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1 Introduction

The goal of this paper is to experimentally study the effect of commitment on commu-

nication between a sender and a receiver who have conflicting interests. In any specific

environment and application, knowing (and measuring) the exact degree of commit-

ment available to an agent is difficult. However, the degree of commitment does vary

depending on the context and commitment may depend on observable correlates such

as the frequency of communication and the protocols governing such communication.

Thus, understanding the effect of commitment on communication is a natural question.

In this paper we present a model of partial commitment that generates comparative

statics on the role of commitment. For a specific treatment with partial commitment,

the model generates predictions about differences in behavior in two stages: a stage

that takes place before the sender observes his private information and one that takes

place after the sender observes his private information. These predictions directly speak

to the ability of senders to take advantage of commitment as well as their willingness to

undo such commitments when this is to their advantage. Variation across treatments in

the degree of commitment generates additional predictions about the degree of commu-

nication as well as receivers ability to understand the effects of commitment. In order

to further discipline our analysis, we also allow for a distinction between verifiable and

unverifiable messages. Several predictions of the model are qualitatively different in

the two contexts, and some comparative statics on the degree of commitment go in

opposite directions.

For expositional purposes, we begin with an experimental analysis of a Bayesian

persuasion game (Kamenica and Gentzkow (2011)). We assume that there are two

(low and high) states, two (low and high) messages, and two (low and high) actions.

The sender wants the receiver to choose a high action, whereas the receiver wishes to

match the state. The prior is such that, without effective information transmission,

the receiver would choose the low action. The sender has full commitment power in

the selection of information structures. In equilibrium, the sender commits to send-

ing the high message with probability one when the state is high and to randomize

between the low and the high message when the state is low so as to make the re-

ceiver indifferent between choosing the low and the high action, thereby maximizing

the ex-ante probability that the receiver chooses the high action. We find that, in the

data, receivers behave in a way that is qualitatively consistent with the theory: they

understand what messages should lead to higher posteriors (of the state being high)

and are more likely to respond with the high action when they have a higher posterior.

A crucial consequence of receiver behavior in our data is that it induces payoffs for the

sender that reflect the key strategic tensions in the theory. That is, the best strategy

for a sender faced with the receivers in the data is to partially hide information when

the state is low (just as predicted in the model), but to be slightly more truthful than

predicted by the theory. Average behavior by senders in the data is not far from the

predictions of the theory. In particular, the average strategy displays a degree of hiding
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of information that is close to the theoretical predictions. However, the average hides

rich heterogeneity in behavior. We discuss this heterogeneity in detail later.

The analysis of this first treatment is useful as an initial exploratory analysis of

commitment in communication. However, from this treatment alone, it is hard to eval-

uate the balance between the patterns of behavior that are in line with the predictions

of the model and those that are not. More generally, it is difficult to draw general con-

clusions about the role of the key strategic forces within the model. First, to properly

test whether or not senders make strategic use of commitment power, we should take

into account their behavior in the counterfactual scenario where they cannot commit.

Second, we would ideally like to test comparative statics that can only be explained

by the strategic use of commitment power.1 For these reasons, we propose a general

structure that introduces partial commitment as well as allowing for verifiable infor-

mation to generate a rich set of qualitative predictions that enables us to draw more

meaningful conclusions about the effects of commitment.2

We model partial commitment as a probabilistic opportunity (that arises after the

state is realized) to revise the choices that were made at the commitment stage. Specif-

ically, before learning the true state, the sender publicly selects an information struc-

ture. Messages are sent to the receiver according to this information structure with

probability ρ. This probability is common knowledge. We refer to this stage as the

commitment stage. After observing the state, with probability (1− ρ), the sender can

privately revise her choice of message. We refer to this stage as the revision stage.

The higher ρ is, the higher the probability that the sender will not be able to revise

her strategy, and hence the higher the extent to which she is committed to her initial

information structure. In the limit case in which ρ = 1, the sender has full commitment

and outcomes converge to the Bayesian persuasion model (Kamenica and Gentzkow

(2011)) studied in our first treatment.

For any given level of partial commitment we further distinguish between verifiable

and unverifiable information. This distinction is particularly useful because some key

predictions of the model are qualitatively different in the two scenarios and some go

in opposite directions depending on the verifiability of information. When senders’

1For example, when information is unverifiable, if some of the senders are averse to lying, an
increase in commitment power can increase the equilibrium informativeness. This change happens for
reasons unrelated to the strategic use of commitment. Our framework allows us to conclude that this
possibility cannot be the main factor in our data.

2A virtue of our experimental design is that it allows us to jointly analyze models that share
an underlying structure regarding preferences and information, but that are distinguished either by
the extent to which the sender can commit to her communication plan or by the rules governing
communication, namely, whether information is verifiable or not. With minimal differences between
treatments, our common structure encompasses models of cheap talk (Crawford and Sobel (1982)),
models of disclosure (Grossman (1981), Milgrom (1981), Jovanovic (1982), Okuno-Fujiwara et al.
(1990)), and models of Bayesian persuasion (Kamenica and Gentzkow (2011)); as well as intermediate
cases between these extremes. Hence, we span a considerable portion of the models of strategic infor-
mation revelation that have been discussed in the literature in the last decades, and we experimentally
study novel dimensions of the sender-receiver interaction. In doing so, our paper also addresses recent
theoretical contributions on persuasion under partial commitment, e.g. Lipnowski et al. (2018) and
Min (2017).
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messages are unverifiable, senders can freely misreport their private information. When

messages are verifiable, information cannot be misreported, but it can be hidden.3

Our first main finding in the data is that subjects understand the power of commit-

ment: senders figure out how to exploit commitment and receivers figure out how to

react to it. This can be seen by contrasting senders behavior in the commitment stage

to their behavior in the revision stage. The theory predicts that in the case of unver-

ifiable information, senders should reveal more information in the commitment stage

than in the revision stage and that this ranking should be reversed when information is

verifiable. The data strongly support this prediction of the theory. Similarly, receivers

understand that information conveyed in the commitment stage is more meaningful

when the level of commitment is higher: in higher-commitment treatments, receivers

are more responsive to information from the commitment stage. In our second main

finding, we test how differences in commitment and rules affect overall informativeness.

Our theoretical framework offers predictions that tightly depend on the communication

rules, thus providing us with a strong test for the theory. We find that informativeness

changes in ways that are consistent with the theory: informativeness decreases with

commitment in the verifiable treatments and increases with commitment in the unver-

ifiable treatments. Furthermore, we find that verifiability has the predicted effect of

increasing the amount of information conveyed by senders. However, quantitatively,

verifiability matters more than it should, so that informativeness does not rise enough

with the degree of commitment in the unverifiable treatments and does not decrease

enough in the verifiable treatments. This departure from the theory is therefore par-

ticularly visible in the limiting case of full commitment, ρ = 1: a lot more information

is revealed when communication is verifiable than when it is not, despite the fact that,

in theory, equilibrium informativeness is the same in the two treatments. This feature

then drives us to investigate the full commitment cases in more detail. We discuss

the extent to which models with boundedly rational or “behavioral” agents may help

explain the patterns we find in the data. We estimate a Quantal Response Equilibrium

model that allows us to compare full commitment treatments. We argue that the main

reason why we observe these large differences in informativeness between verifiable and

unverifiable treatments is that departures from equilibrium play are likely to increase

the amount of information conveyed by senders under verifiable information and to

decrease informativeness under unverifiable information. From a policy perspective,

this excess informativeness under verifiable information presents a novel justification

for increasing the difficulty for senders to misreport their information.4 Finally, the

3The sender misreports her private information when she sends messages that are false. A message
is false if none of the statements it contains are true. For example, provided that the ball is blue,
message “the ball is red or black” is false. We will formalize this idea in Section 3.1. When there
is no commitment, unverifiable information is associated with models of cheap talk (e.g., Crawford
and Sobel (1982)), whereas verifiable information corresponds to models of disclosure (e.g., Grossman
(1981), Milgrom (1981), Jovanovic (1982), Okuno-Fujiwara et al. (1990)).

4We also find that, in the unverifiable treatments with a substantial amount of commitment,
receivers are excessively skeptical. This finding is partly in contrast to prior literature on cheap talk
(see the review by Blume et al. (2017) and the paper by Khalmetskia et al. (2017)).

3



theory predicts that senders convey more information when parameters are such that

receivers need more evidence to go against their prior, and this result is consistent with

what we find in the data, although, once again, this effect is quantitatively smaller than

predicted by the theory.

We depart from the previous experimental literature on information transmission in

several ways. First, we innovate by conducting an analysis across a variety of models.

Of course, when performing such an exercise, ensuring that all sources of variations

coming from seemingly unimportant details of the design are reduced to a minimum

is crucial, so that differences in outcomes in the data can be imputed to differences

in the treatments. In order to do so, we take advantage of our theoretical framework,

thanks to which we are able to design an experiment that allows us to move from one

model to another by simply changing one of the two parameters, namely, the degree

of commitment on the sender’s part and the verifiability of messages. An additional

advantage of considering all these treatments under the same umbrella is that doing

so provides discipline on the explanations that can be used to rationalize potential

deviations from theoretical predictions.

A second way in which we depart from the previous experimental literature on

cheap talk is that, rather than investigating the relationship between the informa-

tiveness of communication and the degree of preference alignment between the sender

and the receiver, we focus on the effect of commitment.5 Models with unverifiable

communication have been used to study a variety of phenomena, including lobbying

(Austen-Smith (1993), Battaglini (2002)), the relation between legislative committees

and a legislature, as in, for example, Gilligan and Krehbiel (1989) or Gilligan and

Krehbiel (1987), and the production of evidence to a jury (Kamenica and Gentzkow

(2011), Alonso and Camara (2016)). Dranove and Jin (2010) survey the literature on

product quality and the disclosure of information. A number of experimental papers

study cheap talk. Blume et al. (2017) provides a survey of the experimental litera-

ture on communication. Dickhaut et al. (1995) is the first experimental paper to test

the central prediction of Crawford and Sobel that more preference alignment between

the sender and the receiver should result in more information transmission. Their

main result is consistent with this prediction. Forsythe et al. (1999) add a cheap-talk

communication stage to an adverse-selection environment with the feature that the

theory predicts no trade and that communication does not help. By contrast, in the

experiment, communication leads to additional trade, partly because receivers are too

credulous. Blume et al. (1998) study a richer environment and compare behavior when

messages have preassigned meanings with behavior when meaning needs to emerge.

Among other findings, they confirm that, as in Forsythe et al. (1999), receivers are

gullible. Cai and Wang (2006) find that senders are overly truthful and that receivers

are overly trusting, relative to the predictions of the cheap-talk model. They also study

information revelation as players’ preferences become more aligned: consistent with the

5In a similar spirit, Blume et al. (2019) also investigates experimentally changes to the communi-
cation environment, as opposed to preference misalignment.
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theory, they find the amount of information transmission increases with the degree of

preference alignment. They then discuss how to reconcile the departures from the pre-

dictions of the cheap-talk model via a model of cognitive hierarchy and via Quantal

Response Equilibrium.6

Models of disclosure of verifiable information have been used to study the disclosure

of quality by a privately informed seller, for instance, via warranties,7 of the contents

of financial statements by a firm,8 and in many other contexts. Dranove and Jin (2010)

survey the literature on product quality and the disclosure of information. In contrast

with experiments on cheap talk, experiments on the disclosure of verifiable information

typically find under-revelation of information when compared with the theoretical pre-

dictions. For instance, Jin et al. (2016) find that receivers are insufficiently skeptical

when senders do not provide any information, which in turn leads senders to underpro-

vide information, thereby undermining the unraveling argument.9 Some papers also

study information unraveling with field data. In particular, Mathios (2000) studies the

impact of a law requiring nutrition labels for salad dressings. He shows that, prior to

mandatory disclosure, low-fat salad dressings posted labels, while a range of high-fat

salad dressings chose not to disclose. Mandatory disclosure was followed by reductions

in sales for the highest-fat dressings. These results are in conflict with the predictions

of the unraveling result from the literature on verifiable communication. Jin and Leslie

(2003) study the consequences of mandatory hygiene grade cards in restaurants. They

show that hygiene cards lead to increases in hygiene scores, that demand becomes more

responsive to hygiene, and that fewer food-borne-illness hospitalizations occur.

A third element of novelty in our design is the treatment under full commitment.

As discussed above, this treatment coincides with a model of Bayesian persuasion as

introduced in Kamenica and Gentzkow (2011). This model has become influential in

the recent theoretical literature, which is comprehensively reviewed by Bergemann and

Morris (2019).10 Evaluating how the degree of commitment affects outcomes is one

way to experimentally evaluate the model of Bayesian persuasion.

Our paper is one of three new experimental investigation of Kamenica and Gentzkow

(2011). Nguyen (2017) and Au and Li (2018) both innovate with clever designs aimed

at making the game easier for subjects to understand. Nguyen (2017) uses an intuitive

interface for senders to enter their communication strategy. Furthermore, the commu-

nication strategy is discretized, and in the main experiment, the number of possible

strategies the sender can use is small. Finally, given those simplifications, she can in-

crease the number of repetitions to 80, allowing ample opportunities for learning. The

experiment of Au and Li (2018) uses an implementation such that the sender can se-

6See also Sánchez-Pagés and Vorsatz (2007), Wang et al. (2010), and Wilson and Vespa (2017).
7For example, (Grossman (1981), Milgrom (1981), Jovanovic (1982), Okuno-Fujiwara et al. (1990)).
8See for instance, Verrecchia (1983), Dye (1985), and Galor (1985).
9See also Forsythe et al. (1989), King and Wallin (1991), Dickhaut et al. (2003), Forsythe et al.

(1999), Benndorf et al. (2015), Hagenbach et al. (2014), and Hagenback and Perez-Richet (2018).
10Some recent papers includeGentzkow and Kamenica (2014), Bergemann et al. (2015), Alonso and

Camara (2016), Duffie et al. (2017), Bardhi and Guo (2018), Galperti (2019)
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lect posteriors directly, thus eliminating the need for receivers to do Bayesian updating.

Other implementation differences are the use of a fixed partner design and a smaller

number of repetitions with only 10 rounds. In addition, they consider the predictions

of a modified model in which preferences are such that agents have other-regarding

concerns. Finally, they test a specific prediction of that model by considering two

treatments that vary the prior. Both experiments find that senders, on average, and

as predicted, convey less than full information. In particular, Nguyen (2017), who has

the simplest setting and more repetitions, finds that a high fraction of senders behave

optimally, given receivers’ behavior, and that their behavior involves hiding some in-

formation. They both report that receivers are more likely to go against their prior as

their posterior increases. In addition, they also both find that when the posterior on

the state the sender prefers is at 0.5, the likelihood of a receiver guessing in a way that

benefits the sender is far from certain (in both studies around 50%). These results are

also consistent with our findings, which suggests these results are robust given that all

three implementations are fairly different.

2 Benchmark Treatment of Bayesian Persuasion

2.1 The Game and its Implementation

The Game. In our baseline treatment, we implement the following sender-receiver

game. A ball is drawn from an urn containing three balls: Two are blue (B) and one

is red (R). The color of a ball represents the realization of a payoff state, which we

denote θ ∈ {B,R}. The prior probability that the state is R is µ0(θ = R) = 1
3
. The

first stage of the game is a commitment stage: The sender commits to an information

structure, namely, a map from states to (possibly random) messages. In this treatment,

we allow the sender to choose among two messages, denoted r and b. The second stage

of this game is a guessing stage: The receiver observes the information structure as

well as a message generated by the information structure. Her task is to make a guess

a ∈ {red, blue}. Players’ preferences are described in Table 1: The receiver wants

to correctly guess the state, while the sender would like the receiver to always guess

a = red, irrespective of the state.11

Equilibria. This game has several payoff-equivalent Perfect Bayesian equilibria with

a common structure. In this section, we focus on the following equilibrium featuring

“natural language:” conditional on state θ = R, the sender commits to sending message

r with probability 1; conditional on state θ = B, she commits to sending messages

r and b with equal probability.12 This information structure maximizes the ex-ante

probability that the receiver guesses red: it induces a posterior of zero following message

11Note that one of the advantages of our design is that predictions are independent of risk preferences
because outcomes are binary.

12As we illustrate shortly, the use of natural language is indeed predominant in our data.

6



Table 1: Payoffs

State (θ)

Guess (a) R B

red Receiver Sender Receiver Sender
$2 $2 $0 $2

blue Receiver Sender Receiver Sender
$0 $0 $2 $0

b and a posterior of 1/2 following a message r. Thus, the receiver guesses blue following

a message b and is willing to guess red following message r because she is indifferent

between red and blue.13 Two simple features of equilibrium stand out. First, the sender

benefits from commitment. In this setting commitment allows credible communication.

When based exclusively on her prior information (also the equilibrium outcome of

the game without commitment) the receiver’s guess would always be a = blue. By

committing to an appropriate information structure, instead, the sender can persuade

the receiver to guess a = red, at least some of the time. Second, the sender’s optimal

communication strategy involves partial information revelation requiring randomization

among messages conditional on state B.

Implementation in the laboratory.14 At the beginning of each session, instructions

were read aloud, and subjects were assigned a fixed role (sender or receiver). In each

session, subjects played 25 paid rounds of the game described above with random

rematching between rounds. We conducted four sessions lasting approximately 100

minutes each. Sessions included 14-20 subjects (17.5 on average per session) for a total

of 70 subjects. In addition to their earnings from the experiment, subjects received a

$10 show-up fee. Average earnings, including the show-up fee, were $34 (ranging from

$14 to $52) per session.

In our experiment, a key feature is the choice of information structure by the sender.

Our design makes this choice particularly straightforward and easy to visualize. Senders

simply move sliders on the screen, and the color of each bar reflects the chosen proba-

bilities for each message as displayed in Figure C16 of Appendix C. These probabilities

are updated in real-time in the cells above the sliders. The receiver observes the in-

formation structure chosen by the sender and makes a guess for each possible message

(strategy method). The specific choice probabilities for each message can be seen by

dragging the mouse cursor over the communication strategy. Appendices C and D con-

tain a sample of the instructions and more detailed information on the implementation

in the laboratory.

The results reported in this and the next sections are computed using the data

13In equilibrium, the receiver must choose red with probability 1 following message r because
otherwise the sender would choose an information structure that induces a slightly higher posterior
conditional on message r, but then the sender would have no best response.

14Subjects were recruited from the NYU undergraduate population using hroot (Bock et al., 2014).
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from the last 10 rounds of play in each session. We discard earlier rounds to allow

enough time for subjects to familiarize themselves with the experiment and to learn

the relevant strategic forces in the task they are facing.15

Measuring Informativeness. The “amount” of information the sender transfers to

the receiver, namely, the informativeness of her communication strategy, represents a

variable of central interest in our analysis. We will report different measures of infor-

mativeness, because they present different advantages, some being easier to interpret,

others allowing for more disaggregated analysis, etc.

Our main measure of informativeness is the correlation coefficient between the color

of the ball and the receiver’s guess.16 We denote this variable by φ. To fix ideas, sup-

pose the sender truthfully discloses the color of the ball. Then, the receiver’s final

guess should be perfectly correlated with the state. Conversely, if the sender bab-

bles, the receiver’s final guess will be uncorrelated with the the state.17 This way of

measuring informativeness has the potential drawback of compounding the mistakes of

both senders and receivers. Suppose for instance that the sender truthfully discloses

the state, but the receiver does not listen. In this case φ = 0, although a great deal

of information was offered to the receiver. To isolate the sender’s behavior from the

mistakes of the receivers, we will use an alternative measure of informativeness, the

Bayesian correlation, denoted φB. This is the correlation coefficient implied by the

sender’s strategy combined with the guesses of a hypothetical Bayesian receiver.

The Bayesian correlation coefficient, however, hides potentially useful information.

For example, a sender who generates a posterior conditional on message r that is just

below 0.5 does convey some information to the receiver. Nonetheless, this posterior

leads to a correlation of zero because the Bayesian receiver would choose blue in both

states following such a posterior; that is, the same correlation as if the sender had

conveyed no information (a posterior of 1/3). Hence, it will sometimes be useful to

directly consider the distrubution of induced Bayesian posteriors.

2.2 Results for the Benchmark Treatment

We now present a number of facts that help us characterize the behavior of senders

and receivers in this treatment. We begin with a description of receiver behavior. We

then discuss the consequences of this behavior for senders’ payoffs, and then proceed

15Appendix E reports some results on how subjects’ behavior evolves over rounds for the entire
experiment.

16This measure has been extensively used in the experimental literature on communication. See,
for instance, Forsythe et al. (1999), Cai and Wang (2006), and Wang et al. (2010).

17Our design allows us to leverage the power of the strategy method to obtain significantly more
precise measures of φ and φB . In fact, we observe the complete strategies of both senders and receivers
and, therefore, we can analytically compute the Pearson correlation coefficients (specifically, the phi
coefficients, since our variables are binary). This is as if we could observe an infinite sample of realized
states and guesses per each round. Simulations we have done suggest the improvement in precision
from using our method is non-trivial and that samples would otherwise need to be large for the
estimates of the Pearson correlation to stabilize.
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with an analysis of sender behavior.

2.2.1 Receivers’ Behavior

In our discussion of receivers’ behavior, we take as given the information conveyed

by senders’ strategies that we discuss in more detail below. Our first objective is to

understand how receivers respond to such strategies.18 Receiver’s responses in turn

generate the payoffs that senders face when selecting their strategies.

We begin our analysis of receivers by describing some key aggregate features of the

data. On average, receivers react to a higher posterior µ(m) by guessing red with higher

frequency, as illustrated in Figure 1. Thus, receivers present monotonic behavior: they

are more persuaded to guess red by messages that carry more evidence in favor of the

state being R. For instance, for posteriors above 1
2
, receivers guess red 57% of the time,

whereas they guess red only 11% of the time for posteriors below 1
2

(p ≤ 0.01).19

The monotonicity displayed in Figure 1 is, of course, a mild requirement for re-

ceivers’ rationality: given the payoffs in our experiment, a Bayesian receiver should

respond by guessing red with probability one for any posterior µ(m) ≥ 1
2
, and by

guessing blue with probability one otherwise. Clearly, the aggregate evidence from

Figure 1 fails to fulfill this stronger requirement of rationality. Furthermore, receivers

respond to the color of the message independently of the posterior this color conveys.

When µ(m = r) ≥ 1
2
, receivers guess red 62% of the time following an r message and

38% of the time following a b message. In contrast, when µ(m = b) < 1
2
, receivers

guess red 21% of the time following a r message and 5% of the time given a b message.

These differences, which are significant at the 1% level, are inconsistent with the be-

18In our environment, receivers make guesses in a relatively straightforward setting. In contrast,
Epstein and Halevy (2019) analyze receiver’s behavior when the setting in more complex.

19Unless noted otherwise, all statistical results allow for random-effects at the subject level and
are clustered at the session level. We include random-effects to account for persistent heterogeneity
across subjects; clustering is motivated by potential session-effects (see Fréchette, 2012). Results for
alternative specifications are reported in the appendix. We note that the findings in the alternative
specifications suggest that session-effects are not important in this setting.
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havior of a Bayesian receiver. Even when provided with conclusive evidence that the

state is R, that is, even when µ(m) is very close to 1, some receivers nonetheless guess

blue, at least some of the time. To summarize, aggregate receivers’ behavior does not

correspond exactly to the Bayesian paradigm, an observation in line with other exper-

iments that documents non-Bayesian behavior of subjects in laboratory experiments

(see, e.g., Charness and Levin (2005) and Chapter 30 of Holt (2007) for an overview).

Nonetheless, behavior in aggregate does react in the direction of Bayesian behavior

(monotonicity has been documented in other experiments; see Camerer (1998) for a

discussion). To understand better whether the deviations are driven by a few subjects

or shared by most, we turn to individual behavior.

We now demonstrate that there are systematic patterns in how receivers react to

the information they receive, as summarized by the posterior belief. In particular, we

consider the possibility that subjects follow (potentially different) threshold strategies,

that specify guessing red if and only if their posterior is weakly above a certain threshold

µ̄. For example, if µ̄ = 1
2
, the receiver is, indeed, Bayesian. If µ̄ > 2

3
, instead, the

receiver is not Bayesian and yet her behavior is systematic and can be said to require

stronger evidence to choose red than a Bayesian would. We now estimate the receiver

specific threshold that rationalizes the greatest fraction of her guesses.20 We find that

the behavior of many subjects is consistent with a threshold rule. Almost half the

receivers (46%) display behavior that is always consistent with a threshold strategy,

and almost nine out of ten receivers (89%) are consistent with a threshold strategy for

more than 80% of their guesses. Figure 2 plots the estimated threshold for each receiver

as a function of the threshold that we would have estimated from the same data if that

particular receiver were Bayesian.21 As the figure shows, substantial heterogeneity

in receivers’ behavior exists. Dots lying above the 45-degree line indicate receivers

who are reluctant to guess red, even when a Bayesian would conclude that there is

enough evidence. By contrast, the points below the 45-degree line indicate subjects

who are too eager to guess red, despite insufficient evidence from the perspective of a

Bayesian. The aggregation of this heterogeneous behavior is partly responsible for the

smoothness of aggregate responses to the posterior that is displayed in Figure 1. Also

note that Figure 2 shows a sizable fraction of receivers who exhibit behavior consistent

with the Bayesian benchmark: One quarter of the receivers have thresholds within five

percentage points of being consistent with a Bayesian receiver; the number increases

to one third if we are more permissive and allow for a band of ten percentage points

around the Bayesian receiver.

20Because we focus on the last 10 rounds of the game, and because we use the strategy method for
the receivers, we observe a receiver’s guess on 20 occasions following r and b messages. We look for
the threshold that best describes these 20 observations. This procedure typically results in a range
of best-fitting thresholds, of which we report the average one. See Appendix E.1 for a more detailed
explanation.

21Given finite data, even a Bayesian receiver can have an estimated average threshold that is different
from 1

2 . As an example, imagine a receiver who is perfectly Bayesian, but for whom the closest
posteriors to 0.5 that we observe were 0.45 and 0.65. Her estimated threshold would then be 0.55.
Figure E21 in the appendix presents the estimated threshold and their respective precision.
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Figure 3: Empirical Expected Payoffs

2.2.2 A Best-Response Analysis

We now wish to understand the consequences of receiver behavior for the sender incen-

tives. In particular, it is important to know whether the key strategic tension that is

present in the Bayesian persuasion model survives in the world of imperfect rationality

represented by the receivers in our data. To answer this questions, we first fit a probit

model to estimate how each receiver would map any given posterior into a probability

of guessing red. Given this estimated model of receivers’ behavior, we consider an im-

portant class of senders’ strategies and we compute their hypothetical expected payoff.

More specifically, we define a class of strategies that can be parametrized by a single

parameter, but that is rich enough to accommodate almost all the strategies that are

actually chosen by senders in the data (as we will see later in Figure 6): if θ = R, the

strategy sends message r with probability one, if θ = B, the strategy sends message r

with probability γ and message b with probability 1−γ. Therefore, γ parametrizes the

extent of informativeness of these strategies.22 Figure 3 displays the expected payoff for

these strategies, as a function the parameter γ. Figure 3 confirms an important qual-

itative insight from the theory of Bayesian persuasion. The senders’ expected payoff

is non-monotonic in the amount of information conveyed to the receiver. In our data,

as in the theory, being completely uninformative is worse than being entirely truthful,

which is, in turn, worse than engaging in some degree of strategic mixing. However, the

best-response consists of overshooting a bit, that is, providing more information than

required by the equilibrium benchmark. Receivers’ departures from Bayesian behavior

also lead to a payoff function for senders that is flatter and smoother than if senders

22For example, when γ = 1, the strategy is entirely uninformative, and all its induced posteriors
are equal to the prior; when γ = 0, the strategy is perfectly informative and the induced posteriors
are either 1, for the red message, or 0, for the blue message. Finally, the equilibrium strategy specifies
γ = 0.5.
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faced a population of Bayesian receivers. This feature can potentially make it more

difficult for senders to learn to play along the lines predicted by the theory.

2.2.3 Sender Behavior: Types and Informativeness

We now turn to our analysis of sender behavior. This description is challenging as the

game is complex and strategies are high-dimensional objects. We proceed in several

steps, starting at an aggregate level, and then moving to a less aggregated one. We

begin by studying the informativeness of sender behavior. In this benchmark treatment,

the correlation coefficient implied by the equilibrium strategies is 0.50.

Figure 4 plots the distribution of the sender-specific average Bayesian correlations.

The overall (i.e. across-sender) average correlation is 0.41 and the median is 0.45.

Although this average is fairly close to the equilibrium value of 0.50, the distribution

in Figure 4 clearly shows a high level of heterogeneity: some senders rarely reveal any

information, and others consistently reveal almost all the information. However, a non-

negligible group of subjects conveys some, but not all, of the information, as predicted

in equilibrium.

We look at sender behavior in more detail by considering the empirical distribution

of Bayesian posteriors that are induced by the observed senders’ strategies in Figure 5.23

The figure reveals a few important facts. First, consistent with equilibrium predictions,

a blue message predominantly carries conclusive evidence that the state is θ = B.

Indeed, the most common posterior conditional on a blue message is close to zero. By

contrast, the posteriors conditional on a red message are for the most part far from

zero, but also highly dispersed. The most common posterior is close to 0.5, in line with

the equilibrium prediction. The other spikes in this distribution of posteriors, at 1/3

and at 1, represent clusters of strategies that we discuss next.

Many possible strategies can generate a particular amount of informativeness. We

now describe the strategies actually chosen by the senders. We aggregate the data into

23Because the state θ is binary, posteriors can be cast into the unit interval. As a convention, the
posterior is the conditional probability of the state being R, that is, µ(m) := µ0(θ = R|m).
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groups of similar strategies using a k-means clustering analysis of senders’ probabilities

of sending each message as a function of the state.24 The results indicate that almost

90% of the observed choices can be organized into three clusters, whose representative

strategies, or types, are displayed in Figure 6.25 These strategies share one common

feature: On average, the probability of sending message r conditional on state θ = R is

close to 95% (median 99%), consistent with the equilibrium prediction. However, these

strategies differ substantially in the probability with which the sender reports message

b conditional on state θ = B. For the three types, this number is 89%, 52%, and 10%,

respectively. We compute the average correlation coefficient with Bayesian receivers,

that is, φB (defined above), for each cluster and we find values of 0.82, 0.35, and 0.03,

respectively (median values are 0.81, 0.50, and 0.00, respectively). The implication is

that the three clusters identify three substantially different styles of communication.

The first one (representing approximately 23% of the data) is particularly truthful and

reveals a lot of information. The last one is uninformative (24% of the data). Finally,

the intermediate and most prevalent cluster (35% of the data), is qualitatively in line

with the equilibrium prediction, both in terms of the induced correlation and in terms

of the type of strategy chosen by the senders.
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Figure 6: Sender’s Strategies Grouped in Clusters

Importantly, the clustering analysis identifies types that are persistent over time.

That is, our analysis illustrates that over rounds, senders in a cluster tend to play

24K-means clustering (MacQueen, 1967) is a commonly used method to group data— a form of
unsupervised learning—see Hastie et al. (2009) and Murphy (2012) for a recent treatment. The
procedure selects points to be the centers of clusters: a point is associated with the closest center, and
the centers are iterated on to minimize the total within cluster variance.

25The remaining 13% of observations fit into a “residual cluster” that is more difficult to recognize.
In this exercise, we use clusters for descriptive purposes. Therefore, determining the best number of
clusters is not of great importance. However, one method for selecting the number of groups, the
elbow method, would select four groups. In addition, we note that our results are robust to using two
different methods to determine starting values for the algorithm: initialized by using random groups
or using the output of a clustering exercise on the Bayesian correlation (φB) as starting groups.

13



strategies from within the same cluster. For example, the median sender plays a

strategy that belongs to the same cluster nine times out of ten (more details in Figure

E30).

2.3 Summary

In conclusion, this section analyzed a simple implementation of a Bayesian persua-

sion game and uncovered a set of basic properties that characterize the behavior of

senders and receivers in the laboratory. The main conclusions that emerge from the

analysis are the following. Although senders and receivers behavior is heterogeneous,

the vast majority of subjects behave in systematic ways that are easily interpretable.

Most senders engage in communication strategies that are sophisticated and do so by

employing a natural language, but they differ in the amount of information they are

willing (or able) to transfer to the receivers. Receivers react to information in a pre-

dictable manner; they understand the basic content of different information structures,

but they differ in the amount of information they require in order to be persuaded to

guess red. Finally, our analysis finds that a sizable group of subjects conforms with

behavior that is consistent with the central qualitative insight that emerges from the

theory of Bayesian persuasion. In particular, the sender is predicted to engage in some

extent of strategic lying. According to the theory, neither full disclosure nor babbling

is optimal for the sender: the sender should lie just enough to persuade. Figure 3

shows that aggregate receiver behavior generates payoffs for the sender that are consis-

tent with this central qualitative insight, in spite of the fact that receivers’ behavior is

heterogeneous and sometimes far from Bayesian. Our discussion of senders’ behavior

shows that a non-negligible fraction of senders does respond to these incentives in a

manner that is consistent with the theory: misrepresenting the state some, but not all,

of the time when it when to their advantage.

3 The General Framework

In this section, we introduce a model of communication that is richer than the one of

Section 2, and we discuss its main predictions. Later, we describe the experimental

design and the equilibrium outcomes that obtain under the specific parametrization of

our model that we bring to the laboratory. The model we present in this section differs

from the benchmark treatment discussed before in two ways. First, we weaken the

commitment assumption and allow for partial commitment. Second, we introduce two

distinct communication rules: we contrast scenarios with verifiable and unverifiable

information.
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3.1 Theory

Let Θ = {θL, θH} be the state space and µ0 ∈ [0, 1] denote the common prior probability

that the state is θH . There are two players: a sender and a receiver. The sender has

private information about the state, the receiver has the ability to act. Communication

consists of the sender transmitting information in an attempt to influence the action

chosen by the receiver. The receiver chooses actions in a binary set A = {aL, aH} and

her preferences are given by the following utility function:

u (aL, θL) = u (aH , θH) = 0, u (aL, θH) = − (1− q) , u (aH , θL) = −q.

Thus, the receiver wishes to match her actions to the state, and the relative cost of

the mistakes in the two states is parametrized by q. A Bayesian receiver would choose

action aH whenever her posterior belief that the state is θH is larger than q. Thus, we

call q the persuasion threshold.

The sender’s preferences are state-independent and given by v(a) := I(a = aH).

That is, the sender receives a positive payoff only if she successfully persuades the

receiver to take action aH . We assume that µ0 < q. That is, absent further information,

the receiver would choose aL. Without this assumption, the sender would have no

reason to communicate with the receiver and their interaction would be uninteresting.

The sender communicates with the receiver by sending information about the state.

An information structure is a map π : Θ→ ∆(M), with M = {θL, θH , n} representing

the set of possible messages. We denote by ΠU the set of all information structures.

We consider different communication rules. A rule is an exogenous restriction im-

posed on the set of information structures Π ⊆ ΠU that the sender can use when com-

municating with the receiver. We say that information is unverifiable if no restrictions

are imposed on the sender, namely if Π = ΠU . We say that information is simple if the

sender is restricted to binary messages, formally Π = ΠS := {π ∈ ΠU : ∀θ, π(n|θ) = 0}.
We say that information is verifiable if, instead, Π = ΠV := {π ∈ ΠU : π(θH |θL) =

π(θL|θH) = 0}. Under verifiable information, conditional on state θ, only messages

in {θ, n} can receive positive probability. Therefore, we can interpret message θ ∈ M
as a certifiable statement asserting that the state is θ. Conversely, we can interpret

message n ∈ M as a statement that is neither true nor false and, hence, cannot be

verified. In other words, verifiability demands that message θ can only be sent by type

θ. Therefore, it is natural to assume that the receiver’s belief upon observing message

θH (resp. θL) is 1 (resp. 0), even if such a message occurs with zero probability.26

The game unfolds in three consecutive stages. First, in the commitment stage the

sender chooses a strategy πC ∈ Π before learning the state θ. That is, the sender

commits to releasing information contingent on a state that she doesn’t yet know.

Second, in the revision stage, at every history (π′C , θ), the sender chooses a strategy

π′R ∈ Π. Note that, π′R can explicitly depend on π′C , but we omit this dependence for

26See Battigalli and Siniscalchi (2002).
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notational simplicity. Moreover, it is important to remark that, because the sender

learns θ before choosing πR, she no longer has commitment power. Finally, in the

guessing stage, for every history (π′C , π
′
R,m), the receiver observes (π′C ,m) and takes

an action a(π′C ,m) ∈ A. It is commonly known that messagem realizes with probability

ρ ∈ [0, 1] from π′C and (1− ρ) from π′R. The receiver updates beliefs according to some

belief assessment µ(m,π′C , π
′
R), an equilibrium object, that assigns a posterior belief to

each message m, possibly as a function of π′C and π′R.

We refer to ρ as the sender’s degree of commitment. It measures the extent to

which the sender is able to commit to her initial strategy πC . For high values of ρ,

the commitment strategy πC is likely to be the one that determines the final message

m. Conversely, for low values of ρ the final message m is likely to be determined by

the choice in the revision stage, after the sender has learned the state.27 Summing

up, our framework is characterized by three main features that we shall exploit in the

experiment: the communication rule Π, the degree of commitment ρ and the persuasion

threshold q.

Conveniently, our framework nests several classic communication models as special

cases. When ρ = 0 and information is unverifiable, our model captures cheap-talk

communication (Crawford and Sobel (1982)). When ρ = 0 and information is verifiable,

our model captures a disclosure game with verifiable communication (Grossman (1981),

Milgrom (1981), Jovanovic (1982), Okuno-Fujiwara et al. (1990)). Finally, when ρ =

1 and information is unverifiable, our model becomes a Bayesian persuasion game

(Kamenica and Gentzkow (2011)).

We use Perfect Bayesian Equilibrium (PBE) as a solution concept. In some cases, it

is useful to focus attention on equilibrium outcomes, rather than equilibrium strategies.

An outcome of particular interest in a communication game is how informative an

equilibrium is: the extent to which the sender successfully communicates with the

receiver. We measure informativeness of an information structure as the correlation

between the state and the action of a Bayesian receiver. Formally, fix π ∈ Π and

define aB(m,π) ∈ A to be equal to aH if and only if µ(m,π) ≥ q. We define the

informativeness of π to be φB(π) := Corr(θ, aB(m,π)). Note that φB(π) is non-negative

and it is unaffected by how aB is defined at messages that have zero probability under

π.28 We say that an information structure π is more informative than π′ if φB(π) ≥
27Equivalently, one can think of the sender as having an opportunity to revise her commitment

strategy after learning the state, which occurs only with probability 1−ρ. An alternative interpretation
of the game is that the revision game is always available but the sender has a type that determines
whether she will take advantage of the opportunity to revise the strategy. The parameter ρ is then
the probability that the sender is not this opportunistic type.

28Informativeness can be measured in other ways and, in particular, in ways that do not directly
depend on u. Our main focus is on the correlation between state and guess, in line with the existing
experimental literature on communication (e.g. Cai and Wang (2006)). In our data analysis, however,
we do consider alternative measures of informativeness. In particular, we look at the dispersion of the
induced posterior beliefs, both conditional and unconditional on the state. Using these alternative
measures of informativeness does not change the qualitative conclusions of our analysis, but they are
useful to highlight different aspects of the phenomena of interest. For example, see discussion of Figure
11 in Section 4.2 and Appendix E.2.
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φB(π′); an information structure π is uninformative if φB(π) = 0, whereas it is fully

informative if φB(π) = 1. These definitions naturally extend to equilibria. More

specifically, we say that equilibrium (πC , πR, a, µ) under (Π, ρ, q) is more informative

than equilibrium (π′C , π
′
R, a

′, µ′) under (Π′, ρ′, q′) if ρπC + (1−ρ)πR is more informative

than ρ′π′C + (1− ρ′)π′R.

As in many other communication games, our framework allows for multiple PBEs.

For the interested reader, we provide a full equilibrium characterization of the equilib-

rium in Appendix A. In the rest of the paper, instead, we impose a simple tie-breaking

rule on equilibrium behavior that is inspired by Hart et al. (2017). We say that a PBE

is truth-leaning if, whenever it is optimal for type θH in the revision stage to tell the

truth (i.e. to send message m = θH), she prefers to do so. A few comments are in

order. First, this tie-breaking rule is simple but powerful. As we show in Proposition

1, it is sufficient to guarantee uniqueness of the equilibrium outcomes. Second, it is

weaker than the refinement introduced in Hart et al. (2017). In fact, it is not imposed

on all types of sender, but only on type θH .29 A fortiori, our tie-breaking rule is consis-

tent with most of the equilibrium refinement that have been proposed in the literature.

Third, this tie-breaking rule is consistnent with behavior that we observe in our data.30

In the rest of our analysis, we maintain the specialization to truth-leaning PBEs and

we refer to these, more simply, as “equilibria,” without further qualification.

3.1.1 Comparative Statics

Our goal is to develop a set of comparative statics for our framework, which we later

use as experimental tests for the role of commitment in communication. We begin

with a characterization of equilibrium informativeness for a given level of commitment

power ρ. This result also provides a contrast between the equilibrium informativeness

at the commitment and at the revision stage.

Proposition 1. Fix ρ ∈ [0, 1] and q > µ0. Let ρ := q−µ0
q(1−µ0)

and ρ̄ := q(1−µ0)
q(1−µ0)+(1−q)µ0

and note that ρ ≤ ρ̄:

[Unverifiable Information] All equilibria are equally informative. Moreover, equi-

libria are uninformative if and only if ρ < ρ. When ρ ≥ ρ, less information is

transmitted at the revision stage than at the commitment stage.

[Verifiable Information] All equilibria are equally informative. Moreover, equilib-

ria are fully informative if and only if ρ < ρ̄. When ρ ≥ ρ̄, more information is

transmitted at the revision stage than in the commitment stage.

This result establishes uniqueness of the equilibrium outcomes and highlights the

main tension between commitment and revision stages. It also emphasizes that this

tension manifests itself in opposite ways under the different verifiability scenarios, thus

29More specifically, we don’t require that, whenever indifferent, type θL sends message θL. When
information is unverifiable, this extra requirement can lead to non-existence of equilibria.

30For example, when information is verifiable, the average πR(θH |θH) in our data is about 0.95.

17



providing a useful and easily testable prediction that we will exploit in our experimental

analysis. To understand this result, we first consider two extreme cases. When ρ = 0,

the sender has no commitment power. Therefore, equilibria are fully informative when

information is verifiable and uninformative otherwise. When ρ = 1, instead, the sender

has full commitment power. The equilibria feature partial information revelation in

both of the verifiability scenarios that we consider. The intuition for Proposition 1

is then the following. Under both verifiable and unverifiable information, the sender

would like to commit to persuading the receiver to choose the high action as often

as possible, and this requires partial information revelation. However, in the revision

stage, the sender is unable to resist the temptation to undo her commitments and

manipulate information in her favor. Under verifiable information, this opportunity

implies full information disclosure in the revision stage; under unverifiable information,

it implies sending the message that induces the high action, regardless of the state. The

presence of the revision stage changes the sender’s problem in the commitment stage

relative to the full commitment scenario as follows: the sender over-communicates when

information is unverifiable and under-communicates when information is verifiable.

This modification is an attempt to obtain a final posterior for the receiver which is

as close as possible to the full commitment scenario. When ρ is sufficiently high,

partial information revelation occurs in both verifiability scenarios. This is because

the revision stage cannot completely undo the positive effect of the commitment stage.

Overall, this result illustrates how changes in the rules of communication can generate

stark contrasts in the way senders react to commitment power.

Our next result describes how equilibrium informativeness changes with commit-

ment power, and how this depends on the rules of communication.

Proposition 2. Fix q > µ0. When information is unverifiable, equilibrium informa-

tiveness weakly increases in ρ. When information is verifiable, equilibrium informa-

tiveness weakly decreases in ρ. Moreover, when ρ = 1, equilibrium informativeness is

independent of the rules of communication.

This result provides a clear set of empirical predictions suggesting experimental

treatments to evaluate commitment. It illustrates how changes in the rules of commu-

nication can generate stark contrasts in the predictions of our model, allowing for a

strong test of the role of commitment. The intuition for this result follows from the

discussion above. As ρ increases, the revision stage becomes increasingly less likely, and

the relevance of the commitment stage increases. This allows the sender to approach

the optimal solution under full commitment, ρ = 1. In our game, the equilibrium

outcome for ρ = 1 is independent of the rules of communication. To see this, note that

when ρ = 1 and information is verifiable, the sender can replace the use of message θH
with message n. By doing so, she can induce the same joint distribution over states

and actions that is optimal under unverifiable information.

Propositions 1 and 2 constitute the bulk of our experimental strategy to test the

role of commitment, which revolves around the idea of partial commitment. Later in
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Section 5.1, we consider a different kind of comparative statics result that keeps fixed

the degree of commitment ρ and shows how equilibrium informativeness changes with

the persuasion threshold q.

Proposition 3. Fix q′ > q > µ0 and consider any ρ ≥ q′−µ0
q′(1−µ0)

. Equilibrium informa-

tiveness under q′ is strictly higher than under q, irrespective of the rules of communi-

cation.

This result shows that, when ρ sufficiently high, an increase in q increases equilib-

rium informativeness, irrespective of communication rules. In particular, when ρ = 1,

raising q strictly increases equilibrium informativeness for both verifiability scenarios.

This prediction is qualitatively different from those introduced in Proposition 2. In-

stead of changing the communication environment, this prediction relies exclusively on

changing players’ payoffs.

3.2 Experimental Design

Our laboratory implementation features many similarities with the one described in

section 2. In particular, the monetary payoffs and the language used to describe the

tasks are the same. Unlike section 2, however, the sender can now choose from among

three messages, M = {r, b, n}. This additional richness of the message space allows us

to easily switch between treatments with verifiable and unverifiable information, and

makes these treatments more comparable. Two additional details of our implemen-

tation are worth mentioning. First, the revision stage is shown to the subjects only

when it matters, namely, only for treatments with partial commitment, ρ < 1. For

treatments with full commitment, instead, we avoid doing so to minimize confusion.

Second, as in Section 2, we employ the strategy method at the guessing stage. That

is, the receiver has to guess the color of the ball for all messages in the set M . In

contrast, we do not use the strategy method for the revision stage. The sender revises

only the part of her strategy that concerns the realized state . We do not elicit what

the sender would have done had the ball been of a different color. In our view, this

design choice achieves to goals: it makes the revision stage simple for our subjects and

it highlights the stark contrast between revision and commitment stage. This design

choice, however, makes the computation of the correlation coefficients more challenging

for treatments with partial commitment. We circumvent this problem of missing data

by imputing the session-specific average behavior of the senders. This choice seems

natural and, due to the random re-matching, receivers should hold comparable beliefs

when facing a random sender in the last ten rounds of the experiment.31

In Appendix C and D, we present the instructions and provide examples of the

graphical interface, which follows closely the one of Section 2.

31Our results are robust to different imputation methods: For example, we can impute subject-
specific averages and get essentially similar results. Also, it is important to note that the results for
treatments with ρ = 0.8 (where we perform the imputation) are similar to those with ρ = 1 (where
we do not need to use the imputation), suggesting the results are robust to our imputation method.
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3.2.1 Treatments and Equilibrium Predictions

In the experiment, we vary two main treatment parameters: the degree of the sender’s

commitment and whether or not information is verifiable. In treatments with verifiable

information, the interface prevents senders from assigning positive probability to a red

message conditional on a blue ball or to a blue message conditional on a red ball.

The interfaces are identical in all other respects. For both verifiable and unverifiable

information, we conduct three treatments with different degrees of commitment: ρ ∈
{0.20, 0.80, 1}. Thus, we have a total of six treatments forming a 2×3 factorial between-

subjects design. We denote these treatments as illustrated by Table 2. Note that

treatment U100 is nothing more than a variation on the benchmark treatment discussed

in section 2, with the addition of the no message n. As can be seen in Table 3, this

addition does not matter for the theoretical predictions.

Table 2: Treatments denominations

Degree of Commitment

Information ρ = 0.20 ρ = 0.80 ρ = 1.00

Verifiable V20 V80 V 100

Unverifiable U20 U80 U100

For each treatment, we conduct four sessions, for a total of 24 sessions. Each session

included 12 to 24 subjects for a total of 384 subjects, who played 25 paid rounds (16 on

average per session) in fixed roles. In addition to their earnings from the experiment,

subjects received a $10 show-up fee. Average earnings, including the show-up fee, were

$36.55, ranging from $12 to $60. On average, sessions lasted 100 minutes.

This experimental design allows us to capture many models of communication,

ranging from cheap talk to disclosure and Bayesian persuasion. Note that, for two main

reasons, we do not include the extreme cases with ρ = 0. First, these cases are the

only ones for which there is existing experimental evidence.32 Second, the equilibrium

predictions at ρ = 0 are identical to those at ρ = 0.20. Our main interest, instead, lies in

treatments with partial or full commitment. These cases have never been tested in the

lab and offer a unique opportunity to study the role of commitment in communication.

Note, also, that our results for treatments with ρ = 0.2 are qualitatively consistent with

prior observations from experiments with cheap talk and disclosure, that is, ρ = 0.

Table 3 reports the equilibrium predictions for each treatment in terms of the

strategies played by senders and receivers.33 Figure 7 reports the informativeness of

32See Blume et al. (2017) and the references therein.
33As discussed in section 3.1, the table presents the predictions assuming the specific equilibrium

selection that we have made. Recall that, for the most part, multiplicity is about a selection of
language, and all equilibria are equivalent in terms of payoffs and informativeness. The case with
more substantive selection is V80. See section 3.1 for a discussion.
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Figure 7: Predictions and Treatments.

equilibrium across our treatments.

We do not wish to go into the details of every case discussed in Table 3. However,

we wish to emphasize that the equilibrium predictions displayed in Table 3 feature the

key strategic tensions that we highlighted in Section 3.1.

First, the V 80 and U80 treatments reveal a tension between the commitment and

the revision stage, and this tension goes in opposite directions in verifiable versus

unverifiable treatments. In treatment U80, anticipating their own behavior in the

revision stage, senders are predicted to compensate by committing to reveal more

information than in U100. By contrast, in treatment V 80, senders are predicted to

compensate by committing to reveal less information than in V 100. Second, in both

V 20 and U20, the sender is unable to use commitment to undo her anticipated behavior

at the revision stage. The predicted outcome in both these treatments is identical to

the case of no commitment, ρ = 0. Therefore, we find a degree of indeterminacy:

Not quite in the predicted level of informativeness, but rather in the actual strategies

played by the subjects. Finally, as illustrated in Proposition 2, treatments U100 and

V 100 are predicted to induce the same outcomes (Figure 7). However, senders achieve

this outcome by using substantially different strategies. Note also that the equilibrium

of U100 is the same as in U100S; that is, the empty message plays no important role

in the U treatment.

4 Main Results

In this section, we present the main results of our experiment. Specifically, we present

four sets of results.

First, we explore the simplest and most direct evidence to test whether subjects

understand commitment and how they take advantage of it. To this purpose, we exten-
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Table 3: Equilibrium Predictions

Sender Receiver Correlation

Commitment Revision Guessing Coefficient

Treat. Ball Message Ball Message Mes. Guess φ

red blue no red blue no

R 1 0 R 1 0 red red
V 20 B x 1− x B x 1− x blue blue 1

no blue

R 0 1 R 1 0 red red
V 80 B 3

4
1
4

B 0 1 blue blue 0.57
no red

R 0 1 red red
V 100 B 1

2
1
2

blue blue 0.50
no red

R x y 1− x− y R 1 0 0 red blue
U20 B x y 1− x− y B 1 0 0 blue blue 0

no blue

R 1 0 0 R 1 0 0 red red
U80 B 3

8
5
8

0 B 1 0 0 blue blue 0.50
no blue

R 1 0 0 red red
U100 B 1

2
1
2

0 blue blue 0.50
no blue

x and y indicate any (feasible) probability.

sively exploit the flexibility of our experimental design. Our initial focus is on senders.

We exploit the within-treatment variation between the commitment and the revision

stage to track changes in their behavior. We then move to the study of receivers. In

this case, we exploit the across-treatment variation and track how their responsiveness

to information changes as we change the level of commitment ρ.

Second, we take on a more aggregate approach and we analyze how the amount

of information that senders transmit changes, as we vary the level of commitment ρ.

In doing so, we leverage a particular feature of our design. By Proposition 2, the

predicted changes in informativeness as a function of ρ have opposite signs depending

on whether information is verifiable. These contrasting comparative statics allow a

particularly tight test of the role of commitment in communication.

Third, we zoom-in on a pair of treatments that are of particular interest, namely,

V 100 and U100. As explained in Proposition 2, these treatments are somewhat special

because the equilibrium outcome is rule-independent. Yet the strategies leading to

these identical outcomes can be radically different because of the role played by the

two different rules we consider. This environment is a particularly natural one in which

to learn about the way rules shape subjects’ incentives and behavior in the laboratory.

The discrepancy between observed behavior and theoretical prediction could be relevant

for policy.
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4.1 Response to Commitment

The assumption of commitment is a defining feature of persuasion models and repre-

sents the main departure relative to cheap-talk and disclosure models. We now discuss

the degree to which subjects react to the availability of commitment.

4.1.1 Senders and Commitment

We begin by focusing on senders’ behavior. We first exploit within-treatment varia-

tion to evaluate the role of commitment in shaping senders’ behavior. We do so by

comparing behavior in the commitment stage with behavior in the revision stage, and

exploiting the fact that this comparison changes depending on the verifiability of infor-

mation. For example, when ρ = 0.8, the predicted behavior in the commitment stage

displays particularly stark differences relative to the behavior in the revision stage (see

Table 3). This within-treatment variation provides us with a very simple test that we

use to evaluate the extent to which senders understand the role of commitment in this

game, and whether they are able to use it to their advantage.
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Figure 8: Sender’s Strategy: Commitment vs. Revision, ρ = 0.8

In Figure 8, we present the average difference in senders’ strategies between the

commitment stage and the revision stage for U80 and V 80. A high bar indicates a

message that is sent more often in the revision stage, a negative bar a message that

is used more in the commitment stage. This exercise is done separately by state. Let

us consider the first three bars (from the left), that is treatment U80 when the ball is

R. Using Table 3, we can see that the strategy in the revision and commitment stages

are the same, hence all three bars should be of zero height. This outcome is exactly

what we observe in the figure. However, when the ball is B, Table 3 tells us that the

frequency of r should be higher in the revisions stage (1 versus 3
8
), while the frequency

of b should increase, and the n message should not change. In the data we do observe

the predicted increase in r and decrease in b. In contrast with the theory, there is a

small change in n, but this difference is insignificant. Turning to V 80 when the ball is

R, Table 3 indicates that the sender should replace r messages from the commitment

stage with n messages in the revision stage. This is exactly what we see in the right
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panel of Figure 8. Finally, when the state is B, Table 3 predicts that n messages should

increase and b messages decrease. Once again, this is exactly what appears in the last

three bars (to the right) of Figure 8. The changes in frequencies are jointly significant

in each panel and for each state (p < 0.01 in both cases).34

An alternative way to confirm that the observed changes in behavior are in line

with the theoretical prediction is to compare the informativeness contained in the

commitment strategy with that contained in the revision strategy. Denote these two

quantities by φBC and φBR, respectively. In line with the prediction of Proposition 1, in

U80 senders do reveal substantially more information in the commitment stage, φBC =

0.43, than in the revision stage, φBR = 0.02. This difference is significant (p < 0.01) and

quantitatively large. Also consistent with the theoretical prediction, we observe that

in V 80 informativeness in the commitment stage, φBC = 0.83, is lower than that of the

revision stage, φBR = 0.99 (statistical significance at p < 0.01).

Summing up, the joint evidence coming from treatments U80 and V 80 suggests that

senders react to commitment and do so in ways that are consistent with the theory. Our

evidence suggests that many senders exploit their commitment power to strategically

hide good news (state R) when information is verifiable, and hide bad news (state

B) when information is unverifiable. From a quantitative point of view, these efforts

by the senders fall short of exactly matching the equilibrium predictions. Most of the

deviations from equilibrium come from behavior in the commitment stage. In contrast,

behavior in the revision stage is quite close to the theory. We discuss departures from

equilibrium in more detail in section 4.3. Qualitatively, however, this central prediction

of our strategic communication model is corroborated by the data. We emphasize that

the predictions are completely different for verifiable and unverifiable messages. For

instance the prediction on the change in informativeness between the commitment

and the revision stage go in opposite directions. This is a useful feature of considering

verifiable and unverifiable messages in a similar framework, as they allow us to consider

very different predictions within the same environment. The fact that these predictions

are matched in the data should be all the more reassuring about the ability of senders

to use commitment as predicted by the theory.

4.1.2 Receivers and Commitment

We now focus on receivers: Our goal is to evaluate the extent to which they understand

the strategic implications of commitment, and whether their reactions are consistent

with the theory. To do so, we create a direct test that is specifically tailored to the

problem they face. Consider the Bayesian posterior conditional on a message m, com-

puted only on the basis of the information contained in the commitment strategy πC .35

This posterior belief, which we will call interim posterior, can be interpreted as the

belief a receiver would hold if she ignored the existence of a revision stage. Clearly,

34Although statistically significant changes occur for U80 when the state is R, they are small in
magnitude.

35That is, µ0(R)πC(m|R)/(
∑
θ µ0(θ)πC(m|θ)).
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when ρ = 1, interim and ex-post beliefs coincide. More generally, given πC and πR, the

higher the degree of commitment ρ, the closer the interim posterior is to the ex-post

one that conditions on all the information, including the sender’s equilibrium behavior

in the revision stage. We use this simple observation to test whether receivers under-

stand the strategic implications of different levels of commitment. Thus, we should

observe different guessing behavior at identical interim beliefs for different degrees of

commitment. In particular, at high levels of commitment, interim beliefs should be

highly influential in guiding receivers’ behavior; at low levels of commitment, they

should not.

This analysis is carried out in Figure 9. We begin by comparing treatments U20

and U100 (left panel). We focus on the interim posteriors after message r, which is

the key strategic message in this treatment. We compare how receivers respond to this

message as a function of the induced interim posterior and of the treatment.36 In U20,

the interim posterior should have little or no impact on the receiver’s guess, because

the message most likely did not come from the commitment strategy, and therefore the

interim posterior is likely to be far from the final posterior. By contrast, in U100, the

interim posterior should have a substantial effect on the receiver’s guess. In particular,

the receiver should guess red for high-enough posteriors. In fact, because the message

came from the commitment strategy with probability one, the interim belief coincides

with the ex-post belief. Consistently with these predictions, the estimated receivers’

response in the left panel of Figure 9 is mostly flat in U20, whereas it is strictly

increasing in U100.

Similar, if not stronger, evidence is found when comparing V 20 and V 100. By

the nature of verifiable information, messages r and b induce trivial interim beliefs of

either 1 or 0, respectively. The message that potentially entails strategic considerations

is message n, and this message is the one we focus on. As can be seen in the right panel

of Figure 9, the estimated receivers’ response to an increase in the interim posterior

is weak in treatment V 20, whereas it is strong and positive for V 100.37 Overall, the

joint evidence coming from treatments with verifiable and with unverifiable information

suggests that, on average, receivers understand the basic strategic implications of the

role that commitment plays in our model and react to it in ways that are broadly

consistent with the theory.

Another striking feature of Figure 9 emerges from the comparison between receivers

behavior in U100 versus V100. The response to message r in U100 is almost identical to

the response to message n in V100. Thus, receivers react to the “persuasive” message

36In Figure 9, the solid lines are the polynomial fit of the induced interim posterior and the observed
guess.

37The probability that the receiver guesses red when the interim posterior is below 1
2 does not

differ statistically between ρ = 0.2 and ρ = 1, both for the case with unverifiable information (left
panel) and verifiable information (right panel). Note that for the case of verifiable information, the
difference can be significant depending on how the test is performed. For interim posteriors above 1

2 ,
we find a statistically significant difference in both cases (p < 0.01 in both cases) and, perhaps more
importantly, the magnitude of the change is much more sizable: 56 versus 14 percentage points in the
verifiable case, and 40 versus 6 percentage points in the unverifiable case.
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in the same way in the two treatments, despite the fact that the nature of the message

is quite different in the two treatments: it is consistent with natural language in U100,

whereas it is not in V100.
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Figure 9: Receiver’s Response to Persuasive Messages: ρ = 0.2 vs. ρ = 1

4.2 Cross-Treatment Comparisons

The previous sub-section establishes that both senders and receivers react to the power

of commitment. This section explores additional dimensions of the degree to which

agents react to commitment in ways that are consistent with the theory. One key pre-

diction of the theory, stated in Proposition 2, concerns how equilibrium informative-

ness changes with commitment under verifiable and unverifiable information. Figure 10

shows the distributions of sender-specific informativeness φB in our main treatments.

We wish to highlight two patterns that emerge from this figure. First, we find a no-

ticeable first-order stochastic increase in the distribution of informativeness in U100

relative to U20 (left panel), as well as in U80 relative to U20. Thus, under unverifiable

information, the amount of information transmitted by the senders increases as com-

mitment increases, as predicted by the theory. Second, we see a first-order stochastic

decrease in the distribution of informativeness in V 100 relative to V 20 (right panel),

and less so in V 80 relative to V 20. Thus, under verifiable information, the amount

of information transmitted by the senders decreases as commitment increases, as pre-

dicted by the theory.38

Although these patterns are qualitatively in line with theory, we note sizable quan-

titative deviations from the point-predictions of the theory. To illustrate this finding, it

is sufficient to compare the average informativeness by treatment. For each treatment,

38As predicted by the theory, U80 and U100 are unranked. The same is true, although to a lesser
extent, for the comparison between V 80 and V 100. Finally, we note that the CDF for U100S is similar
to that for U100, as predicted by the theory. The two are plotted together in the left panel of Figure
E28 in the appendix.
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Table 4: Average Correlations per Treatment

φ? – Theoretical Predictions φ – Empirical Correlation

Commitment (ρ) Commitment (ρ)

20% 80% 100% 20% 80% 100%

Verifiable 1 0.57 0.50 Verifiable 0.83 ≈ 0.78 > 0.68
∨ ∨ ∨

Unverifiable 0 0.50 0.50 Unverifiable 0.09 < 0.20 ≈ 0.22

φB – Empirical Correlation with Bayesian Receivers

Commitment (ρ)

20% 80% 100%

Verifiable 0.89 ≈ 0.85 > 0.78
∨ ∨ ∨ Note: black symbol, as predicted;

Unverifiable 0.00 < 0.33 ≈ 0.34 gray symbol, not as predicted.
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Figure 10: CDF of Subject Average Bayes Correlation (φ̄Bi ) by Treatment

Table 4 reports the theoretical informativeness φ? in the top left panel, empirical infor-

mativeness φ in the top right panel, and informativeness with hypothetical Bayesian

receivers φB in the bottom left panel. The differences between φB and φ allow us to

partly disentangle whether senders or receivers are primarily responsible for possible

deviations from the equilibrium. The symbols between the numbers indicate their “sta-

tistical relations” at the 10% level; that is, ≈ means that the p-value of the equality of

the two is larger than 0.1.

In the top-right panel of the table, we see that subjects react to commitment in

the expected direction, both for verifiable and unverifiable information. However, the

observed changes are more muted than what is predicted by the theory. In the case

of verifiable information, for example, the theory predicts that, moving from V 20 to

V 100, we should observe a reduction of 0.5 in the correlation (from 1 to 0.5). In

the data, the corresponding reduction is 0.13, or only 26% of the predicted change.

Similarly, under unverifiable information, the changes are in the predicted directions,

although the magnitudes are smaller. Comparing these correlations with those on the

27



bottom-left panel suggests only part of the “missing effect” can be imputed to “noise”

introduced by non-Bayesian receivers. Recall that when we replace our actual receivers

with a hypothetical Bayesian receiver, we effectively shut down the dampening effect

that receivers’ mistakes produce on the correlation. A receiver’s behavior that becomes

noisier can, in fact, only reduce the correlation φ, not increase it. The changes in φB

reveal larger effects of commitment for the unverifiable treatments and smaller effects

for the verifiable treatments: 68% in the case of the unverifiable treatments and 22% of

the predicted change for verifiable treatments. However, especially for the unverifiable

treatments, many senders clearly generate correlations that are positive, but too low

to be persuasive, that is, to induce a receiver to choose red.

To understand this phenomenon better, we now turn to an analysis of the posteriors

that senders induce with their communication strategies. In particular, Figure 11

displays the kernel density estimates of the Bayesian posteriors conditional on the

state.39 The vertical dashed lines indicate the theoretical predictions; the other lines

present the data under the different treatments.40 For instance, for the treatments with

ρ = 1, the vertical long-dash gray line is at 0.5 because in equilibrium, the posterior

following the red state is 0.5. The vertical long-dash black line is at 0.25 because in

equilibrium, in the blue state, the posterior is 0.5 with 50% probability (when the

sender sends the r message) and 0 with 50% probability (when the sender sends the b

message).

In all cases we see a sizable response to the treatment in the direction predicted by

the theory, more so in the unverifiable than in the verifiable treatments. Moving from

U20 to U100, the posteriors become more spread out, whereas moving from V20 to

V100, the posteriors move closer, as predicted by theory. However, there are important

discrepancies: whereas in the case of V20, the posteriors are inside the lines describing

the theoretical predictions, in the other two verifiability treatments, most of the mass

of the posteriors lies outside of the relevant (theory-predicted) lines. In other words,

senders are not informative enough under V20, and are too informative in the other

cases.

Table 5 reports the difference between the mean posteriors when the ball is red

relative to the case in which the ball is blue. The table shows that the data move in

the right direction for both verifiable and unverifiable treatments, but that the mean

difference is much closer to the theoretical predictions in the case of the unverifiable

treatments than in the case of verifiable treatments.

According to the data presented in Table 5, the posterior difference is very close to

predicted in treatments U80 and U100 but quite far in treatment V100. Recall that in

theory, the treatments U100 and V100 should yield the same equilibrium outcomes.

We now summarize. The behavior of our subjects is not, on average, in line with

39Given the state and strategy in both the commitment and the revisions stage, we compute the
expected posterior conditional on the likelihood of each message.

40In the bottom left panel, the two vertical lines are not both at 1/3 because they are computed
assuming senders reveal all the information in the commitment stage.
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Figure 11: Posterior on R as a Function of the State

Table 5: Difference In Mean State Conditional Posteriors
(theoretical values in parentheses)

Commitment (ρ)

20% 80% 100%

Verifiable

Difference:
0.80 0.78 0.69

(1.00) (0.40) (0.25)
B R B R B R

Mean: 0.07 0.87 0.07 0.86 0.10 0.79

Unverifiable

Difference:
0.11 0.24 0.30

(0.00) (0.25) (0.25)
B R B R B R

Mean: 0.30 0.41 0.25 0.49 0.23 0.53
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the point predictions of the theory. However, our data qualitatively match the asym-

metric theoretical predictions that our framework produces: Increasing commitment

has opposite effects on information transmission under verifiable and unverifiable in-

formation. Interestingly, rules have a greater impact than predicted when commitment

is high.

4.3 The Impact of Rules

Regarding the effect of verifiability, our model makes two predictions. First, for each

given level of commitment, the amount of information conveyed by senders is (weakly)

higher under verifiable information than unverifiable information. Second, under full

commitment the amount of information (and the equilibrium outcome) is independent

of verifiability: with full commitment, rules should not matter (Proposition 2).

The first of these predictions is strongly borne out in the data: for every given

level of commitment, more information is conveyed by the senders under verifiable

treatments than under unverifiable treatments. On the sender side, Table 4 reports that

the correlation φB is 0.89 in V20 and 0.00 in U20 (predictions are 1 and 0, respectively).

On the receiver side, the probability of guessing red following message r (resp. b) across

all treatments with verifiable information is 95% (resp. 1%), thereby suggesting that

receivers correctly understand the implications of verifiable information.41

However, the second prediction is strongly rejected by the data. There is a siz-

able observed difference in the level of informativeness between treatments U100 and

V100. The average Bayesian correlation is 0.78 in V100 and 0.34 in U100 (Table 4).

More broadly, as reported in Figure 12, the discrepancy between the two treatments is

substantial, affecting all quantiles of the distribution of informativeness ρB.42

In order to explain this discrepancy between the theory and the data, we look more

closely into the behavior of senders and receivers in these two treatments. It is apparent

that the biggest difference between V100 and U100 lies in the much more prevalent use

of uninformative strategies in U100. Figure 12 illustrates that no sender in V100 uses

such strategies. In contrast, 16% of senders in U100 are consistently uninformative.

A similar conclusion holds if we use different cutoffs for φBi . Overall, uninformative

communication strategies are uncommon in V100, whereas they are quite common in

U100. Note that fully uninformative strategies are just as feasible in V100 as in U100:

a sender can produce no information to the receiver by sending message n in both

states.

Figure 13 presents a clustering analysis of the senders’ strategies for treatment V100

that is analogous to the one we presented in Figure 6 for U100S in Section 2.2.43 There

are three main clusters that emerge from this analysis. First, there is a large cluster

41The comparable numbers in treatments with unverifiable information are 40% and 8%.
42Furthermore, even for cases of partial commitment the difference in informativeness in our data

is quantitatively larger than predicted by the theory.
43The clusters for U100 are quite similar to those for U100S. In order to save space, we do not

repeat this analysis here.
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that is suggestive of equilibrium behavior. Senders use message n with high probability

when the state is R and randomize between b and n when the state is B. Second, there

is cluster that is fully informative in the natural language. Senders are truthful and

send message r when the state is R and b when the state is B. Third, there is a cluster

that, like the previous one, is also fully informative, but senders use message n instead

of b, when the state is B. When comparing senders’ behavior in V100 and U100, we

note that the first two types of clusters, “equilibrium-like” and “truth-telling,” appear

in both treatments. The biggest qualitative difference is in the third cluster. When

information is unverifiable, a cluster of senders is uninformative, and sends message r

in both states. As we saw above, this behavior is absent in V100. It is replaced by a

cluster of fully informative and yet non-truthful senders.
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Figure 13: Sender’s Strategies in V100 Grouped in Clusters

One potential explanation for this difference in behavior is driven by a specific

misunderstanding by some of the senders: namely, these senders act as if they were
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secretly choosing the messages instead of publicly choosing the information structures.

In other words, they act as if they were choosing strategies for a hypothetical revision

stage. Observed receivers’ behavior yields very different incentives in V100 versus

U100 under this behavioral assumption about these senders. The optimal strategies

are exactly the ones described above. In the unverifiable case r is optimal in both

states; in the verifiable case r is optimal in the R state and n is optimal when the state

is B (because n leads to much higher probability of the receivers being persuaded).44

More generally, senders’ behavior is much more informative in V100 than U100.

We discuss two additonal possible explanations that relate to how senders react to

receivers behavior.

A first hypothesis related to receivers behavior is motivated by the literature on the

disclosure of verifiable information without commitment. Perhaps receivers are overly

skeptical of message n in V100, leading senders to switch and use the verifiable message

r. After all, this skepticism is they key force pushing toward disclosure in standard

games of disclosure with verifiable messages without commitment.45 However, in our

environment senders have full commitment, and this makes all the difference. Indeed,

as we discussed in Section 4.1.2, the data highlighted in Figure 9 shows that receivers

respond to message r in U100 and to message n in V100 in extremely similar ways, even

when controlling for implied Bayesian beliefs. Therefore, the discrepancy in senders’

behavior cannot be rationalized by this particular difference in receivers’ behavior.

A second hypothesis that focuses on receivers’ behavior is that, perhaps, full dis-

closure is more profitable in V100 than in U100, despite full commitment. This could

be the case if disclosure in V100 is trusted more by receivers, due to information ver-

ifiability.46 This hypothesis does receive some support in the data: senders’ earnings

from full disclosure are indeed higher in V100 than in U100.

The discrepancy in senders’ behavior documented in this section is potentially im-

portant for policy because it suggests a novel role for information verifiability. In

contrast with the literature on the failure of the unraveling principle, we find that

under information verifiability senders transmit an excessive amount of information

compared to the predictions of the theory. Despite the presence of commitment power,

we find that many senders are unable to strategically withhold information to their

advantage. Moreover, the large amount of uninformative behavior by the sender that

we observe in U100 is mostly associated with sending r rather than n. This behavior

suggests that this finding is unrelated to senders’ lying aversion.

44This behavior is in fact what we observe in the data in the revision stages of U80 and V80
respectively. In the revision stage of V80, the median probability of choosing r in state R is 0.99,
and the median probability of choosing n in state B is 0.74. In the revision stage of U80, the median
probability of choosing r in state R is 0.91; and the median probability of choosing r in state B 0.82).

45Experimentally, it is indeed found that no news is bad news for receivers, although receivers are
not sufficiently skeptical. See for instance Jin et al. (2016).

46This is particularly evident from Figure 2 in Section 2.2. Even when provided with conclusive
evidence that the state is R, some receivers in U100S still do not trust the sender.
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5 Additional Results

5.1 Changing the Receiver’s Incentives

One of the more direct implication of commitment, which is stated in Proposition 3,

is that increasing q leads to more informative communication from senders. Based

on this idea, we designed one more treatment, in which it is more valuable for the

receiver to match the state when the state is B. This treatment provides a different

test of whether subjects react to the power of commitment. This treatment involves

full commitment (ρ = 1) and unverifiable information and is referred to as treatment

U100H. In this treatment, we only change payoffs so that receivers require more

persuasion in order to choose the senders’ favorite action. Payoffs are as follows. As

in all other treatments, the receiver obtains zero payoff if he makes the wrong guess.

In contrast to the treatments above, the receiver wins different amounts if he correctly

guesses the color of the ball: 2 if the ball is Blue, 2
3

if ball is Red. The sender wins

3 if the receiver guesses Red. With this new treatment, the persuasion threshold (the

posterior above which the receiver guesses red) changes from 0.5 to 0.75. Thus, in

equilibrium, the sender should provide more information. The strategy of the sender

involves sending r with probability one if the ball is Red, sending r with probability

1/6 and b with probability 5/6 if the ball is blue.

For the U100H treatment, we conducted four sessions, each with 16-20 subjects (72

in total). Those subjects made between $10.48 and $26.56 (average $18.02).
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Figure 14: CDF of Subject Average Bayesian Correlation (φ̄Bi ): U100 and U100H

Figure 14 shows the distribution of φB for the U100H treatment is to the right of

that for the U100 treatment. The median subject goes from inducing an average corre-

lation of 0.22 in U100 to one of 0.47 in U100H. This shift, however, is not statistically

significant (p > 0.1). We note, though, that sender behavior in the U100H treatment
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evolves considerably over time, as can be seen in Figure E19, and if we regress the

Bayesian correlation on a dummy for the U100H treatment, but also add match vari-

ables interracted with treatment dummies; the match-interaction variable is significant

and positive for the U100H treatment (p < 0.01).47 Hence, a wedge is indeed building

over time, with senders ultimately conveying more information in the U100H treatment

than in the U100 treatment.
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Figure 15: Probability of Guessing red by Posterior for treatments U100 and U100H

The theory suggests senders need to send more information to convince receivers to

listen to them. Figure 15 shows our receivers also require more evidence in the U100H

treatment than in the U100 treatment (smoothed line and averages for key intervals).

As predicted, receivers are more likely to guess red for posteriors between 0.5 and 0.75

(p < 0.05) in U100H. However, this effect is also found for posteriors below 0.5, which

is not predicted (p < 0.1). But, as predicted, the average difference for posteriors at

or above 0.75 is not significant (p > 0.1).48

5.2 Quantal Response Equilibrium

Prior experimental work on communication games has explored, among others, two

approaches to explain departures from equilibrium play: Level-k and quantal response

equilibrium (QRE).49 In this section we explore a QRE analysis of our treatments with

full commitment and discuss why we adopt this approach rather than a Level-k one.50

47To account for time, this test does not average at the subject level.
48Appendix E provides additional information on the behavior of receivers in Figure E27.
49For Level-k, see, for instance, Nagel (1995). For QRE, see Goeree et al. (2016). In the experimental

literature on cheap-talk games, Cai and Wang (2006), Kawagoe and Takizawa (2009) and Wang et al.
(2010) have explored Level-k or QRE models to explain deviations from equilibrium predictions.

50There are two reasons why we focus on the cases with full commitment. First, these are the cases
that display the most striking departures from equilibrium predictions. Second, the estimation with
partial commitment presents substantial additional challenges, not the least of which being the sizable
increase in the strategy space for the senders.
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Unfortunately, a straightforward analysis of Level-k is not helpful in our setting.

A key component of a Level-k analysis is the specification of level-0 players. First,

in any of the full-commitment treatments, with or without verifiable information, the

strategy of the sender is fully observable by the receiver, so there is little room for lack

of strategic sophistication on the part of receivers to play a role. Second, in all our

verifiable treatments, there is no leeway in specifying receivers’ beliefs (or behavior)

following a red message or a blue message. Thus, the only degree of freedom is in

specifying non-equilibrium beliefs and play following a “no message.” The natural

assumption is that a level-0 receiver responds to such messages in a naive way, by

failing to update her beliefs and assigning a posterior of 1/3, the same as the prior.

However, in our setting, such belief yields the same optimal response (blue) as the

equilibrium beliefs following a b message. The fact that receivers’ behavior is identical

between level-0 and equilibrium play implies that this concept, taken as is, gives us

little leverage to explain departures from equilibrium in our environment. This is of

course not to say that a more elaborate version of Level-k, possibly combined with

other approaches, may not be a fruitful avenue to explore. However, we chose not

to pursue such elaborate alternative approaches. We instead developed in detail an

analysis of QRE for treatments with full commitment.

The approach taken in QRE is to assume that players respond with errors to their

beliefs and that, in equilibrium, these beliefs correctly account for the errors that

other players make. Despite the simplicity of our design, estimating QRE in a multi-

stage game with incomplete information and a continuum of actions is particularly

challenging. To address these challenges we adapt the standard QRE methodology to

our problem in the following way. First, let Πk be a given set containing k different

sender’s strategies, i.e. information structures π : Θ→ ∆(M θ). Later, we explain how

this set is determined in our procedure. For each π ∈ Πk and m ∈M θ, let µπ(θH |m) be

the posterior belief on θH , given m and π.51 Denote by U(aH |π,m) = µπ(θH |m) (resp.

U(aL|π,m) = 1− µπ(aL|m)) the expected utility of choosing aH (resp. aL). The Logit

QRE model assumes that a receiver of type λR chooses action aH with the following

probability:

PR(aH |π,m, λR) =
eλRU(aH |π,m)

eλRU(aH |π,m) + eλRU(aL|π,m)
.

Given λR, the sender’s expected utility from choosing π is given by vector V (π|λR) :=∑
θ,m µ0(θ)π(m|θ)PR(aH |π,m, λR). That is, the sender takes receivers’ errors into ac-

count when computing her expected payoff from playing a certain strategy. The prob-

ability that a sender of type λS chooses π ∈ Πk is given by

PS(π|λS, λR) =
eλSV (π|λR)∑

π∈Πk
eλSV (π|λR)

.

51Receiver behavior conditional on messages that have zero probability is irrelevant for the estima-
tion of QRE parameters (λS , λR). Therefore, in this section, we can ignore the fact that µπ(θH |m)
may be not well-defined at all histories.
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Note that, in treatments with full commitment, the receiver perfectly observes the

strategy π chosen by the sender. Whether or not this strategy was chosen by mistake

is irrelevant for the receiver who, instead, best responds to π and m as described

above. Effectively, the receiver solves a single-agent decision problem. Therefore, we

can estimate λ̂R from the data using MLE, irrespective of λS. The sender, instead,

moves before the receiver and therefore must take into account λR. For each strategy

π ∈ Πk, we use the senders’ empirical expected payoffs to consistently estimate V (π|λR)

(see Bajari and Hortacsu (2005)). Given these values, we use MLE to estimate λ̂S.

The parameter λi captures how well a player best-responds to her beliefs about her

opponent’s behavior. At one extreme, as λi → ∞, players become perfectly rational.

At the other extreme, when λi = 0, players randomize uniformly across available

actions.52

This estimation procedure clearly depends on the initial choice of Πk, a finite set of

strategies for the sender. Because the strategy space is multi-dimensional and senders’

strategies are not evenly distributed on this space, creating a partition of the data is

complex. To determine Πk, we use a k-means clustering algorithm–the same algorithm

we used in Section 2.2. This algorithm computes exactly k clusters, by minimizing the

distance between each strategy that belongs to a cluster and its mean. In what follows,

we highlight the results that become robust as the number of clusters becomes large

enough. When the number of clusters is too small, choices with very different expected

payoffs are pooled together, which can lead to results that are not meaningful. The

estimates that we report in Table 6 are computed for k = 22.53

Table 6: QRE λ Estimates

Treatment Sender Receiver
U100 0.36 1.31
V100 1.99 1.79
U100S 2.11 1.54
U100H 2.34 1.23

A particularly useful feature of our setting (and our procedure for estimating QRE)

is that it allows us to make meaningful comparisons across treatments by compar-

ing the estimated λs. In contrast, in most experiments, the risk preferences of the

subjects are unknown and the task that subjects face can vary substantially across

treatments. Thus, comparisons of QRE estimates across treatments is sometimes diffi-

cult to interpret. In our design, instead, because outcomes are binary, risk preferences

are irrelevant. Treatments with full commitment only differ in the restrictions imposed

on the senders’ message spaces. However, the relevant space for determining outcomes

is the space of induced posteriors, and this space can be partitioned in the same way

52Note that we let λS 6= λR. One could impose an additional restriction requiring that λR = λS and
estimate these two parameters simultaneously. We do not impose this restriction as it would contrast
with the fact that senders and receivers face drastically different tasks in our game.

53The qualitative results highlighted below are true for all of our estimates with 8 or more clusters.
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for all treatments with full commitment.54

Comparing U100 and V100 reveals that both senders and receivers are closer to

best responding to one another’s behavior in the V100 treatment than in the U100

treatment. This suggests that rules simplify the problem or make incentives more

transparent for the subjects. Similarly, comparing U100 to U100S reveal estimates

that are higher for both roles in the U100S treatment (although only slightly for the

receiver). This result is reasonable given that U100S is a simplified version of U100.

When comparing U100 and U100H, we have that the sender’s estimate is higher in

U100H but slightly lower for the receiver. The higher estimate for the sender in U100H

could be explained by the fact that the incentives to convey information are “steeper”

in that treatment, and indeed there is less babbling in that case.

6 Conclusion

This paper explores whether experimental subjects recognize, and react to, the power

of commitment in communication. To this end, we use the fact that commitment has

opposite effects on information transmission when messages are verifiable versus the

case in which they are not. Indeed, when messages are unverifiable, increasing com-

mitment allows senders to convince receivers of the credibility of their messages and to

improve upon the babbling equilibrium of cheap-talk games. However, when messages

are verifiable, increasing commitment allows senders to undo the unravelling that hap-

pens in a standard disclosure environment, and to withhold some of the information.

When commitment is partial but high enough, our implementation allows us to directly

observe whether senders recognize the role commitment. We can also study whether

receivers recognize the implications of commitment for the content of messages. In

addition, we explore the reaction to changing the persuasion threshold, which is one

more way to examine whether subjects react to commitment as predicted. Finally

our experiment provides one of the first experimental investigations of Kamenica and

Gentzkow (2011).55

Our findings suggest that the central force at play in Kamenica and Gentzkow (2011)

is one that many subjects recognize. Indeed, most aspects of aggregate behavior are

in line with the qualitative predictions of Kamenica and Gentzkow (2011) and our

umbrella framework reveals that average behavior moves in the direction identified by

our comparative statics. However, we also find important differences across subjects

that are systematic and can be classified into recognizable paterns of behavior. These

54In Table 6, we report QRE estimates that are computed by letting Πk vary across treatment. This
is consistent with what we have presented up to this point and keeps the methodology transparent and
simple to understand. However, we show in the Appendix that the qualitative results we highlight here
are robust to clustering the senders’ strategy space in the same way for all treatments. Furthermore,
the qualitative results in that case are true for all estimates with 8 or more clusters. The complete
results for different number of clusters and for the case where the clustering is performed in the same
way are presented in the appendix.

55See also Nguyen (2017) and Au and Li (2018).
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reveal that deviations that have been identified in the prior experimental literature on

cheap-talk games are a particular type of deviations (over-communication and following

messages that should not carry information), but that the opposite types of deviations

(under-communication and ignoring meaningful messages) also exist when the setting

allows for it.

Overall, the key forces at play in the Kamenica and Gentzkow (2011) model seems

to be ones that subjects react to despite subjects not being perfectly rational and opti-

mizing. In this sense, our paper offers a useful starting point to model communication

in the presence of commitment, our extension to partial commitment offers a strong ex-

perimental device for testing purposes, but also opens an interesting avenue to explore

in its own right as partial commitment seems the rule rather than the exception.
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A Appendix: Equilibrium, Refinement and Proofs

A.1 Equilibrium Characterization

In this section, we characterize the set of Perfect Bayesian Equilibria (PBE) for the

framework introduced in Section 3. In a PBE, the sender chooses an information

structure πC ∈ Π in the commitment stage. Then, at every history π′C , the sender

chooses π′R ∈ Π, possibly as a function of π′C . For notational simplicity, we omit the

dependence of π′R on π′C . Finally, the receiver observes history (m,πC) and responds

with an action in {aH , aL}. We call such an action a(m,πC). Finally, a belief assessment

µ assigns a belief to every triple (m,π′C , π
′
R).

Definition A1. Fix (Π, ρ, q). The tuple (πC , πR, a, µ) is a Perfect Bayesian Equilib-

rium if:

(1) πC maximizes
∑

θ,m µ0(θ)
(
ρπC(m|θ) + (1− ρ)πR(m|θ)

)
v(a(m,πC));

(2) For all (π′C , θ), π′R maximizes
∑

m π
′
R(m|θ)v

(
a(m,π′C)

)
;

(3) For all (m,π′C), a(m,π′C) = aH if µ(m,π′C , π
′
R) ≥ q;

(4) For all (m,π′C , π
′
R), posterior belief µ(m,π′C , π

′
R) is computed from π := ρπ′C +

(1− ρ)π′R using Bayes’ rule whenever possible.

Next, we provide a characterization of the equilibrium set, before imposing further

qualification on our notion of equilibrium. For this result, we say that an equilibrium

(πC , πR, a, µ) under (Π, ρ, q) achieves full-commitment informativeness if φB(ρπC+(1−
ρ)πR) = ( q−µ0

1−µ0 )
1
2 . We label such equilibria as FCI. This is the equilibrium informative-

ness under full commitment and unverifiable information, which is an important bench-

mark. It is also useful to define two thresholds for ρ: ρ := q−µ0
q(1−µ0)

and ρ̄ = q(1−µ0)
q(1−µ0)+(1−q)µ0

and note that ρ ≤ ρ̄. We first consider the case of unverifiable information.

Proposition A1. Fix q > µ0 and assume that information be unverifiable.

(a) If ρ < ρ, then all equilibria are uninformative.

(b) If ρ ∈ [ρ, ρ̄), then there exist FCI equilibria and uninformative equilibria. There

also exist equilibria that are more informative than FCI.

(c) If ρ ≥ ρ̄, there exist FCI equilibria. There is no uninformative equilibrium. There

also exist equilibria that are more informative than FCI.

The proof for this result is relegated to Online Appendix B. When commitment

power is low, the sender cannot successfully transmit information to the receiver. When

commitment power is sufficiently high, all equilibria involve some information trans-

mission. Furthermore, when commitment power is sufficiently high, the equilibrium is

FCI, despite the fact that the sender may lack full commitment power. She achieves
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this outcome by appropriately over-communicating in the commitment stage, correctly

anticipating that her own behavior in the revision stage will reduce the credibility of her

communication. Next, we turn to the equilibrium characterization when information

is verifiable.

Proposition A2. Fix q > µ0 and assume that information is verifiable.

(a) If ρ < ρ, all equilibria are fully informative.

(b) If ρ ∈ [ρ, ρ̄), the least informative equilibrium is FCI; fully informative equilibria

exist.

(c) If ρ ≥ ρ̄, there are no fully informative equilibria; the least informative equilibrium

is FCI.

The proof for this result is relegated to Online Appendix B. From this proposition,

we can appreciate the contrast that information verifiability imposes on the equilibrium

set. First, when commitment power is sufficiently low, all equilibria are fully informa-

tive, in stark contrast with the unverifiable case. Second, when the commitment is

sufficiently high, the sender can avoid the unattractive scenario where she fully dis-

close her private information. Namely, there are no fully informative equilibria. Third,

FCI can be achieved in equilibrium as long as ρ ≥ ρ.

A.2 Truth-Leaning Equilibria

The analysis above provides a complete characterization of the equilibrium set. In this

section, we provide two examples, one for unverifiable and one for verifiable informa-

tion, of PBEs that do not satisfy the truth-leaning tie-breaking rule that we introduced

in Section 3. We use these examples to argue that equilibria that are not truth-leaning

feature behavior in the revision stage that is somewhat unreasonable.

Example 1: Unverifiable Information.

Assume that information is unverifiable and set the degree of commitment to ρ = 3
5
, the

persuasion threshold to q = 1
2
, and the prior to µ0 = 1

3
. Consider the pair (πC , πR) that

is reported in Table A7. First note that µ(θH , πC , πR) < q and µ(θL, πC , πR) < q. That

is, despite the fact that πC is fully informative, the sender’s behavior in the revision

stage entirely garbles the information from the commitment stage.

Table A7

πC θH θL n

θH 1 0 0

θL 0 1 0

πR θH θL n

θH 0 1 0

θL 1 0 0
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How do we support this equilibrium? Suppose that for any deviation at the com-

mitment stage π′C , the sender chooses an appropriate π′R at the revision stage so as

to make the pair (π′C , π
′
R) uninformative. The Proof of Proposition A1.(b) establishes

that, for ρ sufficiently low, such a π′R exists. Given the receiver’s beliefs about the

revision stage strategy, the receiver would choose action aL for both messages. Thus,

the sender is indifferent among all her strategies in the revision stage and is willing to

choose π′R. Furthermore, given the receiver’s expectation about π′R, in the commitment

stage the sender is also indifferent among all his strategies: all of them lead to a payoff

of zero. This particularly strange behavior of the sender in the revision stage is ruled

out by our tie-breaking rule. In this equilibrium, in the revision stage the sender of

type θH is indifferent between sending message θL and being truthful. Truth-leaning

requires that such a sender choose πR(θH |θL) = 1 instead.

Example 2: Verifiable Information.

Now assume that information is verifiable. As above, we set the degree of commitment

to ρ = 3
5
, the persuasion threshold to q = 1

2
and the prior to µ0 = 1

3
. We consider the

pair (πC , πR) that is described in Table A8.

Table A8

πC θH θL n

θH 0 0 1

θL 0 5
6

1
6

πR θH θL n

θH 0 0 1

θL 0 0 1

Given πC as in the table, in the revision stage the sender of type θL strictly prefers

message n to message θL, whereas the sender of type θH is indifferent among the two

feasible messages. Furthermore, it can be verified that the pair (πC , πR) described in

the table is FCI, i.e. it leads to the maximal achievable equilibrium payoff for the

sender at the commitment stage. Therefore, the sender has no incentive to deviate at

the commitment stage. This equilibrium relies on implausible behavior in the revision

stage. To see this, consider the on-path decision of the sender of type θH in the revi-

sion stage. She can choose between sending message n, inducing an on-path belief of
1
2
, or sending an off-path message θH , inducing an off-path belief of 1. Both messages

trigger action aH by the receiver. Therefore, the sender is indifferent and, yet, not

truthful. Hence, while consistent with the requirement of PBE, this equilibrium is not

truth-leaning.

Despite being a simple tie-breaking rule, the truth-leaning refinement is powerful

enough to select a unique equilibrium outcome for each combination of ρ, q and µ0, as

the next result shows.

Proposition A3. Fix ρ ∈ [0, 1] and q > µ0.
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(Unverifiable) If ρ < ρ, truth-leaning equilibria are uninformative. If ρ ≥ ρ,

truth-leaning equilibria are FCI.

(Verifiable) If ρ < ρ̄, truth-leaning equilibria are fully informative. If ρ ≥ ρ̄, all

truth-leaning equilibria are equally informative.

The proof for this result is relegated to Online Appendix B.

A.3 Proofs

A.3.1 Proof of Proposition 1

In Proposition A3, we have established that, for any given ρ and q > µ0 and verifiability

scenario, all truth-leaning equilibria are equally informative. Assume that information

is unverifiable. Proposition A3 also establishes that truth-leaning equilibria are unin-

formative if ρ < ρ and FCI otherwise. Moreover, φB(ρπC +(1−ρ)πR) =
( q−µ0)

(1−µ0)

) 1
2 > 0,

since q > µ0. Finally, we want to show that, when ρ ≥ ρ, any truth-leaning equilibrium

(πC , πR, µ, a) satisfies φB(πC) > φB(πR). Since the equilibrium is strictly informative,

there exists a message m′ inducing action aH . Then, πR(m′|θ) = 1, for all θ. Therefore,

φB(πR) = 0. However, φB(ρπC + (1− ρ)πR) = ( q−µ0
1−µ0 )

1
2 > 0, implying that φB(πC) > 0.

We conclude that πC is more informative than πR. Now assume that information is

verifiable. In Proposition A3, we established that truth-leaning equilibria are fully

informative if ρ < ρ̄. Moreover, we also established that, if ρ ≥ ρ̄, any truth-leaning

equilibrium (πC , πR, µ, a) has φB(ρπC+(1−ρ)πR) =
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 < 1. In this case,

we argued that the fact that truth-leaning equilibria are not fully informative pins down

the on-path sender behavior (πC , πR). In particular, we showed that πC(n|θH) = 1,

πC(n|θL) = (1− ρ)− 1−ρ
ρ
∈ [0, 1] and that πR(θH |θH) = πR(n|θL) = 1. Given this, it is

straightforward to conclude that φB(πC) < φB(πR). �

A.3.2 Proof of Proposition 2

When information is unverifiable, Proposition A3 established that, any truth-leaning

equilibrium (πC , πR, µ, a) satisfies

φB(ρπC + (1− ρ)πR) =

{
0 if ρ < ρ

( q−µ0
1−µ0 )

1
2 if ρ ≥ ρ

Therefore, when information is unverifiable, equilibrium informativeness is weakly in-

creasing in ρ. Assume now that information is verifiable. In the proof of Proposition

A3, we established that any truth-leaning equilibrium (πC , πR, µ, a) satisfies

φB(ρπC + (1− ρ)πR) =

{
1 if ρ < ρ̄(

q−µ0(ρ+q(1−ρ))
(1−µ0)(ρ+q(1−ρ))

) 1
2 if ρ ≥ ρ̄
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It is easy to verify that
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 is decreasing (strictly) in ρ. Therefore,

we conclude that equilibrium informativeness when information is verifiable is weakly

decreasing in ρ. Finally, consider the extreme case, ρ = 1. It’s immediate to check

that in this case, irrespective of weather information is verifiable or not, equilibrium

informativeness coincides and it is equal to ( q−µ0
1−µ0 )

1
2 . �

A.3.3 Proof of Proposition 3

Assume that information is unverifiable. Fix q′ > q > µ0 and consider ρ ≥ q′−µ0
q′(1−µ0)

. We

want to show that the informativeness of truth-leaning equilibria under q′ is higher than

under q. To see this, note that ρ is large enough that equilibria are strictly informative,

for both q′ and q. In particular, due to Propositions A3 and 2, we know that under

q equilibrium informativeness is equal to ( q−µ0
1−µ0 )

1
2 and, since q−µ0

1−µ0 <
q−µ0
1−µ0 , we conclude

that the informativeness of truth-leaning equilibria under q′ is higher than under q.

Now assume that information is verifiable. Then, both ρ̄ and
( q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 are

increasing in q. Therefore, for any value of ρ, equilibrium informativeness under q′ is

higher than under q. �
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B Proofs for Equilibrium Characterization

B.1 Proof of Proposition A1

Proof of Proposition A1.(a). Let information be unverifiable and ρ < ρ. Sup-

pose by way of contradiction that there is an equilibrium (πC , πR, a, µ) such that

φB(ρπC + (1 − ρ)πR) > 0. This implies that there are positive probability messages

that lead to action aH . There are two cases to consider.

Case 1. There exists exactly one positive probability messagem′ such that a(m,πC , πR) =

aH . In this case, the equilibrium conditions imply that πR(m′|θ) = 1 for all θ. However,

given this we have that

q ≤ µ(m′) =
µ0(ρπCm

′|θH) + (1− ρ))

µ0(ρπC(m′|θH) + (1− ρ)) + (1− µ0)(ρπC(m′|θL) + (1− ρ))

≤ µ0

µ0 + (1− µ0)(1− ρ)

<
µ0

µ0 + (1− µ0)(1− ρ)
= q.

The first inequality holds because m′ leads to action aH . The first equality follows

from Bayes’ rule. The second inequality holds because µ(m′) is maximized when we

set πC(m′|θH) = 1 − πC(m′|θL) = 1. The third inequality holds because ρ < ρ. This

leads to a contradiction, and therefore we can rule out Case 1.

Case 2. There are exactly two positive probability messages m′,m′′ ∈ M such that

a(m,πC , πR) = aH , for m ∈ {m′,m′′}. Define πi(m
′,m′′|θ) := πi(m

′|θ) + πi(m
′′|θ), for

all θ and i ∈ {C,R}. Because both m′ and m′′ lead to aH , equilibrium conditions imply

that πR(m′,m′′|θ) = 1 for all θ. Denote by µ(m′,m′′) the posterior belief conditional

on observing m′ or m′′. That is,

µ(m′,m′′) =
µ0(ρ(πC(m′,m′′|θH) + (1− ρ))

µ0ρπC(m′,m′′|θH) + (1− µ0)ρπC(m′,m′′|θL) + (1− ρ)

≤ µ0

µ0 + (1− µ0)(1− ρ)

<
µ0

µ0 + (1− µ0)(1− ρ)
= q.

The first inequality holds because µ(m′,m′′) is maximized when πC(m′,m′′|θH) = 1−
πC(m′,m′′|θL) = 1. This shows that µ(m′,m′′) < q. However, Bayes’ rule also implies

that, for appropriately chosen weight β,56

µ(m′,m′′) = βµ(m′) + (1− β)µ(m′′) ≥ q.

Therefore, we have q ≤ µ(m′,m′′) < q, a contradiction. We conclude that the equilib-

rium cannot be informative. �

56More specifically, β :=
∑
θ µ0(θ)(ρπC(m′|θ)+(1−ρ)πR(m′|θ))∑

θ µ0(θ)(ρπC(m′,m′′|θ)+(1−ρ)πR(m′,m′′|θ))
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Proof of Proposition A1.(b).

Existence of FCI equilibria.

Fix ρ ≥ ρ. We first show that FCI equilibria exist. We do so by constructing such

an equilibrium. We start by defining strategies on the equilibrium path. For the

commitment stage, let πC(m′|θH) = 1, πC(m′|θL) = x and πC(m′′|θL) = 1 − x, where

x = 1
ρ

(µ0(1−q)
q(1−µ0)

− (1 − ρ)
)
. Note that πC is well-defined. On the one hand, x ≥ 0 if

µ0(1−q)
q(1−µ0)

≥ 1 − ρ ≥ 1 − ρ, which is true since 1 − ρ = µ0(1−q)
q(1−µ0)

. On the other hand,

x ≤ 1 follows directly from our maintained assumption q > µ0. For the revision

stage, let πR(m′|θ) = 1, for all θ. Given this choice of πC and πR, we have that

µ(m′, πC , πR) = q and µ(m′′, πC , πR) = 0, hence let a(m′, πC) = aH and a(m′′, πC) = aL.

It is straightforward to check that φB(ρπC + (1− ρ)πR) = ( q−µ0
1−µ0 )

1
2 , i.e. it is consistent

with FCI. We now define strategies off the equilibrium path. For any π′C , let µ(m,π′C) =
µ0π′

C(m|θH)

µ0π′
C(m|θH)+(1−µ0)π′

C(m|θL)
. Let m̄ be such that µ(m̄, π′C) ≥ µ(m,π′C), for all m ∈M . Let

π′R(m̄|θ) = 1 for all θ. For such pairs (π′C , π
′
R), let a(m,π′C) = aH if and only if

µ(m,π′C , π
′
R) ≥ q. Whenever a message m has zero probability let µ(m,π′C , π

′
R) = 0.

It is straightforward to check that this strategy is indeed an equilibrium and, as noted

above, FCI.

Existence of uninformative equilibria.

Next, we show that when ρ ∈ [ρ, ρ̄), an uninformative equilibrium exists. The proof

is by construction and consists in finding, for each possible history πC , a revision

strategy πR such that φB(ρπC + (1 − ρ)πR) = 0. The existence of such πR for each

history πC guarantees the existence of an uninformative equilibrium. To this end,

consider an arbitrary πC . If µ(m,πC) < q, for all m ∈ M , then let πR = πC , which

gives φB(ρπC + (1 − ρ)πR) = 0. Conversely, suppose that there exists a message m

such that µ(m,πC) ≥ q. For arbitrary πC , Bayes plausibility requires that there exists

at least one message, call it m′′′, such that µ(m′′′, πC) ≤ µ0. To simplify notation, let

πC(m′|θH) = a′, πC(m′′|θH) = a′′, πC(m′′′|θH) = a′′′, πC(m′|θL) = b′, πC(m′′|θL) = b′′,

πC(m′′′|θL) = b′′′. Define the revision strategy as follows: πR(m′′′|θH) = 1, and let

πR(m′|θL) = x′, πR(m′′|θL) = x′′ and πR(m′′′|θL) = x′′′. We want to show that there

exists (x′, x′′, x′′′) such that x′+ x′′+ x′′′ = 1 and π(m,πC , πR) < q, for all m ∈M . We

have that µ(m′, πC , πR) < q is equivalent to:

x′ > Φ′ :=
ρ

1− ρ
(

(1− ρ)a′ − b′
)
.

Similarly, µ(m′′, πC , πR) < q is equivalent to:

x′′ > Φ′′ :=
ρ

1− ρ
(

(1− ρ)a′′ − b′′
)
.
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Finally, the last condition µ(m′′′, πC , πR) < q is equivalent to:

x′ + x′′ < Φ̄ := ρ+
ρ

1− ρ
(
b′′′ − a′′′ + ρa′′′

)
.

It is straightforward to check that Φ′+ Φ′′ < Φ̄ and also that Φ′+ Φ′′ < 1 if and only if

ρ < ρ̄. Therefore, x′ and x′′ can be found so that the thus defined πR is an information

structure and φB(ρπC + (1− ρ)πR) = 0.

It is straightforward to complete the construction of the uninformative equilibrium.

Note that the sender has no profitable deviation in the commitment stage. In fact, all

possible deviations π′C lead to a π′R that, by construction, only induces beliefs strictly

below q, hence a guess aL. Similarly, the sender has no profitable deviation in the

revision stage, for reasons that are similar to the existence of a babbling equilibrium

in a cheap talk game.

Existence of equilibria that are more informative than FCI.

The construction of these equilibria is tightly related to the construction of uninforma-

tive equilibria above. Fix ρ ≥ ρ. We start by constructing the sender’s strategies on

the equilibrium path. Let πC(m′|θH) = πC(m′′|θL) = 1, that is, πC is fully informative.

Let πR(m′|θ) = 1 for all θ. Following these choices, the receiver’s guesses and beliefs

are naturally pinned down. For all “off-path” π′C 6= πC , we associate a π′R that is

constructed as in the case of an uninformative equilibrium, as explained above. This

means that for all π′C 6= πC , πB(ρπ′C + (1 − ρ)π′R) = 0, the receiver always guesses aL
and the sender’s expected utility is 0. Clearly, in light of this construction, the sender

in the commitment stage has no incentive to deviate from πC . Thus, this defines an

equilibrium. Moreover, it is easy to verify that φB(ρπC + (1 − ρ)πR) =
(

µ0ρ
1−ρ(1−µ0)

) 1
2 ,

which is higher than FCI for all ρ ≥ ρ. �

Proof of Proposition A1.(c).

The existence of FCI equilibria as well as the existence of equilibria that are more

informative than FCI follows directly from the Proof of Proposition A1.(b).

Non-existence of uninformative equilibria.

We now prove that when ρ ≥ ρ̄ all equilibria are strictly informative. Suppose not.

That is let ρ ≥ ρ̄ and let (πC , πR, µ, a) be an uninformative equilibrium. Thus, the

sender earns a payoff of zero. We construct a profitable deviation π′C under which

there exists a message m′ that induces action aH with strictly positive probability.

We construct this deviation to be fully informative, namely, π′C(m′|θH) = 1 and

π′C(m′′|θL) = 1, for m′′ 6= m′. Call π′R the continuation strategy of the sender in

the revision stage. We have that,

µ(m′, π′C , π
′
R) =

µ0(ρ+ π′R(m′|θH))

µ0(ρ+ π′R(m′|θH)) + (1− µ0)(1− ρ)π′R(m′|θL)

≥ µ0ρ

µ0ρ+ (1− µ0)(1− ρ)
≥ µ0ρ̄

µ0ρ̄+ (1− µ0)(1− ρ̄)
= q
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The first inequality holds because setting π′R(m′|θH) = 0 and π′R(m′|θL) = 1 induces a

lower bound for µ(m′, π′C , π
′
R). The second inequality holds because ρ ≥ ρ̄, by assump-

tion. Therefore, in the continuation game following deviation π′C , the receiver plays aH
with positive probability so that the deviation is strictly profitable. �

B.2 Proof of Proposition A2

Proof of Proposition A2.(a). Assume now that information is verifiable and ρ < ρ.

We want to show that all equilibria are fully informative. Suppose not. That is,

(πC , πR, a, µ) is an equilibrium with φB(ρπC + (1− ρ)πR) < 1. Because information is

verifiable, such a situation implies that a(n, πC) = aH . Therefore, µ(n, πC , πR) ≥ q.

However, equilibrium conditions also imply that πR(n|θL) = 1, i.e., in the revision

stage, the sender of type θL always sends message n. Therefore, we have that:

q ≤ µ(n, πC , πR) ≤ µ0

µ0 + (1− µ0)(1− ρ)
<

µ0ρ

µ0ρ+ (1− µ0)(1− ρ)
= q.

The first inequality comes from a(n, πC) = aH . The second inequality holds because

setting πC(n|θH) = 1, πC(n|θL) = 0 and πR(n|θR) = 1 generates an upper bound for

the value of µ(n, πC , πR). The last inequality holds because ρ < ρ, by assumption.

Therefore, q ≤ µ(n, πC , πR) < q, a contradiction. �

Proof of Proposition A2.(b).

Existence of FCI equilibria.

We prove this by construction. Fix ρ ≥ ρ. Let πC and πR be such that πC(n|θH) =

πR(n|θH) = πR(n|θL) = 1 and πC(n|θL) = x. Let x := 1
ρ

(
ρ − ρ

)
and note that, by

assumption, ρ ≥ ρ, hence x ∈ [0, 1]. Moreover, it is easy to verify that µ(n, πC , πR) = q.

Let a(n, πC) = aH , therefore πR is a best response to πC given the receiver’s behavior.

It is also easy to verify that φB(ρπC + (1 − ρ)πR) = ( q−µ0
1−µ0 )

1
2 . Therefore, (πC , πR) is

FCI. As a consequence, no profitable deviation away from πC exists. Thus, we have

have constructed an equilibrium that is FCI. Moreover, this is the least informative

equilibrium that exists in this case. To see this, note that, because of the nature of

verifiable information, φB(ρπC + (1 − ρ)πR) < 1 requires that µ(n, πC , πR) ∈ [q, 1).

Moreover, φB(ρπC + (1− ρ)πR) is increasing in µ(n, πC , πR). The equilibrium that we

constructed above has µ(n, πC , πR) = q and it is therefore minimally informative.

Existence of fully informative equilibria.

We prove this by construction. Consider a revision strategy πR defined as πR(θH |θH) =

πR(n|θL) = 1. Moreover, suppose that πR is played for all histories π′C . Consider an

arbitrary history π′C . Note that, for all ρ < ρ̄,

µ(n, π′C , πR) =
µ0ρπ

′
C(n|θH)

µ0ρπ′C(n|θH) + (1− µ0)(ρπ′C(n|θL) + (1− ρ))
< q.

Moreover, note that πR is a best-response to this arbitrary π′C . Finally, note that, in

4



the subgame indexed by π′C , the sender expects to receive a payoff of µ0(ρπ′C(θH |θH) +

(1 − ρ)πR(θH |θH) ≤ µ0. Now consider the strategy πC = πR. This strategy gives a

payoff of µ0 and, due to the argument above, no profitable deviation from this strategy

exists. Moreover, φB(ρπ′C + (1− ρ)π′R) = 1. �

Proof of Proposition A2.(c). The existence of FCI equilibria as well as the fact that

these are the least informative equilibria follows directly from the Proof of Proposition

A2.(b).

Non-existence of fully informative equilibria.

We first show that when ρ ≥ ρ̄, there exist no fully informative equilibrium. When

ρ = 1 the result is a straightforward consequence of full commitment, so let us focus

on the case ρ ∈ [ρ̄, 1). Suppose that there exists an equilibrium (πC , πR, a, µ) such that

φB(ρπC+(1−ρ)πR) = 1. In this equilibrium, the sender expects to earn µ0. Consider a

deviation π′C such that π′C(n|θH) = 1 and π′C(θL|θL) = 1. We argue that this deviation

leads to a subgame in which the sender earns strictly more than µ0. First, note that

for all π′R,

µ(n, π′C , π
′
R) =

µ0(ρ+ (1− ρ)π′R(n|θH))

µ0(ρ+ (1− ρ)π′R(n|θH)) + (1− µ0)(1− ρ)π′R(n|θL)
≥

≥ µ0ρ

µ0ρ+ (1− µ0)(1− ρ)
≥ µ0ρ̄

µ0ρ̄+ (1− µ0)(1− ρ̄)
= q.

Therefore, a(π′C , n) = aH . This implies that π′R(n|θL) = 1. Hence, the expected payoff

for the sender in the commitment stage is bounded below by µ0(ρπ′C(n|θH) + (1 −
ρ)π′R(θH |θH) + (1 − µ0)(1 − ρ)π′R(n|θL) = µ0 + (1 − ρ)(1 − µ0) > µ0. Therefore, π′C
is a profitable deviation. Moreover, irrespective of what π′R(n|θH) is, the fact that n

is sent with strictly positive probability in both states implies that, as long as ρ < 1,

µ(n, π′C , π
′
R) < 1; hence, φB(ρπ′C + (1− ρ)π′R) < 1. �

B.3 Proof of Proposition A3

Unverifiable Information. If ρ < ρ, we know by Proposition A1.(a) that all PBEs are

uninformative. A fortiori, under this assumption, all truth-leaning are uninformative.

Note that, truth-leaning equilibria exist in this case. For example, let πC and πR be

defined as πC(θ|θ) = 1 for all θ and πR(θH |θ) = 1 for all θ, µ(m,πC , πR) = µ0, and

a(m,πC) = aL. Therefore, consider instead the case ρ ≥ ρ. We want to argue that all

truth-leaning equilibria are FCI. In order to do so, we argue that there exists a pair

(πC , πR) such that (1) πR is a best-response to πC , (2) πR is uniquely pinned down by the

truth-leaning refinement and, moreover, (3) φB(ρπC+(1−ρ)πR) = ( q−µ0
1−µ0 )

1
2 . To this end,

let πC(θH |θH) = 1, πC(θH |θL) = x and πC(θL|θL) = 1 − x, where x := 1
ρ
(ρ − ρ). Note

that x ∈ [0, 1], hence πC is well-defined. Conversely, let πR be such that πR(θH |θ) = 1

for all θ. First, let us establish that πR best-responds to πC . To see this note that, by
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construction, µ(θL, πC , πR) = 0 and µ(θH , πC , πR) = q. Therefore, a(θH , πC) = aH and

a(θL, πC) = aL. Consistently, πR gives positive probability to m = θH only. Hence πR
best-responds to πC . Second, let us argue that πR is indeed truth-leaning. To see this,

just notice that, in the revision stage, the sender of type θH is being truthful, hence

πR is truth-leaning. Type θL is also truth-leaning since she is not indifferent between

m = θH and m = θL. Finally, it is straightforward to verify that, given this choice

of (πC , πR), we have that φB(ρπC + (1 − ρ)πR) = ( q−µ0
1−µ0 )

1
2 , i.e. it is FCI. This implies

that, if the pair (πC , πR) is played on the equilibrium path, it leads to the first-best

payoff, namely µ
q
. This proves that all truth-leaning equilibria of the grand-game are

FCI. To see this, suppose that this is not the case, i.e. there exists a truth-leaning

equilibrium (π′C , π
′
R, µ

′, a′) that is not FCI, so that the sender’s expected payoff in this

equilibrium is strictly smaller than µ
q
. However, a deviation at the commitment stage

exists, namely strategy πC , that leads to a unique best-response in the revision stage,

namely πR, that is consistent with truth-leaning and that achieves the first-best payoff,

namely µ
q
. Therefore, such deviation is strictly profitable and (π′C , π

′
R, µ

′, a′) is not an

equilibrium.

Verifiable Information. If ρ < ρ, we know by Proposition A2.(a) that all PBE are fully

informative. A fortiori, all truth-leaning equilibria are fully informative. Trivially, a

truth-leaning equilibrium exists. For example, πi(θ|θ) = 1 for all θ and i ∈ {C,R};
µ(m,πC , πR) = 1 if m = θH and 0 otherwise; a(m,πC) = aH iff m = θH and aL
otherwise. Therefore, consider instead the case ρ ∈ [ρ, ρ̄). We want to show that all

truth-leaning equilibria are fully informative. Suppose not, namely let (πC , πR, µ, a)

be a truth-leaning equilibrium such that φB(ρπC + (1 − ρ)πR) < 1. Since equilib-

rium informativeness is strictly less than one, there must exist a message m such

that µ(m,πC , πR) ∈ (0, 1). When information is verifiable, it is necessarily the case

that m = n. Moreover, a(n, πC) = aH . If this were not the case, πi(n|θH) = 0, for

i ∈ {C,R}, hence µ(n, πC , πR) = 0, a contradiction. Therefore, let µ(n, πC , πR) ∈ [q, 1).

On the one hand, equilibrium requires that πR(n|θL) = 1. (Note that this is consis-

tent with truth-leaning since the two messages lead to different payoffs). On the other

hand, type θH in the revision stage is indifferent between θH and n, as they both lead

to action aH . The truth-leaning refinement requires that πR(θH |θH) = 1. Therefore,

the fact that the equilibrium is not fully informative uniquely pins down πR. Given

this, we note that:

µ(n, πC , πR) ≤ µρ

µρ+ (1− µ)(1− ρ)
<

µρ̄

µρ̄+ (1− µ)(1− ρ̄)
= q.

Hence, µ(m,πC , πR) < q, a contradiction. Finally, let us consider the case ρ ≥ ρ̄. We

want to show that all truth-leaning equilibria are equally informative. Let (πC , πR, µ, a)

be a truth-leaning equilibrium. By Proposition A2.(c), no equilibrium is fully informa-

tive. Therefore, by the argument made above, µ(n, πC , πR) ∈ [q, 1) and πR is uniquely

pinned down. Moreover, πR is independent of πC . Therefore, there exists a unique

best-response πC to such a revision strategy πR. Such πC is given by πC(n|θH) = 1

6



and πC(n|θL) = x, where x := (1 − ρ) − 1−ρ
ρ
∈ [0, 1]. This strategy πC satisfies

µ(n, πC , πR) = q, while maximizing the ex-ante probability of sending message n.

By construction, all truth-leaning equilibria share the same on-path sender behav-

ior (πC , πR). Therefore, all truth-leaning equilibria have to be equally informative.

Moreover, it is easy to verify that φB(ρπC + (1− ρ)πR) =
(
q−µ0(ρ+q(1−ρ))

(1−µ0)(ρ+q(1−ρ))

) 1
2 . �
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C Design

Figures C17 and C18 show the relevant screenshots from our experiment. The top panel

of Figure C17 shows the sender’s decision screens. Figure C18 shows the receiver’s

decision screens. The receiver could see the exact probability of each message by

hovering the mouse cursor over the communication plan. The bottom panel of Figure

C18 shows the Feedback screen. All relevant information were reported to both players,

with the exception of the sender’s choices in the Revision stage.

Figure C16: Screenshots from U100S: Commitment and Gussing Stage
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Figure C17: Screens 1 and 2, Treatment U80
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Figure C18: Screens 3 and 4, Treatment U80
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D Instructions for V80

In this section, we reproduce instruction for one of our treatment, V80. These instruc-

tion were read out aloud so that everybody could hear. A copy of these instructions

was handout to the subject and available at any point during the experiment. Finally,

while reading Section D.2.1, screenshots similar to those in Appendix C, were shown

to subjects, to ease the exposition and the understanding of the tasks.

D.1 Welcome:

You are about to participate in a session on decision-making, and you will be paid for

your participation with cash vouchers (privately) at the end of the session. What you

earn depends partly on your decisions, partly on the decisions of others, and partly on

chance. On top of what you will earn during the session, you will receive an additional

$10 as show-up fee.

Please turn off phones and tablets now. The entire session will take place through

computers. All interaction among you will take place through computers. Please do

not talk or in any way try to communicate with other participants during the session.

We will start with a brief instruction period. During the instruction period you will

be given a description of the main features of the session. If you have any questions

during this period, raise your hand and your question will be answered privately.

D.2 Instructions:

You will play for 25 matches in either of two roles: sender or receiver. At the begin-

ning of every Match one ball is drawn at random from an urn with three balls. Two

balls are Blue and one is Red. The receiver earns $2 if she guesses the right color of

the ball. The sender’s payoff only depends on the receiver’s guess. She earns $2 only

if the receiver guesses Red. Specifically, payoffs are determined illustrated in Table D9.

If Ball is Red If Ball is Blue

If Receiver guesses Red Receiver Sender Receiver Sender
$2 $2 $0 $2

If Receiver guesses Blue Receiver Sender Receiver Sender
$0 $0 $2 $0

Table D9: Payoffs

The sender learns the color of the ball. The receiver does not. The sender can

send a message to the receiver. The messages that the sender can choose among are
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reported in Table D10.

If Ball is Red:

− Message: “The Ball is Red.”

− No Message.

If Ball is Blue:

− Message: “The Ball is Blue.”

− No Message.

Table D10: Messages

Each Match is divided in three stages: Communication, Update and Guessing.

1. Communication Stage: before knowing the true color of the ball, the sender

chooses a Communication Plan to send a message to the receiver.

2. Update Stage: A ball is drawn from the urn. The computer reveals its color to

the sender. The sender can now Update the plan she previously chose.

3. Guessing Stage: The actual message received by the receiver may come from the

Communication stage or the Update stage. Specifically, with probability 80%

the message comes from the Communication Stage and with probability 20% it

comes from the Update Stage. The receiver will not be informed what stage the

message comes from. The receiver can see the Communication Plan, but she

cannot see the Update. Given this information, the receiver has to guess the

color of the ball.

At the end of a Match, subjects are randomly matched into new pairs. We now

describe what happens in each one of these stages and what each screen looks like:

D.2.1 Communication Stage: (Only the sender plays)

In this stage, the sender doesn’t yet know the true color of the ball. However, she

instructs the computer on what message to send once the ball is drawn. In the left

panel, the sender decides what message to send if the Ball is Red. In the right panel,

she decides what message to send if the Ball is Blue. We call this a Communication

Plan.

Every time you see this screen, pointers in each slider will appear in a different

random initial position. The position you see now is completely random. If I had to

reproduce the screen once again I would get a different initial position. By sliding these

pointers, the sender can color the bar in different ways and change the probabilities

with which each message will be sent. The implied probabilities of your current choice

can be read in the table above the sliders.
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When clicking Confirm, the Communication Plan is submitted and immediately

reported to the receiver.

D.2.2 Update Stage: (Only the sender plays)

In this Stage, the sender learns the true color of the ball. She can now update the

Communication Plan she selected at the previous stage. We call this decision

Update. The receiver will not be informed whether at this stage the sender updated

her Communication Plan.

D.2.3 Guessing Stage. (Only the receiver plays)

While the sender is in Update Stage, the receiver will have to guess the color of the

ball. On the left, she can see the Communication Plan that the sender selected in

the Communication Stage. By hovering on the bars, she can read the probabilities the

sender chose in the Communication Stage. Notice that the receiver cannot see whether

and how the sender updated her Communication Plan in the Update Stage. On the

right, the receiver needs to express her best guess for each possible message she could

receive. We call this A Guessing Plan. Notice that once you click on these buttons,

you won’t be able to change your choice. Every click is final.

D.2.4 How is a message generated?

With 80% probability

The message is sent according to

Communication Plan

(Remember: Communication Plan is
always seen by the Receiver)

With 20% probability

The message is sent according to

Update

(Remember: Update is never seen by the
Receiver)

D.3 Practice Rounds:

Before the beginning of the experiment, you will play 2 Practice rounds. These rounds

are meant for you to familiarize yourselves with the screens and tasks of both roles.

You will be both the sender and the receiver at the same time. All the choices that you

make in the Practice Rounds are unpaid. They do not affect the actual experiment.

D.4 Final Summary:

Before we start, let me remind you that.

− The receiver wins $2 if she guesses the right color of the ball.
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− The sender wins $2 if the receiver says the ball is Red, regardless of its true color.

− There are three balls in the urn: two are Blue (66.6% probability), one is Red

(33.3% probability). After the Practice rounds, you will play in a given role for

the rest of the experiment.

− The message the receiver sees is sent with probability 80% using Communica-

tion Plan and with probability 20% using Update.

− The choice in the Communication Stage is communicated to the receiver. The

choice in the Update stage is not.

− At the end of each Match you are randomly paired with a new player.
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E Additional Material

Table E11: P-Values of Statistical Tests

Model Linear Linear Pr(T)obit Pr(T)obit Linear Linear
Subject RE RE RE RE FE FE
Session Cluster RE Cluster RE Cluster Cluster

Bootstrap CATs

Test

Pr
(
red|µ < 1

2

)
= Pr

(
red|µ ≥ 1

2

)
0.000 0.000 0.000 0.000 0.011 0.012

Pr
(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
0.000 0.000 0.000 0.000 0.010 0.014

Pr
(
red|m = b, µ < 1

2

)
= Pr

(
red|m = b, µ ≥ 1

2

)
0.010 0.000 0.003 0.000 0.047 0.078

Left panel Figure 8, all bars = 0 when ball is R 0.000 0.000
Left panel Figure 8, all bars = 0 when ball is B 0.000 0.000

Right panel Figure 8, r message bar = 0 when ball is R 0.000 0.000
φBC = φBR in U80 0.000 0.000 0.000 0.996
φBC = φBR in V80 0.000 0.000 0.006 0.000

Pr
(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U20 0.053 0.002 0.083 0.004 0.150 0.126

Pr
(
red|m = r, µ < 1

2

)
= Pr

(
red|m = r, µ ≥ 1

2

)
in U100 0.000 0.000 0.024 0.000 0.040 0.021

Pr
(
red|m = r, µ < 1

2
,U20

)
= Pr

(
red|m = r, µ < 1

2
,U100

)
0.627 0.535 0.718 0.610

Pr
(
red|m = r, µ ≥ 1

2
,U20

)
= Pr

(
red|m = r, µ ≥ 1

2
,U100

)
0.000 0.001 0.002 0.003

Pr
(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V20 0.038 0.002 0.133 0.006 0.257 0.163

Pr
(
red|m = n, µ < 1

2

)
= Pr

(
red|m = n, µ ≥ 1

2

)
in V100 0.000 0.000 0.000 0.000 0.022 0.014

Pr
(
red|m = r, µ < 1

2
,V20

)
= Pr

(
red|m = r, µ < 1

2
,V100

)
0.566 0.674 0.536 0.452

Pr
(
red|m = r, µ ≥ 1

2
,V20

)
= Pr

(
red|m = r, µ ≥ 1

2
,V100

)
0.000 0.000 0.000 0.000

φ(V20 ) = φ(V80 ) 0.217 0.215
φ(V80 ) = φ(V100 ) 0.001 0.020 0.258 0.451
φ(U20 ) = φ(U80 ) 0.002 0.001
φ(U80 ) = φ(U100 ) 0.696 0.676 0.486 0.441
φ(V20 ) = φ(U20 ) 0.000 0.000
φ(V80 ) = φ(U80 ) 0.000 0.000

φ(V100 ) = φ(U100 ) 0.000 0.000 0.000 0.000
φB(V20 ) = φB(V80 ) 0.156 0.130
φB(V80 ) = φB(V100 ) 0.032 0.052 0.608 0.648
φB(U20 ) = φB(U80 ) 0.000 0.000
φB(U80 ) = φB(U100 ) 0.957 0.925 0.711 0.661
φB(V20 ) = φB(U20 ) 0.000 0.000
φB(V80 ) = φB(U80 ) 0.000 0.000

φB(V100 ) = φB(U100 ) 0.000 0.000 0.000 0.000
φB(U100 ) = φB(U100H ) 0.144 0.116 0.205 0.180

φB(U100 ) = φB(U100H ) in last 3 matches 0.052 0.038 0.061 0.056
Pr
(
red|µ < 1

2
,U100

)
= Pr

(
red|µ < 1

2
,U100H

)
0.069 0.053 0.026 0.026

Pr
(
red|1

2
≤ µ < 3

4
,U100

)
= Pr

(
red|1

2
≤ µ < 3

4
,U100H

)
0.008 0.110 0.011 0.125

Pr
(
red|µ ≥ 3

4
,U100

)
= Pr

(
red|µ ≥ 3

4
,U100H

)
0.001 0.014 0.008 0.046

The p-values reported in the text are obtained by regressing the variable of in-

terest on the relevant regressor (sometimes an indicator variable) with subject level

random effects and clustering of the variance-covariance matrix at the session level.

This specification has the advantage of being uniform (the same throughout the pa-

per), it directly accounts for heterogeneity across subjects via the random effects (as

the paper documents, there is clear evidence of heterogeneity between subjects), and

it permits unmodeled dependencies between observations from the same session (see

Fréchette (2012) where such possibilities are discussed). However, it does not directly

account for the fact that we are many times dealing with a limited dependent variable.

Also, clustering with a small number of clusters can lead to insufficient corrections

(Cameron and Miller (2015) for a survey). But this relies mostly on simulations that

do not necessarily mirror the situation of most laboratory experiment. In particular,
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the extent of the problem is found to depend on the size of the within session correla-

tion (see for example Carter et al. (2017)). For many experiment, such correlation can

be expected to be low (once the appropriate factors are controlled for). Hence, we are

more concerned with controlling for the source of dependencies across the observations

of a given subject than for the within session correlations (see also Appendix A.4 of

Embrey et al. (2017) for a discussion of these issues).

In Table E11 we document the robustness of the tests reported in the text by

exploring alternative specifications. These include directly accounting for the limited

nature of the dependent variable by using a probit or tobit when appropriate. When

possible we also report bootsraped estimates that have been shown to perform better

when the number of clusters is small (cluster-adjusted t-statistics or CAT) and allow

for subject specific fixed-effects (Ibragimov and Müller, 2010). When we report those

we also include results from a standard subject specific fixed-effects estimation with

session clustering to provide a benchmark.

As can be seen, p-values are not systematically larger for CATs than with the

“standard” clustering, nor are they very different when estimating a probit or tobit.57

As a whole, results are fairly robust: out of the 35 hypothesis tested, for only six of

them are results not the same for all tests reported (in the sense of being consistently

significant–or not–at the 10% level). The few cases where there are differences are for

the most part not difficult to make sense of. Two of them involve comparing V80 and

V100, where the difference is small in magnitude. Hence, whether or not the difference

is statistically significant is not clear, but either way it is not large. In most other

cases, the p-values are either under the 0.1 cutoff or just slightly above.

57Note that if a tobit could have been estimated but is not reported, it means that the dependant
variable was not actually censored.
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V20 and V80 are drawn with a different y-axis.
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Figure E19: Frequency of Persuasive Messages Grouped by Posterior (µ)

The next two figures illustrate changes in behavior over the course of the experi-

ment. Figure E19 does so for senders by coarsely separating sender strategies by the

posterior they induce on red when sending a persuasive message; that is a n mes-

sage under verifiable information and a textitr message under unverifiable information.

Four message types are plotted: low information (µ < 0.4), close to full-commitment

equilibrium information (0.5 ≥ µ < 0.75), high information (0.75 ≥ µ < 1), and full

disclosure (µ = 1). The excluded category is close to, but below, full-commitment

equilibrium information (0.4 < µ < 0.5). As the figure shows, in some treatments

there are very few changes over time (at least no change across these categories), for

instance in treatment V20; while in others there are substantial developments over the

course of the experiment. One such example is treatment U100H where senders move

away from low information strategies toward more informative ones.
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Figure E20: Frequency of Guessing red Grouped by Posterior (µ)

On the responder side, Figure E20 also displays changes in terms of the likelihood

a given posterior leads to a guess of red. In all verifiable treatments, there is a slight

increase in the probability of guessing red over rounds. At the other end, theres seems

to be a generalized decrease over rounds of guessing red when the posterior is low.
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Figure E21: Estimated Threshold and Precision for Treatment U100S
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Figure E22: Probability of Guessing Red as a Function of Posterior

Voting patterns in all treatments are similar in that they are increasing in the

posterior on red. They do display some revealing differences however. As can be seen

in Figure E22, treatments with verifiable messages lead to more “certainty” in voting.

When the posterior on red is low, the probability of guessing red is even lower in the

verifiable treatments (it is already very low in the unverifiable treatments) and when

the posterior is high, the probability is much closer to one in the treatments with

verifiable messages.
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Blue indicates a subject who's choices are best explained by the rule always guess blue.
Values are jittered slightly to make multiple overlapping thresholds distinguishable.

Figure E23: Estimated Threshold and Precision

Figure E23 illustrates the best fitting thresholds and their precision for the general

treatments. Unlike for the U100S treatment, these are based on 30 choices per subjects

(thus having a high precision is a more demanding test). Nonetheless, precision is still

high, with the treatment with lowest precision still having 81% of subjects with 80%

precision and across all treatments 90% of subjects meeting that criterion. The figure

also shows that precision is particularly high when messages are verifiable. Indeed,

under verifiable messages, 55% of subjects always choose in a way that is consistent

with a threshold. That number is 24% for the treatments with unverifiable messages.

The figure also confirms the finding of heterogeneity across receivers.
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Only includes responders for whom the best fitting threshold accounts for at least 80% of choices.

Figure E24: Estimated Threshold: Actual Receivers Against Bayesian

Figure E24 compares the estimated thresholds for subjects with good precision

to what we would recover if the subjects were Bayesian. This confirms what was

established in Section 2.2, namely that a non-trivial fraction of subjects are close to

the behavior Bayesian receivers would exhibit, but there are also subjects who need

a higher, and others lower, posterior to guess red. Note also that in our treatment

that comes closest to the setup of cheap talk experiments, all deviations from Bayesian

behavior indicate receivers who are gullible.
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Prior experiments on communication (of the kind considered here) have mainly con-

sidered cheap talk and disclosure (see our Introduction for a list of references). Typical

results involve: (1) Some transmission of information under cheap talk, although far

from complete. This comes about both via (2) senders conveying more information

than predicted and (3) receivers reacting to messages. (4) Less than full information

transmission in disclosure environments. This is because (5) of a partial failure of

unravelling. Our results are consistent with these earlier observations.

Correlations for treatments with ρ = 0.2 reported in Table 4 are in line with points

1 and 4: there is some information transmission in U20 (correlation = 0.09), and there

is less than full information transmission in V20 (correlation = 0.83).
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Figure E25: U20 Revision Stage

The parallel to point 2 can be evaluated in Figure E25. The figure shows that all

strategies send a r message when the ball is Blue more than 50% of the time. However,

they do not send a r message 100% of the time when the ball is Blue. In other words,

all strategies misrepresent the state the majority of the time, but they also indicate

the truth a fraction of the time.

Consistent with point 3, receivers in U20 are 29 percentage points more likely to

guess red following a r message (p−value < 0.01) than a blue message. In other words,

some receivers take messages at face value. This effect of message color is also found

in other treatments in the case where both r and b messages should both mean that it

is very likely the ball is Red. The right panel of Figure E26 considers such situations.

Indeed in the U100 treatment, the effect of a r message that induces a posterior of more

than 0.75 on red generate a 45 percentage points higher chance of guessing red than a

similar b message. We also note that, although less pronounced, this phenomenon is

nonetheless present in the simpler U100S treatment.

Similarly, in line with point 5, receivers in V20 are 7 percentage points more likely
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Figure E26: Probability of Guessing red as a Function of the Message

to guess red when receiving no message than when they received a blue message (p−
value < 0.05). This effect is also found when commitment is available. As can be seen

in the left panel of Figure E26, the probability of guessing red is higher after a r message

in all three treatments (restricting attention to cases with equally low posteriors on

red). In our environment, the effect of ball color in the unverifiable treatments is

greater than the effect of a failure of unravelling in the verifiable treatments.
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Figure E27: Estimated Threshold and Precision: U100H

Precision of best fitting threshold strategies in the U100H is very high: 97% of

receivers with 80% precision and 47% with 100% precision. However, in this case, it

is partly due to the fact that more receivers (as compared to other treatments) always

guess blue. These are illustrated in the left panel of Figure E27.

Among subjects for whom the best threshold does not suggest always picking blue,

the pattern is similar to other treatments. The right panel of Figure E27 shows there

is heterogeneity in terms of how thresholds compare to what Bayesian receivers would

do.
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Figure E28: CDF of Bayes Correlation (φB): U100 and U100S

Figure E28 shows that behavior in the U100S treatment is similar to that in the

U100 treatment. It also suggests slightly more information transmission in the U100S

treatment (mean of subject averages is 0.41 in that treatment versus 0.33 in the U100

treatment). However, disaggregating the data further reveals one additional way in

which U100S is closer to the theory than U100. The right panel of Figure E28 repro-

duces the CDFs of φB without first averaging at the subject level. This shows that

under U100S fewer messages generate no correlation or full information. In addition,

there is a higher density of messages that create exactly a correlation of 0.5. All of

these differences make sender behavior in U100S closer to the theory than it is in U100.
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Figure E29: CDF of Bayes Correlation (φB)

Similarly, to the case above, not averaging correlations by subject produces different

CDFs in other treatments as well. Nonetheless, the overall patern of cross treatments

comparative statics is unchanged as can be seen in Figure E29.
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E.1 Thresholds

The data is composed of pairs of posteriors µ and guesses a for each receiver. We look

for a threshold t that minimizes 1{a 6= 1{µ ≥ t}} where a takes value 1 for red and 0

for blue. In other words, we find the treshold that rationalizes the greatest number of

choices a subject has made.58 We refer to the fraction of choices properly accounted

for by the threshold as the precision. Given that the sample is finite and thresholds

exists on the unit interval, there will be an infinite number of thresholds with the same

precision. For instance, imagine a sample composed of two choices: a receiver that

guessed red given a posterior of 0.57 and guessed blue when the posterior was 0.46.

In that case, any threshold greater than 0.46 and less than or equal to 0.57 has a

precision of 1. The figures report the average of the lowest and greatest threshold with

the highest precision.

The theory assumes Bayesian receivers, i.e. agents who guess red for all posteriors

of 0.5 or higher. However, even if our subjects were perfect Bayesians, we are unlikely

to estimate their thresholds to be 0.5 due to the finite nature of the sample. For

instance, in the example highlighted above is consistent with a Bayesian receiver, yet

the estimated threshold would have been 0.515. Hence, when comparing the receivers

in our experiment to the Bayesian benchmark, we do this by computing what threshold

we would have estimated given the sample of posteriors if the receiver was perfectly

Bayesian.

E.2 Variance of Induced Posteriors

In the paper, we used φB, namely the correlation between the state and the guess of

Bayesian receiver, to measure the informativeness of a sender’s strategy. In Section 2,

we discussed the merits of this measure and how it relates to existing literature. In this

appendix, we reevaluate our main comparative-static exercise from Section 4 with an

alternative measure of informativeness, the variance of induced posteriors. Of course,

this measure is highly correlated with φB, but it differs in that it does not require the

specification of a payoff function for the receiver. In fact, given an information struc-

ture π, one can compute the induced distribution over posterior beliefs τ ∈ ∆(∆(Θ)).

The variance of τ , namely ψ := Eτ
(
(µ− µ0)2

)
, is what we call the variance of induced

posteriors. This measure can be seen as an alternative measure for the informativeness

of π.

In Table E12, we report the average posterior variance across treatments together

with the theoretical predictions. As for Table 4, this measure of informativeness moves

in the direction predicted by the theory. Namely, it increases in treatments with

unverifiable information and it decreases in treatments with verifiable information.

Yet, as for φb, the point-predictions are far from the empirical averages. In particular,

58This is akin to a perceptron in machine learning, see for instance Abu-Mostafa et al. (2012).
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Table E12: Average Posterior Variance per Treatment

ψ? – Theoretical Predictions

Commitment (ρ)

20% 80% 100%

Verifiable 0.22 0.08 0.05

Unverifiable 0.00 0.05 0.05

ψ – Empirical Posterior Variance

Commitment (ρ)

20% 80% 100%

Verifiable 0.18 0.17 0.15

Unverifiable 0.02 0.05 0.06

senders in V 100 appear to be overly informative relative to the prediction and there is a

large gap between V 100 and U100. In Figure E31, we report the CDF of sender-average

ψ. These results are in line with those in Figure 10.
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Figure E31: CDF of Sender-Average Variance of Induced Posteriors (ψ)

E.3 Quantal Response Equilibrium – Robustness

In this section, we explore the robustness of the QRE estimates reported in Table 6. Our

methodology to estimate (λS, λR) relies on the discretization of the senders’ strategy

space to obtain a finite set of sender’s strategies Πk. Clearly, this is common practice
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when estimating QRE on games with a continuum of strategies (see, for instance,

Camerer et al. (2016)). In our game, the discretization of the sender’s strategy space

is particularly challenging because it is multi-dimensional and data are asymmetrically

distributed in this space (e.g. see Figure 6 for a simple example). For these reasons,

choosing a uniform grid leads to computational problems, e.g. clusters with no data

points. To cope with this, we take a more structured approach and discretize the

strategy space via a k-means clustering algorithm. This algorithm finds k clusters and

k representative strategies within each cluster that minimize the sum of the distances

between each observed strategy and the representative strategy of the cluster to which it

belongs.59 The discretization of the strategy space leaves one main degree of freedom,

namely the number of clusters k. In Table E13 we report estimates of (λS, λR) for

various choices of k. Overall, we note that our estimates tend to stabilize as k grows

large. Moreover, the ordinal rankings in λi across treatments are quite stable. For

example, λS is consistently smaller in U100 relative to all other treatments; U100H is

the treatment where senders are best-responding more effectively; λU100
R is consistently

smaller than λV 100
R ; both λS and λR are higher in U100S than in U100, capturing the

fact that U100S is a simplified version of U100.

Table E13: QRE λ Estimates

λS λR λS λR λS λR λS λR λS λR

k = 8 k = 9 k = 10 k = 11 k = 12

U100 1.23 1.36 0.11 1.36 0.01 1.34 0.05 1.33 0.18 1.32

V100 1.85 1.77 2.19 1.78 2.27 1.77 2.33 1.77 2.16 1.78

U100S 2.57 1.46 2.54 1.49 2.98 1.52 2.92 1.53 2.32 1.54

U100H 1.75 1.28 2.06 1.28 2.53 1.27 2.86 1.26 2.63 1.27

k = 13 k = 14 k = 15 k = 16 k = 17

U100 0.39 1.31 0.44 1.3 0.4 1.3 0.36 1.29 0.32 1.3

V100 2.04 1.78 2.0 1.79 1.67 1.78 1.67 1.79 1.59 1.79

U100S 2.06 1.54 1.81 1.54 1.56 1.54 1.51 1.55 1.39 1.55

U100H 2.89 1.26 2.85 1.26 2.69 1.25 2.65 1.25 2.68 1.24

k = 18 k = 19 k = 20 k = 21 k = 22

U100 0.32 1.3 0.33 1.3 0.34 1.31 0.35 1.3 0.36 1.31

V100 1.57 1.78 1.7 1.79 1.84 1.79 2.02 1.79 1.99 1.79

U100S 1.38 1.54 1.61 1.54 1.85 1.54 2.06 1.54 2.11 1.54

U100H 2.55 1.24 2.43 1.24 2.36 1.23 2.5 1.23 2.34 1.23

So far, we computed the set Πk on a treatment-by-treatment basis. That is, the

set Πk is computed by feeding data of that treatment only into the k-mean clustering

algorithm. An alternative approach is to compute the set Πk by clustering senders’

59Computationally, the k-means clustering algorithm is initialized with a random draw of the set
of representative strategies Πk. This set is then iteratively updated and refined until convergence. In
some instances, this initial randomness can affect final clusters. To eliminate this spurious dependence,
we estimate (λS , λR) a 100 times and report the averages.
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strategies across treatments. In this way, we compute a single Πk for all treatments,

further improving our ability to compare QRE estimates across treatment. The results

of this exercises are shown in Table E14. From the table, we note that, while QRE

estimates change, the ordinal rankings are similar to those of 6. For example, λS is

consistently lowest in U100 and highest in U100H; λR is consistently lowest in U100H

and highest in V100.

Table E14: QRE λ Estimates

λS λR λS λR λS λR λS λR λS λR

k = 8 k = 9 k = 10 k = 11 k = 12

U100 0.28 1.38 0.05 1.42 0.0 1.4 0.0 1.38 0.0 1.35

V100 0.0 1.99 0.74 1.97 0.93 1.83 1.89 1.83 1.96 1.84

U100S 3.11 1.43 3.46 1.41 3.08 1.44 2.88 1.48 2.63 1.49

U100H 4.35 1.21 4.58 1.24 4.48 1.24 4.46 1.26 4.95 1.22

k = 13 k = 14 k = 15 k = 16 k = 17

U100 0.0 1.35 0.0 1.34 0.0 1.34 0.02 1.33 0.03 1.33

V100 1.44 1.84 1.96 1.82 1.73 1.8 2.34 1.81 2.3 1.81

U100S 2.59 1.51 2.65 1.53 2.75 1.54 2.97 1.54 3.06 1.54

U100H 4.49 1.22 4.33 1.22 4.28 1.22 4.48 1.22 4.26 1.22

k = 18 k = 19 k = 20 k = 21 k = 22

U100 0.04 1.33 0.14 1.33 0.13 1.33 0.18 1.32 0.15 1.32

V100 2.48 1.81 1.47 1.8 1.1 1.81 1.03 1.81 1.11 1.81

U100S 3.0 1.53 2.74 1.53 2.7 1.54 2.53 1.53 2.57 1.53

U100H 4.19 1.22 3.91 1.23 3.87 1.23 3.77 1.23 3.71 1.23
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