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1. INTRODUCTION

In cosmology, dark matter is a form of matter that is not directly observable, yet its presence is

required for Einstein’s theory of general relativity to be consistent with the observable motions

of stars and galaxies. Certain economic models rely on an analogous form of “dark matter,”

namely model components or parameters that are difficult to verify and measure directly in the

data, despite having significant effects on the models’ performance.1

Should we be worried about models with dark matter features? Two common defenses for

economic models relying on dark matter are: (i) these features are not inconsistent with the

data, i.e., they cannot be rejected by the data; and (ii) the fact that they improve the model’s

ability to fit the data provides indirect evidence supporting their very existence, analogous to

dark matter as posited in cosmology. In this paper, we propose a measure for economic dark

matter and show that the measure helps quantify the degree of model fragility. Specifically,

models with more dark matter tend to lack refutability and have higher overfitting tendency.

We define a measure of economic dark matter for a general class of GMM models (Hansen,

1982) that summarize a structural model with a set of unconditional moment restrictions. Our

measure is based on the (relative) informativeness of the cross-equation restrictions imposed

by the structural model. Essentially, the measure compares the asymptotic variances of two

efficient GMM estimators for the model parameters θ, one based on the full set of moment

restrictions which we refer to as the full GMM model, and the other based on a subset of the

moment restrictions which we refer to as the baseline GMM model. The dark matter measure

is obtained by searching for the largest discrepancy between the two asymptotic variances in

all linear directions.

Our dark matter measure above is inspired by rational expectations econometrics, where the

key assumption is that the agents in an economic model know more about model parameters

than conveyed by the primitive sources inside the model. Intuitively, our dark matter measure

will have a large value when the primary source of information about model parameters is

the cross-equation restrictions, rather than the primitive sources in the model. In such cases,

it may be challenging to argue that, as an approximation, economic agents have inferred pa-

rameters from rich histories of primitive data. Hence, the information obtained through the

cross-equation restrictions becomes unreliable because it heavily relies on the validity of cross-

1For example, John Campbell referred to rare disasters as “dark matter for economists” in his 2008 Princeton
Lectures in Finance (Campbell, 2018).
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equation restrictions. In this paper, we formalize this intuition by showing what happens when

highly informative restrictions are potentially misspecified. Our setting applies, but is not lim-

ited to the rational expectations models.

We show that the dark matter measure is linked to two key model properties: refutability

and overfitting tendency. Specifically, we show that the power of the optimal specification tests

vanishes as the dark matter measure for a GMM model approaches infinity. We also show that

those GMM models with more dark matter tend to overfit the data; namely, the out-of-sample

fit of the moment restrictions can deteriorate significantly relative to its in-sample fit once we

take into account the possibility that the GMM model is potentially misspecified and the true

data-generating process (DGP) is subject to local instability (e.g., Li and Müller, 2009).

The dark matter measure has an intuitive sample-size interpretation, which can be thought

of as the amount of additional data needed for the baseline efficient GMM estimator to match

or exceed the precision that the full efficient GMM estimator can achieve with the aid of the

cross-equation restrictions. Technically, we extend the results on semiparametric local mini-

max efficiency bounds by Levit (1976), Nevelson (1977), and Chamberlain (1987, Theorem 2)

for unconditional moment restrictions to Markov processes with local instability.2 This result

formalizes the information interpretation of our measure.

Model fragility is usually examined through the lens of sensitivity analysis in practice. The

fact that quantifying the informativeness of cross-equation restrictions is linked to sensitivity

analysis is intuitive. Cross-equation restrictions are informative under two conditions: (i) the

additional moments from the full model are sensitive to small changes in the parameter values;

and (ii) these additional moments can be measured precisely in the data relative to the baseline

moments. Thus, computing the dark matter measure resembles the dual of conducting a form

of sensitivity analysis. Intuitively, a GMM model is considered fragile if its key implications are

excessively sensitive to small perturbations of the data-generating process. Formally, one needs

to specify the relevant magnitude of “local perturbations” and define “excessive sensitivity.”

In multivariate settings, there is the additional challenge that the simultaneous responses of

model parameters to the perturbations in the data-generating process must be considered in

2Hansen (1985) and Chamberlain (1987, Thereom 3) study semiparametric local minimax efficiency bounds
for conditional moment restrictions. Hansen (1985) derives the efficiency bounds from the perspective of char-
acterizing the optimal instrument in the estimation of generalized instrumental variables in a non-i.i.d. context.
Chamberlain (1987, Theorem 3) focuses on moment restrictions parameterized in terms of a finite-dimensional
vector in an i.i.d. context. Newey (1990, 1993) proposes an estimator that attains Chamberlain’s bounds. Ai
and Chen (2003) propose an estimation method, as well as its efficiency, for models of conditional moment
restrictions, which contain finite dimensional unknown parameters and infinite dimensional unknown functions.
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order to assess the full scope of model fragility. However, little work has been done to formalize

the sensitivity analysis for model fragility quantification.

Our dark matter measure formalizes the sensitivity analysis by (i) benchmarking the local

perturbation in the data-generating process against the identification derived from the base-

line model, and (ii) defining the excessive sensitivity of efficient GMM estimators to the local

perturbations in the data-generating process based on the sampling variability of the efficient

GMM estimators. Naturally, we require the baseline model to be a correct benchmark similar

to Eichenbaum, Hansen, and Singleton (1988), because we need the identification provided by

the baseline model to define the reasonable perturbations in the data-generating process. In

addition, our measure identifies the worst direction of perturbation for the multivariate set-

ting by searching for the direction in the model parameter space in which the cross-equation

restrictions are the most informative.

An intuitive justification for the concern regarding model sensitivity is the high effective

degrees of freedom in models with high sensitivity. Such models can be fitted to a wide range

of empirical moments with minor changes to the parameter values. Models with high degrees

of freedom are well-documented as being more prone to overfitting, which is why statistical

model selection procedures impose penalties for model complexity, as measured by AIC, BIC,

LASSO, etc.

Formally, the concern regarding model sensitivity originates in potential misspecification

and local instability of the data-generating process. Under the assumption that a model is

correctly specified, high sensitivity of the moments to parameter perturbations is a beneficial

feature. Imposing these model restrictions will facilitate estimating the model parameters sig-

nificantly more precisely, which is the foundation for structural estimation. However, if the

model restrictions are potentially misspecified, the information obtained from imposing such

restrictions may no longer be valid. Kocherlakota (2007) similarly emphasizes the “fallacy of

fit.” The nontestable assumption of identification strength is related to the informativeness of

the cross-equation restrictions. They indicate the implicit degrees of freedom postulated by

the modeler, as the modeler effectively passes the statistical challenge of learning about model

parameters from the data onto economic agents.

We analyze the consequences of misspecification and local instability by generalizing the

local instability framework of Li and Müller (2009) to the semiparametric setting.3 We show

3We need a semiparametric framework for at least three reasons: (i) it provides a formal general econometric
framework for local perturbations in the space of local data-generating processes; (ii) it is needed for justifying
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that models with large dark matter measures tend to generate an excessively high quality

of in-sample fit. Due to this finding, these models are difficult to reject even when they are

misspecified, hence the lack of refutability. Moreover, we show that under local instability,

models with larger dark matter measures have a higher worst-case asymptotic expected degree

of overfitting, as measured by the gap between the in-sample model fit and the out-of-sample

model fit based on the Sargan-Hansen J statistic. Thus, we generalize the notion of sensitivity

analysis from the perturbations of model parameters to the perturbations of the underlying

data-generating processes.

The recursive (two-stage) GMM estimation (e.g., Christiano and Eichenbaum, 1992; Ogaki,

1993; Newey and McFadden, 1994; Hansen and Heckman, 1996; Hansen, 2007b; Lee, 2007;

Hansen, 2012) has necessarily worse in-sample fit than does the efficient GMM estimation

(Hansen, 1982); however, the former can in fact deliver better out-of-sample fit when the dark

matter measure (i.e., the model fragility) is excessively high. Although the original impetus of

the recursive (two-stage) GMM estimation was primarily computational, we advocate it as a

robust estimation procedure against high model fragility. Thorough analyses on optimal robust

estimation, and even on optimal model selection, however, are beyond the scope of this paper.

We evaluate the fragility of two models from the asset pricing literature. The first example

is a rare-disaster model. In this model, parameters describing the likelihood and magnitude

of economic disasters are difficult to estimate from the data unless information in asset prices

is used. We derive the dark matter measure in this example analytically. We also illustrate

how to incorporate uncertainty about the structural parameters (in this context, preference

parameters) when computing model fragility. The second example is a long-run risk model

with a nine-dimensional parameter space. We use this example to show that two calibrations of

the model with similar in-sample fit can differ vastly in fragility properties. We conduct Monte

Carlo simulation experiments for both examples and show that the calibrated models with large

dark matter measures lack in-sample refutability and have poor out-of-sample fit, consistent

with the theory.

Related Literature

The idea that a model’s fragility is connected to its degrees of freedom (i.e., its complexity)

dates back at least to Fisher (1922). Traditionally, effective degrees of freedom of a model are

the information matrix interpretation of our dark matter measure based on semiparametric efficiency bounds;
and (iii) it is a natural way to connect the GMM model to the structural economic model.
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measured by the number of parameters, simply because the two coincide in Gaussian-linear

models (e.g. Ye, 1998; Efron, 2004). Numerous statistical model selection procedures are based

on this idea.4

However, the limitations of using the number of parameters to measure model’s degrees of

freedom have been well documented. Hence, new methods have been developed to measure the

sensitivity of model implications to parameter perturbations in the statistics literature.5 A com-

mon feature of these proposals is that they rely on the same model being evaluated to determine

the parameter perturbations; this is potentially problematic when evaluating economic models

that are themselves fragile, partly due to a lack of internal refutability. In contrast, we propose

using a baseline model to assign weights to potential alternative underlying data-generating

processes or to determine the possible “reasonable” perturbations of data-generating processes.

To be more specific, our fragility measure is different from the extant measures in four

aspects. First, we use a semiparametric framework to allow for general local perturbations of

data-generating processes similar to Hansen and Sargent (2001), but not only the local per-

turbations of model parameters that fit the model. Second, the reasonable local perturbations

of data-generating processes are generated by the baseline model that is less likely to be mis-

specified, and we use the baseline model as a benchmark to respect the primary purpose of the

economic structural model in the fragility assessment. Third, we directly connect the model

fragility measure to a model’s internal refutability, i.e., the optimal power of specification tests.

Fourth, we also directly connect the model fragility measure to a model’s out-of-sample fit, em-

phasized by, for example, Schorfheide and Wolpin (2012) and Athey and Imbens (2017, 2019),

for assessing economic models.6

Further, we have built our model fragility measure based on a multivariate sensitivity anal-

ysis. Müller (2012) studies multivariate sensitivity analysis in Bayesian inference and the worst-

case direction. He focuses on the sensitivity of the posterior distribution with respect to the prior

4Examples include the Akaike information criterion (AIC) (Akaike, 1973), the Bayesian information criterion
(BIC) (Schwarz, 1978), the risk inflation criterion (RIC) (Foster and George, 1994), and the covariance inflation
criterion (CIC) (Tibshirani and Knight, 1999).

5Extant statistics literature covers several alternative approaches to measuring the “implicit degrees of free-
dom” or “generalized degrees of freedom” (e.g., Ye, 1998; Shen and Ye, 2002; Efron, 2004; Spiegelhalter, Best,
Carlin, and van der Linde, 2002; Ando, 2007; Gelman, Hwang, and Vehtari, 2013).

6The terms “in-sample fit” and “out-of-sample fit”, as well as other similar terms, are used commonly in
statistics, econometrics, and empirical asset pricing (e.g., Hastie, Tibshirani, and Friedman, 2001; Ferson, Nal-
lareddy, and Xie, 2013; Varian, 2014; Athey and Imbens, 2015; Mullainathan and Spiess, 2017; Müller and
Watson, 2016). The terms “out-of-sample fit” and “external validity” have been used interchangeably in finance
and economics literature (e.g., Bossaerts and Hillion, 1999; Stock and Watson, 2002; Schorfheide and Wolpin,
2012).
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distribution by asking how much the posterior distribution changes in response to a perturba-

tion of the prior distribution. Differently, we perturb the underlying data-generating process,

and ask how much the moment restrictions and the baseline model parameters change. Simi-

lar to Müller (2012), we consider a multivariate sensitivity problem using asymptotic methods

and eigenvalue decomposition to identify the worst-case direction. In another related paper,

Andrews, Gentzkow, and Shapiro (2017) propose a local measure of the relationship between

parameter estimates and moments. In Section 5.2, we establish the connection between our

information-based dark matter measure and their sensitivity matrix. Their focus is to add

transparency in structural estimation, and they do not link the magnitude of the sensitivity

matrix to model properties. We formally connect the dark matter measure to model fragility,

and link its magnitude to the model’s lack of refutability and overfitting tendency. Moreover,

our measure differs from their sensitivity matrix in two aspects: (i) it is a relative sensitivity

measure that uses the baseline GMM model as a benchmark; and (ii) it normalizes the expected

change of the estimator by its asymptotic covariance in the full model.

Our work contributes to the literature on local instability in time series analysis. Evi-

dence abounds on structural changes and nonstationarity in asset pricing (e.g., Pesaran and

Timmermann, 1995; Bossaerts and Hillion, 1999; Pastor and Stambaugh, 2001; Lettau and

Van Nieuwerburgh, 2008; Lettau, Ludvigson, and Wachter, 2008; Welch and Goyal, 2008; Koi-

jen and Van Nieuwerburgh, 2011; Dangl and Halling, 2012). Econometric theory has largely

focused on testing whether or not the model is stable (see, e.g., Nyblom, 1989; Andrews, 1993;

Andrews and Ploberger, 1994; Sowell, 1996; Bai and Perron, 1998; Hansen, 2000; Andrews,

2003; Elliott and Müller, 2006, for recent contributions). However, little research has explored

the next step: what implications arise once instabilities are suspected? One exception is Li and

Müller (2009) who show that the standard GMM inference (Hansen, 1982), despite ignoring the

partial instability of a subset of model parameters, remains asymptotically valid for the subset

of stable parameters. We show that the GMM models tend to have poor out-of-sample fit if

their dark matter measure, i.e., model fragility measure, is excessively large.

Our work connects to the literature on structural estimation, including rational expectations

econometrics, in which economic assumptions (the cross-equation restrictions) have been used

extensively to increase efficiency in estimating the structural parameters. Classic examples in-

clude Saracoglu and Sargent (1978), Hansen and Sargent (1980), Campbell and Shiller (1988),

among others, and textbook treatments by Lucas and Sargent (1981), Hansen and Sargent

(1991). In a fragile model, cross-equation restrictions may imply excessively tight confidence
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regions for the parameters, with low coverage probability under reasonable parameter pertur-

bations. An important potential source of fragility in this context is that the structural model

relies heavily on the agents possessing accurate knowledge of hard-to-estimate parameters.

Hansen (2007a) offers an extensive discussion of the informational burden that rational

expectations models place on the agents, which is one of the key motivations for research

in Bayesian learning, model ambiguity, and robustness (e.g., Gilboa and Schmeidler, 1989;

Hansen and Sargent, 2001; Epstein and Schneider, 2003; Klibanoff, Marinacci, and Mukerji,

2005). This literature recognizes that the traditional assumption that agents possess precise

knowledge of the relevant probability distributions is not justifiable in certain contexts, and

explicitly incorporates robustness considerations into agents’ decision problems. Our approach

complements this line of research, in that our measure of fragility helps diagnose situations

in which incorporating parameter uncertainty and agents’ robustness considerations within an

economic model could be particularly important.

Our analysis of the disaster-risk model relates to studies that have highlighted the challenges

in testing such models. One implication of the low probability of disasters is the so-called

“peso problem” (see Lewis, 2008, for an overview): if observations of disasters in a particular

sample under-represent their population distribution, standard inference procedures may lead

to distorted conclusions. Thus, the peso problem is a particular case of the weak identification

problem. Our analysis highlights that in applications subject to the peso problem, it is important

to guard against model fragility. On this front, Zin (2002) shows that certain specifications of

higher-order moments of the endowment growth distribution may help the model fit the asset

pricing moments while being difficult to reject in the endowment data. Our analysis of model

fragility encapsulates such considerations in a general quantitative measure.

2. AN INTUITIVE EXAMPLE

In this section, we use a version of the Gordon growth model to illustrate how the dark matter

measure connects to model fragility. Suppose the dividend process for a stock is

(1) Yt+1/Yt = 1 + θ + σY εY,t+1, εY,t is i.i.d.,with E[εY,t] = 0, E[ε2Y,t] = 1.

The parameters θ and σY are the mean and volatility of dividend growth. According to the

Gordon growth model, the price of the stock is the present value of expected future dividends.
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Assuming the risk-adjusted discount rate is r, then

(2) Pt =
∞∑
s=1

Et [Yt+s] /(1 + r)s,

which implies a constant price-dividend ratio,

(3) Pt/Yt = F (θ), with F (θ) ≡ (1 + θ)/(r − θ).

The econometrician evaluates a GMM version of this model in a sample of size n. To avoid

the stochastic singularity, we add i.i.d. shocks to the price-dividend ratio such that (3) only

holds on average,

(4) Pt+1/Yt+1 = F (θ) + σP εP,t+1, εP,t is i.i.d.,with E[εP,t] = 0, E[ε2P,t] = 1.

Moreover, εP,t and εY,t are mutually independent. For simplicity, we assume that the econo-

metrician knows all the parameters except for average dividend growth θ and focuses on the

following moment conditions:

(5) E [m(yt, θ)] = 0, with m(yt, θ) ≡

 Yt+1/Yt − 1− θ
Pt/Yt − F (θ)

 ,
where yt ≡ (Yt, Pt)

T . We denote the first element of m(yt, θ) by m(1)(yt, θ) and refer to it as

the baseline moment.

Next, We assume that the Gordon growth model can be misspecified and that the true local

data-generating processes is Yt+1/Yt

Pt+1/Yt+1

 =
fn,t√
n

+

 1 + θ0

F (θ0)

+

 σY εY,t+1

σP εP,t+1

 .(6)

The term fn,t captures the potential local bias and instability:

(7) fn,t = λ1 + λ2b(t/n), with λi ≡
[
λ

(1)
i , λ

(2)
i

]T
for i ∈ {1, 2},

where b(·) is an unknown deterministic function on [0, 1] whose path has a finite number of

discontinuities and one-sided limits everywhere. Without loss of generality, we assume that
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supu∈[0,1] |b(u)| ≤ 1 and

∫ 1

0

b(u)du = 0.

Instability in the data-generating process, for example, structural breaks and nonstationar-

ity, is an important consideration in asset pricing.7 Our specification in (7) follows the the lit-

erature on local instability (e.g., Andrews, 1993; Sowell, 1996; Li and Müller, 2009). Intuitively,

λ1 captures the stable local biases in the moments, while λ2 captures their local instability.

For calibration, we set θ0 = 0, r = 3%, σY = 4%, and σP = 5. Under the calibrated

distribution Q0 of yt, which corresponds to the parameter value θ0 = 0, the Jacobian matrices

of the baseline and the full moment restrictions are

D11 = E

[
∂m(1)(yt, θ)

∂θ

]
= −1 and D = E

[
∂m(yt, θ)

∂θ

]
=

 −1

(1 + r)/r2


The spectral density matrices (at zero frequency) for the baseline and full models are

Ω11 = E
[
m(1)(yt, θ0)2

]
= σ2

Y and Ω = E
[
m(yt, θ0)m(yt, θ0)T

]
=

 σ2
Y 0

0 σ2
P

 .
The growth rate θ can be estimated using either the baseline moment restrictions alone or using

the full moment restrictions. We denote these two efficient GMM estimators for θ by θ̃n and θ̂n,

which minimize the objectives

J (1)(θ(1),yn) = nm̂(1)
n (θ)TΩ−1

11 m̂
(1)
n (θ) and J(θ,yn) = nm̂n(θ)TΩ−1m̂n(θ), respectively,

where m̂
(1)
n (θ) and m̂n(θ) are the sample means for m(1)(yt, θ) and m(yt, θ), respectively.

The dark matter measure

Panel A of Figure 1 displays the asymptotic distribution of the baseline estimator θ̃n (the

efficient GMM estimator for θ based on the baseline moment of (5)),

√
n(θ̃n − θ0)

d−→ N(0, I−1
B ), where IB ≡ DT

11Ω−1
11 D11.

7See e.g., Pesaran and Timmermann (1995); Pastor and Stambaugh (2001); Lettau, Ludvigson, and Wachter
(2008); Lettau and Van Nieuwerburgh (2008); Welch and Goyal (2008); Koijen and Van Nieuwerburgh (2011).
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Figure 1.— An example of an informative asset pricing restriction on the parameters. θ̃n is the efficient
GMM estimator only based on the baseline GMM model characterized by the baseline moment m(1)(yt, θ)

and sample yn. Both θ̂n and θ̂fn are the efficient GMM estimators based on the full GMM model and sample

yn, except that θ̂fn is the estimator when the model is misspecified (fn,t ≡ 0). Panel A plots the asymptotic

distribution of
√
n(θ̃n − θ0) with n = 100. Panel B plots the average price-dividend ratio as a function of θ.

The light blue dashed vertical lines represent the confidence band for θ̃n with sample size n = 100, and the
corresponding light blue dashed horizontal lines represent the model-implied average price-dividend ratio when
perturbing θ within the confidence band. The red shaded horizontal area represents the confidence band of
the average price-dividend ratio Pt/Yt according to the data with n = 100, and the corresponding red shaded
vertical area represents the model-implied parameter θ according the data with n = 100. Panel C plots the
asymptotic distribution of θ̂n based on the assumed asset pricing restriction displayed in Panel B and the whole
sample yn with n = 100; the normal density indicated by the red solid line is the asymptotic distribution of√
n(θ̂n−θ0) when the model is correctly specified (fn,t ≡ 0). By contrast, the normal density indicated by the red

dashed line is the asymptotic distribution of
√
n(θ̂fn − θ0) when the model is locally misspecified (λ1 = [0, 30]T ,

λ2 = [0, 0]T , and b = 0).

The graph illustrates the degree of uncertainty about the value of θ according to the baseline

model and the dividend data. When n = 100, the 95% asymptotic confidence interval for the

growth rate θ is approximately [−0.8%, 0.8%].

Panel B of Figure 1 plots the model-implied average price-dividend ratio F (θ) as a function

of the dividend growth rate θ. Because F (θ) rises quickly with θ, there is only a narrow range

of θ for which the model-implied average price-dividend ratios would be consistent with the

sample mean. To see this, we use the shaded horizontal region near 30 on the y-axis to denote

the 95% confidence interval for the average price-dividend ratio from the data (assuming there

is no local misspecification, i.e. fn,t ≡ 0). The corresponding shaded vertical region on the x-axis

shows the range of θ consistent with the model, which is significantly more concentrated than

the asymptotic distribution of the baseline estimator.

The full estimator θ̂n, which is the efficient GMM estimator based on the full set of moment

restrictions in (5), is significantly more precise than the baseline estimator. With the moment
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restrictions correctly specified (i.e., fn,t ≡ 0),

√
n(θ̂n − θ0)

d−→ N(0, I−1
F ), where IF ≡ DTΩ−1D.

When n = 100, the 95% asymptotic confidence interval for the growth rate θ is approximately

[−0.06%, 0.06%]. A comparison between the asymptotic distributions of the baseline and full

estimators in Panel C of Figure 1 reveals how informative the asset pricing restriction in (5) is

about θ. This incremental informativeness of the asset pricing restrictions is the focus of our

dark matter measure. More precisely, we define the dark matter measure as

%(θ0) ≡ IF/IB − 1 = [F ′(θ0)σY /σP ]
2

= 83.82.(8)

This simple example shows that the informativeness (%(θ0)) increases in the sensitivity of the

asset pricing moment to the parameter value (F ′(θ0)) and decreases in the variability of the

asset pricing moment (σP ).

Dark matter and model fragility

While informative moment restrictions can be very helpful in identifying parameters in the

absence of local misspecification, they become a symptom of model fragility with misspecifi-

cation. It is conventional to define model fragility as the excessive sensitivity of the model’s

implications, specifically, how well it fits the data, to small perturbations of the data-generating

process. To formalize this procedure, we need to be precise on (i) what constitutes small pertur-

bations in data-generating processes, and (ii) how to define excessive sensitivity of the model fit.

For (i), if trusting the baseline moment restrictions but lacking confidence in the additional mo-

ment restrictions from the structural model, it makes sense to benchmark the magnitude of the

perturbation to the uncertainty about θ in the baseline moment restrictions.8 For (ii), we can

assess the extent to which the changes in the moments resulting from parameter perturbations

are statistically distinguishable from zero according to the data.

Following the rules of the sensitivity analysis set above, Panel B of Figure 1 indicates that a

perturbation of θ within the 95% confidence region of the baseline estimator θ̃n (marked by the

two vertical dashed lines) can move the average model-implied price-dividend ratio far away

from the confidence region implied by the empirical moments (the narrow shaded region near

8We formally justify this benchmark in Section 4.3 by considering local instability and misspecification in
the data-generating process.
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30 on the y-axis), which means the perturbed GMM model will likely be rejected by the data.

Similar to the informativeness of the asset pricing restriction, model sensitivity is higher when

the asset pricing moment has a larger gradient with respect to the model parameter θ, and

when the error of the asset pricing moment is smaller.

More generally, the dark matter measure can be viewed as a multivariate model sensitivity

measure. The direction in which the two efficient asymptotic variances based on the baseline

and full models differ the most is also the one in which a local perturbation of the parameter

vector θ results in the largest changes in the model fit.

It is also worth noting that the connection between the informativeness of the structural

model restrictions and model fragility only makes sense in light of the possibility of model

misspecification. If a GMM model is correctly specified, the more sensitive the moments, then

the more precise will be the estimate of the parameters by imposing valid restrictions; this

can be seen from Panel C of Figure 1, where the asymptotic distribution of θ̂n with fn,t ≡ 0

is tightly distributed around the true value θ0 = 0. However, if the asset pricing restrictions

are potentially misspecified and unstable, then the extra information they provide may not be

valid, thereby making inference problematic.

Lack of refutability

We are interested in testing the validity of the asset pricing moment restriction (i.e., whether

λ
(2)
1 = 0) given the prior information that the baseline moment restriction is correctly specified

(i.e., λ
(1)
1 = 0). Considering an upper bound for the maximin local power, we can focus on a sub-

set of alternatives satisfying b ≡ 0 to obtain an upper bound characterized by the dark matter

measure, albeit it is not necessarily the tightest bound. In this example, the C test (Eichen-

baum, Hansen, and Singleton, 1988) is numerically equivalent to the J test (Hansen, 1982);

and Newey (1985a) shows that it is asymptotically optimal for these particular alternatives.

We consider the set of alternatives Aκ(Q0) ≡
{
λ1 ∈ R2 : λ

(1)
1 = 0 and |λ(2)

1 | ≥ κ
}

.

The C test statistic can be rewritten as:

Cn =

[
Zn +

√
%(θ0)

1 + %(θ0)

(
λ

(1)
1

σY

)
+

√
1

1 + %(θ0)

(
λ

(2)
1

σP

)]2

+ op(1),(9)

where Zn =
√
%(θ0)/(1 + %(θ0))

(
n−1/2

∑n
t=1 εY,t

)
+
√

1/(1 + %(θ0))
(
n−1/2

∑n
t=1 εP,t

)
converges

to a standard normal variable in distribution. According to Newey (1985a) and Chen and Santos
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(2018), the maximin asymptotic power of the GMM specification tests of size α is bounded from

above by

inf
λ1∈Aκ(Q0)

lim
n→∞

P {Cn > c1−α} ≤ lim
n→∞

P
{[
Zn + σ−1

P κ/
√

1 + %(θ0)
]2

> c1−α

}
,(10)

where c1−α is the 1 − α quantile of a chi-square distribution with degree of freedom one. The

right-hand side of (10) is an upper bound on the maximin asymptotic power, constructed by

choosing λ
(1)
1 = 0 and λ

(2)
1 = κ. Further, according to the continuous mapping theorem, the

right-hand side (10) is equal to

(11) lim
n→∞

P
{[
Zn + σ−1

P κ/
√

1 + %(θ0)
]2

> c1−α

}
= P

{
χ2

1(µ) > c1−α
}
,

where χ2
1(µ) represents a noncentral chi-square distribution with degree of freedom one and the

noncentrality parameter µ =
(κ/σP )2

1 + %(θ0)
. Combining (10) and (11) leads to

(12) inf
λ1∈Aκ(Q0)

lim
n→∞

P {Cn > c1−α} ≤ P
{
χ2

1(µ) > c1−α
}
.

Thus, when the GMM model has too much dark matter, the noncentrality parameter µ is very

close to zero and thus the upper bound P {χ2
1(µ) > c1−α} is very close to α, which means that

the test power is close to zero. The local power function is visualized in Panel A of Figure 2.

The power only starts to get close to one when the misspecification is 40 times of the standard

deviation σP of the price-dividend ratio.

Intuitively, the baseline moment restrictions have limited ability to refute the cross-equation

restrictions implied by the structural model when the dark matter measure %(θ0) is large. It

is clear from Panel B of Figure 1 that, by tuning the parameter value of θ inside the “accept-

able region” imposed by the baseline GMM model (i.e., within the 95% confidence region of

the baseline estimator θ̃n, marked by the two vertical dashed lines), the econometrician can fit

the average model-implied price-dividend ratio over an immensely wide range (i.e., the range

between the two horizontal dashed lines), which means the model-implied cross-equation re-

striction can hardly be rejected by the data. This can also be seen in Panel C of Figure 1:

even when the moment condition for the price-dividend ratio is severely misspecified (with

κ/σP = 6), the baseline GMM model still cannot reject the point estimate θ̂fn (i.e., θ̂fn is still

within the confidence interval of θ based on θ̃n).
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Figure 2.— Panel A plots the local power of C tests with n = 100. In panel B we simulate 400 independent
time series with length n = 200. We set the break point π = 1/2, misspecification λ1 = [0, 0]T , and instability
λ2 = [0, 30]T and b(·) specified in (13) for panels B and C. Panel B displays the difference between the logged

overfitting measure of the full efficient GMM estimator θ̂e,n and that of the baseline efficient GMM estimator θ̃e,n.

Panel C plots the asymptotic distribution of θ̂e,n based on the assumed asset pricing restriction and the whole
sample yn with instability; the normal density indicated by the red dotted line is the asymptotic distribution of√
πn(θ̂e,n− θ0). By contrast, the normal density indicated by the red dashed line is the asymptotic distribution

of
√
πn(θ̂o,n − θ0).

Poor out-of-sample fit

A common method for evaluating out-of-sample fit of GMM models is to hold out data from the

model estimation (e.g., Schorfheide and Wolpin, 2012; Müller and Watson, 2016). We split the

entire time series yn ≡ {y1, · · · ,yn} into two non-overlapping subsamples yne ≡
{
y1, · · · ,ybπnc

}
and yno ≡

{
ybπnc+1, · · · ,yn

}
with π ∈ (0, 1/2]. The first segment yne is used as the estimation

sample, while the second segment yno is used as the holdout sample.9 In particular, for the true

local data-generating process in (6) and (7), we assume that λ1 = [0, 0]T , λ2 = [0, 30]T , π = 1/2,

and

(13) b(t/n) =

 1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

where the sequence b(t/n) captures the structural breaks and π is the break point.

We consider the overfitting measure of the efficient GMM estimator θ̂e,n based on the esti-

mation sample yne , defined as the extent to which the out-of-sample fitting error exceeds the

9The out-of-sample approach, treating yno as future hypothetical data, can be viewed as a standard cross-
validation method based on observed data.
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in-sample fitting error:10

(14) O(θ̂e,n,y
n) ≡ 1

2

[
L(θ̂e,n,y

n
o )− L(θ̂e,n,y

n
e )
]
,

with L(θ,yns ) ≡ J(θ,yns )− J(θ0,y
n
s ) for s ∈ {e, o} and the parameter value θ0 ensures that the

baseline moment restriction E
[
m(1)(yt, θ0)

]
= 0 is perfectly satisfied. It can be shown that (see

Theorem 2) the expected overfitting measure can be approximated by

(15) E
[
O(θ̂e,n,y

n)
]
≈ 1 + (λ

(2)
2 /σP )2%(θ0), as n approaches +∞.

Panel B of Figure 2 displays the histogram of difference between logged overfitting measures

logO(θ̂e,n,y
n) of the full efficient GMM estimator θ̂e,n and those of the baseline efficient GMM

estimator θ̃e,n. For the instability κ = 30 (i.e. 6 times of σP ), which is hard to reject using C

tests (see Panel A), the degree of overfitting by the efficient GMM estimator θ̂e,n is substantial.

This result suggests that robust estimation is particularly relevant for GMM models with large

dark matter measure.

Define θ̂o,n to be the efficient GMM estimator based on the holdout sample yno . The out-

of-sample fit should be poor if the efficient GMM estimators θ̂e,n and θ̂o,n, based on yne and

yno respectively, are statistically separate from each other. This can be seen in the case of

the asymptotic distributions of θ̂e,n and θ̂o,n (Panel C of Figure 1), which are centered away

from the correct value θ0 = 0 for the baseline GMM model and therefore distant from each

other. The distance between the in-sample estimator θ̂e,n and the out-of-sample estimator θ̂o,n is

significant according to the asymptotic distribution, which implies that the estimator θ̂e,n has

a poor out-of-sample fit.

General theory and empirical examples

In the remainder of the paper, we formally develop the set of results illustrated by the simple

example above. We consider the setting of weakly dependent time series data, which are preva-

lent in financial and macroeconomic studies, and allow for local perturbations (e.g., Hansen

and Sargent, 2001) and instability (e.g., Li and Müller, 2009) of data-generating processes in a

semiparametric framework. We then define the dark matter measure for a general class of GMM

models, and formally establish the connection between the dark matter measure, the model’s

10Overfitting measure is also studied by Mullainathan and Spiess (2017) and Hansen and Dumitrescu (2018).
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refutability, and its out-of-sample fit. Further, We use the dark matter measure to analyze real

data examples including the rare disaster risk and the long-run risk models. We also provide

discussion on what to do with fragile models (i.e. models with large dark matter measure) in

Section 6.

3. THE DARK MATTER MEASURE

In this section, we set up the model and introduce the dark matter measure. We then discuss

the connections between the dark matter measure, sensitivity analysis, and model testability.

3.1. Model Setup

Let Y = Rdy , the dy-dimensional Euclidean space with Borel σ-field F. Let P denote the col-

lection of all probability measures on the measurable space (Y × Y,F ⊗ F) with the product

sample space Y× Y and the product σ-field F ⊗ F.

Markov processes

We consider a subspace of P, denoted by H, in which each probability measure is the bivariate

marginal distribution Q for a time-homogeneous Harris ergodic and stationary Markov process

{yt : t = 0, 1, · · · } satisfying the Doeblin condition.11 Following Bickel and Kwon (2001), we

parameterize time-homogeneous Markov processes by the bivariate marginal distributions Q of

(yt−1,yt) for any t ≥ 1. We denote the (n + 1)-variate joint distribution of yn ≡ {y0, · · · ,yn}
corresponding to Q by Pn. A Markov process is Harris ergodic if it is aperiodic, irreducible,

and positive Harris recurrent (e.g. Jones, 2004; Meyn and Tweedie, 2009). Harris ergodicity

guarantees the existence of a unique invariant probability measure (e.g., Meyn and Tweedie,

2009). Given Harris ergodicity, stationarity only requires that the initial distribution of y0 is

the unique invariant probability measure. The Doeblin condition implies that the φ-mixing

coefficients φ(n) decay to zero exponentially fast (e.g. Bradley, 2005, Section 3.2 and Theo-

rem 3.4), which is useful for establishing the uniform law of large numbers (ULLN) (White and

Domowitz, 1984) and the central limit theorem (CLT) (e.g., Jones, 2004, Theorem 9).12

11The set of Markov processes satisfying the Doeblin condition includes a broad class of time series commonly
used in finance and macroeconomics; see, e.g., Stokey and Lucas (1989) and Ljungqvist and Sargent (2004).

12First-order Markov models are widely adopted for approximating financial and economic time series. Many
prominent structural asset pricing models feature state dynamics as first-order Markovian processes (e.g., Camp-
bell and Cochrane, 1999; Bansal and Yaron, 2004; Gabaix, 2012; Wachter, 2013).
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Structural models and moment restrictions.

Consider a stable structural model denoted by Q, which aims to capture certain statistical

features of the observed data yn. The parameters of such a “stable” model, denoted by θ, are

constant over time (e.g., Li and Müller, 2009).13 We assume that the restrictions imposed by

the model on the data can be summarized by a set of moment restrictions, and that the model’s

performance in a given data sample can be measured by the degree to which these moment

restrictions are violated (i.e., the fit of moment restrictions). As we will explain in Section 3.4

below, our notion of model fragility is also based on the moment restrictions, specifically their

sensitivity to local perturbations of the underlying data-generating process.14 We follow the lit-

erature (e.g., Li and Müller, 2009; Chen and Santos, 2018), and refer to these models as GMM

models. As reflected in the original applications of GMM in asset pricing (Hansen and Single-

ton, 1982, 1983) and recently emphasized by Hansen (2014), structural asset pricing models

are typically partially specified. Further, GMM has proven particularly valuable for analyzing

structural models via focusing on key cross-equation restrictions such as Euler equations, with-

out being overly influenced by the details and potential singularities of the remainder of the

structural model. Accordingly, we adopt the semiparametric framework of GMM models.

Specifically, we assume the moment function corresponding to the full structural model is

m(·, θ) ∈ Rdm , defined on a compact parameter set Θ ∈ Rdθ with nonempty interior, and denote

the full GMM model by Q,

Q =
{

Q ∈ H : EQ [m(·, θ)] = 0, for some θ ∈ Θ
}
,(16)

which is a collection of probability measures under which the moment restrictions hold for some

parameter vector θ. The system of moment restrictions is over-identified; that is, the number

of model parameters is less than that of moment restrictions (i.e., dθ < dm).

We assume that the moment function m(·, θ) has a recursive structure:

(17) m(yt−1,yt, θ) =

 m(1)(yt−1,yt, θ
(1))

m(2)(yt−1,yt, θ
(1), θ(2))

 , with θ =

 θ(1)

θ(2)

 .

13Technically, the model parameters may vary with the sample size n, though they do not depend on the
time index t ∈ {1, · · · , n}.

14Kocherlakota (2016) adopts a similar notion in studying the sensitivity of real macro models to the speci-
fication of the Phillips curve.
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Here θ(1) is a dθ,1-dimensional sub-vector of θ, with dθ,1 ≤ dθ, and m(1)(·, θ(1)) has dimension

dm,1 ≥ dθ,1. The baseline moments can be represented by a selection matrix Γm,1:

(18) m(1)(yt−1,yt, θ
(1)) = Γm,1m(yt−1,yt, θ), with Γm,1 ≡

[
I, 0dm,1×(dm−dm,1)

]
.

The assumption of the recursive structure for the moment function enables us to examine the

fragility of a subset of moment restrictions, namely those in m(2)(·, θ). Such recursive structures

are common in asset pricing. For example, the moments m(1)(·, θ(1)) could be derived from a

statistical model of the real quantities (such as consumption), while the additional moments

m(2)(·, θ) may apply to the joint dynamics of the real quantities and asset prices. Since the

first coordinate block of the moment function m(·, θ) only depends on θ(1), the Jacobian matrix

D(θ) is block lower triangular:

(19) D(θ) =

 D11(θ) 0

D12(θ) D22(θ)

 , where Dij(θ) ≡ EQ
[
∇θ(j)m(i)(·, θ)

]
and i, j = 1, 2.

Corresponding to the first coordinate block m(1)(·, θ(1)) of the moment function m(·, θ) in (17),

we define the baseline GMM model Q(1),

Q(1) =
{
Q ∈ H : EQ

[
m(1)(·, θ(1))

]
= 0 for some θ(1) ∈ Θ(1)

}
.(20)

The baseline model is a collection of probability measures under which the first block of moment

restrictions, hereafter referred to as the baseline moments, hold for some parameter vector θ(1).

This definition is analogous to the definition of the full model, and clearly Q ⊂ Q(1). The

subvector θ(2) can only be identified by the moment restrictions not contained in the baseline

model. We refer to θ(2) as the nuisance parameters.

Although economic models often feature conditional moment restrictions, for estimation and

testing, it is common to focus on a finite number of implied unconditional moment restrictions

by using nonlinear instrumental variables (e.g., Hansen and Singleton, 1982, 1983; Hansen,

1985; Nagel and Singleton, 2011). For simplicity, we take these unconditional moments as the

starting point in our analysis.

Following the definition of the full structural model (16), we define a mapping from the

probability measure of the bivariate marginal distribution Q ∈ Q to model parameters θ, θ =



DARK MATTER IN ASSET PRICING MODELS 19

ϑ(Q), such that

(21) EQ [m(·, ϑ(Q))] = 0.

Calibrated models

Consider a calibrated model parameter value θ0 ∈ int(Θ), the interior of Θ, such that the

moment restrictions evaluated at θ0 hold under some Q0 ∈ Q:

(22) EQ0 [m(·, θ0)] = 0.

Note that Q0 remains unknown to the econometrician, even though θ0 may be known. The

calibrated full and baseline GMM models are sets of probability measures satisfying

Q(θ0) ≡
{

Q ∈ H : EQ [m(·, θ0)] = 0
}
, and(23)

Q(1)(θ
(1)
0 ) ≡

{
Q ∈ H : EQ

[
m(1)(·, θ(1)

0 )
]

= 0
}
, respectively.(24)

By definition, Q(θ0) ⊂ Q. Moreover, Q(θ0) is non-empty (due to the assumption for θ0). We

pick one distribution from Q(θ0) and denote it by Q0, which is a distribution under which the

moment restrictions of the full model hold under the calibrated parameters θ0.

3.2. The Efficient GMM Estimation

Under the distribution Q0, the spectral density matrices (at zero frequency) for the baseline

and full models are

Ω11 =
∞∑

t=−∞

EQ0
[
m(1)(y0,y1, θ0)m(1)(yt−1,yt, θ0)T

]
, and(25)

Ω =
∞∑

t=−∞

EQ0
[
m(y0,y1, θ0)m(yt−1,yt, θ0)T

]
, respectively,(26)

where Ω11 is the upper-left block of Ω. We assume that both Ω and the Jacobian matrix D

are known. In general, computing the expectations requires knowledge of the distribution Q0.

When Q0 is unknown in practice, expectations can be replaced by their consistent estimators.

For example, several consistent estimators of the covariance matrices are provided by Newey and

West (1987), Andrews (1991), and Andrews and Monahan (1992). These estimation methods
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usually require a two-step plug-in procedure introduced by Hansen (1982) when θ0 is unknown.

We further assume that Ω = I, which is innocuous because we can always rotate the system

without altering the structure (Hansen, 2007b). More details are provided in Appendix G.1.

For any given θ, we define

mt(θ) ≡ m(yt−1,yt, θ) and m
(1)
t (θ(1)) ≡ m(1)(yt−1,yt, θ

(1)),

and denote the empirical moment functions for the full and baseline GMM models by

m̂n(θ) ≡ 1

n

n∑
t=1

mt(θ) and m̂(1)
n (θ(1)) ≡ 1

n

n∑
t=1

m
(1)
t (θ(1)), respectively.

Then, the efficient GMM estimator θ̂n of the full model and that of the baseline model θ̃
(1)
n

minimize

J(θ,yn) ≡ n |m̂n(θ)|2 and J (1)(θ(1),yn) ≡ n
∣∣m̂(1)

n (θ(1))
∣∣2 , respectively.(27)

3.3. Information Matrices Based on Unconditional Moment Restrictions

We now introduce information matrices for the GMM models. In statistics and econometrics,

information regarding model parameters is often quantified by the efficiency bound on parameter

estimators. One example is the Fisher information matrix for a given parametric family of

likelihood functions, which is justified by the Cramér-Rao efficiency bound under the minimax

criterion. The same idea can be extended to semiparametric models (e.g., Bickel, Klaassen,

Ritov, and Wellner, 1993).

In this paper, we extend the semiparametric efficiency bound result for unconditional mo-

ment restrictions of Chamberlain (1987, Theorem 2) from i.i.d. data-generating processes to

Markov processes with local instability. In Appendix B, we show that the optimal GMM covari-

ance matrix derived by Hansen (1982) achieves the semiparametric minimax efficiency bound

for unconditional moment restrictions with Markov data-generating processes that are locally

unstable. We denote

(28) D ≡ D(θ0) and Dij ≡ Dij(θ0) for i, j = 1, 2.

Then, the information matrices for θ(1) in the baseline model and for θ in the full model,
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evaluated at θ
(1)
0 and θ0, respectively, are

(29) IB = DT
11D11 and IQ = DTD =

 DT
11D11 +DT

21D21 DT
21D22

DT
22D21 DT

22D22

 .
We define the marginal information matrix for θ(1) in the full model, evaluated at θ

(1)
0 , as

(30) IF =
[
Γθ,1I

−1
Q

ΓTθ,1
]−1

, where Γθ,1 ≡
[
I, 0dθ,1×(dθ−dθ,1)

]
,

which accounts for the uncertainty concerning the nuisance parameters θ(2) when gauging the

information about θ(1) provided by the moment restrictions. Based on the inversion rule of

partitioned matrices, the marginal information matrix IF can be rewritten as

(31) IF = DT
11D11 +DT

21Λ2D21, with Λ2 ≡ I −D22(DT
22D22)−1DT

22.

Although our objective is to measure model fragility, in Section 3.4 we introduce a measure

of the incremental informativeness of the moment restrictions about model parameters. We

then argue that this informativeness measure is intuitively connected to the notion of model

sensitivity described earlier in Section 2, and we shall formally establish the link between our

informativeness measure and model fragility in Sections 4 and 5.

3.4. The Dark Matter Measure

In this section, we ask how informative the moment restrictions are regarding the model pa-

rameters θ(1). Since θ(1) appears in both the baseline moment restrictions and the additional

moment restrictions in the full model, the cross-equation restrictions provide additional infor-

mation about θ(1) above and beyond the baseline model. The informativeness of the moment

restrictions naturally depends on the sensitivity of the moments to changes in model parame-

ters. If a small change in the parameter values can dramatically change the value of the moment

function (i.e., high sensitivity), then imposing the moment restrictions empirically will tend to

greatly restrict the parameter estimates (i.e., the moment restrictions are informative).

Before introducing our information measure, we discuss the relevant regularity conditions,

including smoothness, rank, and identification.

Assumption 1 (GMM Regularity Conditions) We assume that the moment function m(·, θ),
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defined on a compact set Θ, satisfies the following regularity conditions:

(i) The moment restrictions are over-identified: dθ < dm;

(ii) EQ0 [m
(1)
t (θ(1))] = 0 and EQ0 [mt(θ)] = 0 only when θ(1) = θ

(1)
0 and θ = θ0;

(iii) mt(θ) is continuously differentiable in θ, and D has full column rank.

Remark 1 The compactness of Θ and the assumption θ0 ∈ int(Θ) are the standard reg-

ularity conditions to ensure the uniform law of large numbers (ULLN) and the first-order-

condition characterization of GMM estimators, respectively. Condition (i) is the standard over-

identification condition in GMM (Hansen, 1982). Condition (ii) is also a standard identification

assumption to ensure that the sequence of GMM estimators has a unique limit (Hansen, 1982).

Condition (iii) is the rank condition for moment restrictions, and is the sufficient condition for

local identification enabling us to consistently estimate θ0.

We now introduce our dark matter measure.

Definition 1 Let the incremental information matrix of the full model relative to the baseline

models be

(32) Π ≡ I
1/2
F I−1

B I
1/2
F − I.

The dark matter measure is defined as the largest eigenvalue of Π, denoted by15

(33) %(θ0) ≡ max
|v|=1

vTΠv.

To better understand the dark matter measure, we rewrite it as

(34) %(θ0) = max
|v|=1

vT I−1
B v

vT I−1
F v
− 1.

As Equation (34) shows, our measure effectively compares the asymptotic covariance matrices

of the two estimators of θ(1): the matrix based on the baseline model, and the matrix based on

the full model. It is the largest ratio, over all possible directions v ∈ Rdθ,1 , of the two asymptotic

variances of the efficient GMM estimator for a linear combination of model parameters vT θ(1)

under the baseline and full models.

15We focus on the one-dimensional worst-case fragility. There are straightforward extensions to the cases in
which v is a matrix.
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Equation (34) shows that the dark matter measure has a natural “effective-sample-size”

interpretation. This equation gives the minimum sample size required for the estimator of the

baseline model to match the asymptotic precision (the inverse of the variance) of the estimator

of the full structural model in all directions of the parameter space. Because asymptotic variance

scales inversely with the sample size, the effective sample size is n [1 + %(θ0)].

Our dark matter measure isolates the information provided by the structural model above

and beyond the baseline model. For the same structural model, alternative choices of the baseline

model affect the magnitude of the dark matter measure. To this point, we have been silent on the

question of how the baseline model should be chosen in relation to the full structural model.

In general, there is no hard rule for this choice, beyond the technical requirement that the

associated baseline parameters θ(1) be identified by the baseline model. Desirable choices of the

baseline model depend on which aspects of the model the fragility analysis aims to capture.

4. LOCAL MISSPECIFICATION AND INSTABILITY

A formal analysis of model fragility requires a framework for misspecification and instability.

We adopt a statistical method similar to that of Hansen and Sargent (2001): the econometrician

treats P0 as an approximation of the true data-generating process by taking into account a class

of alternative data-generating processes that are statistically difficult to distinguish from Q0

(i.e. a neighborhood of Q0 in the space of probability measures) and assuming that the true

process lies in such a collection of local alternatives. To model instability, we generalize the local

instability framework of Li and Müller (2009) to the semiparametric setting, which provides a

general econometric playground within which we analyze GMM model properties.

We first specify the true local data generating process in Subsection 4.1. We then intro-

duce the concept of model misspecification in Subsection 4.2, and extend our framework by

incorporating the concept of local instability in Subsection 4.3.

4.1. Local Data-Generating Processes

Our analysis is local in nature. We focus on a calibrated model with model parameter θ0 as

defined in (22), with the corresponding bivariate marginal distribution Q0. To characterize

the locally perturbed models, we define the collection of local perturbations of Q0, denoted by

N(Q0), as follows. Note that N(Q0) is a subset of L2(Q0), the space of square-integrable random

variables on the probability space (Y× Y,F ⊗ F,Q0).
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Definition 2 The collection N(Q0) consists of the one-dimensional parametric family of

bivariate distributions Qs,f indexed by s ∈ (−ε, ε) for some ε > 0 and f ∈ L2(Q0), such that the

path Qs,f ∈ H passes through the probability measure Q0 ∈ H at s = 0, and Qs,f satisfies the

smoothness condition (Hellinger-differentiability condition):16

(35)
dQs,f

dQ0

= 1 + sf + s∆(s),

where ∆(s) converges to 0 in L2(Q0) as s→ 0. Here, we refer to the scalar measurable function

f ∈ L2(Q0) as the “score” of the parametric model s 7→ Qs,f .

Proposition 1 (Necessary Properties of Scores) If f ∈ L2(Q0) satisfies (35), then it follows

that (i) EQ0 [f ] = EQ0 [∆(s)] = 0 for all s, and (ii) EQ0 [f(y,y′)|y] = EQ0 [f(y′,y)|y].

Now, appealing to the concept in Definition 2, we specify the true local data-generating process.

We denote the joint distribution of yn corresponding to the bivariate marginal distribution

Q0 by P0,n. Deviating from P0,n, the true local data-generating process for yn has the joint

distribution P∗n with a sequence of bivariate marginal distributions for each consecutive pair

(yt−1,yt), Q∗n ≡ Q1/
√
n,f∗n,t

, which is characterized by

dQ1/
√
n,f∗n,t

dQ0

= 1 +
f ∗n,t√
n

+ ∆n, where(36)

f ∗n,t ≡ [1, b∗(t/n)]g∗(yt−1,yt) and
√
n∆n → 0 in L2(Q0).(37)

The vector g∗ has two elements: g∗ = [g∗1, g
∗
2]T with g∗1, g

∗
2 ∈ L2(Q0). In other words, f ∗n,t =

g∗1(yt−1,yt) +g∗2(yt−1,yt)b
∗(t/n) where g∗1 represents time-invariant perturbation, while g∗2 mul-

tiplied by b(t/n) represents time-varying perturbation (i.e., local instability). The unknown

function b∗(·) is a deterministic function on [0, 1] that generates local instability.17 When n is

large, 1 + f ∗n,t/
√
n is approximately the Radon-Nikodym density of Q1/

√
n,f∗n,t

with respect to

Q0.

Prior to imposing additional regularity conditions on the true score f ∗n,t, we define a set of

square-integrable variables corresponding to Q0.

16The smoothness condition (35) is equivalent to the Hellinger-differentiability, shown in Appendix G.2. It is
a common regularity condition adopted for (semi)parametric inference (e.g., van der Vaart, 1988).

17Similar to, for example, Andrews (1993), Sowell (1996), and Li and Müller (2009), we assume instability
to be non-stochastic in contrast to, for example, Stock and Watson (1996, 1998), Primiceri (2005), and Cogley
and Sargent (2005). The assumption is for technical simplicity. We can extend from non-stochastic to stochastic
instability following the arguments in Li and Müller (2009).
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Definition 3 (Set of Scores) For Q0 ∈ Q, define

(38) L2
0(Q0) ≡

{
ς ∈ L2(Q0) : EQ0 [ς(y,y′)] = 0 and EQ0 [ς(y,y′)|y] = EQ0 [ς(y′,y)|y]

}
.

Given the notation L2
0(Q0), the necessary conditions for scores derived in Proposition 1 can be

restated as f ∈ L2
0(Q0). We then make the following assumption about the true f ∗n,t.

Assumption 2 (Local Data-Generating Process) The true local data-generating process in

(36) satisfies the following conditions:

(i) g∗ ∈ G(Q0), which is defined as

G(Q0) ≡
{
g = [g1, g2]T : EQ0 [g2(y,y′)|y] = 0 and g1, g2 ∈ L2

0(Q0)
}

;

(ii) b∗ ∈ B, which is defined as

B ≡

b :
|b(u)| ≤ 1 for all u ∈ [0, 1] and

∫ 1

0

b(u)du = 0, whose path has a

finite number of discontinuities and one-sided limits everywhere.

 .

Remark 2 The first part of Assumption 2 (i) implies that EQ0
[
f ∗n,t(y,y

′)|y
]

= EQ0 [g∗1(y,y′)|y]

is invariant over time, which further ensures that the univariate marginal distribution of the

true joint distribution P∗n is invariant over time (Proposition 3). The second part of Assumption

2 (i) that g∗1, g
∗
2 ∈ L2

0(Q0) is not restrictive since it is guaranteed by Proposition 1.

Next, we impose additional assumptions about the heteroskedasticity of the locally unsta-

ble data-generating process under consideration, thereby extending the statistical setting of

Andrews (1993), Sowell (1996) and Li and Müller (2009) to the semiparametric setting.

Assumption 3 (Tail Properties of Local Instability) As n→∞, it holds that under Q0

(i) n−1 max1≤t≤n |g(yt−1,yt)|2 = op(1);

(ii) EQ0 [|g(yt−1,yt)|2+ν ] <∞, for some ν > 0.

Remark 3 Condition (i) is needed for establishing the results on the law of large num-

bers (LLN) of Lemma 4 of Li and Müller (2009), which we use throughout in our proofs.

Condition (ii) implies n−1
∑n

t=1 EQ0

t−1 [|g(yt−1,yt)|2+ν ] = Op(1) and n−1
∑n

t=1 |g(yt−1,yt)|2+ν =

Op(1). Condition (ii) is needed for establishing the local asymptotic normality (LAN) for time-
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inhomogeneous Markov processes (see Proposition 5 in Appendix A) and thus ensuring that the

locally unstable data-generating process is contiguous to the stable data-generating process (see

Corollary 2 in Appendix A). Condition (ii) is also a commonly adopted assumption (e.g., Li

and Müller, 2009, Lemma 1). A direct implication of Assumption 3 is the LLN and CLT of

partial summations of score functions.

Finally, we extend the global identification condition in Assumption 1 (ii) from the reference

distribution Q0 to its perturbations.

Assumption 4 (Global Identification Condition) There exists ε > 0 such that ϑ(Qs,f ) is

unique if it exists, for all Qs,f ∈ N(Q0) with the Hellinger distance H2(Qs,f ,Q0) < ε.

Remark 4 We define the collection of perturbed distributions N(Q0) in Definition 2, and the

mapping ϑ(·) in (21). This assumption ensures that the sequence of GMM estimators has a

unique limit when the true distribution is a perturbation of Q0.

4.2. Misspecification of GMM Models

Regularity conditions on moments

Assumption 5 (Tail Properties of Moments) We assume that the moment function m(·, θ),

defined on a compact set Θ, satisfies the following conditions:

(i) EQ0 [|mt(θ0)|2+ν ] <∞ for some ν > 0, and EQ0 [supθ∈Θ ||∇θmt(θ)||2S] <∞,

(ii) n−1/2 max1≤t≤n |mt(θ0)| = op(1),

(iii)
∞∑
t=1

√
EQ0 [|γt|2] <∞, with γt ≡ EQ0 [mt(θ0)|F1]− EQ0 [mt(θ0)|F0],

where || · ||S is the spectral norm of matrices, and the information set Ft is the sigma-field

generated by {yt−j}∞j=0.

Remark 5 Conditions (i) and (ii) are needed to establish the functional central limit theo-

rem (invariance principle) of McLeish (1975b) and Phillips and Durlauf (1986). Condition (i)

imposes restrictions on the amount of heteroskedasticity allowed in the observed moment series

and their gradients, which also ensures the uniform square integrability of the moment function.

This condition is commonly adopted in the literature (e.g., Newey, 1985a; Andrews, 1993; Sow-

ell, 1996; Li and Müller, 2009, for similar regularity conditions). Condition (iii) states that the

incremental information about the current moments between two consecutive information sets
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eventually becomes negligible as the information sets recede in history from the current observa-

tion. This condition ensures the martingale difference approximation for the temporal-dependent

moment function as in Hansen (1985), which plays a key role in analyzing the semiparametric

efficiency bound based on unconditional moment restrictions (see Proposition 7 in Appendix A

and Theorem 4 in Appendix B).

Tangent space and misspecification

For a given f ∈ L2
0(Q0), we further require that the path of locally perturbed distributions

satisfies Qs,f ∈ Q and that ϑ(Qs,f ), as a function of s, is differentiable with respect to s at

s = 0. The collection of such scores f is defined as follows:

T(Q0) ≡

f ∈ L2
0(Q0) :

∃ a path Qs,f such that Qs,f ∈ Q ∩N(Q0) for all s ∈ (−ε, ε)
for some ε > 0 and ϑ(Qs,f ) is differentiable at s = 0

 .

We refer to the set T(Q0) above as the tangent set of Q at Q0. We further characterize the

tangent set T(Q0) as follows:

(39) T(Q0) =
{
f ∈ L2

0(Q0) : λ(f) ∈ lin(D)
}
, with λ(f) ≡ EQ0 [m(·, θ0)f ] ,

where λ(f) is a linear operator on L2
0(Q0) and linear space lin(D) is spanned by the columns

of the Jacobian matrix D defined in (28). This characterization is standard in the literature

(e.g., Severini and Tripathi, 2013; Chen and Santos, 2018) and can be proved using an implicit

function theorem. Equation (39) implies that T(Q0) is a linear space. Whenever f ∗n,t ∈ L2
0(Q0)\

T(Q0), the GMM model Q is locally misspecified with respect to the true local data-generating

process (yt−1,yt), Q∗n ≡ Q1/
√
n,f∗n,t

, defined in (36).

One direct implication of (39) is that, if dθ < dm, then T(Q0) 6= L2
0(Q0), and thus the

distribution Q0 is locally overidentified by Q (Chen and Santos, 2018); further, if dm = dθ, then

T(Q0) = L2
0(Q0), and thus Q0 is locally just identified by Q.

Similar to (39), the tangent set of the baseline GMM model Q(1) at Q0 is characterized by

(40) T(1)(Q0) ≡
{
f ∈ L2

0 : λ(1)(f) ∈ lin(D11)
}
, with λ(1)(f) ≡ EQ0

[
m(1)(·, θ(1)

0 )f
]
,

where operator λ(1)(f) is a linear operator on L2
0(Q0), linear space lin(D11) is spanned by the

column vectors of D11, and m(1)(·, θ(1)
0 ) contains the top dm,1 elements of m(·, θ0).
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4.3. Local Instability of Data-Generating Processes

To formalize the analysis on out-of-sample fit (i.e. external validity), we need to consider data-

generating processes that allow for structural breaks in a non-stationary manner. More precisely,

we consider the set M(Q0) consisting of all probability measures, each of which is a joint

distribution for yn following a Markov process with local instability around a Markov process

characterized by Q0. Now, we formalize the definition of M(Q0) as follows.

Definition 4 The collection M(Q0) contains all join distributions P1/
√
n,g,b, for local Markov

data-generating processes, characterized by a sequence of bivariate marginal distributions Qs,fn,t ∈
N(Q0) with t = 1, 2, · · · , n and index s ∈ (−ε, ε) for some ε > 0 such that

(41) fn,t = [1, b(t/n)]g(yt−1,yt) with g ∈ G(Q0) and b ∈ B.

The unique corresponding model parameter value is also time-varying:

(42) θn,t ≡ ϑ(Q1/
√
n,fn,t), for any fn,t ∈ T(Q0) with 1 ≤ t ≤ n and sufficiently large n.

Definition 4 says that all the local data-generating processes in M(Q0) are characterized by the

pair (g, b) ∈ G(Q0)×B and sample size n. The data-generating process is a time-homogeneous

Markov process if b(u) ≡ 0 or g2(y,y′) ≡ 0. Assumption 4 ensures the uniqueness of (42).

Local moment biases

Under the local data-generating process P1/
√
n,g,b characterized by a sequence of bivariate

marginal distributions Q1/
√
n,fn,t for t = 1, · · · , n, the moment restrictions evaluated at θ0

are locally biased. We summarize the result in Proposition 2 with the proof in Appendix D.

Proposition 2 (Local Biases of Moment Restrictions) Suppose Assumptions 1 – 5 hold.

Under the bivariate marginal distribution Q1/
√
n,fn,t ∈M(Q0) for the consecutive pair (yt−1,yt)

where fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n) and (g, b) ∈ G(Q0) × B, the moment restrictions

evaluated at θ0 are locally biased:

E
Q1/
√
n,fn,t [mt(θ0)] = [λ(g1) + λ(g2)b(t/n)] /

√
n+ o

(
1/
√
n
)
,(43)

where the linear operator λ(·) is defined in (39).
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5. WHY IS MODEL FRAGILITY A CONCERN?

We specify the notion of model fragility using high sensitivity of moment restrictions to local

perturbations in the data-generating process. Using the semiparametric framework in Section

4, we now show that a fragile model lacks internal refutability and external validity. More

specifically, we show that our dark matter measure is inversely linked to the power of the C

test (i.e. internal refutability) and the out-of-sample fit (i.e. external validity) in Sections 5.1

and 5.2, respectively.

The baseline GMM model plays a special role in the test power and out-of-sample fit analyses

as a “benchmark”, characterizing the correct baseline parameter values θ
(1)
n,t and discipline the

asset pricing cross-equation restrictions.

Assumption 6 (Correct Baseline GMM Model) We assume that the true local data-generating

process with a joint distribution P1/
√
n,g∗,b∗ satisfies

(44) λ(1)(g∗1) = 0 and λ(1)(g∗2) ∈ lin(D11),

where the linear operator λ(1)(·) is defined in (40).18

Remark 6 Assumption 6 ensures that the baseline GMM model is correctly specified since

λ(1)(fn,t) = λ(1)(g2)b(t/n) ∈ lin(D) for every t ∈ {1, · · · , n}. If we define

(45) GB(Q0) ≡
{
g ∈ G(Q0) : λ(1)(g1) = 0 and λ(1)(g2) ∈ lin(D11)

}
,

Assumption 6 can be simply rewritten as g∗ ∈ GB(Q0).

The following corollary shows the correct baseline parameters are invariant under Assumption 6.

Corollary 1 (Correct Baseline Parameters) Suppose Assumptions 1 – 6 hold. Then, the cor-

rect baseline parameters θ
(1)
n,t ≡ ϑ(1)(Q1/

√
n,fn,t) exists for fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n)

with 1 ≤ t ≤ n, and they can be approximated by

(46) θ
(1)
n,t − θ

(1)
0 = −(DT

11D11)−1DT
11λ

(1)(fn,t)/
√
n+ o

(
1/
√
n
)
.

18We can replace (44) by a seemingly weaker assumption λ(1)(g∗1), λ(1)(g∗2) ∈ lin(D11). But, this does not add
generality, because we can always replace θ0 by a sequence of new reference points (reparametrization) to ensure
that (44) is satisfied.
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5.1. Test Power and Dark Matter

We now establish the connection between the dark matter measure and the local asymptotic

maximin power. We focus on a subset of alternatives satisfying b ≡ 0 to obtain an upper bound

on the maximin local power, which is characterized by the dark matter measure. A specification

test for a GMM model Q against its baseline GMM model Q(1) is a test of the null hypothesis

that there exists some parameter for which all moment restrictions hold under the true data-

generating process against the alternative that there exists some parameter for which only the

baseline moment restrictions hold. That is,

(47) H0 : Q∗n ∈ Q vs. HA : Q∗n ∈ Q(1) \ Q.

Let ϕ̌n be an arbitrary GMM test statistic that maps yn to [0, 1] (e.g. Hansen, 1982; Newey,

1985a). We restrict our attention to GMM specification tests ϕ̌n that have local asymptotic

level α and possess an asymptotic local power function.19 More precisely, we consider the local

data-generating process P1/
√
n,g,0 for yn with a bivariate marginal distribution Q1/

√
n,g1

that

converges to Q0 ∈ Q(θ0) as n→∞.

The test ϕ̌n has a local asymptotic level α if

(48) lim sup
n→∞

∫
ϕ̌ndP1/

√
n,g,0 ≤ α, ∀ g ∈ G(Q0) such that g1 ∈ T(Q0),

and the test ϕ̌n has a local asymptotic power function q(g, ϕ̌) if

(49) q(g, ϕ̌) ≡ lim
n→∞

∫
ϕ̌ndP1/

√
n,g,0, ∀ g ∈ G(Q0) such that g1 ∈ T(1)(Q0),

where ϕ̌ ≡ {ϕ̌n}n≥1 is the sequence of test statistics.

Finally, a test ϕ̌n for (47) with a local asymptotic power function q(·, ϕ̌) : G(Q0)→ [0, 1] is

said to be locally unbiased if q(g, ϕ̌) ≤ α for all g such that g1 ∈ T(Q0), and q(g, ϕ̌) ≥ α for

all g such that g1 ∈ L2
0(Q0) \ T(Q0). We denote the set of locally unbiased GMM specification

tests with level α as Φα(Q0).

19As the sample size n approaches infinity, the distance between the null hypothesis and the data-generating
process necessarily diminishes according to n−1/2. If this distance were held fixed, then the power of all consistent
tests would tend to unity as n increases to infinity. Local power analysis, the evaluation of the behavior of the
power function of a hypothesis test in a neighborhood of the null hypothesis invented by Neyman (1937), has
become an important and commonly utilized technique in econometrics (e.g., Newey, 1985b; Davidson and
MacKinnon, 1987; Saikkonen, 1989; McManus, 1991).
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The guaranteed local asymptotic power of tests, over all feasible local data-generating pro-

cesses, can be characterized by the power of maximin tests (e.g., Lehmann and Romano, 1996,

Chapter 8). Studies have demonstrated that the C test or incremental J test (e.g., Eichen-

baum, Hansen, and Singleton, 1988) has the asymptotic optimality property in the maximin

sense (e.g., Newey, 1985a; Chen and Santos, 2018).20 Based on this observation, we establish

Theorem 1 below, which formally connects the maximin optimal power of tests to the dark

matter measure. We present the proof in Appendix C.

We consider the set of alternatives:

(50) Aκ(Q0) ≡
{
g ∈ GB(Q0) : |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D22)

}
where λ(2)(g1) ≡ EQ0

[
m(2)(·, θ0)g1

]
is the bottom dm − dm,1 elements of λ(g1) defined in (39).

Theorem 1 Suppose Assumptions 1 – 6 hold. The local asymptotic power of maximin tests

is bounded above by

sup
ϕ̌∈Φα(Q0)

inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤M dm,2−dθ,2
2

(√
κ2

1 + %(θ0)
,
√
c1−α

)
,(51)

where c1−α is the 1−α quantile of a chi-square distribution with degrees of freedom dm,2− dθ,2,

and Mγ(x1, x2) is the generalized Marcum Q-function. By definition of c1−α, it holds that

(52) M dm,2−dθ,2
2

(0,
√
c1−α) = α.

Therefore, the local asymptotic power of maximin tests vanishes as the dark matter measure

rises:

(53) sup
ϕ̌∈Φα(Q0)

inf
g∈Aκ(Q0)

q(g, ϕ̌) → α, as %(θ0)→∞.

The generalized Marcum Q-function Mγ(x1, x2) is strictly increasing in γ and x1, and it is

strictly decreasing in x2 (e.g., Sun, Baricz, and Zhou, 2010, Theorem 1). Intuitive interpretation

of (51) is that there exists a difficult specific alternative characterized by the score g ∈ Aκ(Q0)

such that the power of the optimal locally unbiased GMM specification test with level α cannot

20Alternative asymptotically equivalent approaches can be found in the literature (e.g., Newey, 1985a; Chen
and Santos, 2018).
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exceed M dm,2−dθ,2
2

(√
κ2

1+%(θ0)
,
√
c1−α

)
, which is almost α when %(θ0) is extremely large. The

coefficient κ captures the extent to which the alternatives under consideration are separate

from the null, and thus, the upper bound for the test power (i.e., the right-hand side of (51))

naturally increases with κ.

5.2. Overfitting Tendency and Dark Matter

A common method adopted by economists and statisticians for assessing the external validity of

models is to hold out data from the model estimation (e.g., Schorfheide and Wolpin, 2012). The

assessment of external validity serves two important purposes: first, it mitigates the concern of

in-sample overfitting (e.g., Foster, Smith, and Whaley, 1997; Kocherlakota, 2007; Lettau and

Van Nieuwerburgh, 2008; Welch and Goyal, 2008; Koijen and Van Nieuwerburgh, 2011; Ferson,

Nallareddy, and Xie, 2013; Athey and Imbens, 2017, 2019); and second, it serves as a primary

criterion when the goal is long-run prediction (e.g., Valkanov, 2003; Müller and Watson, 2016).

The literature has emphasized that out-of-sample fit evaluation captures model specification

uncertainty, model instability, calibration uncertainty, and estimation uncertainty, in addition

to the usual uncertainty of future events (Stock and Watson, 2008).

The holdout approach to selecting a model among competing structural models amounts

to splitting the entire time series yn ≡ {y1, · · · ,yn} into two non-overlapping subsamples

yne ≡
{
y1, · · · ,ybπnc

}
and yno ≡

{
ybπnc+1, · · · ,yn

}
with π ∈ (0, 1/2].21 Here, bxc is the largest

integer less than or equal to the real number x. The first segment yne is used as the estimation

sample, while the second segment yno is used as the holdout sample (e.g., Schorfheide and

Wolpin, 2012).22 This approach has been commonly adopted in the literature on forecasting

and model selection. Further, the holdout approach is also a natural way to investigate the long-

run forecast problems in financial and macroeconomic time series, because the salient definition

of a long-run forecast is that the prediction horizon is long relative to the sample length of the

estimation sample (Müller and Watson, 2016, Section 5.2).

To consider the out-of-sample fit of estimated time-series models, we focus on model insta-

bility, because the constant misspecification over time would not affect the out-of-sample fit of

estimated models based on in-sample data. Thus, in this subsection we focus on the case with

21We specify an upper bound for π to prevent the out-of-sample fit problem from becoming trivial. Without
loss of generality, we choose the upper bound for π to be 1/2.

22The non-overlapping equal-length estimation and holdout subsamples are standard exercises in cross-
validation for out-of-sample fit evaluation; in the statistics and machine learning literature, yne is also referred
to as training sample, and yno as testing sample (e.g., Hastie, Tibshirani, and Friedman, 2001, Chapter 7).
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λ(g1) ∈ lin(D).

The idea is to quantify the overfitting tendency as a model property by focusing on the J

statistic as the loss function. We define θ
(1)
n,t ≡ ϑ(1)(Q1/

√
n,fn,t) for t = 1, · · · , n, and

θ(1)
e,n ≡

1

bπnc

bπnc∑
t=1

θ
(1)
n,t and θ(1)

o,n ≡
1

b(1− π)nc

n∑
t=bπnc+1

θ
(1)
n,t .(54)

More precisely, we consider the goodness-of-fit of the full set of moments under any given

baseline parameters θ(1):

(55) L(θ(1);yns ) ≡ J(θ(1), ψs(θ
(1)),yns )− J(θ(1)

s,n , ψs(θ
(1)
s,n ),yns ), with s ∈ {e, o}

where θ(1)
s,n is the average of those correct baseline parameter values that perfectly fit baseline

moment restrictions (see (46)) and ψs(θ
(1)) is chosen to minimize the J statistic while taking

θ(1) as given:23

(56) ψs(θ
(1)) ≡ argmin

θ(2)

J(θ(1), θ(2),yns ) for any fixed θ(1) with s ∈ {e, o}.

In the definition of L(θ(1);yns ), we benchmark the goodness-of-fit measure against the J statistic

evaluated at the average of correct baseline parameter values θ(1)
s,n for s ∈ {e, o} to control the

mechanical influence of instability on the J statistic. The lower the goodness-of-fit measure

L(θ(1);yns ), the better the baseline parameter value θ(1) fits the moments in the sample yns with

s ∈ {e, o}. Importantly, by minimizing over all possible values of the nuisance parameters θ(2),

the measure L(θ(1);yns ) captures the best possible fit of the parameter value θ(1) only.

We consider a GMM estimator of the baseline parameters θ(1), denoted by θ̌(1)
e,n , based on

the estimation sample yne and all moment restrictions. We then assess the out-of-sample fit of

θ̌(1)
e,n on the holdout sample by looking at the magnitude of the expected out-of-sample fitting

error

∫
L(θ̌(1)

e,n ,y
n
o )dP1/

√
n,g,b. The overfitting measure of the estimator θ̌(1)

e,n can be defined as the

extent to which the out-of-sample fitting error is larger than the in-sample fitting error:

(57) O(θ̌(1)
e,n ,y

n) ≡ 1

2

[
L(θ̌(1)

e,n ,y
n
o )− L(θ̌(1)

e,n ,y
n
e )
]
.

23Mathematically, the formulation (55) and (56) follow the generic recursive GMM estimation procedure in
Hansen (2007b) and Hansen (2012).
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The asymptotic expected overfitting measure of the sequence of estimators θ̌(1)
e,n is 24

(58) ω(g, b, θ̌(1)
e ) ≡ lim

l→∞
lim
n→∞

∫
O(θ̌(1)

e,n ,y
n)1{|O(θ̌

(1)
e,n ,yn)|≤l}dP1/

√
n,g,b,

where θ̌(1)
e ≡

{
θ̌(1)

e,n

}
n≥1

is a sequence of GMM estimators. ω(g, b, θ̌(1)
e ) quantifies the extent

to which the structural model over-fits the data when the true local data-generating process

is P1/
√
n,g,b. Similar in spirit to information criteria in model selection such as AIC and BIC,

models whose expected overfitting measures are sizable compared with those of other models

that fit the sample data equally well in sample should be penalized.

Two types of estimators

Here we focus on two particular estimation procedures – the efficient GMM estimation procedure

and the recursive GMM estimation procedure.25 The former is designed to use the identification

strength provided by the additional asset pricing moment restrictions EQ0

[
m

(2)
t (θ)

]
= 0 as

much as possible, while the latter does not use any identification assumptions imposed by the

additional asset pricing moment restrictions EQ0

[
m

(2)
t (θ)

]
= 0. The identification strength is a

nontestable assumption postulated by the structural model. The literature on recursive GMM

estimation is substantial and dates back decades (e.g., Christiano and Eichenbaum, 1992; Ogaki,

1993; Newey and McFadden, 1994; Hansen and Heckman, 1996; Hansen, 2007b; Lee, 2007;

Hansen, 2012). While the original impetus of the recursive GMM estimation was primarily

computational, we advocate it as a more robust procedure against potential instability and

misspecification since the procedure barely relies on the nontestable assumption of identification

strength of the additional moment restrictions m
(2)
t (θ); the robustness of the recursive GMM

estimation procedure is especially valuable when the dark matter measure is excessively large.

Characterized by selection matrices, the efficient GMM estimator and the recursive GMM

estimator based on the estimation sample yne , denoted by θ̂e,n and θ̃e,n respectively, have the

selection matrices A = D and A = diag{D11, A22} with the (constrained) efficient selection

matrix A22 ≡
[
D21(DT

11D11)−1DT
21 + I

]−1
D22 (Hansen, 2007b).

24The method of first calculating the truncated statistic, then letting the ceiling l increase to infinity, is
commonly adopted in the literature for technical simplification (e.g. Bickel, 1981; Le Cam and Yang, 2000;
Kitamura, Otsu, and Evdokimov, 2013).

25The recursive GMM estimation procedure is also referred to as the sequential (two-step) GMM estimation
procedure in the literature.
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Overfitting of the efficient GMM estimator θ̂e,n

Recall that λ(g2) captures the magnitude of instability. We consider the set of possible magni-

tudes of instability Uκ(Q0) ≡ {g ∈ GB(Q0) : |λ(g2)| ≤ κ}. A larger κ allows for a higher degree

of instability in the fragility analysis.

Theorem 2 Suppose Assumptions 1 – 6 hold. The overfitting of the efficient GMM estimator

θ̂e,n based on the estimation sample yne is defined as the worst-case asymptotic expected overfitting

measure. It is characterized by the dark matter measure:

(59) sup
g∈Uκ(Q0),b∈B

ω(g, b, θ̂(1)
e ) = dθ,1 + c(π)%(θ0)κ2,

where c(π) ≡ π
(

1 +
√

π
1− π

)
with 0 < π ≤ 1/2. Therefore, the asymptotic expected overfitting

of the efficient GMM estimator sequence θ̂e ≡
{
θ̂e,n

}
n≥1

can be arbitrarily large, being linearly

related to the dark matter measure.

The overfitting of the efficient GMM estimator has two sources. The first term dθ,1 cap-

tures the traditional overfitting due to the sampling uncertainty in the estimation sample (see

Theorem 3), while the second term c(π)%(θ0)κ2 captures the overfitting due to potential mis-

specification and instability. The latter component is the focus of our paper and directly depends

on the dark matter measure. The second component, c(π)%(θ0)κ2, vanishes if there is no local

instability (i.e., κ = 0).

Overfitting of the recursive GMM estimator θ̃e,n

Theorem 3 Suppose Assumptions 1 – 6 hold. The overfitting of the recursive GMM estimator

θ̃e,n based on the estimation sample yne is defined as the worst-case asymptotic expected overfitting

measure, which only depends on the number of baseline parameters:

(60) sup
g∈Uκ(Q0),b∈B

ω(g, b, θ̃(1)
e ) = dθ,1,

where Uκ(Q0) ≡ {g ∈ GB(Q0) : |λ(g2)| ≤ κ}. Therefore, the overfitting of the recursive GMM

estimator sequence θ̃e ≡
{
θ̃e,n

}
n≥1

is determined by model parameter dimensionality, not affected

by the dark matter of the model.
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The results above echo the traditional information criteria such as AIC and BIC, where the

number of parameters captures the overfitting tendency due to sampling uncertainty. The re-

cursive GMM estimator is not affected by the nontestable assumptions of identification strength

imposed by EQ0

[
m

(2)
t (θ)

]
= 0, thus its overfitting is not affected by the misspecified (local)

instability. Importantly, Theorem 3 suggests that the recursive GMM estimator provides a ro-

bust estimator for models with large dark matter measures (i.e. large %(θ0)) and thus subject

to severe (local) instability concerns (i.e. large Uκ(Q0)).

Instability of the efficient GMM estimator

Intuitively, the formal results about out-of-sample fit above can be appreciated through the

sensitivity of efficient GMM estimators to local instability (see Panel C of Figure 1). We consider

a local perturbation of the model from Q0 in the direction of g ∈ GB(Q0) with instability b ∈ B.

According to Proposition 6 (in Appendix A),

(61)

 1√
πn

∑
t≤πnmt(θ0)

1√
(1− π)n

∑
t>πnmt(θ0)

 d−→

 me

mo

 , with E

 me

mo

 =

 νe(g, b, π)

νo(g, b, π)

 ,
where (me,mo) are independent normals with the identity covariance matrix and means:

(62) νe(g, b, π) ≡ λ(gT )√
π

 π∫ π

0

b(u)du

 and νo(g, b, π) ≡ λ(gT )√
1− π

 1− π∫ 1

π

b(u)du

 .
Further, Proposition 9 (in Appendix A) shows that the in- and out-of-sample estimators satisfy

(63)

 √
πn(θ̂(1)

e,n − θ(1)
e,n )√

(1− π)n(θ̂(1)
o,n − θ(1)

o,n )

 d−→

 θ̂
(1)
e

θ̂
(1)
o

 , with E

 θ̂
(1)
e

θ̂
(1)
o

 = −(LF−LB)

 νe(g, b, π)

νo(g, b, π)

 ,
where LB ≡ I−1

B DT
11Γm,1, LF ≡ Γθ,1I

−1
Q
DT , and (θ̂

(1)
e , θ̂

(1)
o ) are independent normals with co-

variance matrix I−1
F . Therefore, the amount of estimator instability (normalized by covariance

matrix I−1
F ) as a function of moment instability is

(64) I
1/2
F E

[
θ̂(1)

e,n − θ̂(1)
o,n

]
= βE [mo −me] ,
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where β = −I1/2
F (LF−LB). The largest sensitivity can be captured by the spectral norm of the

sensitivity matrix β; that is ||β||S =
√
%(θ0). Thus, a large dark matter measure implies high

sensitivity in the form of severe instability of the efficient GMM estimator out of sample versus

in sample.

This result resembles that of Andrews, Gentzkow, and Shapiro (2017), but there are two

key differences. When there is no nuisance parameter (i.e., θ(1) = θ), LF is the same as the

sensitivity matrix in Andrews, Gentzkow, and Shapiro (2017). Relative to their measure, we

add a baseline GMM model as a benchmark (replacing LF by LF − LB), and we normalize the

expected change in the efficient GMM estimator by its asymptotic covariance matrix in the full

model (multiplying E[θ̂(1)
e,n − θ̂(1)

o,n ] by I
1/2
F ).

6. EXAMPLES AND SIMULATION STUDIES

We now use the dark matter measure to analyze a rare disaster model, one of the leading

consumption-based asset pricing models. We analyze a long-run risk model in Appendix H.

Rare economic disasters are a natural source of “dark matter” in asset pricing models. It

is difficult to evaluate the likelihood and magnitude of rare disasters statistically. Yet, agents’

aversion to large disasters can have large ex-ante effects on asset prices. In this subsection, we

use our measure to analyze a disaster risk model similar to Barro (2006).

The model specifies the joint dynamics of the log growth rate of aggregate consumption

(endowment) gt and the excess log return on the market portfolio rt. There is an observable state

variable zt, which follows an i.i.d. Bernoulli distribution and is equal to one with probability p.

When zt = 1, the economy is in a disaster regime, while the normal regime corresponds to zt = 0.

In the normal regime, the log consumption growth gt = ut, which is i.i.d. normal, ut ∼ N(µ, σ2).

In a disaster state, gt = −vt, where vt follows a truncated exponential distribution with density

νt
i.i.d.∼ 1{vt > v}ξe−ξ(vt−v).(65)

Here the lower bound for disaster size is v and the average disaster size is v + 1/ξ.

The joint distribution of log consumption growth gt and excess log return rt changes with

the underlying state zt. When the economy is in the normal regime (zt = 0), gt and rt are
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jointly normal, and

rt = η + ρ
τ

σ
(gt − µ) +

√
1− ρ2τε0,t,(66)

where ε0,t is i.i.d. standard normal. The parameter τ is the return volatility in the normal regime,

while ρ is the correlation between return and consumption growth in this regime. When the

economy is in a disaster state (zt = 1), gt = −vt, and

rt = `gt + ςε1,t,(67)

where ε1,t is i.i.d. standard normal.

Next, we assume that the representative agent has a constant relative risk aversion utility

function ut(ct) = δtDc
1−γD
t /(1− γD), where γD > 0 is the coefficient of relative risk aversion and

δD < 1 is the time preference parameter. The log equity premium, r ≡ E[rt], is available in

closed form (see Appendix F for details) as follows:

r(p, ξ) = (1− p)η − p` (v + 1/ξ) , where(68)

η ≈ γDρστ −
τ 2

2
+ eγDµ−

γ2
Dσ

2

2 ∆(ξ)
p

1− p
, with ∆(ξ) = ξ

(
eγDv

ξ − γD

− e
ς2

2
+(γD−`)v

ξ + `− γD

)
.(69)

The term η in (68) is the log equity premium in the normal regime. The first two terms of η

in (69) describe the market risk premium due to Gaussian consumption shocks; the third term

is the disaster risk premium, which explodes as ξ approaches γD from above. In other words,

there is an upper bound on the average disaster size for the equity premium to remain finite,

which also limits how heavy the tail of the disaster size distribution can be.

The fact that the equity premium explodes as ξ approaches γD is an important feature of

our version of the disaster risk model. No matter how rare the disasters are (i.e., a very small

p), an arbitrarily large equity premium can be generated as long as the average disaster size is

sufficiently large (or equivalently, ξ is sufficiently small). Extremely rare but large disasters can

be consistent with the data in the sense that they are difficult to rule out based on the observable

data (and standard statistical tests). Below we illustrate how our dark matter measure can

detect and quantify the fragility of these models.

To apply our framework to the disaster risk model, we first formulate the economic model
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above as a GMM model Q with the (transformed) moments:

(70) mt(θ) = Ω(θ)−1/2


zt − p
gt − (1− zt)µ+ zt(v + 1/ξ)

rt − (1− zt)
[
η + ρτσ (gt − µ)

]
− zt`gt

 .
The first two moments in mt(θ) are the baseline moments, the third is the asset pricing moment,

and Ω(θ) is the asymptotic covariance matrix of the untransformed moments. To simplify the

example, we focus on the parameters θ = (p, ξ)′ when constructing the dark matter measure,

while treating the parameters (γD, µ, σ, v, τ, ρ, `, ς) as auxiliary parameters fixed at known values,

making them a part of the functional-form specification. In other words, the nuisance parameter

vector θ(2) is empty in this example.

Based on the approximation (69), the dark matter measure is (see Appendix F for details):

%(θ) ≈ 1 +
p∆ (ξ)2 + p (1− p) ξ2∆̇ (ξ)2

(1− ρ2) τ 2 (1− p)2 e2γDµ−γ2
Dσ

2

,(71)

where ∆̇(ξ) is the first derivative of ∆(ξ), and

(72) ∆̇(ξ) = − eγDvγD

(ξ − γD)2 +
e(γD−`)v(γD − `)
(ξ − γD + `)2

eς
2/2.

All else equal, when ξ approaches γD, both ∆(ξ) and ∆̇(ξ) approach infinity, which suggests

that disaster risk models featuring large but rare disasters (i.e., small ξ and small p) will be

more fragile according to our measure.

Quantitative analysis

To take the model to the data, we use annual real per-capita consumption growth (nondurables

and services) from the National Income and Product Accounts (NIPA) and returns on the CRSP

value-weighted market portfolio from 1929 to 2011. We fix the following auxiliary parameters at

the values of the corresponding moments of the empirical distribution of consumption growth

and excess stock returns: µ = 1.87%, σ = 1.95%, τ = 19.14%, ς = 34.89% and ρ = 0.59. The

lower bound for disaster size is set to v = 7%, and the leverage factor in the disaster regime is

` = 3.

In Figure 3, we plot the 95% and 99% confidence regions for (p, ξ) based on the baseline
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Figure 3.— The 95% and 99% confidence regions of (p, ξ) for the baseline model and the equity premium
isoquants implied by the asset pricing moment restriction (68) for γD = 3, 10, 24. p is disaster probability, and

ξ characterizes the inverse of average disaster size. The efficient GMM estimates are (p̂, ξ̂) = (0.012, 78.79),
indicated by the red dot inside the confidence region. Four additional points mark the intersections of the equity
premium isoquants for γD = 3 and 24 and the boundary of the 95% confidence region. Only p and ξ are treated
as unknown to the econometrician, and all other parameters are treated as auxiliary parameters with fixed
known values; therefore, the dark matter measure is defined only based on θ = (p, ξ).

model. As expected, the confidence regions are large, which confirms that the baseline model

provides limited information about p and ξ. We also plot the equity premium isoquants: for a

given level of risk aversion γD, each dashed line in Figure 3 shows the different calibrations of the

disaster risk model that match the unconditional equity premium of 5.09%. In particular, even

for low risk aversion (e.g., γD = 3), there exist models that not only match the observed equity

premium, but are also consistent with the macro data in the sense that the model parameters

(p, ξ) remain inside the 95% confidence region.26

While it is difficult to distinguish among a wide range of calibrations based on the fit with

the macro data, these calibrated models can differ vastly based on our dark matter measure.

For illustration, we focus on the following four calibrations, which are the four points where the

equity premium isoquants for γD = 3 and 24 intersect the boundary of the 95% confidence region

in Figure 3. For γD = 3, the two points are (p = 3.96%, ξ = 4.65) and (p = 0.31%, ξ = 3.179).

26Julliard and Ghosh (2012) estimate the consumption Euler equation using the empirical likelihood method
and show that the model requires a high level of relative risk aversion to match the equity premium. Their
empirical likelihood criterion rules out any large disasters that have not occurred in the historical sample, hence
requiring the model to generate high equity premium using moderate disasters.
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Figure 4.— Visualization of the dark matter measure through the 95% confidence regions for the asymp-
totic distribution of the efficient GMM estimators for four “acceptable” calibrations. In Panels A through D,
the dark matter measures are %(θ) = 74.03, 1.49, 1.78 · 104, and 5.60 · 102, respectively, which are obtained in
the direction marked by the vector vmax. Parameter p is disaster probability, and ξ characterizes the inverse
of average disaster size. Only p and ξ are treated as unknown to the econometrician, and all other parameters
are treated as auxiliary parameters with fixed known values; therefore, the dark matter measure is defined only
based on θ = (p, ξ).

For γD = 24, the two points are (p = 1.81%, ξ = 446.36) and (p = 0.07%, ξ = 28.43).

With just two parameters in θ = (p, ξ), we can visualize the dark matter measure by

plotting the asymptotic confidence regions for (p, ξ) in the baseline model and the full model,

as determined by the respective information matrices IB and IF. In each panel of Figure 4,

the largest dashed-line circle marks the 95% asymptotic confidence region for (p, ξ) under the

baseline model. The smaller solid-line ellipse indicates the 95% asymptotic confidence region

for (p, ξ) under the full model. Intuitively, the direction in Figure 4, along which the asset

pricing restriction does not provide additional information about the parameters θ = (p, ξ),

is parallel to the tangent direction of the dashed lines (i.e., the equity premium isoquants) in

Figure 3, evaluated at the black dots. This highlights the straightforward fact that the structural

restriction does not increase informativeness in the direction along which the equity premium

does not change.



42 HUI CHEN, WINSTON WEI DOU, AND LEONID KOGAN NOVEMBER 26, 2019

In Panel A of Figure 4, the dark matter measure is %(θ) = 74.07. This means that under

the baseline model, we need to increase the amount of consumption data by a factor of 74.07

to match or exceed the precision in estimation of any linear combination of p and ξ afforded

by the equity premium constraint. Panels C and D of Figure 4 correspond to the calibrations

with “extra rare and large disasters,” and for γD = 3 and 24, the dark matter measure %(θ)

rises to 1.78 × 104 and 5.60 × 102, respectively. If, in Panel B of Figure 4, we raise γD to 24

while changing the annual disaster probability to 1.81% and lowering the average disaster size

to 7.002% (ξ = 446.36), the dark matter measure %(θ) declines to 1.49. The reason for the

reduced fragility in this calibration is the combination of a higher disaster probability and a

lower average disaster size.

Monte Carlo experiments

We use simulations to illustrate the connection between the dark matter measure and the

model fragility (i.e., the internal refutability and external validity) of disaster risk models in

finite samples. More precisely, we assume that the true local data-generating process has a

time-varying relation between the expected log excess return and other dynamic parameters:

(73) rn = r(p0, ξ0) +
ιtδr√
n
, with ιt =

 1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

where the time series ιt captures the structural breaks and π ∈ (0, 1/2] is the break point. Such

a simple process ιt characterizes one structural break in the middle of the time-series sample.

The corresponding moment biases, evaluated at θ0, are

(74) EQ0 [mt(θ0)] =
[
0, 0, λ

(2)
t /
√
n
]T

with λ
(2)
t ≡

ιtδr√
(1− p0)(1− ρ2)τ 2 + p0ς2

.

Therefore, data-generating processes A and C in Figure 4 have identical moment’s local biases

λ
(2)
t after substituting the calibrated parameter values into (74), which guarantees that the

comparisons across models in Panels A and B of Figure 5 are valid.

Figure 5 shows three different simulation experiments. Panel A displays the local power func-

tions of C tests. The solid and dotted curves reflect the test powers when the data-generating

processes are characterized by calibrations A and C in Figure 4, respectively. In this experi-

ment, we vary the local misspecification δr in the risk premium moment restriction. The data-
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Figure 5.— Monte Carlo experiments for disaster risk models. In Panel A, we simulate 1000 independent
yearly time series with length n = 100 (i.e. 100 years). In Panels B and C, we set δr = 0.4, and simulate 400
independent yearly time series with length n = 100 (i.e. 100 years) and break point π = 1/2. Only p and ξ are
treated as unknown to the econometrician, and all other parameters are treated as auxiliary parameters with
fixed known values; therefore, the dark matter measure is defined only based on θ = (p, ξ).

generating process under calibration C features an excessively large amount of dark matter

according to Panel C of Figure 4, and not surprisingly, it has little internal refutability (i.e.

little test power) consistent with Theorem 1.

Panel B of Figure 5 displays the histograms of logged overfitting measures logO(θ̂(1)
e,n ,y

n)

of efficient GMM estimators for two data-generating processes under calibrations A and C in

Figure 4. The estimator θ̂e,n is based on the estimation sample yne =
{
y1, · · · ,ybn/2c

}
. In this

experiment, we specify a structural break in the risk premium in the middle of the time-series

sample with δr = 0.4. Panel B shows that the efficient GMM estimator is likely to be overfitting

the data in the calibrated structural model with a high dark matter measure, which is consistent

with Theorem 2.

Panel C of Figure 5 compares the expected out-of-sample fit of the recursive GMM estimator

θ̃e,n with that of the efficient GMM estimator θ̂e,n, based on the estimation sample yne . We

describe the two types of estimators in Section 5.2. Consistent with the conventional intuition,

under the data-generating process A, the efficient GMM estimator yields a better expected out-

of-sample fit than the recursive GMM estimator. This is because the additional identification

information is reliable and meaningful when the amount of dark matter is not excessively large.

In contrast, the recursive GMM estimator delivers a better expected out-of-sample fit under

the data-generating process C, which exhibits a much higher dark matter measure. This finding
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indicates that the concern about misspecification and instability may offset – and even reverse

– the efficiency gain from the additional moment restrictions. The result for the data-generating

process C suggests that the econometrician should prioritize robustness over efficiency when

estimating models that rely heavily relies on dark matter (i.e., with an excessively large %(θ0)).

What to do with fragile models?

From an econometrician’s perspective, robust estimation is particularly important for a GMM

model with large dark matter measure, because the concern of misspecification and instability

offsets the efficiency gain from imposing cross-equation restrictions. As discussed above, a com-

bination of the recursive and efficient GMM estimators by deviating from the optimal weighting

matrix is a potential way to construct estimators that balance robustness and efficiency. We

leave a systematic econometric investigation on optimal robust estimation in the presence of

dark matter for future research.

From a modeler’s perspective, fragile models are unsatisfactory, because they lack refutabil-

ity, and they are prone to over-fitting. Our analysis shows how to select model calibration

based on robustness. Our analysis also highlights the parameter combinations in which the

dark matter is embedded.

How to improve the robustness of a model? One approach is to bring in more data to iden-

tify the problematic parameter combinations better under the baseline model, (for example,

see Barro and Ursúa, 2012; Nakamura, Steinsson, Barro, and Ursúa, 2013, who use interna-

tional data to better estimate the distribution of consumption disasters). Another approach

is to modify the preference specification or the belief formation mechanism so that the model

parameters are better identified by the baseline moments and do not rely excessively on the

restrictions implied by the asset pricing moments (e.g., Hansen and Sargent, 2010; Bidder and

Dew-Becker, 2016; Collin-Dufresne, Johannes, and Lochstoer, 2016; Nagel and Xu, 2019). Yet

another approach is to extend the model to connect the problematic parameter combinations

of the baseline model to additional data – for example, Gârleanu, Panageas, and Yu (2012)

and Kung and Schmid (2015) explicitly model production and innovation to endogenize the

consumption dynamics, with a particular focus on low-frequency fluctuations. This ties the

properties of R&D investment to those of the consumption process.



DARK MATTER IN ASSET PRICING MODELS 45

7. CONCLUSION

In this paper, we propose a new tractable measure of model fragility based on quantifying

the informativeness of the cross-equation restrictions that a structural model imposes on the

model parameters. We argue that our measure quantifies a useful model property related to the

model’s tendency to over-fit the data in sample.

Our fragility measure should be used as a model selection criterion. When faced with a set

of candidate models consistent with available data, selecting the less fragile model can be an

appealing criterion from the point of view of out of sample performance. We leave the formal

development of model selection based on our measure of model fragility to future research.

Our model fragility measure is easy to implement, and the worst-case direction is particularly

instructive. This direction provides guidance on which features of the model are most vulnerable

to overfitting. Additional data or model elements would be needed to alleviate this tendency.

Further, the worst-case direction is useful to consider when constructing robust estimators based

on considerations of out-of-sample fit, e.g., following the idea of recursive GMM estimators.

Our methodology has a broad range of potential applications. In addition to the examples

involving asset pricing, our measure can be used to assess the robustness of structural models

in other areas of economics, such as industrial organization and corporate finance.
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Appendix
We first list all additional theoretical results in Appendices A and B. Then, we show the proofs of the theorems

in Appendix C and those of the propositions and corollaries in Appendix D. The derivation of the disaster risk

model can be found in Appendix F. Other miscellaneous derivations and proofs are collected in Appendix G.

In the appendix, we denote
∑bπnc
t=1 by

∑
t≤πn and

∑n
t=bπnc+1 by

∑
t>πn for notational simplicity.

APPENDIX A: AUXILIARY RESULTS

A.1. Auxiliary Results on Data-Generating Processes

Here we introduce auxiliary propositions that characterize the useful properties of the data-generating pro-

cesses under regularity conditions. Proposition 3 derives the corresponding scores (or local perturbations) of

the univariate marginal distribution µs,f and the Markov transition kernel Ks,f when we perturb the bivariate

distribution from Q0 to Qs,f (i.e., the score of Qs,f is f). Proposition 4 considers local data-generating processes

characterized by scores fn,t and shows that the scores fn,t satisfy the law of large numbers and the central

limit theorem. Proposition 4, together with Hellinger-differentiability, is needed to ensure the local asymptotic

normality of the local data-generating processes, as established in Proposition 5. The LAN property is needed to

establish the contiguity property of the locally unstable data-generating process P1/
√
n,g,b as a local perturbation

with respect to the reference process P0 for asymptotic equivalence arguments.

Proposition 3 (Implied Scores of Marginal and Transition Distributions) Suppose Qs,f ∈ N(Q0) for some

Q0 ∈ H. Let µ and K be the univariate marginal distribution and the Markov transition kernel of Q0, respec-

tively. Then, the marginal distribution µs,f and Markov transition kernel Ks,f of Qs,f satisfy the Hellinger

differentiability conditions:

dµs,f
dµ0

= 1 + sf̄ + s∆µ(s) and
dKs,f (·|y)

dK0(·|y)
= 1 + sf̃(y, ·) + s∆K(y, s) ∀ y ∈ Y,(75)

where ∆µ(s) and ∆K(y, s) converge to 0 in L2(Q0) for all y ∈ Y as s → 0, and the marginal score and the

conditional score are

(76) f̄(y) ≡ EQ0 [f(y,y′)|y] = EQ0 [f(y′,y)|y] and f̃(y,y′) ≡ f(y,y′)− f̄(y).

Proposition 4 Suppose Assumptions 2 – 3 hold. Let f̃n,t ≡ fn,t − EQ0

t−1 [fn,t] and g̃(yt−1,yt) ≡ g(yt−1,yt)−
EQ0

t−1 [g(yt−1,yt)]. Then it holds that under Q0,

(77) n−1
∑
t≤πn

f̃2
n,t

p−→ Υ(π) and n−1
∑
t≤πn

EQ
t−1

[
f̃2
n,t

]
p−→ Υ(π), where
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(78) Υ(π) ≡ EQ
[
g̃TBπ g̃

]
with Bπ ≡

 π
∫ π

0
b(u)du∫ π

0
b(u)du

∫ π
0
b(u)2du

 .
Further, the asymptotic normality result follows:

(79) n−1/2
∑
t≤πn

f̃n,t
d−→ N (0,Υ(π)) .

Proposition 5 (LAN of Unstable Parametric Submodels) Suppose Assumptions 2 – 3 hold. For any g ∈
G(Q0) and b ∈ B, the corresponding locally unstable data-generating process with distribution P1/

√
n,g,b for

yn = {y0, · · · ,yn} satisfies

ln
dP1/

√
n,g,b

dP0
=

1√
n

∑
t≤n

g̃(yt−1,yt)
T

 1

b(t/n)

− 1

2
Υ(1) + op(1),

where g̃ and Υ(·) are defined in Proposition 4, and op(1) denotes a sequence of random variables that converge

to zero in probability P0.

Corollary 2 (Contiguity) Suppose Assumptions 2 – 3 hold. The locally unstable data-generating process with

distribution P1/
√
n,g,b is contiguous to the stable data-generating process with distribution P0. More precisely,

Xn
p−→ 0 under P0 implies Xn

p−→ 0 under P1/
√
n,g,b for all Fn-measurable random variables Xn : Yn → R.

A.2. Auxiliary Results on Moment Functions

Here we introduce the basic results (Proposition 6) extending the standard moment function approximations

(Hansen, 1982). Similar results on the (functional) central limit theorem with local instability are developed

and used in Andrews (1993), Sowell (1996), and Li and Müller (2009).

Define λ(gT ) ≡ [λ(g1), λ(g2)] for all g = [g1, g2]T with g ∈ G(Q0). We denote

(80) νe(g, b, π) ≡ λ(gT )√
π

 π∫ π

0

b(u)du

 and νo(g, b, π) ≡ λ(gT )√
1− π

 1− π∫ 1

π

b(u)du

 .
Proposition 6 Suppose Assumptions 1 – 5 hold. Then, under P1/

√
n,g,b,

(i)

 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)

 d−→

 1√
π
W (π)

1√
1− π

(W (1)−W (π))

 +

 νe(g, b, π)

νo(g, b, π)

 on D([0, 1]) for all split

point π ∈ [0, 1], where W (π) is a dm-dimensional Wiener process and D([0, 1]) is the space of right

continuous functions on [0, 1] endowed with the Skorohod J1 topology;

(ii)

 1√
πn

∑
t≤πn

mt(θn,t)

1√
(1− π)n

∑
t>πn

mt(θn,t)

 =

 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)

 −
 νe(g, b, π)

νo(g, b, π)

 + op(1), for all random
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variables g1, g2 ∈ T(Q0);

(iii)

 1√
πn

∑
t≤πn

mt(θ̂e,n)

1√
(1− π)n

∑
t>πn

mt(θ̂e,n)

 =


[
I −D(DTD)−1DT

] 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)−D(DTD)−1DT 1√
πn

∑
t≤πn

mt(θ0)

+op(1),

where θ̂e,n is the efficient GMM estimator based on estimation sample yne ;

(iv)

 1√
πn

∑
t≤πn

mt(θ̃e,n)

1√
(1− π)n

∑
t>πn

mt(θ̃e,n)

 =


[
I −D(ATD)−1AT

] 1√
πn

∑
t≤πn

mt(θ0)

1√
(1− π)n

∑
t>πn

mt(θ0)−D(ATD)−1AT 1√
πn

∑
t≤πn

mt(θ0)

+ op(1),

where θ̃e,n is the recursive GMM estimator based on estimation sample yne .

We construct the martingale difference array h(y,y′, θ0) inspired by the martingale difference approximation

for the temporal-dependent moment function in Hansen (1985). The martingale difference approximation plays

a key role in analyzing the semiparametric efficiency bound of estimation based on moment restrictions. To

guarantee that h(y,y′, θ0) is well defined in (81), we postulate the condition of asymptotic negligibility of

innovations (Assumption 5 (iii)), which has been used to establish Gordin’s CLT (Gordin, 1969).

Proposition 7 Suppose Assumptions 1 – 5 hold. Then h(·, θ0) is defined as follows:

h(y,y′, θ0) = m(y,y′, θ0)− EQ0 [m1(θ0)|y0 = y](81)

+

∞∑
t=1

{
EQ0 [mt+1(θ0)|y1 = y′]− EQ0 [mt+1(θ0)|y0 = y]

}
.

Moreover, h(·, θ0) satisfies EQ0 [h(y,y′, θ0)|y] = 0 and EQ0
[
h(y,y′, θ0)h(y,y′, θ0)T

]
= I and

(82) EQ0 [m(·, θ0)f ] = EQ0 [h(·, θ0)f ] for all f ∈ L2
0(Q0).

Therefore, the tangent set of Q at the distribution Q0 can be represented by

(83) T(Q0) =
{
f ∈ L2

0(Q0) : λ(f) ∈ lin(D)
}
,

where the operator λ(f) ≡ EQ0 [h(·, θ0)f ] is a linear operator on L2
0(Q0), and the linear space lin(D) is spanned

by columns of D, defined in (28).

A.3. Auxiliary Results on GMM Estimators Based on the Estimation Sample

We now introduce the basic results, which extend the standard GMM approximations (Hansen, 1982) in Propo-

sition 8. Then, we introduce a new set of GMM approximations in Proposition 9, which are new and unique to

our paper.

Proposition 8 Suppose Assumptions 1 – 5 hold. Let θ̃e,n and θ̂e,n be the recursive GMM and the efficient

GMM estimators based on the estimation sample yne = {y1, · · · ,ybπnc}, respectively. Then, under P1/
√
n,g,b,
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(i)
√
πn
(
θ̃e,n − θ0

)
= −(ATD)−1AT

[
1√
πn

∑
t≤πn

mt(θ0)

]
+ op(1),

with A =

 D11 0

0 A22

 and A22 =
[
D21(DT

11D11)−1DT
21 + I

]−1
D22;

(ii)
√
πn
(
θ̂e,n − θ0

)
= −(DTD)−1DT

[
1√
πn

∑
t≤πn

mt(θ0)

]
+ op(1).

Proposition 9 Suppose Assumptions 1 – 6 hold and g ∈ GB(Q0). Let θ̃e,n and θ̂e,n be the recursive GMM

estimator and efficient GMM estimator based on the estimation sample yne = {y1, · · · ,ybπnc}, respectively.

Then, under P1/
√
n,g,b,

(i)
√
πn

 θ̃(1)
e,n − θ(1)

e,n

ψs(θ̃
(1)
e,n )− ψs(θ

(1)
e,n )

 = −I−1
Q ΓTθ,1IFI

−1
B DT

11

[
1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
n,t)

]
+ op(1);

(ii)
√
πn

 θ̂(1)
e,n − θ(1)

e,n

ψs(θ̂
(1)
e,n )− ψs(θ

(1)
e,n )

 = −I−1
Q ΓTθ,1IF

{
LF

[
1√
πn

∑
t≤πn

mt(θ0)

]
− LBνe(g, b, π)

}
+ op(1).

Here the matrices LB and LF are

(84) LB ≡ I−1
B DT

11Γm,1 and LF ≡ Γθ,1I
−1
Q DT ,

and D11 and D are Jacobian matrices defined in (28), the information matrices IB and IQ are defined in (29)

– (30), and the selection matrices Γm,1 and Γθ,1 are defined in (18) and (30), respectively.

Proposition 10 Suppose Assumptions 1 – 6 hold and g ∈ GB(Q0). Let L(θ(1), ·) be the loss function for

assessing the goodness of fit of the baseline parameter θ(1) to the data as defined in (55) – (56). Let θ̃e,n

and θ̂e,n be the recursive GMM estimator and efficient GMM estimator based on the estimation sample yne =

{y1, · · · ,ybπnc}, respectively. Let yno = {ybπnc+1, · · · ,yn} be the holdout sample. Then, under P1/
√
n,g,b,

(i)

 L(θ̃(1)
e,n ;yne )

L(θ̃(1)
e,n ;yno )

 =

 ((LB − 2LF)ζe,n − 2L∆νe)
T
IF (LBζe,n)

(LBζe,n − 2LFζo,n − 2L∆νo)
T
IF (LBζe,n)

+ op(1), and

(ii)

 L(θ̂(1)
e,n ;yne )

L(θ̂(1)
e,n ;yno )

 =

 − (LFζe,n + L∆νe)
T
IF (LFζe,n + L∆νe)

(LF(ζe,n − 2ζo,n) + L∆(νe − 2νo))
T
IF (LFζe,n + L∆νe)

+ op(1),

where νe(g, b, π) and νo(g, b, π) are defined in (80), and the random vectors ζe,n and ζo,n are

ζe,n ≡
1√
πn

∑
t≤πn

mt(θ0)− νe(g, b, π) and ζo,n ≡
1√
πn

∑
t>πn

mt(θ0)− νo(g, b, π),(85)

and the matrices LF, LB are defined in (84) and L∆ ≡ LF − LB. Further, using Proposition 6,

(86)

 ζe,n

ζo,n

 d−→

 1√
π
W (π)

1√
1− π

(W (1)−W (π))

 .
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APPENDIX B: SEMIPARAMETRIC MINIMAX EFFICIENCY BOUNDS

Given the LAN for the Markov processes with potential local instability, the local asymptotic minimax (LAM)

justification for the efficiency bounds can be established using the asymptotic equivalence argument.27 For the

local data-generating process that is described by a locally unstable distribution P1/
√
n,g,b, the goal is to estimate

the average model parameter value:

(87) ϑ(P1/
√
n,g,b) ≡

1

n

n∑
t=1

ϑ(Q1/
√
n,fn,t), with fn,t = g1(yt−1,yt) + g2(yt−1,yt)b(t/n).

We formalize the precise meaning of semiparametric efficiency bounds based on local asymptotic minimax risk,

which is stated in the following theorem.

Theorem 4 (LAM Lower Bounds) Suppose assumptions 1 – 5 hold and ϑ(P1/
√
n,g,b) exists . Thus, for any

v ∈ Rdθ , any arbitrary estimator sequence θ̌n satisfies

lim
l→∞

lim inf
n→∞

sup
g∈G(Q0),b∈B

∫
l ∧
[√
nvT

(
θ̌n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b ≥ vT (DTD)−1v.

The method of first calculating the truncated mean squared error (MSE), then letting the ceiling l increase to

infinity, is widely adopted in the literature (e.g., Bickel, 1981; Le Cam and Yang, 2000; Kitamura, Otsu, and

Evdokimov, 2013).

Theorem 5 (LAM Upper Bounds) Suppose assumptions 1 – 5 hold and ϑ(P1/
√
n,g,b) exists. Then, for any

v ∈ Rdθ , there exists an estimator sequence θ̂n such that

lim
l→∞

lim inf
n→∞

sup
g∈G(Q0),b∈B

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b ≤ vT (DTD)−1v.

In our proof, we show that the efficient GMM estimator (Hansen, 1982) can achieve the semiparametric efficiency

bound. Importantly, the proof is similar to that of Theorem 1 in Li and Müller (2009) through using Le Cam’s

theory of asymptotic equivalence. Therefore, Theorems 4 and 5 extend the results on the minimax efficiency

bounds for unconditional moment restrictions developed in Levit (1976), Nevelson (1977), and Chamberlain

(1987, Theorem 2) to general Markov processes with local instability.

APPENDIX C: PROOFS OF THE MAIN THEOREMS

1. Proof of Theorem 1

The test statistic based on the C statistic is ϕ̂n ≡ 1{Cn>c1−α}, where c1−α is the (1−α) quantile of a chi-square

distribution with dm,2−dθ,2 degrees of freedom. From Proposition 6, we know that Assumption 3.1 of Chen and

Santos (2018) is satisfied. Thus, by Lemma 3.2 of Chen and Santos (2018) and the results of Newey (1985a),

27Dou, Pollard, and Zhou (2010) also appeal to the asymptotic equivalence argument to establish the global
minimax upper bound for a non-parametric estimation problem.



DARK MATTER IN ASSET PRICING MODELS 57

it follows that for any GMM specification test ϕ̌n with an asymptotic level α and an asymptotic local power

function (∀ ϕ̌n ∈ Φα(Q0)),

inf
g∈Aκ(Q0)

lim
n→∞

∫
ϕ̌ndP1/

√
n,g,0 ≤ inf

g∈Aκ(Q0)
lim
n→∞

∫
ϕ̂ndP1/

√
n,g,0 (i.e., C test is asymptotically optimal)(88)

= inf
g∈Aκ(Q0)

lim
n→∞

P1/
√
n,g,0

{∣∣∣Ĝn∣∣∣2 > c1−α

}
,(89)

where Aκ(Q0) ≡
{
g ∈ GB(Q0) : |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D22)

}
, and

(90) Ĝn =
(
Λ2 − Λ2D21I

−1
F DT

21Λ2

)−1/2

[
1√
n

n∑
t=1

m
(2)
t (θ̂n)

]
;

see page 243 of Newey (1985a) and Appendix G.3 of this paper. Here Λ2 = I −D22(DT
22D22)−1DT

22.

Now, we obtain (e.g., Newey, 1985a; Chen and Santos, 2018, or Proposition 6 of this paper)

(91) |Ĝn|2
d−→ χ2

dm,2−dθ,2(µg),

where χ2
dm,2−dθ,2(µg) is a noncentral chi-squared random variable with degrees of freedom dm,2 − dθ,2 and the

noncentrality parameter µg = λ(2)(g1)T
(
Λ2 − Λ2D21I

−1
F DT

21Λ2

)
λ(2)(g1).

From (49) and (88) – (89), we conclude that

(92) inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤ inf
g∈Aκ(Q0)

lim
n→∞

P1/
√
n,g

{∣∣∣Ĝn∣∣∣2 > c1−α

}
= inf
g∈Aκ(Q0)

P
{
χ2
dm−dθ (µg) > c1−α

}
.

Note that µg > 0 for all g ∈ Aκ(Q0), since Λ2D21I
−1
F DT

21Λ2 does not have unit eigenvalues. The local asymptotic

maximin power is then bounded from above by

(93) inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤ inf
g∈Aκ(Q0)

M dm,2−dθ,2
2

(√
µg,
√
c1−α

)
= M dm,2−dθ,2

2

(
inf

g∈Aκ(Q0)

√
µg,
√
c1−α

)
,

where the equality above is due to the continuity and monotonicity of the Marcum Q-function Mγ(x1, x2).

Following the definition of µg and the fact that Λ2
2 = Λ2 as a projection matrix onto the linear space spanned

by the column vectors of D22, it holds that

inf
g∈Aκ(Q0)

µg = inf
g∈Aκ(Q0)

λ(2)(g1)TΛ2

(
I − Λ2D21I

−1
F DT

21Λ2

)
Λ2λ

(2)(g1)

= inf
g∈Aκ(Q0)

|λ(2)(g1)TΛ2λ
(2)(g1)| × the smallest eigenvalue of I − Λ2D21I

−1
F DT

21Λ2

= κ2 × the smallest eigenvalue of I − Λ2D21I
−1
F DT

21Λ2,

where the last equality is due to the definition of the set Aκ(Q0), in which |λ(2)(g1)| ≥ κ and λ(2)(g1) ⊥ lin(D22).

We shall now show that 1/(1 + %(θ0)) is an eigenvalue of I − Λ2D21I
−1
F DT

21Λ2, and thus infg∈Aκ(Q0)
√
µg ≤√

κ2/(1 + %(θ0)). In fact, 1 − 1/(1 + %(θ0)) is an eigenvalue of I
−1/2
F (IF − IB) I

−1/2
F = I

−1/2
F (DT

21Λ2D21)I
−1/2
F ,

and thus an eigenvalue of Λ2D21I
−1
F DT

21Λ2. Therefore, 1/(1 + %(θ0)) is an eigenvalue of I − Λ2D21I
−1
F DT

21Λ2.
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Due to the monotonicity of the generalized Marcum Q-function, the local asymptotic maximin power is

upper bounded by

(94) inf
g∈Aκ(Q0)

q(g, ϕ̌) ≤M dm,2−dθ,2
2

(√
κ2

1 + %(θ0)
,
√
c1−α

)
.

Proof of Theorem 2

According to Proposition 10 (ii), we can show that

E

[
wlim
n→∞

1

2

(
L(θ̂e,n;yno )− L(θ̂e,n;yne )

)]
= π−1E

[
W (π)TLTF IFLFW (π)

]
(95)

+ [νe(g, b, π)− νo(g, b, π)]
T
LT∆IFL∆νe(g, b, π),

where wlimn→∞ is the weak convergence limit and W (·) is a dm-dimensional Wiener process. The first term

above is

π−1E
[
W (π)TLTF IFLFW (π)

]
= π−1E

[
tr
(
I
1/2
F LFW (π)W (π)TLTF I

1/2
F

)]
(96)

= tr
(
I
1/2
F LFL

T
F I

1/2
F

)
.(97)

According to the definition of LF in (84),

(98) LFL
T
F = Γθ,1I

−1
Q ΓTθ,1 = I−1

F .

Combining (97) and (98) yields

(99) π−1E
[
W (π)TLTF IFLFW (π)

]
= dθ,1.

Because λ(g1) ∈ lin(D), it holds that L∆λ(g1) = 0, and thus

(100) [νe − νo]T LT∆IFL∆νe =
1√
π

(
1√
π

+
1√

1− π

)(∫ π

0

b(u)du

)2

λ(g2)TLT∆IFL∆λ(g2).

The left-hand side of (100) is bounded from above by

1√
π

(
1√
π

+
1√

1− π

)(∫ π

0

b(u)du

)2

λ(g2)TLT∆IFL∆λ(g2)(101)

≤ π
(

1 +

√
π

1− π

)
|λ(g2)|2 × the largest eigenvalue of LT∆IFL∆.

The largest eigenvalue of LT∆IFL∆ is that of Π = I
1/2
F L∆L

T
∆I

1/2
F , which is the dark matter measure %(θ0).
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Proof of Theorem 3

According to Proposition 10 (i), we can show that

E

[
wlim
n→∞

1

2

(
L(θ̃e,n;yno )− L(θ̃e,n;yne )

)]
= π−1E

[
W (π)TLTF IFLBW (π)

]
,(102)

where wlimn→∞ is the weak convergence limit and W (·) is a dm-dimensional Wiener process. Further,

(103) π−1E
[
W (π)TLTF IFLBW (π)

]
= tr(I

1/2
F LBL

T
F I

1/2
F ).

Because LBL
T
F = I−1

B DT
11

[
D11, 0dm,1×(dθ−dθ,1)

]
I−1
Q ΓTθ,1 = Γθ,1I

−1
Q ΓTθ,1 = I−1

F , the equality (103) can further be

rewritten as

(104) π−1E
[
W (π)TLTF IFLBW (π)

]
= dθ,1.

Proof of Theorem 4

The local asymptotic normality (LAN) (see Proposition 5), as well as the implied contiguity, and Le Cam’s

first and third lemmas play crucial roles in the proof as in the standard proof of semiparametric minimax lower

bounds (e.g. van der Vaart, 1998, Theorem 8.11 and Theorem 25.21). Our results are new in the sense that they

apply to Markov processes with local instability, which is more general than the i.i.d. case.

Following the literature (e.g. Bickel, Klaassen, Ritov, and Wellner, 1993; van der Vaart, 1998), we define

the functional ϑ(Q) to be pathwise differentiable at Q0 relative to the parametric submodels s 7→ Qs,f , if there

exists a measurable function ϑ̇: Y× Y→ Rdθ with ϑ̇ ∈ L2
0(Q0) such that

(105) lim
s→0

1

s
[ϑ(Qs,f )− ϑ(Q0)] = EQ0

[
ϑ̇f
]
,

where ϑ̇(yt−1,yt) ≡ (DTD)−1DTh(yt−1,yt, θ0) with h(yt−1,yt, θ0) defined in Proposition 7 (e.g., Greenwood

and Wefelmeyer, 1995). According to Proposition 7, h(·, θ0) satisfies the conditions: EQ0 [h(y,y′, θ0)|y] = 0 and

EQ0
[
h(y,y′, θ0)h(y,y′, θ0)T

]
= I.

First, we only need to consider the case g1(y,y′) = vT ϑ̇(y,y′), g2(yt−1,yt) ≡ 0, and b(u) ≡ 0 for establishing

the lower bound. In such case, f(yt−1,yt) ≡ g1(yt−1,yt) for all 1 ≤ t ≤ n. Second, we further focus on the

estimators θ̌n such that
√
n
(
θ̌n − θ0

)
is uniformly tight under the distribution P0, similar to van der Vaart

(1998). The tightness assumption can be dropped by a compactification argument (e.g. van der Vaart, 1988;

van der Vaart and Wellner, 1996, Chapter 3.11). Moreover, without loss of generality, due to Prohorov’s theorem,

we can assume that

(106)

(
√
n
(
vT θ̌n − vT θ0

)
,

1√
n

n∑
t=1

g1(yt−1,yt)

)
d−→ (Ξ0, U0),

where U0 ∼ N(0, vT (DTD)−1v) (see Proposition 4). Using the contiguity between P1/
√
n,g,0 and P0, Le Cam’s

third lemma (e.g. van der Vaart, 1998, Theorem 6.6), and differentiability of ϑ(Qs,f ) with respect to s, we know
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that under the sequence of distributions P1/
√
n,g,0,

(107)
√
n
(
vT θ̌n − vTϑ(P1/

√
n,g,0)

) d−→ Ξg,

where, appealing to Theorem 8.3 of van der Vaart (1998), the limiting random variable Ξg has the following

representation with a certain measurable function τ : Rdθ → R:

Ξg = τ(Xg)− vT ξ(108)

= τ(Xg)− EQ0

[
vT ϑ̇f

]
= τ(Xg)−

[
vT (DTD)−1v

]
.

Here, the local estimation bias is ξ ≡ (DTD)−1DTλ(g1) = (DTD)−1v (similar to Corollary 1 or the proof of

Proposition 6 (ii)) and Xg ∼ N(ξ, (DTD)−1). Based on Theorem 8.6 of van der Vaart (1998) for estimating

normal means, it holds that for all measurable function τ ,

(109) EQ1/
√
n,f
[
Ξ2
g

]
≥ EQ0

[(
vTX0

)2]
= vT (DTD)−1v.

The key idea of (106) – (108) is a change-of-measure argument, inspired by Le Cam’s theory of asymptotic

equivalence, whose stronger form has also been developed and used in the minimax inference of Dou, Pollard,

and Zhou (2010).

Consequently, it suffices to show that the left-hand side of (109) is a lower bound for the minimax risk R:

(110) R ≡ lim
l→∞

lim inf
n→∞

∫
l ∧
[√
nvT

(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0.

In fact, it holds that

lim inf
n→∞

∫
l ∧
[√
nvT

(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0

≥ lim inf
n→∞

∫
l ∧
[√
nvT

(
θ̌n − ϑ(P1/

√
n,g,0)

)]2
dP1/

√
n,g,0

= EQ1/
√
n,g,0

[
l ∧ Ξ2

g

]
.

Thus, the minimax risk can be bounded from below by

(111) R ≥ lim
l→∞

EQ1/
√
n,f
[
l ∧ Ξ2

g

]
≥ lim
l→∞

EQ1/
√
n,f
[
l ∧ Ξ2

g

]
.

According to the monotone convergence theorem, it follow that

(112) R ≥ EQ1/
√
n,f
[
Ξ2
g

]
.

Combining (109) and (112), the local asymptotic minimax lower bound result holds: R ≥ vT (DTD)−1v.
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Proof of Theorem 5

We start with

(113)
√
n
[
θ̂n − ϑ(P1/

√
n,g,b)

]
=
√
n
(
θ̂n − θ0

)
−
√
n
[
ϑ(P1/

√
n,g,b)− θ0

]
.

According to Proposition 8 (ii), it follows that

(114)
√
n
(
θ̂n − θ0

)
= −(DTD)−1DT

[
1√
n

n∑
t=1

mt(θ0)

]
+ op(1).

Consequently, similar to Corollary 1 or the proof of Proposition 6 (ii),

(115)
√
n
[
ϑ(P1/

√
n,g,b)− θ0

]
= −(DTD)−1DTλ(g1) + o(1).

Thus, appealing to Proposition 6 (i), we can show that

(116)
√
n
[
θ̂n − ϑ(P1/

√
n,g,b)

]
d−→ −(DTD)−1DTW (1),

where W (·) is a dm-dimensional Wiener process. Therefore, for any v ∈ Rdθ ,

(117) lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b = E

[
l ∧X2

]
, with X ∼ N(0, vT (DTD)−1v).

Let l increase monotonically to infinity, and using the monotonic convergence theorem, we obtain

(118) lim
l→∞

lim inf
n→∞

∫
l ∧
[√

nvT
(
θ̂n − ϑ(P1/

√
n,g,b)

)]2
dP1/

√
n,g,b = E

[
X2
]

= vT (DTD)−1v.

APPENDIX D: PROOFS OF PROPOSITIONS

1. Proof of Proposition 1

Following the standard argument such as in the proof of Theorem 7.2 of van der Vaart (1998), we can show

that EQ0 [f ] = 0. Thus,

(119) EQ0 [∆(s)] = EQ0

[
dQs,f
dQ0

− 1

]
=

∫
dQs,f −

∫
dQ0 = 0.

According to Proposition 3, the conditional expectations denoted by f̄(yt−1) = EQ0 [f(yt−1,yt)|yt−1] and

f̄(yt) = EQ0 [f(yt−1,yt)|yt] are the scores for the marginal distributions of yt−1 and yt, respectively. Because

the marginal distributions are constant over time,

(120) EQ0 [f(y,y′)|y] = EQ0 [f(y′,y)|y] .
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2. Proof of Proposition 2

According to Definition 4, it follows that

E
Q1/
√
n,fn,t [mt(θ0)] =

∫
mt(θ0)

[
1 + fn,t/

√
n+ ∆n

]
dQ0.(121)

Because EQ0 [mt(θ0)] = 0, the equality (121) above leads to

(122) E
Q1/
√
n,fn,t [mt(θ0)] =

λ(g1) + λ(g2)b(t/n)√
n

+

∫
mt(θ0)∆ndQ0.

Based on Assumption 5 and Definition 4, the Cauchy-Schwarz inequality leads to

(123) |
∫
mt(θ0)∆ndQ0| ≤ EQ0

[
|mt(θ0)|2

]1/2
EQ0

[
|∆n|2

]1/2
= o

(
1√
n

)
.

3. Proof of Proposition 3

By the definition of a marginal distribution,

dµs,f (y) =

∫
y′∈Y

dQs,f (y,y′) =

∫
y′∈Y

[1 + sf(y,y′) + s∆Q(s)] dQ(y,y′)

=

[
1 + s

∫
y′∈Y

f(y,y′)dKs,f (y′|y) + s

∫
y′∈Y

∆Q(s)dKs,f (y′|y)

]
dµ(y).

By the definition of f̄(y), we know that

(124) dµs,f (y) =
[
1 + sf̄(y) + s∆µ(s)

]
dµ(y),

where ∆µ(s) ≡ EQ [∆Q(s)|y] and it converges to zero in quadratic mean under µ as s→ 0. Further, by definition,

it holds that

dKs,f (y′|y) =
dQs,f (y,y′)

dµs,f (y)
=

1 + sf(y,y′) + s∆Q(s)

1 + sf̄(y) + s∆µ(s)

dQ(y,y′)

dµ(y)

=
1 + sf(y,y′) + s∆Q(s)

1 + sf̄(y) + s∆µ(s)
dK(y′|y).

Rearranging and combining terms leads to

(125) dKs,f (y′|y) =
{

1 + s
[
f(y,y′)− f̄(y)

]
+ s∆K(y, s)

}
dK(y′|y),

where ∆K(y, s) converges to zero in quadratic mean under K(y′|y) as s → 0 for all y ∈ Y. By definition of

f̃(y,y′), it follows that EQ
[
f̃(y,y′)|y

]
= 0. Thus, similar to the proof of Proposition 1, we can show that

EQ [∆K(y, s)|y] = 0.
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4. Proof of Proposition 4

According to Assumption 3 (i),

(126) n−1 max
1≤t≤n

|g(yt−1,yt)|2
p−→ 0.

According to simple algebra, we can show that

(127) n−1
∑
t≤πn

f̃2
n,t = n−1

∑
t≤πn

[
g̃1(yt−1,yt)

2 + 2g̃1(yt−1,yt)g̃2(yt−1,yt)b(t/n) + g̃2(yt−1,yt)
2b(t/n)2

]
.

Therefore, by Lemma 4 of Li and Müller (2009), it follows that

n−1
∑
t≤πn

f̃2
n,t

p−→ EQ0
[
g̃2

1

]
π + 2EQ0 [g̃1g̃2]

∫ π

0

b(u)du+ EQ0
[
g̃2

1

] ∫ π

0

b(u)2du,

and hence

(128) n−1
∑
t≤πn

f̃2
n,t → Υ(π) ≡ EQ0

[
g̃TBπ g̃

]
.

Using the same argument, we can show that

(129) n−1
∑
t≤πn

EQ
t−1

[
f̃2
n,t

]
p−→ Υ(π) ≡ EQ0

[
g̃TBπ g̃

]
.

The results above and Assumption 3 (i) together lead to a Lindeberg-type condition. Thus, according to the

mixing condition implied by the Doeblin condition for the Markov process, we can obtain the following CLT

result for martingale difference sequences:

(130)
1√
n

∑
t≤πn

f̃n,t
d−→ N(0,Υ(π)).

5. Proof of Proposition 5

The proof is similar to that of Theorem 7.2 in van der Vaart (1998), except that we allow for non-IID time

series and local instability. For brevity, we denote Kn,t ≡ K1/
√
n,gn,t . The random variable Wn,t ≡

dKn,t

dK0
− 1 is

well defined with probability one. According to (125), it follows that

(131)
∑
t≤n

Wn,t =
1√
n

∑
t≤n

f̃n,t +
1√
n

∑
t≤n

∆̃n,t.

where f̃n,t ≡ fn,t − EQ0

t−1 [fn,t]. Because EQ0

t−1

[
∆̃n,t

]
= 0 and EQ0

[
∆̃2
n,t

]
→ 0 as n → ∞ for all t = 1, · · · , n, it

follows that

(132) EQ0

 1√
n

∑
t≤n

∆̃n,t

 = 0 and varQ0

 1√
n

∑
t≤n

∆̃n,t

 ≤ 1

n

∑
t≤n

EQ0

[
∆̃2
n,t

]
→ 0.
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Thus, 1√
n

∑
t≤n ∆̃n,t = op(1) under Q0. And hence, the following approximation holds:

(133)
∑
t≤n

Wn,t =
1√
n

∑
t≤n

f̃n,t + op(1).

By Taylor expansion, we have

(134) ln(1 + x) = x− 1

2
x2 + x2R(x),

where R(x) is a continuous function such that R(x)→ 0 as x→ 0. Therefore, it follows that

ln
∏
t≤n

dKn,t

dK0
=
∑
t≤n

ln(1 +Wn,t) =
∑
t≤n

[
Wn,t −

1

2
W 2
n,t +W 2

n,tR(Wn,t)

]
(135)

=
∑
t≤n

Wn,t −
1

2

∑
t≤n

W 2
n,t +

∑
t≤n

W 2
n,tR(Wn,t).(136)

Combining (133) and (136) yields

(137) ln
∏
t≤n

dKn,t

dK0
=

1√
n

∑
t≤n

f̃n,t −
1

2

∑
t≤n

W 2
n,t +

∑
t≤n

W 2
n,tR(Wn,t) + op(1).

We shall first show that

(138)
∑
t≤n

W 2
n,t =

1

n

∑
t≤n

f̃2
n,t + op(1).

In fact, by the triangular inequality and the Cauchy-Schwarz inequality, it follows that∣∣∣∣∣∣
∑
t≤n

W 2
n,t −

1

n

∑
t≤n

f̃2
n,t

∣∣∣∣∣∣ ≤
∑
t≤n

∣∣∣∣ 1√
n

∆̃n,t

(
2√
n
f̃n,t +

1√
n

∆̃n,t

)∣∣∣∣(139)

≤

 1

n

∑
t≤n

∆̃2
n,t

1/2  1

n

∑
t≤n

(
2f̃n,t + ∆̃n,t

)2

1/2

.(140)

Based on (125), it is straightforward to show that 1
n
∑
t≤n ∆̃2

n,t = op(1). Further, according to Assumption 3

(ii), it follows that 1
n
∑
t≤n

(
2f̃n,t + ∆̃n,t

)2

≤ 1
n
∑
t≤n 4f̃2

n,t+2∆̃2
n,t = Op(1). Substituting them into (140) leads

to
∑
t≤nW

2
n,t − 1

n
∑
t≤n f̃

2
n,t = op(1). Therefore, the equality (137) can be rewritten as

ln
∏
t≤n

dKn,t

dK0
=

1√
n

∑
t≤n

f̃n,t −
1

2n

∑
t≤n

f̃2
n,t +

∑
t≤n

W 2
n,tR(Wn,t) + op(1)(141)

=
1√
n

∑
t≤n

f̃n,t −
1

2

∫ 1

0

Υ(u)du+
∑
t≤n

W 2
n,tR(Wn,t) + op(1).(142)
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Finally, we show that
∑
t≤nW

2
n,tR(Wn,t) = op(1). Because we have shown that

∑
t≤nW

2
n,t = Op(1), and

(143)
∑
t≤n

W 2
n,t|R(Wn,t)| ≤ max

1≤t≤n
|R(Wn,t)|

∑
t≤n

W 2
n,t,

it suffices to show that max1≤t≤n |R(Wn,t)| = op(1).

For any ε > 0, there exists εR > 0 such that

P0

(
max

1≤t≤n
|R(Wn,t)| > ε

)
≤
∑
t≤n

P0 (|R(Wn,t)| > ε) ≤
∑
t≤n

P0

(
W 2
n,t > εR

)
(144)

≤
∑
t≤n

P0

(
f̃2
n,t > nεR/4

)
+
∑
t≤n

P0

(
∆̃2
n,t > nεR/4

)
.(145)

By Markov’s inequality, we can further show that

(146) P0

(
max

1≤t≤n
|R(Wn,t)| > ε

)
≤ 4

nεR

∑
t≤n

EQ0

[
f̃2
n,t1{f̃2

n,t > nεR/4}
]

+
4

nεR

∑
t≤n

EQ0

[
∆̃2
n,t

]
.

According to Assumption 3 (ii), the squared conditional scores f̃2
n,t are uniformly integrable, and thus

(147)
1

n

∑
t≤n

EQ0

[
f̃2
n,t1{f̃2

n,t > nεR/4}
]
→ 0 as n→∞.

Further, according to (125), it holds that

(148)
1

n

∑
t≤n

EQ0

[
∆̃2
n,t

]
→ 0 as n→∞.

Therefore, P0 (max1≤t≤n |R(Wn,t)| > ε)→ 0 as n→∞.

6. Proof of Proposition 6

We first prove part (i). According to Proposition 2, if defining m̃t(θ0) ≡ mt(θ0) − 1√
n
λ(gT )

 1

b(t/n)

 for

t = 1, · · · , n, we have

(149) E
Q1/
√
n,fn,t [m̃t(θ0)] = o

(
1√
n

)
, with fn,t = g(yt−1,yt)

T

 1

b(t/n)

 .
Further, for mt(θ0) which satisfies Assumption 5, we know that the corresponding m̃t(θ0) also satisfies Assump-

tion 5. Therefore, appealing to the functional central limit theorem (invariance principle) of McLeish (1975a)

and Phillips and Durlauf (1986), we know that

(150)
1√
n

∑
t≤πn

m̃(θ0)
d−→W (π), for all π ∈ [0, 1].
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Thus,

(151)
1√
πn

∑
t≤πn

mt(θ0) =
1√
πn

∑
t≤πn

m̃t(θ0) +
1

n

∑
t≤πn

λ(gT )√
π

 1

b(t/n)

 d−→ W (π)√
π

+
λ(gT )√

π

 π∫ π
0
b(u)du

 .
Similarly, we can show that

(152)
1√

(1− π)n

∑
t>πn

mt(θ0)
d−→ W (1)−W (π)√

1− π
+

λ(gT )√
1− π

 1− π∫ 1

π
b(u)du

 .
Now, we prove part (ii). Because g1, g2 ∈ T(Q0), by the definition of θn,t, we know that

(153) 0 =

∫
mt(θn,t)dQ1/

√
n,fn,t , for all t, n.

Using the Taylor expansion, we obtain

(154) 0 =

∫ [
mt(θ0) +∇θmt(θ̇n,t)(θn,t − θ0)

] [
1 + fn,t/

√
n+ ∆n,t/

√
n
]

dQ0, for all t, n,

where θ̇n,t lies between θ0 and θn,t for all t and n. Suppose θn,t converges θ0 at the rate of
√
n (as we verify

later). According to Assumption 5, it follows that

(155) 0 =
1√
n
λ(gT )

 1

b(t/n)

+D(θn,t − θ0) + o

(
1√
n

)
, for all t, n.

Therefore, the parameter sequence θn,t can be specified as

(156) θn,t − θ0 = −(DTD)−1DT 1√
n
λ(gT )

 1

b(t/n)

+ o

(
1√
n

)
, for all t, n.

Hence, using the Taylor expansion again leads to

(157)
1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)− 1

n

∑
t≤πn

∇θmt(θ̇n,t)(D
TD)−1DT λ(gT )√

π

 1

b(t/n)

+ o (1) .

Due to Assumption 5, appealing to Lemma 4 of Li and Müller (2009) leads to

(158)
1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)−D(DTD)−1DT λ(gT )√
π

 π∫ π
0
b(u)du

+ o (1) .

Because g1, g2 ∈ T(Q0), it holds that λ(g1), λ(g2) ∈ lin(D), and thus

(159)
1√
πn

∑
t≤πn

mt(θn,t) =
1√
πn

∑
t≤πn

mt(θ0)− λ(gT )√
π

 π∫ π
0
b(u)du

+ o (1) .
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Similarly, we can show that

(160)
1√

(1− π)n

∑
t>πn

mt(θn,t) =
1√

(1− π)n

∑
t>πn

mt(θ0)− λ(gT )√
1− π

 1− π∫ 1

π
b(u)du

+ o (1) .

Finally, we prove parts (iii) and (iv). Using the Taylor expansion, we obtain

(161)
1√
πn

∑
t≤πn

mt(θ̂e,n) =
1√
πn

∑
t≤πn

mt(θ0) +
1

πn

∑
t≤πn

∇θmt(θ̇e,n)
[√

πn(θ̂e,n − θ0)
]

+ o (1) ,

where θ̇e,n lies between θ̂e,n and θ0. According to Proposition 8 (ii),

1√
πn

∑
t≤πn

mt(θ̂e,n) =
1√
πn

∑
t≤πn

mt(θ0)−D(DTD)−1DT

 1√
πn

∑
t≤πn

mt(θ0)

+ op (1)(162)

Further rearranging the terms on the right-hand side of (162) leads to

(163)
1√
πn

∑
t≤πn

mt(θ̂e,n) =
[
I −D(DTD)−1DT

]  1√
πn

∑
t≤πn

mt(θ0)

+ op (1) .

Similarly,

(164)
1√

(1− π)n

∑
t>πn

mt(θ̂e,n) =
1√

(1− π)n

∑
t>πn

mt(θ0)−D(DTD)−1DT

 1√
πn

∑
t≤πn

mt(θ0)

+ op (1) .

Part (iv) can be proved using analogous steps, which we do not repeat.

7. Proof of Proposition 7

Similar to the results in Severini and Tripathi (2013) and Chen and Santos (2018), the tangent set T(Q0) can

be characterized as follows:

(165) T(Q0) =
{
f ∈ L2

0(Q0) : EQ0 [m(·, θ0)f ] ∈ lin(D)
}
,

where lin(D) is the linear space spanned by the column vectors of D. Therefore, it suffices to show that

(166) EQ0 [m(·, θ0)f ] = EQ0 [h(·, θ0)f ] for all f ∈ L2
0(Q0).

Under the assumption, the following identity holds:

(167) EQ0 [h(y,y′, θ0)f(y,y′)] = EQ0 [m(y,y′, θ0)f(y,y′)]−
∞∑
k=1

Ak,
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where

(168) Ak = EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y] f(y,y′)
}
− EQ0

{
EQ0 [m(yk,yk+1, θ0)|y1 = y′] f(y,y′)

}
.

Further, for each k ≥ 1, the Markov property implies that

EQ0 [m(yk,yk+1, θ0)|y1 = y′] f(y,y′) = EQ0 [m(yk−1,yk, θ0)|y0 = y′] f(y,y′).(169)

Thus, the equation (168) can be rewritten as

(170) Ak = EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y] f(y,y′)
}
− EQ0

{
EQ0 [m(yk−1,yk, θ0)|y0 = y′] f(y,y′)

}
.

It suffices to show that Ak = 0 for all k. In fact, the following equalities hold:

EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y′] f(y,y′)
}

= EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y′] EQ0 [f(y,y′)|y′]
}

(Law of Iterated Projections)

= EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y′] EQ0 [f(y′,y)|y′]
}

(Proposition 3)

= EQ0
{

EQ0 [m(yk−1,yk, θ0)|y0 = y′] f(y′,y)
}

(Law of Iterated Projections)

Therefore, Ak = 0 for all k ≥ 1, and hence from (167), it follows that

(171) EQ0 [h(y,y′, θ0)f(y,y′)] = EQ0 [m(y,y′, θ0)f(y,y′)] .

According to Greenwood and Wefelmeyer (1995), we know that

(172) EQ0
[
h(y0,y1, θ0)h(y0,y1, θ0)T

]
=

∞∑
τ=−∞

EQ0
[
m(y0,y1, θ0)m(yτ ,yτ+1θ0)T

]
= I.

By Markov’s property and the law of iterated projections, for all k ≥ 0,

(173) EQ0
{

EQ0 [m(yk,yk+1, θ0)|y1] |y0

}
= EQ0 [m(yk,yk+1, θ0)|y0] .

Therefore, EQ0 [h(y,y′, θ0)|y] = 0.

8. Proof of Proposition 8.

The proof follows the standard GMM approximations in Hansen (1982), Hansen (2007b), and Hansen (2012).

9. Proof of Proposition 9.

The cases of ψs with s ∈ {e, o} follow the same derivations, and so we only show the case s = e. We first prove

part (i). Given the parameter value θ(1)
e,n , the constrained efficient GMM estimator (θ(1)

e,n , ψe(θ
(1)
e,n ))T for the full
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model satisfies the first-order condition

(174) ∇J(θ(1)
e,n , ψe(θ

(1)
e,n );yne ) = ΓTθ,1Λe,n, with Γθ,1 = [I, 0dθ,1×dθ,2 ],

and Λe,n is a dθ,1×1 vector of Lagrangian multipliers for the constraints Γθ,1θ = θ
(1)
n in search of the constrained

GMM estimator (θ(1)
e,n , ψe(θ

(1)
e,n ))T . The Taylor expansion of ∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) around θ0 leads to

1√
πn

ΓTθ,1Λe,n = 2DT

 1√
πn

∑
t≤πn

mt(θ0)

+ 2IQ
√
πn

 θ(1)
e,n − θ

(1)
0

ψe(θ
(1)
e,n )− θ(2)

0

+ op(1).(175)

We first multiply both sides of (175) by Γθ,1I
−1
Q , and then by

(
Γθ,1I

−1
Q ΓTθ,1

)−1

. The optimal Lagrangian multi-

pliers can be represented as

1√
πn

Λe,n = 2
(
Γθ,1I

−1
Q ΓTθ,1

)−1
Γθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

(176)

+ 2
(
Γθ,1I

−1
Q ΓTθ,1

)−1√
πn(θ(1)

e,n − θ
(1)
0 ) + op(1).

Substituting (175) and (176) into (174) yields

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) = 2ΓTθ,1

(
Γθ,1I

−1
Q ΓTθ,1

)−1
Γθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

(177)

+ 2ΓTθ,1(Γθ,1I
−1
Q ΓTθ,1)−1

√
πn(θ(1)

e,n − θ
(1)
0 ) + op(1).

According to Proposition 1, we substitute (46) into (177) and obtain

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) = 2ΓTθ,1IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

(178)

− 2ΓTθ,1IFI
−1
B DT

11

[√
πλ(1)(g1) + λ(1)(g2)

∫ π

0

b(u)du/
√
π

]
+ op(1).

Based on (80), we have

(179)
1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) = 2ΓTθ,1IF

Γθ,1I
−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− I−1
B DT

11Γm,1ν(g, b, π)

+op(1).

Given the baseline efficient GMM estimator θ̃(1)
e,n based on the estimation sample, the constrained GMM estimator

(θ̃(1)
e,n , ψe(θ̃

(1)
e,n ))T for the full model satisfies the first-order condition

(180) ∇J(θ̃(1)
e,n , ψe(θ̃

(1)
e,n );yne ) = ΓTθ,1Λ(1)

e,n , with Γθ,1 = [I, 0dθ,1×dθ,2 ],

and Λ(1)
e,n is a dθ,1×1 vector of Lagrangian multipliers for the constraints Γθ,1θ = θ̃(1)

e,n in search of the constrained

GMM estimator (θ̃(1)
e,n , ψe(θ̃

(1)
e,n ))T . The Taylor expansion of ∇J(θ̃(1)

e,n , ψe(θ̃
(1)
e,n );yne ) around (θ(1)

e,n , ψe(θ
(1)
e,n ))T , to-



70 HUI CHEN, WINSTON WEI DOU, AND LEONID KOGAN NOVEMBER 26, 2019

gether with (180), leads to

(181)
1√
πn

ΓTθ,1Λ(1)
e,n =

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) + 2IQ

√
πn

 θ̃(1)
e,n − θ(1)

e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

+ op(1).

We first multiply both sides of (181) by Γθ,1I
−1
Q , and then by

(
Γθ,1IQΓTθ,1

)−1

. The optimal Lagrangian multipliers

can be represented as

(182)
1√
πn

Λ(1)
e,n = IFΓθ,1I

−1
Q

1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne ) + 2IF

√
πn(θ̃(1)

e,n − θ(1)
e,n ) + op(1).

Further substituting (177) into equation (182) above yields

1√
πn

Λ(1)
e,n = 2IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

+ 2IF

√
πn(θ̃(1)

e,n − θ
(1)
0 ) + op(1).(183)

Based on Proposition 8, we obtain

√
πn(θ̃(1)

e,n − θ
(1)
0 ) = −I−1

B DT
11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )

+ op(1).(184)

Substituting (184) into (183) gives the following asymptotic representation of 1√
πn

Λ(1)
e,n :

1√
πn

Λ(1)
e,n = 2IFΓθ,1I

−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− 2IFI
−1
B DT

11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )

+ op(1).(185)

We substitute (177) and (185) into (181) and multiply the both sides by I−1
Q /2. The estimator can be represented

by

√
πn

 θ̃(1)
e,n − θ(1)

e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

 = −I−1
Q ΓTθ,1IFI

−1
B DT

11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
0 )− ν(1)

e (g, b, π)

+ op(1)(186)

= −I−1
Q ΓTθ,1IFI

−1
B DT

11

 1√
πn

∑
t≤πn

m
(1)
t (θ

(1)
n,t)

+ op(1).

Now we prove part (ii). The estimators ψe(θ
(1)
e,n ) and θ̂(2)

e,n = ψe(θ̂
(1)
e,n ) are the constrained efficient GMM

estimators for the nuisance parameter θ(2) when controlling for Γθ,1θ = θ(1)
e,n and Γθ,1θ = θ̂(1)

e,n , respectively. Due

to the first order condition ∇J(θ̂
(1)
n , ψe(θ̂

(1)
n );yne ) = 0, the Taylor expansion of ∇J(θ̂

(1)
n , ψe(θ̂

(1)
n );yne ) around

(θ(1)
e,n , ψe(θ

(1)
e,n ))T leads to

(187) 0 = ∇J(θ(1)
e,n , ψe(θ

(1)
e,n );yne ) + 2IQ

√
πn

 θ̂(1)
e,n − θ(1)

e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

+ op(1).
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Substituting (177) into (187) and multiplying the both sides by I−1
Q /2, we have

√
πn

 θ̂(1)
e,n − θ(1)

e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

 = −I−1
Q ΓTθ,1IF

Γθ,1I
−1
Q DT

 1√
πn

∑
t≤πn

mt(θ0)

− I−1
B DT

11Γm,1νe

+ op(1).(188)

10. Proof of Proposition 10

We first approximate L(θ̃(1)
e,n ;yne ). According to the second-order Taylor expansion around (θ(1)

e,n , ψe(θ
(1)
e,n )), it

follows that

L(θ̃(1)
e,n ;yne ) =

[
1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne )

]T √
πn

 θ̃(1)
e,n − θ(1)

e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

(189)

+
√
πn

 θ̃(1)
e,n − θ(1)

e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

T IQ
√
πn

 θ̃(1)
e,n − θ(1)

e,n

ψe(θ̃
(1)
e,n )− ψe(θ

(1)
e,n )

+ op(1).

Thus, following (179) and (186),

L(θ̃(1)
e,n ;yne ) = −2 [LFζe,n + L∆νe]

T
IFLBζe,n + ζTe,nL

T
BIFLBζe,n + op(1).(190)

We now approximate L(θ̃(1)
e,n ;yno ). According to the second-order Taylor expansion around (θ(1)

o,n , ψo(θ(1)
o,n )), it

follows that

L(θ̃(1)
e,n ;yno ) =

[
1√
πn
∇J(θ(1)

o,n , ψo(θ(1)
o,n );yno )

]T √
πn

 θ̃(1)
e,n − θ(1)

o,n

ψo(θ̃(1)
e,n )− ψo(θ(1)

o,n )

(191)

+
√
πn

 θ̃(1)
e,n − θ(1)

o,n

ψo(θ̃(1)
e,n )− ψo(θ(1)

o,n )

T IQ
√
πn

 θ̃(1)
e,n − θ(1)

o,n

ψo(θ̃(1)
e,n )− ψo(θ(1)

o,n )

+ op(1).

Similarly,

L(θ̃(1)
e,n ;yno ) = −2 [LFζo,n + L∆νo]

T
IFLBζe,n + ζTe,nL

T
BIFLBζe,n + op(1).(192)

We now approximate L(θ̂(1)
e,n ;yne ). According to the second-order Taylor expansion around (θ(1)

e,n , ψo(θ(1)
e,n )), it

follows that

L(θ̂(1)
e,n ;yne ) =

[
1√
πn
∇J(θ(1)

e,n , ψe(θ
(1)
e,n );yne )

]T √
πn

 θ̂(1)
e,n − θ(1)

e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

(193)

+
√
πn

 θ̂(1)
e,n − θ(1)

e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

T IQ
√
πn

 θ̂(1)
e,n − θ(1)

e,n

ψe(θ̂
(1)
e,n )− ψe(θ

(1)
e,n )

+ op(1).

Similarly,

(194) L(θ̂(1)
e,n ;yne ) = − [LFζe,n + L∆νe]

T
IF [LFζe,n + L∆νe] + op(1).
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We now approximate L(θ̂(1)
e,n ;yno ). According to the second-order Taylor expansion around (θ(1)

o,n , ψo(θ(1)
o,n )), it

follows that

L(θ̂(1)
e,n ;yno ) =

[
1√
πn
∇J(θ(1)

o,n , ψo(θ(1)
o,n );yno )

]T √
πn

 θ̂(1)
e,n − θ(1)

o,n

ψo(θ̂(1)
e,n )− ψo(θ(1)

o,n )

(195)

+
√
πn

 θ̂(1)
e,n − θ(1)

o,n

ψo(θ̂(1)
e,n )− ψo(θ(1)

o,n )

T IQ
√
πn

 θ̂(1)
e,n − θ(1)

o,n

ψo(θ̂(1)
e,n )− ψo(θ(1)

o,n )

+ op(1).

Similarly,

L(θ̃(1)
e,n ;yno ) = −2 [LFζo,n + L∆νo]

T
IF [LFζe,n + L∆νe] + [LFζe,n + L∆νe]

T
IF [LFζe,n + L∆νe] + op(1).(196)

APPENDIX E: PROOFS OF COROLLARIES

1. Proof of Corollary 1

We can derive the result following the same derivations for (156) under the baseline GMM model Q(1).

2. Proof of Corollary 2

The proof is similar to that of Lemma 1 of Li and Müller (2009), which is based on Le Cam’s first lemma (see,

e.g., van der Vaart, 1998, Page 88).

APPENDIX F: DERIVATION OF THE DISASTER RISK MODEL

We first show how to derive the Euler equation, and then how to obtain the dark matter measure %(p, ξ). The

total return of market equity from t to t+1 is erM,t+1 , which is unknown at t, and the total return of the risk-free

bond from t to t+ 1 is erf,t , which is known at t. Thus, the excess log return of equity is rt+1 = rM,t+1 − rf,t.
The inter-temporal marginal rate of substitution is Mt,t+1 = δDe

−γDgt+1 . The Euler equations for the risk-free

rate and the market equity return are

(197) 1 = Et [Mt,t+1e
rM,t+1 ] and e−rf,t = Et [Mt,t+1] .

Thus, we obtain the following Euler equation for the excess log return:

(198) Et [Mt,t+1] = Et [Mt,t+1e
rt+1 ] .

The left-hand side of (198) is equal to

Et [Mt,t+1] = Et
[
e−γDgt+1

]
= (1− p)e−γDµ+ 1

2γ
2
Dσ

2

+ pξ
eγDv

ξ − γD

,
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and the right-hand side of (198) is equal to

Et [Mt,t+1e
rt+1 ] = Et

[
e−γDgt+1+rt+1

]
= (1− p)e−γDµ+η+ 1

2 (γ2
Dξ

2+τ2−2γDρστ) + pξ
e
ς2

2 +(γD−b)v

ξ + b− γD

.

Thus, the Euler equation (198) can be rewritten as

(199) (1− p)e−γDµ+ 1
2γ

2
Dσ

2
[
eη+ τ2

2 −γDρστ − 1
]

= p∆(ξ), where ∆(ξ) = ξ

(
eγDv

ξ − γD

− e
ς2

2 +(γD−b)v

ξ + b− γD

)
.

Using the Taylor expansion, we obtain the approximation

(200) eη+ τ2

2 −γDρστ − 1 ≈ η +
τ2

2
− γDρστ,

which, combined with (199), gives the approximated Euler equation in (69).

Now, we show how to derive the dark matter measure. The Jacobian matrix of the moment restrictions and

the asymptotic variance-covariance matrix are

(201) D11 =

 −1 0

0 − p
ξ2

 and Ω11 =

 p(1− p) 0

0 (1− p)σ2 +
p
ξ2

 ≈
 p(1− p) 0

0
p
ξ2

 , respectively.

The approximation above is simply due to the tiny magnitude of σ2 ≈ 0. The information matrix for the baseline

model is

(202) Σ1 = DT
11Ω−1

11 D11 ≈

 1
p(1− p) 0

0
p
ξ2

 .
Next, the Jacobian matrix of moments restrictions and the asymptotic variance-covariance matrix for the full

model are

(203) D =


−1 0

0 − p
ξ2

−(1− p)∂η(p, ξ)
∂p

−(1− p)∂η(p, ξ)
∂ξ

− pb
ξ2

 ,

and

(204) Ω =


p(1− p) 0 0

0 (1− p)σ2 +
p
ξ2 (1− p)ρστ + bp/ξ2

0 (1− p)ρστ + bp/ξ2 (1− p)τ2 + pb2/ξ2

 ,

where

(205) η(p, ξ) ≡ γDρστ −
τ2

2
+ ln

[
1 + eγDµ−

γ2
D
σ2

2 ξ

(
eγDv

ξ − γD

− e 1
2 ς

2 e(γD−b)v

ξ + b− γD

)
p

1− p

]
.
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We can also derive the closed-form solution for the dark matter measure in (71) if we use the approximate Euler

equation in (69). In this case, using the notation introduced in (69) and (72), we can express the information

matrix for (p, ξ) under the full GMM model as

(206) Σ ≈


1

p(1− p) +
∆(ξ)2

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)3
p

(1− ρ2)τ2
e2γDµ−γ2

Dσ
2

(1− p)2 ∆(ξ)∆̇(ξ)

p
(1− ρ2)τ2

e2γDµ−γ2
Dσ

2

(1− p)2 ∆(ξ)∆̇(ξ)
p
ξ2 +

∆̇ (ξ)
2(

1− ρ2
)
τ2 e

2γDµ−γ2
Dσ

2 p2

1− p

 .

The largest eigenvalue of the matrix Σ1/2Σ−1
1 Σ1/2 is also the largest eigenvalue of Σ

−1/2
1 ΣΣ

−1/2
1 . In this case,

the eigenvalues and eigenvectors are available in closed form. This gives us the formula for %(θ) in (71).

APPENDIX G: MISCELLANEOUS PROOFS AND DERIVATIONS

G.1. Moment Rotations

Construct a lower block triangular matrix L =

 L11 0

L21 L22

 such that

(207) Ω−1 = LTL.

It is most straightforward to analyze a rotated system of moment restrictions. Let

(208) m̃t(θ) = Lmt(θ) =

 L11m
(1)
t (θ(1))

L21m
(1)
t (θ(1)) + L22m

(2)
t (θ)

 =

 m̃
(1)
t (θ(1))

m̃
(2)
t (θ)

 .
Further, we let

(209) D̃ = LD =

 L11D11 0

L21D11 + L22D21 L22D22

 =

 D̃11 0

D̃21 D̃22

 .
For notational simplicity, we drop the ˜ but use the transformed system.

G.2. Hellinger-Differentiability Condition

The condition (35) is equivalent to the condition

(210)

(
dQs,g

dQ

)1/2

= 1 +
1

2
sg + sε(s),

where ε(s) converges to zero in L2(Q) as s→ 0. Equation (210) is equivalent to

(211) lim
s→0

∫ [
1

s

((
dQs,g

dQ

)1/2

− 1

)
− 1

2
g

]2

dQ = lim
s→0

∫
ε(s)2dQ = 0.
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G.3. The Expression of Λ

Let D = [D1, D2] where DT
1 = [DT

11, D
T
21] and DT

2 = [0, DT
22]. Thus, we have28

P2 = I −D2

(
DT

2 D2

)−1
DT

2 =

 I 0

0 Λ2

 .(212)

Using the rules for the inversion of partitioned matrices, we have

(
DTD

)−1
=

 (
DT

1 P2D1

)−1 −
(
DT

1 P2D1

)−1
DT

1 D2

(
DT

2 D2

)−1

−
(
DT

2 D2

)−1
DT

2 D1

(
DT

1 P2D1

)−1 (
DT

2 D2

)−1
+
(
DT

2 D2

)−1
DT

2 D1

(
DT

1 P2D1

)−1
DT

1 D2

(
DT

2 D2

)−1

 .
We can then show that

D
(
DTD

)−1
DT = D1

(
DT

1 P2D1

)−1
DT

1 −D1

(
DT

1 P2D1

)−1
DT

1 (I − P2)

− (I − P2)D1

(
DT

1 P2D1

)−1
DT

1

+ (I − P2) + (I −M2)D1

(
DT

1 P2D1

)−1
DT

1 (I − P2)

= I − P2 + P2D1

(
DT

1 P2D1

)−1
DT

1 P2.(213)

We conclude that

(214) Λ = I −D
(
DTD

)−1
DT = P2 − P2D1

(
DT

1 P2D1

)−1
DT

1 P2.

Recall that IF = DT
1 P2D1 (from Equation (31)). The matrix Λ can be rewritten as

(215) Λ =

 I −D11I
−1
F DT

11 D11I
−1
F DT

11Λ2

Λ2D11I
−1
F DT

11 Λ2 − Λ2D21I
−1
F DT

21Λ2

 .

APPENDIX H: DARK MATTER OF LONG-RUN RISK MODELS

In the second example, we consider a long-run risk model similar to Bansal and Yaron (2004) and Bansal, Kiku,

and Yaron (2012). In the model, the representative agent has recursive preferences as in Epstein and Zin (1989)

and Weil (1989) and maximizes her lifetime utility,

(216) Vt =

[
(1− δL)C

1−1/ψL
t + δL

(
Et
[
V

1−γL
t+1

]) 1−1/ψL
1−γL

] 1
1−1/ψL

,

where Ct is consumption at time t, δL is the rate of time preference, γL is the coefficient of risk aversion for

timeless gambles, and ψL is the elasticity of intertemporal substitution when there is perfect certainty. The

log growth rate of consumption ∆ct, the expected consumption growth xt, and the conditional volatility of

28The matrix inversion is the generalized inversion.
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consumption growth σt evolve as follows:

∆ct+1 = µc + xt + σtεc,t+1,(217a)

xt+1 = ρxt + ϕxσtεx,t+1,(217b)

σ̃2
t+1 = σ2 + ν(σ̃2

t − σ2) + σwεσ,t+1,(217c)

σ2
t+1 = max

(
σ2, σ̃2

t+1

)
,(217d)

where the shocks εc,t, εx,t, and εσ,t are i.i.d. N(0, 1) and mutually independent. The volatility process (217c)

potentially allows for negative values of σ̃2
t . Following the literature, we impose a small positive lower bound

σ (= 1 bps) on variance σt in solutions and simulations. Negative values of conditional variance can also be

avoided by changing the specification. For example, the process of σ2
t can be specified as a discrete-time version

of the square root process.29

Next, the log dividend growth ∆dt follows

(218) ∆dt+1 = µd + φdxt + ϕd,cσtεc,t+1 + ϕd,dσtεd,t+1,

where the shocks εd,t are i.i.d. N(0, 1) and independent of the other shocks in (217a–217c). The equilibrium

excess log return follows

(219) ret+1 = µer,t + βcσtεc,t+1 + βxσtεx,t+1 + βσσwεσ,t+1 + ϕd,dσtεd,t+1,

where the conditional average log excess return is

µer,t = λcβcσ
2
t + λxβxϕxσ

2
t + λσβσσ

2
w −

1

2
σ2
rm,t,(220)

where σ2
rm,t = β2

cσ
2
t + β2

xσ
2
t + β2

σσ
2
w + ϕ2

d,dσ
2
t .(221)

The expressions for λc, λx, λσ, βc, βx, βσ, and Am,j with j = 0, 1, 2 are presented in Online Appendix.

The model contains stochastic singularities. For instance, the excess log market return ret+1 is a deterministic

function of ∆ct+1,∆dt+1, xt+1, xt, σ
2
t+1, and σ2

t . The log price-dividend ratio zm,t is a deterministic function

of xt and σ2
t . To avoid the problems posed by stochastic singularities, we add noise shocks ϕrσtεr,t+1 to stock

returns, with εr,t being i.i.d. standard normal variables and mutually independent of other variables. This is a

standard approach in the dynamic stochastic general equilibrium (DSGE) literature for dealing with stochastic

singularity. The stochastic singularity is one of the main reasons why we adopt the moment-based method,

rather than the likelihood-based method, to evaluate and characterize the structural models.

29To ensure that our analysis applies as closely as possible to the model as formulated in the literature, we
deliberately choose to follow Bansal, Kiku, and Yaron (2012, 2016a). In particular, following these papers, we
also solve the model using a local log-linear expansion around the steady state. Thus, the approximate price-
dividend ratio is not affected by the presence of the lower bound on the conditional variance process. As Bansal,
Kiku, and Yaron (2016a) show, the resulting approximation error, when compared to the global numerical
solution, is negligible. When computing our asymptotic Fisher fragility measure, we impose the lower bound on
conditional variance. Thus, our asymptotic measure reflects the specification of the conditional variance process
with the lower bound.
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TABLE I

Parameters of the Benchmark Long-Run Risk Model (M1).

Preferences δL γL ψL

0.9989 10 1.5
Consumption µc ρ ϕx σ ν σw

0.0015 0.975 0.038 0.0072 0.999 2.8e− 6
Dividends µd φd ϕd,c ϕd,d

0.0015 2.5 2.6 5.96
Returns ϕr

3.0

Note: Model M2 has ν = 0.98 and γL = 27, while the other parameters are the same as in Model M1.

Quantitative analysis

In our computation of the dark matter measure, we consider a system of moment restrictions based on the joint

dynamics of time series (∆ct+1, xt, σ
2
t ,∆dt+1, r

e
t+1).30

We choose the model of consumption (217a)–(217d) and dividend (218) as the baseline model Q(1) with

variables (∆ct+1, xt, σ
2
t ,∆dt+1). The moment restrictions associated with the baseline model constitute the set

of baseline moment restrictions. We assume that the econometrician observes the processes of consumption and

dividends, including the conditional mean and volatility xt and σ2
t , and the process of asset returns.

The simulated moments and sample moments are listed in Table II. The sample moments are based on

annual data from 1930 to 2008, and the simulated moments are 80-year annual data aggregated from monthly

simulated data.

TABLE II

Simulated and Sample Moments.

Data Model 1 Model 2
Moment Estimate 5% Median 95% 5% Median 95%

E [rM − rf ] 7.09 2.33 5.88 10.58 3.65 6.78 10.05
E [rM ] 7.66 2.91 6.66 11.20 4.42 7.75 11.20
σ (rM ) 20.28 12.10 20.99 29.11 15.01 17.55 20.33
E [rf ] 0.57 -0.20 0.77 1.45 0.47 0.96 1.46
σ (rf ) 2.86 0.64 1.07 1.62 0.73 0.94 1.23
E [p− d] 3.36 2.69 2.99 3.30 2.77 2.81 2.85
σ (p− d) 0.45 0.13 0.18 0.28 0.09 0.11 0.13

Accordingly, the baseline parameters are θ(1) = (µc, ρ, ϕx, σ
2, ν, σw, µd, φd, ϕd,c, ϕd,d) with dθ,1 = 10. By

measuring the fragility of the long-run risk model relative to this particular baseline, we can interpret the

fragility measure as quantifying the information that asset pricing restrictions provide for the consumption and

dividend dynamics above and beyond the information contained in consumption and dividend data. We explicitly

account for uncertainty about preference parameters γL and ψL by including them in the nuisance parameter

vector θ(2). Thus, θ(2) = (γL, ψL). The extra data investigated by the full structural model Q are the excess log

market returns ret+1. Other parameters, included in the auxiliary parameter vector (δL, ϕr), are fixed at known

30Details can be found in the Online Appendix.
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TABLE III

Dark Matter Measures for the Long-Run Risk Models

Model %(θ0)
θ(1)

µc ρ ϕx σ2 ν σw µd φd ϕd,c ϕd,d

I. Nuisance parameter vector ψ: (γL, ψL)

(M1) 196.3 1.0 1.1 1.0 48.9 97.8 1.0 1.0 3.4 1.0 1.0

(M2) 21.1 1.0 1.1 1.0 1.0 3.4 1.0 1.4 4.2 1.0 1.0

II. Nuisance parameter vector ψ: empty

(M1) 3.57 · 105 1.0 2.1 1.1 115.6 117.5 1.3 1.1 7.1 1.0 1.0

(M2) 287.7 1.0 2.5 1.0 1.0 6.3 1.0 1.9 31.3 1.0 1.0

Note: The direction corresponding to the worst-case one-dimensional fragility measure %(θ0) for Model M1 is

given by v∗max = [0.000, 0.000,−0.000, 0.020,−0.001, 0.999,−0.001, 0.000,−0.000, 0.000]. Model M2 has ν = 0.98

and γL = 27 with other parameters unchanged. In Panel I, we account for the uncertainty of preference

parameters θ(2) = (γL, ψL) to compute the dark matter measure of the baseline parameters θ(1). That is, θ(1)

and θ(2) are treated as unknown parameters, while (δL, ϕr) are treated as auxiliary parameters with known

fixed values in Panel I. In Panel II, these preference parameters are fixed as auxiliary parameters with the

nuisance parameter vector θ(2) empty. That is, θ(1) is treated as unknown parameters, while (γL, ψL) and

(δL, ϕr) are treated as auxiliary parameters with known fixed values in Panel II.

values. These values form a part of the imposed functional-form specification of the structural component that

is under fragility assessment. Note that the baseline model covers the joint dynamics of consumption growth

and dividend growth. The structural model adds the description of the distribution of stock returns in relation

to the consumption and dividend growth processes.

The parameter values of Model M1 follow Bansal, Kiku, and Yaron (2012) and are summarized in Table I.

As Bansal, Kiku, and Yaron (2012) (Table 2, page 194) show, the simulated first and second moments, based

on the parametrization of Model M1, match the set of key asset pricing moments in the data reasonably well.

The same is true for Model M2, whose parameter values are also reported in Table III (see Table II for the asset

pricing moment matching). Our main purpose of presenting Table III is to compare the fragility of M1 and M2,

two different calibrations of the LRR model, while the two panels are meant to further illustrate the fact that

different treatments of the nuisance parameters can also affect the fragility measure.

First, consider Panel I of Table III. This panel contains fragility measures computed under the specification

that treats preference parameters as unknown nuisance parameters whose uncertainty needs to be taken into

account when computing the dark matter measure. The row (M1) of Panel I reports fragility measures for Model

M1 when the unknown nuisance parameters are γL and ψL. The dark matter measure %(θ0) = 196.3 is large.

This implies that to match the precision of the estimator for the full structural model in all directions, the

estimator based on the baseline model would require a time-series sample that is 196.3 times as long.

A high value of %(θ0) suggests that the asset pricing implications of the structural model are highly sensitive

to plausible perturbations of parameter values. We compute the fragility measure for each individual parameter

in the vector θ(1). All of the univariate measures are much lower than the worst-case one-dimensional fragility
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measure (i.e. the dark matter measure) %(θ0), with a larger fragility measure for σ2 (the long-run variance of

consumption growth) and ν (the persistence of conditional variance of consumption growth) than for the other

individual parameters. This shows that it is not sufficient to consider perturbations of parameters one at a time

to quantify model fragility; Müller (2012) highlighted a similar insight on sensitivity analysis.

In comparison, in Panel II of Table III we show fragility measures under the specification that ignores the

uncertainty about preference parameters. This type of analysis is sensible if the model is not fully estimated, but

rather the preference parameters are fixed at certain values. For instance, one may specifically design a model to

capture the moments of asset returns with a low value of risk aversion. In that case, the choice of the preference

parameters is effectively subsumed by the specification of the functional form of the model, and treating them

as auxiliary parameters is in line with the logic of the model construction. The fragility measures in Panel II

are higher. In particular, the worst-case one-dimensional fragility (i.e. the dark matter measure) %(θ0) increases

dramatically from 196.3 to 3.57 · 105.

In our model we have assumed that the conditional mean and volatility of consumption growth, xt and σt, are

observable. An interesting question is whether the model becomes more or less fragile when agents observe xt and

σt but the econometrician does not (e.g., Schorfheide, Song, and Yaron, 2018). When the agents themselves need

to learn about the latent states and potentially deal with model uncertainty (e.g., Collin-Dufresne, Johannes,

and Lochstoer, 2016; Hansen and Sargent, 2010), the cross-equation restrictions implied by asset prices differ

from the case of fully observable state variables. It is therefore difficult to establish the precise effect of limited

observability on model fragility without further analysis, which is beyond the scope of this paper. Numerically,

the assumption that xt and σ2
t are observable means that we do not need to integrate out xt or σ2

t in the moment

restrictions when computing the model fragility measure. Furthermore, since we are examining the fragility of

a specific calibration of the model, we can compute the fragility measure under the set of calibrated parameter

values, instead of having to first filter out the values of xt and σ2
t from the data, as in Constantinides and

Ghosh (2011), Bansal, Kiku, and Yaron (2016b), and Schorfheide, Song, and Yaron (2018), and then estimate

the corresponding parameter values.

Monte Carlo experiments

We use simulations to illustrate the connections between the dark matter measure, internal refutability, and

external validity of long-run risk models in finite samples. In the simulation experiment, we assume that all the

parameters except ν are treated as auxiliary parameters, fixed at known constant values and thus subsumed into

the functional form of the moment function (i.e. model specifications). From the dark matter evaluation in Table

III, we learn that the assumed identification of ν (i.e., the uncertainty of ν) is a major source of model fragility

for long-run risk models. Focusing on ν simplifies our simulation illustration and increases the transparency

by allowing us to consider a few key (transformed) moment restrictions (i.e. a small yet essential subset of the

moment restrictions used in constructing Table III):

(222) mt(θ) = Ω(θ)−1/2

 (σ̃2
t − σ2)εσ,t+1

ret+1 − µer,t − βcσtεc,t+1 − βxσtεx,t+1 − βσσwεσ,t+1

 and θ = ν,



80 HUI CHEN, WINSTON WEI DOU, AND LEONID KOGAN NOVEMBER 26, 2019

where variables εc,t+1, εx,t+1, and εσ,t+1 are the residuals in (217a) – (217d) depending on observed data and

unknown parameters in θ, and µer,t is defined in (220) and also dependent on observed data and unknown

parameters in θ. Here Ω(θ) is the asymptotic covariance matrix of the untransformed moments, and it is a

diagonal matrix Ω(θ) = diag{σ2
w/(1 − ν2), ϕ2

d,dσ
2}. In equation (222), the first matrix element is the baseline

moment, and the second is the asset pricing moment. Clearly, the nuisance parameter vector θ(2) is empty in

this simulation example.

We assume that the true local data-generating process has a time-varying relation between the expected log

excess return and the dynamic parameters:

(223) ret,n = ret +
ιtδr√
n
, with ιt =

 1, when 1 ≤ t ≤ bπnc
−1, when bπnc < t ≤ n,

where the time series ιt captures the structural breaks. The corresponding moment biases, evaluated at θ0, are

(224) EQ0 [mt(θ0)] =

 0

λ
(2)
t√
n

 with λ
(2)
t ≡

ιtδr
ϕd,dσ

.

Therefore, under the data-generating processes M1 and M2 in Table I, the moments have identical local biases

λ
(2)
t after substituting the calibrated parameter values into (224). This guarantees that the comparisons across

models in Panels A and B of Figure 6 are valid.

Figure 6 shows three different simulation experiments. Panel A displays the local power functions of C tests.

The solid and dotted curves reflect the test powers when the data-generating processes are characterized by

calibrations M1 and M2 in Table I, respectively. In this experiment, we vary the local misspecification δr in

the risk premium. The data-generating process under calibration M1 features an excessively large amount of

dark matter according to Table I, and thus it has low internal refutability (i.e. little test power) consistent with

Theorem 1.

Panel B of Figure 6 displays the histograms of logged overfitting measures logO(θ̂(1)
e,n ,y

n) of efficient GMM

estimators for two data-generating processes under calibrations M1 and M2 in Table I. In this experiment, we

specify a structural break in the risk premium in the middle of the time-series sample with δr = 0.02. Panel B

shows that the calibrated structural model with too much dark matter (model M1) is likely to have more severe

overfitting concerns for the efficient GMM estimator, which is consistent with Theorem 2.

Panel C of Figure 6 compares the expected out-of-sample fits between recursive GMM estimators θ̃e,n and

efficient GMM estimators θ̂e,n. The two types of estimators are defined in Section 5.2. Consistent with the con-

ventional intuition, efficient GMM estimators outperform their recursive counterparts in terms of the expected

out-of-sample fit under the data-generating process M2. This is because the additional identification information

is reliable and meaningful when the amount of dark matter is not excessively large. On the contrary, recursive

GMM estimators outperform their efficient counterparts in terms of the expected out-of-sample fit under the

data-generating process M1 with too much dark matter. This means that the concern of misspecification and

instability entirely offsets– and even reverses – the efficiency gain from the additional moment restrictions.

Again, this experiment suggests that the econometrician should back off from efficiency to gain more robustness
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Figure 6.— Monte Carlo experiments for long-run risk models. In Panel A, we simulate 1000 independent
monthly time series with length n = 1200 (i.e. 100 years). In Panels B and C, we simulate 400 independent
monthly time series with length n = 1200 (i.e. 100 years) and break point π = 1/2. We set δr = 0.02 for Panels
B and C. In the simulation experiment, we assume that all the parameters except ν are treated as auxiliary
parameters fixed at known constant values, subsumed into the functional form of the moment function (i.e.
model specifications).

for the estimation results when the model contains a large amount of dark matter.
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