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ABSTRACT

We study the role of commitment in communication and its interactions with rules, which 
determine whether or not information is verifiable. Our framework nests models of cheap talk, 
information disclosure, and Bayesian persuasion. Our model predicts that commitment has 
opposite effects on information transmission under the two alternative rules. We leverage these 
contrasting forces to experimentally establish that subjects react to commitment in line with the 
main qualitative implications of the theory. Quantitatively, not all subjects behave as predicted. 
We show that a form of commitment blindness leads some senders to overcommunicate when 
information is verifiable and undercommunicate when it is not. This generates an unpredicted gap 
in information transmission across the two rules, suggesting a novel role for verifiable 
information in practice.
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1 Introduction

The goal of this paper is to experimentally study the effects of rules and commitment in com-

munication. We think of rules as restrictions on the language. They determine, for instance,

whether an agent can freely misreport what she knows or whether she can only use verifiable

information. Commitment captures the extent to which the agent can communicate accord-

ing to predetermined protocols. In the literature, commitment has been used to model, for in-

stance, how a school chooses a grading policy and a firm chooses an accounting standard.1 To-

gether, rules and commitment are defining features at the heart of any communication environ-

ment. For instance, models of cheap talk, information disclosure, and Bayesian persuasion dif-

fer among each other in ways that lead back to differences in rules and commitment. In many

concrete applications, it is difficult to measure the exact degree of commitment available to an

agent or the extent to which rules are enforced. Yet, rules and commitment do vary signifi-

cantly in practice, depending on the context and observables such as the frequency of commu-

nication. Thus, studying their effects on communication is a natural question.

We present a simple model of communication under partial commitment and consider two

opposing rules: verifiable and unverifiable information. The focus on partial commitment

is a key feature of our analysis: it allows us to nest many existing communication models

under the same umbrella and experimentally test key qualitative predictions about the role of

commitment in communication. The contrast between verifiable and unverifiable information

further enriches our analysis, as our main comparative static predictions have opposite signs

under these two alternative rules. Our main results indicate clear treatment effects in line

with the main qualitative predictions of the theory. We also uncover important quantitative

deviations. Specifically, we find that rules matter in ways that are unpredicted by the theory;

we propose a systematic rationalization for these departures.

We consider a sender-receiver model with binary states and actions. The sender wants the

receiver to choose a high action, whereas the receiver wishes to match the state. There are

three stages. In the commitment stage, the sender publicly commits to an information struc-

ture, which is a map between states and messages. Under unverifiable information, the sender

can freely misreport her private information. Under verifiable information, she can only con-

ceal it. In the revision stage, the sender learns the state and can privately revise the chosen in-

formation structure. In the last stage, the receiver observes a message and chooses an action.

The message is generated with probability ρ from the commitment stage and with the remain-

1Bergemann and Morris (2019) and Kamenica (2019) survey this literature.
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ing probability from the revision stage. We view the probability ρ as capturing the sender’s

commitment power: the higher ρ is, the higher the probability that the sender will not be able

to revise her strategy after learning the state and thus, the higher the extent to which she is

committed to her initial communication. Variations in commitment power generate predictions

that are qualitatively different depending on the communication rule. For example, an increase

in the sender’s commitment power should increase the amount of information conveyed under

unverifiable information, whereas it should decrease it under verifiable information. When the

sender can fully commit, these two scenarios coincide and the equilibrium informativeness is

independent of the communication rule. We exploit these predictions to experimentally test the

role of commitment in communication.

With this framework, we nest models of cheap talk (Crawford and Sobel, 1982; Green and

Stokey, 2007), disclosure (Grossman, 1981; Milgrom, 1981; Jovanovic, 1982; Okuno-Fujiwara

et al., 1990), and Bayesian persuasion (Kamenica and Gentzkow, 2011). Thus, we span a

considerable portion of the strategic information transmission models that have been discussed

in the literature in the last few decades. This helps in organizing our analysis in two ways.

First, the comparison across models generates asymmetric predictions that go to the heart of

the strategic tension of communication under commitment. As we illustrate in the paper, these

asymmetries discipline which explanations can be used to rationalize potential departures from

the theory. Second, the framework itself informs a parsimonious experimental design. In our

treatments, we change two parameters—the degree of commitment ρ and the verifiability of

information—while leaving the underlying structure of the game unchanged.

We begin by establishing several patterns in the data that are consistent with the key quali-

tative predictions of the theory. More specifically, we present two main sets of findings. First,

we show that both senders and receivers react to commitment. For senders, we exploit within-

treatment variation to show that between the commitment and revision stage, their behavior

changes in the directions predicted by the theory. When information is unverifiable, they reveal

much more information in the commitment stage than in the revision stage. When informa-

tion is verifiable, this ranking is reversed, as predicted by the theory. For receivers, we exploit

across-treatment variation to show that, as commitment increases, they become more respon-

sive to information from the commitment stage. That is, they understand that information con-

veyed in the commitment stage is more meaningful when the level of commitment is higher. In

our second main finding, we test how increasing commitment power changes the overall infor-

mativeness of communication. In line with the theory, we find that informativeness increases

with commitment in treatments with unverifiable information and decreases with commitment
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in treatments with verifiable information. Furthermore, we find that verifiability has the pre-

dicted effect of increasing the amount of information conveyed by senders. Overall, these

strong treatment effects validate the qualitative implications of the theory.

We then analyze the main quantitative deviations from the theory that we observe in the data.

In treatments with low commitment, we replicate existing findings in the literature by show-

ing that relative to the predictions of the theory, senders undercommunicate when information

is verifiable and overcommunicate when it is not.2 However, we find that the opposite holds

in treatments with high commitment: senders overcommunicate when information is verifiable

and undercommunicate when it is not. These deviations create an informativeness gap between

verifiable and unverifiable treatments, which is particularly apparent in the limiting case of full

commitment: empirically, informativeness is higher when information is verifiable than when

it is not, even though in theory, the informativeness should be the same. From a policy per-

spective, this excess informativeness presents a novel justification for making it more difficult

for senders to misreport their information.

We discuss the extent to which a model with boundedly rational agents may help explain

these deviations. We note that a number of plausible biases that have been explored in prior

work—such as lying-averse senders or non-Bayesian receivers—cannot rationalize the ob-

served deviations. Thus, we consider the possibility that a fraction of senders is commitment

blind: they behave under commitment as if they had no commitment power whatsoever. These

senders are incapable of exploiting commitment to their advantage. In both stages, they choose

a strategy that is optimal under no commitment. This bias has different implications on in-

formativeness depending on the communication rule and, in particular, could explain the ob-

served informativeness gap. To find evidence for commitment blindness, we look at treatments

with partial commitment, where we can observe the behavior of the same sender in scenarios

with and without commitment power. Our analysis reveals that there is a group of senders who

behave in ways that are compatible with commitment blindness. To evaluate whether this ex-

planation is fully capable of accounting for the quantitative departures from theory, we esti-

mate a structural model of Quantal Response Equilibrium (QRE). By clustering the observed

senders’ strategies in treatment-specific representative groups, we can capture the typical be-

havior of commitment-blind senders. For each treatment, we then simulate data from our es-

timated model and find that the model-implied equilibrium informativeness can explain a con-

siderable part of the gap observed in the data.

2For cheap talk, see the survey by Blume et al. (2020). For information disclosure, see Jin et al. (2020) and
references therein.
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Related Literature. The role of commitment in communication is at the center of the re-

cent literature on persuasion and information design (Kamenica, 2019; Bergemann and Mor-

ris, 2019). To study the effects of commitment, we innovate by considering a versatile frame-

work in which commitment can be varied experimentally. Recent theoretical contributions by

Lipnowski et al. (2018) and Min (2017) analyze in greater generality the implications of par-

tial commitment under unverifiable information.3 In a framework with no commitment, Kartik

(2009) studies changes in lying costs, bridging models of cheap talk and information disclo-

sure.

Our paper relates to a large body of experimental literature on cheap talk, which has been re-

cently surveyed by Blume et al. (2020). Models of cheap talk feature no commitment and un-

verifiable information and have been used to study a variety of phenomena, including lobbying

(Austen-Smith, 1993; Battaglini, 2002) and the interaction between legislative committees and

a legislature (Gilligan and Krehbiel, 1987, 1989). Dickhaut et al. (1995) was the first experi-

mental paper to test the central prediction of Crawford and Sobel (1982) that more preference

alignment between the sender and the receiver should result in more information transmission.

Their main result is consistent with this prediction. Forsythe et al. (1999) add a cheap-talk

communication stage to an adverse-selection environment with the feature that the theory pre-

dicts no trade and that communication does not help. By contrast, in the experiment, communi-

cation leads to additional trade, partly because receivers are too credulous. Blume et al. (1998)

study a richer environment and compare behavior when messages have preassigned meanings

with behavior when meanings emerge endogenously. Among other findings, they confirm that,

as in Forsythe et al. (1999), receivers are gullible. Cai and Wang (2006) also vary preference

alignment and find that senders overcommunicate relative to the predictions of the cheap-talk

model and that receivers are overly trusting.4

Our paper also relates to the literature on information disclosure. Disclosure models feature

no commitment but verifiable information and have been used to study quality disclosure by

a privately informed seller (e.g., Verrecchia, 1983; Dye, 1985; Galor, 1985). Milgrom (2008)

and Dranove and Jin (2010) survey this literature. In contrast to experiments on cheap talk, ex-

periments on the disclosure of verifiable information typically find that sender undercommu-

nicate relative to the theoretical predictions. For instance, Jin et al. (2020) find that receivers

are insufficiently skeptical when senders do not provide any information, which in turn leads

senders to under provide information.5 Jin et al. (2019) and de Clippel and Rozen (2020) find

3Perez-Richet and Skreta (2018) study a model of interim information manipulation under full commitment.
4See also Sánchez-Pagés and Vorsatz (2007), Wang et al. (2010), and Wilson and Vespa (2020).
5See also Forsythe et al. (1989), King and Wallin (1991), Dickhaut et al. (2003), Forsythe et al. (1999),
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evidence for strategic obfuscation of verifiable evidence in settings with no and full commit-

ment, respectively. Information unraveling has also been studied in the field. For instance,

Mathios (2000) and Jin and Leslie (2003) document the failures of information unraveling for

food nutrition labels and hygiene grade cards in restaurants.

One of our treatments replicates the leading example in Kamenica and Gentzkow (2011) and

is one of the first tests of Bayesian persuasion. This treatment features full commitment and

unverifiable information. Other papers have studied a similar treatment with different designs

and goals. Aristidou et al. (2019) compare the design of information and monetary incentives.

Their remarkably simple implementation imposes some aspects of the equilibrium behavior

onto subjects’ tasks. In their findings, senders are able to extract a higher rent from receivers

when using information rather than monetary incentives. On average, senders’ strategies are

close to equilibrium—a result that is in line with one of our findings. Au and Li (2018) augment

Bayesian persuasion with reciprocity and test their model in the lab. In their implementation,

senders directly choose posteriors instead of information structures. This simplifies senders’

tasks and eliminates the need for receivers to do Bayesian updating. Their results highlight

interesting inconsistencies relative to the standard theory. Finally, Nguyen (2017) uses an

intuitive interface for senders and allows them to choose among a small set of precompiled

communication strategies. Overall, given receivers’ behavior, a large fraction of senders behave

optimally and their behavior involves partial information transmission.

2 Theoretical Framework

In this section, we present our theoretical framework and discuss its main predictions. The

model achieves two goals. First, it captures settings where the sender has only partial commit-

ment power. Second, it highlights the contrast between verifiable and unverifiable information.

These features generate a rich set of predictions that we then exploit in our experimental design.

2.1 Model

There are two players: a sender and a receiver. The sender has private information about

the state, while the receiver can take an action that affects everyone’s payoff. The sender

communicates with the receiver by transmitting information, in an attempt to influence her

action. More specifically, let Θ = {θL, θH} be the state space and µ0 ∈ [0, 1] denote the common

Benndorf et al. (2015), Hagenbach et al. (2014), and Hagenback and Perez-Richet (2018).
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prior probability that the state is θH. The receiver chooses an action in A = {aL, aH}, and her

preferences are given by the following utility function:

u (aL, θL) = u (aH, θH) = 0, u (aL, θH) = − (1 − q) , u (aH, θL) = −q.

Thus, the receiver wishes to match her actions to the state, and the relative cost of the mistakes

in the two states is parametrized by q. A Bayesian receiver would choose action aH whenever

her posterior belief that the state is θH is larger than q. Thus, we call q the persuasion threshold.

The sender’s preferences are state-independent and given by v(a) = 1(a = aH). That is, the

sender earns a positive payoff only if she successfully persuades the receiver to take action aH.

To make the problem interesting, we assume that µ0 < q. That is, absent further information,

the receiver would choose aL.

The sender communicates with the receiver by sending her information about the state. An

information structure is a map π : Θ → ∆(M), with M = {θL, θH, n} being the set of possible

messages. Denote by ΠU the set of all such information structures and by Π the subset from

which the sender can choose. The difference between Π and ΠU captures exogenous restrictions

on the sender’s strategies, or communication rules. We say that information is unverifiable if no

restrictions are imposed on the sender, that is, Π = ΠU . We say that information is verifiable if,

instead, Π = ΠV := {π ∈ ΠU : π(θH |θL) = π(θL|θH) = 0}. In other words, verifiability demands

that message m = θ can only be sent by type θ. Therefore, we can interpret message m = θ as

a certifiable statement asserting that the state is indeed θ. Conversely, message n is a statement

that is neither true nor false and hence, cannot be verified.

The game unfolds in three consecutive stages. In the commitment stage, the sender publicly

chooses a commitment strategy πC ∈ Π before learning the state θ. In the revision stage, at

every history (πC, θ), the sender privately observes θ and chooses πR ∈ Π. Since πR is chosen

after observing θ, the sender has no commitment power in the revision stage. In the guessing

stage, the final stage of the game, a message m realizes with probability ρ ∈ [0, 1] from πC(·|θ)

and (1 − ρ) from πR(·|θ). For every history (πC, πR, θ,m), the receiver observes (πC,m) and

takes an action a(πC,m) ∈ A. The receiver updates her prior belief µ0 according to some belief

assessment µ(m, πC, πR) that assigns a posterior belief to each message m, possibly as a function

of πC and πR. We use Perfect Bayesian Equilibrium (PBE) as a solution concept.
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2.2 Discussion

We refer to ρ as the sender’s degree of commitment. It measures the extent to which the sender

is able to commit to her initial strategy πC. For high values of ρ, the commitment strategy πC

is likely to be the one that determines the final message m. Conversely, for low values of ρ, the

final message m is likely to be determined by the choice in the revision stage, after the sender

has learned the state.6

Our framework is characterized by three main parameters: (i) the communication rule, ΠU

versus ΠV , (ii) the degree of commitment ρ, (iii) the persuasion threshold q. This framework

can nest several classic communication models as special cases. When ρ = 0 and information

is unverifiable, our model captures cheap-talk communication. When ρ = 0 and information is

verifiable, our model captures a disclosure game with verifiable communication. Finally, when

ρ = 1 and information is unverifiable, our model becomes a Bayesian persuasion game.

An equilibrium outcome of particular interest for us is the informativeness of the equilibrium

strategy, that is, the amount of information that the sender conveys to the receiver. We say that

an equilibrium (πC, πR, a, µ) under parameters (Π, ρ, q) is more informative than equilibrium

(π′C, π
′
R, a

′, µ′) under parameters (Π′, ρ′, q′) if the on-the-equilibrium-path information structure

ρπC +(1−ρ)πR is more informative than ρ′π′C +(1−ρ′)π′R. We measure the informativeness of an

information structure π ∈ Π as the correlation between the state and the action it induces.7 We

denote such correlation by φB(π). More formally, fix q and an arbitrary π. Define a(m, π) ∈ A

to be action that a Bayesian receiver would choose upon receiving message m from π. Then,

φB(π) := Corr(θ, a(m, π)) ∈ [0, 1]. We say that an information structure is uninformative if

φB(π) = 0, and that it is fully informative if φB(π) = 1. We say that π is more informative than

π′ if φB(π) ≥ φB(π′).

As in many communication games, our framework allows for multiple PBEs. We provide a

full equilibrium characterization in Appendix C. In the rest of the paper, we impose a simple

tie-breaking rule on equilibrium behavior that is inspired by Hart et al. (2017). We say that

a PBE is truth leaning if, whenever it is weakly optimal for type θH in the revision stage to

tell the truth (i.e. to send message m = θH), she does so. This tie-breaking rule is simple

6Alternative but equivalent interpretations are possible. One can think of the sender as having an opportunity
to revise her commitment strategy after learning the state, which occurs only with probability 1 − ρ. Another
interpretation of the game is that the revision game is always available but the sender has a type that determines
whether she will take advantage of the opportunity to revise the strategy. The parameter ρ is then the probability
that the sender is not this opportunistic type.

7There are other ways to measure informativeness. We offer a detailed discussion of this choice and its
alternatives in Section 3.3.
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but powerful. As we show in Proposition 1, it is sufficient to guarantee the uniqueness of

equilibrium outcomes. Moreover, it is weaker than the refinement introduced in Hart et al.

(2017). Indeed, it is not imposed on all types of senders in the revision stage, but only on type

θH.8 A fortiori, our tie-breaking rule is consistent with many of the equilibrium refinements

that have been proposed in the literature.9 Finally, this tie-breaking rule is consistent with our

data. For example, when information is verifiable, the average πR(θH |θH) in our data is about

0.95. In the rest of the paper, we maintain the specialization to truth leaning PBEs and we refer

to these as equilibria, without further qualification.

2.3 Main Predictions

We now describe the main comparative statics that we later bring to the lab. We begin with a

characterization of equilibrium informativeness for a fixed level of commitment power ρ and

contrast the equilibrium informativeness between the commitment and the revision stages.

Proposition 1. Fix ρ. Let ρ := q−µ0
q(1−µ0) and ρ̄ := q(1−µ0)

q(1−µ0)+(1−q)µ0
, and note that ρ ≤ ρ̄:

[Unverifiable Information] All equilibria at ρ have the same informativeness. In partic-

ular, these equilibria are uninformative if and only if ρ < ρ. Moreover, when ρ ≥ ρ, less

information is transmitted in the revision stage than in the commitment stage.

[Verifiable Information] All equilibria at ρ have the same informativeness. In particular,

these equilibria are fully informative if and only if ρ < ρ̄. Moreover, when ρ ≥ ρ̄, more

information is transmitted in the revision stage than in the commitment stage.

This result establishes the uniqueness of the equilibrium outcomes for each rule and com-

mitment level and it highlights the main tension between the commitment and revision stages.

This tension manifests itself in opposite ways under the two alternative rules, thus providing

useful and testable predictions that we will exploit in our experimental analysis. To understand

this result, we first consider two extreme cases. When ρ = 0, the sender has no commitment

power. Therefore, equilibria are fully informative when information is verifiable and uninfor-

mative otherwise. When ρ = 1, the sender has full commitment power. The equilibria fea-

ture partial information revelation in both of the verifiability scenarios that we consider. The

8More specifically, we do not require that, whenever type θL is indifferent in the revision stage she must send
message θL. When information is unverifiable, this extra requirement is too strong and can lead to non existence
of equilibria.

9See online Appendix C.5 of Hart et al. (2017)
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intuition for Proposition 1 is then the following. Under both verifiable and unverifiable infor-

mation, the sender would like to commit to persuading the receiver to choose the high action

as often as possible, and this requires partial information revelation. However, in the revision

stage, the sender is unable to resist the temptation to undo her commitments and manipulate in-

formation in her favor. Under verifiable information, this opportunity implies full information

disclosure in the revision stage; under unverifiable information, it implies sending the message

that induces the high action, regardless of the state (i.e. being uninformative). The presence

of the revision stage changes the sender’s problem in the commitment stage relative to the full

commitment case: relative to the revision stage, the sender overcommunicates when informa-

tion is unverifiable and undercommunicates when information is verifiable. These commitment

strategies are an attempt to obtain final posteriors that are as close as possible to the full com-

mitment scenario. When ρ is sufficiently high, partial information revelation occurs in both

verifiability scenarios because the revision stage cannot completely undo the positive effect of

the commitment stage. Overall, this result illustrates how changes in the rules can generate

stark contrasts in the way senders react to commitment power.

Our next result describes how equilibrium informativeness changes with commitment power

and how this depends on the communication rule.

Proposition 2. Fix q > µ0. When information is unverifiable, equilibrium informativeness

weakly increases in ρ. When information is verifiable, equilibrium informativeness weakly

decreases in ρ. Moreover, when ρ = 1, equilibrium informativeness is independent of the

communication rules.

This result illustrates that changes in commitment affect equilibrium informativeness in

starkly different ways depending on the communication rules.10 The intuition for this result

follows from the discussion above. As ρ increases, the revision stage becomes increasingly

less likely, and the relevance of the commitment stage increases. This allows the sender to ap-

proach the optimal solution under full commitment, ρ = 1. In our game, the equilibrium out-

come for ρ = 1 is independent of the rules of communication. To see this, note that when ρ = 1

and information is verifiable, the sender can replace the use of message θH with message n. By

doing so, she can induce the same joint distribution over states and actions that is optimal un-

der unverifiable information.
10These stark comparative statics hinge on the binary structure of our environments and the equilibrium refine-

ment. They may fail in more general environments. See Appendix C.1 and Lipnowski et al. (2018).
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3 Experimental Design

In this section, we describe the laboratory implementation of our model, the main treatments

that we conducted, and the different ways with which we measure informativeness from the

data. We view our experimental design as a particularly useful framework to organize our anal-

ysis of commitment and communication rules. As we illustrate in the next sections, subject be-

havior in any given treatment is heterogeneous and challenging to evaluate on its own. In con-

trast, the comparison across treatments, along with the asymmetric nature of our predictions,

goes to the heart of the strategic tension in our model.

3.1 Lab Implementation and Treatments

We begin by describing the implementation of the base game. An urn contains three balls, two

blue (θL = B) and one red (θH = R). A ball is drawn at random and µ0(θ = R) = 1/3. The

receiver takes a guess a ∈ {red, blue} and earns $2 if a matches the color of the ball θ. She

earns nothing otherwise. The sender wins $2 if a = red, irrespective of the state θ.

The game has three stages.11 In the commitment stage, the sender chooses an information

structure. She does so via a simple graphical interface. The sender selects πC(·|θ) by moving a

slider, one for each state. The slider’s bar is colored according to the conditional probabilities

implied by the sender’s choice. These probabilities are updated in real time in a table above the

slider bar. In the revision stage, the sender learns the color of the ball θ. With the same interface

as the one just described, she can revise the part of her strategy that concerns the realized

state. We do not elicit the sender’s choice for the state that did not realize. This design choice

makes the revision stage simpler and highlights the stark contrast between the commitment and

revision stage. Moreover, the revision stage is presented to the sender only when it matters, that

is, when commitment is partial. To minimize confusion, we do not show the revision stage for

treatments with full commitment. In the guessing stage, the receiver observes the information

structure chosen by the sender in the commitment stage but not the one chosen in the revision

stage. We use the strategy method to elicit the receiver’s choice: She makes a guess for each

possible message she could receive.

We have a 2×3 factorial between-subject design. Our experimental variables are the sender’s

commitment power ρ and the communication rules (verifiable versus unverifiable informa-

11In the lab, we referred to the these three stages with neutral labels: the communication, update, and guessing
stage. In the remainder of the paper, we maintain instead the nomenclature introduced in the previous section.
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Table 1: Treatments Denominations

Sender’s Commitment Power

Information ρ = 0.20 ρ = 0.80 ρ = 1

Verifiable V20 V80 V100

Unverifiable U20 U80 U100

tion). For each rule, we conducted three treatments with different degrees of commitment:

ρ ∈ {0.20, 0.80, 1}. This gives us a total of six treatments, which constitute the bulk of our in-

vestigation. Treatments are denoted as illustrated in Table 1. In treatments with verifiable in-

formation, the interface prevents senders from assigning positive probability to a red message

conditional on a blue ball or to a blue message conditional on a red ball. The interfaces are

identical in all other respects.

Table 2 reports the equilibrium strategy predictions for each treatment. Figure 1 reports the

predicted equilibrium outcomes. This set of treatments captures the key tensions of our model.

First, treatments V80 and U80 reveal the tension between the commitment and the revision

stage, as summarized by Proposition 1. This tension goes in opposite directions according to

whether or not information is verifiable. Second, informativeness is increasing in ρ when in-

formation is unverifiable, while the opposite holds when information is verifiable. Third, treat-

ments U100 and V100 are predicted to induce an identical outcome through senders’ strategies

that are substantially different. In the following sections, we will exploit these tensions to test

the role of commitment and rules in communication.

For each treatment, we conducted four sessions, for a total of 24 sessions. Each session

included 12 to 24 subjects (16 on average) for a total of 384 subjects recruited from the NYU

undergraduate population using hroot (Bock et al., 2014). At the beginning of each session,

instructions were read aloud, and subjects were randomly assigned into a fixed role: sender

or receiver. In each session, subjects played 25 paid rounds of the game described above,

with random rematching between rounds. At the end of every round, complete feedback was

provided to both senders and receivers. Appendix E.2 contains the instructions for one of our

treatments. In addition to their earnings from the experiment, subjects received a $10 show-

up fee. Average earnings, including the show-up fee, were $36.55, ranging from $12 to $60.

On average, sessions lasted 100 minutes. Our statistical analysis focuses on the last ten rounds

to allow enough time for subjects to familiarize themselves with the interface and to learn the

relevant strategic forces in the task they faced. As can be seen in Appendix D.3, some aspects

of behavior change over the course of the experiments.
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Table 2: Equilibrium Predictions

Sender Receiver Correlation

Commitment Revision Guessing Coefficient

Treat. State Message State Message Mes. Guess φ = φB

r b n r b n

R 1 0 R 1 0 r red
V20 B x 1 − x B x 1 − x b blue 1

n blue

R 0 1 R 1 0 r red
V80 B 3/4 1/4 B 0 1 b blue 0.57

n red

R 0 1 r red
V100 B 1/2 1/2 b blue 1/2

n red

R x y 1 − x − y R 1 0 0 r blue
U20 B x y 1 − x − y B 1 0 0 b blue 0

n blue

R 1 0 0 R 1 0 0 r red
U80 B 3/8 5/8 0 B 1 0 0 b blue 1/2

n blue

R 1 0 0 r red
U100 B 1/2 1/2 0 b blue 1/2

n blue
x and y indicate any (feasible) probability.

3.2 Discussion of Design Choices

We briefly discuss our main design choices.

Treatments. It is instinctive to think of ρ ∈ {1/3, 2/3, 1} as natural parametric choices. How-

ever, it is important to take into account the theoretical thresholds ρ and ρ̄. We choose ρ = 0.80

to allow equal distance between the theoretical threshold ρ̄—key for verifiable information—

and the full-commitment benchmark. The choice of ρ = 0.20 ensures symmetry. In our treat-

ments, we do not include the extreme case of ρ = 0 for two main reasons. First, this case is

the only one for which there is already experimental evidence, both for verifiable and unverifi-

able information. Our main interest lies in treatments with partial and full commitment: these

cases have not been tested in the lab and offer a unique opportunity to study the role of com-

mitment in communication. Second, the equilibrium outcomes at ρ = 0 are identical to those

at ρ = 0.20. In particular, results from the revision stage of treatments with ρ = 0.20 refer to a

setting where senders have effectively no commitment power and thus, should be seen as prox-

ies for U0 and V0.

Human Receivers. Senders’ behavior is the central and more novel aspect of our experiment.

Of course, senders’ behavior depends on their expectation of how best to manipulate receivers,

which in turn depends on the receivers’ observed behavior. One may think that there could

13
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Figure 1: Predictions and Treatments.

be advantages to automating receivers’ behavior to conform to the theory. We have three re-

sponses to this observation. First, we believe that senders’ beliefs about how receivers interpret

what message they see is central to understanding strategic communication. For instance, the

main experimental finding in the literature on disclosure games, namely the failure of unravel-

ing, would likely go undetected in a world with automated receivers. Second, the implementa-

tion of automated Bayesian receivers in the lab is far from trivial as it requires an explanation

to senders of how the automated receivers behave. Failure to properly give this explanation de-

feats the potential purpose of introducing automated receivers. Third, as we show in Section 5.1

and Appendix A.1.2, many of our receivers are non-Bayesian, but their behavior is systematic

and is monotone in information, a property that is sufficient for our comparative static exercise.

Message n. From a theoretical perspective, the inclusion of message n in treatments with

unverifiable information may seem redundant. However, in the experiment, it allows us to

switch from unverifiable to verifiable information with minimal changes to our design. This

increases our ability to compare results between different communication rules. It is perhaps

reassuring to note that the vast majority of senders in treatments with unverifiable information

employs a “natural” language—that is, message n is only marginally used.12

Natural Language. Instead of using abstract labels for the messages, we label messages with

colors that match the labels of the states—red and blue. In this way, messages can acquire a

literal meaning. The focus of the paper is not on whether people understand how to coordinate

on a language (Blume et al. (1998)). Thus, we wished to remove one potential obstacle to

12More specifically, the average total probability of message n, across all treatments with unverifiable informa-
tion, is about 10%.
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communication that would have complicated the subjects’ task and our analysis. In the rest

of the paper, as we explain our results, it is convenient to distinguish states and messages by

denoting the former with upper case letters (R and B) and the latter with lower case letters (r,

b, and n).

Fixed Roles. Before the beginning of the experiment, subjects played two unpaid practice

rounds in which they played the game from both the sender’s and the receiver’s perspective.

Then, subjects were assigned to a fixed role—sender or receiver—and played such role for

the duration of the experiment. Because the tasks that subjects faced in our experiment were

nontrivial, we thought it would be important for them to gain relevant experience in their role.

Additional Treatments. We conduct two robustness treatments, discussed in Appendix A.

In our main treatments, payoffs are specified so that the persuasion threshold is q = 1/2.

In an alternative payoff specification, we let q = 3/4. This allows us to test for changes in

informativeness while keeping commitment and communication rules fixed. We also study a

version of U100 with only two messages: r and b. This allows us to study the effects of the

redundant message n in treatments with unverifiable information. We find that behavior in this

robustness treatment is in line with U100, with slightly less noise.

Random Rematching. We chose to have random rematching of pairs of senders and receivers

to simulate a one-shot interaction, while still allowing subjects to gain experience. Note, for in-

stance, that experiments on duopoly games find that fixed pairing generates collusion, whereas

random pairing does not Huck et al. (2001).

3.3 Measures of Informativeness

Empirically, we measure informativeness as the correlation between the color of the ball and

the receiver’s guess. This measure has been extensively used in the experimental literature on

communication.13 To fix ideas, suppose the sender truthfully discloses the color of the ball.

Then, the receiver’s final guess should be perfectly correlated with the state. Conversely, if the

sender babbles, the receiver’s final guess will be uncorrelated with the state.

To compute the correlation coefficient, we take advantage of our use of the strategy method

in the communication and guessing stages to obtain significantly more precise measures of the

correlation. However, in the revision stage, we only observe the sender’s strategy conditional

on the realized state. We circumvent this problem of missing data by imputing the session-

13See, for instance, Forsythe et al. (1999), Cai and Wang (2006), and Wang et al. (2010).
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specific average behavior of the senders.14 Thanks to this, we can analytically compute the

Pearson correlation coefficients (specifically, the phi coefficients, since our variables are bi-

nary). Through simulations, we verified that the improvement in precision from using this

method is significant.

We use two different versions of the correlation coefficient between the state and the guess.

These two versions capture different aspects of equilibrium informativeness that are both use-

ful in different ways. With our first measure, we compute the correlation by using the observed

receiver’s behavior. We denote such a measure by φ and refer to it as the correlation coeffi-

cient, without further qualifications. This way of measuring informativeness has the drawback

of compounding the potential sender’s inability to communicate with the potential receiver’s

unresponsiveness to information. Suppose, for instance, that the sender truthfully discloses the

state, but the receiver does not listen. In this case, φ = 0, although a great deal of information

was offered to the receiver. To isolate the sender’s behavior from the mistakes of the receivers,

we use a second measure that we call Bayesian correlation, denoted by φB. This is the correla-

tion coefficient implied by the sender’s observed strategy combined with the guess of a hypo-

thetical Bayesian receiver. Clearly, in a perfect Bayesian equilibrium, receivers are assumed to

be Bayesian and thus φ = φB.

Informativeness of senders’ strategies can also be measured by looking at moments of the

distribution of induced (Bayesian) beliefs. This approach is akin to using φB, as it disregards

the receiver’s observed behavior. It differs from φB in the following sense. Consider a sender’s

strategy (πC, πR) inducing a distribution of posterior beliefs as follows: if m = r, the induced

belief is just below 1/2, if m = b, it is 0. Message n, instead, is sent with zero probability. This

strategy does convey some information to the receiver. Yet, φB(πC, πR) = 0 because a Bayesian

receiver would guess blue regardless of the message. To circumvent this problem, we can

measure informativeness by computing moments (e.g. variance) of the distribution of induced

beliefs.

In summary, the correlation φ, the Bayesian correlation φB, and the moments of the distri-

bution of induced beliefs present different advantages and are useful to highlight different as-

pects of our data. While choosing one or the other does not change the qualitative conclusion

14This choice seems natural and, due to the random rematching, receivers should hold comparable beliefs when
facing a random sender in the last ten rounds of the experiment. Our results are robust to different imputation
methods: For example, we can impute subject-specific averages and get essentially similar results. Also, it is
important to note that the results for treatments with ρ = 0.80 (where we perform the imputation) are similar to
those with ρ = 1 (where we do not need to use the imputation), suggesting the results are robust to our imputation
method.
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of our analysis nor the prediction of our theory,15 these measures will be part of our toolbox in

the next sections.

4 Treatment Effects

In this section, we present the treatment effects, which are in line with the main predictions

of our theory. We will discuss two main sets of results. In Section 4.1, we test Proposition 1

by looking at how senders’ behavior changes between the commitment and the revision stages

as well as how receivers’ responsiveness to information changes with commitment. In Section

4.2, we test Proposition 2 and analyze how informativeness changes as we vary the level of

commitment. The predicted changes have opposite signs depending on the communication

rules.

The results in this section also suggest that subjects’ behavior is highly heterogeneous. The

treatment effects that we document are the result of the aggregation of different communication

“styles.” While some subjects behave approximately as predicted by the theory, others under or

over react to commitment and rules. In Section 5, we will focus exclusively on these deviations

to better understand their sources and implications.

4.1 Commitment and Subjects’ Behavior

4.1.1 Senders

We begin by focusing on senders’ behavior. We explore the simplest and most direct evi-

dence to test whether senders understand how to take advantage of commitment. By exploiting

within-treatment variation, we observe how a sender’s behavior changes between the commit-

ment and the revision stages. Proposition 1 governs our predictions, which have opposite signs

depending on whether the information is verifiable.

In Figure 2, we present the average difference in senders’ strategies between the revision and

the commitment stages in treatments U80 and V80. In the figure, a positive bar indicates a

message that, conditional on the state, is sent more often in the revision stage. A negative bar

indicates a message that is sent more often in the commitment stage.

Let us first consider treatment U80. From Table 2, the sender should be more informative in

the commitment stage than in the revision stage. In particular, when in the revision stage she

15See Appendix D.1 for the case of posterior variance.
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Figure 2: Sender’s Strategy: Commitment vs. Revision, ρ = 0.8

learns that the state is B, she should replace message b with message r. That is, she should

renege on her commitment to telling the truth. The results in the left panel of Figure 2 are very

much in line with these predictions. More specifically, when the state is R, the equilibrium

strategy is not predicted to change between the commitment and the revision stages. That is, all

three bars should be of zero height. This is what we observe in the data. Although statistically

significant changes occur for r and b, they are very small in magnitude.16 Conversely, when

the state is B, message r should replace b in the revision stage, whereas message n should not

change. Again, qualitatively, this pattern is consistent with what we observe in the data. On

average senders increase the frequency of message r at the expenses of b (p < 0.01). Overall,

as predicted by Proposition 1, the average informativeness of senders’ strategies is significantly

higher (p < 0.01) in the commitment stage—φB(πC) = 0.43—than in the revision stage—

φB(πR) = 0.02.

We now turn to treatment V80 (right panel of Figure 2). In contrast with the previous discus-

sion, the sender should be less informative in the commitment stage than in the revision stage

(Table 2). In particular, when learning that the state is R, she should replace message n with

message r, thus revealing the state. Conversely, when learning that the state is B, she should re-

place message b with message n. These predicted changes are consistent with what we observe

in the data. On average, when the ball is R, senders entering the revision stage increase the

likelihood of message r at the expense of message n. Instead, when the ball is B, they increase

16Unless noted otherwise, all statistical results allow for random effects at the subject level and are clustered
at the session level. We include random effects to account for persistent heterogeneity across subjects; clustering
is motivated by potential session effects (see Fréchette, 2012). Results for alternative specifications are reported
in the appendix. We note that the findings in the alternative specifications suggest that session-effects are not
important in this setting.
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the likelihood of message n at the expense of message b. Both changes are significant at the

1% level. Overall, we find that the directions of the predicted changes are matched by the data

as shown. Moreover, as predicted by Proposition 1, the average informativeness of senders’

strategies is significantly lower (p < 0.01) in the commitment stage—φB(πC) = 0.83—than in

the revision stage—φB(πR) = 0.99.

From a quantitative point of view, it is not surprising to see that, on average, senders fall

short of exactly matching the equilibrium predictions. It is perhaps more interesting to note that

most of the quantitative deviations come from behavior in the commitment stage. In contrast,

behavior in the revision stage is quite close to the theory. This distinction in the tendency of

behavior to conform with theory in the two different stages has important consequences, as we

discuss in Section 5.

In sum, the joint qualitative evidence arising from treatments U80 and V80 suggests that

senders react to commitment and do so in ways that are consistent with the theory. One useful

feature of considering different communication rules is that they generate opposing predictions

within the same environment. On average, we see that senders exploit their commitment power

to strategically hide good news (i.e., m = n if θ = R) when information is verifiable, and

disclose bad news (i.e., m = b if θ = B) when information is unverifiable. Once in the revision

stage, these commitments are no longer optimal, and indeed senders partially renege on them.

We consistently observe the average informativeness of each stage changing as predicted.

4.1.2 Receivers

We now focus on receivers. Our goal is to evaluate the extent to which they understand the

strategic implications of commitment and whether their reactions are consistent with the theory.

To explicitly test for this hypothesis we exploit across-treatment variations. We first introduce

the idea of interim vs final posteriors. Consider the posterior belief that a Bayesian receiver

would hold upon observing message m given some (πC, πR), if she were to ignore the existence

of the revision stage. We call such belief the interim posterior, which is formally equal to

µ0(R)πC(m|R)/(
∑
θ µ0(θ)πC(m|θ)). Clearly, interim and final posteriors—that is, those that do

take into account the revision stage—coincide when ρ = 1. More generally, given πC and

πR, the higher the degree of commitment ρ, the closer the interim posterior is to the final one.

We use this simple observation to test whether receivers understand the strategic implications

of different levels of commitment. We should observe different guessing behavior at identical

interim beliefs for different degrees of commitment. In particular, at high levels of commitment,

interim beliefs should be highly predictive of receivers’ behavior; at low levels of commitment,
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Figure 3: Receiver’s Response to Persuasive Messages: ρ = 0.2 vs. ρ = 1

they should not.17

This analysis is carried out in Figure 3. We look at how receivers’ responsiveness to interim

posteriors changes in treatments with low (ρ = 0.20) versus high (ρ = 1) commitment.18

We plot polynomial fits of the average receiver’s guess as a function of the interim posterior

induced by the observed sender’s πC, the strategy from the commitment stage, and message m.

We begin by comparing treatments U20 and U100. Our focus is on message m = r. If

receivers understood the implications of commitment, this message should lead to a guess

of blue in U20, irrespective of the interim posterior. In U20, the interim posterior should

have little or no impact on the receiver’s guess because it is likely that message r did not

come from the observed πC. Therefore, the interim posterior is likely to be far from the final

posterior. By contrast, in U100, the interim posterior should have a substantial positive effect

on the probability that the receiver guesses red (Table 2). Indeed, interim and final posteriors

coincide in this case. We report our results in the left panel of Figure 3. Consistently with the

predictions, the estimated receivers’ response is mostly flat in U20 and unresponsive to interim

beliefs, whereas it is strictly increasing in U100.19

Similar—if not stronger—evidence is found when comparing V20 and V100 (right panel

of Figure 3). By the nature of verifiable information, messages r and b induce trivial interim

beliefs of either 1 or 0. For this reason, we focus on message n, which is the one requiring

17We use Bayesian posteriors as a benchmark against which to compare actual receivers’ behavior. The latter
may of course be far from Bayesian, something that we will investigate in Section 5.

18In the online appendix, Figure D18 shows the comparison between ρ = 0.20 and ρ = 0.80.
19The linearity in posteriors may be suggestive of probability matching. In Appendix B, we show that it instead

results from aggregating receivers who employ heterogeneous threshold strategies.
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receivers to be sophisticated. We find that receivers’ guessing behavior in V20 is quite flat in

the interim posterior. In contrast, responsiveness is strong and positive for treatment V100.20

Overall, the joint evidence coming from Figure 3 suggests that, on average, receivers under-

stand and react to commitment in ways that are consistent with the theory. They correctly an-

ticipate senders’ incentives to renege on their commitments. As a consequence, receivers un-

derstand that messages inducing identical interim beliefs should be treated differently for dif-

ferent degrees of commitment. While this shows that receivers react to commitment, their be-

havior could still be far from Bayesian. In line with a large body of experimental literature,

Figure 3 suggests that this may be the case. We return to this point in Section 5 when we ex-

plore in detail the main quantitative deviations that we observe.

4.2 Commitment and Informativeness

The starkest prediction of our theory concerns how equilibrium informativeness changes with

commitment under verifiable and unverifiable information. Proposition 2 predicts that equilib-

rium informativeness should increase with commitment under unverifiable information, whereas

it should decrease under verifiable information. To test this prediction, we compute the aver-

age Bayesian correlation φB(πC, πR) for each sender and then plot its cumulative distribution

function (CDF). We present the results in Figure 4. Each dot represents the average informa-

tiveness of a given sender in one of our treatments.

Two patterns emerge from this figure. First, when information is unverifiable (left panel), we

observe a noticeable first-order stochastic increase in the informativeness of U100 and U80

relative to U20. That is, informativeness increases in commitment not just on average, but

rather at all percentiles of the distribution. Moreover, U80 and U100 are unranked, as predicted

by the theory (Table 2). Second, when information is verifiable (right panel), we observe a first-

order stochastic decrease in informativeness of V100 relative to V20. This change is relatively

less pronounced in V80 relative to V20. Nonetheless, informativeness appears to decrease in

commitment not just on average, but at all (or most, for V80) percentiles of the distribution.

Again, this is consistent with the theory (Table 2).

To provide further evidence on these comparative statics, we can also look at the posterior

distributions that senders induce with their communication strategies. This is an alternative

20The probability that the receiver guesses red when the interim posterior is below 1/2 does not differ statisti-
cally between ρ = 0.2 and ρ = 1, both for the case with unverifiable information (left panel) and verifiable infor-
mation (right panel). Instead, for interim posteriors above 1/2 we find a statistically significant difference in both
cases (p < 0.01). Perhaps more importantly, the magnitude of the change—below and above 1/2—is sizable: 56
versus 14 percentage points in the verifiable case, and 40 versus 6 percentage points in the unverifiable case.
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Figure 4: Cumulative Distribution of Sender-Average φB(πC, πR) by Treatment

measure of informativeness that, in particular, does not depend on payoffs. We focus attention

on the expected posteriors conditional on the state. That is, given πC, πR and θ, we compute∑
m
(
(ρπC(m|θ) + (1 − ρ)πR(m|θ)

)
µ(m, πC, πR). The left panel of Figure 5 displays the kernel

density estimates of the observed expected posteriors. The vertical dashed lines indicate the

theoretical predictions. For instance, for U100, the expected posterior conditional on state R is

at 1/2 because, in equilibrium, message r is sent with probability one and induces a posterior of

1/2. Conversely, the expected posterior conditional on state B is at 1/4 because, in equilibrium,

messages r and b are sent with 50% probability and induce posteriors of 1/2 and 0, respectively.

In Figure 5, we see a sizable shift of the kernel distributions in the direction predicted by the

theory, for both verifiable and unverifiable information. Moving from U20 to U100, the two

distributions become more spread out, whereas moving from V20 to V100, the posteriors move

closer, as predicted by theory. These shifts are quantified in the right panel of Figure 5, which

reports the average difference between the expected posterior conditional on R (in solid black)

and the one conditional on B (in dashed gray). The table shows that the data move in the right

direction for both verifiable and unverifiable treatments, but that the mean difference is much

closer to the theoretical predictions in the case of the unverifiable treatments than in the case

of verifiable treatments.

Overall, the findings from Figure 4 and Figure 5 validate the asymmetric comparative statics

of Proposition 2. The theory appears to explain the main qualitative features of how senders’

behavior changes with commitment and rules. Under verifiable information, senders use com-

mitment to decrease the total amount of information that they convey to receivers. Under un-

verifiable information, senders use commitment to increase the total amount of information
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Figure 5: On the left: Kernel Density of Expected Posterior Conditional on State. On the
right: Average Differences in Expected Posteriors Conditional on State (theoretical values in
parentheses)

that they convey to the receivers. This asymmetric use of commitment that we observe in the

data shows that, on average, senders understand the strategic tension that underlies our model.

5 Understanding Departures from Theory

In the previous section, we showed evidence of treatment effects that match the main qualitative

predictions of the model. Qualitatively, senders and receivers react to variations in commitment

in the predicted ways. These treatment effects, however, hide substantial heterogeneity at the

subject’s level, which generates quantitative deviations from the theory. In this section, we

document and explain these deviations.

We begin by looking at the average informativeness by treatment. Table 3 reports the pre-

dicted Bayesian correlation (left panel) and the observed one (right panel), averaged across ses-

sions and subjects. As expected, we note again that informativeness moves in the right direc-

tion as commitment changes. Moreover, in treatments with partial commitment, we note that

more information is conveyed by the senders under verifiable information than under unveri-

fiable information. These changes are in line with Section 4.2 and with our theory. However,

Table 3 also highlights important quantitative deviations.

For each communication rule, the observed changes are more muted relative to the theoretical

predictions. In the case of unverifiable information for example, the observed increase in infor-
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Table 3: Average Bayesian Correlations φB

φB – Theoretical Predictions

Degree of Commitment ρ

ρ = 0.2 ρ = 0.8 ρ = 1

Verifiable 1 0.57 0.50

Unverifiable 0 0.50 0.50

φB – Observed

Degree of Commitment (ρ)

ρ = 0.2 ρ = 0.8 ρ = 1

Verifiable 0.90 ≈ 0.84 > 0.77
∨ ∨ ∨

Unverifiable 0.00 < 0.33 ≈ 0.34

Notes: Symbol “>” indicates p < 0.01. Green symbol: as predicted. Red symbol: not as predicted.

mativeness from U20 to U100 is only 68% of the change predicted by the theory. In the case of

verifiable information, the theory predicts that, moving from V20 to V100, we should observe

a drop of 0.50 in the Bayesian correlation. Instead, in the data the corresponding reduction is

only 0.13, or 26% of the predicted change. More specifically, in treatments with low commit-

ment, we find evidence of undercommunication when information is verifiable and overcom-

munication when it is not. This is in line with the existing experimental literature on disclosure

(e.g., Jin et al., 2020) and cheap talk (e.g., Cai and Wang, 2006), respectively.21 Interestingly,

these results do not extend to high-commitment environments. When the level of commitment

is high, we find that the opposite holds: senders tend to overcommunicate in treatments with

verifiable information and undercommunicate in treatments with unverifiable information.

As a consequence of this observation, communication rules affect informativeness even when

this is not predicted by the theory. In particular, treatments V100 and U100 are predicted by

Proposition 2 to be equally informative, but the observed Bayesian correlations are 0.78 and

0.34, respectively. This difference (significance at p < 0.01) represents a remarkable deviation

from the theory. Furthermore, by comparing the black lines on the left and right panels of

Figure 4, we can see that there is a gap at all percentiles of the distribution of φB.

We refer to these quantitative departures from the theory as the informativeness gap. In

principle, this gap can be due to anomalous behavior on the part of receivers, senders, or an

interaction between the two. In Section 5.1, we first explore receiver behavior and argue that

despite their clear departures from the Bayesian benchmark, it is unlikely that receivers are

primarily responsible for this gap. In Section 5.2, we turn our attention to sender behavior.

We show evidence of a behavioral bias that could explain these deviations. We call this bias

commitment blindness and show that indeed it generates opposing effects on informativeness

depending on the communication rule and thus could generate a gap. Finally, in Section 5.3,

21In Appendix B, we show other ways in which our low-commitment treatments are in line with the existing
experimental evidence that test no-commitment environments.
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we estimate a structural model that accounts for such heterogeneity in senders’ behavior and

show that it can explain a large part of the observed deviations.

5.1 Can Receiver Behavior Explain the Informativeness Gap?

Although Section 4.1.2 illustrates that receivers do react to commitment, a large body of ex-

perimental literature suggests that their behavior is likely to be non-Bayesian.22 In Appendix

A.1.2 and B, we take a detailed look at receivers’ behavior. Our analysis reveals that receiver

behavior is indeed non-Bayesian. Yet, it is quite systematic. For example, most receiver behav-

ior is consistent with threshold strategies: they guess red if the posterior is higher than some

receiver-specific threshold. However, our analysis suggests that receiver behavior is unlikely

to be the main explanation for the informativeness gap. We discuss three main reasons for this.

First, we note that this gap cannot be directly determined by receivers’ non-Bayesian behav-

ior. Indeed, we expressed these gaps in terms of φB, the Bayesian correlation coefficient. By

construction, this measure is immune to receivers’ mistakes, as explained in Section 3.23

Second, let us entertain the possibility that the informativeness gap could be indirectly gen-

erated by receivers’ non-Bayesian behavior through its effects on sender behavior. Suppose

that receivers are inherently skeptical of message n and senders know it (as in Jin et al., 2020).

That is, suppose that receivers guess blue no matter how high the posterior induced by mes-

sage n. In treatments with unverifiable information, such a receiver’s bias would have negligi-

ble consequences on senders’ behavior: message n can be avoided in equilibrium and indeed

is not used often in the data. In contrast, in treatments V80 and V100, message n plays a key

role in the equilibrium prediction. In the presence of such a bias against message n, senders’

optimal strategy would then have to be fully informative, thus contributing to the informative-

ness gap. This rationalization is unsatisfactory for two reasons. The first one is theoretical, as

this bias only explains the overcommunication in verifiable treatments and not the undercom-

munication in unverifiable ones. The second one is empirical: we do not see evidence of such

a bias. Data show that receivers respond in similar ways to message n in treatments with verifi-

able information and r in treatments with unverifiable information. This can be seen in Figure

3. The dashed lines report receivers’ responsiveness to message r in U100 (left panel) and n in

22See, e.g., Charness and Levin (2005) and (Holt, 2007, Chapter 30) for an overview of such literature.
23When we explicitly include receivers’ behavior—that is, when we compute φ instead of φB—we find infor-

mativeness gaps of similar magnitudes. In particular, we find that φ is 0.22 and 0.68 for treatments U100 and
V100, respectively. Similarly, we find that φ is 0.19 and 0.78 for treatments U80 and V80, respectively. Note that
receivers’ mistakes create a garbling in the mapping from states to guesses and therefore can only decrease the
correlation φ relative to φB.
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Figure 6: Sender’s Empirical Expected Payoff

V100 (right panel), controlling for their induced posterior. Receivers’ responsiveness does not

appear to be significantly different in the two cases.

Third, let us again entertain the possibility that this gap could be indirectly generated by re-

ceivers’ non-Bayesian behavior, but in ways that are more complicated than our previous argu-

ment. To address this point, we estimate a simple model of receivers’ behavior and then com-

pute the sender’s empirical best response. To be concise, we focus attention on treatments with

full commitment. In Figure 6, we report the expected payoff that a sender would earn by play-

ing various strategies πC when facing a typical receiver in our sample. For each treatment, we

first fit a probit model to estimate the probability that a = red given message m, its induced

posterior, and subject fixed effects. Second, we use the estimated model to compute the ex-

pected payoff that a sender would earn when choosing various commitment strategies πC. More

specifically, we define a class of information structures parametrized by x ∈ [0, 1]. This class

is rich enough to approximate most of the observed strategies, including the equilibrium strate-

gies for these treatments. In particular, for U100, we consider strategies such that πC(r|R) = 1

and πC(b|B) = 1 − πC(r|B) = x. For V100, we consider strategies such that πC(n|R) = 1 and

πC(b|B) = x. In both U100 and V100, πC is the equilibrium strategy when x = 1/2 (Table 2); it

is uninformative when x = 0; and it is fully informative when x = 1. More generally, φB(πC) is

weakly increasing in x.

Figure 6 shows that receiver behavior leads to a payoff function for the sender that is flatter

than it would be if all receivers were fully Bayesian. Moreover, for both treatments, the sender’s

best response to the receivers’ behavior requires x > 1/2. This is intuitive: x = 1/2 is a

knife-edge condition that leaves a Bayesian receiver just indifferent. Although receivers do not

conform with the Bayesian paradigm, the vast majority of them are more likely to guess red

following a message that carries more evidence in favor of the state being R. This monotone
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responsiveness in induced beliefs is a milder rationality requirement than Bayesianism, and it

has been documented in other experiments (see Camerer (1998) for a discussion). Importantly,

as shown by Figure 6, the extent of monotonicity displayed in our experiment is sufficient to

confirm a key insight from models of communication under commitment, namely the fact that

the best-response involves some degree of strategic obfuscation.24 Therefore, an uninformative

πC is worse than a fully informative πC, which is in turn worse than commitment to mixing. The

finding that senders’ empirical expected payoff is non monotone in the amount of information

conveyed to the receiver is consistent with the theory.

More importantly, Figure 6 shows that receiver behavior alone appears insufficient to ex-

plain the large gaps in informativeness that we documented in Table 3. If senders were best-

responding to the typical receivers’ behavior, we would observe φB(πC) = 0.60 in treatment

U100 and φB(πC) = 0.75 in treatment V100. This explanation is, therefore, unsatisfactory on

two levels. First, it captures only a small fraction (35%) of the observed gap. Second, the em-

pirical best response for U100 leads to an increase in informativeness—not a decrease, as it is

observed.

Overall, the three points above suggest that receivers’ non-equilibrium behavior is insuffi-

cient to explain the informativeness gap. As we show in the remainder of the section, senders

are likely to be the primary drivers of these observed deviations.

5.2 Commitment Blindness

In this section, we introduce a simple bias in senders’ behavior that can explain a large part of

the informativeness gap. We begin by noting that senders employ very heterogeneous commu-

nication “styles” as illustrated in Figure 4. Understanding the sources of this heterogeneity is

key to explaining the informativeness gap.

To this end, we introduce the notion of commitment blindness. A sender is commitment-

blind if she behaves under commitment as if she had no commitment power at all. More specif-

ically, her commitment strategy is the equilibrium strategy of a hypothetical game with ρ = 0.

Commitment blindness has very different implications depending on the communication rule.

Specifically, when information is unverifiable, ρ = 0 is equivalent to a cheap-talk game and the

optimal strategy involves babbling. Such a strategy is uninformative (φB = 0). If instead infor-

mation is verifiable, ρ = 0 indicates an information-disclosure game and the optimal strategy

24Relatedly, de Clippel and Zhang (2020) explore the relative robustness of the Bayesian Persuasion model if
the receiver is non-Bayesian.
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involves unraveling; hence, it is fully informative (φB = 1). These very different levels of infor-

mativeness suggest that commitment blindness could explain the unpredicted gap that we have

documented: the same behavioral bias can inflate the average informativeness in treatments

with verifiable information and deflate it in treatments with unverifiable information.25

Note that commitment blindness is different from lying aversion and has different implica-

tions. To see this, consider a sender who is fully averse to lying, regardless of her commitment

power. To begin, when information is unverifiable, such a sender does not play the equilib-

rium strategy of a hypothetical game with ρ = 0. Moreover, she would play highly informa-

tive strategies irrespective of the communication rule. Thus, lying aversion cannot successfully

generate the informativeness gap that we observe in the data.

We exploit our experimental design to test for the presence of senders who are compatible

with commitment blindness. This can only be done in treatments with partial commitment.

Indeed, one needs to observe how the same sender behaves in two opposing scenarios, with and

without commitment power. Therefore, we focus our attention on treatments U80 and V80 and

compare how sender behavior changes between the commitment and the revision stages. We

seek to identify senders who (i) play the same strategy in both the commitment and revision

stage and (ii) play the equilibrium strategy in the revision stage as defined in Table 2.

In contrast to our work from Section 4.1.1—where we focused on some features of aver-

age senders’ strategies—we now describe their behavior at the observation level. Our goal is

to identify the representative strategies (πC, πR) played in the treatments under consideration.

Such an analysis presents a technical challenge, as senders’ strategies are complex and high-

dimensional objects. To organize the observed strategies, we use a standard machine-learning

algorithm, the k-means, to cluster strategies into four representative groups (that is, k = 4).26

We cluster the strategies by treatment and report the results in Figures 7 and 8 for treatments

U80 and V80, respectively. To visualize all the data, we plot the clustered strategies onto two

separate panels, one for πC and one for πR. The representative strategies are indicated with

larger markers. Note that strategies that appear similar in the commitment (respectively re-

vision) stage may belong to different clusters because they differ in the revision (respectively

25The experimental literature on Cournot competition with endogenous timing also studies commitment in the
lab. A player can choose to publicly commit to a production quantity, thus emerging as a Stackelberg leader and
increasing her payoff. See, for instance, Huck and Müller (2000), Huck et al. (2001), and Morgan and Várdy
(2004, 2013)

26A commonly used method to group data is k-means clustering (see, MacQueen, 1967; Hastie et al., 2009;
Murphy, 2012) The procedure selects points to be the centers of clusters: an observation is associated with the
closest center, and the centers are iterated on to minimize the total within-cluster variance. We choose k = 4 and
input entries: πC(m|θ) and πR(m|θ) for m ∈ {r, b} and θ ∈ {R, B}.
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Figure 7: Treatment U80 – Clustering of Senders’ Strategies

commitment) stage.27

We begin our analysis with treatment U80, that is, Figure 7. The strategies indicated by red

circles are those compatible with commitment blindness. The representative strategy consists

of sending message r regardless of the state, in both the commitment and the revision stage.

This strategy coincides with equilibrium behavior in the revision stage (Table 2). As expected,

this strategy is mostly uninformative, that is, φB = 0.01. This strategy is also quite common:

30% of the observed strategies are of this kind. We now discuss the remaining clusters of Figure

7. The strategies indicated by blue squares are compatible with equilibrium behavior and

are the most prevalent ones. These strategies drive most of the treatment effects documented

in Section 4. Note that the induced informativeness φB = 0.51 is remarkably close to the

equilibrium prediction of 0.50. Strategies indicated by yellow circles are consistent with a

weak form of lying aversion and are not prevalent in our data. Finally, strategies marked by

green diamonds belong to a residual cluster that cannot be grouped in any of the categories

above. We interpret these residual strategies as noise.

We now turn to the analysis of sender behavior in treatment V80 (Figure 8). Again, strate-

gies indicated by red circles are those compatible with commitment blindness. The represen-

tative strategy consists of sending message r given R, and n given B, in both the commitment

and the revision stages. This coincides with equilibrium behavior in the revision stage (Table

2). In contrast to U80, commitment-blind strategies are highly informative (φB = 0.94). In

terms of prevalence, 33% of the observed strategies are of this kind. We now discuss the re-

maining clusters of Figure 8. Strategies indicated by blue squares are consistent with equilib-

rium behavior. They react to commitment and induce an informativeness φB = 0.57, which

27We present data at the observation level, but these clusters capture persistent senders’ types, with a typical
sender playing in the same cluster more than 80% of the times.
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is at the equilibrium level. Strategies indicated by purple stars also react to commitment and

play the equilibrium strategy in the revision stage, but fail to conceal information in the com-

mitment stage. As a result, they induce higher-than-optimal levels of informativeness, that is,

φB = 0.89. Together, these last two clusters we discussed represent 45% of the data and drive

the treatment effects documented in Section 4. Finally, strategies indicated by yellow triangles

are consistent with lying aversion and induce high informativeness, that is, φB = 0.93.

In sum, we have documented the existence of a behavioral type that is consistent with com-

mitment blindness. Such behavior has opposite implications depending on the communication

rule. Under unverifiable information, these senders tend to decrease the average informative-

ness. Under verifiable information, they tend to increase the average informativeness. Thus, the

same behavioral bias could jointly explain the asymmetric departures documented in Table 3.

5.3 QRE: Quantifying Departures From Equilibrium

In this final part of the section, our goal is to quantitatively reproduce the gap in informative-

ness through a structural model. This model has two components. First, it accounts for the het-

erogeneity in senders’ behavior that we documented. Second, it accounts for players’ mistakes

and noisy behavior through a quantal-response equilibrium (QRE).28 We use the estimates from

this structural model to compute the implied correlations—both φB and φ—and show that they

reproduce between 70% and 80% of the observed informativeness gap.

In a QRE, players are assumed to respond with errors to their beliefs, which in turn correctly

account for the errors that other players make. Two technical challenges make the estimation of

our structural model nontrivial: first, senders choose among a continuum of high-dimensional

28See Goeree et al. (2016).
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strategies, and second, our games have multiple stages and feature incomplete information.

We address the first challenge by using the same k-means algorithm that we discussed in Sec-

tion 5.2. We address the second challenge by using the methodology in Bajari and Hortacsu

(2005). In the following paragraphs, we explain these two points in more detail. For simplic-

ity, we will focus attention on treatments U100 and V100. Although a similar analysis could

be performed under partial commitment, the focus on full commitment significantly simplifies

our estimations. Moreover, the informativeness gap in these treatments is the farthest from the

theoretical predictions and thus, the more interesting to explain.

Discretization and Senders’ Heterogeneity. To estimate QRE, we first need to discretize

senders’ strategy space Π into a grid containing k representative strategies. This is usually

achieved by manually gridding the strategy space (e.g., Camerer et al. (2016)). This approach

is productive especially when the strategy space is sufficiently simple, e.g., one-dimensional.

In our case, the high dimensionality of the strategy space renders this approach infeasible. A

natural solution is to use a clustering algorithm. We use the k-means algorithm to identify

the set of representative strategies Πk.29 As before, we set k = 4. Importantly, we compute

Πk separately for each treatment. This allows us to capture the very different ways in which

senders play in treatments with verifiable and unverifiable information, as shown in Section

5.2. In particular, it allows us to capture the different implications of commitment blindness

for these two treatments.

Multi-Stage QRE. For representative strategy πC ∈ Πk and message m ∈ M, denote by

U(a, πC,m) the receiver’s expected payoff from choosing action a ∈ {aL, aH}. The Logit QRE

model specifies that a receiver of type λR ≥ 0 chooses action aH with the following probability:

PR(aH |πC,m, λR) =
eλRU(aH ,πC ,m)

eλRU(aH ,πC ,m) + eλRU(aL,πC ,m) .

That is, the probability of choosing the optimal action increases in the utility difference between

the two possible actions. Given λR, the sender’s expected utility from choosing πC is given by

V(πC |λR) :=
∑
θ,m µ0(θ)πC(m|θ)PR(aH |πC,m, λR). That is, the sender takes the receiver’s errors

into account when computing her expected payoff from playing a certain strategy. As in the

receiver’s case, the probability that a sender of type λS ≥ 0 chooses πC is given by

PS (πC |λS , λR) =
eλS V(πC |λR)∑

πC∈Πk
eλS V(πC |λR) .

29Figure D19 reports k-means clusters for treatments with full commitment.
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Table 4: QRE-Implied Correlations

Bayesian Correlation φB Correlation φ

Treatment QRE-Implied Observed QRE-Implied Observed

V100 0.72 0.77 0.64 0.68

U100 0.41 0.34 0.26 0.22

The parameters (λS , λR) capture the extent to which players best respond to their opponent’s

behavior. At one extreme, as λi → ∞, the player in role i never makes a mistake. At the other

extreme, when λi = 0, the player in role i randomizes uniformly across all available strategies.

We allow λS , λR since senders and receivers face substantially different tasks.

Estimation. We now describe how we estimate this model. Notice that our game has multiple

stages. In treatments with full commitment, there are two stages and, importantly, the receiver

perfectly observes the strategy chosen by the sender. Whether this strategy was chosen by

mistake is irrelevant for the receiver, who simply responds as described above. Effectively, the

receiver solves a single-agent decision problem. Thus, we can estimate λ̂R independent of λS .

Instead, the sender, moves before the receiver. Therefore, she must form expectations about the

receiver’s behavior. Since λR enters the payoff function V(πC |λR), the equilibrium λS depends

on the true λR. We can consistently estimate V(πC |λR) for each strategy πC by computing the

average sender’s expected payoffs of playing strategy πC (Bajari and Hortacsu, 2005). Using

maximum likelihood, it is then straightforward to estimate (λ̂S , λ̂R).30

Simulation. Given these estimates, we simulate a dataset with 104 observations and compute

counterfactual correlations φ and Bayesian correlations φB. The state θ is drawn at random

from a Bernoulli distribution with parameter 1/3, just as in the experiment. The sender chooses

strategies in Πk according to PS (πC |λ̂S , λ̂R). Message m is generated according to the chosen

πC and the realized state θ. The receiver chooses aH with probability PR(aH |πC,m, λ̂R).

In Table 4, we report both the QRE-implied correlations as well as the observed ones. The

main conclusion from this table is that the combination of (i) treatment-specific clustering and

(ii) noisy players’ behavior as modeled by QRE can reproduce correlations that are remark-

ably similar to those we observed. In particular, the model explains between 70% and 80% of

the observed gaps in informativeness. It is useful to point out that, in the procedure described

above, we fit data in two separate steps. First, we use the data from each treatment to compute

Πk. That is, the representative strategies of treatment U100 are allowed to differ from those

for treatment V100. The need for doing so follows from the discussion in Section 5.2, where

30For U100, we have (λ̂S , λ̂R) = (0.41, 1.68). For V100, we have (λ̂S , λ̂R) = (0.21, 1.28).
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we argued that communication rules affect senders’ play in a substantial and unpredicted way.

Second, we use the data again to estimate treatment-specific (λ̂S , λ̂R). By doing so, we account

for inevitable noise in the behavior of senders and receivers. The combination of these method-

ologies generates correlations that closely fit the data.

5.4 Alternative Approaches

We now briefly discuss other theories that could in principle account for the informativeness

gap: level-k, other-regarding preferences, and lying aversion. Although behaviors compatible

with these theories may be present in our data to some extent, we argue that they are not the

most natural avenues to explore, as they either fail to account for some of the key deviations or

they would need to be enhanced relative to their standard specifications.

For instance, let us consider the simplest form of a level-k model.31 A key component of a

level-k analysis is the specification of level-0 players. First, in our full-commitment treatments,

the strategy of the sender is fully observable by the receiver. Thus, there is little room for the

different levels of strategic sophistication on the part of receivers to play a role. Second, in

treatments with verifiable information, there is no leeway in specifying receivers’ beliefs (or

behavior) following the verifiable messages r or b. The only degree of freedom is in specifying

non-equilibrium beliefs and play conditional on message n. The natural assumption is that a

level-0 receiver naively updates in a passive manner, with a posterior of 1/3, the same as the

prior. However, in our setting, such belief leads the receiver to guess blue, the same guess she

would take following message b. The fact that receivers’ behavior is identical between level-

0 and equilibrium play implies that this concept, taken as is, gives us little leverage to explain

departures from equilibrium in our environment. This is of course not to say that a more

elaborate version of level-k—possibly combined with other approaches—may not be a fruitful

avenue to explore.

Other-regarding preferences have been successfully used to understand important patterns

in a variety of experiments (see Cooper and Kagel, 2016). However, the informativeness gap

entails departures that, in some cases, go in a direction that is opposite to the common predic-

tion of such models—namely, away from equating players’ payoffs. For instance, in U100, a

commitment-blind sender plays an uninformative strategy and thus, earns the lowest possible

payoff (see Figure 6), while the receiver can secure an expected payoff of $1.33 (or $2 times

2/3) by guessing blue. By playing the empirical best response, the sender would instead in-

31Crawford et al. (2013) reviews this literature. In cheap-talk games, Cai and Wang (2006), Kawagoe and
Takizawa (2009), and Wang et al. (2010) discuss level-k models.
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crease her payoffs away from zero, while also increasing the payoff for the receiver. This sug-

gests that commitment-blind senders do not behave in a way that is compatible with the spirit

of many models of other-regarding preferences. Of course, this literature is incredibly rich, and

there may be additional and more-complex types of behaviors that could be useful to explore

in the future.

Finally, lying aversion has been studied in the context of cheap-talk experiments (e.g., Gneezy,

2005; Sánchez-Pagés and Vorsatz, 2007; Hurkens and Kartik, 2009). Lying aversion is consis-

tent with the fraction of subjects who always tell the truth, as discussed in Section 5.2. How-

ever, such behavior is markedly different from the behavior of a commitment-blind sender, es-

pecially in treatments with unverifiable information. More importantly, it leads to implications

that are, in principle, different from the observed departures: Lying aversion should indeed

inflate the informativeness in treatments with unverifiable information, whereas the opposite

happens in the data.
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A Additional Treatments

In this section, we explore two robustness treatments. In Section A.1, we simplify the message

space by excluding message n. This message is redundant when information is unverifiable. We

find that results without message n are comparable overall to those with message n, but feature

less noise. We also take advantage of the simpler setup to take a deeper dive into receivers’

behavior. We find that, although receivers do not conform to the Bayesian paradigm, their

behavior is highly systematic and monotone to information. In Section A.2, we test a different

comparative static result: instead of varying commitment or rules, we change the alignment

between sender’s and receivers’ preferences.

A.1 Simplifying the Message Space

In our main treatments, senders can choose among three messages: r, b, and n. In theory, when

information is unverifiable, one of these messages is redundant and its presence (or absence)

does not change equilibrium outcomes. In practice, message n is convenient as it allows a

clean comparison between treatments with and without verifiable information. In this section,

we show that adding message n does not significantly alter agents’ behavior. We report the

results of a treatment with unverifiable information and full commitment where the message

space includes only r and b. Every other aspect of this treatment, which we label U100S , is

identical to U100.32 Our main conclusion from the comparison of U100 and U100S is that

adding message n increases the noise, but does not significantly alter agents’ behavior. We also

take advantage of the simpler setting in U100S to perform an analysis of receivers’ behavior,

which is representative of receivers’ behavior in all other treatments (see Appendix B).

A.1.1 Comparison between U100 and U100S

We begin by comparing the senders’ behavior in treatments U100 and U100S . The left panel

of Figure A9 reports the main clusters for these treatments computed through a k-means al-

gorithm, as described in Section 5.2. Solid markers indicate the representative strategies for

U100S . Hollow markers indicate those for U100. A9 shows that the strategies that senders

play in these two treatments are highly comparable, despite the difference in the message space.

32We conducted four sessions of U100S , each with 14-20 subjects (17.5 on average per session) for a total
of 70 subjects. In addition to their earnings from the experiment, subjects received a $10 show-up fee. Average
earnings, including the show-up fee, were $34 (ranging from $14 to $52) per session.
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Figure A9: Senders’ (left panel) and Receivers’ (right panel) Behavior in U100 and U100S

We note that the behavior in U100S is less noisy than in U100. This can be deduced from the

fact that the residual cluster, indicated by green diamonds, has a lower frequency in U100S

(12.9%) relative to U100 (21.1%). There is a higher frequency of senders who approximately

best respond to receiver U100S relative to U100. From Figure 6 and A10, we can deduce

that, in these treatments, the best response involves a combination of blue squares and yel-

low triangles. These represent 63.5% and 44% of the data in U100S and U100, respectively.

This last observation is also reflected in the average Bayesian correlation that is induced by

senders in these two treatments. We find that φB(πC) = 0.41 in U100S . This is significantly

lower (p < 0.01) than the equilibrium prediction of 0.5, but the sign is significantly higher

(p < 0.05)) than in U100. We conclude that senders’ behavior in U100S is qualitatively com-

parable to U100, but cleaner and less noisy than in U100.

We now compare receivers’ behavior in treatments U100 and U100S . The right panel of

Figure A9 reports the average receivers’ responsiveness to Bayesian posteriors belonging to

four key intervals (horizontal axis). We focus attention on the posteriors induced by message

m = r, the potentially persuasive message. In none of the intervals is the receivers’ behavior

significantly different in the two treatments considered. We conclude that receivers do not seem

to react in unexpected ways to the presence of the redundant message n.

A.1.2 A Closer Look at Receivers’ Behavior

We take advantage of the relative simplicity of treatment U100S to take a closer look at re-

ceivers’ behavior. A similar analysis for all the other treatments can be found in Appendix B.

We begin by describing some aggregate features of the data. First, receivers’ responsiveness is

monotonic in the induced posterior. That is, on average, receivers are more persuaded to guess

39

Electronic copy available at: https://ssrn.com/abstract=3475075



red by messages that carry more evidence in favor of the state being R. As highlighted in Sec-

tion 5.1, this is a robust feature of receivers’ behavior that holds across all our treatments, in-

cluding U100S . For U100S , this is illustrated graphically in Figure A9 when m = r. When

pooling message r and b, we find that, for posteriors above 1
2 , receivers guess red 57% of the

time, whereas they guess red only 11% of the time for posteriors below 1
2 (p ≤ 0.01).

The extent of monotonicity that we observe in receivers’ behavior is sufficient to confirm

one of the main insights from models of communication under commitment, namely that the

best response involves some degree of strategic obfuscation: an uninformative πC is worse

than a fully informative πC, which is worse than using commitment to mix. In Figure A10,

we replicate the same exercise performed in Figure 6 for U100S . As was the case for U100

and V100, we find that senders’ empirical expected payoff is non monotone in the amount of

information conveyed to the receiver, in line with the theory.

Monotonicity is, of course, a mild requirement for receivers’ rationality. A Bayesian re-

ceiver should choose a = red for any posterior µ(m, πC) ≥ 1
2 and a = blue otherwise. The ag-

gregate evidence presented in Figure A9 fails to satisfy this stronger requirement of rational-

ity. Furthermore, receivers respond to the color of the message independently of the posterior

this color conveys. When µ(m, πC) ≥ 1
2 , receivers guess a = red 62% of the time if m = r and

38% of the time if m = b. In contrast, when µ(m, πC) < 1
2 , receivers guess a = red 21% if

m = r and 5% of the time if m = b. These differences, which are significant at the 1% level,

are inconsistent with the behavior of a Bayesian receiver. Even when provided with conclu-

sive evidence that the state is R, that is, even when µ(m, πC) ≈ 1, some receivers nonetheless

guess blue at least some of the time. To summarize, at the aggregate level, receivers are non-

Bayesian, an observation that is in line with a large body of experimental literature (e.g., Char-

ness and Levin, 2005; Holt, 2007, Ch. 30).

To understand better whether the deviations are driven by a few subjects or shared by most,

we turn to individual behavior. We demonstrate that, despite not being Bayesian, receivers

react to information as summarized by the posterior belief in systematic ways. In particular,

we consider the possibility that subjects follow (potentially different) threshold strategies. A

µ̄-threshold strategy, for µ̄ ∈ [0, 1], consists of guessing a = red if and only if µ(m, πC) ≥

µ̄. When µ̄ = 1
2 , the receiver is Bayesian. When µ̄ , 1

2 the receiver is non-Bayesian, but

behaves systematically: she requires stronger or weaker than needed evidence to choose a =

red. Given our data, we can estimate a receiver-specific threshold that rationalizes the greatest

fraction of her guesses.33 We find that the behavior of many subjects is consistent with a

33See Appendix B for more details. In U100S , when focusing on the last ten rounds of the game, we observe a
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threshold strategy. Almost half the receivers (46%) display behavior that is always consistent

with a threshold strategy, and almost nine out of ten receivers (89%) behave consistently with a

threshold strategy for more than 80% of their guesses. Figure A11 plots the estimated threshold

for each receiver (vertical axis). We compare these thresholds with the thresholds that we

would have estimated from the same data if receivers were Bayesian (horizontal axis).34 The

figure shows substantial heterogeneity in receivers’ behavior. Dots lying above the 45-degree

line indicate receivers who are reluctant to guess red, even when a Bayesian would conclude

that there is enough evidence. By contrast, the points below the 45-degree line indicate subjects

who are too eager to guess red, despite insufficient evidence from the perspective of a Bayesian

agent. The aggregation of this heterogeneous behavior is partly responsible for the smoothness

of aggregate responses to the posterior that is displayed in Figure A9 (right panel). Also note

that Figure A11 shows a sizable fraction of receivers who exhibit behavior consistent with the

Bayesian benchmark: one-quarter of the receivers have thresholds within 5 percentage points

of being consistent with a Bayesian receiver; the number increases to one third if we are more

permissive and allow for a band of 10 percentage points around the Bayesian receiver.

Overall, this threshold analysis reveals three important aspects of receivers’ behavior. First,

the vast majority of receivers appear to behave in systematic ways, as summarized by threshold

strategies. Second, there is a substantial heterogeneity in the thresholds: some receivers are

receiver’s guess on 20 occasions following r and b messages. We look for the threshold that best describes these
20 observations. This procedure typically results in a range of best-fitting thresholds. We report the average of
these thresholds. This method akin to perceptrons in machine learning; see, for instance, Murphy (2012).

34Given the finite sample, even a Bayesian receiver can have an estimated average threshold that is different
from 1/2. As an example, imagine a receiver who is perfectly Bayesian, but for whom the closest posteriors to
0.5 that we observe are 0.45 and 0.65. Her estimated threshold would then be 0.55. Figure B16 in the appendix
presents the estimated threshold and their respective precision.
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skeptical, some are approximately Bayesian, some others are gullible. Third, virtually all

receivers respond to information in monotonic ways. It is thanks to this that the senders’

empirical best responses (Figure A10) are qualitatively in line with the theory.

A.2 Changing Receiver’s Incentives

Propositions 1 and 2 in Section 2 constitute the bulk of our experimental strategy, which re-

volves around the idea of partial commitment. A different kind of comparative static exercise

that we considered does not vary the degree of commitment ρ nor the communication rule. In-

stead, it shows how equilibrium informativeness changes with the persuasion threshold q. As

we explain below, this can be done experimentally by changing the preferences of the receiver.

Formally, the prediction that we test is the following.

Proposition 3. Fix q′ > q > µ0 and consider any ρ ≥ q′−µ0
q′(1−µ0) . Equilibrium informativeness

under q′ is strictly higher than under q, irrespective of the rules of communication.

This result shows that when ρ is sufficiently high, an increase in q increases equilibrium

informativeness irrespective of the communication rules. In particular, when ρ = 1, raising q

strictly increases the equilibrium informativeness for both verifiability scenarios.

Based on this idea, we designed an additional treatment with full commitment (ρ = 1) and

unverifiable information. We label this treatment U100H and compare it directly to U100.

Payoffs are as follows. As in all other treatments, the receiver earns nothing if she guesses

incorrectly. In contrast to our main treatments however, the receiver earns $2 if she correctly

guesses that θ = B, but only 67¢ if she correctly guesses that θ = R. This payoff structure

increases the persuasion threshold from q = 1/2 to q = 3/4. Since the receiver is harder to

persuade, the sender is automatically worse off relative to U100. Therefore, to guarantee the

comparability between treatments, we also modify the sender’s payoff in U100H. In particular,

she earns $3 (instead of $2) whenever a = red. In this way, her expected equilibrium payoff

is the same for U100 and U100S . In equilibrium, the sender is to choose πC(r|R) = 1 and

πC(b|B) = 5/6 and the predicted informativeness is φB(πC) = 5/
√

40 ≈ 0.79. We conducted

four sessions of U100H, each with 16-20 subjects (72 in total).35

The left panel of Figure A12 reports the main clusters of senders’ behavior in treatment

U100H. These are computed through a k-means algorithm, as described in Section 5.2. A large

fraction of senders, indicated by a blue square, choose strategies that are close to equilibrium

35The sessions lasted approximately 100 minutes. Subjects earned on average $32, including a show-up fee of
$10. On average, senders and receivers made $23 and $40, respectively.
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Figure A12: Strategy Clusters (left) and Posterior Variance (right) in Treatment U100H

behavior. A smaller but significant fraction of senders, indicated by a purple star, choose a

strategy that would be close to equilibrium behavior in U100 but are not informative enough to

persuade a Bayesian receiver in U100H. The strategies summarized by the red circle capture

commitment blindness, while those summarized by the green diamond capture a cluster of

residual strategies that should be interpreted as noise. When comparing these clusters with

those computed for treatment U100 (Figure D19, right panel) or U80 (Figure 7), we observe

an overall shift toward more-informative strategies, as predicted by the theory (upper-right

corner).

Quantifying this shift is complicated by the fact that receivers’ preferences between U100

and U100H have changed. Therefore, Bayesian correlations φB have to be computed using

different Bayesian receivers in the two treatments. For example, a posterior of 0.74 induces a =

red for a Bayesian receiver in U100, but a = blue in U100H. When using Bayesian correlation

φB to measure informativeness, we do not find a significant change between U100 and U100H.

However, this is caused by the fact that φB is a conservative measure of informativeness: when

a sender induces a posterior distribution with support {0, q−ε}, the Bayesian correlation is zero,

even if a great deal of information was conveyed by the sender. To avoid this problem, we can

compute the variance of the posterior distribution induced by πC. As described in Section 3.3

and D.1, the variance of induced posteriors is an alternative measure of informativeness which,

unlike φB, does not depend on q, and thus, may be more appropriate when comparing data

from treatments that feature different q’s. The posterior variance in U100 is 0.067 (predicted

0.055); in U100H, it is 0.094 (predicted 0.14). The increase from U100 to U100H is significant

(p < 0.01), in line with Proposition 3. Moreover, the sender-by-sender CDF of the posterior

variance increases from U100 to U100H in a first-order stochastic sense, as reported in the

right panel of Figure A12.
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Figure B13: Estimated Threshold: Actual Re-
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Figure B14: Estimated Threshold and Preci-
sion

B Threshold Strategies in Main Treatments

The relevant data for the estimation of threshold strategies comprises pairs of induced poste-

riors µ and guesses a for each receiver and message. We look for a threshold µ̄ ∈ [0, 1] that

minimizes #{a , 1{µ ≥ µ̄}} where a takes a value of 1 for red and 0 for blue. In other words,

we find the threshold µ̄ that rationalizes the greatest number of choices a receiver has made.

We refer to the fraction of choices properly accounted for by the threshold as the precision of

µ̄. Given that the sample is finite and thresholds exist on the unit interval, there will be an infi-

nite number of thresholds with the same precision. For instance, imagine a hypothetical sam-

ple comprising only two observations: a receiver that guessed red given a posterior of 0.7 and

guessed blue when the posterior was 0.4. In this case, any threshold µ̄ ∈ [0.4, 0.7] would have

the same precision, namely 1. We report the midpoints of the estimated ranges.

The theory assumes receivers are Bayesian. However, notice that even a Bayesian receiver

is unlikely to yield a threshold of 0.5. This is because the sample is finite. For instance, in

the two-observation example proposed above, the estimated threshold is 0.55, even if the agent

behaves as a Bayesian. To account for this, we compare thresholds for the receivers in our

experiment with the hypothetical thresholds that we would estimate given the observed sample

if the receivers were Bayesian.

Figure B13 and B14 illustrate the best-fitting thresholds and their precisions for the main

treatments. Unlike for the U100S treatment, these thresholds are computed with 30 choices

per subject, thus achieving high precision is more difficult. Nonetheless, precision is still high:

the treatment with the lowest precision still has 81% of subjects with 80% precision; across all

treatments, 90% of subjects meet that criteria.
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Figure B16: Estimated Threshold and Preci-
sion for Treatment U100S

Figure B14 also shows that precision is particularly high when information is verifiable: 55%

of receivers always choose in a way that is consistent with a threshold. That number is 24% for

the treatments with unverifiable messages. From Figure B13, we deduce that receiver behavior

is highly heterogeneous. A nontrivial fraction of subjects are close to the behavior Bayesian

receivers would exhibit. There is also a substantial fraction of subjects who are skeptical, that

is, they require higher-than-needed evidence to guess red, and there is a fraction of subjects

who are instead, gullible. Finally, note that in the treatment that comes closest to the setup of

a cheap-talk experiment, namely U20, all receivers that are not compatible with the Bayesian

benchmark are classified as gullible. This is in line with one of the main findings in Cai and

Wang (2006). Overall, the aggregation of this heterogeneous behavior is partly responsible for

the linearity of aggregate responses to the posterior that is displayed in Figure 3.36

Finally, in all treatments, receivers’ responsiveness is monotone increasing in information.

However, there are some expected differences between communication rules. As Figure B15

illustrates, in treatments with verifiable information, receivers are more likely to guess a = red

conditional on any message m that leads to a posterior above 3/4. This is in part due to the

fact that, in these treatments, the frequency of extreme posteriors, that is µ = 1, is higher, since

information is verifiable. Conversely, the frequency of a = red conditional on any message m

that leads to a posterior below 1/4 is lower in the verifiable treatments (it is already very low in

the unverifiable treatments). Again, this is in part because the frequency of extreme posteriors,

in this case µ = 0, is higher in treatments with verifiable information.

36This linearity may appear consistent with probability matching. That is, subjects guess red with a probability
equal to the posterior belief. To test for this, we compute for each subject the mean-squared error (MSE) of the
predicted guess using the estimated threshold strategies and compare it with the MSE of the probability-matching
model. Across all treatments, we find that for about 80% of the receivers, threshold strategies have lower MSE
than probability matching.
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C Equilibrium, Refinement and Proofs

C.1 Equilibrium Characterization

In this section, we characterize the set of Perfect Bayesian Equilibria (PBE) for the framework

introduced in Section 2. In a PBE, the sender chooses an information structure πC ∈ Π in the

commitment stage. Then, at every history π′C, the sender chooses π′R ∈ Π, possibly as a function

of π′C. Finally, the receiver observes history (m, πC) and responds with an action in {aH, aL}.

We call such an action a(m, πC). Finally, a belief assessment µ assigns a belief to every triple

(m, π′C, π
′
R). For notational simplicity, we omit the dependence of π′R on π′C.

Definition 1. Fix (Π, ρ, q). The tuple (πC, πR, a, µ) is a Perfect Bayesian Equilibrium if:

(1) πC maximizes
∑
θ,m µ0(θ)

(
ρπC(m|θ) + (1 − ρ)πR(m|θ)

)
v(a(m, πC));

(2) For all (π′C, θ), π
′
R maximizes

∑
m π
′
R(m|θ)v

(
a(m, π′C)

)
;

(3) For all (m, π′C), a(m, π′C) = aH iff µ(m, π′C, π
′
R) ≥ q;

(4) For all (m, π′C, π
′
R), posterior belief µ(m, π′C, π

′
R) is computed from π := ρπ′C + (1 − ρ)π′R

using Bayes’ rule whenever possible. 37

Next, we provide a characterization of the equilibrium set, before imposing a refinement on

our equilibrium notion. We say that an equilibrium (πC, πR, a, µ) under (Π, ρ, q) achieves full-

commitment informativeness (FCI) if φB(ρπC + (1 − ρ)πR) = ( q−µ0
1−µ0

)
1
2 . This is the equilibrium

informativeness that can be achieved under full commitment and unverifiable information. It

is also useful to define two thresholds for ρ: ρ := q−µ0
q(1−µ0) and ρ̄ =

q(1−µ0)
q(1−µ0)+(1−q)µ0

. Note that ρ ≤ ρ̄.

We begin from the case of unverifiable information.

Lemma 1. Fix q > µ0 and let information be unverifiable.

(a) If ρ < ρ, all equilibria are uninformative.

(b) If ρ ∈ [ρ, ρ̄), uninformative equilibria exist. Equilibria that are as informative or more

informative than FCI exist.

(c) If ρ ≥ ρ̄, there is no uninformative equilibrium. Equilibria that are as informative or

more informative than FCI exist.
37When information is verifiable, we naturally assume that an off-path message θH (resp. θL), i.e. the verifiable

message, leads to an off-path belief of 1 (resp. 0). This is in the spirit of Battigalli and Siniscalchi (2002).

2
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The proof for this and the next result are in Section C.3. When commitment power is low, all

equilibria are uninformative. When commitment power is sufficiently high, instead, all equi-

libria are strictly informative. Furthermore, in this case, FCI can be achieved in equilibrium,

even if the sender may lack full commitment power. She does so by appropriately overcom-

municating in the commitment stage, anticipating that her behavior in the revision stage will

reduce the credibility of her communication.

Next, we present the equilibrium characterization for the case of verifiable information.

Lemma 2. Fix q > µ0 and let that information be verifiable.

(a) If ρ < ρ, all equilibria are fully informative.

(b) If ρ ∈ [ρ, ρ̄), the least informative equilibrium is FCI; fully informative equilibria exist.

(c) If ρ ≥ ρ̄, there are no fully informative equilibria; the least informative equilibrium is

FCI.

From this result, we appreciate the contrast between verifiable and unverifiable information.

When information is verifiable, all equilibria are fully informative when the commitment power

is low. This is in stark contrast with the unverifiable case. Moreover, when the commitment is

sufficiently high, there are no fully informative equilibria and, thus, the sender can avoid the

unattractive scenario where she fully disclose all her private information.

Overall, these Lemmas provide a complete characterization of the equilibrium set. Modulo

the equilibrium multiplicity, which we will address in the next subsection, these results partially

replicate the comparative statics that we presented in Section 2.

C.2 Truth-Leaning Equilibria

In this section, we provide two examples—one for unverifiable and one for verifiable information—

of PBEs that do not satisfy the truth-leaning tie-breaking rule that we introduced in Section 2.

We use these examples to argue that equilibria that are not truth-leaning feature behavior in the

revision stage that is somewhat unreasonable.

Example 1: Unverifiable Information.

Assume that information is unverifiable and let ρ = 3
5 , the persuasion threshold to q = 1

2 , and

the prior to µ0 = 1
3 . Consider the pair (πC, πR) that is reported in Table C5. First note that

µ(θH, πC, πR) < q and µ(θL, πC, πR) < q. That is, despite the fact that πC is fully informative, the

3
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sender’s behavior in the revision stage entirely garbles the information from the commitment

stage.
Table C5

πC θH θL n

θH 1 0 0

θL 0 1 0

πR θH θL n

θH 0 1 0

θL 1 0 0

We show that the pair (πC, πR) can be used to construct an equilibrium. Suppose that for

any deviation at the commitment stage π′C, the sender chooses an appropriate π′R at the revision

stage so as to make the pair (π′C, π
′
R) uninformative. The Proof of Lemma 1.(b) establishes that,

for ρ sufficiently low, such a π′R exists. Given the receiver’s beliefs about the revision stage

strategy, the receiver would choose action aL for both messages. Thus, the sender is indifferent

among all her strategies in the revision stage and is willing to choose π′R. Furthermore, given the

receiver’s expectation about π′R, in the commitment stage the sender is also indifferent among

all his strategies: all of them lead to a payoff of zero. This particularly strange behavior of the

sender in the revision stage is ruled out by the truth-leaning refinement. In this equilibrium, in

the revision stage the sender of type θH is indifferent between sending message θL and being

truthful. Truth-leaning requires that such a sender choose πR(θH |θL) = 1 instead.

Example 2: Verifiable Information.

Now assume that information is verifiable. As above, let ρ = 3
5 , q = 1

2 and µ0 = 1
3 . We consider

the pair (πC, πR) that is described in Table C6.

Table C6

πC θH θL n

θH 0 0 1

θL 0 5
6

1
6

πR θH θL n

θH 0 0 1

θL 0 0 1

Given such a πC, in the revision stage the sender of type θL strictly prefers message n to message

θL, whereas the sender of type θH is indifferent among the two feasible messages. Furthermore,

the pair (πC, πR) described in the table is FCI, i.e., it leads to the maximal achievable equilibrium

payoff for the sender. Therefore, the sender has no incentive to deviate at the commitment stage.

This equilibrium relies on unrealistic behavior at the revision stage. To see this, consider the

on-path decision of the sender of type θH in the revision stage. She can choose between sending

4
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message n, inducing an on-path belief of 1
2 , or sending an off-path message θH, inducing an off-

path belief of 1 (See Footnote 37). Both messages trigger action aH by the receiver. Therefore,

the sender is indifferent and, yet, not truthful. Hence, while consistent with the requirement of

PBE, this equilibrium is not truth-leaning.

The truth-leaning refinement is a simple tie-breaking rule, but it is powerful enough to select

a unique equilibrium outcome for each ρ. This is formalized in the next result.

Lemma 3. Fix ρ ∈ [0, 1] and q > µ0.

(Unverifiable) If ρ < ρ, truth-leaning equilibria are uninformative. If ρ ≥ ρ, truth-

leaning equilibria are FCI.

(Verifiable) If ρ < ρ̄, truth-leaning equilibria are fully informative. If ρ ≥ ρ̄, all truth-

leaning equilibria are equally informative.

The proof for this result is relegated to Online Appendix C.3.

C.3 Proofs

C.3.1 Proof of Proposition 1

In Lemma 3, we have established that, for any given ρ and q > µ0 and verifiability scenario,

all truth-leaning equilibria are equally informative. Assume that information is unverifiable.

Lemma 3 also establishes that truth-leaning equilibria are uninformative if ρ < ρ and FCI

otherwise. Moreover, φB(ρπC+(1−ρ)πR) =
( q−µ0)

(1−µ0)

) 1
2 > 0, since q > µ0. Finally, we want to show

that, when ρ ≥ ρ, any truth-leaning equilibrium (πC, πR, µ, a) satisfies φB(πC) > φB(πR). Since

the equilibrium is strictly informative, there exists a message m′ inducing action aH. Then,

πR(m′|θ) = 1, for all θ. Therefore, φB(πR) = 0. However, φB(ρπC + (1 − ρ)πR) = ( q−µ0
1−µ0

)
1
2 > 0,

implying that φB(πC) > 0. We conclude that πC is more informative than πR. Now assume that

information is verifiable. In Lemma 3, we established that truth-leaning equilibria are fully

informative if ρ < ρ̄. Moreover, we also established that, if ρ ≥ ρ̄, any truth-leaning equilibrium

(πC, πR, µ, a) has φB(ρπC +(1−ρ)πR) =
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 < 1. In this case, we argued that the fact

that truth-leaning equilibria are not fully informative pins down the on-path sender behavior

(πC, πR). In particular, we showed that πC(n|θH) = 1, πC(n|θL) = (1 − ρ) − 1−ρ
ρ
∈ [0, 1] and that

πR(θH |θH) = πR(n|θL) = 1. Given this, it is straightforward to conclude that φB(πC) < φB(πR). �

5
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C.3.2 Proof of Proposition 2

When information is unverifiable, Lemma 3 established that, any truth-leaning equilibrium

(πC, πR, µ, a) satisfies

φB(ρπC + (1 − ρ)πR) =

 0 if ρ < ρ

( q−µ0
1−µ0

)
1
2 if ρ ≥ ρ

Therefore, when information is unverifiable, equilibrium informativeness is weakly increasing

in ρ. Assume now that information is verifiable. In the proof of Lemma 3, we established that

any truth-leaning equilibrium (πC, πR, µ, a) satisfies

φB(ρπC + (1 − ρ)πR) =

 1 if ρ < ρ̄( q−µ0(ρ+q(1−ρ))
(1−µ0)(ρ+q(1−ρ))

) 1
2 if ρ ≥ ρ̄

It is easy to verify that
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 is decreasing (strictly) in ρ. Therefore, we conclude that

equilibrium informativeness when information is verifiable is weakly decreasing in ρ. Finally,

consider the extreme case, ρ = 1. It’s immediate to check that in this case, irrespective of

weather information is verifiable or not, equilibrium informativeness coincides and it is equal

to ( q−µ0
1−µ0

)
1
2 . �

C.3.3 Proof of Proposition 3

Assume that information is unverifiable. Fix q′ > q > µ0 and consider ρ ≥ q′−µ0
q′(1−µ0) . We

want to show that the informativeness of truth-leaning equilibria under q′ is higher than under

q. To see this, note that ρ is large enough that equilibria are strictly informative, for both q′

and q. In particular, due to Lemma 3 and Proposition 2, we know that under q equilibrium

informativeness is equal to ( q−µ0
1−µ0

)
1
2 and, since q−µ0

1−µ0
< q−µ0

1−µ0
, we conclude that the informativeness

of truth-leaning equilibria under q′ is higher than under q. Now assume that information is

verifiable. Then, both ρ̄ and
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 are increasing in q. Therefore, for any value of ρ,

equilibrium informativeness under q′ is higher than under q. �

C.3.4 Proof of Lemma 1

Proof of Lemma 1.(a). Let information be unverifiable and ρ < ρ. Suppose by way of contra-

diction that there is an equilibrium (πC, πR, a, µ) such that φB(ρπC + (1 − ρ)πR) > 0. This im-

plies that there are positive probability messages that lead to action aH. There are two cases to

6
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consider.

Case 1. There exists exactly one positive probability message m′ such that a(m, πC, πR) = aH.

In this case, the equilibrium conditions imply that πR(m′|θ) = 1 for all θ. However, given this

we have that

q ≤ µ(m′) =
µ0(ρπCm′|θH) + (1 − ρ))

µ0(ρπC(m′|θH) + (1 − ρ)) + (1 − µ0)(ρπC(m′|θL) + (1 − ρ))
≤

µ0

µ0 + (1 − µ0)(1 − ρ)
<

µ0

µ0 + (1 − µ0)(1 − ρ)
= q.

The first inequality holds because m′ leads to action aH. The first equality follows from Bayes’

rule. The second inequality holds because µ(m′) is maximized when we set πC(m′|θH) = 1 −

πC(m′|θL) = 1. The third inequality holds because ρ < ρ. This leads to a contradiction, and

therefore we can rule out Case 1.

Case 2. There are exactly two positive probability messages m′,m′′ ∈ M such that a(m, πC, πR) =

aH, for m ∈ {m′,m′′}. Define πi(m′,m′′|θ) := πi(m′|θ) + πi(m′′|θ), for all θ and i ∈ {C,R}. Be-

cause both m′ and m′′ lead to aH, equilibrium conditions imply that πR(m′,m′′|θ) = 1 for all θ.

Denote by µ(m′,m′′) the posterior belief conditional on observing m′ or m′′. That is,

µ(m′,m′′) =
µ0(ρ(πC(m′,m′′|θH) + (1 − ρ))

µ0ρπC(m′,m′′|θH) + (1 − µ0)ρπC(m′,m′′|θL) + (1 − ρ)
≤

µ0

µ0 + (1 − µ0)(1 − ρ)
<

µ0

µ0 + (1 − µ0)(1 − ρ)
= q.

The first inequality holds because µ(m′,m′′) is maximized when πC(m′,m′′|θH) = 1−πC(m′,m′′|θL) =

1. This shows that µ(m′,m′′) < q. However, Bayes’ rule also implies that, for appropriately

chosen weight β,38

µ(m′,m′′) = βµ(m′) + (1 − β)µ(m′′) ≥ q.

Therefore, we have q ≤ µ(m′,m′′) < q, a contradiction. We conclude that the equilibrium

cannot be informative. �

Proof of Lemma 1.(b).

Existence of FCI equilibria. Fix ρ ≥ ρ. We first show that FCI equilibria exist. We do so

by constructing such an equilibrium. We start by defining strategies on the equilibrium path.

38More specifically, β :=
∑
θ µ0(θ)(ρπC (m′ |θ)+(1−ρ)πR(m′ |θ))∑

θ µ0(θ)(ρπC (m′,m′′ |θ)+(1−ρ)πR(m′,m′′ |θ))

7
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For the commitment stage, let πC(m′|θH) = 1, πC(m′|θL) = x and πC(m′′|θL) = 1 − x, where

x = 1
ρ

(µ0(1−q)
q(1−µ0) − (1−ρ)

)
. Note that πC is well-defined. On the one hand, x ≥ 0 if µ0(1−q)

q(1−µ0) ≥ 1−ρ ≥

1 − ρ, which is true since 1 − ρ =
µ0(1−q)
q(1−µ0) . On the other hand, x ≤ 1 follows directly from our

maintained assumption q > µ0. For the revision stage, let πR(m′|θ) = 1, for all θ. Given this

choice of πC and πR, we have that µ(m′, πC, πR) = q and µ(m′′, πC, πR) = 0, hence let a(m′, πC) =

aH and a(m′′, πC) = aL. It is straightforward to check that φB(ρπC + (1 − ρ)πR) = ( q−µ0
1−µ0

)
1
2 , i.e.

it is consistent with FCI. We now define strategies off the equilibrium path. For any π′C, let

µ(m, π′C) =
µ0π

′
C(m|θH)

µ0π
′
C(m|θH)+(1−µ0)π′C(m|θL) . Let m̄ be such that µ(m̄, π′C) ≥ µ(m, π′C), for all m ∈ M. Let

π′R(m̄|θ) = 1 for all θ. For such pairs (π′C, π
′
R), let a(m, π′C) = aH if and only if µ(m, π′C, π

′
R) ≥ q.

Whenever a message m has zero probability let µ(m, π′C, π
′
R) = 0. It is straightforward to check

that this strategy is indeed an equilibrium and, as noted above, FCI.

Existence of uninformative equilibria.

Next, we show that when ρ ∈ [ρ, ρ̄), an uninformative equilibrium exists. The proof is by

construction and consists in finding, for each possible history πC, a revision strategy πR such

that φB(ρπC + (1 − ρ)πR) = 0. The existence of such πR for each history πC guarantees the

existence of an uninformative equilibrium. To this end, consider an arbitrary πC. If µ(m, πC) <

q, for all m ∈ M, then let πR = πC, which gives φB(ρπC + (1 − ρ)πR) = 0. Conversely, suppose

that there exists a message m such that µ(m, πC) ≥ q. For arbitrary πC, Bayes plausibility

requires that there exists at least one message, call it m′′′, such that µ(m′′′, πC) ≤ µ0. To

simplify notation, let πC(m′|θH) = a′, πC(m′′|θH) = a′′, πC(m′′′|θH) = a′′′, πC(m′|θL) = b′,

πC(m′′|θL) = b′′, πC(m′′′|θL) = b′′′. Define the revision strategy as follows: πR(m′′′|θH) = 1, and

let πR(m′|θL) = x′, πR(m′′|θL) = x′′ and πR(m′′′|θL) = x′′′. We want to show that there exists

(x′, x′′, x′′′) such that x′ + x′′ + x′′′ = 1 and π(m, πC, πR) < q, for all m ∈ M. We have that

µ(m′, πC, πR) < q is equivalent to:

x′ > Φ′ :=
ρ

1 − ρ

(
(1 − ρ)a′ − b′

)
.

Similarly, µ(m′′, πC, πR) < q is equivalent to:

x′′ > Φ′′ :=
ρ

1 − ρ

(
(1 − ρ)a′′ − b′′

)
.

Finally, the last condition µ(m′′′, πC, πR) < q is equivalent to:

x′ + x′′ < Φ̄ := ρ +
ρ

1 − ρ

(
b′′′ − a′′′ + ρa′′′

)
.

8
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It is straightforward to check that Φ′ + Φ′′ < Φ̄ and also that Φ′ + Φ′′ < 1 if and only if ρ < ρ̄.

Therefore, x′ and x′′ can be found so that the thus defined πR is an information structure and

φB(ρπC + (1 − ρ)πR) = 0.

It is straightforward to complete the construction of the uninformative equilibrium. Note that

the sender has no profitable deviation in the commitment stage. In fact, all possible deviations

π′C lead to a π′R that, by construction, only induces beliefs strictly below q, hence a guess

aL. Similarly, the sender has no profitable deviation in the revision stage, for reasons that are

similar to the existence of a babbling equilibrium in a cheap talk game.

Existence of equilibria that are more informative than FCI. The construction of these equilibria

is tightly related to the construction of uninformative equilibria above. Fix ρ ≥ ρ. We start

by constructing the sender’s strategies on the equilibrium path. Let πC(m′|θH) = πC(m′′|θL) =

1, that is, πC is fully informative. Let πR(m′|θ) = 1 for all θ. Following these choices, the

receiver’s guesses and beliefs are naturally pinned down. For all “off-path” π′C , πC, we

associate a π′R that is constructed as in the case of an uninformative equilibrium, as explained

above. This means that for all π′C , πC, πB(ρπ′C + (1 − ρ)π′R) = 0, the receiver always guesses

aL and the sender’s expected utility is 0. Clearly, in light of this construction, the sender in

the commitment stage has no incentive to deviate from πC. Thus, this defines an equilibrium.

Moreover, it is easy to verify that φB(ρπC + (1 − ρ)πR) =
( µ0ρ

1−ρ(1−µ0)

) 1
2 , which is higher than FCI

for all ρ ≥ ρ. �

Proof of Lemma 1.(c).

The existence of FCI equilibria as well as the existence of equilibria that are more informative

than FCI follows directly from the Proof of Lemma 1.(b).

Non-existence of uninformative equilibria. We now prove that when ρ ≥ ρ̄ all equilibria are

strictly informative. Suppose not. That is let ρ ≥ ρ̄ and let (πC, πR, µ, a) be an uninformative

equilibrium. Thus, the sender earns a payoff of zero. We construct a profitable deviation π′C
under which there exists a message m′ that induces action aH with strictly positive probability.

We construct this deviation to be fully informative, namely, π′C(m′|θH) = 1 and π′C(m′′|θL) = 1,

for m′′ , m′. Call π′R the continuation strategy of the sender in the revision stage. We have that,

µ(m′, π′C, π
′
R) =

µ0(ρ + π′R(m′|θH))
µ0(ρ + π′R(m′|θH)) + (1 − µ0)(1 − ρ)π′R(m′|θL)

≥
µ0ρ

µ0ρ + (1 − µ0)(1 − ρ)
≥

µ0ρ̄

µ0ρ̄ + (1 − µ0)(1 − ρ̄)
= q
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The first inequality holds because setting π′R(m′|θH) = 0 and π′R(m′|θL) = 1 induces a lower

bound for µ(m′, π′C, π
′
R). The second inequality holds because ρ ≥ ρ̄, by assumption. Therefore,

in the continuation game following deviation π′C, the receiver plays aH with positive probability

so that the deviation is strictly profitable. �

C.3.5 Proof of Lemma 2

Proof of Lemma 2.(a). Assume now that information is verifiable and ρ < ρ. We want to show

that all equilibria are fully informative. Suppose not. That is, (πC, πR, a, µ) is an equilibrium

with φB(ρπC + (1 − ρ)πR) < 1. Because information is verifiable, such a situation implies

that a(n, πC) = aH. Therefore, µ(n, πC, πR) ≥ q. However, equilibrium conditions also imply

that πR(n|θL) = 1, i.e., in the revision stage, the sender of type θL always sends message n.

Therefore, we have that:

q ≤ µ(n, πC, πR) ≤
µ0

µ0 + (1 − µ0)(1 − ρ)
<

µ0ρ

µ0ρ + (1 − µ0)(1 − ρ)
= q.

The first inequality comes from a(n, πC) = aH. The second inequality holds because set-

ting πC(n|θH) = 1, πC(n|θL) = 0 and πR(n|θR) = 1 generates an upper bound for the value

of µ(n, πC, πR). The last inequality holds because ρ < ρ, by assumption. Therefore, q ≤

µ(n, πC, πR) < q, a contradiction. �

Proof of Lemma 2.(b).

Existence of FCI equilibria. We prove this by construction. Fix ρ ≥ ρ. Let πC and πR be such

that πC(n|θH) = πR(n|θH) = πR(n|θL) = 1 and πC(n|θL) = x. Let x := 1
ρ

(
ρ − ρ

)
and note that, by

assumption, ρ ≥ ρ, hence x ∈ [0, 1]. Moreover, it is easy to verify that µ(n, πC, πR) = q. Let

a(n, πC) = aH, therefore πR is a best response to πC given the receiver’s behavior. It is also easy

to verify that φB(ρπC + (1 − ρ)πR) = (q−µ0
1−µ0

)
1
2 . Therefore, (πC, πR) is FCI. As a consequence, no

profitable deviation away from πC exists. Thus, we have have constructed an equilibrium that

is FCI. Moreover, this is the least informative equilibrium that exists in this case. To see this,

note that, because of the nature of verifiable information, φB(ρπC + (1− ρ)πR) < 1 requires that

µ(n, πC, πR) ∈ [q, 1). Moreover, φB(ρπC+(1−ρ)πR) is increasing in µ(n, πC, πR). The equilibrium

that we constructed above has µ(n, πC, πR) = q and it is therefore minimally informative.

Existence of fully informative equilibria. We prove this by construction. Consider a revision

strategy πR defined as πR(θH |θH) = πR(n|θL) = 1. Moreover, suppose that πR is played for all
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histories π′C. Consider an arbitrary history π′C. Note that, for all ρ < ρ̄,

µ(n, π′C, πR) =
µ0ρπ

′
C(n|θH)

µ0ρπ
′
C(n|θH) + (1 − µ0)(ρπ′C(n|θL) + (1 − ρ))

< q.

Moreover, note that πR is a best-response to this arbitrary π′C. Finally, note that, in the subgame

indexed by π′C, the sender expects to receive a payoff of µ0(ρπ′C(θH |θH) + (1−ρ)πR(θH |θH) ≤ µ0.

Now consider the strategy πC = πR. This strategy gives a payoff of µ0 and, due to the argument

above, no profitable deviation from this strategy exists. Moreover, φB(ρπ′C + (1 − ρ)π′R) = 1. �

Proof of Lemma 2.(c). The existence of FCI equilibria as well as the fact that these are the

least informative equilibria follows directly from the Proof of Lemma 2.(b).

Non-existence of fully informative equilibria. We first show that when ρ ≥ ρ̄, there exist no

fully informative equilibrium. When ρ = 1 the result is a straightforward consequence of full

commitment, so let us focus on the case ρ ∈ [ρ̄, 1). Suppose that there exists an equilibrium

(πC, πR, a, µ) such that φB(ρπC+(1−ρ)πR) = 1. In this equilibrium, the sender expects to earn µ0.

Consider a deviation π′C such that π′C(n|θH) = 1 and π′C(θL|θL) = 1. We argue that this deviation

leads to a subgame in which the sender earns strictly more than µ0. First, note that for all π′R,

µ(n, π′C, π
′
R) =

µ0(ρ + (1 − ρ)π′R(n|θH))
µ0(ρ + (1 − ρ)π′R(n|θH)) + (1 − µ0)(1 − ρ)π′R(n|θL)

≥

≥
µ0ρ

µ0ρ + (1 − µ0)(1 − ρ)
≥

µ0ρ̄

µ0ρ̄ + (1 − µ0)(1 − ρ̄)
= q.

Therefore, a(π′C, n) = aH. This implies that π′R(n|θL) = 1. Hence, the expected payoff for the

sender in the commitment stage is bounded below by µ0(ρπ′C(n|θH) + (1 − ρ)π′R(θH |θH) + (1 −

µ0)(1−ρ)π′R(n|θL) = µ0 + (1−ρ)(1−µ0) > µ0. Therefore, π′C is a profitable deviation. Moreover,

irrespective of what π′R(n|θH) is, the fact that n is sent with strictly positive probability in both

states implies that, as long as ρ < 1, µ(n, π′C, π
′
R) < 1; hence, φB(ρπ′C + (1 − ρ)π′R) < 1. �

C.3.6 Proof of Lemma 3

Unverifiable Information. If ρ < ρ, Lemma 1.(a), all PBEs are uninformative. A fortiori, under

this assumption, all truth-leaning are uninformative. Note that, truth-leaning equilibria exist in

this case. For example, let πC and πR be defined as πC(θ|θ) = 1 for all θ and πR(θH |θ) = 1 for all

θ, µ(m, πC, πR) = µ0, and a(m, πC) = aL. Therefore, consider instead the case ρ ≥ ρ. We want to

argue that all truth-leaning equilibria are FCI. In order to do so, we argue that there exists a pair

(πC, πR) such that (1) πR is a best-response to πC, (2) πR is uniquely pinned down by the truth-
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leaning refinement and, moreover, (3) φB(ρπC+(1−ρ)πR) = ( q−µ0
1−µ0

)
1
2 . To this end, let πC(θH |θH) =

1, πC(θH |θL) = x and πC(θL|θL) = 1 − x, where x := 1
ρ
(ρ − ρ). Note that x ∈ [0, 1], hence πC is

well-defined. Conversely, let πR be such that πR(θH |θ) = 1 for all θ. First, let us establish that πR

best-responds to πC. To see this note that, by construction, µ(θL, πC, πR) = 0 and µ(θH, πC, πR) =

q. Therefore, a(θH, πC) = aH and a(θL, πC) = aL. Consistently, πR gives positive probability to

m = θH only. Hence πR best-responds to πC. Second, let us argue that πR is indeed truth-leaning.

To see this, just notice that, in the revision stage, the sender of type θH is being truthful, hence

πR is truth-leaning. Type θL is also truth-leaning since she is not indifferent between m = θH and

m = θL. Finally, it is straightforward to verify that, given this choice of (πC, πR), we have that

φB(ρπC +(1−ρ)πR) = ( q−µ0
1−µ0

)
1
2 , i.e. it is FCI. This implies that, if the pair (πC, πR) is played on the

equilibrium path, it leads to the first-best payoff, namely µ

q . This proves that all truth-leaning

equilibria of the grand-game are FCI. To see this, suppose that this is not the case, i.e. there

exists a truth-leaning equilibrium (π′C, π
′
R, µ

′, a′) that is not FCI, so that the sender’s expected

payoff in this equilibrium is strictly smaller than µ

q . However, a deviation at the commitment

stage exists, namely strategy πC, that leads to a unique best-response in the revision stage,

namely πR, that is consistent with truth-leaning and that achieves the first-best payoff, namely
µ

q . Therefore, such deviation is strictly profitable and (π′C, π
′
R, µ

′, a′) is not an equilibrium.

Verifiable Information. If ρ < ρ, Lemma 2.(a) shows that all PBE are fully informative. A

fortiori, all truth-leaning equilibria are fully informative. Trivially, a truth-leaning equilibrium

exists. For example, πi(θ|θ) = 1 for all θ and i ∈ {C,R}; µ(m, πC, πR) = 1 if m = θH and 0

otherwise; a(m, πC) = aH iff m = θH and aL otherwise. Therefore, consider instead the case

ρ ∈ [ρ, ρ̄). We want to show that all truth-leaning equilibria are fully informative. Suppose

not, namely let (πC, πR, µ, a) be a truth-leaning equilibrium such that φB(ρπC + (1 − ρ)πR) <

1. Since equilibrium informativeness is strictly less than one, there must exist a message m

such that µ(m, πC, πR) ∈ (0, 1). When information is verifiable, it is necessarily the case that

m = n. Moreover, a(n, πC) = aH. If this were not the case, πi(n|θH) = 0, for i ∈ {C,R},

hence µ(n, πC, πR) = 0, a contradiction. Therefore, let µ(n, πC, πR) ∈ [q, 1). On the one hand,

equilibrium requires that πR(n|θL) = 1. (Note that this is consistent with truth-leaning since

the two messages lead to different payoffs). On the other hand, type θH in the revision stage

is indifferent between θH and n, as they both lead to action aH. The truth-leaning refinement

requires that πR(θH |θH) = 1. Therefore, the fact that the equilibrium is not fully informative

uniquely pins down πR. Given this, we note that:

µ(n, πC, πR) ≤
µρ

µρ + (1 − µ)(1 − ρ)
<

µρ̄

µρ̄ + (1 − µ)(1 − ρ̄)
= q.
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Table D7: Predicted and Observed Posterior Variances by Treatment

ψB – Theoretical Predictions

Commitment (ρ)

20% 80% 100%

Verifiable 0.22 0.08 0.05

Unverifiable 0.00 0.05 0.05

ψB – Empirical Posterior Variance

Commitment (ρ)

20% 80% 100%

Verifiable 0.18 0.17 0.15

Unverifiable 0.02 0.05 0.06

Hence, µ(m, πC, πR) < q, a contradiction. Finally, let us consider the case ρ ≥ ρ̄. We want

to show that all truth-leaning equilibria are equally informative. Let (πC, πR, µ, a) be a truth-

leaning equilibrium. By Lemma 2.(c), no equilibrium is fully informative. Therefore, by the

argument made above, µ(n, πC, πR) ∈ [q, 1) and πR is uniquely pinned down. Moreover, πR is

independent of πC. Therefore, there exists a unique best-response πC to such a revision strategy

πR. Such πC is given by πC(n|θH) = 1 and πC(n|θL) = x, where x := (1 − ρ) − 1−ρ
ρ
∈ [0, 1].

This strategy πC satisfies µ(n, πC, πR) = q, while maximizing the ex-ante probability of sending

message n. By construction, all truth-leaning equilibria share the same on-path sender behavior

(πC, πR). Therefore, all truth-leaning equilibria have to be equally informative. Moreover, it is

easy to verify that φB(ρπC + (1 − ρ)πR) =
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 . �

D Additional Material

D.1 Alternative Measures of Informativeness: Posteriors Variance

In the paper, Bayesian correlation φB has been our principal way to measure the informative-

ness of a sender’s strategy. In Section 3.3, we discussed the merits of this measure and how it

relates to the existing literature. In this section, we re-evaluate our main comparative static ex-

ercise from Section 4 using an alternative measure of informativeness, the variance of induced

posteriors. More formally, a strategy (πC, πR) induces a distribution τ ∈ ∆(∆(Θ)) over posterior

beliefs µ(m, πC, πR). The variance of τ, denoted ψB := Eτ

(
(µ − µ0)2), is what we call the vari-

ance of induced posteriors. Clearly, φB and ψB have much in common. First, they are highly

correlated: Across all our treatments, the correlation between φB and ψB is above 0.95. Sec-

ond, they are both immune to receivers’ mistakes. The main difference between the two is that

ψB does not require the specification of a payoff function for the (Bayesian) receiver. Thus, it

is perhaps better suited to compare treatments with different q, like U100 and U100H.

In Table D7, we report the average posterior variance across treatments together with the
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Figure D17: CDF of Sender-Average Variance of Induced Posteriors (ψ)

theoretical predictions. As for Table 3, this measure of informativeness moves in the direction

predicted by the theory. Namely, it increases in treatments with unverifiable information and it

decreases in treatments with verifiable information. Yet, as for φB, the point-predictions are far

from the empirical averages. In particular, senders in V100 appear to be overly informative rel-

ative to the prediction and there is a large gap between V100 and U100. This is all in line with

the evidence reported in Section 5. Similarly, Figure D17 reports the CDF of sender-average

ψB, which replicates Figure 4 in the main text from the perspective of posterior variance.

D.2 Statistical Tests

The p-values reported in the main text are obtained by regressing the variable of interest on

the relevant regressor (sometimes an indicator variable) with subject-level random effects and

clustering of the variance-covariance matrix at the session-level. This specification has the ad-

vantage of being uniform (the same throughout the paper), it directly accounts for heterogene-

ity across subjects via the random effects (as the paper documents, there is clear evidence of

heterogeneity between subjects), and it permits unmodeled dependencies between observations

from the same session (see Fréchette, 2012, where such possibilities are discussed). However,

it does not directly account for the fact that we are often dealing with a limited dependent vari-

able. Also, clustering with a small number of clusters can lead to insufficient corrections (see

Cameron and Miller, 2015, for a survey). But this observation relies mostly on simulations that

do not necessarily mirror the situation of most laboratory experiments. In particular, the extent

of the problem is found to depend on the size of the within session correlation (see, for example,

Carter et al., 2017). For many experiment, such correlation can be expected to be low (once the

appropriate factors are controlled for). Hence, we are more concerned with controlling for the

source of dependencies across the observations of a given subject than for the within-session
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Figure D18: Receiver’s Response to Persuasive Messages: ρ = 0.2 vs. ρ = 1
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Figure D19: k-Means – Representative Strategies in Treatments with Full Commitment
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Table D8: P-Values of Statistical Tests

Model Linear Linear Pr(T)obit Pr(T)obit Linear Linear
Subject RE RE RE RE FE FE
Session Cluster RE Cluster RE Cluster Cluster

Bootstrap CATs

Test

Left panel Figure 2, all bars = 0 when ball is R 0.000 0.000
Left panel Figure 2, all bars = 0 when ball is B 0.000 0.000

Right panel Figure 2, r message bar = 0 when ball is R 0.000 0.000
φB

C = φB
R in U80 0.000 0.000 0.000 0.996

φB
C = φB

R in V80 0.000 0.000 0.006 0.000
Pr

(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U20 0.053 0.002 0.083 0.004 0.150 0.126

Pr
(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U100 0.000 0.000 0.024 0.000 0.040 0.021

Pr
(
red|m = r, µ < 1

2 ,U20
)

= Pr
(
red|m = r, µ < 1

2 ,U100
)

0.627 0.535 0.718 0.610
Pr

(
red|m = r, µ ≥ 1

2 ,U20
)

= Pr
(
red|m = r, µ ≥ 1

2 ,U100
)

0.000 0.001 0.002 0.003
Pr

(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V20 0.038 0.002 0.133 0.006 0.257 0.163

Pr
(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V100 0.000 0.000 0.000 0.000 0.022 0.014

Pr
(
red|m = r, µ < 1

2 ,V20
)

= Pr
(
red|m = r, µ < 1

2 ,V100
)

0.566 0.674 0.536 0.452
Pr

(
red|m = r, µ ≥ 1

2 ,V20
)

= Pr
(
red|m = r, µ ≥ 1

2 ,V100
)

0.000 0.000 0.000 0.000
φ(V20) = φ(V80) 0.217 0.215
φ(V80) = φ(V100) 0.001 0.020 0.258 0.451
φ(U20) = φ(U80) 0.002 0.001
φ(U80) = φ(U100) 0.696 0.676 0.486 0.441
φ(V20) = φ(U20) 0.000 0.000
φ(V80) = φ(U80) 0.000 0.000

φ(V100) = φ(U100) 0.000 0.000 0.000 0.000
φB(V20) = φB(V80) 0.156 0.130
φB(V80) = φB(V100) 0.032 0.052 0.608 0.648
φB(U20) = φB(U80) 0.000 0.000
φB(U80) = φB(U100) 0.957 0.925 0.711 0.661
φB(V20) = φB(U20) 0.000 0.000
φB(V80) = φB(U80) 0.000 0.000

φB(V100) = φB(U100) 0.000 0.000 0.000 0.000

correlations (see also Appendix A.4 of Embrey et al. (2017) for a discussion of these issues).

In Table D8 we document the robustness of the tests reported in the text by exploring al-

ternative specifications. These include directly accounting for the limited nature of the de-

pendent variable by using a probit or Tobit when appropriate. When possible we also report

bootstrapped estimates that have been shown to perform better when the number of clusters is

small (cluster-adjusted t-statistics or CAT) and allow for subject-specific fixed-effects (Ibrag-

imov and Müller, 2010). When we report those we also include results from a standard sub-

ject specific fixed-effects estimation with session clustering to provide a benchmark. As can be

seen, p-values are not systematically larger for CATs than with the “standard” clustering, nor

are they very different when estimating a probit or tobit.39 As a whole, results are fairly robust:

out of the 28 hypotheses tested, for only five of them are results not the same for all tests re-

ported (in the sense of being consistently significant–or not–at the 10% level). The few cases

where there are differences are for the most part not difficult to make sense of. Two of them in-

volve comparing V80 and V100, where the difference is small in magnitude. Hence, whether

39Note that if a tobit could have been estimated but is not reported, it means that the dependant variable was
not actually censored.
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Figure D20: Senders’ Frequency of Inducing µ(m, πC, πR)

or not the difference is statistically significant is not clear, but either way it is not large. In most

other cases, the p-values are either under the 0.1 cutoff or just slightly above.

D.3 Subjects’ Behavior Over Time

Figures D20 and D21 illustrate changes in behavior over the course of the experiment.

Senders. Figure D20 studies senders by coarsely separating their strategies by the posterior

they induce conditional on the persuasive message; that is, message n under verifiable infor-

mation and r otherwise. Four posterior intervals are considered: low (µ < 0.4), close to full-

commitment equilibrium (0.5 ≥ µ < 0.75), high (0.75 ≤ µ < 1), and maximal (µ = 1). We ex-

cluded posteriors in the interval 0.4 < µ < 0.5. As the figure shows, overall there are very few

changes over time (at least, no change across these groups of posteriors). Notable exceptions

are treatment U100H and, to a lesser extent U100S and U100, where senders seem to learn to

provide more information over time.

Receivers. Figure D21 studies receivers and displays changes in terms of the likelihood a

given posterior leads to a a = red. Overall, time effects are limited. There appears to be an

increase in the frequency of a = red conditional on higher posteriors (U80 is one exception)

and a decrease of such frequency conditional on lower posteriors.
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Figure D21: Receivers’s Frequency of a = red Grouped by Posterior (µ)

E Design

E.1 Graphical Interface

Figures D22 and D23 show the software interface of our experiment. More specifically, Figures

D22 show the commitment and revision stages. To avoid framing, the experiment referred to

these stages as “communication” and “update.” Figure D23 show the guessing stage and the

feedback screen. In the feedback screen, all relevant information are reported to both players,

with the exception of the sender’s choices in the Revision stage.

E.2 Sample Instructions

In this section, we reproduce instruction for one of our treatment, V80. These instruction

were read out aloud so that everybody could hear. A copy of these instructions was handout

to the subject and available at any point during the experiment. Finally, while reading these

instructions, screenshots similar to those in Figures D22 and D23 were shown with a projector,

to ease the exposition and the understanding of the tasks.
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Figure D22: Samples Screenshots U80, Commitment and Revision Stages
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Figure D23: Samples Screenshots U80, Guessing Stage and Feedback
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E.2.1 Welcome:

You are about to participate in a session on decision-making, and you will be paid for your participation with cash

vouchers (privately) at the end of the session. What you earn depends partly on your decisions, partly on the de-

cisions of others, and partly on chance. On top of what you will earn during the session, you will receive an addi-

tional $10 as show-up fee.

Please turn off phones and tablets now. The entire session will take place through computers. All interaction

among you will take place through computers. Please do not talk or in any way try to communicate with other

participants during the session. We will start with a brief instruction period. During the instruction period you

will be given a description of the main features of the session. If you have any questions during this period, raise

your hand and your question will be answered privately.

E.2.2 Instructions

You will play for 25 matches in either of two roles: sender or receiver. At the beginning of every Match one ball

is drawn at random from an urn with three balls. Two balls are Blue and one is Red. The receiver earns $2 if she

guesses the right color of the ball. The sender’s payoff only depends on the receiver’s guess. She earns $2 only if

the receiver guesses Red. Specifically, payoffs are determined illustrated in Table E9.

If Ball is Red If Ball is Blue

If Receiver guesses Red Receiver Sender Receiver Sender
$2 $2 $0 $2

If Receiver guesses Blue Receiver Sender Receiver Sender
$0 $0 $2 $0

Table E9: Payoffs

The sender learns the color of the ball. The receiver does not. The sender can send a message to the receiver.

The messages that the sender can choose among are reported in Table E10.

If Ball is Red:

− Message: “The Ball is Red.”

− No Message.

If Ball is Blue:

− Message: “The Ball is Blue.”

− No Message.

Table E10: Messages

Each Match is divided in three stages: Communication, Update and Guessing.

1. Communication Stage: before knowing the true color of the ball, the sender chooses a Communication

Plan to send a message to the receiver.

2. Update Stage: A ball is drawn from the urn. The computer reveals its color to the sender. The sender can

now Update the plan she previously chose.
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3. Guessing Stage: The actual message received by the receiver may come from the Communication stage or

the Update stage. Specifically, with probability 80% the message comes from the Communication Stage

and with probability 20% it comes from the Update Stage. The receiver will not be informed what stage

the message comes from. The receiver can see the Communication Plan, but she cannot see the Update.

Given this information, the receiver has to guess the color of the ball.

At the end of a Match, subjects are randomly matched into new pairs. We now describe what happens in each

one of these stages and what each screen looks like.

E.2.3 Communication Stage: (Only the sender plays)

In this stage, the sender doesn’t yet know the true color of the ball. However, she instructs the computer on what

message to send once the ball is drawn. In the left panel, the sender decides what message to send if the Ball is

Red. In the right panel, she decides what message to send if the Ball is Blue. We call this a Communication Plan.

Every time you see this screen, pointers in each slider will appear in a different random initial position. The

position you see now is completely random. If I had to reproduce the screen once again I would get a different

initial position. By sliding these pointers, the sender can color the bar in different ways and change the probabil-

ities with which each message will be sent. The implied probabilities of your current choice can be read in the

table above the sliders.

When clicking Confirm, the Communication Plan is submitted and immediately reported to the receiver.

E.2.4 Update Stage: (Only the sender plays)

In this Stage, the sender learns the true color of the ball. She can now update the Communication Plan she selected

at the previous stage. We call this decision Update. The receiver will not be informed whether at this stage the

sender updated her Communication Plan.

E.2.5 Guessing Stage. (Only the receiver plays)

While the sender is in Update Stage, the receiver will have to guess the color of the ball. On the left, she can see

the Communication Plan that the sender selected in the Communication Stage. By hovering on the bars, she can

read the probabilities the sender chose in the Communication Stage. Notice that the receiver cannot see whether

and how the sender updated her Communication Plan in the Update Stage. On the right, the receiver needs to

express her best guess for each possible message she could receive. We call this A Guessing Plan. Notice that

once you click on these buttons, you won’t be able to change your choice. Every click is final.
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With 80% probability

The message is sent according to
Communication Plan

(Remember: Communication Plan is always
seen by the Receiver)

With 20% probability

The message is sent according to
Update

(Remember: Update is never seen by the
Receiver)

E.2.6 How is a message generated?

E.2.7 Practice Rounds:

Before the beginning of the experiment, you will play 2 Practice rounds. These rounds are meant for you to

familiarize yourselves with the screens and tasks of both roles. You will be both the sender and the receiver at

the same time. All the choices that you make in the Practice Rounds are unpaid. They do not affect the actual

experiment.

E.2.8 Final Summary:

Before we start, let me remind you that.

− The receiver wins $2 if she guesses the right color of the ball.

− The sender wins $2 if the receiver says the ball is Red, regardless of its true color.

− There are three balls in the urn: two are Blue (66.6% probability), one is Red (33.3% probability). After

the Practice rounds, you will play in a given role for the rest of the experiment.

− The message the receiver sees is sent with probability 80% using Communication Plan and with probability

20% using Update.

− The choice in the Communication Stage is communicated to the receiver. The choice in the Update stage

is not.

− At the end of each Match you are randomly paired with a new player.
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