)| di (pk+1) > di (pk)) ∈ [0,1] .
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Alternatively, replacing f ni with −yi (1− di) in Equation (A.14) would imply

∆ =

K−1∑
k=1
Ωk Pr ( yi (0)| di (pk+1) > di (pk)) ∈ [0,1] .

How might we interpret our results together in Section 4 and in this appendix? We show above that

the informal monotonicity tests are necessary for demonstrating that binary observable characteristics

have admissable probabilities among compliers. On the other hand, our analysis in Section 4 strongly

rejects that a potential outcome yi (0) = si has admissable probabilities among compliers. Observable

characteristics may be correlated with si, but si is undoubtedly related to characteristics that are

unobservable to the econometrician but, importantly, observable to radiologists. The importance of

these unobservable characteristics will drive the difference between our analysis and the standard

informal tests for monotonicity, and it implies that an analysis based on a potential outcome should

generally be stronger than an analysis based only on observable characteristics.

A.5 Optimal Diagnostic Threshold

A.5.1 Derivation

We provide a derivation of the optimal diagnostic threshold, given by Equation (7) in Section 5.1. We

start with a general expression for the joint distribution of the latent index for each patient, or νi, and

radiologist signals, or wi j . These signals determine each patient’s true disease status and diagnosis

status:

si = 1 (νi > ν) ;

di j = 1
(
wi j > τj

)
.

We then form expectations of type I error rates and type II error rates, or FPj ≡ Pr
(
di j = 1,si = 0

)
and FNj ≡ Pr

(
di j = 0,si = 1

)
, respectively. Consider the radiologist-specific joint distribution of(

wi j,νi
)

as fj (x,y). Then

FNj = Pr
(
wi j < τj,νi > ν

)
=

∫ τj

−∞

∫ +∞

ν
fj (x,y)dydx;

FPj = Pr
(
wi j > τj,νi < ν

)
=

∫ +∞

τj

∫ ν

−∞

fj (x,y)dydx.

The joint distribution fj (x,y) and ν are known to the radiologist. Given her expected utility function

in Equation (6),

E
[
ui j

]
= −

(
FPj + βjFNj

)
,

where βj is the disutility of a type II error relative to a type I error, the radiologist sets τj to maximize

her expected utility.
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Denote the marginal density of wi j as gj . Denote the conditional density of νi given wi j as

fj (y |x) =
fj (x,y)

g j (x)
and the conditional cumulative distribution as Fj (y |x) =

∫ y

−∞
fj (t |x)dt.

The first order condition is

∂E
[
ui j

]
∂τj

= −
∂FPj

∂τj
− βj

∂FNj

∂τj

=

∫ ν

−∞

fj
(
τj,y

)
dy− βj

∫ +∞

ν
fj

(
τj,y

)
dy

=

∫ ν

−∞

fj
(
y | τj

)
gj

(
τj

)
dy− βj

∫ +∞

ν
fj

(
y | τj

)
gj

(
τj

)
dy

= Fj

(
ν | τj

)
gj

(
τj

)
− βj

(
1−Fj

(
ν | τj

) )
gj

(
τj

)
= 0.

The solution to the first order condition τ∗j satisfies

Fj

(
ν | τ∗j

)
=

βj

1+ βj
. (A.16)

Equation (A.16) can alternatively be stated as

βj =
Fj

(
ν | τ∗j

)
1−Fj

(
ν | τ∗j

) .
This condition intuitively states that at the optimal threshold, the likelihood ratio of a type I error over

a type II error is equal to the relative disutility of a type II error.

As a special case, when
(
wi j,νi

)
follows a joint-normal distribution, as in Equation (5), we know

that νi |wi j ∼ N
(
αjwi j,1−α2

j

)
, or

(
νi −αjwi j

)
/

√
1−α2

j

���wi j ∼ N (0,1). This implies that Fj

(
ν | τ∗j

)
=

Φ

((
ν−αjτ

∗
j

)
/

√
1−α2

j

)
. Plugging in Equation (A.16) and rearranging, we obtain Equation (7):

τ∗
(
αj, βj

)
=
ν−

√
1−α2

jΦ
−1

(
β j

1+β j

)
αj

.

In Section A.5.2, we verify that ∂2E
[
ui j

]
/∂τ2

j < 0 at τ∗j in a more general case, so τ∗j is the optimal

threshold that maximizes expected utility.

A.5.2 Comparative Statics

Returning to the general case, we need to impose a monotone likelihood ratio property to ensure that

Equation (A.16) implies a unique solution and to analyze comparative statics.
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Assumption A.2 (Monotone Likelihood Ratio Property). The joint distribution fj (x,y) satisfies

fj (x2,y2)

fj (x2,y1)
>

fj (x1,y2)

fj (x1,y1)
,∀x2 > x1,y2 > y1, j .

We can rewrite the property using the conditional density:

fj ( y2 | x2)

fj ( y1 | x2)
>

fj ( y2 | x1)

fj ( y1 | x1)
,∀x2 > x1,y2 > y1, j .

That is, the likelihood ratio fj ( y2 | x2)/ fj ( y1 | x2), for y2 > y1 and any j, always increases with x. In

the context of our model, when a higher signal wi j is observed, the likelihood ratio of a higher νi
over a lower νi is higher than when a lower wi j is observed. Intuitively, this means that the signal

a radiologist receives is informative of the patient’s true condition. As a special case, if f (x,y) is

a bivariate normal distribution, the monotone likelihood ratio property is equivalent to a positive

correlation coefficient.

Assumption A.2 implies first-order stochastic dominance. Fixing x2 > x1 and considering any

y2 > y1, Assumption A.2 implies

fj ( y2 | x2) fj ( y1 | x1) > fj ( y2 | x1) fj ( y1 | x2) . (A.17)

Integrating this expression with respect to y1 from −∞ to y2 yields∫ y2

−∞

fj ( y2 | x2) fj ( y1 | x1)dy1 >

∫ y2

−∞

fj ( y2 | x1) fj ( y1 | x2)dy1.

Rearranging, we have
fj ( y2 | x2)

fj ( y2 | x1)
>

Fj ( y2 | x2)

Fj ( y2 | x1)
,∀y2.

Similarly, integrating Equation (A.17) with respect to y2 from y1 to∞ yields∫ +∞

y1

fj ( y2 | x2) fj ( y1 | x1)dy2 >

∫ +∞

y1

fj ( y2 | x1) fj ( y1 | x2)dy2.

Rearranging, we have
1−Fj ( y1 | x2)

1−Fj ( y1 | x1)
>

fj ( y1 | x2)

fj ( y1 | x1)
,∀y1.

Combining the two inequalities, we have

Fj ( y | x1) > Fj ( y | x2),∀y. (A.18)

Under Equation (A.18), for a fixed ν, Fj

(
ν | τj

)
decreases with τ, i.e., ∂Fj

(
ν | τj

)
/∂τj < 0. We
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can now verify that

∂2E
[
ui j

]
∂τ2

j

�����
τj=τ

∗
j

=
(
1+ βj

)
gj

(
τ∗j

) ∂Fj

(
ν | τj

)
∂τj

����
τj=τ

∗
j

< 0.

Therefore, τ∗j represents an optimal threshold that maximizes expected utility.

Using Equation (A.18) and the Implicit Function Theorem, we can also derive two reasonable

comparative static properties of the optimal threshold. First, τ∗j decreases with βj :

∂τ∗j

∂βj
=

1(
1+ βj

)2

(
∂Fj

(
ν | τj

)
∂τj

)−1�����
τj=τ

∗
j

< 0.

Second, τ∗j increases with ν:

∂τ∗j

∂ν
= − fj

(
ν | τ∗j

) (
∂Fj

(
ν | τj

)
∂τj

)−1�����
τj=τ

∗
j

> 0.

In other words, holding fixed the signal structure, a radiologist will increase her diagnostic rate when

the relative disutility of false negatives increases and will decrease her diagnostic rate when pneumo-

nia is less prevalent.

We next turn to analyzing the comparative statics of the optimal threshold with respect to accu-

racy. For a convenient specification with single-dimensional accuracy, we return to the specific case

of joint-normal signals: (
νi

wi j

)
∼ N

((
0
0

)
,

(
1 αj

αj 1

))
.

Taking the derivative of the optimal threshold with respect to αj in Equation (7), we have

∂τ∗j

∂αj
=
Φ−1

(
β j

1+β j

)
− ν

√
1−α2

j

α2
j

√
1−α2

j

.

These relationships yield the following observations. When αj = 1, τ∗j = ν. When αj = 0, the radiolo-

gist diagnoses no one if βj <
Φ(ν)

1−Φ(ν) (i.e., τ∗j =∞), and the radiologist diagnoses everyone if βj >
Φ(ν)

1−Φ(ν)
(i.e., τ∗j = −∞). When αj ∈ (0,1), the relationship between τ∗j and αj depends on the prevalence pa-

rameter ν. Generally, if βj is greater than some upper threshold β, τ∗j will always increase with αj ; if

βj is less than some lower threshold β, τ∗j will always decrease with αj ; if βj ∈
(
β, β

)
is in between

the lower and upper thresholds, τ∗j will first increase then decrease with αj . The thresholds for βj
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depend on ν:

β = min
(
Φ (ν)

1−Φ (ν)
,1

)
;

β = max
(
Φ (ν)

1−Φ (ν)
,1

)
.

The closer ν is to 0, the less space there will be between the thresholds. The range of βj between the

thresholds generally decreases as ν decreases.

Intuitively, there are two forces that drive the relationship between τ∗j and αj . First, the threshold

radiologists with low accuracy will depend on the overall prevalence of pneumonia. If pneumonia is

uncommon, then radiologists with low accuracy will tend to diagnose fewer patients; if pneumonia is

common, then radiologists with low accuracy will tend to diagnose more patients. Second, the thresh-

old will depend on the relative disutility of type II errors, βj . If βj is high enough, then radiologists

with lower accuracy will tend to diagnose more patients with pneumonia. Depending on the size of

βj , this mechanism may not be enough to have τ∗j always increasing in αj .

A.5.3 General Loss for Type II Error

While we consider a fixed loss for any type II error in our baseline specification of utility in Equation

(6), we show here that implications are qualitatively unchanged under a more general model with

losses for type II errors that may increase for more “severe” cases. We consider the following utility

function:

ui j =


−1, if di j = 1,si = 0,

−βjh (νi), if di j = 0,si = 1,

0, otherwise,

where h (νi) is bounded, differentiable, and weakly increasing in νi.23 As before, si ≡ 1 (νi > ν), and

βj > 0. Without loss of generality, we assume h(v̄) = 1, so h(vi) ≥ 1,∀vi.
Denote the conditional density of νi given wi j as fj

(
νi |wi j

)
and the corresponding conditional

cumulative density as Fj

(
νi |wi j

)
. Expected utility, conditional on wi j and di j = 0, is

Eνi
[
ui j

(
νi,di j = 0

) ��wi j

]
= −βjEνi

[
h (νi)1

(
di j = 0,si = 1

) ��wi j

]
= −βj

∫ +∞

ν̄
h(νi) fj(νi |wi j)dνi .

The corresponding expectation when di j = 1 is

Eνi
[
ui j

(
νi,di j = 1

) ��wi j

]
= −Pr

(
si = 0,di j = 1

��wi j

)
= −

∫ ν̄

−∞

fj(νi |wi j)dνi =
∫ +∞

ν̄
fj(νi |wi j)dνi −1.

23The boundedness assumption ensures that the integrals below are well-defined. This is a sufficient condition but not
necessary. The differentiability assumption simplifies calculation.
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The radiologist chooses di j = 1 if and only if Eνi
[
ui j

(
νi,di j = 1

) ��wi j

]
> Eνi

[
ui j

(
νi,di j = 0

) ��wi j

]
, or∫ +∞

ν

(
1+ βjh (νi)

)
fj

(
νi |wi j

)
dνi > 1.

If h (νi) = 1 for all νi, then this condition reduces to Pr
(
νi > ν |wi j

)
= 1−Fj

(
ν |wi j

)
>

1
1+ βj

. In the

general form, if the radiologist is indifferent in diagnosing or not diagnosing, we have

1 =
∫ +∞

ν

(
1+ βjh (νi)

)
fj

(
νi |wi j

)
dνi

=

∫ +∞

ν

(
1+ βj

)
fj

(
νi |wi j

)
dνi +

∫ +∞

ν
βj (h (νi)−1) fj

(
νi |wi j

)
dνi

≥ (1+ βj)(1−Fj(v̄ |wi j)),

as we assume h(νi) ≥ 1. Now the marginal patient may have a lower conditional probability of having

penumonia than the case where h(νi) = 1,∀vi, as false negatives may be more costly.

Define the optimal diagnosis rule as

dj(wi j) = 1
(∫ +∞

v̄

(1+ βjh(νi)) fj(νi |wi j)dνi > 1
)
.

Proposition 13 shows conditions under which the optimal diagnosis rule satisfies the threshold cross-

ing property.

Proposition 13. Suppose the following two conditions hold:

1. For any w′i j > wi j , the conditional distribution of νi given ε ′i j first-order dominates (FOSD) the

conditional distribution of νi given εi j, i.e., Fj(νi |w
′
i j) < Fj(νi |wi j) , ∀νi,

2. 0 < Fj(ν̄ |wi j) < 1, ∀wi j . lim
wi j→−∞

Fj(ν̄ |wi j) = 1 and lim
wi j→+∞

Fj(ν̄ |wi j) = 0.

Then the optimal diagnosis rule satisfies the threshold-crossing property, i.e., for any radiologist j,

there exists τ∗j such that

dj(wi j) =


0, wi j < τ

∗
j ,

1, wi j ≥ τ
∗
j .

We first prove the following lemma.

Lemma 14. Suppose w′i j > wi j . If Fj(νi |w
′
i j) < Fj(νi |wi j), for each νi, then dj(wi j) = 1 implies

dj(w
′
i j) = 1.

Proof. Using integration by parts, we have
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∫ +∞

ν

(
1+ βjh (νi)

) (
fj

(
νi |w

′
i j

)
− fj

(
νi |wi j

) )
dνi

=
(
1+ βjh (νi)

) (
Fj

(
νi |w

′
i j

)
−Fj

(
νi |wi j

) ) ����+∞
v̄

−

∫ +∞

v̄

βjh′(νi)
(
Fj(νi |w

′
i j)−Fj(νi |wi j)

)
dνi

= −
(
1+ βj

) (
Fj

(
ν̄ |w′i j

)
−Fj

(
ν̄ |wi j

) )
−

∫ +∞

v̄

βjh′(νi)
(
Fj(νi |w

′
i j)−Fj(νi |wi j)

)
dνi > 0,

since Fj(νi |w
′
i j) < Fj(νi |wi j), ∀νi, h(νi) is bounded, h(v̄) = 1, and h′(νi) ≥ 0.

We now proceed to the proof of Proposition 13. �

Proof. The second condition of Proposition 13 ensures that

lim
wi j→−∞

∫ +∞

ν

(
1+ βjh (νi)

)
fj(νi |wi j)dνi ≤ (1+Mβj)(1− lim

wi j→−∞
Fj(ν̄ |wi j)) = 0 < 1;

lim
wi j→+∞

∫ +∞

ν

(
1+ βjh (νi)

)
fj(νi |wi j)dνi ≥ (1+ βj)(1− lim

wi j→+∞
Fj(ν̄ |wi j)) = 1+ βj > 1,

where M = sup h(νi). So lim
wi j→−∞

dj(wi j) = 0 and lim
wi j→+∞

dj(wi j) = 1. Using Lemma 14, the optimal

diagnosis rule satisfies the threshold-crossing property. In particular, the optimal threshold τ∗j satisfies∫ +∞

v̄

(
1+ βjh (νi)

)
fj(νi |τ∗j )dνi = 1.

�

Proposition 15. Suppose the conditions in Proposition 13 hold and fj is fixed. Then the optimal

threshold τ∗j decreases with βj . In particular, τ∗j → +∞ as βj → 0+ and τ∗j →−∞ as βj → +∞.

Proof. Consider radiologists j and j ′with βj > βj′ . Denote their optimal thresholds as τ∗j and τ∗j′,

respectively. We have
∫ +∞
ν̄

(
1+ βjh (νi)

)
fj(νi |τ∗j )dνi = 1 and

∫ +∞

ν̄

(
1+ βj′h (νi)

)
fj(νi |τ∗j )dνi −

∫ +∞

ν̄

(
1+ βjh (νi)

)
fj(νi |τ∗j )dνi

= (βj′ − βj)

∫ +∞

ν̄
h(νi) fj(νi |τ∗j )dνi < 0.

So
∫ +∞
v̄

(
1+ βj′h (νi)

)
fj(νi |τ∗j )dνi < 1, or dj′(τ

∗
j ) = 0. By Proposition 13, we know that τ∗j < τ

∗
j′.

Since τ∗j decreases with βj, if bounded below or above, it must have limits as βj approaches +∞

or 0+. We can confirm that this is not the case. For example, suppose τ∗j is bounded below. The limit
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exists and is denoted by τ. Take βj ≥
1

1−F(ν̄ |τ)
. Then

∫ +∞

ν̄

(
1+ βjh (νi)

)
fj(νi |τ∗j )dνi ≥ (1+

1
1−F(ν̄ |τ)

)(1−Fj(ν̄ |τ
∗
j ))

> (1+
1

1−F(ν̄ |τ)
)(1−Fj(ν̄ |τ)) = 2−Fj(ν̄ |τ).

The second inequality holds since τ∗j > τ. Take the limit and we have

lim
β j→+∞

∫ +∞

ν̄

(
1+ βjh (νi)

)
fj(νi |τ∗j )dνi ≥ 2−Fj(ν̄ |τ) > 1.

This is a contraction, so τ∗j is not bounded below. Similarly, we can show τ∗j is not bounded above. �

From now on, we assume wi j and νi follow a bivariate normal distribution:(
wi j

νi

)
∼ N

((
0
0

)
,

(
1 αj

αj 1

))
.

Conditional on observing wi j , the true signal νi follows a normal distribution N(αjwi j,1−α2
j ). So

Fj(νi |wi j) = Φ

(
νi−αjwi j√

1−α2
j

)
,

where Φ (·) is the CDF of the standard normal distribution.

Corollary 16. Suppose wi j and νi follow the bivariate normal distribution specified above. Then if

αj > 0, the optimal diagnosis rule satisfies the threshold-crossing property.

Proof. When wi j and νi follow the bivariate normal distribution with the correlation coefficient being

αj , we have Fj

(
νi |wi j

)
= Φ

©­­«
νi −αjwi j√

1−α2
j

ª®®¬. It is easy to verify that the two conditions in Proposition

13 hold if αj > 0.

Define the optimal threshold τ∗j = τj(αj, βj ; h̄(·)) by∫ +∞

ν̄

(
1+ βjh (νi)

) 1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi = 1,

where φ(·) is the CDF of the standard normal distribution. �

Corollary 17. The optimal threshold satisfies

ν̄−
√

1−α2
jΦ
−1

(
β jM

1+β jM

)
αj

≤ τ∗j ≤
ν̄−

√
1−α2

jΦ
−1

(
β j

1+β j

)
αj

,
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where M = sup h(νi).

Proof. Since h(νi) ≥ 1,we have

1 =
∫ +∞

ν̄
(1+ βjh(νi))

1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

≥ (1+ βj)
∫ +∞

ν̄

1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

= (1+ βj)

(
1−Φ

(
ν̄−αjτ

∗
j√

1−α2
j

))
.

Rearrange and we can get the upper bound of τ∗j . Similarly, we can derive the lower bound of τ∗j .

The proposition below summarizes the relation between the general case and case where h(νi) =

1,∀vi . �

Proposition 18. Let τ∗j = τj(αj, βj ; h(·)). Define

β′j = β
′
j(αj, βj ; h(·)) = βj

∫ +∞
ν̄

h(νi)φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

.

Then we can use the new β′j to characterize the optimal threshold:

τj(αj, βj ; h(·)) = τj(αj, β
′
j ; h(·) = 1).

Proof. Let τ∗j = τj(αj, βj ; h(·)) and τ∗′j = τj(αj, β
′
j ; h(·) = 1). Then∫ +∞

ν̄

(
1+ βjh (νi)

) 1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi =

∫ +∞

ν̄

(
1+ β′j

) 1√
1−α2

j

φ

(
νi−αjτ

∗′
j√

1−α2
j

)
dνi = 1.

Substitute the expression of β′j into the second equality and we have

∫ +∞

ν̄

©­­­­­­«
1+ βj

∫ +∞
ν̄

h(νi)φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

ª®®®®®®¬
1√

1−α2
j

φ

(
νi−αjτ

∗′
j√

1−α2
j

)
dνi = 1
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⇒

∫ +∞

ν̄

∫ +∞
ν̄
(1+ βjh(νi))φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

1√
1−α2

j

φ

(
νi−αjτ

∗′
j√

1−α2
j

)
dνi = 1

⇒
1√

1−α2
j

∫ +∞

ν̄
(1+ βjh(νi))φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi︸                                                  ︷︷                                                  ︸

=1

∫ +∞
ν̄

φ

(
νi−αjτ

∗′
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

= 1

⇒

∫ +∞

ν̄
φ

(
νi−αjτ

∗′
j√

1−α2
j

)
dνi =

∫ +∞

ν̄
φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi .

So we have τ∗′j = τ
∗
j . �

Proposition 19. For fixed βj and h(·), β′j = β
′
j(αj, βj ; h(·)) decreases with αj .

Proof. The optimal threshold τ∗j = τj(αj, βj ; h(·)) is given by∫ +∞

ν̄

(
1+ βjh (νi)

) 1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi = 1.

By Proposition 18, we can write

β′j = βj

∫ +∞
ν̄

h(νi)φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

=

∫ +∞
ν̄
(1+ βjh(νi)−1)φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

=

∫ +∞
ν̄
(1+ βjh(νi))φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi −

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

=

√
1−α2

j∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

−1.

Define xi =
νi −αjτ

∗
j√

1−α∗j
. Then dνi =

√
1−α2

j dxi . Using variable transformation, we have

β′j =

√
1−α2

j∫ +∞
ν̄

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi

−1 =
1

1−Φ

(
ν̄−αjτ

∗
j√

1−α2
j

) −1.
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Denote Q(νi,αj, βj)=
νi −αjτ

∗
j√

1−α2
j

. For fixed βj , the relationship between β′j and αj reduces the relation-

ship between Q(ν̄,αj, βj) and αj . Using integration by parts for the formula of the optimal threshold,

we have

1 =
∫ +∞

ν̄

(
1+ βjh (νi)

) 1√
1−α2

j

φ

(
νi−αjτ

∗
j√

1−α2
j

)
dνi =

∫ +∞

ν̄

(
1+ βjh (νi)

) ∂Φ
(
νi−αjτ

∗
j√

1−α2
j

)
∂vi

dνi

= (1+ βjh(νi))Φ

(
νi−αjτ

∗
j√

1−α2
j

)�����+∞
ν

−

∫ +∞

ν̄
βjh′(νi)Φ

(
vi−αjτ

∗
j√

1−α2
j

)
dνi

= 1+ βjM −(1+ βj)Φ(Q(ν̄,αj, βj))− βj

∫ +∞

ν̄
h′(νi)Φ(Q(νi,αj, βj))dνi,

where M = sup h(νi). Take the derivative with respect to αj ,

0 = −(1+ βj)φ(Q(ν̄,αj, βj))
∂Q(ν̄,αj, βj)

∂αi

−βj

∫ +∞

ν̄
h′(νi)φ(Q(νi,αj, βj))

∂Q(νi,αj, βj)

∂αj
dνi . (A.19)

We want to show that
∂Q(ν̄,αj, βj)

∂αi
≤ 0 for all αj ∈ (0,1). We prove this by contradiction. Assume

that for some α′j ∈ (0,1), we have
∂Q(ν̄,αj, βj)

∂αi

����
αj=α

′
j

> 0. Since
∂2Q(vi,αj, βj)

∂αj∂vi
=

αj

(1−αj)
3/2 > 0, we

know that
∂Q(ν̄,αj, βj)

∂αi
increases with vi for any fixed αj ∈ (0,1), in particular for αj = α

′
j . Then

∂Q(vi,αj, βj)

∂αi

����
αj=α

′
j

≥
∂Q(ν̄,αj, βj)

∂αi

����
αj=α

′
j

> 0 for any νi ≥ ν̄. Since h′(νi) ≥ 0,we have

∂Q(ν̄,αj, βj)

∂αi
|αj=α

′
j
> 0,

∫ +∞

ν̄
h′(νi)φ(Q(νi,αj, βj))

∂Q(νi,αj, βj)

∂αj
dνi |αj=α

′
j
≥ 0.

Then Equation (A.19) cannot hold for αj = α
′
j, as the right hand is strictly negative, a contradiction.

So, we must have
∂Q(ν̄,αj, βj)

∂αi
≤ 0, ∀αj ∈ (0,1). Therefore,

∂β′j

∂αj
=

φ(Q(ν̄,αj, βj))
∂Q(ν̄,αj, βj)

∂αj

(1−Φ(Q(ν̄,αj, βj)))2
≤ 0.

�
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A.6 Structural Estimation

A.6.1 Risk-Adjustment Procedure

Because quasi-random assignment is conditional and because we find that quasi-random assignment

does not strictly hold in all VHA stations, we use risk-adjusted data instead of raw data for the baseline

estimation of our structural model. We form the risk-adjusted data using the following procedure:

1. Estimate linear probability models of diagnoses, or di, and type II errors, or f ni, controlling

for patient characteristics Xi and interactions between time categories Ti and station identities

` (i):

di = ζdj(i)+Xiβ
d +Tiγ

d
`(i)+ ε

d
i ;

f ni = ζ
f n

j(i)
+Xiβ

f n +Tiγ
f n

`(i)
+ ε

f n
i .

Note that first equation is the same as the first-stage equation in reduced-form 2SLS regressions

using radiologist dummies as instruments. The estimates of ζdj and ζ
f n
j are also the same as

those used for radiologist risk-adjusted rates in Appendix A.2.1.

2. Ensure that the patient-weighted average risk-adjusted rate in each station is equal to the popu-

lation rate:

µd
`
+

∑
j∈J` nj ζ̂

d
j∑

j∈J` nj
=

∑
j nd

j∑
j nj

;

µ
f n
`
+

∑
j∈J` nj ζ̂

f n
j∑

j∈J` nj
=

∑
j n f n

j∑
j nj

,

for all `, by setting µd
`

and µ
f n
`

to equalize the relevant station-specific rate to the population

rate. As in Section 5.2, we define nd
j ≡

∑
i∈Ij 1 (di = 1), n f n

j ≡
∑

i∈Ij 1 ( f ni = 1), nj ≡


Ij



, and

Ij ≡ {i : j (i) = j}.

3. Truncate the risk-adjusted rates at 0:

ζ̃dj = max

(
0, ζ̂dj +

∑̀
1 ( j ∈ J`) µd`

)
;

ζ̃
f n
j = max

(
0, ζ̂ f nj +

∑̀
1 ( j ∈ J`) µ

f n
`

)
.

4. Use the resulting rates to impute risk-adjusted diagnosis and type II error counts, which are not

necessarily integers: ñd
j = nj ζ̃

d
j and ñ f n

j = nj ζ̃
f n
j .

Since d̃j and ỹj are estimated objects, we redraw patient samples, stratified by radiologist, with re-

placement, in order to compute standard errors of our second-step structural estimates.
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A.6.2 Simulated Maximum Likelihood

In Section 5.2, we estimate the hyperparameter vector θ ≡
(
µα, µβ,σα,σβ,λ,ν

)
by maximum likeli-

hood:

θ̂ = argmax
θ

∑
j

log
∫

Lj

(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

��θ ) dγ j .

To calculate the radiologist-specific likelihood,

Lj

(
ñd
j , ñ

f n
j ,nj

���θ) = ∫
Lj

(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

��θ ) dγ j,

we need to evaluate the integral numerically. We use Monte Carlo integration, which generates a large

number R of random draws γr
j following the density f

(
γ j

��θ ) , given any hyperparameter vector θ.

These draws are taken as the realizations of γ j . Then we take the average across all realizations of

the likelihood as a simulated approximation of the integral:

Lj

(
ñd
j , ñ

f n
j ,nj

���θ) ≈ 1
R

R∑
r=1

Lj

(
ñd
j , ñ

f n
j ,nj

���γr
j

)
.

The overall log-likelihood becomes

logL

( (
ñd
j , ñ

f n
j ,nj

)J
j=1

����θ) ≈ J∑
j=1

log

(
1
R

R∑
r=1

Lj

(
ñd
j , ñ

f n
j ,nj

���γr
j

))
.

A.6.3 Empirical Bayes Posteriors

After estimating θ̂, we want to find the empirical Bayes posterior mean γ̂ j =
(
α̂j, β̂j

)
for each radiol-

ogist j. Using Bayes’ theorem, the empirical conditional posterior distribution of γ j is

f
(
γ j

�� ñd
j , ñ

f n
j ,nj ; θ̂

)
=

f
(
γ j, ñd

j , ñ
f n
j ,nj

��� θ̂)
f
(
ñd
j , ñ

f n
j ,nj

��� θ̂) =
f
(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

�� θ̂)∫
f
(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

�� θ̂) dγ j

,

where f
(
ñd
j , ñ

f n
j ,nj

���γ j

)
is equivalent to Lj

(
ñd
j , ñ

f n
j ,nj

���γ j

)
. The denominator is then equivalent to

the likelihood Lj

(
ñd
j , ñ

f n
j ,nj

���θ) . The empirical Bayes predictions are the posterior means

γ̂ j =

∫
γ j f

(
γ j

�� ñd
j , ñ

f n
j ,nj ; θ̂

)
dγ j =

∫
γ j f

(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

�� θ̂) dγ j∫
f
(
ñd
j , ñ

f n
j ,nj

���γ j

)
f
(
γ j

�� θ̂) dγ j

.
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As above, the integrals are evaluated numerically. We generate R random draws γr
j following the

distribution f
(
γ j

�� θ̂) and calculate the empirical Bayes posterior means as

γ̂ j =

1
R

∑R
r=1γ

r
j f

(
ñd
j , ñ

f n
j ,nj

���γr
j

)
1
R

∑R
r=1 f

(
ñd
j , ñ

f n
j ,nj

���γr
j

) .

A.6.4 Potentially Incorrect Beliefs

Under the model of radiologist signals implied by Equation (5), we can identify each radiologist’s

skill αj and her diagnostic threshold τj . The utility in Equation (6) implies the optimal threshold in

Equation (7), as a function of skill αj and preference βj . If radiologists know their skill, then this

allows us to infer βj from αj and τj .

In this appendix, we allow for the possibility that radiologists may be misinformed about their

skills: A radiologist may believe she has skill α′j even though her true skill is αj . Since only (true) αj

and τj are identified, we cannot separately identify α′j and βj from Equation (7). In this exercise, we

therefore assume βj , in order to infer α′j for each radiologist.

We start with our baseline model and form an empirical Bayes posterior of
(
αj, βj

)
for each radi-

ologist. We use Equation (7) to impute the empirical Bayes posterior of τj . Thus, for each radiologist,

we have an empirical Bayes posterior of
(
αj, βj,τj

)
from our baseline model; the distributions of the

posteriors for αj , βj , and τj are shown in separate panels of Appendix Figure A.5.

To extend this analysis to impute each radiologist’s belief about her skill, α′j , we perform the fol-

lowing two additional steps: First, we take the mode of the distribution of empirical Bayes posteriors{
αj

}
j∈J

, which we calculate as 8.1 within one decimal place. Second, we set all radiologists to have

βj = 8.1. We use each radiologist’s empirical Bayes posterior of τj and the formula for the optimal

threshold in Equation (7) to infer her belief about her skill, α′j .

The relationship between α′j , βj , and τj is shown in Figure 7. As shown in the figure, for βj ≈ 8.1,

the comparative statics of τ∗j are first decreasing and then increasing with a radiologist’s perceived

α′j . Thus, holding fixed βj = 8.1, an observed τj does not generally imply with a single value of α′j .

If τj is too low, then there will not be a value of α′j to generate τj with βj = 8.1; this case occurs only

for a minority of radiologists. Other τj generally can be consistent with either a value of α′j on the

downward-sloping part of the curve or with a value of α′j on the upward-sloping part of the curve. In

this case, we take the higher value of α′j , since the vast majority of empirical Bayes posteriors of αj

are on the upward-sloping part of Figure 7.

Appendix Figure A.8 plots each radiologist’s perceived skill, or α′j , on the y-axis and her actual

skill, or αj , on the x-axis. The plot shows that the radiologists’ perceptions of their skill generally

correlate well with their actual skill, particularly among higher-skilled radiologists. Lower-skilled

radiologists, however, tend to over-estimate their skill relative to the truth.
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A.7 Alternative Implementations

In this appendix, we discuss alternative empirical implementations from the baseline approach. Ap-

pendix Table A.5 presents results for the following empirical approaches, which vary with respect to

sample selection, risk adjustment, and outcome variable definition:

1. Baseline. This column presents results for the baseline empirical approach. This approach

uses observations from all stations; the sample selection procedure is given in Appendix Table

A.1. We risk-adjust diagnosis and type II error by 77 patient characteristic variables, described

in Section 4.1, in addition to the controls for time dummies interacted with stations dummies

required for plausible quasi-random assignment in Assumption 1. We define a type II error as

a case that was not diagnosed initially with pneumonia but returned within 10 days and was

diagnosed at that time with pneumonia.

2. Balanced. This approach modifies the baseline approach by restricting to 44 stations we select

in Appendix A.2.2 with stronger evidence for quasi-random assignment. Risk-adjustment and

the definition of a type II error are unchanged from baseline.

3. No controls. This approach modifies the baseline approach by controlling for no patient char-

acteristics. The only controls for risk-adjustment are time dummies interacted with station

dummies, as specified by Assumption 1. The sample and outcome definition are unchanged

from baseline.

4. VA users. This approach restricts attention to a sample of veterans who use VA care more than

non-VA care. We identify this sample among dual enrollees in Medicare and the VA. We access

both VA and Medicare records of care inside and outside the VA, respectively. We count the

number of outpatient, ED, and inpatient visits in the VA and in Medicare, and keep veterans

who have more total visits in the VA than in Medicare. The risk-adjustment and outcome

definition are unchanged from baseline.

5. Admission. This approach redefines a type II error to only occur among patients with a greater

than 50% predicted chance of admission. Patients with a lower predicted probability of admis-

sion are all coded to have f ni = 0. The sample selection and risk adjustment are the same as in

baseline.

A.7.1 Rationale

Relative to the baseline approach, the “balanced” and “no controls” approaches respectively evaluate

the importance of selecting stations with stronger evidence of quasi-random assignment and of con-

trolling for rich patient observable characteristics. If results are qualitatively unchanged under these

approaches, then it is less likely that potential non-random assignment could be driving our results.

We evaluate results under the “VA users” approach in order to assess the potential threat that type

II errors may be unobserved if patients fail to return to the VA and therefore be detected as having a
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missed initial diagnosis. Although the process of returning to the VA is endogenous, it is only a con-

cern under non-random assignment of patients to radiologists or under exclusion violations in which

radiologists may influence the likelihood that a patient returns to the VA, regardless of actually incur-

ring a type II error. Veterans who predominantly use the VA relatively to non-VA options are more

likely to return to the VA for unresolved symptoms. Therefore, if results are qualitatively unchanged

from baseline, then exclusion violations and endogenous return visits are unlikely to explain our key

findings.

Similarly, we assess an alternative definition of a type II error in the “admission” approach, requir-

ing that patients are highly likely to be admitted as an inpatient based on their observed characteristics.

Admitted patients have a built-in pathway for re-evaluation if signs and symptoms persist, worsen,

or emerge; they need not decide to return to the VA. This approach also addresses a related threat

that fellow ED radiologists may be more reluctant to contradict some radiologists than others, since

admitted patients typically receive radiological evaluation from other divisions of radiology.

A.7.2 Results

Table A.5 provides results for each empirical approach in four panels. Panel A reports sample statis-

tics and reduced-form moments. All empirical implementations result in similarly large variation in

diagnosis rates and type II error rates across radiologists. Weighted standard deviations for both rates

are calculated from Equation (A.5). More importantly, the standard deviation of residual type II error

rates, after controlling for radiologist diagnosis rates, reveals that substantial heterogeneity in out-

comes remains even after controlling for heterogeneity in decisions. This suggests violations, under

all approaches, in the strict version of monotonicity in Condition 1(iii). Finally, the slope statis-

tics corresponding to 2SLS (using radiologist dummies as instruments) and JIVE remain similarly

positive across approaches. This suggests consistently strong violations in the weaker monotonicity

condition in Condition A.1.

Panel B reports model parameter estimates under each approach. The estimates are very stable

across approaches. While point estimates under the “balanced” approach suggest that radiologists

may be more accurate than under the approaches, the set of radiologists measured under this ap-

proach are by construction different than the set of radiologists in the other approaches. Furthermore,

estimates are less precise in the “balanced” approach, likely because it involves fewer observations

and radiologists.

Panel C presents corresponding moments in the distribution of
(
αj, βj

)
implied by the model

parameters. The implementations again suggest qualitatively similar distributions of α, β, and τ.

Interestingly, radiologists seem to incur higher relative disutility for a type II error among patients

who are likely to be admitted. This could reflect the fact that these patients are sicker and may suffer

worse outcomes under a type II error than healthier patients.

Panel D summarizes policy implications from decomposing variation into skill and preference

components, as described in Section 6. In all implementations, more variation in diagnosis can be

explained by heterogeneity in skill than by heterogeneity in preferences. An even larger proportion of
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variation in type II errors can be explained by heterogeneity in skill; essentially none of the variation

in type II errors can be explained by heterogeneity in preferences.
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Figure A.1: Concordance Between Tests of Quasi-Random Assignment
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Note: This figure shows the the concordance between p-values of tests of quasi-random assignment of patient
age across radiologists in each station. On the x-axis, we plot the p-value for randomization inference (RI); on
the y-axis, we plot the p-value of an F-test for the joint significance of radiologist dummies. We condition on
time dummies interacted with station dummies in both tests. Appendix A.2.2 provides further details.

A.32



Figure A.2: Quasi-Random Assignment of Hold-Out Characteristics

A: Diagnosis, RI B: Diagnosis, F-test
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C: Type II Error, RI D: Type II Error, F-test
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Note: This figure plots histograms of p-values of tests of quasi-random assignment across radiologists in each
station. Randomization inference (RI) p-values are shown in Panels A and C; F-test p-values are shown in
Panels B and D. Using either randomization inference or F-tests, we first test whether age is quasi-randomly
assigned across radiologists in a given station. From these tests, we identify 44 out of 104 stations in which
we cannot reject the null of quasi-random assignment. Among these 44 stations, we then confirm whether the
stations originally identified to feature quasi-random assignment with respect to age also pass tests with respect
to predicted diagnosis or predicted type II error. These predictions are based on 77 “hold-out” variables of
rich patient characteristics. In each panel, light gray bars represent station counts among the 60 stations that
failed the test according to age; dark gray bars represent station counts out of the 44 stations that passed the test
according to age. We condition on time dummies interacted with station dummies in all tests. Appendix A.2.2
provides further details.
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Figure A.3: Visual IV
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Note: This figure shows the visual IV plot corresponding to a 2SLS regression with radiologist dummies as
instruments. For each radiologist with more than 100 chest X-rays, we plot a dot with average risk-adjusted
predictions of diagnosis on the x-axis and average risk-adjusted predictions of type II error on the y-axis.
Diagnosis predictions correspond to a first-stage regression in Equation (A.7), and type II error predictions
correspond to a reduced-form regression in Equation (A.8). The best-fit line in the visual IV plot replicates the
coefficient from the 2SLS regression with radiologist dummies as instruments, which we perform to obtain the
standard error (in parentheses); the coefficient and standard error are identical to those shown in Panel A of
5. As in our baseline specification, we control for all patient characteristics and time dummies interacted with
station dummies. Further details are given in Appendix A.3.
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Figure A.5: Distributions of Radiologist Posterior Means
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Note: This figure plots the distributions of radiologist empirical Bayes posterior means of our main specifi-
cation. The first three subfigures plot the distributions of evaluation skills, the diagnostic thresholds, and the
preferences. The last subfigure plots the joint distribution of the evaluation skills and preferences.
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Figure A.6: ROC Curve with Model-Generated Moments
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Note: This figure presents the radiologist posterior means of our main specification in ROC space. Radiologist
posterior means are the same as shown in Figure A.5 and are formed using empirical Bayes posteriors. The
figure also plots the iso-preference curves for β = 6,8 and 10 from (0,0) to (0,1) in ROC space. Each iso-
preference curve illustrates how the optimal point in ROC space varies with the evaluation skill for a fixed
preference.
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Figure A.7: Heterogeneity in Preference
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Note: This figure shows the relationship between a radiologist’s empirical Bayes posterior of her accuracy
(α) on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of the
radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate a
chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that the
radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from the usual regression. The dots are the median values of the variables on the y-axis within
each bin of β. 30 bins are used. Figure 8 shows the corresponding plots with diagnostic skills (α) on the x-axis.
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Figure A.8: Possibly Incorrect Beliefs about Accuracy
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Note: This figure plots the relationship between radiologists’ true accuracy and perceived accuracy, in an
alternative model in which variation in diagnostic thresholds for a given skill is driven by variation in perceived
skill, holding preferences fixed. This contrasts with the baseline model in which radiologists perceive their
true skill but may vary in their preferences. We calculate the modal preference from our benchmark estimation
results at β = 8, and we assign this preference parameter to all radiologists. We then use the formula for the
optimal threshold as a function of β = 8 and (perceived) accuracy to calculate perceived accuracy. Appendix
A.6.4 describes this procedure to calculate perceived accuracy in further detail.
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Table A.3: JIVE Estimates of Slopes between Diagnosis and Other Outcomes

Outcome All Diagnosed False negative True negative
Admissions within 30 days 0.834 0.872 0.321 -0.358

(0.072) (0.019) (0.024) (0.069)
[0.633] [0.065] [0.027] [0.542]

Alive within 30 days -0.121 0.943 0.229 -1.294
(0.019) (0.008) (0.016) (0.024)
[0.967] [0.064] [0.019] [0.884]

ED visits within 30 days 0.162 0.297 0.108 -0.242
(0.072) (0.018) (0.016) (0.069)
[0.290] [0.020] [0.011] [0.260]

ICU visits within 30 days 0.170 0.088 0.042 0.040
(0.025) (0.009) (0.008) (0.022)
[0.044] [0.006] [0.004] [0.034]

Inpatient-days in initial admission 8.309 5.070 1.327 1.912
(0.950) (0.271) (0.216) (0.887)
[2.530] [0.333] [0.133] [2.064]

Inpatient-days within 30 days 8.798 5.655 2.015 1.128
(0.636) (0.199) (0.193) (0.580)
[3.330] [0.396] [0.183] [2.751]

Mortality within 30 days 0.121 0.057 0.034 0.030
(0.019) (0.008) (0.006) (0.016)
[0.033] [0.006] [0.003] [0.025]

Note: This table presents results for other outcomes, using the jackknife instrumental variable estimator (JIVE),
shown for the benchmark outcome of type II error in Panel B of Figure 5. The estimator uses the jackknife
instrument in Equation (4) to calculate the effect of diagnosis on each outcome. The formula for the estimator
is given in Equation (A.9) and controls for 77 variables for patient characteristics and time dummies interacted
with location dummies. Column 1 gives results for the main outcome. Columns 2-4 gives results for joint
dependent variables of the outcome interacted with diagnosis and type II error dummies. For example for
outcome yi , diagnosis decision di , and disease state (only observed for undiagnosed patients upon a return
visit) si , patients who are diagnosed have 1(di = 1), patients who are a false negative have 1 (di = 0,si = 1),
and patients who are a true negative have 1 (di = 0,si = 0). The joint outcomes in Columns 2-4 are then,
respectively, yi1 (di = 1), yi1 (di = 0,si = 1), and yi1 (di = 0,si = 0). Standard errors for the IV estimate are
given in parentheses, and mean dependent variables are given in brackets.
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Table A.5: Alternative Implementations

Baseline Balanced No controls VA users Admission
Panel A: Data and Reduced-Form Moments

SD of diagnosis 1.060 1.037 1.229 1.125 1.064
SD of type II error 0.504 0.459 0.531 0.584 0.429
SD of residual type II error 0.496 0.456 0.510 0.580 0.427
Slope, 2SLS 0.094 0.064 0.140 0.063 0.060
Slope, JIVE 0.263 0.342 0.270 0.315 0.181
Number of observations 4,663,840 1,464,642 4,663,840 3,099,211 4,663,601
Number of radiologists 3,199 1,094 3,199 3,199 3,199

Panel B: Model Parameter Estimates
µα 0.897 0.445 0.979 1.009 0.720

(0.038) (0.047) (0.034) (0.045) (0.027)
σα 0.332 0.255 0.408 0.450 0.287

(0.010) (0.012) (0.010) (0.013) (0.007)
µβ 2.080 2.840 2.116 1.831 2.365

(0.056) (0.128) (0.044) (0.053) (0.055)
σβ 0.128 0.073 0.144 0.190 0.125

(0.006) (0.007) (0.006) (0.008) (0.005)
λ 0.021 0.024 0.022 0.018 0.014

(0.000) (0.001) (0.000) (0.000) (0.000)
ν̄ 1.781 2.046 1.775 1.730 1.890

(0.020) (0.047) (0.016) (0.017) (0.019)
κ 0.196 0.196 0.196 0.196 0.196

Panel C: Radiologist Primitives
Mean α 0.839 0.699 0.851 0.853 0.794

10th percentile 0.719 0.558 0.713 0.703 0.669
90th percentile 0.934 0.824 0.953 0.960 0.898

Mean β 8.063 17.156 8.380 6.349 10.724
10th percentile 6.795 15.602 6.901 4.898 9.078
90th percentile 9.416 18.769 9.971 7.944 12.480

Mean τ 1.362 1.325 1.363 1.411 1.361
10th percentile 1.270 1.253 1.249 1.296 1.269
90th percentile 1.453 1.403 1.479 1.516 1.453

Panel D: Variation Decomposition
Diagnosis

Uniform skill 0.563 0.576 0.463 0.601 0.636
Uniform preference 0.749 0.782 0.805 0.671 0.695

Type II error
Uniform skill 0.171 0.127 0.150 0.180 0.190
Uniform preference 0.979 0.990 0.981 0.977 0.976

Note: This table shows robustness of results under alternative implementations. “Baseline” presents our base-
line results. “Balanced” presents results estimated only on the 44 stations we identify with quasi-random
assignment. “No controls” performs no risk-adjustment. “VA users” restricts to a sample of veterans with
above-median VA usage. “Admission” requires a type II error to occur in a patient with a high probability of
admission. Appendix A.7 provides rationale for each of these implementations and further discussion.
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