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Non-Parametric Tests of the Tragedy of the Commons 
Spencer Banzhaf, Yaqin Liu, Martin D. Smith, and Frank Asche 

1. Introduction

The "tragedy of the commons" occurs when strategic incentives, unchecked by property rights or 

other institutional arrangements, undermine the potential value of a commonly held resource. Be-

cause individuals do not bear the full cost when they utilize the common resource, they have an 

incentive to use it too intensively, relative to the group's welfare. In the standard model, individuals 

receive a prorated share of collective output, proportionate to their inputs, so by increasing inputs 

they can obtain a larger share of the pie (Gordon 1954, Weitzman 1974, Dasgupta and Heal 1979). 

Classic examples include sending cattle to a common pasture (Huffaker and Wilen 1991), cooper-

ative firms (Sen 1966), extracting oil from a common pool (Libecap and Wiggins 1984, Baltrop 

and Schnier 2016), extracting groundwater (Brazović et al. 2010, Burlig et al. 2020, Ayres et al. 

2019), and fishing from the sea (Gordon 1954, Huang and Smith 2014). Stavins (2011) provides a 

review. 

Like the prisoner's dilemma, the tragedy of the commons represents a behavioral dilemma 

highlighting the tension between individual and group rationality. Potentially, groups can avoid 

the trap of open access by devising ways to cooperate and limit access to the commons, effectively 

managing common-pool resources (Ciriacy-Wantrup and Bishop 1975, Ostrom 1990). Evidence 

from laboratory experiments suggests that when individuals make decisions anonymously and 

without communication, they over-exploit common-pool resources, producing the "tragedy." But 

when individuals can communicate or build other institutions to change incentives, they can over-

come the tragedy (Dietz et al. 2003, Ostrom 2009). Unfortunately, many (perhaps most) major 

common-pool resources do not fit Ostrom's vision of effective self-governance. Accordingly, mod-

eling agents' behavior under open-access conditions will continue to be critically important. 

Surprisingly, then, there have been few empirical tests of the standard model with naturally 

occurring data. Many studies have considered the aggregate effects of different property rights 

regimes. For example, Kirkley et al. (2002) and Felthoven et al. (2009) outline approaches for 

measuring excess capacity in an industry exploiting a common-pool resource, with resources 
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"wasted" on capital in the race to exploit. This approach requires estimating a production function 

for firms. Others consider the effects of establishing property rights on resource stocks and the 

race to exploit. Balthrop and Schnier (2016) find that unitization of oil and gas reserves decreases 

the race to pump. In fisheries, Birkenbach et al. (2017) and Costello and Grainger (2018) find that 

individual catch shares can slow the race to fish and reduce over-exploitation of fisheries. These 

policy-relevant outcomes are consistent with models of open access and the prescribed remedy of 

property rights, but they do not actually test individual behavior. 

Highlighting open access as a behavioral dilemma, Huang and Smith (2014) conducted the 

first micro-level empirical investigation of strategic behavior in a common pool. Using strong 

function form assumptions, they develop a dynamic structural model of the microeconomic be-

havior of fishers operating in an open-access fishery. Each fisher chooses effort to maximize ex-

pected utility given all other fishers' actions. With estimates from their model, one can quantify 

the potential efficiency gains of property rights reforms. However, their approach presupposes 

Nash behavior in a commons game as a maintained assumption.  Testing the validity of such mod-

els under minimal assumptions remains an unexplored area. 

In this paper, we introduce a non-parametric revealed preference test for the canonical be-

havioral model of the tragedy of the commons. Our test has the advantage of requiring no assump-

tions about production functions or cost functions (beyond convexity). The test is derived from the 

key characteristics of the tragedy of the commons that each agent maximizes its objective function 

independently and from a proportionate sharing rule. It builds on results from Carvajal et al. 

(2013), who developed a similar revealed preference test for Cournot equilibrium, deriving prop-

erties that hold when firms are strategically interacting as predicted by that model. But just as 

Cournot competition dissipates monopoly rents, open-access competition dissipates resource rents. 

Accordingly, using their logic, we can derive similar properties that hold under the strategic inter-

actions of the tragedy-of-the-commons (TOC) model. The test can be implemented with panel data 

of individual inputs and total output. In particular, given panel data on each agent's input and the 

total output from exploitation, we show that a data set is consistent with the tragedy of the com-

mons with convex cost functions if and only if there is a solution to a linear program that we can 

explicitly construct from the data. Accordingly, the tests we derive can be applied to various set-

tings with common-pool resource extraction such as fisheries, oil and gas, minerals, groundwater, 

grazing on common lands, and deforestation. 
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Further extending the logic of Carvajal et al., we derive additional tests that incorporate 

sampling and/or measurement errors in total input and output. Sampling error is modeled as a 

latent parameter, which can be inferred from our linear program under the null hypothesis of be-

havior consistent with the tragedy of the commons. The model allows the analyst to impose bound-

aries on permissible sampling errors based on credible information or assumptions. Sampling 

errors change the testable properties, increasing the domain of the linear program, which make the 

test less stringent. Hence, compared to the basic tests, tests with sampling errors reduce rejection 

rates of the model. 

We also derive new tests to gauge the minimum distance of the set of recovered marginal 

costs from those that are consistent with the model. Building on ideas first proposed by Afriat 

(1972), Diewert (1973), and Varian (1985), we include an adjustment factor in the model to guar-

antee that data would always pass the behavioral test. We apply a nonlinear program to reveal the 

minimal magnitude of the adjustments required, which can be interpreted as a quantitative measure 

of distance from the model. In one version of this approach, we consider behavioral errors in which 

the marginal costs used in the firms' objective functions depart from the true costs. In another 

version, we consider measurement error in inputs. Using these errors, we apply a Kolmogorov-

Smirnov test to inform probability distributions for rejections of the model. These extensions are 

of independent interest, as they also could be applied to tests of the Cournot model (as in Carvajal 

et al.) as well as the tragedy of the commons. Using simulated data generated from known behav-

ioral patterns, we confirm that these tests and metrics can detect departures from the TOC model. 

We apply our tests empirically to the Norwegian coastal fishery for cod and other whitefish 

(the largest fishery in Norway and a major contributor to the global market for whitefish). Before 

2003, this fishery was relatively open access, but in 2003 individual property rights were intro-

duced for large, but not small, vessels, suggesting a difference-in-differences research design. Us-

ing our test, the TOC model is rejected to a greater degree after these reforms for large vessels. 

This pattern highlights the intuitiveness of the test and its relevance to policy questions. Results 

from the test show how changing property rights (and thus incentives) can change behavior in the 

commons. Interestingly, they also suggest that even as the reforms moved large vessels away from 

TOC-like behavior, they may have increased it for small vessels. Supplemental analyses support 

this interpretation. This finding is consistent with theoretical intuition but has not previously been 

shown using real-world behavioral data and without imposing strong parametric assumptions.  
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The paper is organized as follows. Section 2 derives the theoretical results for the classic 

model of the average return game in which agents select their inputs and each unit of input receives 

the average return (rather than marginal return). Section 3 offers additional extensions to the 

model, including quantifying distance to the model, conducting statistical tests, and incorporating 

measurement error. Section 4 discusses the empirical application, and Section 5 presents the re-

sults. Section 6 concludes. 

2. Principle Result:  A Nonparametric Test of the Tragedy of the Commons  

2.1. The Average Return Game 

Consider an industry consisting of 𝐼𝐼 profit-maximizing firms, indexed by 𝑖𝑖 = 1,2, … , 𝐼𝐼, each hav-

ing free access to an exogenously fixed common-pool resource. There are 𝑇𝑇 decision periods in-

dexed by 𝑡𝑡 = 1,2, … ,𝑇𝑇. Denote 𝑞𝑞𝑖𝑖,𝑡𝑡 as the extraction effort by firm 𝑖𝑖 in period 𝑡𝑡. For example, 𝑞𝑞𝑖𝑖,𝑡𝑡 

might be the number of fishing vessel-days in year 𝑡𝑡. Let 𝑄𝑄𝑡𝑡  =  ∑ 𝑞𝑞𝑖𝑖,𝑡𝑡𝑖𝑖  be the total level of effort 

applied to the resource at time 𝑡𝑡. The differentiable production function for the industry at time 𝑡𝑡 

is 𝑌𝑌𝑡𝑡 = 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡), with 𝐹𝐹(0) = 0, 𝐹𝐹′(𝑄𝑄) > 0, and 𝐹𝐹′ non-increasing for all 𝑡𝑡. 

Following the canonical commons model (Gordon 1954, Weitzman 1974, Dasgupta and 

Heal 1979, Cornes and Sandler 1996), each firm's extraction is proportionate to its share of input. 

Thus, firm 𝑖𝑖′s revenue in period 𝑡𝑡  is 𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡), where 𝑝𝑝𝑡𝑡 denotes the market price of output 

(e.g. fish) at time 𝑡𝑡. This assumption captures the characteristic of open-access resources that fac-

tors tend to receive their average rather than their marginal product. Finally, let 𝐶𝐶𝑖𝑖(𝑞𝑞𝑖𝑖,𝑡𝑡) denote 

firm 𝑖𝑖's cost function, which is a differentiable and non-decreasing function of 𝑞𝑞. 

We say a panel data set 𝒪𝒪 = �𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡 , �𝑞𝑞𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖1…𝑁𝑁
�
𝑡𝑡𝑡𝑡1…𝑇𝑇

 is consistent with the tragedy of the 

commons if there exist cost functions 𝐶̅𝐶𝑖𝑖 for each firm 𝑖𝑖, and concave production functions 𝐹𝐹�𝑡𝑡 for 

each observation 𝑡𝑡 that jointly satisfy the following two conditions: 

(i) 𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡) = 𝐹𝐹𝑡𝑡  

(ii) 𝑞𝑞𝑖𝑖,𝑡𝑡 𝜖𝜖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑞𝑞�𝑖𝑖,𝑡𝑡≥0{𝑞𝑞�𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) − 𝐶̅𝐶𝑖𝑖(𝑞𝑞�𝑖𝑖,𝑡𝑡)}.  

Condition (i) says the production function must be consistent with observed output at time t. Con-

dition (ii) says firm 𝑖𝑖's input at time t maximizes its profit given the inputs of all other firms (a 
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standard Nash assumption). 

Note that we do not need to estimate the production function. We allow the analysis to 

explain the data using any arbitrary concave production function, as long as it passes through the 

observed total output and inputs, 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) and 𝑄𝑄𝑡𝑡, at each decision period. Similarly, no re-

strictions are placed on firms' cost functions except that they are increasing and convex. 

To see how we can avoid functional form assumptions, consider firm i's profit-maximiza-

tion problem at time 𝑡𝑡: 

(1) max
𝑞𝑞𝑖𝑖,𝑡𝑡

𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) − 𝐶𝐶𝑖𝑖 (𝑞𝑞𝑖𝑖,𝑡𝑡).  

Taking other firms' actions as given, the first-order condition is: 

(2)  𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡) + �1 −  𝑞𝑞𝑖𝑖,𝑡𝑡

𝑄𝑄𝑡𝑡
� ∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)

𝑄𝑄𝑡𝑡
= 𝐶𝐶𝑖𝑖,𝑡𝑡′ .  

This is the standard result that firms equate marginal cost to a weighted average of marginal returns 

and average returns (Weitzman 1974, Dasgupta and Heal 1979). In the case of a monopolist, 𝑞𝑞𝑖𝑖,𝑡𝑡 =

𝑄𝑄𝑡𝑡 and the entire weight is on the efficient condition to equate marginal cost to marginal return. In 

the limit, as the firms grows small, 𝑞𝑞𝑖𝑖,𝑡𝑡/𝑄𝑄𝑡𝑡 goes to zero and the firms equate marginal cost to 

average revenue, thus depleting all resource rents (as in Gordon 1954). 

Rearranging terms, we obtain: 

(3) 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡
′

𝑞𝑞𝑖𝑖,𝑡𝑡
= 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)

𝑄𝑄𝑡𝑡
− 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡).  

Notice in Equation (3) that the left-hand side involves firm-specific terms (inputs 𝑞𝑞𝑖𝑖,𝑡𝑡 and marginal 

costs 𝐶𝐶𝑖𝑖,𝑡𝑡′ ) while the right-hand side involves only market-wide data (total revenue 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡), mar-

ginal revenue product 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡′, and total input 𝑄𝑄𝑡𝑡). Consequently, from the first-order condition, we 

obtain a common ratio property analogous to Carvajal et al.'s Cournot model: 

(4)  
𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

′

𝑞𝑞𝑖𝑖,𝑡𝑡
 =  

𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑗𝑗,𝑡𝑡
′

𝑞𝑞𝑗𝑗,𝑡𝑡
 = ∙∙∙ =  𝑝𝑝𝑡𝑡F𝑡𝑡

(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝐼𝐼,𝑡𝑡
′

𝑞𝑞𝐼𝐼,𝑡𝑡
≥ 0  ∀ 𝑡𝑡 ϵ 𝑇𝑇. 

In other words, in each period, functions of the total extraction effort and firm-specific marginal 

costs should all be equal. The expressions are nonnegative given the concavity of the production 

function.  
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Moreover, because each firm's cost function is convex, the array {𝐶𝐶𝑖𝑖,𝑡𝑡′ } displays increasing 

marginal costs for each firm i. Thus, if the cost function is time-invariant, we also have the co-

monotone property, such that for all i,  

(5)  𝑞𝑞𝑖𝑖,𝑡𝑡 >  𝑞𝑞𝑖𝑖,𝑡𝑡′  →  𝐶𝐶′𝑖𝑖,𝑡𝑡  ≥  𝐶𝐶′𝑖𝑖,𝑡𝑡′ .   

Consequently, a set of observations is consistent with the tragedy of the commons with convex 

cost functions if and only if there exist nonnegative numbers {𝐶𝐶𝑖𝑖,𝑡𝑡′ } for all i,t that obey the common 

ratio and co-monotone properties.  

In the following example, we show that certain data sets are inconsistent with the tragedy 

of the commons given the interplay of the two properties. Consider the following observations of 

two firms 𝑖𝑖 and 𝑗𝑗 sharing a common-pool resource: 

(i) At observation 𝑡𝑡, 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) = 50, 𝑞𝑞𝑖𝑖,𝑡𝑡 =50, 𝑞𝑞𝑗𝑗,𝑡𝑡 =100. 

(ii) At observation 𝑡𝑡′,  𝑝𝑝𝑡𝑡′𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡′) = 350, 𝑞𝑞𝑖𝑖,𝑡𝑡′ =70, 𝑞𝑞𝑗𝑗,𝑡𝑡′ =60. 

Re-arranging the common-ratio property at t' to isolate 𝐶𝐶𝑗𝑗,𝑡𝑡′
′  and using the fact that 

𝑞𝑞𝑗𝑗,𝑡𝑡′

𝑞𝑞𝑖𝑖,𝑡𝑡′
𝐶𝐶𝑖𝑖,𝑡𝑡′
′ ≥ 0, we have: 

𝐶𝐶𝑗𝑗,𝑡𝑡′
′   =  

 𝑝𝑝𝑡𝑡′𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡′)

𝑄𝑄𝑡𝑡′
−

𝑞𝑞𝑗𝑗,𝑡𝑡′

𝑞𝑞𝑖𝑖,𝑡𝑡′

 𝑝𝑝𝑡𝑡′𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡′)

𝑄𝑄𝑡𝑡′
+

𝑞𝑞𝑗𝑗,𝑡𝑡′

𝑞𝑞𝑖𝑖,𝑡𝑡′
𝐶𝐶𝑖𝑖,𝑡𝑡′
′  ≥  

 𝑝𝑝𝑡𝑡′𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡′)

𝑄𝑄𝑡𝑡′
−

𝑞𝑞𝑗𝑗,𝑡𝑡′

𝑞𝑞𝑖𝑖,𝑡𝑡′

 𝑝𝑝𝑡𝑡′𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡′)

𝑄𝑄𝑡𝑡′
 = 0.385. 

Now, we know from the first-order condition (2) that 𝐶𝐶𝑖𝑖,𝑡𝑡′ < 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

, at each time t for all i, 

because 𝐶𝐶𝑖𝑖,𝑡𝑡′ = 𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
�𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡) −

𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

� + 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

 and 𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡) −
𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

< 0 given the concavity of 

production function. Thus, 𝐶𝐶𝑗𝑗,𝑡𝑡
′ <  𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)

𝑄𝑄𝑡𝑡
 = 0.33. In addition, from the co-monotone property, we 

have 𝐶𝐶𝑗𝑗,𝑡𝑡′
′ ≤ 𝐶𝐶𝑗𝑗,𝑡𝑡

′   because 𝑞𝑞𝑗𝑗,𝑡𝑡′ < 𝑞𝑞𝑗𝑗,𝑡𝑡. Thus, in sum, 0.385 ≤ 𝐶𝐶𝑗𝑗,𝑡𝑡′
′ < 𝐶𝐶𝑗𝑗,𝑡𝑡

′ <  0.33, which is clearly a 

contradiction. Thus, there are no nonnegative marginal costs that satisfy the common-ratio prop-

erty and the co-monotone properties. The data in Example 1 are inconsistent with the TOC model. 

2.2. Implementation:  A Linear Program for the Test 

Our approach to testing the TOC model can be reformulated as a simple linear program. Given 

panel data on each agent's input and the total output from exploitation, we find nonnegative mar-

ginal costs, {𝐶𝐶𝑖𝑖,𝑡𝑡′ }, for all agents i at each time t, which satisfy the common-ratio property (4) and 
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the co-monotone property (5). This linear program is analogous to the conditions specified in Afri-

at's Theorem for testing whether consumers' choices are consistent with utility-maximizing behav-

ior or, equivalently, the Generalized Axiom of Revealed Preference (GARP) (Afriat 1967). This 

overall approach encompasses a diversity of research programs and has been extended to a wide 

array of settings (Chambers and Echenique 2016, Hands 2014), including firms' costs (Varian 

1984) and Cournot competition (Carvajal et al. 2013).  

In our context, a set of observations is consistent with the tragedy of the commons with 

convex cost functions if and only if, given the observed 𝑝𝑝𝑡𝑡F𝑡𝑡, 𝑞𝑞𝑖𝑖,𝑡𝑡 , and 𝑄𝑄𝑡𝑡 there are numbers 𝐶𝐶′𝑖𝑖,𝑡𝑡 

satisfying: 

  (i)  𝑝𝑝𝑡𝑡F𝑡𝑡
(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

′

𝑞𝑞𝑖𝑖,𝑡𝑡
 =  

𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑗𝑗,𝑡𝑡
′

𝑞𝑞𝑗𝑗,𝑡𝑡
 ≥ 0  ∀ 𝑖𝑖, 𝑗𝑗 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇; 

 (ii) �𝑞𝑞𝑖𝑖,𝑡𝑡 −  𝑞𝑞𝑖𝑖,𝑡𝑡′��𝐶𝐶′𝑖𝑖,𝑡𝑡 −  𝐶𝐶′𝑖𝑖,𝑡𝑡′� ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡, 𝑡𝑡′ ϵ 𝑇𝑇; 

(iii) 𝐶𝐶′𝑖𝑖,𝑡𝑡  ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇. 

See Appendix A for a proof. 

Condition (i) is the common-ratio property which follows from the first-order condition; 

condition (ii) is the co-monotone property which follows from the convexity of the cost function; 

and condition (iii) is a non-negativity constraint which follows from the fact that the cost function 

is increasing. For a panel data set, failure to obtain a solution to any element in the marginal cost 

set {𝐶𝐶′𝑖𝑖,𝑡𝑡}∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇, will result in a rejection of the model. 

To understand the implications of this test, we emphasize three features. First, the test re-

jects or fails to reject an entire data set, not individual observations or individual firms. In this 

respect, it is similar to  tests of consumers' choices, in which entire data sets are or are not consistent 

with GARP, not individual choices. However, one can always throw out particular observations 

from the data set and consider the effect of doing so. Thus, taking random subsets of the data, one 

can generate rejection rates, as a quantitative measure of "how much" the data are inconsistent 

with the TOC model. Further, one can isolate data from particular firms or periods to see if the 

data set is more likely to be rejected with or without them. Below, we leverage this possibility in 

our empirical applications to test the effect on rejection rates of including data generated under 

differing property rights regimes. 
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Second, our approach tests the minimum necessary conditions for the above behavioral 

model. Under the model's behavioral assumptions, the test eliminates any type I error. On the other 

hand, it is weak in the sense of potentially allowing a great deal of type II error. That is, rejection 

of the model gives one confidence that the data indeed are not consistent with the TOC model, 

but—as always—failure to reject does not guarantee the model is true (nor, of course, that alter-

native models are false). This is not a limitation of our approach so much as a limitation of what 

can be said about the behavioral model: If further restrictions would lead to more rejections, then 

arguably it is the auxiliary hypotheses that are being rejected, not the fundamentals of the behav-

ioral model. It is always the case that failure to reject a null hypothesis does not guarantee it to be 

true. 

Third, even with the very weak assumptions we bring to the model, we can learn a great 

deal from the tests we derive from it. Data sets that are consistent with the TOC model are incon-

sistent with at least some rival models. Consider, for example, the case of non-tradable quotas, 

which restrict each firm to extract only up to its quota. Although non-tradability prevents cost 

minimization subject to total extraction by the group (as firms with high costs at the margin may 

be allocated quota that cannot be traded to low-cost firms), non-tradable quotas do have some 

advantages. Typically, they cap the total allowable extraction so as to protect the sustainability of 

a resource. Additionally, because a firm's share is exogenous to how quickly it extracts, individual 

quotas can prevent a "race" within the time period over which the quota is defined in order to get 

a larger share of the group quota. By contrast, group-wide quotas, which also protect the sustain-

ability of the resource, actually incentivize racing to extract (Homans and Wilen 1997).  

Importantly, non-tradable quotas do not lead to a common ratio property like Equation (4). 

To see this, note that the objective function would now be written as a constrained optimization 

problem: 

(1') max
𝑞𝑞𝑖𝑖,𝑡𝑡

𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) − 𝐶𝐶𝑖𝑖 �𝑞𝑞𝑖𝑖,𝑡𝑡� + 𝜆𝜆𝑖𝑖,𝑡𝑡 �𝐿𝐿𝑖𝑖,𝑡𝑡 −

𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)�, 

 

where 𝐿𝐿𝑖𝑖,𝑡𝑡 is the quota limit and 𝜆𝜆𝑖𝑖,𝑡𝑡 is the shadow cost of that limit. Note output prices appear in 

the revenue term but not the constraint. The revised first-order condition is: 
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(2')  �𝑝𝑝𝑡𝑡 − 𝜆𝜆𝑖𝑖,𝑡𝑡� �
𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡) + �1 −  𝑞𝑞𝑖𝑖,𝑡𝑡

𝑄𝑄𝑡𝑡
� ∗ 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)

𝑄𝑄𝑡𝑡
� = 𝐶𝐶𝑖𝑖,𝑡𝑡′ .  

The quota is associated with a firm-specific shadow price on extraction, so it is equivalent to the 

original problem with an adjusted output price. Finally, rearranging terms, we obtain: 

(3') 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡
′ �𝑝𝑝𝑡𝑡−𝜆𝜆𝑖𝑖,𝑡𝑡��

𝑞𝑞𝑖𝑖,𝑡𝑡
= 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)

𝑄𝑄𝑡𝑡
− 𝐹𝐹𝑡𝑡′(𝑄𝑄𝑡𝑡).  

Taking this equation in isolation, it might appear that instead of solving the linear program by 

finding numbers 𝐶𝐶𝑖𝑖,𝑡𝑡′ , we could instead simply solve for numbers 𝐶𝐶𝑖𝑖,𝑡𝑡′ �𝑝𝑝𝑡𝑡 − 𝜆𝜆𝑖𝑖,𝑡𝑡�⁄ . However, the 

latter numbers would not be expected to satisfy the co-monotone property, which is based on the 

convexity of 𝐶𝐶𝑖𝑖,𝑡𝑡′  alone. For example, ceteris paribus, higher effort one year might come with a 

higher quota, but this would tend to lower 𝜆𝜆𝑖𝑖,𝑡𝑡 (as the quota is less binding), and hence decrease 

the expression 𝐶𝐶𝑖𝑖,𝑡𝑡′ �𝑝𝑝𝑡𝑡 − 𝜆𝜆𝑖𝑖,𝑡𝑡�⁄ , perhaps violating the co-monotone property.  

Thus, we would expect a non-tradeable individual quota regime to lead to higher rejection 

rates. We leverage this insight in our empirical work below. 

3. Extensions 

In this section, we extend the model in various ways. Our extensions can be applied to other set-

tings as well, including the case of Cournot competition considered by Carvajal et al. (2013). 

Thus, they represent an additional contribution of this research. 

3.1.  The Test with Sampling Error 

The test we derived in Section 2 assumes that data are observed without error. Moreover, it as-

sumes data from a census (not just sample) of users, so that Q = ∑iqi and total catch F(Q) are 

observed. In this section, we consider the case where only a sample of users are observed, so that 

total effort Q and total revenue F are estimates based on a sample mean times N. With sampling, 

even if the sample of individual effort and revenue is measured without error, total effort and total 

revenue are observed with error because they are based on the sample averages. Let 𝛼𝛼𝑡𝑡 and 𝛽𝛽𝑡𝑡 be 

the respective proportionate errors in the sample averages, so we observe 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡 = 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡 ∗ 𝛼𝛼𝑡𝑡 and 

𝑄𝑄�𝑡𝑡 =  𝑄𝑄𝑡𝑡 ∗ 𝛽𝛽𝑡𝑡, for 𝛼𝛼𝑡𝑡 > 0 and 𝛽𝛽𝑡𝑡 > 0 (i.e., we observe some revenue and some input). Then the 
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common ratio property becomes 
𝛼𝛼𝑡𝑡𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝛽𝛽𝑡𝑡𝑄𝑄𝑡𝑡(𝐶𝐶𝑖𝑖,𝑡𝑡

′ )
𝑞𝑞𝑖𝑖,𝑡𝑡

 =  
𝛼𝛼𝑡𝑡𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝛽𝛽𝑡𝑡𝑄𝑄𝑡𝑡(𝐶𝐶𝑗𝑗,𝑡𝑡

′ )

𝑞𝑞𝑗𝑗,𝑡𝑡
. Dividing both sides by 

𝛽𝛽𝑡𝑡 and letting 𝛾𝛾𝑡𝑡 = 𝛼𝛼𝑡𝑡/𝛽𝛽𝑡𝑡, we can write the linear program with sampling errors as: 

(i) 𝛾𝛾𝑡𝑡𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡(𝐶𝐶𝑖𝑖,𝑡𝑡
′ )

𝑞𝑞𝑖𝑖,𝑡𝑡
 =  

𝛾𝛾𝑡𝑡𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡(𝐶𝐶𝑗𝑗,𝑡𝑡
′ )

𝑞𝑞𝑗𝑗,𝑡𝑡
≥ 0,  ∀ 𝑖𝑖, 𝑗𝑗 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇; 

(ii) �𝑞𝑞𝑖𝑖,𝑡𝑡 −  𝑞𝑞𝑖𝑖,𝑡𝑡′��𝐶𝐶𝑖𝑖,𝑡𝑡′ −  𝐶𝐶𝑖𝑖,𝑡𝑡′
′ � ≥ 0, ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡, 𝑡𝑡′ ϵ 𝑇𝑇; 

(iii) 𝐶𝐶𝑖𝑖,𝑡𝑡′  ≥   0,  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇, 

(iv) 𝛾𝛾𝑡𝑡 > 0, ∀ 𝑡𝑡 ϵ 𝑇𝑇. 

This test is still based on the micro data for the observed sample, but it allows for an adjustment 

in the aggregate data to account for sampling error. 

Without sampling errors, we would look for marginal costs that satisfy properties above 

without 𝛾𝛾𝑡𝑡. We treat 𝛾𝛾𝑡𝑡 as unknown and let the linear program look for the set of {𝛾𝛾𝑡𝑡 ,𝐶𝐶𝑖𝑖,𝑡𝑡′ }∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇 

that rationalizes the data with the model. The idea is to ask if there are plausible sampling errors 

in the estimated aggregate 𝑄𝑄�𝑡𝑡 and 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡 that would make the micro data consistent with the model. 

Furthermore, when more information (or modeler-defined judgement) of direction or range of the 

sampling errors is available, we can easily add bounds on the sampling errors to the constraints.1 

Compared to the basic model, we would expect lower rejection rates of the model when sampling 

error is allowed. 

3.2. Distance to the Model and Statistical Tests 

Building on the marginal-cost-consistency methods described in Afriat (1972), Diewert (1973), 

and Varian (1985), we can gauge the distance of the revealed marginal costs in our tests to those 

that are consistent with the TOC model. Similar to Varian's approach of finding a minimal pertur-

bation of the budget constraints that would make observed choices consistent with GARP, we can 

find a minimal adjustment to marginal costs needed to turn a rejection of the model to an ac-

ceptance. The minimal adjustment represents the distance of observed behavior to the behavior 

characterized by the model.  

We implement this method by adding adjustment factors to marginal costs in the common 

                                                            
1 For example, if the modeler suspects β > 1, concavity of F implies α < β, so γ < 1; the opposite would 
follow if β < 1. 
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ratio property, but not the co-monotone property. The idea is that the marginal costs in the co-

monotone property describe the true convexity of the cost function, but firms may treat the mar-

ginal costs as being different in their objective function. Mathematically, by adding adjustment 

factors to the common-ratio property, we relax the constraints enforced by maximizing behavior 

but leave the co-monotone property intact to maintain the constraints of convex costs. In this way, 

we can always find marginal costs together with adjustments to make the observed data consistent 

with the model. We use a linear program to find the minimal magnitude of the adjustment, which 

is the minimized distance from the revealed marginal costs to those that would be consistent with 

the model. We denote them as revealed marginal costs and model-consistent marginal costs below, 

respectively. Based on these solutions, we then derive Kolmogorov-Smirnov and chi-squared tests 

to inform statistical rejection of the model.  

We use the following quadratic program:  

min
𝐶𝐶𝑖𝑖,𝑡𝑡
′ ,𝛿𝛿𝑖𝑖,𝑡𝑡

��𝛿𝛿𝑖𝑖,𝑡𝑡2

𝑖𝑖𝑡𝑡

 

Subject to: 

(i) 𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡(𝐶𝐶𝑖𝑖,𝑡𝑡
′ +𝛿𝛿𝑖𝑖,𝑡𝑡)

𝑞𝑞𝑖𝑖,𝑡𝑡
 =  

𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡(𝐶𝐶𝑗𝑗,𝑡𝑡
′ +𝛿𝛿𝑗𝑗,𝑡𝑡)

𝑞𝑞𝑗𝑗,𝑡𝑡
≥ 0,  ∀ 𝑖𝑖, 𝑗𝑗 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇; 

(ii) �𝑞𝑞𝑖𝑖,𝑡𝑡 −  𝑞𝑞𝑖𝑖,𝑡𝑡′��𝐶𝐶𝑖𝑖,𝑡𝑡′ −  𝐶𝐶𝑖𝑖,𝑡𝑡′
′ � ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡, 𝑡𝑡′ ϵ 𝑇𝑇; 

(iii) 𝐶𝐶𝑖𝑖,𝑡𝑡′  ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇. 

𝛿𝛿𝑖𝑖,𝑡𝑡 is the minimum adjustment factor on marginal cost 𝐶𝐶𝑖𝑖,𝑡𝑡′ . Note that the 𝛿𝛿𝑖𝑖,𝑡𝑡 appear only in con-

dition (i), not (ii). Again, the intuition here is that the cost functions are convex (ii), but firms may 

make errors in their optimization that show up in their first-order conditions (i). By construction, 

solutions �𝛿𝛿𝑖𝑖,𝑡𝑡 ,𝐶𝐶𝑖𝑖,𝑡𝑡′ � satisfying (i)-(iii) always exist.2 Hence, we can identify and quantify the min-

imal squared adjustment factors �𝛿𝛿𝑖𝑖,𝑡𝑡�, which are the minimal distances between the revealed mar-

ginal costs to the model-consistent marginal costs. 

                                                            
2 The adjustment factors expand the domain of marginal costs to the reals. As they do not have to satisfy 
the co-monotone constraint, adjustment factors can always be found to satisfy the common-ratio property. 
Note that it would not do to incorporate the adjustment into all equations, which would be identical to the 
original model. If there are no numbers 𝐶𝐶′𝑖𝑖,𝑡𝑡 satisfying (i)-(iii), there are no numbers (𝐶𝐶′𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑖𝑖,𝑡𝑡) either.  
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Statistical Tests 

Taking the minimal distance found above, we can conduct a Kolmogorov-Smirnov (KS) 

test of the null hypothesis that the data are consistent with the model. Denote the set of marginal 

costs that are consistent with the model as {𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡� }𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇 (model-consistent marginal costs).  The 

model-consistent marginal costs can be obtained from the quadratic program in this section as 

𝐶𝐶𝑖𝑖,𝑡𝑡′ + 𝛿𝛿𝑖𝑖,𝑡𝑡. Denote the revealed marginal costs of an observed data set as {𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡� }𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇.  The 

revealed marginal costs are obtained in the quadratic program as 𝐶𝐶𝑖𝑖,𝑡𝑡′ . 

The two-sample KS test directly compares the distance between the cumulative distribution 

function (CDF) of two sample variables and checks if the two samples are from the same distribu-

tion.  The empirical distance function is specified as 𝐷𝐷𝑛𝑛,𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥|𝐹𝐹1,𝑛𝑛(𝑥𝑥) − 𝐹𝐹2,𝑚𝑚(𝑥𝑥)|, which rep-

resents the supremum of the distance between the CDF of sample 1 with 𝑛𝑛 observations and the 

CDF of sample 2 with 𝑚𝑚 observations. In our case, sample 1 consists of the model-consistent 

marginal costs, and sample 2 the revealed marginal costs.  The sample size for both samples is 𝐼𝐼 ∗

𝑇𝑇.  𝐷𝐷𝑛𝑛,𝑚𝑚 is a vector consisting of the distance between the two CDFs at each value of the sample 

variable represented by 𝑥𝑥, which in our case is the marginal cost. We can take small intervals on 

the domain of marginal costs, obtain values of the two CDFs, and find the maximum distance of 

the two CDFs.  The null hypothesis is rejected at level 𝛼𝛼 if the maximum distance is larger than 

the critical value, that is 𝐷𝐷𝑛𝑛,𝑚𝑚 > 𝑐𝑐(𝛼𝛼) ∗ �𝑚𝑚+𝑛𝑛
𝑚𝑚∗𝑛𝑛

, at critical level 𝛼𝛼. 

Alternatively, we can assume the model-consistent marginal costs follow a log-normal dis-

tribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2) with the lower limit zero.  Under the null hypothesis that an observed data set 

is consistent with the model, revealed MCs would converge to the distribution of model-consistent 

MCs in the limit. Hence, 𝑧𝑧𝑖𝑖,𝑡𝑡 = log (𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡� )−log (𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡� )
𝜎𝜎

 follows a standard normal distribution. Moreo-

ver, we can easily obtain 𝑧𝑧𝑖𝑖,𝑡𝑡 from the program, given that 𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡�  = 𝐶𝐶𝑖𝑖,𝑡𝑡′  and 𝑚𝑚𝑚𝑚𝚤𝚤,𝑡𝑡�  = 𝐶𝐶𝑖𝑖,𝑡𝑡′  + 𝛿𝛿𝑖𝑖,𝑡𝑡 .  As 

a result, 𝑆𝑆 = ∑ ∑ 𝑧𝑧𝑖𝑖,𝑡𝑡2𝐼𝐼
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1  follows a chi-squared distribution with 𝑇𝑇 ∗ 𝐼𝐼 degrees of freedom.  With 

a large sample, we can substitute the sample variance for the population variance.  When 𝑆𝑆 is larger 

than the critical value of a chi-squared distribution, we can reject the null that the data are con-

sistent with the TOC model statistically. 
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3.3. Measurement Error in q 

In Section 3.2, we considered distance to the model in the space of marginal costs as they show up 

in Condition (i), marginal cost consistency. An alternative is to consider distance to the model in 

the space of inputs 𝑞𝑞𝑖𝑖,𝑡𝑡. If we allow those to be measured with error, then we can frame this ap-

proach as asking, how large would measurement error in inputs have to be for it to explain any 

rejections of the model? 

In this case, we can again minimize ∑ ∑ 𝛿𝛿𝑖𝑖,𝑡𝑡2𝑖𝑖𝑡𝑡  , but with 𝑞𝑞𝑖𝑖,𝑡𝑡 replaced by (𝑞𝑞𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑖𝑖,𝑡𝑡) and 

similarly 𝑄𝑄𝑡𝑡 replaced by (𝑄𝑄𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖,𝑡𝑡𝑖𝑖 ) everywhere in the model. If we denote the model-consistent 

inputs as 𝑞𝑞�𝑖𝑖,𝑡𝑡 = �𝑞𝑞𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑖𝑖,𝑡𝑡� and similarly the sum 𝑄𝑄�𝑡𝑡 = �𝑄𝑄𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖,𝑡𝑡𝑖𝑖 �, we can write this more 

succinctly as finding the model-consistent inputs 𝑞𝑞�𝑖𝑖,𝑡𝑡 that are closest to the observed inputs. This 

involves the non-linear program: 

min
𝐶𝐶𝑖𝑖,𝑡𝑡
′ ,𝑞𝑞�𝑖𝑖,𝑡𝑡

���𝑞𝑞�𝑖𝑖,𝑡𝑡 − 𝑞𝑞𝑖𝑖,𝑡𝑡�𝑖𝑖,𝑡𝑡
2

𝑖𝑖𝑡𝑡

 

Subject to: 

(i) 𝑝𝑝𝑡𝑡F𝑡𝑡−𝑄𝑄�𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡
′

𝑞𝑞�𝑖𝑖,𝑡𝑡
 =  

𝑝𝑝𝑡𝑡F𝑡𝑡−𝑄𝑄�𝑡𝑡𝐶𝐶𝑗𝑗,𝑡𝑡
′

𝑞𝑞�𝑗𝑗,𝑡𝑡
 ≥ 0,  ∀ 𝑖𝑖, 𝑗𝑗 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇; 

(ii) �𝑞𝑞�𝑖𝑖,𝑡𝑡 − 𝑞𝑞�𝑖𝑖,𝑡𝑡′��𝐶𝐶𝑖𝑖,𝑡𝑡′ −  𝐶𝐶𝑖𝑖,𝑡𝑡′
′ � ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡, 𝑡𝑡′ ϵ 𝑇𝑇; 

(iii) 𝐶𝐶𝑖𝑖,𝑡𝑡′  ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇. 

(iv) 𝑞𝑞�𝑖𝑖,𝑡𝑡  ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇. 

Note the non-linear constraints in Expressions (i) and (ii). The basic idea here is to find sets of 

inputs that are consistent with the outputs and the model restrictions, and then choose from among 

those sets of inputs the ones that are closest to the observed data. This approach has the advantages 

of having a clear structural interpretation in terms of measurement error and of consistently incor-

porating the error into all relevant points in the model. 

3.4 Proof of Concept with Simulated Data 

To demonstrate that our method can distinguish between data coming from an open-access re-

source and data from a common-pool resource managed with individual quotas, we develop a 

simulated data experiment. In particular, we assume that aggregate output F is generated from a 
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Cobb-Douglas production function, with equal weight on inputs of total fishing effort (Q) and the 

stock of fish. There are 100 heterogeneous firms, which each take the price of fish as exogenous. 

Costs are quadratic in effort, and each firm has a unique cost parameter. Following the standard 

Gordon-Schaefer bioeconomic model, fish stocks grow logistically. We initialize the stock of fish 

at 80% of its carrying capacity and simulate fifteen periods. See Appendix B for additional details, 

including all parameter values. 

To simulate the TOC regime, we solve the optimization problem for each firm, following 

the model of Section 2 and the first-order condition given by Equation (2). To simulate the IFQ 

regime, using the same parameters, we solve for the fishery's maximum sustainable yield, invert 

the production function to obtain the corresponding aggregate effort level in each period, and al-

locate time-specific effort quotas across the 100 firms in proportion to their TOC effort shares. 

This general approach to simulated bioeconomic experiments, in which firms' individual behavior 

is a function of the resource base while their collective behavior feeds back onto the resource, 

follows Ferraro, Sanchirico, and Smith (2019).  

We generate four simulated data sets: the two property rights regimes, each with low- and 

high-cost scenarios. In both cost scenarios, our linear programming results fail to reject the TOC 

Model, as we would expect, whereas the linear program does reject the TOC Model when behavior 

is governed by IFQs. Details of these results can be found in Appendix B. In summary, when sub-

sampling from the data and computing rejection rates, as described in Section 2.2, we always fail 

to reject the TOC Model with data generated from the simulated open access regime, whereas we 

reject the model under the simulated IFQ regime at least 20% of the time with subsamples con-

taining as little as 3 years and 5 vessels, and 100% of the time with 50 or more vessels (see appen-

dix Table B1). Finally, computing distance to the TOC model, as described in Section 3.2, we find 

a distance of zero or near-zero for the simulated open access regimes, whereas distance to the TOC 

model is much higher in the simulated IFQ regime (Table B2), as we would expect. These results 

illustrate the ability, in principle, of our approach to detect departures from the TOC model. 

4. Empirical Application 

We apply our test to the Norwegian whitefish fishery using data for the period 1998 to 2007. The 

setting is fitting for two reasons. First, fisheries are a classic example of the tragedy of the com-

mons, and even when regulators establish industry-wide quotas and partly restrict access to the 



16 
 

fishery, open-access incentives that encourage a race to fish can persist (Homans and Wilen 1997; 

Smith et al. 2008; Abbott and Wilen 2011; Birkenbach et al. 2017). Second, this particular fishery 

experienced a management change during the sample period that strengthened property rights for 

portion of the fleet and thereby reduced tragedy-of-the-commons incentives. As such, we expect 

the TOC model to fit the data better before the policy change than after. Dividing the sample into 

treatment and control groups before and after the policy change allows for a comparative test of 

two policy regimes. 

In the remainder of this section, we further describe the Norwegian fishery and the data 

available. 

4.1. The Norwegian Whitefish Fishery 

Norway has the largest fishing industry in Europe. Its most valuable fishery is whitefish 

(also known as groundfish). The Norwegian whitefish fishery includes many species, but cod, 

haddock and saithe (Atlantic Pollock) are the most important in terms of total volume and value. 

Norway's whitefish fishery is biologically separate from other major fisheries, so output from the 

fishery F(Q) can be modeled in isolation as a single resource. The fleet targeting whitefish includes 

various vessel groups of different sizes and gear. Trawlers are relatively large vessels, with lengths 

ranging from 28 to 76 meters, and they fish in deeper off-shore waters. The coastal fleet comprises 

smaller vessels under 28 meters using a variety of gear such as long lines, troll nets, and Danish 

seine. Our sample contains only the coastal fleet, as individual vessel quotas were introduced for 

the trawlers at an earlier time. The management system requires that each fishing vessel is sepa-

rately owned by an operator, so vessels can be taken as firms in our model. 

In 1989 a total allowable catch (TAC) quota was set for the whole whitefish fishery, with 

the TAC divided between the trawler fleet and the coastal fleet. In 1990, a non-tradable individual 

vessel quota (IVQ) system was introduced for the Norwegian coastal fleet, at least theoretically. 

However, to ensure that the allocated quotas were fished within the coastal vessel group, an "over-

booking system" was introduced in 1991, in which the sum of the individual vessels' quotas were 

substantially higher than the TAC for the vessel group. Consequently, the IVQ system was non-

binding, making the management more like a regulated restricted access system (RRA) than a true 

IVQ system. From the perspective of our theoretical model, we view this period as preserving the 

open-access regime, with some restrictions on technological inputs and total catch, but with no 
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individual limits on catch (or effort) and with incentives promoting a race to fish. Our data (de-

scribed below) begin in 1998, during this regime. 

In 2003, the quota for the coastal fleet was divided into four groups by vessel length (<11m, 

11-15m, 15-21m, 21-28m). Thus, groups no longer needed to compete across vessel length cate-

gories. This appears to have helped the small vessels as a group, as they no longer had to compete 

with larger vessels for their share of the quota. However, initially, the sum of the individual quotas 

still exceeded the TAC (group quota). Hence, firms theoretically could catch all of their individual 

quota, but they still had to race other vessels of the same size class to reach their limit. Moreover, 

there was no guarantee they would get any quota. Effectively, the individual quotas remained up-

per-bound constraints. 

Finally, in 2004, overbooking ended for vessels above 15 meters. Additionally, these larger 

coastal vessels were allowed to combine quotas from several vessels onto one, thereby introducing 

a form of transferability into the system. Thus, the regime for larger coastal vessels transformed to 

a truly binding IVQ system in 2004, while it remained an RRA system for smaller vessels. Han-

nesson (2013), Standal et al. (2016) and Cojocaru et al. (2019) provide further information about 

the fishery and the development of the management system. Our analysis will end in 2007 when 

an IVQ system was introduced also for vessels between 11 and 15 meters. 

To summarize, from 1998 to 2002, all vessels in our data set were under an RRA regime 

that we expect preserved tragedy-of-the-commons incentives (as in Smith et al. 2008 and Abbott 

and Wilen 2011). After 2003, larger coastal vessels transitioned into an IVQ regime while the 

small vessels were still under an RRA regime. In between, 2003 was something of a transition 

year. Small vessels and large vessels were given separate group quotas, but still competed within 

group, a problem that may have been especially severe for small vessels.  

This change in property rights regimes affords an opportunity to apply our test of the trag-

edy of the commons using a difference-in-differences (DD) design. We expect higher rejection 

rates for large coastal vessels for the 2003-7 period, relative to the 1998-2002 period, and relative 

to the corresponding difference for small vessels. In sensitivity analyses, we also consider omitting 

2003. 
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4.2. Description of Data 

The data for the Norway coastal fleet cover the period 1998 to 2007 and come from an 

annual random survey conducted by the Norwegian Directorate of Fisheries of vessels with only 

a sample of the registered active vessels being surveyed each year. Table 1 summarizes the data. 

The first row shows the sample size. The second row shows the total number of vessels registered 

in each year (population). The total sample comprises 1,127 individual vessels from 1998 to 2007. 

Each vessel is identified with a unique ID. We have information on the length and weight of each 

vessel as well as on fishing effort and other inputs, including days at sea, operating days (days at 

sea plus days working at port), fuel expenditure, labor compensation, and the average number of 

crew members operating the vessel. 

With respect to outputs, we have vessel-year data on the total quantity landed and revenues 

received by species (cod, haddock, saithe and other whitefish), in tons and Norwegian Krone 

(NOK), respectively. However, our test only requires knowing the aggregate revenue. Thus, we 

first create an index by summing over fish species, then sum over vessels to obtain the total sample 

revenue for each year, 𝑝𝑝𝑡𝑡F�𝑡𝑡. Then, we multiply the average sample revenue by number of total 

vessels in the population to obtain the aggregate revenue. Row 3 of Table 1 shows the total sample 

revenue. Row 4 converts this sample to an estimate of total revenue, multiplying the sample mean 

by the number of vessels operating. This is the value of output 𝑝𝑝𝑡𝑡F�𝑡𝑡 used in our test. It shows some 

ups and downs followed by an upward trend after 2003. The next row similarly shows the trend in 

sampled catch in tons.  

Although it requires only annual aggregate revenue on the output side, our test requires 

micro-level data on the input side. Vessels are not necessarily sampled in each year and do not 

necessarily fish in all years anyway, so we have an unbalanced panel of vessel-level inputs. Also, 

reported zeros for an input indicates that these fields were left blank in the survey. Accordingly, 

we exclude vessels that reported both zero operating days and zero days at sea but positive labor, 

fuel or other operating expenses in the analysis. Table 2A shows raw data on inputs, including 

operating days, days at sea, person-years, labor compensation, and fuel expenditure.  

4.3. Quantifying Effort 

In taking the theoretical model to the data, a central modeling question is how to measure effort 
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(or input) 𝑞𝑞𝑖𝑖,𝑡𝑡, which appears as a scalar in the theoretical model. As measures of effort, we con-

sider the following four proxies: operating days, imputed days at sea, imputed days at sea times 

vessel length (Length* Days), and an estimated scalar-valued function of effort based on multiple 

inputs. Of these, operating days, which includes days at sea as well as days processing and offload-

ing in port, is the most straightforward proxy. Table 2B shows summary statistics for operating 

days as used in the model. 

Our second measure is days at sea. Averaging over time, days at sea contains 81.3 fewer 

days fleet-wide than operating days, and there are 748 observations with positive operating days 

but zero reported days at sea. Since it is impossible to have zero days at sea when operating days 

and catch are positive, we treat these zeros as missing and replace them with imputed values when 

the associated operating days are positive. Details of this imputation are provided in Appendix C. 

The next row of Table 2B shows annual data on imputed days at sea.  

Our third measure of input uses these imputed days at sea times vessel length. Rescaling 

fishing time by measures of vessel size is a common practice when estimating fisheries production 

functions, as a better measure of overall inputs (Squires 1987; Huang and Smith 2014). Table 2B 

also reports annual values of this product. 

Our fourth and final measure of input aggregates multiple input variables into a scalar-

valued function. This too is a common practice in the fisheries literature (see McCluskey and Lew-

ison 2008 for review and discussion). We adopt a straightforward method that serves our purpose. 

Suppose the production function for vessel 𝑖𝑖 in year 𝑡𝑡 is 

(6) ln�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖,𝑡𝑡� = 𝑏𝑏 ∗ 𝑙𝑙𝑙𝑙𝑞𝑞𝑖𝑖,𝑡𝑡 + 𝜆𝜆𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡,  

where 𝜆𝜆𝑡𝑡 is a dummy which captures year effects, such as different stock levels, and 𝑞𝑞𝑖𝑖,𝑡𝑡 denotes 

the overall effort level for vessel 𝑖𝑖 at year 𝑡𝑡, and is a sub-function of other inputs. In particular, let  

(7) 
ln (𝑞𝑞𝑖𝑖,𝑡𝑡) = 𝛼𝛼2ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖,𝑡𝑡) + 𝛼𝛼3ln (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑡𝑡) +

𝛼𝛼4ln (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑡𝑡) + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖, 

 

in which person-years denotes the labor input (measured at the day level) and labor compensation 

is the total payment to workers on the vessel and 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 is vessel level fixed effect that captures 

vessel length, tonnage, and unobserved heterogeneity in fishing skill.  



20 
 

Substituting Equation (7) into (6), we estimate the combined model. Note, however, that 

we cannot separately identify 𝑏𝑏 in Equation (6) from the alphas in Equation (7). Thus, we do not 

identify effort to scale. This is not problematic, however, because our test treats the cost of effort 

as a latent function, so any arbitrary change of scale in effort can be reconciled by an offsetting 

change in the scale of the cost function. The results of estimating this model are shown in Appendix 

Table C2. The last row of table 2B shows summary statistics for this estimated value. 

4.4. Sampling Subsets of Data 

Because, in our approach, rejections are all or nothing, the presence of only one firm be-

having out of step with the other firms could result in rejecting the entire data set. Likewise, if cost 

functions shift over time, assuming they are constant could lead to false rejections. To sidestep 

these issues, we follow Carvajal et al. (2013) and repeatedly sample smaller subsets of data. Sam-

pling the data allows us to consider rejection rates (percentage of data sets that do not conform to 

the TOC model), rather than one single all-or-nothing conclusion. We divide the entire data set 

into multiple subsets, with each set consisting of N vessels and T consecutive years, where N ∈ {5, 

10, 50, 100, 150} and T ∈ {3, 6, 8, 10}. Then we separately test for consistency with the TOC 

model using each set. We randomly sampled 100 subsets from each N-by-T combination, giving 

us a reasonable estimate of the rejection rates for each combination. To facilitate comparisons, we 

used the same subsample of data for each cell across models. 

4.5. Weighted Sampling and Property Rights Regime Comparison 

As discussed in section 4.1, the evolution of property rights in the Norwegian fishery mo-

tivates splitting the data into the periods of the RRA regime (1998–2002) and the period of IVQs 

for the coastal vessels at least 15 meters in length (2003–2007). Accordingly, we cut the data into 

four cells using a 2x2 design; large coastal vessels (≥15 meters long) and small vessels (<15 m), 

before the IVQ regime (1998–2002) and after (2003–2007). 

It is worth noting that, though we sub-sample by vessel size in this exercise, in the com-

mon-ratio properties for each group of each year, we keep the total input 𝑄𝑄𝑡𝑡 and output 𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡) 

across all vessels. That is, behavior of all vessels (regardless of length) still affects the optimal 

behavior of any one vessel because the aggregate resource stock in coastal areas is a common pool.  
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In this unbalanced panel for the Norwegian coastal fleet, the administration of the random 

survey led to fewer surveyed vessels in earlier time periods (before 2003) than later (after 2003). 

When we sample subsets as described in Section 4.4 with no restrictions (where each vessel has 

an equal probability to be selected), the sets sampled in later periods will contain more data points 

than those from earlier periods. Given the nature of our test, more data points create more con-

straints, which automatically yields higher rejections holding all other things equal. Hence, to 

make sure the gap in rejection rates per group is attributed to behavioral difference under different 

management regimes, rather than the difference in the number of observations in the samples, we 

employ weighted sampling to generate comparable samples for each group.  

Weighted sampling is implemented by redistributing sampling probabilities among vessels 

in later periods (2003-2007). Sampling probabilities for vessels with more observations (3 and 4 

data points in periods 2003-2007) are reduced, and the reduced probabilities are added to vessels 

with fewer observations (1 and 2 data points), with the total probability always summing to one. 

The largest adjustment of the probability of a vessel is less than 0.0002, while the original proba-

bility of a vessel being sampled is around 0.00116, so the adjustment is less than 17%. After 

weighted sampling, the maximum difference in the number of observations between the groups 

(before vs. after) is less than 0.2% (difference in observations divided by total observations in 

subsample sets). In our 2x2 design, our weighted sampling ensures that the large-after and large-

before groups have similar numbers of observations, as do the small-after and small-before groups. 

This helps to balance the number of observations among groups to generate credible DD results. 

As discussed in Section 4.1, data generated from the IVQ regime is not expected to be 

consistent with the TOC model, especially for large vessels. Accordingly, we first take the differ-

ence of rejections between the large-after and large-before groups and likewise for the small-after 

and small-before groups. Finally, we take the difference in differences, to infer the effects of the 

change in property rights regime. We expect the after-before difference for large vessels will be 

higher than those for small vessels. 

5. Results 

In this section, we first present results of the principle test as described in Section 2. We then 

present results with sampling errors (Section 3.1) and statistical tests based on distance from re-

vealed marginal costs to model-consistent marginal costs (Section 3.2), including results based on 
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our DD design. Finally, we present complementary parametric tests of improved fishery outcomes 

using our DD design. 

5.1. Results of Test Pooling all Data 

We first implement our tests on all data pooled together. In this case, we expect to reject 

TOC behavior as we are including post-reform data in the analysis.  Tables 3A-3D present results 

using the principle test of Section 2 using four respective proxies for effort: operating days, im-

puted days at sea, imputed days at sea times length, and estimated total effort. Each cell in the 

tables shows the rejection rate for a sample of 100 data sets for 𝑁𝑁 vessels and 𝑇𝑇 consecutive years, 

for varying 𝑁𝑁 and 𝑇𝑇. For small 𝑁𝑁 and 𝑇𝑇, we generally cannot reject the TOC model in most sam-

ples. Note, however, that the rejection rates generally are increasing in N (moving down the rows) 

and T (moving to the right across columns). Indeed, when more than 100 vessels are considered 

for longer than 6 years, the rejection rates approach one. This trend follows mechanically in ex-

pectations, as the number of equations and inequalities to satisfy is increasing in these parameters, 

so exceptions to this rule are due to random sampling. More substantively, the trend also is con-

sistent with the idea that, as we increase T, we risk pooling different cost functions as well as data 

from the period after the property rights reform, when the TOC model is unlikely to apply. Overall, 

these results indicate that the behavior of vessels/fishermen in our sample cannot be explained by 

the TOC model when a large number of observations are included, including observations taken 

from the post-reform period.  

Additionally, we test consistency with the model with sampling errors (as discussed in 

Section 3.1). The range of sampling errors we adopted is [-5%, 5%]. That is, we restrict the mul-

tiplier 𝛾𝛾𝑡𝑡 to be between [0.95, 1.05].3   Given that the average revenue in our sample is 1.4 million 

NOK (around 166,000 USD) per year per vessel, this bandwidth allows for an average adjustment 

to the revenue of 67,000 NOK (around 8,000 USD) per year per vessel.  Tables 4A-4D present the 

results. As we would expect with added flexibility, rejection rates of the TOC model allowing for 

                                                            
3 Because of the large number of missing values in the sampled data, we apply narrow boundaries to the 
permissible sampling error.  Our unbalanced panel data of the Norwegian whitefish fishery has 79.3% of 
data points missing. The amount of missing data substantially reduces nonempty constraints in our test, 
which makes it easy to find marginal costs that are consistent with the model. Allowing for a larger adjust-
ment to the total revenue makes the tests even less stringent and reduces the rejection rates towards zero. 
For instance, all rejection rates are zero when the boundary is 10% in our case.  
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sampling errors are slightly lower than those in the basic model (comparing like cells). But the 

previous patterns remain. First, rejection rates still increase in N and T. Second, when more than 

100 vessels are considered for longer than 6 years, the rejection rates still approach one. This result 

provides additional support for the conclusion that behavior of vessels/fishermen in our overall 

sample cannot be explained by the TOC model when a fair number of observations are included. 

We also tested the model allowing minimal behavioral errors and deriving a K-S test sta-

tistic (Section 3.2). The first Column of Table 5 presents the results for the combined data. For 

each of the four measures of effort, it shows an adjusted mean squared error 𝛿𝛿𝑖𝑖,𝑡𝑡2  per cell, per thou-

sand constraints to be satisfied.4 To gauge the scale of these estimated errors, the mean marginal 

cost is about 4.5 when effort is measured by operating days, so these errors are fairly small. This 

scaling differs by measure of effort making comparisons difficult, but, across measures, the mean 

absolute value of the errors is about 5% of marginal costs, the mode is 0%, and the 90th percentile 

error is 10-17% of marginal costs. We also conducted the KS test of Section 3.2 using the entire 

data set. For all four measures of effort, we reject the TOC model with the pooled data with p-

values < 0.01. Results from these tests confirm our observation from the rejection rates in Tables 3 

and 4. 

5.2. Results Comparing Property Rights Regimes 

Recall that all vessels operated under RRA before 2003. Throughout the period (1998-

2007) in our sample, a TAC for all participants was in place, but in 2003 the quota was distributed 

to groups based on vessel length. After 2003, small vessels remained operating under a total al-

lowable catch and the RRA regime, while large vessels transitioned to an IVQ regime. This make 

the small vessels a good control group for the large vessels. Whereas there is competition among 

vessels under a group quota, competition among large vessels is reduced under the property-rights 

based management of IVQs because each large vessel is guaranteed its share of the total catch. 

                                                            
4 This adjustment is necessary for comparisons across cuts of the data in the next subsection, as it accounts 
for the changing number of constraints.  For example, if there are N vessels and T years of data, and if there 
were no missing data, there would be NT cells used as the denominator for the simple mean squared error, 
but N(T2-T)/2 + T(N2-N)/2  =  NT(N+T-2)/2 constraints used as the denominator for the adjusted mean 
squared error. Our actual calculation accounts for missing values in the formula. 
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The effectiveness of the property-rights approach of IVQs over the non-property-rights based ap-

proach of RRA motivates a DD design for our empirical application. 

Table 6A – 6D present rejection rates per group using the weighted sampling described 

above in Section 4.5. The results indicate that, after the reform, large vessels experience a higher 

relative increase in rejection rates of the TOC model compared to small vessels. That implies the 

IVQ regime generates fishing behavior that is less consistent with the TOC model than the RRA 

regime. In other words, the IVQ regime nudges fishing behavior away from Nash behavior more 

effectively than does RRA, as one would expect.  

Note that after we split the data into four groups, there are fewer observations to sample 

from per group. Because the weighted sampling only controls for the difference in the number of 

observations of each paired group (before vs. after), but not the magnitude of observations in sam-

ples, the levels of rejection rates are sensitive to the number of observations in the respective sub-

groups, but the difference and DD results reflect the overall change in management regimes and 

are more stable. 

We also replicated these tests omitting 2003, which was a transition year and arguably was 

different from the subsequent 2004-7 period, when large vessels were under the TAC. Our results 

are qualitatively similar using this approach and are available upon request. 

Interestingly, looking only at small vessels, we observe a decrease in rejection rates in the 

2003-7 period. Taken in isolation, this suggests that the behavior of small vessels actually moved 

closer to the Nash TOC behavior after 2003. One possible explanation for this finding is that the 

IFQ for large vessels increased the potential rents to smaller vessels, but because they remained 

under a group quota the smaller vessels thus had a greater incentive to (over) exploit the commons. 

In the following subsection, we present reduced-form evidence supporting this hypothesis.   

Columns 2-5 of Table 5 show the results of allowing minimal behavioral errors within each 

segment of the data (Section 3.2). Comparing across vessel sizes and property rights regimes for 

any one measure of effort, we see a notable increase in the errors and, to some extent, the proba-

bility of rejecting the model in the "after" period relative to the "before" period, as we would ex-

pect. However, as a rule p-values cannot be meaningfully compared across models. Focusing on 

the adjusted MSE, we see greater increases for the large vessels, as expected. The final column 

shows the DD in the MSE, which is positive for all four measures of effort. 
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5.3. Supplemental Evidence and Discussion 

As mentioned above, there is some evidence that, even as large vessels moved away from Nash 

TOC behavior after 2003, the behavior of small vessels became, if anything, closer to the TOC. 

One possible explanation for this finding is that, before 2003, small vessels could not compete well 

with large vessels in the race to fish, whereas after 2003 separating out the TAC for the small 

vessels reduced the competition from large vessels, thus securing a potential economic rent for the 

group as a whole. However, without property rights to individual quotas, that potential rent spurred 

the race to fish among small vessels. 

Under the tragedy of the commons, effort (q) increases until, with a large number of ves-

sels, the marginal cost of effort equals average returns instead of marginal returns, eliminating 

resource rents. After 2003, binding IFQs should reduce effort for large vessels and increase aver-

age returns. Meanwhile, reduced competition could potentially increase rents for small vessels, 

leading to a ceteris paribus increase in average returns, but, without binding quotas, small vessels 

would be expected to respond by collectively increasing effort, thereby reducing average returns 

back to marginal costs in equilibrium. 

To further explore this possibility, we first compare effort over time by vessel size. At the 

extensive margin, Figure 1 compares the number of small and large vessels across years. It shows 

a marked increase in the total number of small vessels in 2003, whereas there is little change in 

the number of large vessels. Furthermore, at the intensive margin, Figure 2 shows that small ves-

sels increased their average effort, whereas larger vessels decreased effort sharply in 2003 and then 

stabilized. This new entry of small vessels and their additional effort may have been induced by 

increased economic rent after the division of the quota, which we would expect to then dissipate 

these rents. 

Next, we explore whether large vessels had better returns for their effort in 2003. We esti-

mate the returns to effort using a simple reduced form DD regression, as in Smith et al. (2006). In 

particular, we regress 

(8) 
ln�𝐻𝐻𝑖𝑖,𝑓𝑓,𝑡𝑡� = 𝛼𝛼 + ( 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝛽𝛽2 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑓𝑓 + 𝛽𝛽3 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) ∗ 

ln�𝑞𝑞𝑖𝑖,𝑡𝑡� + 𝛾𝛾𝑓𝑓 + 𝛿𝛿𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑓𝑓,𝑡𝑡.  
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where 𝐻𝐻𝑖𝑖,𝑓𝑓,𝑡𝑡 is the outcome (revenue, catch in tons, or price) for vessel i of length classification f 

in year t, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is an indicator for post-2003, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is an indicator for length ≥15 meters, 𝑞𝑞𝑖𝑖,𝑡𝑡 is 

effort measured in imputed days at sea, 𝛾𝛾𝑓𝑓 is a vector of dummies for four vessel length classifica-

tions, and 𝛿𝛿𝑡𝑡 is a vector of year dummies. The parameter of interest, 𝛽𝛽3 captures the DD effect for 

the post-2003 change for large vessels, relative to the change for small vessels, on catch per unit 

effort. 

Table 7 displays the results, with standard errors clustered by year and length category. 

The first column shows the effects using total revenue as the outcome. It shows a statistically 

significant increase for revenue, per day at sea, of 2.8 percentage points (pp) for large vessels 

relative to small. This bottom-line result suggests that large vessels do indeed benefit more from 

the regulation, while small vessels simply dissipate their potential rents with increased effort. The 

remaining columns decompose this result. The next five columns show the DD effect on catch, in 

tons, for total fish and separately for each species. The point estimate of 2.2 pp for total catch per 

day is statistically significant and in line with the revenue effect of 2.8 pp. Interestingly, there are 

larger and statistically significant increases in the catch for cod, haddock, and saithe, coupled with 

a decline in other species, perhaps indicating "high grading" or targeting high-value species to get 

the greatest value from the quota with the others being caught exclusively as bycatch.  

The last five columns show the effect on price, or total revenue divided by tons caught. As 

large and small vessels are selling into the same market, with the same quality-adjusted prices, 

differences in "price," as defined here, between vessel classes can be interpreted as a difference in 

quality, or a "movement along" a price-quality hedonic price function. Increased prices are con-

sistent with previous studies arguing that slowing the race to fish can increase per unit prices 

through quality or avoidance of market gluts (Grafton, Squires, and Fox 2000; Homans and Wilen 

2005). We find smaller effects, though statistically significant for cod and saithe, again indicating 

potential high grading, with bigger vessels having the opportunity to more selectively target larger, 

higher-value fish. All the results from Table 5 are qualitatively similar when we omit 2003, which 

might be interpreted as a transition year between property rights regimes. 

To complement this difference-in-difference strategy, we test for parallel trends, conduct 

falsification tests, and estimate event studies. We fail to reject the hypothesis of no differences in 

pre-trends for any of the outcomes. For falsification tests, we place a placebo treatment in 1999 or 
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2000 and estimate the DD coefficient for each outcome restricting the post-treatment sample to 

years through 2002. We fail to reject the null of a zero-treatment effect for all placebo designs and 

outcome measures. Figures C1-C9 in the appendix display standard event study graphs. They show 

little evidence of pre-period trends and persistent increases in quantity and price post-2003 for 

large vessels relative to small, especially for cod and saithe. 

These patterns support the findings of our non-parametric test. As seen in Section 5.2, the 

data move further away from the Nash TOC model after the 2003 reform, especially for large 

vessels relative to small. The patterns presented here provide additional intuitive evidence con-

sistent with those tests. They also support the idea that improvements in management for one group 

(here, restricting access for the large vessels) may not spill over into improvements for other 

groups, if they simply maintain rent-dissipating behavior. This interpretation is in line with the 

finding in Homans and Wilen (1997) that certain types of non-property-rights-based management 

may actually induce a race to fish. It also is consistent with the findings in Kroetz et al. (2015) that 

policy with well-intentioned social objectives to preserve small-scale fishing capacity can reduce 

overall economic efficiency and rents in fisheries. 

6. Conclusion 

Work to date on testing the tragedy of the commons has focused either on policy outcomes involv-

ing the state of shared resources or, when using behavioral data, has relied on highly structural 

models involving numerous maintained assumptions. Drawing on applications of revealed prefer-

ence theory to behavioral data, including Carvajal et al. (2013) on the Cournot model, we derive 

non-parametric tests of the tragedy of the commons using minimal assumptions.  

We apply this new test to the Norwegian groundfish fishery. Overall, we find the behavior 

of individual vessels of the Norwegian Coastal Fishery does not conform to the model of the trag-

edy of the commons. More importantly, we find that rejection rates are larger after property rights 

reforms, especially for the large vessels that received stronger property rights. Additionally, using 

a distance-based metric, we find that behavior moves further from the pure TOC model after the 

reforms. Our results suggest that Norwegian policy has changed behavior and ameliorated the 

commons problem for large coastal vessels at least to some extent.  

Our methodological innovations that build on the principle test of the TOC model have 

practical significance. By providing methods that account for sampling and/or measurement errors 
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in aggregate output and input data and that can gauge distances to the TOC model with associated 

statistical tests, our approach is broadly applicable to applied problems that are likely to arise in 

regulated common-pool resource settings. For example, in most settings inputs are very likely to 

be measured with error, often coming from self-reports or other surveys.  

Although the fishery provides an iconic illustration of the commons, our approach can also 

be applied to a wide range of other resources. Candidate common-pool resource problems include 

clearcutting forests or fuelwood collection under different governance structures; grazing livestock 

on common land; siting offshore aquaculture facilities; pumping groundwater; oil, gas, and other 

mineral extraction; collective management of infectious diseases; pesticide resistance; and con-

trolling invasive species.  

Just as our specific model can be applied to other common resources, our general approach 

can be extended and applied to other behavioral rules and settings beyond common-pool resources. 

While our test of the TOC model pertains to the average-return game with Nash behavior, Banzhaf 

and Liu (2016) extend the TOC model to the case of conjectural variations (rather than Nash be-

havior) as suggested by Cornes and Sandler (1983). Because our empirical application involves 

hundreds of players, we expect Nash behavior to be more relevant than conjectural variations, but 

small numbers of players are more prevalent in other resource settings such as unitization of oil 

fields or groundwater extraction from a local aquifer. Moreover, the game can be modified to apply 

to the average cost (rather than average returns) game, where agents choose outputs and pay aver-

age costs. Such problems are relevant to many problems involving the division of joint costs, such 

as telephony. Looking past open-access resources, our approach could be applied to collective 

farms or other enterprises whenever outputs are divided proportionately to inputs (Sen 1966). Al-

ternatively, simply by adapting the objective function, numerous other sharing rules could be con-

sidered and the respective behavior tested, including equal per capita sharing, which tends to lead 

to shirking rather than over exploitation. In this way, our approach potentially extends to many 

surplus-sharing games. 

Whatever the application, policies to regulate the commons are extremely diverse, so it is 

natural to ask whether some policy configurations move behavior away from the tragedy of the 

commons more than others. Our approach can facilitate comparative work on the behavioral con-
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sequences of different policy interventions and other approaches to governing common-pool re-

sources. Economists often imagine a stylized first-best policy to ration access to the commons, 

with perfectly secure and transferable individual property rights. That first-best policy is juxta-

posed with a complete lack of policy under pure open access. However, real-world policies are 

configured in myriad ways that differ from theoretical first-best policies. For example, in fisheries, 

rights-based systems differ along dimensions of the security of the property right, the length of 

term, transferability, and a number of other restrictions that often come about as political compro-

mises to address community or industry concerns (Asche et al 2018). Moreover, property rights-

based policies tend to build on existing institutions, which already ration access to the commons 

to some degree and create incentives differing from those of pure open access (Birkenbach, Ka-

czan, and Smith 2017). In general, our model and distance-based metric have the potential to ex-

amine whether different policies induce more or less commons-like behavior.  

Such comparative work using our methods potentially has broad interdisciplinary appeal. 

Although economists have studied the commons problem for more than a century, Hardin's (1968) 

coining of the term "tragedy of the commons" in the general scientific literature helped to garner 

attention from ecologists, other environmental scientists, non-economics social scientists, legal 

scholars, and systems modelers (Banzhaf 2020, Frischman et al. 2019). Subsequently, Ostrom 

(1990) criticized Hardin for ignoring the potential for self-organized solutions to the commons and 

ultimately helped to develop a new interdisciplinary field to investigate problems in the commons. 

Within this new field, there are widely disparate normative views on what governing the commons 

ought to achieve and thus what outcomes should be measured. Economists are often stereotyped 

as having a singular focus on formal property rights-based solutions to the commons and the gen-

eration of resource rents without regard for potential unintended consequences on local communi-

ties (Young et al. 2018). Our approach offers a neutral behavioral test of interest across disciplines 

that does not depend on how different scholars attach normative weight to resource rents, distri-

butional outcomes, employment, or any other indicators of community well-being.  
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Figure 1.  Extensive margin:  Large and small vessels before and after the policy change 

 
Figure 2.  Intensive margin:  Days at sea for large and small vessels before and after the 
policy change 
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Table 1. Summary Statistics for Selected Output Variables 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
Obs.   307 321 328 323 316 279 321 306 317 359 

Population  1193 1143 1081 1063 1230 1441 1342 1131 1165 1290 
Sampled annual 
value (100 mil. 
NOK)  

3.61 3.67 3.67 3.91 3.98 4.54 4.61 4.68 6.58 7.40 

Total annual value 
(100 mil. NOK)  

17.64 14.91 13.83 15.60 14.33 12.58 13.55 14.65 19.62 19.30 

            
Sampled annual har-
vest (10 million kg)  

4.17 4.62 4.94 5.31 5.81 6.64 7.84 8.23 8.43 9.25 
            
Cod  Mean 77.7 55.2 45.0 48.3 52.2 51.5 59.4 72.0 85.4 73.7 
(thousand kg) SD 87.2 60.3 53.6 51.2 38.5 38.3 45.4 63.2 72.3 66.6 
 Min 0.1 0.9 0.6 0.2 0.1 0.2 0.1 0.2 0.3 0.0 
 Max 471.4 411.1 581.8 334.6 332.6 299.3 294.6 452.0 444.4 451.3 
            
Haddock  Mean 19.8 10.7 9.0 11.4 12.7 12.6 11.4 16.7 17.7 21.4 
(thousand kg) SD 38.3 21.9 19.7 14.3 26.9 32.7 21.3 30.4 28.2 38.7 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Max 204.3 188.1 211.3 92.4 251.3 416.2 158.5 260.5 185.0 310.8 
            
Saithe  Mean 29.9 26.3 22.8 24.7 19.7 23.2 22.8 31.9 50.1 47.3 
(thousand kg) SD 68.9 49.5 32.9 42.6 37.8 33.3 38.0 68.5 101.6 101.6 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 Max 574.1 418.7 251.7 420.0 321.1 197.3 199.2 716.4 873.8 943.7 
            
Other  Mean 70.4 58.6 91.3 51.9 40.5 41.1 32.8 45.3 61.9 71.7 
(thousand kg) SD 248.2 212.3 302.6 178.1 131.9 94.7 77.7 110.4 162.4 263.9 
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
  Max 1,807.2 1,859.2 2,203.4 1,864.4 1,409.4 644.3 673.4 899.4 2,014.3 2,482.1 
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Table 2A. Summary Statistics for Selected Input Variables (Raw Data) 

 

  

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
Obs.   69 72 80 76 71 279 321 306 317 359 

Operating days Mean 268.2 262.0 268.5     253.8 244.2 213.3 193.8 220.9 227.4 210.1 
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6 
 Min 204.0   176.0 190 107 146 99.0 83.0 90.0 93.0 90.0 
 Max 338.0 364.0 348 338 342.0 354.0 342.0 345.0 355.0 338.0 
            

Days at sea Mean 219.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 168.9 
 SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0       58.7 56.2 53.9 
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.0 55.0 72.0 68.2 
  Max 295.0 322.0 343.0 335.0 287.0 336.0 324.0 330.0 345.0 325.0 
            
Person years Mean 2.3 2.2 2.1 2.2 2.1 2.2 2.1 2.3 2.4 2.4 

 
SD 1.8 1.8 1.8 1.6 1.6 1.4 1.3 1.5 1.5 1.5 
Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Max 12.0 12.0 12.7 11.0 12.6 10.7 8.1 10.0 8.1 9.0 

            

Labor  Mean 637.3 607.6 574.8 652.3 593.7 511.2 607.4 772.3 1025.8 1015.9 
compensation SD 799.9 808.9 791.9 821.6 592.5 480.4 562.8 721.6 937.6 979.2 
(thousand NOK) Min 65.5 81.5 65.8 63.1 109.3 104.1 108.0 149.1 141.5 158.2 
 Max 5,161.4 6,658.9 5,930.7 6,151.7 4,918.5 3,906.7 4,606.4 4973.9 6920.2 7184.6 
            

Fuel expenditure Mean 47.9 52.3 80.6 70.6 59.8 59.7 72.6 108.0 135.5 121.6 
(thousand NOK) SD 73.0 91.9 161.3 127.3 108.1 92.6 97.9 163.7 177.8 194.1 
 Min 3.0 3.4 1.5 4.6 3.2 1.3 3.1 6.9 10.2 9.6 
 Max 539.5 745.7 1,405.7 1,458.6 1,066.7 1,113.5 937.7 1610.0 1605.5 1623.6 
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Table 2B. Summary Statistics for Selected Input Variables (As used in Analysis) 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
Obs.  69 72 80 76 71 279 321 306 317 359 

Operating days Mean 258.2 262.0 268.5 253.8 244.2 213.3 193.8 220.9 227.4 210.1 
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6 
 Min 204.0   176.0 190.0 107.0 146.0 99.0 83.0 90.0 93.0 90.0 
 Max 338.0 364.0 348.0 338.0 342.0 354.0 342.0 345.0 355.0 338.0 
            
Imputed days  Mean 217.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 169.0 
at sea SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0 58.7 56.2 53.9 
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.1 55.0 72.0 68.2 
 Max 295.0 322.0 343.0 335.0 287.0 336.0 324.6 330.0 345.0 325.0 
            
Length times   Mean 4169.2 4067.3 3748.1 3248.1 3197.8 2200.5 2237.6 2434.3 2605.8 2377.7 
Imputed days SD 1261.4 1449.2 1713.7 1312.7 1377.6 1090.4 1146.4 1349.6 1260.3 1247.1 
at sea Min 2133.6 1772.6 877.8 707.8 1459.2 696.0 672.0 581.9 816.4 606.6 
 Max 7707.8 8826.0 9415.4 9195.8 7720.7 8564.4 8898.0 9058.5 8771.2 8908.3 
            
Estimated effort Mean 9.66 9.41 8.86 9.61 7.66 3.23 3.72 4.72 5.98 5.82 
 SD 6.01 6.71 7.21 6.77 5.74 2.95 3.32 4.31 5.23 5.43 
 Min 0.83 1.79 1.35 1.38 2.15 0.83 0.94 0.96 1.11 1.07 
 Max 29.18 36.55 36.11 35.33 31.54 25.54 25.03 28.99 39.45 41.24 
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Table 3A. Rejection Rates ─ Operating days  

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.04 0.22 
10 0.04 0.03 0.30 0.53 
50 0.40 0.58 0.96 1.00 
100 0.81 0.88 1.00 1.00 
150 0.93 1.00 1.00 1.00 

 

Table 3B. Rejection Rates ─ Imputed Days at Sea 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.02 0.15 0.21 
10 0.01 0.02 0.28 0.55 
50 0.37 0.54 1.00 1.00 
100 0.65 0.90 1.00 1.00 
150 0.88 0.98 1.00 1.00 

 

Table 3C. Rejection Rates ─ Length Times Imputed Days at Sea 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.07 0.18 
10 0.01 0.03 0.35 0.68 
50 0.29 0.62 1.00 1.00 
100 0.69 0.87 1.00 1.00 
150 0.95 0.99 1.00 1.00 

 

Table 3D. Rejection Rates ─ Estimated Total Effort 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.09 0.19 
10 0.01 0.02 0.24 0.35 
50 0.22 0.49 0.98 1.00 
100 0.57 0.80 1.00 1.00 
150 0.77 0.95 1.00 1.00 
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Table 4A. Rejection Rates ─ Operating Days, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.15 0.26 0.21 
10 0.00 0.13 0.25 0.38 
50 0.03 0.15 0.31 0.59 
100 0.10 0.21 0.36 0.69 
150 0.18 0.28 0.40 0.75 

 

Table 4B. Rejection Rates ─ Imputed Days at Sea, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.01 0.15 0.20 
10 0.00 0.00 0.25 0.51 
50 0.00 0.33 0.99 1.00 
100 0.00 0.70 1.00 1.00 
150 0.00 0.87 1.00 1.00 

 

Table 4C. Rejection Rates ─ Imputed Days at Sea Times Length, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.07 0.18 
10 0.01 0.03 0.35 0.68 
50 0.29 0.62 1.00 1.00 
100 0.69 0.87 1.00 1.00 
150 0.95 0.99 1.00 1.00 

 

Table 4D. Rejection Rates ─ Estimated Effort, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.00 0.00 0.06 
10 0.00 0.00 0.00 0.14 
50 0.00 0.13 0.34 0.97 
100 0.00 0.40 0.73 1.00 
150 0.00 0.47 0.92 1.00 
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Table 5  Distance to the Model, by Vessel Size and Property Rights Regime 

  (1) (2) (3) (4) (5) (6) 

Measure 
of Effort  Combined 

Small 
Before 

Small 
After 

Large 
Before 

Large 
After DD 

Operating 
Days 

Adjusted 
MSE 1.44722 0.19987 1.30189 0.29854 3.82339 2.42 

KS p-val 0.00 0.87 0.00 0.63 0.17 -- 

Imputed 
Days at 
Sea 

Adjusted 
MSE 3.42457 0.04259 2.26897 2.23303 6.96962 2.51 

KS p-val 0.00 0.99 0.00 0.72 0.42 -- 

Days x 
Length 

Adjusted 
MSE 0.028109 0 0.015547 0.019244 0.065333 0.03 

KS p-val 0.00 1.00 0.00 0.72 0.35 -- 

Estimated 
Total  
Effort 

Adjusted 
MSE 498.53 105.41 361.38 430.94 905.80 218.9 

KS p-val 0.00 1.00 0.02 0.72 0.98 -- 
This table shows, for each of the four measures of effort, the mean-squared error (ie mean of the squared 
distances between model-consistent marginal costs and the revealed marginal costs), the mean-squared er-
ror adjusted for the number of constraints in the quadratic program (rather than the number of cells), and p-
value for the KS test. Results are shown separately for large and small vessels, for before and after the 
property rights reform, as well as for the combined model.  
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Table 6A. Rejection Rates per Group with Weighted Sampling – Operating Days 

Years Vessels Large- 
after 

Large- 
before 

Small- 
after 

Small- 
before Diff-in-Diff 

3 5 0.04 0.15 0.01 0.07 -0.05 
3 10 0.28 0.30 0.08 0.23 0.13 
3 50 0.92 1.00 0.57 0.97 0.32 
4 5 0.19 0.16 0.05 0.08 0.06 
4 10 0.53 0.40 0.16 0.30 0.27 
4 50 1.00 0.99 0.89 1.00 0.12 
5 5 0.16 0.10 0.05 0.09 0.10 
5 10 0.48 0.46 0.18 0.29 0.13 
5 50 1.00 1.00 0.90 0.99 0.09 

 

 

 

 

Table 6B. Rejection Rates per Group with Weighted Sampling – Imputed Days at Sea 

Years Vessels Large 
-after 

Large 
-before 

Small 
-after 

Small 
-before Diff-in-Diff 

3 5 0.13 0.07 0.04 0.09 0.11 
3 10 0.34 0.27 0.15 0.18 0.10 
3 50 1.00 1.00 0.80 1.00 0.20 
4 5 0.26 0.11 0.04 0.05 0.16 
4 10 0.48 0.28 0.24 0.21 0.17 
4 50 1.00 0.99 0.96 0.99 0.04 
5 5 0.23 0.14 0.11 0.07 0.05 
5 10 0.57 0.40 0.27 0.22 0.12 
5 50 1.00 1.00 0.99 0.99 0.00 
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Table 6C. Rejection Rates per Group with Weighted Sampling – Length times Days at Sea 

Years Vessels Large- 
after 

Large 
-before 

Small 
-after 

Small 
-before Diff-in-Diff 

3 5 0.04 0.05 0.01 0.07 0.05 
3 10 0.36 0.23 0.09 0.24 0.28 
3 50 0.99 0.98 0.74 0.97 0.24 
4 5 0.04 0.09 0.07 0.11 -0.01 
4 10 0.40 0.34 0.18 0.26 0.14 
4 50 1.00 1.00 0.82 0.99 0.17 
5 5 0.20 0.11 0.07 0.08 0.10 
5 10 0.60 0.33 0.19 0.18 0.26 
5 50 1.00 0.99 0.95 0.97 0.03 

 

 

 

 

Table 6D. Rejection Rates per Group with Weighted Sampling – Estimated Total Effort 

Years Vessels Large 
-after 

Large 
-before 

Small 
-after 

Small 
-before Diff-in-Diff 

3 5 0.06 0.10 0.00 0.02 -0.02 
3 10 0.21 0.17 0.03 0.08 0.09 
3 50 0.98 0.95 0.61 0.79 0.21 
4 5 0.09 0.12 0.04 0.05 -0.02 
4 10 0.35 0.36 0.10 0.08 -0.03 
4 50 1.00 0.99 0.76 0.75 0.00 
5 5 0.18 0.10 0.01 0.03 0.10 
5 10 0.47 0.30 0.12 0.10 0.15 
5 50 1.00 0.99 0.77 0.85 0.09 
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Table 7. Difference-in-Differences Treatment Effects Per Unit Effort 
  Log of Tons Caught Log of Price Per Ton 
 Log  

Revenue Total  Cod Haddock Saithe Other Total Cod Haddock Saithe Other 

            

𝛽𝛽0:  Days 0.393** 0.429** 0.0282 0.414 0.0804 1.465*** -0.0363 0.0630** -0.0136 0.135** -0.0275 
(0.138) (0.176) (0.0888) (0.500) (0.489) (0.413) (0.0853) (0.0222) (0.0411) (0.0557) (0.149) 

𝛽𝛽1:  
Post*Days 

-0.0953 -0.0561 -0.0885 -0.545 1.326** -0.347 -0.0393 -0.0430* -0.0918** -0.0495 -0.148 
(0.130) (0.169) (0.0898) (0.489) (0.477) (0.405) (0.0866) (0.0219) (0.0409) (0.0587) (0.151) 

𝛽𝛽2: 
Large*Days 

0.233*** 0.103 0.354*** 0.541** -0.279 -0.477 0.130* 0.0276 0.132*** 0.0766* 0.179 
(0.0782) (0.129) (0.0524) (0.255) (0.328) (0.385) (0.0690) (0.0175) (0.0390) (0.0426) (0.128) 

𝛽𝛽3: 
Post*Large*
Days 

0.0277*** 0.0222** 0.0539*** 0.105*** 0.163*** -0.00942 0.00548 0.0100*** -0.0109*** 0.0135*** -0.00577 
(0.013) (0.017) (0.016) (0.048) (0.047) (0.045) (0.008) (0.002) (0.005) (0.004) (0.016) 

Observations 1,897 1,897 1,893 1,858 1,871 1,894 1,897 1,893 1,858 1,871 1,894 
R-squared 0.62 0.57 0.50 0.19 0.25 0.21 0.27 0.84 0.51 0.60 0.21 

All regressions include year and vessel-size dummies.  Standard errors, clustered by year and size category, in parentheses. 
*** p<0.01, ** p<0.05, * p<0.10 
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Appendix A.  Proofs. 

the following statements on a panel data set 𝒪𝒪 = �𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡 , �𝑞𝑞𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖1…𝑁𝑁
�
𝑡𝑡𝑡𝑡1…𝑇𝑇

 are equivalent: 

(A) The set 𝒪𝒪 is consistent with the tragedy of the commons with concave production function 

and convex cost function. 

(B) There exists a set of nonnegative numbers �𝐶𝐶𝑖𝑖,𝑡𝑡′ �𝑖𝑖𝑖𝑖1…𝑁𝑁
 that satisfy the linear program: 

  (i)  𝑝𝑝𝑡𝑡F𝑡𝑡
(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡

′

𝑞𝑞𝑖𝑖,𝑡𝑡
 =  

𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑗𝑗,𝑡𝑡
′

𝑞𝑞𝑗𝑗,𝑡𝑡
 ≥ 0  ∀ 𝑖𝑖, 𝑗𝑗 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇; 

 (ii) �𝑞𝑞𝑖𝑖,𝑡𝑡 −  𝑞𝑞𝑖𝑖,𝑡𝑡′��𝐶𝐶𝑖𝑖,𝑡𝑡′ −  𝐶𝐶𝑖𝑖,𝑡𝑡′
′ � ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡, 𝑡𝑡′ ϵ 𝑇𝑇; 

(iii) 𝐶𝐶𝑖𝑖,𝑡𝑡′  ≥ 0  ∀ 𝑖𝑖 ϵ 𝐼𝐼,∀ 𝑡𝑡 ϵ 𝑇𝑇. 

Proof 

Our proof is straightforward and follows the outline of Carvajal et al. (2013). To see (A) implies 

(B), suppose that the data are rationalized with production �𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡 , 𝑞𝑞𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖1…𝑁𝑁,𝑡𝑡𝑡𝑡1…𝑇𝑇. Then the first 

order condition guarantees the existence of �𝐶𝐶′𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖1…𝑁𝑁 that satisfy the common ratio property (i). 

Given convexity of costs, the co-monotone property (ii) is satisfied as well.  

To see (B) implies (A), we first show that at observation t, when (i) is satisfied, there exists 

a concave production function 𝐹𝐹𝑡𝑡 such that 𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡) = 𝐹𝐹𝑡𝑡, and with each firm having the cost func-

tion 𝐶̅𝐶𝑖𝑖, �𝑞𝑞𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖1…𝑁𝑁,𝑡𝑡𝑡𝑡1…𝑇𝑇, which constitutes behavior consistent with the tragedy-of-the–commons 

model. We define 𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡) by 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡′(𝑄𝑄𝑡𝑡) = 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

− 𝑏𝑏𝑡𝑡 and let 𝑏𝑏𝑡𝑡 = 𝑝𝑝𝑡𝑡F𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡
′

𝑞𝑞𝑖𝑖,𝑡𝑡
. A concave func-

tion will satisfy the definition here since the average return is larger than the marginal return. Firm 

𝑖𝑖's decision is to choose 𝑞𝑞𝑖𝑖,𝑡𝑡 that maximizes profit �𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)� − 𝐶𝐶𝑖𝑖,𝑡𝑡′ ; this function is concave, 

so the input level is optimal if and only if it obeys the first-order condition. Apply 𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡) defined 

above, we have 𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
∗ 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡′(𝑄𝑄𝑡𝑡) + �1 −  𝑞𝑞𝑖𝑖,𝑡𝑡

𝑄𝑄𝑡𝑡
� ∗ 𝑝𝑝𝑡𝑡𝐹𝐹

�𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

− 𝐶𝐶𝑖𝑖,𝑡𝑡′ = 𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
�𝑝𝑝𝑡𝑡𝐹𝐹

�𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

− 𝑝𝑝𝑡𝑡𝐹𝐹�𝑡𝑡(𝑄𝑄𝑡𝑡)−𝑄𝑄𝑡𝑡𝐶𝐶𝑖𝑖,𝑡𝑡
′

𝑞𝑞𝑖𝑖,𝑡𝑡
� +

�1 −  𝑞𝑞𝑖𝑖,𝑡𝑡
𝑄𝑄𝑡𝑡
� ∗ 𝑝𝑝𝑡𝑡𝐹𝐹

�𝑡𝑡(𝑄𝑄𝑡𝑡)
𝑄𝑄𝑡𝑡

− 𝐶𝐶𝑖𝑖,𝑡𝑡′ = 0. Hence, 𝑞𝑞𝑖𝑖,𝑡𝑡 is the profit-maximizing input of firm 𝑖𝑖 at time 𝑡𝑡. 

Second, we show that if for some firm 𝑖𝑖 there are positive scalars �𝐶𝐶𝑖𝑖,𝑡𝑡′ �𝑇𝑇𝑇𝑇1…𝑇𝑇
 that are in-

creasing with 𝑞𝑞𝑖𝑖,𝑡𝑡, then there exists a convex cost function 𝐶̅𝐶𝑖𝑖 such that 𝐶𝐶𝑖𝑖,𝑡𝑡′ 𝜖𝜖𝐶̅𝐶𝑖𝑖(𝑞𝑞𝑖𝑖,𝑡𝑡). Proof of this 

part is the same as in Lemma 2 in Carvajal et al. (2013).  
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Using the two conclusions above, we see that constraint (i) confirms that the choice of 

input 𝑞𝑞𝑖𝑖,𝑡𝑡 is the optimal choice that satisfies the first order condition of the TOC model. And con-

straints (i) and (ii) ensure that marginal costs revealed from the linear program is the taken from a 

time-invariant convex cost function. Constraint (iii) ensures the nonnegativity of marginal costs. 

Hence, satisfying the three properties in the linear program implies consistency with the TOC 

model. 
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Appendix B.  Simulations 

As described in Section 3.4, we generated data from four simulations, under TOC and IFQ property 

rights regimes, each with low and high cost parameters. In particular, we assume that aggregate 

output is generated from a Cobb-Douglas production function, with inputs of total fishing effort 

(Q) and the stock of fish (X) and equal weights.  We also normalize the price of fish to one in every 

period:  𝑝𝑝𝑡𝑡𝐹𝐹𝑡𝑡(𝑄𝑄𝑡𝑡)  =  𝑋𝑋𝑡𝑡0.5𝑄𝑄𝑡𝑡0.5.   

There are 100 firms, which each take the price of fish (p) as exogenous. Costs are quadratic 

in effort, Ci(qi)  =  1
2
𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖2. Thus, marginal costs are linear C'i(qi)  =  𝑐𝑐𝑖𝑖𝑞𝑞𝑖𝑖. Substituting these functions 

into Equation (2) and multiplying both sides by 𝑄𝑄/𝑞𝑞𝑖𝑖, the first-order conditions for firm i is: 

( 1
𝑞𝑞𝑖𝑖
− 1

𝑄𝑄
)𝑄𝑄0.5𝑋𝑋0.5 + 1

2
𝑄𝑄−0.5𝑋𝑋0.5 − 𝑐𝑐𝑖𝑖𝑄𝑄 =  0. 

In the low-cost scenario, we set the cost parameter for the first firm 𝑐𝑐1=3 and introduce heteroge-

neity by sequentially increasing each firm's cost parameter by 0.5, i.e. 𝑐𝑐𝑖𝑖+1- 𝑐𝑐𝑖𝑖 = 0.5. For the high-

cost scenario, we set 𝑐𝑐1=5 increase costs at a rate of 0.8. In the open access regime, the low-cost 

scenario more dramatically depletes the resource base over time, so induces more variation in 

behavior. 

Following the standard Gordon-Schaefer bioeconomic model, we assume fish stocks 𝑋𝑋 

grow logistically: 

𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡  =   𝑟𝑟𝑋𝑋𝑡𝑡 �1 −
𝑋𝑋𝑡𝑡
𝐾𝐾�

− 𝐹𝐹𝑡𝑡 

for growth rate 𝑟𝑟 and carrying capacity 𝐾𝐾.  We set 𝑟𝑟 = 0.7 and 𝐾𝐾 = 100.  We initialize the stock of 

fish at 80% of its carrying capacity (i.e. 𝑋𝑋1 = 80) and simulate fifteen periods.  

Table B1 shows the rejection rates for these models, based on repeated draws from sub-

samples of the data, as described in Section 2.2.  We never reject the TOC model under simulated 

TOC conditions.  We reject the TOC model under simulated IFQ conditions at least 20% of the 

time for samples with as little as 5 vessels and 3 years of data.  Mechanically, these rates increase 

with larger subsamples, reaching 100% with 50 vessels included. 

Table B2 summarizes the results from estimating "distance" to the TOC model using the 

full simulated data set, as described in Section 3.2.  It displays summary statistics for the 𝛿𝛿𝑖𝑖,𝑡𝑡 terms 
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from that model. In the low-cost scenario with the TOC regime, all distances are zero, as no ad-

justments are required to fit the TOC model. In the high-cost scenario, very small adjustments are 

needed, presumably for numerical reasons. In the simulated IFQ regimes, the distances are much 

larger. For example, the mean absolute value of 𝛿𝛿𝑖𝑖,𝑡𝑡 as a percent of marginal costs is about 2% in 

the high-cost scenario and 4% in the low-cost scenario, with outliers above 200% in both cases.  



48 
 

Table B1.  Rejection Rates of TOC Model for Simulated TOC and IFQ Regimes under Two 
Cost Scenarios 

Years Vessels Low Costs High Costs 
TOC Regime IFQ Regime TOC Regime IFQ Regime 

3 5 0 20 0 26 
3 10 0 52 0 52 
3 50 0 100 0 100 
3 100 0 100 0 100 
6 5 0 51 0 58 
6 10 0 77 0 82 
6 50 0 100 0 100 
6 100 0 100 0 100 
8 5 0 52 0 55 
8 10 0 83 0 87 
8 50 0 100 0 100 
8 100 0 100 0 100 
10 5 0 61 0 55 
10 10 0 87 0 93 
10 50 0 100 0 100 
10 100 0 100 0 100 

The first two columns together define a set of samples, based on the number of vessels and years of data 
included in each sample. Each cell in the final four columns show the percentage of subsamples in which 
the TOC model is rejected. 
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Table B2.  Summary Statistics of Distance to the Model 

Summary Statistic 
Low Costs High Costs 

TOC Regime IFQ Regime TOC Regime IFQ Regime 

Root Mean Squared Error (RMSE) 0 0.218 0.001 0.061 
RMSE as a Pct of Average MC 0% 7.11% 0.04% 2.12% 
Pct of Observations with 𝛿𝛿𝑖𝑖,𝑡𝑡 ≠ 0 0% 76.73% 5.13% 39.07% 
Mean of abs (𝛿𝛿𝑖𝑖,𝑡𝑡/𝑀𝑀𝑀𝑀𝑖𝑖,𝑡𝑡) 0% 4.35% <0.01% 2.01% 
Max of abs (𝛿𝛿𝑖𝑖,𝑡𝑡/𝑀𝑀𝑀𝑀𝑖𝑖,𝑡𝑡) 0% 253.26% 1.02% 219.89% 

This table shows summary statistics for the error term, 𝛿𝛿𝑖𝑖,𝑡𝑡, from Section 3.2, under four simulated policy 
experiments. 
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Appendix C.  Data and Additional Results 

Imputed days at sea 

To impute days at sea when these observations are missing, we use the following regression 

model: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖,𝑡𝑡 = 𝛽𝛽1 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑡𝑡 + 𝛽𝛽2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑡𝑡 + 𝜆𝜆𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡, 

where 𝜆𝜆𝑡𝑡denotes year fixed effects. Note we cannot include vessel fixed effects as they cannot be 

estimated for those vessels with insufficient data. We run the above model conditional on 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 0 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 > 0, and use the predicted coefficients to estimate missing 

values of days at sea for observations with positive operating days. Table B1 gives the estimated 

regression coefficients from the above equation. Model 1 omits operation days; Model 2 includes 

it. Results from these models are displayed in Table C1. We use imputations from Model 2 in the 

main body of the paper.   

Estimation of scalar-valued effort function. 

We estimate an effort function of multiple inputs as discussed in Section 4.3, and shown in Equa-

tions (6) and (7). Table B2 displays our regression results. Column 1 introduces the individual 

inputs in levels, whereas Column 2 does so in logs (as shown in Equation (8)). We use Column 2 

in our analysis, as it has a better fit. 

Event Studies and Parallel trends 

As part of our difference-in-differences analysis of Section 5.3, we considered event stud-

ies and tested for differences in pre-existing trends between large and small vessels. We fail to 

reject the hypothesis of parallel trends, for all outcomes. Figures C1 to C9 display the event study 

graphs, showing year-by-year differences in large vs small vessels, relative to 2003, along with 

95% confidence intervals based on standard errors clustered by fleet. They show persistent in-

creases in quantity and price post-2003 for large vessels relative to small, especially for cod and 

saithe.  
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Table C1. Regression Model for Imputing Missing Days at Sea 

Days at sea Model 1 Model 2* 
Operation days 0.875*** 0.808*** 
 (0.0223) (0.023) 
Fuel expenditure No 4.351*** 
  (0.646) 
Year fixed effects Yes Yes 
   
R2 0.624 0.641 
N 964 964 

This table displays the results of regressing days at sea on other inputs, to impute days at sea for missing values.   
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 

 

 

Table C2. Regression Model of Effort Function 

Total catch quantity Log-Level Log-Log 
Person-years 0.090*** 0.156** 
 (0.02) (0.057) 
Fuel expenditure 0.039** 0.133** 
 (0.016) (0.031) 
Labor compensation 0.032** 0.703** 
 (0.003) (0.041) 
Year fixed effects 
Vessel fixed effects 

Yes 
Yes 

Yes 
Yes 

R2 0.27 0.41 
N 1092 1092 

This table displays the results from jointly estimating Equations (6) and (7), as described in Section 4.3. 
Standard errors in parentheses. *** p<0.01; ** p<0.05; * p<0.1  
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Figure C1.  Event Study, Total Revenue 

 

Figure C2.  Event Study, Catch of Cod 
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Figure C3.  Event Study, Catch of Haddock 

 

Figure C4.  Event Study, Catch of Saithe 
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Figure C5.  Event Study, Catch of Other Species 

 

Figure C6.  Event Study, Average Price of Cod 
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Figure C7.  Event Study, Average Price of Haddock 

 

Figure C8.  Event Study, Average Price of Saithe 
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Figure C9.  Event Study, Average Price of Other Species 

 

 


