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Non-Parametric Tests of the Tragedy of the Commons 
Spencer Banzhaf, Yaqin Liu, Martin Smith, and Frank Asche 

 

1.  Introduction 

The "tragedy of the commons" (Hardin 1968) occurs when strategic incentives, unchecked by 

property rights or other institutional arrangements, undermine the potential value of a commonly 

held resource.  Because individuals do not bear the full cost when they utilize the common re-

source, they have an incentive to use it too intensively, relative to the group's welfare.  In the 

standard model, individuals receive a prorated share of collective output, proportionate to their 

inputs, so by increasing inputs they can obtain a larger share of the pie (Gordon 1954, Weitzman 

1974, Dasgupta and Heal 1979).  Classic examples include sending cattle to a common pasture 

(Huffaker and Wilen 1991), cooperatives (Sen 1966), extracting oil from a common pool (Libecap 

and Wiggins 1984, Baltrop and Schnier 2016), extracting groundwater (Brazović et al. 2010, Koch 

and Nax 2017, Burlig et al. 2019, Ayres et al. 2019), and fishing from the sea (Gordon 1954; 

Costello et al. 2008, Huang and Smith 2014, Birkenbach et al. 2017).  Stavins (2011) offers a 

review. 

Though examples of the tragedy at work are pervasive, groups can avoid the trap of open-

access by devising ways to cooperate and limit access to the commons, effectively managing com-

mon-pool resources to avoid the tragedy (Ciriacy-Wantrup and Bishop 1975, Ostrom 1990).  Evi-

dence from laboratory experiments suggests that when they make decisions anonymously and 

without communication, individuals do over-exploit common resources, producing the "tragedy," 

but when they can communicate and/or can build other institutions to change incentives, they can 

overcome the tragedy (Ostrom 2009). 

Surprisingly, then, there have been few empirical tests of the standard model with naturally 

occurring data.  Several studies have considered the aggregate effects of different property rights 

regimes.  In the context of pumping races, Balthrop and Schnier (2016) find that unitization de-

creases the race to pump.  In the context of fisheries, Costello et al. (2008) and Birkenbach et al. 

(2017) find that individual catch shares can prevent the collapse of fisheries and slow the race to 

fish.  These policy outcomes are consistent with over-exploitation in the open-access regime, but 
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do not test individual behavior. 

Kirkley et al. (2002) and Felthoven et al. (2009) outline approaches for measuring capacity 

utilization in an industry exploiting a common pool resource, such as a fishery, interpreting excess 

capacity as a symptom of the excessive application of variable inputs to the resource.  This ap-

proach requires estimating a production function for firms.  But, although they certainly estimate 

important policy effects of various property rights regimes, and although they provide "circum-

stantial" evidence of commons-like behavior, none of these papers provide an explicit mapping 

from the strategic behavior in the commons model to the data in a way which allows the behavioral 

model to be tested.   

Taking a very different approach, Huang and Smith (2014) conducted the first micro-level 

empirical investigation of strategic behavior in a common pool.  They develop a dynamic structural 

model of the microeconomic behavior of fishers operating in an open access fishery.  Each fisher 

chooses his effort to maximize his expected utility given all other fishers' actions, with agglomer-

ation or congestion effects specified such that individual catch per day is affected by the total 

number of vessels fishing on that day.  With estimates from their parametric model, potential effi-

ciency gains can be quantified by comparing the optimal vessel numbers to the predicted numbers 

resulting from the individual maximization problem.  However, their approach presupposes Nash 

behavior in a commons game rather than providing a way to test for such behavior.  Moreover, 

their approach is highly parametric, which has the advantage of allowing for counter-factual policy 

simulations and welfare analyses, but comes at the cost of bringing in numerous maintained as-

sumptions when it comes to testing for particular modes of strategic behavior. 

In this paper, we introduce an alternative empirical strategy that complements the existing 

literature.  In particular, we develop a non-parametric revealed preference-type test for the canon-

ical behavioral model of the tragedy of the commons.  Recently, Carvajal et al. (2013) developed 

a revealed preference test for Cournot equilibrium, deriving properties that hold when firms are 

strategically interacting as predicted by that model.  As the tragedy of the commons and the 

Cournot model are essentially isomorphic (both are surplus-sharing games), we derive similar 

properties that hold under the strategic interactions of the tragedy of the commons.  Our test has 

the advantage of requiring no parametric assumptions about production functions or cost functions 

(beyond convexity).  The test is derived from the key characteristics of the tragedy of the commons 
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that each agent maximizes its objective function independently and from a proportionate sharing 

rule.  The test can be implemented with panel data of individual inputs and total output.  In partic-

ular, given panel data on each agent's input and the total output from exploitation, we show that a 

data set is consistent to the tragedy of the commons with convex cost functions if and only if there 

is a solution to a linear program that we can explicitly construct from the data.  Accordingly, the 

tests we derive can be applied to various settings with common pool resources, from fisheries to 

oil and water extraction. 

Beyond adapting the approach of Carvajal et al. to the commons, we extend their tests to 

incorporate sampling errors in total input and output.  Sampling error is modeled as a latent pa-

rameter, which can be inferred from our linear program under the null hypothesis of behavior 

consistent with the tragedy-of-the-commons.  The model allows for the analyst to impose bound-

aries on permissible sampling errors based on credible information or assumptions.  Sampling 

errors change the testable properties, and increase the domain of the linear program, which make 

the test less stringent.  Hence, compared to the basic tests, tests with sampling errors reduce rejec-

tion rates of the model. 

Additionally, we derive tests to gauge the minimum distance of the set of recovered mar-

ginal costs from those that are consistent with the model.  Developing ideas proposed by Afriat 

(1972), Diewert (1973), and Varian (1985), we include an adjustment factor in the model to guar-

antee that data would always pass the behavioral test.  We apply a linear program to reveal the 

minimal magnitude of the adjustments required as a measure of distance from the model.  In one 

version of this approach, we consider behavioral errors in which the marginal costs used in the 

firms' objective functions depart from the true costs.  In another version, we consider measurement 

error in inputs.  Using these errors, we apply a Kolmogorov-Smirnov test to inform probability 

distributions for rejections of the model.  These extensions also could be applied to the tests of the 

Cournot model (as in Carvajal et al.) as well as the tragedy of the commons. 

We take the test to the Norwegian coastal fishery for cod and other whitefish (the largest 

fishery in Norway and a major contributor to the global market for whitefish).  Our basic results 

reject behavior consistent with the tragedy of the commons using the full data sets.  Results from 

tests with sampling errors display lower rejection rates in general but do not alter the pattern.  Sig-

nificantly, preliminary results show that the rejection rates are higher after property-rights reforms 
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in the Norwegian fishery that reduced open-access incentives.  In other words, using our test, the 

tragedy of the commons model is rejected to a greater degree after these reforms, as we would 

expect. 

The rest of the paper is organized as follows.  In Section 2, we derive the theoretical results 

for the classic static model of the average return game, in which agents select their inputs and each 

unit of input receives the average return (rather than marginal return).  In Section 3, we offer ad-

ditional extensions to the model, including quantifying distance to the model, conducting statistical 

tests, and measurement error.  Section 4 discusses the empirical application and Section 5 shows 

the results.  Section 6 concludes. 

2.  Basic Result:  A Nonparametric Test of the Tragedy of the Commons  

2.1.  The Static Average Return Game 

Consider an industry consisting of 𝐼 profit-maximizing firms, indexed by 𝑖 = 1,2, … , 𝐼, each hav-

ing free access to an exogenously fixed common property resource.  There are 𝑇 decision periods 

indexed by 𝑡 = 1,2, … , 𝑇.  Denote 𝑞௜,௧ as the extraction effort by firm 𝑖 in period 𝑡.  For example, 𝑞௜,௧ might be the number of fishing vessel-days in year 𝑡.  Let 𝑄௧  =  ∑ 𝑞௜,௧௜  be the total level of 

effort applied to the resource at time 𝑡.  The differentiable production function for the industry at 

time 𝑡 is 𝑌௧ = 𝐹௧(𝑄௧), with 𝐹(0) = 0, 𝐹′(𝑄) > 0, and 𝐹′ non-increasing for all 𝑡. 

Following the canonical commons model (Gordon 1954, Weitzman 1974, Dasgupta and 

Heal 1979, Cornes and Sandler 1996), each firm's extraction is proportionate to its share of input.  

Thus, firm 𝑖′s revenue in period 𝑡  is ௤೔,೟ொ೟ ∗ 𝑝௧𝐹௧(𝑄௧), where 𝑝௧ denotes the market price of output 

(e.g. fish) at time 𝑡.  This assumption captures the characteristic of open-access resources that 

factors tend to receive their average rather than the marginal product.  Finally, let 𝐶௜(𝑞௜,௧) denote 

firm 𝑖's cost function, which is a differentiable and non-decreasing function of 𝑞. 

Following Carvajal et al.'s logic for Cournot competition, we say a panel data set 𝒪 =ቄ𝑝௧𝐹௧, ൫𝑞௜,௧൯௜ఢଵ…ேቅ௧ఢଵ…் is consistent with the tragedy of the commons if there exist cost functions 𝐶̅௜ for each firm 𝑖, and concave production functions 𝐹ത௧ for each observation 𝑡 which jointly satisfy 

the following two conditions: 
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(i) 𝐹ത௧(𝑄௧) = 𝐹௧  

(ii) 𝑞௜,௧ 𝜖 𝑎𝑟𝑔𝑚𝑎𝑥௤෤೔,೟ஹ଴{௤෤೔,೟ொ೟ ∗ 𝑝௧𝐹௧(𝑄௧) − 𝐶̅௜(𝑞෤௜,௧)}. 

Condition (i) says the production function must be consistent with observed output at time t.  Con-

dition (ii) says firm 𝑖's input at time t maximizes its profit given the inputs of all other firms (a 

standard Nash assumption). 

Note that we do not need to estimate the production function.  We allow the analysis to 

explain the data using any arbitrary concave production function, as long as it passes through the 

observed total output and inputs, 𝑝௧𝐹௧(𝑄௧) and 𝑄௧, at each decision period.  Similarly, no re-

strictions are placed on firms' cost functions except that they are increasing and convex. 

To see how we can avoid functional form assumptions, consider firm i's profit-maximiza-

tion problem at time 𝑡: 

(1) max௤೔,೟ ௤೔,೟ொ೟ ∗ 𝑝௧𝐹௧(𝑄௧) − 𝐶௜ (𝑞௜,௧).  

Taking other firms' actions as given, the first-order condition is: 

(2)  ௤೔,೟ொ೟ ∗ 𝑝௧𝐹௧ᇱ(𝑄௧) + ቀ1 −  ௤೔,೟ொ೟ ቁ ∗ ௣೟ி೟(ொ೟)ொ೟ = 𝐶௜,௧ᇱ .  

This is the standard result that firms equate marginal cost to a weighted average of marginal returns 

and average returns (Weitzman 1974, Dasgupta and Heal 1979).  In the case of a monopolist, 𝑞௜,௧ =𝑄௧ and the entire weight is on the efficient condition to equate marginal cost to marginal return.  

In the limit, as the firms grows small, 𝑞௜,௧/𝑄௧ goes to zero and the firms equate marginal cost to 

average revenue, thus depleting all resource rents (as in Gordon 1954). 

Rearranging terms, we obtain: 

(3) ௣೟ி೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟ = ௣೟ி೟(ொ೟)ொ೟ − 𝑝௧𝐹௧ᇱ(𝑄௧). 

Notice in Equation (3) that the left-hand side involves firm-specific terms (inputs 𝑞௜,௧ and marginal 

costs 𝐶௜,௧ᇱ ) while the right-hand side involves only market-wide data (total revenue 𝑝௧𝐹௧(𝑄௧), mar-

ginal revenue product 𝑝௧𝐹௧ᇱ, and total input 𝑄௧).  Consequently, from the first-order condition, we 

obtain a common ratio property comparable to that in Carvajal et al.: 
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(4)  ௣೟୊೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟  =  ௣೟୊೟(ொ೟)ିொ೟஼ೕ,೟ᇲ௤ೕ,೟  = ∙∙∙ =  ௣೟୊೟(ொ೟)ିொ೟஼಺,೟ᇲ௤಺,೟ ≥ 0 for 𝑡 𝜖 𝑇. 

In other words, in each period, functions of firms' extraction effort and marginal costs should all 

be equal.  The expressions are nonnegative given the concavity of the production function.   

Moreover, because each firm's cost function is convex, the array {𝐶௜,௧ᇱ } displays increasing 

marginal costs for each firm i.  Thus, if the cost function is time-invariant, we also have the co-

monotone property as described in Carvajal et al., such that for all i,  

(5)  𝑞௜,௧ >  𝑞௜,௧ᇲ  →  𝐶′௜,௧  ≥  𝐶′௜,௧ᇲ.  
Consequently, a set of observations is consistent with the tragedy of the commons with 

convex cost functions if and only if there exist nonnegative numbers {𝐶௜,௧ᇱ } for all i,t that obey the 

common ratio and co-monotone properties.  In Example 1, we show that certain data sets are not 

consistent with the tragedy of the commons given the interplay of the two properties.  

Example 1: Consider the following observations of two firms 𝑖 and 𝑗 sharing a common-

pool resource: 

(i) At observation 𝑡, 𝑝௧𝐹௧(𝑄௧) = 50, 𝑞௜,௧ =50, 𝑞௝,௧ =100. 

(ii) At observation 𝑡ᇱ,  𝑝௧ᇲ𝐹௧ᇲ(𝑄௧ᇲ) = 350, 𝑞௜,௧ᇲ =70, 𝑞௝,௧ᇲ =60. 

Re-arranging the common-ratio property at t' to isolate 𝐶௝,௧ᇲᇱ  and using the fact that ௤ೕ,೟ᇲ௤೔,೟ᇲ 𝐶௜,௧ᇲᇱ ≥ 0, we have: 

𝐶௝,௧ᇲᇱ   =   ௣೟ᇲி೟ᇲ(ொ೟ᇲ)ொ೟ᇲ − ௤ೕ,೟ᇲ௤೔,೟ᇲ  ௣೟ᇲி೟ᇲ(ொ೟ᇲ)ொ೟ᇲ + ௤ೕ,೟ᇲ௤೔,೟ᇲ 𝐶௜,௧ᇲᇱ  ≥   ௣೟ᇲி೟ᇲ(ொ೟ᇲ)ொ೟ᇲ − ௤ೕ,೟ᇲ௤೔,೟ᇲ  ௣೟ᇲி೟ᇲ(ொ೟ᇲ)ொ೟ᇲ  = 0.385. 

Now, we know from the first-order condition (2) that 𝐶௜,௧ᇱ < ௣೟ி೟(ொ೟)ொ೟ , at each time t for all i, 

because 𝐶௜,௧ᇱ = ௤೔,೟ொ೟ ቀ𝑝௧𝐹௧ᇱ(𝑄௧) − ௣೟ி೟(ொ೟)ொ೟ ቁ + ௣೟ி೟(ொ೟)ொ೟  and 𝐹௧ᇱ(𝑄௧) − ி೟(ொ೟)ொ೟ < 0 given the concavity of 

production function.  Thus, 𝐶௝,௧ᇱ <  ௣೟ி೟(ொ೟)ொ೟  = 0.33.  In addition, from the co-monotone property, we 

have 𝐶௝,௧ᇱᇱ ≤ 𝐶௝,௧ᇱ   because 𝑞௝,௧ᇱ < 𝑞௝,௧.  Thus, in sum, 0.385 ≤ 𝐶௝,௧ᇲᇱ < 𝐶௝,௧ᇱ <  0.33, which is clearly 

a contradiction. Thus, there are no nonnegative marginal costs that satisfy the common-ratio prop-

erty and the co-monotone properties.  The data in Example 1 are not consistent with the tragedy of 
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the commons model. 

2.2.  Implementation:  A Linear Program for the Test 

Our approach to testing the tragedy-of-the-commons model can be reformulated as a sim-

ple linear program:  Given panel data on each agent's input and the total output from exploitation, 

find nonnegative marginal costs, {𝐶௜,௧ᇱ }, for all agents i at each time t, which satisfy the common-

ratio property (4) and the co-monotone property (5).  This linear program is analogous to the con-

ditions specified in Afriat’s Theorem for testing whether consumers' choices are consistent with 

utility-maximizing behavior or, equivalently, the Generalized Axiom of Revealed Preference 

(GARP) (Afriat 1967).  This overall approach encompasses a diversity of research programs and 

has been extended to a wide array of settings (Chambers and Echenique 2016, Hands 2014), in-

cluding firms’ costs (Varian 1984) and Cournot competition (Carvajal et al. 2013).   

In our context, a set of observations is consistent with the tragedy of the commons with 

convex cost functions if and only if, given the observed 𝑝௧F௧, 𝑞௜,௧, and 𝑄௧ there are numbers 𝐶′௜,௧ 

satisfying: 

  (i)  ௣೟୊೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟  =  ௣೟୊೟(ொ೟)ିொ೟஼ೕ,೟ᇲ௤ೕ,೟  ≥ 0  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (ii) ൫𝑞௜,௧ −  𝑞௜,௧ᇲ൯൫𝐶′௜,௧ −  𝐶′௜,௧ᇲ൯ ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶′௜,௧  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

See Appendix A for a proof. 

Condition (i) is the common-ratio property which follows from the first-order condition; 

condition (ii) is the co-monotone property which follows from the convexity of the cost function; 

and condition (iii) is a non-negativity constraint which follows from the fact that the cost function 

is increasing.  For a panel data set, failure to obtain a solution to any element in the marginal cost 

set {𝐶ᇱ௜,௧}∀ ௜ ஫ ூ,∀ ௧ ஫ ், will result in a rejection of the model. 

To understand the implications of this test, we emphasize three features.  First, it is entire 

data sets that are or are not rejected, not individual observations or individual firms.  Again, this 

feature is consistent with tests of consumers' choices, in which entire data sets are or are not con-
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sistent with GARP, not individual choices.  However, one can always throw out particular obser-

vations from the data set and consider the effect of doing so.  Thus, taking random subsets of the 

data, one can generate rejection rates, as a quantitative measure of "how much" the data are incon-

sistent with the tragedy of the commons model.  Further, one can isolate data from particular firms 

or periods to see if the data set is more likely to be rejected with or without them.  Below, we 

leverage this possibility in our empirical applications to test the effect on rejection rates of includ-

ing data generated under differing property rights regimes. 

Second, our approach tests the minimum necessary conditions for the above behavioral 

model.  Under the model's behavioral assumptions, the test eliminates any type I error.  On the 

other hand, it is weak in the sense of potentially allowing a great deal of type II error.  That is, 

rejection of the model gives one confidence that the data indeed are not consistent with the tragedy 

of the commons model, but—as always—failure to reject does not guarantee the model is true 

(nor, of course, that alternative models are false).  This is not a limitation of our approach so much 

as a limitation of what can be said about the behavioral model:  if further restrictions would lead 

to more rejections, then arguably it is the auxiliary hypotheses that are being rejected, not the 

fundamentals of the behavioral model.  It is always the case that failure to reject a null hypothesis 

does not guarantee it to be true. 

Third, nevertheless, even with the very weak assumptions we bring to the model, we still 

can learn a great deal from the tests derived from it.  Data sets that are consistent with the tragedy 

of the commons model are inconsistent with at least some rival models.  Consider, for example, 

the case of non-tradable quotas, which restrict each firm to extract only up to its quota.  Although 

non-tradability prevents cost minimization subject to total extraction by the group (as firms with 

high costs at the margin may be allocated quota that cannot be traded to low-cost firms), non-

tradable quotas do have some advantages.  Typically, they cap the total allowable extraction so as 

to protect the sustainability of a resource.  Additionally, unlike group quotas (which also cap total 

extraction), they prevent a "race" within the time period over which the quota is defined, as a firm's 

share is exogenous to how quickly it extracts.  This can prevent, e.g., a race to pump water or oil 

or to catch fish in order to get a larger share of the group quota. 

Importantly, non-tradable quotas do not lead to a common ratio property like Equation (4).  

To see this, note that the objective function would now be written as a constrained optimization 
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problem: 

(1') max௤೔,೟ ௤೔,೟ொ೟ ∗ 𝑝௧𝐹௧(𝑄௧) − 𝐶௜ ൫𝑞௜,௧൯ + 𝜆௜,௧ ቆ𝐿௜,௧ − ௤೔,೟ொ೟ ∗ 𝐹௧(𝑄௧)ቇ, 
 

where 𝐿௜,௧ is the quota limit and 𝜆௜,௧ is the shadow cost of that limit.  Note output prices appear in 

the revenue term but not the constraint.  The revised first-order condition is: 

(2')  ൫𝑝௧ − 𝜆௜,௧൯ ቂ௤೔,೟ொ೟ ∗ 𝐹௧ᇱ(𝑄௧) + ቀ1 − ௤೔,೟ொ೟ ቁ ∗ ி೟(ொ೟)ொ೟ ቃ = 𝐶௜,௧ᇱ .  

The quota is associated with a firm-specific shadow price on extraction, so it is equivalent to the 

original problem with an adjusted output price.  Finally, rearranging terms, we obtain: 

(3') ி೟(ொ೟)ିொ೟஼೔,೟ᇲ ൫௣೟ିఒ೔,೟൯ൗ௤೔,೟ = ி೟(ொ೟)ொ೟ − 𝐹௧ᇱ(𝑄௧). 

Taking this equation in isolation, it would appear that instead of solving the linear program by 

finding numbers 𝐶௜,௧ᇱ , we could instead simply solve for numbers 𝐶௜,௧ᇱ ൫𝑝௧ − 𝜆௜,௧൯⁄ .  However, the 

latter numbers would not be expected to satisfy the co-monotone property, which is based on the 

convexity of 𝐶௜,௧ᇱ  alone.  For example, ceteris paribus, higher effort one year might come with a 

higher quota, but this would tend to lower 𝜆௜,௧ (as the quota is less binding), and hence lower the 

over-all expression 𝐶௜,௧ᇱ ൫𝑝௧ − 𝜆௜,௧൯⁄ , perhaps violating the co-monotone property.   

Thus, we would expect an IVQ regime to lead to higher rejection rates.  We leverage this 

insight in our empirical work below. 

3.  Extensions 

In this section, we extend the model in various ways.  Our extensions can be applied to other set-

tings as well, including the case of Cournot competition considered by Carvajal et al. (2013).  

Thus, they represent an additional contribution of this research. 

3.1  The Test with Sampling Error 

The test we derived in Section 2 assumes that data are observed without error.  Moreover, 

it assumes data from a census (not just sample) of users, so that Q = ∑iqi and total catch F(Q) are 

observed.  In this section, we consider the case where only a sample of users are observed, so that 
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total effort Q and total revenue F are estimates based on sample mean times N. 

If total effort and total revenue are based on sample averages, they are observed with error.  

Let 𝛼௧ and 𝛽௧ be the respective proportionate errors, so we observe 𝑝௧𝐹෠௧ = 𝑝௧𝐹௧ ∗ 𝛼௧ and 𝑄෠௧ =  𝑄௧ ∗𝛽௧.  Then the common ratio property becomes ఈ೟௣೟୊೟(ொ೟)ିఉ೟ொ೟(஼೔,೟ᇲ )௤೔,೟  =  ఈ೟௣೟୊೟(ொ೟)ିఉ೟ொ೟(஼ೕ,೟ᇲ )௤ೕ,೟ .  Dividing 

both sides by 𝛽௧ and letting 𝛾௧ = 𝛼௧/𝛽௧, we can write the linear program with sampling errors as: 

(i) ఊ೟௣೟୊೟(ொ೟)ିொ೟(஼೔,೟ᇲ )௤೔,೟  =  ఊ೟௣೟୊೟(ொ೟)ିொ೟(஼ೕ,೟ᇲ )௤ೕ,೟ ≥ 0,  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 
(ii) ൫𝑞௜,௧ −  𝑞௜,௧ᇲ൯൫𝐶௜,௧ᇱ − 𝐶௜,௧ᇲᇱ ൯ ≥ 0, ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶௜,௧ᇱ  ≥   0,  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇, 
(iv) 𝛾௧ > 0, ∀ 𝑡 ϵ 𝑇. 

Without sampling errors, we should look for marginal costs that satisfy properties above 

without 𝛾௧.  We treat 𝛾௧ as unknown and let the linear program look for the set of {𝛾௧, 𝐶௜,௧ᇱ }∀ ௜ ஫ ூ,∀ ௧ ஫ ் 

that rationalizes the data with the model.  The idea is to ask if there are plausible sampling errors 

in the estimated aggregate 𝑄෠௧ and 𝑝௧𝐹෠௧ that would make the micro data consistent with the model.  

Furthermore, when more information (or modeler-defined judgement) of direction or range of the 

sampling errors is available, we can easily add bounds on the sampling errors to the constraints.1 

In the linear program specified above, 𝛾௧ counts the ratio of sampling errors in total revenue 

and total input.  It increases the bandwidth of the two variables and gives more flexibility to the 

constraints on marginal costs.  Compared to the basic model, we would expect lower rejection 

rates of the model when sampling error is allowed.  Meanwhile, estimates of the sampling errors {𝛾௧}∀ ௜ ஫ ூ,∀ ௧ ஫ ் associated with the corresponding rejections to the model inform us about the sen-

sitivity of the tests to sampling errors.  In our application below, we compare results for the same 

sample with and without sampling errors.  

3.2.  Distance to the Model and Statistical Tests 

Following the logic of sampling error in Section 3.1, relaxing the constraints results in 

lower rejections to the model.  Building on the marginal-cost-consistency methods described in 

                                                            
1 For example, if the modeler suspects β > 1, concavity of F implies α < β, so γ < 1; the opposite would 
follow if β < 1. 
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Afriat (1972), Diewert (1973), and Varian (1985), we can gauge the distance of the revealed mar-

ginal costs in our tests to those that are consistent with the TOC model.  Similar to Varian’s ap-

proach of finding a minimal perturbation of the budget constraints that would make observed 

choices consistent with GARP, we can find a minimal adjustment to marginal costs needed to turn 

a rejection of the model to acceptance. 

We implement this method by adding adjustment factors to marginal costs in the common 

ratio property, but not the co-monotone property.  The idea is that the marginal costs in the co-

monotone property describe the true convexity of the cost function, but firms may treat the mar-

ginal costs as being different in their objective function.  The adjustment factors are constructed 

in a way to guarantee that data would always pass the model.  We use a linear program to find the 

minimal magnitude of the adjustment, which is the minimized distance from the revealed marginal 

costs to those that would be consistent to the model.  We denote them as revealed marginal costs 

and model-consistent marginal costs below, respectively.  Based on these solutions, we then derive 

Kolmogorov-Smirnov and chi-squared tests to inform statistical acceptance/rejection of the model.  

We use the following quadratic program:  min஼೔,೟ᇲ ,ఋ೔,೟ ෍ ෍ 𝛿௜,௧ଶ௜௧  

Subject to: 

(i) ௣೟୊೟(ொ೟)ିொ೟(஼೔,೟ᇲ ାఋ೔,೟)௤೔,೟  =  ௣೟୊೟(ொ೟)ିொ೟(஼ೕ,೟ᇲ ାఋೕ,೟)௤ೕ,೟ ≥ 0,  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 
(ii) ൫𝑞௜,௧ −  𝑞௜,௧ᇲ൯൫𝐶௜,௧ᇱ − 𝐶௜,௧ᇲᇱ ൯ ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶௜,௧ᇱ  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 𝛿௜,௧ is the minimum adjustment factor on marginal cost 𝐶௜,௧ᇱ .  Note that the 𝛿௜,௧ appear only in 

condition (i), not (ii).  Again, the intuition here is that the cost functions are convex (ii), but firms 

may make errors in their optimization which show up in their first-order conditions (i).  Alterna-

tively, the analyst has made an error in the modelling of the objection function, which also shows 

up in condition (i). 

Constraints (i), (ii) and (iii) guarantee that the set ൛𝛿௜,௧, 𝐶௜,௧ᇱ ൟ satisfies the common-ratio 
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property, co-monotone property, and nonnegativity constraint.  By construction, such solutions 

always exist.2  Hence, we can identify and quantify the minimal squared adjustment factors ൛𝛿௜,௧ൟ, 

which are the minimal distances between the revealed marginal costs to the model-consistent mar-

ginal costs. 

Statistical Tests 

Taking the minimal distance found above, we can conduct a Kolmogorov-Smirnov (KS) 

test of the null hypothesis that the data are consistent with the model.  Denote the set of marginal 

costs that are consistent with the model as {𝑚𝑐ప,௧෫ }௜ ஫ ூ,∀ ௧ ஫ ் (model-consistent marginal costs).  The 

model-consistent marginal costs can be obtained from the linear program in this section as 𝐶௜,௧ᇱ +𝛿௜,௧.  Denote the revealed marginal costs of an observed data set as {𝑚𝑐ప,௧ෟ }௜ ஫ ூ,∀ ௧ ஫ ்.  The revealed 

marginal costs are obtained in the linear program as 𝐶௜,௧ᇱ . 

The two-sample KS test directly compares the distance between the cumulative probability 

function (CDF) of two sample variables and checks if the two samples are from the same distribu-

tion.  The empirical distance function is specified as 𝐷௡,௠ = 𝑠𝑢𝑝௫|𝐹ଵ,௡(𝑥) − 𝐹ଶ,௠(𝑥)|, which rep-

resents the supremum of the distance between the CDF of sample 1 with 𝑛 observations and the 

CDF of sample 2 with 𝑚 observations.  In our case, sample 1 consists of the model-consistent 

marginal costs, and sample 2 the revealed marginal costs.  The sample size for both samples is 𝐼 ∗𝑇.  𝐷௡,௠ is a vector consisting of the distance between the two CDFs at each value of the sample 

variable represented by 𝑥, which in our case is the marginal cost.  We can take small intervals on 

the domain of marginal costs, obtain values of the two CDFs, and find the maximum distance of 

the two CDFs.  The null hypothesis is rejected at level 𝛼 if the maximum distance is larger than 

the critical value, that is 𝐷௡,௠ > 𝑐(𝛼) ∗ ට௠ା௡௠∗௡ , at critical level 𝛼. 

Alternatively, we can assume the model-consistent marginal costs follow a log-normal dis-

tribution 𝑁(𝜇, 𝜎ଶ) with the lower limit zero.  Under the null hypothesis that an observed data set 

                                                            
2 This is because the adjustment factors expand the domain of marginal costs to all real numbers.  As there 
is no convexity constraints on the adjustment factors (i.e. no co-monotone constraint), adjustment factors 
can always be found to make the common-ratio properties be satisfied.  Note that it would not do to incor-
porate the adjustment into all equations.  That would simply be the same as the original model.  If there are 
no numbers 𝐶ᇱ௜,௧ satisfying (i)-(iii), then there are no numbers (𝐶ᇱ௜,௧ + 𝛿௜,௧) either.   
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is consistent with the model, revealed MCs would converge to the distribution of model-consistent 

MCs in the limit.  Hence, 𝑧௜,௧ = ୪୭୥ (௠௖ഢ,೟ෟ )ି୪୭୥ (௠௖ഢ,೟෧ )ఙ  follows a standard normal distribution.  And we 

can easily obtain 𝑧௜,௧ from the program, given that 𝑚𝑐ప,௧ෟ  = 𝐶௜,௧ᇱ  and 𝑚𝑐ప,௧෧  = 𝐶௜,௧ᇱ  + 𝛿௜,௧ .  As a result, 𝑆 = ∑ ∑ 𝑧௜,௧ଶூ௜ୀଵ௧்ୀଵ  follows a chi-squared distribution with 𝑇 ∗ 𝐼 degrees of freedom.  With a large 

sample, we can substitute the sample variance for the population variance.  When 𝑆 is larger than 

the critical value of a chi-squared distribution, we can reject the null that the data is consistent with 

the TOC model statistically. 

3.3.  Measurement Error in q 

In Section 3.2, we considered distance to the model in the space of marginal costs as they 

show up in Condition (i), marginal cost consistency.  An alternative is to consider distance to the 

model in the space of inputs 𝑞௜,௧.  If we allow those to be measured with error, then we can frame 

this approach as asking, how large would measurement error in inputs have to be for it to explain 

any rejections of the model? 

In this case, we can again minimize ∑ ∑ 𝛿௜,௧ଶ௜௧  , but with 𝑞௜,௧ replaced by (𝑞௜,௧ + 𝛿௜,௧) and 

similarly 𝑄௧ replaced by (𝑄௧ + ∑ 𝛿௜,௧௜ ) everywhere in the model.  If we denote the model-con-

sistent inputs as 𝑞෤௜,௧ = ൫𝑞௜,௧ + 𝛿௜,௧൯ and similarly the sum 𝑄෨௧ = ൫𝑄௧ + ∑ 𝛿௜,௧௜ ൯, we can write this 

more succinctly as finding the model-consistent inputs 𝑞෤௜,௧ that are closest to the observed inputs.  

This involves the non-linear program: min஼೔,೟ᇲ ,௤෤೔,೟ ෍ ෍൫𝑞෤௜,௧ − 𝑞௜,௧൯௜,௧ଶ௜௧  

Subject to: 

(i) ௣೟୊೟ିொ෨೟஼೔,೟ᇲ௤෤೔,೟  =  ௣೟୊೟ିொ෨೟஼ೕ,೟ᇲ௤෤ೕ,೟  ≥ 0,  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 
(ii) ൫𝑞෤௜,௧ − 𝑞෤௜,௧ᇱ൯൫𝐶௜,௧ᇱ −  𝐶௜,௧ᇲᇱ ൯ ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶௜,௧ᇱ  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

(iv) 𝑞෤௜,௧  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

Note the non-linear constraints in Expressions (i) and (ii).  The basic idea here is to find some set 
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of inputs that are consistent with the outputs and the model restrictions, but to find those inputs 

closest to the observed data.  This approach has the advantage of a clear structural interpretation 

in terms of measurement error and of consistently incorporating the error into all relevant points 

in the model. 

3.4.  Dynamic Resources and Other Games 

Our basic model in Section 2 pertains to the static average-return game with Nash behavior.  

Banzhaf and Liu (2016) further show these results can be extended to the case of conjectural var-

iations (rather than Nash behavior) suggested by Cornes and Sandler (1983).  They also show they 

can be modified to apply to the average cost (rather than average returns) game, where agents 

choose outputs and pay the average costs.  Such problems are relevant to many problems involving 

the division of joint costs, such as telephony. 

In Appendix B, we further show that our results apply to dynamic resources, where the 

tragedy of the commons applies to the dissipation of the in-situ value of leaving resources in place 

(Clark 1980, Levhari and Mirman 1980).  In general, the dynamic model requires additional re-

strictions.  However, as we show in the appendix, our basic model of Section 2 applies whenever 

firms treat the in situ value of the stock as zero or, alternatively, as proportionate to their catch 

shares. 

4.  Empirical Application 

We apply our test to the Norwegian whitefish fishery using data for the period 1998 to 2007.  The 

setting is fitting for two reasons.  First, open-access fisheries are a classic example of the tragedy 

of the commons.  Second, this particular fishery experienced a management change that strength-

ened property rights and thereby reduced tragedy of the commons incentives over the period stud-

ied, such that we would expect the tragedy of the commons model to fit the data better in the first 

part than the second part, allowing for a comparative test of two regimes. 

In the remainder of this section, we further describe the Norwegian fishery and the data 

available. 

4.1.  The Norwegian Ground Fishery 

Norway has the largest fishing industry in Europe.  Its most valuable fishery is whitefish, 
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with cod, haddock and saithe (Atlantic Pollock) being the most important species.  Norway's white-

fish fishery is biologically separate from other major fisheries, so output from the fishery F(Q) can 

be modeled in isolation as a single resource.  The fleet targeting whitefish comprises various vessel 

groups of different sizes and gear.  Trawlers are relatively large vessels, with lengths ranging from 

28 to 76 meters, and fish in deeper waters.  The coastal fleet comprises smaller vessels using a 

variety of gear such as long lines, troll nets and Danish seine.  Our sample contains only the coastal 

fleet.  The management system requires that each fishing vessel is separately owned by an operator, 

so vessels can be taken as firms in our model. 

In 1989 a total allowable catch (TAC) quota was set for the whole whitefish fishery, with 

the TAC divided between the trawler fleet and the coastal fleet.  In 1990, a non-tradable individual 

vessel quota (IVQ) system was theoretical introduced to the Norwegian coastal fleet. To ensure 

that the allocated quotas were fished within the coastal vessel group, an "overbooking system" was 

introduced in 1991 where the sum of the individual vessels’ quotas were higher than the TAC for 

the vessel group.  As the overbooking was substantial, the IVQ system essentially was not binding, 

making the management more like a regulated restricted access system (RRA) than a true IVQ 

system.  From the perspective of our theoretical model, we view this period as preserving the open 

access regime, with some restrictions on technological inputs and total catch, but with no individ-

ual limits on catch (or effort) and with incentives promoting a race to fish.  Our data (described 

below) begin in 1998, during this regime. 

In 2003, the quota for the coastal fleet was divided into four groups by vessel length.  

Groups no longer needed to compete across size categories.  This appears to have helped the small 

vessels as a group.  However, the sum of the individual quotas still exceeded the TAC (group 

quota), so though firms theoretically could catch all their quota, they still had to compete with 

other vessels of the same size class to reach the limit.  Moreover, there was no guarantee they 

would get any quota.  Effectively, the individual quotas were upper-bound constraints. 

Finally, in 2004, overbooking ended for vessels above 15 meters.  Additionally, these large 

vessels now could combine quotas from several vessels onto one, thereby introducing transfera-

bility into the system.  Thus, the regime for larger coastal vessels transformed to a truly binding 

IVQ system in 2004, while it remained an RRA system for smaller vessels.  Hannesson (2013), 

Standal et al. (2016) and Cojocaru et al. (2019) provides further information about the fishery and 
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the development of the management system.   

In sum, from 1998 to 2002, all vessels in our data set were under an RRA regime.  After 

2003, larger coastal vessels transitioned into an IVQ regime while the small vessels were still under 

an RRA regime.  In between, 2003 was something of a transition year.  Small vessels and large 

vessels were given separate group quotas, but still competed within group, a problem that may 

have been especially severe for small vessels.   

This change in property rights regimes affords an opportunity to apply our test of the trag-

edy of the commons using a difference-in-differences design.  We expect higher rejection rates for 

big coastal vessels for the 2003-7 period, relative to the 1998-2002 period, and relative to the 

corresponding difference for small vessels.  In sensitivity analyses, we also consider omitting 

2003. 

4.2.  Description of Data 

The data for the Norway coastal fleet cover the period 1998 to 2007 and come from an 

annual random survey of vessels with only a sample of the registered active vessels being surveyed 

each year.  Table 1 summarizes the data.  The first row shows the sample size.  The second row 

shows the total number of vessels registered in each year (population).  The total sample comprises 

1127 individual vessels from 1998 to 2007.  Each vessel is identified with a unique ID.  We have 

information on the length and weight of each vessel as well as on effort and other inputs, including 

days at sea, operating days (days at sea plus days working at port), fuel expenditure, labor com-

pensation, and the average number of crew members operating the vessel. 

With respect to outputs, we have vessel-year data on the total quantity landed and revenues 

received by species (cod, haddock, saithe and other whitefish), in tons and Norwegian Krone 

(NOK), respectively.  However, our test only requires knowing the aggregate revenue.  Thus, we 

first create an index by summing over fish species, then sum over vessels to obtain the total sample 

revenue for each year, 𝑝௧F෠௧.  Then, we multiply the average sample revenue by number of total 

vessels in the population to obtain the aggregate revenue.  Row 3 of Table 1 shows the total sample 

revenue.  Row 4 converts this sample to an estimate of total revenue, multiplying the sample mean 

by the number of vessels operating.  This is the value of output 𝑝௧F෠௧ used in our test.  It shows 

some ups and downs followed by an upward trend after 2003.  The next row similarly shows the 
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trend in sampled catch in tons.  The remainder of Table 1 offers additional details on the distribu-

tion of catch across vessels, by species and year.  We offer these data for completeness, but only 

use Row 4 from this table in our empirical work. 

Although it requires only annual aggregate revenue on the output side, our test requires 

micro-level data on the input side.  Vessels are not necessarily sampled in each year and do not 

necessarily fish in all years anyway, so we have an unbalanced panel of vessel-level inputs.  Also, 

reported zeros for an input indicates that these fields were left blank in the survey.  Accordingly, 

we exclude vessels that reported both zero operating days and zero days at sea but positive labor, 

fuel or other operating expenses in the analysis.  Table 2A shows raw data on inputs, including 

operating days, days at sea, person-years, labor compensation, and fuel expenditure.  

4.3.  Quantifying Effort 

In taking the theoretical model to the data, a central modelling question is how to measure 

effort (or input) 𝑞௜,௧ as a scalar, as required by the theoretical model.  As measures of effort, we 

consider the following four proxies:  operating days, imputed days at sea, imputed days at sea 

times vessel length (Length* Days), and an estimated scalar-valued function of effort based on 

multiple inputs.  Of these, operating days, which includes days at sea as well as days processing 

and offloading in port, is the most straightforward proxy.  Table 2B shows summary statistics for 

operating days as used in the model. 

Our second measure is days at sea.  Averaging over time, days at sea contains 81.3 fewer 

days fleet-wide than operating days, and there are 748 observations with positive operating days 

but zero reported days at sea.  Since it is impossible to have zero days at sea when operating days 

and catch are positive, we treat these zeros as missing and replace them with imputed values when 

the associated operating days are positive.  To impute these values, we use the following regression 

model: 

(6) 𝑑𝑎𝑦𝑠 𝑎𝑡 𝑠𝑒𝑎 = 𝛽଴ + 𝛽ଵ ∗ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑦𝑠 + 𝛽ଶ ∗ 𝑓𝑢𝑒𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒.  

We run the model in Equation (6) conditional on 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑦𝑠 > 0 and 𝑑𝑎𝑦𝑠 𝑎𝑡 𝑠𝑒𝑎 > 0, and 

use the predicted coefficients to estimate missing values of days at sea for observations with pos-

itive operating days.  Table 3 gives the estimated regression coefficients from Equation (6) 

(Model 4), as well as alternatives.  Model 1 estimates days at sea only as a fixed proportion of 
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operating days; Model 2 adds fuel expenditure but continues to omit the constant.  Models 3 and 

4 are similar to 1 and 2 respectively, but include the constant term.  Out-of-sample prediction 

comparisons (using leave-one-out validation) suggest that Model 4 has the best fit, with the excep-

tion of Model 5, which includes fixed effects.  However, vessel fixed effects cannot be estimated 

for those vessels with insufficient data, making this an impractical choice.  Thus, we choose 

Model 4 as it reflects a balance between accuracy and reducing missing observations.  Based on 

this model, Table 2B shows annual data on imputed days at sea.  

Our third measure of input uses these imputed days at sea times vessel length.  Rescaling 

fishing time by measures of vessel size is a common practice when estimating fisheries production 

functions, as a better measure of overall inputs (Squires 1987; Huang and Smith 2014).  Table 2B 

also reports annual values of this product. 

Our fourth and final measure of input aggregates multiple input variables into a scalar-

valued function.  This too is a common practice in the fisheries literature (see McCluskey and 

Lewison 2008 for review and discussion).  We adopt a straightforward method that serves our 

purpose.  Suppose the production function for vessel 𝑖 in year 𝑡 is 

(7) ln൫𝐶𝑎𝑡𝑐ℎ௜,௧൯ = 𝑎 + 𝑏 ∗ 𝑙𝑛𝐸௜,௧ + 𝜆௧ + 𝑒௜,௧,  

where 𝜆௧ is a dummy which captures year effects, such as different stock levels, and 𝐸௜,௧ denotes 

the overall effort level for vessel 𝑖 at year 𝑡, and is a sub-function of other inputs.  In particular, let  

(8) 
ln (𝐸௜,௧) = 𝛼ଶln (𝑝𝑒𝑟𝑠𝑜𝑛-𝑦𝑒𝑎𝑟𝑠௜,௧) + 𝛼ଷln(𝑓𝑢𝑒𝑙 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒௜,௧) +𝛼ସln (𝑙𝑎𝑏𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛௜,௧) + 𝑣𝑒𝑠𝑠𝑒𝑙𝑖𝑑௜,   

 

in which man-years denotes the labor input (measured at the day level) and labor compensation is 

the total payment to workers on the vessel and 𝑣𝑒𝑠𝑠𝑒𝑙𝑖𝑑௜ is vessel level fixed effect that captures 

vessel length, tonnage, etc.  

Substituting Equation (8) into (7), we estimate the combined model.  Note, however, that 

we cannot separately identify 𝑏 in Equation (7) from the alphas in Equation (8).  Thus, we do not 

identify effort to scale.  This is not problematic, however, because our test treats the cost of effort 

as a latent function, so any arbitrary change of scale in effort can be reconciled by an offsetting 

change in the scale of the cost function.  The results of estimating this model are shown in Table 4.  
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Column 1 introduces the individual inputs in levels, whereas Column 2 does so in logs (as shown 

in Equation (8)).  We use Column 2 in our analysis, as it has a better fit.  Table 2B shows summary 

statistics for this estimated value. 

4.4.  Sampling Subsets of Data 

Because, in our approach, rejections are all or nothing, the presence of only one firm be-

having out of step with the other firms could result in rejecting the entire data set.  Likewise, if 

cost functions shift over time, assuming they are constant could lead to false rejections.  To side-

step these issues, we follow Carvajal et al. (2013) and repeatedly sample smaller subsets of data.  

Sampling the data allows us to consider rejection rates (percentage of data sets that do not conform 

to the tragedy of the commons model), rather than one single all-or-nothing conclusion.  We follow 

Carvajal et al. (2013) and repeatedly sample smaller subsets of data.  We divide the entire data set 

into multiple subsets, with each set consisting of N vessels and T consecutive years, where N ∈ {5, 

10, 50, 100, 150} and T ∈ {3, 6, 8, 10}.  Then we separately test for consistency with the tragedy–

of–the–commons model using each set.  We randomly sampled 100 subsets from each N-by-T 

combination, giving us a reasonable estimate of the rejection rates for each combination.  (To 

facilitate comparisons, we used the same subsample of data for each cell across models.) 

4.5. Weighted Sampling and Property Rights Regime Comparison 

As discussed in section 4.1, the evolution of property rights in the Norwegian fishery mo-

tivates splitting the data into the periods of the RRA regime (1998–2002) and the period of IVQs 

for the coastal vessels at least 15 meters in length (2003–2007).  Accordingly, we cut the data into 

four cells using a 2x2 design; large coastal vessels (≥15 meters long) and small (<15 m), before 

the IVQ regime (1998–2002) and after (2003–2007). 

It is worth noting that, though we sub-sample by vessel size in this exercise, in the com-

mon-ratio properties for each group of each year, we keep the total input 𝑄௧ and output 𝐹௧(𝑄௧) 

across all vessels.  That is, behavior by all vessels (regardless of length) still affects the optimal 

behavior of any one vessel.  

In this unbalanced panel for the Norwegian coastal fleet, due to the administration of a 

random survey, there are fewer observations of surveyed vessels in earlier time periods (before 
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2003) than later (after 2003).  When we sample subsets as described in Section 4.4 with no re-

strictions (where each vessel has an equal probability to be selected), the sets sampled in later 

periods will contain more data points than those from earlier periods.  Given the nature of our test, 

more data points create more constraints, which automatically yields higher rejections holding all 

other things equal.  Hence, to make sure the gap in rejection rates per group is attributed to behav-

ioral difference under different management regimes, rather than the difference in the number of 

observations in the samples, we employ weighted sampling to generate comparable samples for 

each group.  

Weighted sampling is implemented by redistributing sampling probabilities among vessels 

in later periods (2003-2007).  Sampling probabilities for vessels with more observations (3 and 4 

data points in periods 2003-2007) are reduced, and the reduced probabilities are added to vessels 

with fewer observations (1 and 2 data points), with the total probability always summing to one.  

The largest adjustment of the probability of a vessel is less than 0.0002, while the original proba-

bility of a vessel being sampled is around 0.00116, so the adjustment is less than 17%.  After 

weighted sampling, the maximum difference in the number of observations between the groups 

(before vs. after) is less than 0.2% (difference in observations divided by total observations in 

subsample sets).  In our 2x2 design, our weighted sampling ensures that the big-after and big-

before groups have similar numbers of observations, as do the small-after and small-before groups.  

This helps to balance the number of observations among groups to generate credible difference-

in-difference results. 

As discussed in Section 4.1, data generated from the IVQ regime is not expected to be 

consistent with the tragedy of the commons model, especially for large vessels.  Accordingly, we 

first take the difference of rejections between the big-after and big-before groups and likewise for 

the small-after and small-before groups.  Finally, we take the difference-in-differences, to infer the 

effects of the change in property rights regime.  We expect the after-before difference for big 

vessels will be higher than those for small vessels. 

5.  Results 

In this section, we present the results of our tests.  We first present results of the basic tests as 

described in Section 2.  We then present results with sampling errors (Section 3.1) and statistical 
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tests based on distance from revealed marginal costs to model-consistent marginal costs (Sec-

tion 3.2).  Finally, we present tests using our difference-in-differences design. 

5.1.  Results of Test Pooling all Data 

Tables 5A-5D present results using the basic test of Section 2, using four respective proxies 

of effort:  operating days, imputed days at sea, imputed days at sea times length, and estimated 

total effort.  Each cell in the tables shows the rejection rate for a sample of 100 data sets for 𝑁 

vessels and 𝑇 consecutive years, for varying 𝑁 and 𝑇.  For small 𝑁 and 𝑇, we generally cannot 

reject the tragedy of the commons model in most samples.  Note, however, that the rejection rates 

generally are increasing in N (moving down the rows) and T (moving to the right across columns).  

Indeed, when more than 100 vessels are considered for longer than 6 years, the rejection rates 

approach one.  This trend is necessary, mechanically, as the number of equations and inequalities 

to satisfy is increasing in these parameters, so exceptions to this rule are due to random sampling.  

More substantively, the trend also is consistent with the idea that, as we increase T , we risk pooling 

different cost functions as well as data from the period after the property rights reform, when the 

TOC model is unlikely to apply.  Overall, these results indicate that the behavior of vessels/fish-

ermen in our sample cannot be explained by the TOC model when a large number of observations 

are included.  

Additionally, we test consistency with the model with sampling errors (as discussed in 

Section 3.1).  The boundaries on sampling errors we adopted is [-5%, 5%].  That is, we restrict the 

multiplier 𝛾௧ to be between [0.95, 1.05].  We are only able to apply narrow boundaries to our 

sample data from Norwegian ground fishery due to the large number of missing values in the 

sampled data.3  Notice that the adjustment factor functions as a multiplier on total revenue.  Given 

that the average revenue in our sample is 1.4 million NOK (around 166,000 USD) per year per 

vessel, this bandwidth allows for an average adjustment to the revenue of 67,000 NOK (around 

8,000 USD) per year per vessel.  That amount is more than the average cost of fuel expenditure 

per year per vessel, so it is not negligible. 

                                                            
3 Our unbalanced panel data of Norwegian ground fishery has 79.3% of data points missing. The amount 
of missing substantially reduces nonempty constraints in our test, which makes it easy to find marginal 
costs that are consistent with the model. Allowing for a larger adjustment to the total revenue makes the 
tests even less stringent and reduces the rejection rates towards zero. For instance, all rejection rates are 
zero when the boundary is 10% in our case.  
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Tables 6A-6D present results using the test with sampling errors (Section 3.1).  As we 

would expect with added flexibility, rejections to the TOC model allowing for sampling errors are 

slightly lower than those in the basic model (comparing like cells).  But the previous patterns 

remain.  First, rejection rates still increase in N and T.  Second, when more than 100 vessels are 

considered for longer than 6 years, the rejection rates still approach one.  This result provides 

additional support for the conclusion that behavior of vessels/fishermen in our sample cannot be 

explained by the TOC model when a fair number of observations are included. 

We also conducted the KS test of Section 3.2 to the entire data set.  For all four measures 

of effort, we reject the tragedy of the commons model with the pooled data with p-values < 0.01.  

Results from this tests confirm our observation from the rejection rates in Tables 5 and 6. 

5.2.  Results Comparing Property Rights Regimes 

Recall that all vessels operated under RRA before 2003.  Throughout the period (1998-

2007) in our sample, a TAC for all participants was in place, but in 2003 the quota was distributed 

to groups based on vessel length.  After 2003, small vessels remained operating under a total al-

lowable catch and the RRA regime, while big vessels transitioned to an IVQ regime.  This make 

the small vessels a good control group for the big vessels:  whereas there is competition among 

vessels under a group quota, competition among big vessels is reduced under the property-rights 

based management of IVQs.  The effectiveness of the property-rights approach of IVQs over the 

non-property-rights based approach of RRA drives the difference-in-differences results in our em-

pirical study. 

Table 7A – 7D present rejection rates per group using the weighted sampling described 

above in Section 4.5.  The results indicate that, after the reform, big vessels incur a higher increase 

in rejection rates of the TOC model than small vessels.  That implies the IVQ regime generates 

more fishing behavior inconsistent with the tragedy of the commons model.  In other words, the 

IVQ regime nudges fishing behavior away from Nash more effectively than does RRA, as one 

would expect.  

Note that after we split the data into four groups, there are fewer observations to sample 

from per group.  Because the weighted sampling only controls for the difference in the number of 

observations of each paired group (before vs. after), but not the magnitude of observations in sam-
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ples, the levels of rejection rates are sensitive to the number of observation in the respective sub-

groups, but the difference and difference-in-difference results do reflect the overall change in man-

agement regimes and are more stable. 

We also replicated these tests omitting 2003, which was a transition year and arguable was 

different from the subsequent 2004-7 period, when large vessels were under the TAC.  Our results 

are qualitatively similar using this approach.  They are available upon request. 

Interestingly, looking only at small vessels, we observe a decrease in rejection rates in the 

2003-7 period.  Taken in isolation, this suggests that the behavior of small vessels actually moved 

closer to the Nash Tragedy of the Commons behavior after 2003.  One possible explanation for 

this finding is an induced race to fish among small vessels after securing a shared right for small 

vessels as a group but without assigning individual rights.  Table 8 compares the number of small 

and big vessel across years.  It shows that there is a marked increase in the total number of small 

vessels starting in 2003, whereas there is not much change in the number of big vessels.  Even 

with a slight decline in average fishing effort in all vessels after 2003, the increase in the number 

of small vessels still leads to an increase in the total effort of the small-vessel group.  The increased 

number of participants and increased total effort move the collective behavior of small vessels 

closer to Nash.  New entry in small vessels may have been induced by increased economic rent 

after the division of the quota.  Perhaps before 2003, under the TAC for all vessels, small vessels 

could not compete with big vessels in the race to fish.4  After 2003, separating out the TAC for the 

small-vessels reduced the competition from big vessels and secured a potential economic rent.  

However, without individually assigned property rights to quotas, that potental rent attracted new 

entrants and spurred the race to fish.  This interpretation is in line with the finding in Homans and 

Wilen (1997) that certain types of non-property-rights-based management may induce a race to 

fish.  It also is consistent with the findings in Kroetz et al. (2015) that policy with good social 

objectives can reduce overall economic efficiency and rents in fisheries. 

Table 9 shows the results of allowing minimal behavioral errors (Section 3.2).  For each of 

the four measures of effort, it shows the mean squared error 𝛿௜,௧ଶ  per cell, an adjusted mean squared 

                                                            
4 Technically, our model captures the incentives even for small vessels with little market power in manip-
ulating resource rents.  However, in practice, it may be that with small costs of optimizing it did not make 
sense for small vessels to fully consider the incentives under Nash competition until the quota was divided.   
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error per thousand constraints to be satisfied, which we prefer,5 and the p-value for the KS test.  

To gauge the scale of these estimated errors, the mean marginal cost is about 4.5 when effort is 

measured by operating days, so these errors are fairly small.  This scaling differs by measure of 

effort making comparisons difficult, but, across measures, the mean absolute value of the errors is 

about 5% of marginal costs, the mode is 0%, and the 90th percentile error is an error of 10-17%.  

Comparing across vessel sizes and property rights regimes for any one measure of effort, we see a 

notable increase in the errors and, to some extent, the probability of rejecting the model in the 

"after" period relative to the "before" period, as we would expect.  The difference in these differ-

ences across vessel sizes is not as clear as with the rejection rates.  However, as a rule p-values 

cannot be meaningfully differenced across models.  Focusing on our preferred measure of the 

adjusted MSE, we see greater increases for the large vessels, as we would expect. 

6.  Conclusion 

Work to date on testing the tragedy of the commons has focused either on policy outcomes involv-

ing the state of shared resources or, when using behavioral data, has relied on highly structural 

models involving numerous maintained assumptions.  Drawing on applications of revealed pref-

erence theory to behavioral data, such as work by Carvajal et al. (2013) on the Cournot model, we 

derive non-parametric tests of the tragedy of the commons using minimal behavioral assumptions.  

Additionally, we present methods to account for the sampling errors in aggregate output and input 

data, and to gauge the distances to the model as well statistical tests based on the distances. 

We apply this new test to the Norwegian groundfish fishery.  Overall, we find the behavior 

of individual fisherman/vessel of the Norwegian Coastal Fishery does not conform to the model 

of the tragedy of the commons.  More importantly, we also find that rejection rates are larger after 

property rights reforms, especially for the large vessels that received stronger property rights.  

Moreover, using a distance-based metric, we find that behavior moves further from behavior as-

sociated with the pure tragedy of the commons model after the property rights reforms.  Our results 

suggest that Norwegian policy has changed behavior and, presumably, ameliorated the commons 

                                                            
5 For example, if there are N vessels and T years of data, and if there were no missing data, there would be 
NT cells used as the denominator for the simple mean squared error, but N(T2-T)/2 + T(N2-N)/2  =   
NT(N+T-2)/2 constraints used as the denominator for the adjusted mean squared error.  Our actual calcula-
tion accounts for missing values in the formula. 
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problem at least for large coastal vessels.  

Our model and approach allow for comparative work on the behavioral consequences of 

policy interventions to govern common-pool resources.  Economists often imagine a stylized first-

best policy to ration access to the commons as an optimal total quota that is divided among indi-

vidual participants, with perfect security and transferability of the property right.  However, real-

world policies are configured in a myriad ways that differ from theoretical first-best policies to 

address the commons problem.  Do some policy configurations move behavior away from the 

tragedy of the commons more than others?  In fisheries, rights-based systems differ along dimen-

sions of the security of the property right, the length of term, transferability, and a number of other 

restrictions that often come about as political compromises to address community or industry con-

cerns (Asche et al 2018).  The same species of fish that we analyze in this paper are regulated with 

very different rights-based systems in Iceland, Canada, and the United States that differ along these 

dimensions.  Our model and distance-based metric have the potential to examine whether these 

different rights-based fisheries policies induce more or less commons-like behavior.  

Our approach can also be applied to other common-pool resources whenever firm-level 

data on inputs are available.  Candidates include clearcutting under different governance struc-

tures; grazing livestock on commons land; pumping groundwater; oil, gas, and other mineral ex-

traction; and telephony and other cost-sharing problems.  
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Table 1.  Summary Statistics for Selected Output Variables 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Obs.   307 321 328 323 316 279 321 306 317 359

Population  1193 1143 1081 1063 1230 1441 1342 1131 1165 1290
Sampled annual 
value (100 mil. 
NOK)  

3.61 3.67 3.67 3.91 3.98 4.54 4.61 4.68 6.58 7.40

Total annual value 
(100 mil. NOK)  

17.64 14.91 13.83 15.60 14.33 12.58 13.55 14.65 19.62 19.30

   
Sampled annual har-
vest (10 million kg)  

4.17 4.62 4.94 5.31 5.81 6.64 7.84 8.23 8.43 9.25
   
Cod  Mean 77.7 55.2 45.0 48.3 52.2 51.5 59.4 72.0 85.4 73.7
(thousand kg) SD 87.2 60.3 53.6 51.2 38.5 38.3 45.4 63.2 72.3 66.6
 Min 0.1 0.9 0.6 0.2 0.1 0.2 0.1 0.2 0.3 0.0
 Max 471.4 411.1 581.8 334.6 332.6 299.3 294.6 452.0 444.4 451.3
   
Haddock  Mean 19.8 10.7 9.0 11.4 12.7 12.6 11.4 16.7 17.7 21.4
(thousand kg) SD 38.3 21.9 19.7 14.3 26.9 32.7 21.3 30.4 28.2 38.7
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Max 204.3 188.1 211.3 92.4 251.3 416.2 158.5 260.5 185.0 310.8
   
Saithe  Mean 29.9 26.3 22.8 24.7 19.7 23.2 22.8 31.9 50.1 47.3
(thousand kg) SD 68.9 49.5 32.9 42.6 37.8 33.3 38.0 68.5 101.6 101.6
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 Max 574.1 418.7 251.7 420.0 321.1 197.3 199.2 716.4 873.8 943.7
   
Other  Mean 70.4 58.6 91.3 51.9 40.5 41.1 32.8 45.3 61.9 71.7
(thousand kg) SD 248.2 212.3 302.6 178.1 131.9 94.7 77.7 110.4 162.4 263.9
 Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  Max 1,807.2 1,859.2 2,203.4 1,864.4 1,409.4 644.3 673.4 899.4 2,014.3 2,482.1
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Table 2A.  Summary Statistics for Selected Input Variables (Raw Data) 

 

  

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Obs.   69 72 80 76 71 279 321 306 317 359

Operating days Mean 268.2 262.0 268.5     253.8 244.2 213.3 193.8 220.9 227.4 210.1
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6
 Min 204.0  176.0 190 107 146 99.0 83.0 90.0 93.0 90.0
 Max 338.0 364.0 348 338 342.0 354.0 342.0 345.0 355.0 338.0
   
Days at sea Mean 219.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 168.9
 SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0       58.7 56.2 53.9
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.0 55.0 72.0 68.2
  Max 295.0 322.0 343.0 335.0 287.0 336.0 324.0 330.0 345.0 325.0
   
Person years Mean 2.3 2.2 2.1 2.2 2.1 2.2 2.1 2.3 2.4 2.4

 
SD 1.8 1.8 1.8 1.6 1.6 1.4 1.3 1.5 1.5 1.5
Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max 12.0 12.0 12.7 11.0 12.6 10.7 8.1 10.0 8.1 9.0

   
Labor  Mean 637.3 607.6 574.8 652.3 593.7 511.2 607.4 772.3 1025.8 1015.9
compensation SD 799.9 808.9 791.9 821.6 592.5 480.4 562.8 721.6 937.6 979.2
(thousand NOK) Min 65.5 81.5 65.8 63.1 109.3 104.1 108.0 149.1 141.5 158.2
 Max 5,161.4 6,658.9 5,930.7 6,151.7 4,918.5 3,906.7 4,606.4 4973.9 6920.2 7184.6
   
Fuel expenditure Mean 47.9 52.3 80.6 70.6 59.8 59.7 72.6 108.0 135.5 121.6
(thousand NOK) SD 73.0 91.9 161.3 127.3 108.1 92.6 97.9 163.7 177.8 194.1
 Min 3.0 3.4 1.5 4.6 3.2 1.3 3.1 6.9 10.2 9.6
 Max 539.5 745.7 1,405.7 1,458.6 1,066.7 1,113.5 937.7 1610.0 1605.5 1623.6
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Table 2B.  Summary Statistics for Selected Input Variables (As used in Analysis) 

Variable  1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Obs.  69 72 80 76 71 279 321 306 317 359

Operating days Mean 258.2 262.0 268.5 253.8 244.2 213.3 193.8 220.9 227.4 210.1
 SD 32.6 41.1 41.1 45.2 44.0 54.7 51.7 56.2 57.0 53.6
 Min 204.0  176.0 190.0 107.0 146.0 99.0 83.0 90.0 93.0 90.0
 Max 338.0 364.0 348.0 338.0 342.0 354.0 342.0 345.0 355.0 338.0
   
Imputed days  Mean 217.4 211.4 198.3 175.5 178.2 168.7 168.8 178.3 189.5 169.0
at sea SD 33.2 40.0 50.1 42.8 46.6 46.9 46.0 58.7 56.2 53.9
 Min 152.0 117.0 60.0 50.2 95.0 72.0 77.1 55.0 72.0 68.2
 Max 295.0 322.0 343.0 335.0 287.0 336.0 324.6 330.0 345.0 325.0
   
Length times   Mean 4169.2 4067.3 3748.1 3248.1 3197.8 2200.5 2237.6 2434.3 2605.8 2377.7
Imputed days SD 1261.4 1449.2 1713.7 1312.7 1377.6 1090.4 1146.4 1349.6 1260.3 1247.1
at sea Min 2133.6 1772.6 877.8 707.8 1459.2 696.0 672.0 581.9 816.4 606.6
 Max 7707.8 8826.0 9415.4 9195.8 7720.7 8564.4 8898.0 9058.5 8771.2 8908.3
   
Estimated effort Mean 9.66 9.41 8.86 9.61 7.66 3.23 3.72 4.72 5.98 5.82
 SD 6.01 6.71 7.21 6.77 5.74 2.95 3.32 4.31 5.23 5.43
 Min 0.83 1.79 1.35 1.38 2.15 0.83 0.94 0.96 1.11 1.07
 Max 29.18 36.55 36.11 35.33 31.54 25.54 25.03 28.99 39.45 41.24
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Table 3.  Regression Model for Imputing Missing Days at Sea 

Days at sea Model 1 Model 2 Model 3 Model 4* Model 5 
Operation days 0.848*** 0.815*** 0.875*** 0.808*** 0.585***
 (0.0143) (0.0149) (0.0223) (0.023) (0.0386)
Fuel expenditure No 4.322*** No 4.351*** 2.928
  (0.641) (0.646) (2.141)
Constant No No -3.555 2.678 67.60***
  (7.500) (7.389) (11.56)
Year fixed effects Yes Yes Yes Yes Yes
Vessel fixed effects No No No No Yes
   
R2 — — 0.624 0.641 0.505
N 964 964 964 964 964

Standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. We used model 4 to impute missing 
days at sea in the analysis. The R-squared of Model 5 is the within value from running OLS on the de-
meaning data. The between and overall R-squared are 0.597 and 0.613.  
 
  



34 
 

Table 4.  Regression Model of Effort Function 

Total catch quantity Log-Level Log-Log 
Person-years 0.090*** 0.156**
 (0.02) (0.057)
Fuel expenditure 0.039** 0.133**
 (0.016) (0.031)
Labor compensation 0.032** 0.703**
 (0.003) (0.041)
 
Constant 11.32*** 10.51***
 (0.084) (0.103)
Year fixed effects 
Vessel fixed effects 

Yes 
Yes

Yes 
Yes

R2 0.27 0.41
N 1092 1092

Standard errors in parentheses. *** p<0.01; ** p<0.05; * p<0.1  
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Table 5A. Rejection Rates ─ Operating days  

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.04 0.22
10 0.04 0.03 0.30 0.53
50 0.40 0.58 0.96 1.00
100 0.81 0.88 1.00 1.00
150 0.93 1.00 1.00 1.00

 

Table 5B. Rejection Rates ─ Imputed Days at Sea 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.02 0.15 0.21
10 0.01 0.02 0.28 0.55
50 0.37 0.54 1.00 1.00
100 0.65 0.90 1.00 1.00
150 0.88 0.98 1.00 1.00

 
Table 5C. Rejection Rates ─ Length Times Imputed Days at Sea 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.07 0.18
10 0.01 0.03 0.35 0.68
50 0.29 0.62 1.00 1.00
100 0.69 0.87 1.00 1.00
150 0.95 0.99 1.00 1.00

 

Table 5D. Rejection Rates ─ Estimated Total Effort 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.09 0.19
10 0.01 0.02 0.24 0.35
50 0.22 0.49 0.98 1.00
100 0.57 0.80 1.00 1.00
150 0.77 0.95 1.00 1.00
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Table 6A.  Rejection Rates ─ Operating Days, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.15 0.26 0.21
10 0.00 0.13 0.25 0.38
50 0.03 0.15 0.31 0.59
100 0.10 0.21 0.36 0.69
150 0.18 0.28 0.40 0.75

 

Table 6B.  Rejection Rates ─ Imputed Days at Sea, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.01 0.15 0.20
10 0.00 0.00 0.25 0.51
50 0.00 0.33 0.99 1.00
100 0.00 0.70 1.00 1.00
150 0.00 0.87 1.00 1.00

 

Table 6C.  Rejection Rates ─ Imputed Days at Sea Times Length, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.01 0.00 0.07 0.18
10 0.01 0.03 0.35 0.68
50 0.29 0.62 1.00 1.00
100 0.69 0.87 1.00 1.00
150 0.95 0.99 1.00 1.00

 

Table 6D.  Rejection Rates ─ Estimated Effort, with Sampling Error 

Years 3 6 8 10 Number of Vessels 
5 0.00 0.00 0.00 0.06
10 0.00 0.00 0.00 0.14
50 0.00 0.13 0.34 0.97
100 0.00 0.40 0.73 1.00
150 0.00 0.47 0.92 1.00
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Table 7A.  Rejection Rates per Group with Weighted Sampling – Operating Days 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 
3 5 0.04 0.15 0.01 0.07 -0.05 
3 10 0.28 0.30 0.08 0.23 0.13 
3 50 0.92 1.00 0.57 0.97 0.32 
4 5 0.19 0.16 0.05 0.08 0.06 
4 10 0.53 0.40 0.16 0.30 0.27 
4 50 1.00 0.99 0.89 1.00 0.12 
5 5 0.16 0.10 0.05 0.09 0.10 
5 10 0.48 0.46 0.18 0.29 0.13 
5 50 1.00 1.00 0.90 0.99 0.09 

 
 
 
 
Table 7B.  Rejection Rates per Group with Weighted Sampling – Imputed Days at Sea 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 
3 5 0.13 0.07 0.04 0.09 0.11 
3 10 0.34 0.27 0.15 0.18 0.10 
3 50 1.00 1.00 0.80 1.00 0.20 
4 5 0.26 0.11 0.04 0.05 0.16 
4 10 0.48 0.28 0.24 0.21 0.17 
4 50 1.00 0.99 0.96 0.99 0.04 
5 5 0.23 0.14 0.11 0.07 0.05 
5 10 0.57 0.40 0.27 0.22 0.12 
5 50 1.00 1.00 0.99 0.99 0.00 
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Table 7C.  Rejection Rates per Group with Weighted Sampling – Length times Days at Sea 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 
3 5 0.04 0.05 0.01 0.07 0.05 
3 10 0.36 0.23 0.09 0.24 0.28 
3 50 0.99 0.98 0.74 0.97 0.24 
4 5 0.04 0.09 0.07 0.11 -0.01 
4 10 0.40 0.34 0.18 0.26 0.14 
4 50 1.00 1.00 0.82 0.99 0.17 
5 5 0.20 0.11 0.07 0.08 0.10 
5 10 0.60 0.33 0.19 0.18 0.26 
5 50 1.00 0.99 0.95 0.97 0.03 

 

 

 

 

Table 7D.  Rejection Rates per Group with Weighted Sampling – Estimated Total Effort 

Years Vessels Big-After Big-Before Small-after Small-before Diff-in-Diff 
3 5 0.06 0.10 0.00 0.02 -0.02 
3 10 0.21 0.17 0.03 0.08 0.09 
3 50 0.98 0.95 0.61 0.79 0.21 
4 5 0.09 0.12 0.04 0.05 -0.02 
4 10 0.35 0.36 0.10 0.08 -0.03 
4 50 1.00 0.99 0.76 0.75 0.00 
5 5 0.18 0.10 0.01 0.03 0.10 
5 10 0.47 0.30 0.12 0.10 0.15 
5 50 1.00 0.99 0.77 0.85 0.09 
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Table 8.  Total Number of Vessels per Group per Year 

Year Number of Vessels Per Group Per Year 
1998 

Big-Before 

277

Small-Before 

917 
1999 240 903 
2000 230 851 
2001 226 838
2002 253 977 
Avg   245   897 
2003 

Big-After 

263

Small-After 

1178
2004 231 1111
2005 210 921
2006 197 968
2007 197 1093
Avg   220 1054 
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Table 9  Distance to the Model, by Vessel Size and Property Rights Regime 

Measure of 
Effort  

Small 
Before 

Small 
After 

Large 
Before 

Large 
After Combined 

Operating 
Days 

MSE 0.00177 0.11852 0.00540 0.09391 0.14122 

Adjusted 
MSE 

0.19987 1.30189 0.29854 3.82339 1.44722 

KS p-val 0.87 0.00 0.63 0.17 0.00 

Imputed 
Days at Sea 

MSE 0.00038 0.20657 0.04041 0.17119 0.33418 

Adjusted 
MSE 0.04259 2.26897 2.23303 6.96962 3.42457 

KS p-val 0.99 0.00 0.72 0.42 0.00 

Days x 
Length 

MSE 0 0.001415 0.000348 0.001605 0.002743 

Adjusted 
MSE 0 0.015547 0.019244 0.065333 0.028109 

KS p-val 1.00 0.00 0.72 0.35 0.00 

Estimated 
Total Effort 

MSE 0.93228 32.90023 7.79900 22.24900 48.64777 

Adjusted 
MSE 105.41 361.38 430.94 905.80 498.53 

KS p-val 1.00 0.02 0.72 0.98 0.00 
This table shows, for each of the four measures of effort, the mean-squared error (ie mean of the squared 
distances between model-consistent marginal costs and the revealed marginal costs), the mean-squared er-
ror adjusted for the number of constraints in the quadratic program (rather than the number of cells), and p-
value for the KS test.  Results are shown separately for large and small vessels, for before and after the 
property rights reform, as well as for the combined model. 
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Appendix A 

the following statements on a panel data set 𝒪 = ቄ𝑝௧𝐹௧, ൫𝑞௜,௧൯௜ఢଵ…ேቅ௧ఢଵ…் are equivalent: 

(A) The set 𝒪 is consistent with the tragedy of the commons with concave production function 

and convex cost function. 

(B) There exists a set of nonnegative numbers ൛𝐶௜,௧ᇱ ൟ௜ఢଵ…ே that satisfy the linear program: 

  (i)  ௣೟୊೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟  =  ௣೟୊೟(ொ೟)ିொ೟஼ೕ,೟ᇲ௤ೕ,೟  ≥ 0  ∀ 𝑖, 𝑗 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇; 

 (ii) ൫𝑞௜,௧ −  𝑞௜,௧ᇲ൯൫𝐶௜,௧ᇱ −  𝐶௜,௧ᇲᇱ ൯ ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡, 𝑡′ ϵ 𝑇; 

(iii) 𝐶௜,௧ᇱ  ≥ 0  ∀ 𝑖 ϵ 𝐼, ∀ 𝑡 ϵ 𝑇. 

Proof 

Our proof is straightforward and follows the outline of Carvajal et al. (2013).  To see (A) implies 

(B), suppose that the data are rationalized with production ൛𝑝௧𝐹௧, 𝑞௜,௧ൟ௜ఢଵ…ே,௧ఢଵ…். Then the first 

order condition guarantees the existence of ൛𝐶′௜,௧ൟ௜ఢଵ…ே that satisfy the common ratio property (i). 

Given convexity of costs, the co-monotone property (ii) is satisfied as well.  

To see (B) implies (A), we first show that at observation t, when (i) is satisfied, there exists 

a concave production function 𝐹௧ such that 𝐹ത௧(𝑄௧) = 𝐹௧, and with each firm having the cost func-

tion 𝐶̅௜, ൛𝑞௜,௧ൟ௜ఢଵ…ே,௧ఢଵ…், which constitutes behavior consistent with the Tragedyofthe–Commons 

model.  We define 𝐹ത௧(𝑄௧) by 𝑝௧𝐹ത௧ᇱ(𝑄௧) = ௣೟ிത೟(ொ೟)ொ೟ − 𝑏௧ and let 𝑏௧ = ௣೟୊೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟ .  A concave func-

tion will satisfy the definition here since the average return is larger than the marginal return.  Firm 𝑖’s decision is to choose 𝑞௜,௧ that maximizes profit ቄ௤೔,೟ொ೟ ∗ 𝑝௧𝐹௧(𝑄௧)ቅ − 𝐶௜,௧ᇱ ; this function is concave, 

so the input level is optimal if and only if it obeys the first-order condition.  Apply 𝐹ത௧(𝑄௧) defined 

above, we have ௤೔,೟ொ೟ ∗ 𝑝௧𝐹ത௧ᇱ(𝑄௧) + ቀ1 − ௤೔,೟ொ೟ ቁ ∗ ௣೟ிത೟(ொ೟)ொ೟ − 𝐶௜,௧ᇱ = ௤೔,೟ொ೟ ൬௣೟ிത೟(ொ೟)ொ೟ − ௣೟ிത೟(ொ೟)ିொ೟஼೔,೟ᇲ௤೔,೟ ൰ +ቀ1 −  ௤೔,೟ொ೟ ቁ ∗ ௣೟ிത೟(ொ೟)ொ೟ − 𝐶௜,௧ᇱ = 0.  Hence, 𝑞௜,௧ is the profit-maximizing input of firm 𝑖 at time 𝑡. 

Second, we show that if for some firm 𝑖 there are positive scalars ൛𝐶௜,௧ᇱ ൟ்ఢଵ…் that are in-

creasing with 𝑞௜,௧, then there exists a convex cost function 𝐶̅௜ such that 𝐶௜,௧ᇱ 𝜖𝐶̅௜(𝑞௜,௧).  Proof of this 

part is the same as in Lemma 2 in Carvajal et al. (2013).   
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Using the two conclusions above, we see that constraint (i) confirms that the choice of 

input 𝑞௜,௧ is the optimal choice that satisfies the first order condition of the TOC model.  And 

constraints (i) and (ii) ensure that marginal costs revealed from the linear program is the taken 

from a time-invariant convex cost function.  Constraint (iii) ensures the nonnegativity of marginal 

costs.  Hence, satisfying the three properties in the linear program implies consistency with the 

TOC model. 

 




