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Introduction

The extent to which competing products are substitutable is central to empirical Industrial Or-

ganization (IO) because it informs about the magnitude of market power and consumer welfare

in differentiated-product industries. The econometric framework proposed by Berry (1994) and

Berry, Levinsohn, and Pakes (1995) is the leading approach for estimating demand in this context,

and is increasingly popular as a revealed-preference method to measure quality and value-added in

other empirical microeconomics fields.1 This class of models can approximate very rich substitu-

tion patterns by relaxing the Independence of Irrelevant Alternatives (IIA) assumption underlying

logit/CES type demand structures, while at the same time also accounting for the presence of

product-level unobservable attributes (to the econometrician). This flexibility comes at a cost

however, since the introduction of non-IIA preferences, either via random-coefficients or a nesting

structure, creates a simultaneity problem associated with the joint determination of market shares

and unobserved attributes. Importantly, this simultaneity exists wether or not prices (or other

characteristics) are also endogenously determined, and has received relatively little attention in the

literature.2

The endogeneity problem created by market shares is especially challenging for applied work

because the parameters that control the substitution patterns enter the demand model in a non-

linear fashion. This results in a non-linear GMM estimator, which can be notoriously sensitive to

the presence of weak identification; a problem that is difficult to diagnose (e.g. Stock and Wright

(2000)). A review of the empirical literature suggests that weak-instruments is potentially a per-

vasive problem. For instance, there are very few direct applications (known to us) that have found

statistically and/or economically significant departures from restrictions.3 In addition, commonly

used moment conditions often lead to numerical optimization problems; another symptom of weak

identification in non-linear models (e.g. Metaxoglou and Knittel (2014) and Dube, Fox, and Su

(2012)). A related challenge is that non-linear GMM problems do not have a classic “reduced-form”

regression (or “first-stage”). This makes it difficult to characterize the fundamental variation in

the data that would strongly identify substitution patterns. See Angrist and Pischke (2010) for an

articulation of this criticism.

Our goal in this paper is to provide a new class of instruments that are practical to construct

and circumvent the weak identification problem in demand models with flexible substitution pat-

1Examples include models of residential and school sorting (e.g. Bayer, Ferreira, and McMillan 2007, Nielson
2017), and models of adverse selection in insurance markets (e.g. Starc 2014).

2Price endogeneity is a familiar problem in the literature with a long history, and a variety of instruments have
now been proposed to address it, i.e, BLP instruments, Haussman instruments, Waldfogel instruments, etc. See Berry
and Haile (2016) for a review.

3For instance, it is common to impose additional “cross-equation” restrictions originating from equilibrium supply
assumptions (see Berry et al. 1995, Berry, Levinsohn, and Pakes 1999, Eizenberg 2014), micro moments (see Petrin
(2002) and Berry, Levinsohn, and Pakes (2004)), or by using more restrictive models of product differentiation such
as the nested-logit or GEV models (e.g. Verboven 1996, Bresnahan, Stern, and Trajtenberg 1997).
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terns.4 To highlight very clearly the source of the problem and our solution, we focus first on the

identification of the random-coefficient model with exogenous characteristics. We then illustrate

how our approach can be generalized to settings with endogenous prices or characteristics.

The starting point of our analysis is the identification result of Berry and Haile (2014). They

showed that the demand function can be non-parametrically identified by imposing a set of condi-

tional moment restrictions relating the mean unobserved quality of each product, and the charac-

teristics of rivals. The “reduced-form” of the model then becomes the conditional expectation of the

inverse-demand given the menu of characteristics available. A fundamental challenge when using

this result to guide empirical work is that the reduced-form function is a product-specific function of

all observed product characteristics available in a market, which leads to a curse of dimensionality

problem in the number of products. Without further restrictions on the data-generating process

or on the structure of the model, it is impossible in general to estimate the reduced-form; that

is find instrumental variables that can approximate the conditional-moment restriction arbitrar-

ily well (see Newey 1993, Newey and Powell 2003 and Ai and Chen 2003). Without the reduced

form, there is no formal characterization of what constitutes relevant instruments for the general

random-coefficient model commonly used in the literature. This void is important for the design of

a “credible” estimation strategy, since the parameters can be weakly identified by a valid instrument

function (even in large sample), despite the fact the model is non-parametrically identified.

Our main theoretical contribution is to provide such a characterization by showing that the

curse of dimensionality can be solved using implicit restrictions that the demand structure places

on the reduced-form. In particular we show that the reduced-form is a vector symmetric function of

the distribution observed characteristics differences between a given product and the other products

available in the same market. This property is rooted in the symmetry of the underlying demand

function, which is valid in any linear random-utility model with linear preferences.

This result has important implications: an approximation to the reduced-form can be obtained

using basis functions that summarize the distribution of characteristic differences (i.e. exogenous

measures of differentiation). Importantly the number of basis functions necessary to explain the

(unknown) reduced-form is invariant to the number of products in the market. It is this latter

result that breaks the curse of dimensionality when constructing relevant instruments.

We show that the instruments should reflect the (exogenous) degree of differentiation of each

product in a market. We label this family of instruments Differentiation IVs, and provide a series of

examples to illustrate how to construct simple basis functions that can be used in various contexts;

including settings with correlated random-coefficients, and environments in which the character-

istics of consumers differ across markets. Our simulation results show that these instruments, by

4An alternative approach to deal with weak instruments is to estimate the model using estimators that are robust
to weak identification (e.g. Stock and Wright (2000)). Conlon (2013) for instance describes the properties of an
Empirical Likelihood-based estimator applied to BLP, and demonstrates a weak identification problem associated
with commonly used instruments.
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eliminating the weak IV problem, can improve substantially the precision of the estimates (by a

factor of 10 in some cases), and improve the numerical performance and speed of the non-linear

optimization algorithms used to estimate the parameters. This good performance is also confirmed

by several recent applied papers implementing our instruments (see for instance Miravete, Moral,

and Thurk 2018, Coşar, Grieco, and Tintelnot 2018, Singleton 2019, Chaves 2019, Conlon and

Gortmaker (2019)).

We then discuss how to adapt our identification strategies to settings in which one or more

characteristics is endogenous; exploiting the availability of external instruments (e.g. cost-shifters)

or natural experiments. To account for endogenous prices, we combine our main theoretical result

with the heuristic approximation suggested by Berry, Levinsohn, and Pakes (1999), and revis-

ited recently by Reynaert and Verboven (2013). We illustrate that both approaches can be quite

complementary to one another.

Importantly, this characterization of the reduced-form does not depend on the distribution of

the random-coefficient, or on the value of the parameters. Therefore, the same instruments can

be used to estimate different models of product differentiation, and to test between alternative

specifications. For instance, we use our results to construct a test of the IIA hypothesis, which

can be used to measure the strength of the instruments. This is an important advantage of our

approach over alternative two-step approximations to the optimal instruments that require obtain-

ing consistent estimates of the parameters, and cannot be used to discriminate between alternative

model specifications.

Our paper is not the first to indirectly or directly point out the possibility that aggregate

models of product differentiation suffer from a weak identification problem, and propose alternative

instrument functions. Recently, Reynaert and Verboven (2013) discussed the loss of efficiency

associated with commonly used instruments. The instruments that we propose are also similar

to the instruments commonly used to identify nested-logit and spatial differentiation models.5

We derive an instrument function that can exploit variation in demographic characteristics across

markets, similar to the one proposed by Romeo (2010). A key contribution of our paper is to

develop a unifying approach to study the estimation of a general family of characteristics models

with aggregate data.

The rest of the paper proceeds as follows. In the next section, we formally define the identifica-

tion and the curse of dimensionality problems in a baseline model with exogenous characteristics.

In Section 2 we illustrate and formally diagnose the weak instrument problem. Section 3 include

our main sets of results. We first derive our main theoretical result, and illustrate its implication

for the construction of Differentiation IVs. We then present a series of Monte-Carlo simulation

results to analyze the finite-sample properties of the instruments. Finally, in Sections 4 and 5,

we extend our model to account for endogenous characteristics, and compare the performance of

5See in particular Berry (1994), Bresnahan, Stern, and Trajtenberg (1997), Pinkse, Slade, and Brett (2002), Davis
(2006), Thomadsen (2007), and Houde (2012).
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our instruments with the optimal IV approximation discussed in Reynaert and Verboven (2013).

Appendix A and B include the proof of the main propositions, and computation details related to

the Monte-Carlo simulations.

1 Baseline model: Exogenous characteristics

In order to illustrate the instrument choice problem, we consider a special case of the random-utility

model considered by Berry et al. (1995), in which product characteristics (including prices) are

exogenous.

1.1 Model notation and assumptions

Consider a market t with Jt + 1 differentiated-products. Each product j is characterized by a

vector of observed (to the econometrician) product characteristics xjt ∈ RK and an unobserved

characteristic ξjt. We will refer to xt = (x1t, . . . ,xJt,t) as a summary of the observed market

structure - the entire menu of observed product characteristics available to consumers in market t

(i.e. Jt ×K matrix). Similarly, st = {s1t, . . . , sJt,t} is the vector of observed market shares, which

is defined such that 1 −
∑Jt

j=1 sjt = s0t is the market share of the “outside” good available to all

consumers in market t. We normalize the characteristics of the outside good such that x0t = 0 and

ξ0t = 0.6

Following Berry et al. (1995) and Berry and Haile (2014), we assume that the unobserved

characteristics of products are independent of the set of characteristics available in each market.

Assumption 1 formalizes the main identifying restriction.

Assumption 1. The unobserved quality of products has mean zero conditional on the observed

menu of characteristics xt,

E [ξjt | xt] = 0. (1)

Our second assumption, refers to the shape of the indirect utility function. We assume that

the preference of consumers can be summarized by a linear-in-characteristics random-utility model

with a single-index unobserved quality.

Assumption 2. Each consumer i has linear preferences for products j = 0, 1, . . . , Jt:

uijt = δjt +

K2∑
k=1

νikx
(2)
jt,k + εijt (2)

where δjt = x′jtβ + ξjt is labelled as the “mean utility” of product j, x
(2)
jt is a sub-vector of xjt

(i.e. non-linear attributes), εijt ∼ T1EV(0, 1) is random-utility shock for product j, and νi =

{νi1, . . . , νiK2} is the vector of random-coefficients for consumer i.

6Thus each characteristic can be interpreted in terms of differences relative to the outside good.
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We maintain the mixed-logit parametric functional-form in our simulations below, since it is

the workhorse model used in the literature. However, our theoretical results do not depend on

this particular distributional assumption, and are relevant for a broader family of characteristic

models; including in particular the pure-characteristic and semi-parametric demand models with

linear preferences (e.g. Berry and Pakes 2007 and Compiani 2019).

If F (νi;λ) denotes the joint distribution of the random-coefficient vector, the aggregate demand

function for product j can be written as follows:

σj

(
δt,x

(2)
t ;λ

)
=

∫ exp
(∑

k vikx
(2)
jt,k + δjt

)
1 +

∑nt
j′=1 exp

(∑
k vikx

(2)
j′t,k + δj′t

)dF (νi;λ) (3)

where x
(2)
t =

(
x
(2)
1t , . . . ,x

(2)
nt,t

)
and δt = (δ1t, . . . , δnt,t).

Following Berry (1994), the inverse demand function is used to define the residual function of

the model:

sjt = σj

(
x
(2)
t , δt;λ

)
j = 1, . . . , Jt

⇐⇒ ρj (st,xt;θ) = σ−1j

(
st,x

(2)
t ;λ

)
− xjtβ j = 1, . . . , Jt (4)

where θ = (β,λ) is the full parameter vector of dimension m. Existence and uniqueness of the

inverse demand, σ−1j (·), follows directly from Berry (1994), Berry et al. (1995).7 When νik = 0 for

all consumers (i.e. multinomial logit), the inverse-demand function is equal to odds-ratio ln sjt/s0t,

and the parameters can be estimated by OLS. Otherwise, the market shares of rival products enter

the inverse-demand non-linearly, and the least-square estimate of (λ,β) will be biased.8

Using Theorem 1 from Berry and Haile (2014), it is easy to show that the parameters can

instead be identified by imposing the following conditional-moment restrictions (CMR):

E
[
ρj(st,xt;θ)

∣∣xt] = E
[
σ−1j

(
st,x

(2)
t ;λ

)
|xt
]

︸ ︷︷ ︸
πj(xt;λ)

−xtβ = 0 iff θ = θ0. (5)

We will refer to πj(xt;λ) as the reduced-form function of the model evaluated at an arbitrary

parameter λ. This function calculates the expectation of product j’s inverse-demand, conditional

7See also Berry, Gandhi, and Haile (2013) for a general proof that does not rely on the type-1 extreme-value
distribution assumption.

8To see this, note that the first-order condition of non-linear least-square with respect to λ is not satisfied at the
true value of the parameters because the market shares enter σ−1

j (·):

1

n

∑
j,t

∂σ−1
j (st,x

(2)
t ;λ0)

∂λ
· ρj(st,xt;θ

0)→p E

[
∂σ−1

j (st,x
(2)
t ;λ0)

∂λ
· ξjt

]
6= 0.

This echoes early discussion on “non-linear IV” methods in Jorgensen and Laffont 1974 and Amemiya 1974.
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on the menu of product characteristics available in t. This expectation is taken over the endogenous

variables of the model: the vector of market shares.

The standard approach to estimate θ is to form L ≥ m unconditional moment restrictions,

consistent with the CMRs defined in equation (5):

E
[
ρj
(
st,xt;θ

0
)
· zjt

]
= 0, (6)

where zjt = Aj(xt) denotes an instrument function characterizing the menu of characteristics in

market t. The instrument vector includes product j’s own characteristics, as well as functions of

the characteristics of rivals: Aj(xt) = {xjt, A−xj (xt)}.
How should the instrument function be chosen? Following Newey (1990), Newey and Powell

(2003) and Ai and Chen (2003), the role of the instrument function is to approximate the reduced-

form function defined by the CMR (see equation 5). In particular, if Aj(xt) can approximate

πj(xt,λ) arbitrarily well for all values of λ, the estimator achieve the efficiency bound defined

by Chamberlain (1987)’s optimal instruments. We use this to formally define the relevance of an

instrument function.

Definition 1 (Relevance). An instrument function Aj(xt) is relevant if it can approximate the

conditional expectation of the inverse-demand function at any λ arbitrarily well:

πj(xt;λ) ≈ Aj(xt)γ(λ) ∀j = 1, . . . , Jt

where γ(λ) is the least-square coefficient vector obtained by regressing the inverse-demand for prod-

uct j, σ−1j (st,x
(2);λ), on the instruments Aj(xt).

If the quality of the approximation is poor, the parameters are weakly identified. Intuitively an

instrument function is “strong” if it is a good predictor of the impact of changes to the choice-set

of consumers on the inverse-demand of products (i.e. average willingness to pay). This can be

thought of as the “the ideal” first-stage of the model.

1.2 IIA Test

The downside of the previous relevance definition is that the reduced-form function depends on

an unknown parameter vector λ, and cannot be empirically assess ex-ante. To get around this

problem, we propose a more practical measure of relevance, based on the ability of the instruments

to reject the Independence of Irrelevance Alternative (IIA) hypothesis.

With data on individual choices, Hausman and McFadden (1984) propose the following IIA

test: estimate the model by including characteristics of rival products in the indirect utility of

consumers, and test the exclusion restriction implied by the multinomial logit model. A similar

exclusion restriction can be tested using the aggregate inverse-demand function at λ = 0 (Berry
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1994):

σ−1j
(
st,xt;β

0,λ = 0
)

= ln sjt/s0t

= xjtβ
0 +

[
σ−1j

(
st,xt;β

0,λ = 0
)
− σ−1j

(
st,xt;β

0,λ0
)]

+ ξjt

= xjtβ
0 + ∆j(st,x

(2)
t ;λ0) + ξjt = xjtβ + rjt

Importantly, the residual rjt = ρj(st,xt;β
0,λ = 0) is correlated with the characteristics of rival

products through the ∆j(·) function, which measures deviations from IIA in the true model. We

construct an “IIA-regression” by taking expectation of shares on both sides, conditional on the

menu of product characteristics. This leads to a reduced-form regression relating the log of the

odds-ratio to the matrix of product characteristics.

Definition 2 (IIA-test). If Assumption 1 is valid, the IIA hypothesis can be tested by estimating

the following regression:

E[ln sjt/s0t|xt] = xjtβ + E
[
∆j(st,x

(2)
t ;λ0)|xt

]
+ 0

≈ Aj(xt)γ = xjtγ0 +A−xj (xt)γ1, (7)

where A−xj (xt) is a partition of the full instrument vector including functions summarizing the

distribution of products available in market t, excluding product j’s own characteristics. The null

hypothesis of IIA preferences correspond to: H0 : γ̂1 = 0.

The essence of the test is to quantify the expected deviations from IIA under the true model by

estimating a (potentially) mis-specified model.9 Failure to reject the IIA hypothesis when λ0 6= 0 is

consistent with weak-identification, since the instrument vector is unable to distinguish between the

true model and the “wrong” model (Stock and Wright 2000). To formalize this relationship between

weak identification and the IIA regression, in Appendix A.1, we show that the GMM estimator

is equivalent to a minimum-distance (MD) estimator that minimizes the distance between the

reduced-form IIA regression and the model predicted deviations from IIA. For a given parameter

vector θ, the model predicted deviations from IIA are given by the following regression:

E

∆j(st,x
(2)
t ;λ) + xjtβ︸ ︷︷ ︸
≡yjt(θ)

∣∣∣xt
 ≈ Aj(xt)γ(θ)

where γ(θ) is obtained by projecting yjt(θ) onto the instrument function Aj(xt). At the true value,

9Without controlling for the characteristics of rival products available in market t, the IIA regression suf-
fers from an omitted variable bias. When the instrument is a rich enough control function, in the sense that

E
[
∆j(st,x

(2)
t ;λ0)|xt

]
≈ A−x

j (xt)γ1, the omitted variable bias disappears and γ̂0 is a consistent estimate of the

parameters determining the average willingness to pay of consumers (β0).
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the difference between γn and γ(θ) is equal to zero. The distribution of the minimum-distance

(and GMM) estimator of θ is the set of parameters that are consistent with the IIA-test statistics

estimated from the data. When the instrument function Aj(xt) fails (or only weakly) rejects the

IIA-test, this set can be large, and includes λ = 0. In other words, the estimated reduced-form is

consistent with several models, implying that the minimum-distance moment conditions are weakly

satisfied away from the true:

E (||γn − γ(θ)||) :

= 0 If θ = θ0,

≈ 0 If θ 6= θ0.

Therefore, an instrument function is “weak” if it cannot detect deviations from IIA using the

observed distribution of aggregate market shares and characteristics. Crucially, this definition of

relevance can be measured prior to estimating the model.

Of course, the instruments can be “strong” (in the sense of Definition 1) and fail to reject the

IIA hypothesis. If that is the case, the researcher should infer that the underlying data-generating

process is well approximated by a model with IIA preferences (λ0 = 0).

The previous discussion suggests a sequential approach to estimation. First, researchers should

evaluate the strength of the proposed instrument function by testing the IIA hypothesis. If the

null hypothesis cannot be rejected, the analysis should proceed with the Logit model. Otherwise,

the instrument function can be used to estimate a richer model, and test the validity of the over-

identifying restrictions. However, as we discuss in Section 3, there exists a (potentially) infinite

number of instrument functions to consider, which leads to a curse of dimensionality problem. In

Section 3 we use the model to solve this problem, and characterize a class of relevant basis functions

that can be used to test the IIA hypothesis and approximate the reduced-form.

2 Illustration of the weak identification problem

The problems of weak identification in linear IV models are well documented (e.g. Stock, Wright,

and Yogo (2002)). Similar problems arise in non-linear IV models, but are more difficult to diagnose

since the reduced-form of the model depends on the unknown vector of parameters. In this section

we illustrate the weak IV problems associated with a commonly used instrument function, and

validate the IIA test as a measure of the relevance of the instrument function.

We onsider the following IID random-coefficient model example with exogenous characteristics:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + λkηik) · x
(2)
jt,k + ξjt + εijt (8)

where sjt is the observed aggregate market share of product j in market t, and ηik ∼ N(0, 1).

9



Using the previous notation, λ = {λ1, . . . , λK2} denotes the vector of K2 non-linear parameters.

We assume that the number of products is fixed (J = 15), and the number of market is equal to

T = 100.

For this example, we use the sum of rival characteristics as an instrument function:

Aj(xt) =

xjt,
J∑

j′ 6=j
xj′,t

 =
{
xjt, IV

sum
jt

}
.

This is a commonly used instrument in the literature to account for the simultaneous determination

of prices (see Berry et al. (1995)). In our context, since characteristics are exogenous, we use this

variable as a valid but (potentially) weak moment to identify λ.

Figure 1a illustrates the IIA-test graphically in the single-dimensional model. Each dot repre-

sents a product/market combination, and the line corresponds to a linear regression of r̂jt on the

instrument.10 As the figure illustrates, the sum of rival characteristics is uncorrelated with the in-

verse demand evaluated at λ = 0, even though the true model exhibits substantial deviations from

IIA (λ0 = 4). The R2 and the slope of the regression are both indistinguishable from zero. In other

words, the moment conditions are (nearly) satisfied away from the true parameter value (λ0 = 4),

implying that the model is weakly identified. Importantly, this weak identification problem is not

caused by a small sample problem (N = 1500). Also the DGP leads to substantial variation in the

instrument across markets and products, since we intentionally used a small number of products

in our example, J = 15. See Armstrong (2016) for discussion of the weak instrument problem for

prices when J is large.

The results of 1, 000 Monte-Carlo replications are summarized in Table 1. The first four rows

report the average bias and root-mean square error (RMSE) of the estimated log parameters. Note

that we estimate the log of λk in equation (8), instead of λk directly, to account for the strictly

positive support of the parameter space. The next four rows report the bias and RMSE of the

transformed estimated parameters.

To demonstrate the ability of the IIA-regression to detect the presence of weak instruments,

we compare the distribution of the IIA-test with a formal local identification test evaluating the

rank of matrix E
[
∂ρj

(
st,xt;θ

0
)
/∂θT · zjt

]
. We use the rank-test proposed by Cragg and Donald

(1993) to test the null hypothesis of under-identification under homoskedastic errors. In general,

the distribution of the test is sensitive to the weakness of the instruments, since the Jacobian

function depends on the unknown θ0. See Wright (2003) for a discussion. This is not an issue

in our Monte-Carlo simulations, because we can evaluate the test statistics at the true parameter

values, and use techniques common in the linear weak IV literature.11 The bottom panel of Table

10To represent the test graphically we project the instrument onto the product characteristics, and plot the residual
on the x-axis.

11This test can easily be evaluated by testing the rank of E
[
∂ρj

(
st,xt;θ

0
)
/∂θT · zjt

]
using standard statistical

softwares. For instance, ranktest or ivreg2 in STATA.
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Figure 1: IIA test and parameter estimates with weak instruments

(a) IIA Regression (b) Distribution of λ̂
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Shapiro-Wilk test for normality: 15.71 (0). Width = 1.

1 reports the results of the two tests.

We test the null-hypothesis of IIA preferences by testing the joint null hypothesis that γ̂1 =

0. As the figures suggests, we cannot reject the hypothesis of IIA preferences across all four

specifications. We reach the same conclusions using the rank-test results. The null hypothesis of

under-identification (i.e. rank less than m),, cannot be rejected with probabilities ranging between

60% and 92% on average across the specifications. Note that the p-values with the IIA-test tend to

be smaller than the rank-test ones calculated using Stock (2005) critical values. This suggest that

the critical values to diagnose weak instruments using the IIA test should be adjusted upward.

Next, we look at the finite-sample performance of the GMM estimator under weak identification.

Figure 1b plots the distribution of λ̂1 in the K2 = 1 specification. In this specification, 8.4% of

λ̂1 are estimated to be less than 0.001, which can be interpreted as a corner solution to the GMM

optimization problem. This is a robust feature of weak instruments that has been documented by

other researchers analyzing the BLP model (e.g. Reynaert and Verboven (2013)).

This “zero problem” is caused by a combination of two factors. First, weak instruments imply

that the normal distribution is a poor approximation of the finite-sample distribution of the pa-

rameter estimates. This can clearly be seen in Figure 1b; we can easily reject the null hypothesis

of normality using Shapiro-Wilk test statistic.12 In practice, this means that the distribution of

the parameter estimates produce frequent outliers. Second, since the parameter space is bounded,

outliers on the left-side of the distribution lead to corner solutions, and therefore frequent zeros.

The second panel in Table 1 shows that the dispersion of parameter estimates is still large after

transforming the parameter estimates. The RMSEs range from 2.2 to 2.6 across specifications; or

more than 50% of the true parameter value (i.e. λk = 4 for all k’s). The precision of the estimates

12The Shapiro-Wilk test statistic was computed using the empirical distribution of ln λ̂.
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Table 1: Monte-Carlo simulation results for exogenous characteristics model with weak instruments

K2 = 1 K2 = 2 K2 = 3 K2 = 4
bias rmse bias rmse bias rmse bias rmse

log λ1 -11.293 95.930 -5.433 74.954 -1.147 5.503 -8.400 229.670
log λ2 -4.692 58.306 -1.364 6.261 -1.096 6.173
log λ3 -1.407 9.199 -4.657 112.637
log λ4 -0.926 4.023

λ1 0.136 2.643 -0.010 2.486 -0.032 2.195 0.218 2.348
λ2 0.117 2.421 -0.006 2.267 0.099 2.297
λ3 0.178 2.377 0.113 2.378
λ4 0.075 2.207

1(Local-min) 0.189 0.514 0.594 0.661
Range(J-statistic) 0.737 1.149 1.636 1.513
Range(p-value) 0.167 0.189 0.212 0.210
Range(param) 11.735 6.641 6.583 4.863
Rank-test 1.265 0.464 0.259 0.178

p-value 0.615 0.813 0.886 0.919
IIA-test 1.327 1.296 1.486 1.944

p-value 0.426 0.422 0.356 0.237

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1). The parameter
values are given by: β0 = −3, β1 = 1, β2 = 1, λk = 4 for all k. Number of simulations: 1,000.

is poor across all four specifications, and remains constant as we increase the complexity of the

model.

Another consequence of weak instruments is the presence of numerical optimization problems.

To illustrate this point, for each simulated sample, we launched the optimization routine at 10

random starting values (centered around the truth), and use a Nelder-Mead (or Simplex) algorithm

to find the local minimum. The indicator variable 1(Local-min) is equal to one if the algorithm

converged to more than one solution.

This procedure clearly shows that weak instruments frequently cause multiple local minima.

Moreover, the frequency of the problem is increasing with the dimensionality of the parameter

space. When K2 = 4, 66% of the samples exhibit multiple minima out of 10 starting values,

compared to 19% when K2 = 2. The link between weak instruments and numerical problems is

easy to understand. Weak identification implies that the moment conditions are almost satisfied

away from the true parameter, which leads to non-convexities in the GMM objective function. This

makes it difficult for standard hill-climbing algorithms to find the global minimum when instruments

are weak.

The next two rows of Table 1 illustrate the magnitude of the differences between the different
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local solutions. For the samples exhibiting multiple solutions, Range(J-stat) and Range(p-value)

calculate the average difference between of largest and smallest over-identification test statistics

(chi-square) and p-values respectively, while Range(param) calculates the average absolute differ-

ence between the parameter estimates. The average differences in the J-statistic p-values imply

that the over-identifying restrictions are rejected with a p-value of roughly 20% on average using

the largest local minimum, compared to 40% with the global minimum solution. These differences

are consistent with the numerical problems documented by Metaxoglou and Knittel (2014).

3 Instrument relevance and product differentiation

As we discussed in Section 1, an instrument function is relevant if it can approximate the reduced-

form of the model arbitrarily well. The choice of instrument function is analogous to choosing a

basis-function that can predict the inverse-demand function for all parameter values (Definition 1),

as well as deviations from IIA in the (true) inverse-demand function (Definition 2).

In most cases, summarizing the information contained in the conditional moment restrictions to

estimate these reduced-form relationships is a daunting task. Recall that the number of exogenous

variables xt is equal to K × Jt, and the number of endogenous variables in the structural equation

is equal to Jt. In many applications the number of products is at least as large as the number of

markets/periods. This creates a curse of dimensionality problem limiting our ability to approximate

the reduced-form; at least without making further restrictions on the shape of the reduced-form

function that needs to be approximated.

Formally, a curse of dimensionality exists because the reduced-form of the model is a product-

specific function of the entire menu of product characteristics available in the market. As the

number of products in each market increases, both the number of arguments and the number of

functions to approximate increase.13 In this context, it is impossible to approximate the reduced-

form, because the number of arguments in the approximating functions grows at the same rate

as the sample size (a violation of Assumption 3.7 in Ai and Chen (2003)). For the same reason,

it is not feasible to approximate Chamberlain (1987)’s optimal instruments using non-parametric

regressions, as suggested in Newey (1990).

Therefore, unless the number of products is assumed to be constant and small relative to the

number of markets, the number of terms necessary to approximate the function grows exponen-

tially.14 Intuitively, changes in market structure (from xt to xt′) affect each product differentially

due to market segmentation, which implies that the expectation of the inverse-demand function

13For example in the case of the original automobile data, the number of models is roughly 100 per year with
5 product characteristics. This makes xt a 500 dimensional object. Estimating a non-parametric function of 500
variables would require an inordinate number of markets - in the BLP context there are only 20 markets (corresponding
to 20 different years) and thus not even as many observations as variables.

14Note that this does not affect the identification result in Berry and Haile (2014), since they consider data-
generating processes with finitely many products (i.e. T →∞).
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needs to be approximated separately for each product.

This has important implications for empirical work, since there is no formal characterization of

what constitutes relevant instruments for the general random-coefficient model commonly used in

the literature. As a result the choice of instruments is often poorly justified, which leads to a weak

identification problem as we discussed in Section 2.

In the remainder of this section we solve this curse of dimensionality, by exploiting theoretical

properties of the linear random-coefficient model to impose more structure on the reduced-form

of the model. In particular, we show that the symmetry of the demand system implies that the

reduced-form can be written as a symmetric function of the distribution of characteristic differences;

a property that breaks the curse of dimensionality. We then show how this property can be used

to guide the choice of instruments.

3.1 Demand symmetry and the curse of dimensionality

Let us define djt,k = xjt − xkt to be the vector of characteristic differences between product j

and product k in market t, and let djt = (djt,0, . . . ,djt,j−1,djt,j+1, . . . ,djt,J) be the matrix of

differences relative to product j. Similarly, d
(2)
jt is a matrix of non-linear characteristic differences.

Furthermore, let ωjt,k =
(
skt,d

(2)
jt,k

)
denotes an ordered pair associated with each product k =

0, . . . , nt in the market (including the outside good) for a given inside product j > 0, and let

ωjt = (ωjt,0, . . . ,ωjt,j−1,ωjt,j+1, . . . ,ωjt,J). We now have the following results which are proven in

Appendix A.

Proposition 1. Under the linear in characteristics random utility model the inverse-demand

σ−1j

(
st,x

(2)
t ;λ

)
= f (ωjt;λ) + Ct(λ), j = 1, . . . , nt (9)

where Ct is a market-specific constant and f is a symmetric function of ωjt.

The proof can be sketched as follows. We first recognize that the identity of products or

the level of product attributes is irrelevant to predict consumers’ discrete choice. Therefore,

we can abstract from the identity of products by expressing the demand function in terms of

characteristics differences relative to product j. Furthermore, rather than normalizing the qual-

ity index of the outside good to zero, we rescale the quality index to be between zero and one:

τjt = exp(δjt)/
(

1 +
∑

j′t exp(δj′t)
)

for all j = 0, . . . , Jt. This new normalization has the advantage

of treating the outside option symmetrically with respect to the other options, and explains the

presence of a market-specific intercept in equation (9).15 These two normalizations imply that the

15The market intercept corresponds to: Ct(λ) = ln

((
1−

∑
j≥1D

−1(ωjt;λ)
)−1

)
, where D(ωjt;λ) is the (sym-

metric) demand function for product j.
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demand function for product j is a fully exchangeable function of the structure of the market rel-

ative to product j: mjt =
{

(d
(2)
jt,0, τ0t), . . . , (d

(2)
jt,j−1, τj−1,t), (d

(2)
jt,j+1, τj+1,t), . . . , (d

(2)
jt,nt

, τnt,t)
}

. The

inverse mapping associated with this demand representation maintains the same symmetry and

anonymity properties.

There are two key implications of Proposition 1. The first is that the inverse-demand function

σ−1j

(
st,x

(2)
t ;λ

)
is no longer indexed by product j, once we condition on a vector of state variables

ωjt of the products competing with j in a market.16 The second implication is thatf(·) is a

symmetric function of the states of the competing products.

To further restrict the shape of the reduced-form function, we impose an additional assumption

on the joint distribution of {ξ1t, . . . , ξJt,t}.

Assumption 3. The joint distribution of the unobserved quality of products is exchangeable in the

identity of products:

Pr(ξj,t < c|ξ1,t, . . . , ξj−1,t, ξj,t, . . . , ξnt,t) = Pr(ξj,t < c|ξρ(−j),t)

for any ordering function ρ().

In economics terms, this assumption implies that the identity of rival products is not important

to predict the distribution of unobservable attributes. This does not necessarily rule out the possi-

bility that brands, for instance, are relevant for consumers’ decisions. As long as brand or product

fixed-effects enter the model linearly (shift the mean attribute), they can be concentrated-out of

the residual quality. This assumption is not novel in the literature. It is implicit in much of the

prior empirical work, and is discussed explicitly in Berry et al. 1995 (section 5.1).

The following proposition constitutes our main theoretical result, and state that the reduced-

form of the model can be written as symmetric functions of the vector of characteristic differences.

Proposition 2. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the conditional expectation of

the inverse-demand is a symmetric function of the matrix of characteristic differences:

πj(xt;λ) = g (djt;λ) + ct(λ)

where ct is a market specific constant.

The proof can be sketched as follows. Recall the expectation operator defining the reduced-form

function in equation (5) is taken over the market shares vector; which corresponds to the demand

functions. Since the demand for each product is symmetric, the density of shares can be re-written

as a function of the entire vector of characteristics differences and the joint density of unobservable

quality ξjt. This involves re-ordering the vector of characteristic differences to predict the marginal

16Observe that the state ,ωjt,k of a rival k 6= j does not contain its own product characteristic ,xkt but rather the
difference, xkt − xjt, relative to j.
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distribution of each product’s market share, and does not require knowing the identity of each

individual product (under Assumption 3). This establishes that the expectation of the inverse-

demand is a symmetric function of the matrix djt, because the joint distribution of market shares

and the integrand itself are symmetric functions of characteristic differences.

To understand the usefulness Proposition 2, consider a special case of the model with a single

attribute, xjt. In this case, the state space is given by a Jt × 1 vector with element k given by:

djt,k = xkt − xjt. The first order polynomial approximation of the reduced-form can written as

follows:

g(djt;λ) ≈
∑
j′ 6=j

γj′djt,j′ = γ1 ·

∑
j′ 6=j

djt,j′


The equality follows directly from the symmetry of the reduced-form function. Since we can re-order

the products without changing the inverse-demand, g(djt,−j ;λ) = g(djt,ρ(−j);λ), the coefficients of

the polynomial function must be equal across products. The second order polynomial approxima-

tion takes a similar form:

g(djt;λ) ≈
∑
j′ 6=j

∑
k 6=j

γj′,kdjt,kdjt,j′ = γ1 ·

∑
j′ 6=j

djt,j′

+ γ2 ·

∑
j′ 6=j

(
djt,j′

)2+ γ3 ·

∑
j′ 6=j

djt,j′

2

The symmetry property restricts the number of basis-functions to at most three. The first and

last terms exhibit very little variation across products. Moreover, conditional on xjt, the sum of

characteristics differences span the same space as the sum of rival characteristics; which is weakly

correlated with the inverse-demand function as we discussed in Section 2. We will therefore focus

on the sum of square of characteristic differences to construct our instruments.

In summary, Proposition 1 solves the curse of dimensionality in two ways. First, by expressing

the state of the industry in differences (rather than in levels), it is no longer necessary to condition

on the identity of products to express the inverse-demand function. This allows us too “pool”

observations within and across markets since the same inverse-demand equation is used to explain

the data on all products (j, t). Second, under Assumption 3, the expectation of the inverse demand

is an exchangeable function of the vector of characteristics difference. This implies that the inverse-

demand is function of the magnitude of characteristic differences, not the identity of competing

products. As the previous example illustrates, this leads to a substantial reduction in the number

of basis functions necessary to approximate the reduced-form.

Proposition 1 extends the partial-exchangeability result obtained in Pakes (1994) to reduce

the dimensionality of equilibrium strategies in differentiated product markets (e.g. investment

and pricing). In particular, Pakes argues that a firm’s demand and profit functions are partially

exchangeable in its own and rivals’ vector of characteristics: σj(xjt, x−j,t) = σj(xjt, xρ(−j),t) for
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any ordering ρ(). Berry et al. 1995 use this result to construct their instruments for prices:

characteristics of own and rival products.

While this result certainly alleviates the curse of dimensionality discussed above, it is silent

on how xjt and x−j,t should be interacted when constructing the basis functions. In contrast, by

expressing the market structure as a matrix of differences, we obtain a fully exchangeable func-

tion. This property is commonly used to alleviate the curse of dimensionality associated with the

computation of Markov Perfect Equilibrium (see Doraszelski and Pakes (2007) for a survey of this

literature). Farias, Saure, and Weintraub (2012) discusses various moment-based approximation

functions that exploit this property. See also Altonji and Matzkin (2005) for a related use of

symmetric functions for the estimation of non-separable models.

Finally, the following two corollaries establish a direct connection between product differenti-

ation, optimal instruments, and the IIA test introduced in Section 1. First, a direct implication

of Proposition 2 is that the optimal instruments introduced by Amemiya (1977) and Chamberlain

(1987) can be written as symmetric functions of the distribution of characteristic differences relative

to product j. This is because the symmetry property of the expectation operator used to construct

the reduced-form carries over in the construction of the conditional expectation of the Jacobian.

Corollary 1. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the conditional expectation of the

derivative of the residual function is a symmetric function of the matrix of characteristic differences:

E

[
∂ρjt (st,xt|θ)

∂λk

∣∣∣∣∣xt
]

= gk (djt;λ) + ct,k(λ), ∀k = 1, . . . , dim(λ)

where ct,k is a market-specific constant.

This implies that it is feasible to find basis-functions that can approximate the optimal in-

struments, while avoiding the curse of dimensionality problem. The same basis-functions used to

approximate the reduced-form can then either be used directly as instruments (as suggested by

Berry et al. 1995), or as a two-step procedure to construct the optimal instruments following

Newey (1990).

Second, the conditional expectation of the inverse-demand under logit can be written as a

symmetric function of the distribution of characteristic differences. This corresponds to a non-

parametric IIA regression defined in Section 2. Corollary 2 formalizes this result.

Corollary 2. If the distribution of {ξ1t, . . . , ξnt,t} is exchangeable, the IIA regression can be written

as a symmetric function of the matrix of characteristic differences:

E [ln sjt/s0t|xt] = xjtβ + E
[
∆j(st,x

(2)
t ;λ0)|xt

]
= xjtγ0 + h(djt) + h0t (10)

where h0t is a market-specific intercept.
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The key implication of this corollary is that the IIA hypothesis can be tested by regressing

the log-share differences on functions summarizing the distribution of characteristics differences.

Since the predicted value of this regression measure the conditional expectation of the difference in

the inverse-demand function relative to Logit, this test can be used to measure the relevance of a

candidate instrument function. This is useful both as a specification test, and as a method to select

relevant instrument functions without having to compute the inverse-demand function explicitly.

3.2 Differentiation IVs

Recall that a relevant instrument function is a set of basis-functions that can approximate the

reduced-form function. The main implication of Proposition 2 is that a relevant instrument func-

tion for λ correspond to a finite number of moments characterizing the empirical distribution of

characteristic differences relative to product j in market t. Since these functions measure the degree

of differentiation, we label them Differentiation IVs. To fix ideas, we consider a few examples that

we will use in the numerical examples below.

Our first example is based on the idea of constructing an instrument function using the lead-

ing terms of a second-order symmetric polynomial basis function (focussing only on the binary

interaction terms):

Aj(xt) =


xjt Own characteristics∑

j′ 6=j

(
dkjt,j′

)2
, ∀k Isolation of product j along dimension k∑

j′ 6=j d
k
jt,j′ × dljt,′ , ∀k 6= l Interaction between dimension k and l

(11)

where dkjt,j′ = xj′t,k − xjt,k measures the difference between product j and j′ along dimension

k. These functions have an economic interpretation in IO. The sum of square of characteristic

differences is a continuous measures of product isolation proportional to the Euclidian distance of

product j along each. The interaction terms for which l 6= k, capture the covariance between two

dimensions of differentiation.

Alternatively, one can exploit the symmetry property by considering only the characteristics

of “close” rivals when summarizing the market structure facing each product. In most models

of product differentiation (e.g. quality-ladder, hotellling, nested-logit etc), the demand for each

product is most heavily influenced by a small number of alternatives with similar characteristics.

For instance in a “mixed-logit quality-ladder” model, as the variance of the logit shock goes to zero,

the inverse demand of product j is only a function of the characteristics of products located to the

right and left in the quality rank.
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This feature suggests the following instrument vector:

Aj(xt) =


xjt Own characteristics∑

j′ 6=j 1
(
|dljt,j′ | < κk

)
, ∀k Isolation of product j along dimension k∑

j′ 6=j 1
(
|dljt,j′ | < κk

)
× dljt,′ , ∀k 6= l Interaction between dimension k and l

(12)

where κk is a proximity threshold (e.g. standard-deviation of xjt,k across all markets). The second

element measures the number of “close-by” rivals along each dimension of differentiation. The

interaction of the indicator function with djt,j′ captures the correlation in characteristics between

firms that are direct competitors. When characteristics are discrete, the indicator variables can be

replaced by 1(dkjt,j′ = 0); which can be thought of as a product-segment indicator.

The two formulations of the Differentiation IVs in equations (11) and (12) can include a large

number of terms depending on the number of characteristics. In general, it is advisable to select a

subset based on the amount of variation across products and/or markets. For instance, it is common

for some product characteristics to exhibit very little variation across markets. In Nevo (2001), the

non-linear characteristics vary only at the product level (i.e. x
(2)
jt = x

(2)
j j = 1, . . . , 25), while prices

vary both at the product and the market level. Assuming for simplicity that prices are exogenous

(or that the researchers have a valid cost shifter such as the Hausman (1994)’s instruments), one

can construct instruments that will be relevant to identify λ:

Aj(xt) =

xjt,∑
j′ 6=j

1
(
|d1j,j′ | < κ1

)
dpjt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKj,j′ | < κK

)
dpjt,j′

 . (13)

According to this formulation, the magnitude of the heterogeneity associated with market-invariant

characteristic k is identified from (exogenous) variation in the relative prices of products that are

more or less differentiated from product j along that particular dimension.

How does this differ from the existing literature? Interestingly, the basis function for the first-

order polynomial formulation corresponds to the suggestion in Berry et al. 1995 of using the sum of

product characteristics as instruments. The logic of using exogenous measures of differentiation has

been used in other settings. However, the relevance of exogenous measures of differentiation is most

often justified by their ability to predict prices, rather than to identify the non-linear parameters.

There exist two important exceptions: the nested-logit model (e.g. Berry 1994, Bresnahan, Stern,

and Trajtenberg (1997)), and models of spatial differentiation (e.g. Pinkse, Slade, and Brett 2002,

Davis 2006, Thomadsen 2007, Houde 2012, Singleton 2019). In both literatures, the standard

instruments correspond to different versions of the proximity measures described in equation (12).

From this perspective, an important contribution of our approach is to formally show that the

intuition developed in these prior literatures remains relevant in the more general random-coefficient

model.
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3.3 Extension: Demographics moments

A restrictive assumption imbedded in the derivation of the random-coefficient model above is that

the distribution of consumer preferences is common across markets. When the density function

φt(·|λ) is indexed by t, for instance due to variation in demographic characteristics, the reduced-

form function becomes a market-specific function of the distribution of characteristic differences.

There are two ways of accounting for this.

First, one could specify separate moment conditions for each market. This approach exploits the

large number of products within each market. Two important requirements are that the product

characteristics vary significantly across markets and that the number of products per market is

large enough.

When this is not feasible, demographic characteristics can be added to the instrument vector in

order to pool moments across markets.17 To see how this source of variation can be combined with

the Differentiation IVs introduced above, consider the following single dimension example similar

to Nevo (2001) or Petrin (2002):

uijt = δjt + bitx
(2)
jt + εijt, bit = λyyit + νi,

Such that, yit = mt + sdtei, ei ∼ φe(·).

In this model, the random coefficient bit is composed of a demographic component yit that is

distributed according to (known) distribution, and a residual component νi that is normally dis-

tributed with mean zero and variance λ2ν . Importantly, we assume that the distribution of yit can

be well approximated by an affine transformation of random variable ei, which has common density

function φe(·) across markets. In other words, differences across markets can be summarized by

the location and spread parameters of yit: mt and sdt.

Under this new parametrization, we can use directly Proposition 2 to write the reduced-form

of the model as a symmetric function:

πjt(xt;λ) = g
(
djt, sdt · d(2)jt ;λ

)
+ ct(λ) (14)

See Appendix A.4 for a detailed derivation.

When demographic characteristics are incorporated in the model in this fashion, the reduced-

form is a symmetric function of the distribution of characteristics difference, and moments of the

distribution of demographic characteristics interacted with differentiation. Moreover, the linear

index includes an additional characteristic: mt ·x(2)jt . This interaction between “own” characteristic

and the market-average of yit can be used as excluded instruments. Therefore, in this example,

the instrument vector should include the full vector of products’ own characteristics (including

17While previous papers have used this type of instruments, they are typically motivated as predictors of markups
or choice-sets (see for instance Waldfogel (2003), Gentzkow and Shapiro (2010) and Fan (2013)).
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mt · x(2)jt ), as well as moments of the distribution of characteristics differences interacted with the

standard-deviation of yit in market t.

The argument can easily be extended to multiple dimensions of heterogeneity, as long as the

distribution of demographic characteristics can be standardized across markets. For more general

families of distributions, we rely on the following heuristic approximation of the reduced-form:

πjt(xt;λ) ≈ g
(
djt,Mt ⊗ d(2)jt ;λ

)
+ ct(λ) (15)

where Mt is now a vector of moments characterizing the joint distribution of demographic charac-

teristics in market t.

The key insight of this transformation is that demographic characteristics should enter the

instrument vector as interaction terms with other measures differentiation, rather than as stand-

alone variables.18 Heuristically, as long the distribution of demographics can be well approximated

by an affine transformation of a vector of moments Mt, including those additional state variables

will provide a good approximation to the reduced-form.

We can construct instrument variables that identify separately the two sources of heterogeneity

using basis functions similar to the ones discussed above. For instance, the quadratic basis function

becomes:

Aj(xt) =

xjt,mt · x(2)
jt ,
∑
j′ 6=j

d1jt,j′ × dljt,j′ , . . . ,
∑
j′ 6=j

dKjt,j′ × dljt,j′ ,
∑
j′ 6=j

Mt ⊗
(
dljt,j′ × d

(2)
jt,j′

)
l=1,...,K

.

Focussing on the quadratic term (i.e. dljt,j′ = d
(2)
jt,j′), the added instruments capture how product

differentiation asymmetrically impacts the inverse-demand of product j depending on the distribu-

tion of demographic attributes of consumers. See Miravete, Seim, and Thurk (2018) for an example

of this type of instrument function.

3.4 Monte-Carlo simulations

In this section, we analyze the finite sample properties of the Differentiation IVs described in the

previous section. We consider two random-coefficients models with exogenous characteristics: (i)

independent random-coefficients: and (ii) correlated random-coefficients. Appendix B provides

more details on the data-generating process and the numerical algorithm used for estimation. We

use an iterative nested-fixed-point Gauss-Newton Regression (GNR) algorithm, combined with a

Newton-Raphson non-linear equation solver, to solve the non-linear GMM problem. This procedure

is very robust in settings with strong instruments, and is substantially faster than alternative

18See Romeo (2010) for a similar argument and simulation results showing the importance of accounting for
interactions between product characteristics and the mean of demographic attributes in the instrument vector.
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Figure 2: IIA test and parameter estimates with strong instruments

(a) IIA regression (b) Distribution of λ̂
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optimization algorithms. We provide a pseudo-code description of our approach in Appendix B.2.

We also provide sample Phython and Ox codes on our website.19

Independent random-coefficients

We start by revisiting the numerical example discussed in Section 2:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + λkηik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 15 and t = 1, . . . , 100

where ηik ∼ N(0, 1) and εijt ∼ T1EV(0, 1).

Before discussing the results of the Monte-Carlo simulations, we illustrate graphically the rela-

tionship between differentiation and the IIA regression introduced in Section 2. Figure 2a illustrates

the correlation between the residual function at λ = 0 (Logit) and the Euclidian distance of prod-

uct j, for the single-dimension heterogeneity model.20 Unlike the sum of rival characteristics, the

Euclidian distance is strongly correlated with the model residual evaluated at λ = 0; the R2 of the

regression removing the effect of xjt is over 0.35 (compared to 0.0006 in Figure 1a). The Euclidian

distance is therefore a good predictor of the inverse-demand function away from the true parameter.

The sign of the correlation between the differentiation and ρj(st,x;λ = 0) reflects the elasticity

of substitution at the true parameter λ0. Since the data is generated by a model with non-IIA

preferences, products located in denser areas of the product space have relatively small market

shares. The inverse demand evaluated at λ = 0 rationalizes this feature by assigning high quality

19The codes are available here: https://jfhoude.wiscweb.wisc.edu/research-in-progress/

20The Euclidian distance instrument is defined as: IVdist
jt =

√∑15
j′ 6=j

(
x
(2)

j′,t − x
(2)
jt

)2
.
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Table 2: Simulation results for the exogenous characteristic model with Differentiation IVs

Diff IV: Quadratic Diff IV: Local
bias rmse asym-se bias rmse asym-se

K2 = 1 0.000 0.030 0.031 -0.000 0.032 0.032
K2 = 2 -0.001 0.032 0.031 -0.001 0.033 0.032
K2 = 3 -0.000 0.032 0.033 -0.000 0.033 0.034
K2 = 4 -0.001 0.035 0.035 -0.002 0.037 0.036
K2 = 5 0.000 0.039 0.039 -0.000 0.040 0.040
K2 = 6 -0.001 0.045 0.044 -0.001 0.046 0.045
K2 = 7 0.002 0.048 0.050 -0.003 0.051 0.052

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1). The parameter
values are given by: β0 = −3, β1 = 1, β2 = 1, λk = 4 for all k. Number of simulations: 1,000.

to products that are relatively isolated, and low quality to products with many substitutes. A clear

violation of the moment conditions. This positive relationship between differentiation (or distance)

and the inverse demand at λ = 0 is captured by the differentiation instrument used in Figure 2a.

Figure 2b confirms that this leads to precise and unbiased parameter estimates. The finite sample

distribution of λ̂ is well approximated by a normal distribution (Shapiro-Wilk p-value = 0.945).

Next we simulate richer models with dimensions of heterogeneity ranging from K2 = 2 to

K2 = 7. For each specification, we compare the performance two differentiation IVs:

Quadratic Diff IV: Aj(xt) =

xjt,∑
j′

(
d1jt,j′

)2
, . . . ,

∑
j′

(
dKjt,j′

)2
Local Diff IV: Aj(xt) =

xjt,∑
j′

1
(
|d1jt,j′ | < sd1

)
, . . . ,

∑
j′

1
(
|d1jt,j′ | < sdK

)
where K is the number of characteristics (excluding the intercept), and sdk is the standard-deviation

of xjt,k. Table 2 summarizes the small-sample performance for the two IVs across all specifications,

and calculates the average asymptotic standard-errors. Tables A1a and A1b in the Appendix

summarize the full set of simulation results, including the weak identification and IIA tests, and

the local minimum statistics.

Both specifications allow us to reject the null hypothesis of under-identification (rank-test),

as well as the IIA hypothesis. In addition, the frequency of local optima is equal to zero across

all specifications; meaning that the Newton optimization algorithm always converges to global

minimum irrespectively of the starting values. The precision and bias of the parameter estimates

are also small across all specifications. The average RMSEs of λ̂k are roughly 17 times smaller with

the two instruments defined above, compared with the sum of rival characteristics used in Table 1.

We also find that the loss in precision from adding random-coefficients is very minor. The
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average RMSEs increase from 0.03 to 0.05 when we vary the number of random-coefficients from

one to seven. This is encouraging since the sample size is fairly small: 15 products × 100 markets. In

addition, the asymptotic standard-errors are nearly identical to the RMSE across all specifications,

suggesting that the asymptotic distribution is well approximated by a normal. The proposed

instrument functions therefore solve the weak identification problem.

Correlated random-coefficients

Next, we consider a model with correlated random-coefficients:

uijt = β0 + β1x
(1)
jt +

K2∑
k=1

(β2,k + νik) · x
(2)
jt,k + ξjt + εijt, j = 1, . . . , 50 and t = 1, . . . , 100,

where νi ∼ N (0,Σ), and K2 = 4. We use a larger sample for this example: Jt = 50 instead

Jt = 15. This reflects the fact that the number of non-linear parameters is substantially larger with

correlated random-coefficients: from 4 to 10.

To generate the data, we set the diagonal element of Σ equal to 4; the same value used in

the previous simulations. The covariance terms are chosen such that there is an equal number of

positive and negative parameters, equal to either −0.5 or 0.5. See Table 6 in the Appendix.

Note that we estimate Choleski decomposition of Σ = C ′C, rather than Σ directly. This allows

us to write indirect utility of consumers as a linear function of parameters and K2 standard-normal

random-variables: νi = C ′ηi where ηi ∼ N (0, I). To ensure that Σ is positive semidefinite, we

constraint the diagonal elements of C to be positive by estimating the log of Ck,k. Let λ denotes

the lower-diagonal elements of this transformed matrix.

To construct our instrument function, we use the second-order polynomial form of the Differ-

entiation IVs with additional interaction terms between each characteristics pairs:21

Aj(xt) =

xjt,∑
j′ 6=j

d1jt,j′ × d1jt,j′ , . . . ,
∑
j′ 6=j

dljt,j′ × dljt,j′ ,
∑
j′ 6=j

d1jt,j′ × dl+1
jt,j′ , . . . ,

∑
j′ 6=j

dKjt,j′ × dKjt,j′

 .

This results in 15 excluded restrictions: (i) five quadratic differentiation measures along each di-

mension (one special regressors and four non-linear characteristics), and (ii) ten unique interaction

pairs.

The simulation results are summarized in Table 3. The top panel reports the average estimated

parameters (transformed) of the variance-covariance matrix, the middle panel reports the RMSE

associated with each parameter, and the bottom panel reports the averages of the IIA-test and

21Similar interactions can be constructed with the local differentiation instruments:
∑

j′ 1(|dljt,j′ | < κl)d
k
jt,j′ . The

results are similar using this specification of the instruments, but we find that the quadratic form tends to be more
stronger.
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Table 3: Simulation results for the correlated random-coefficient model with Differentiation IVs

Σ·,1 Σ·,2 Σ·,3 Σ·,4

E
st

im
a
te

s Σ1,· 4.003
Σ2,· -1.997 4.000
Σ3,· 1.997 -1.996 3.991
Σ4,· 2.010 -2.000 2.006 4.010

R
M

S
E

Σ1,· 0.228
Σ2,· 0.132 0.232
Σ3,· 0.156 0.145 0.217
Σ4,· 0.156 0.143 0.154 0.217

IIA test (F) 157.637
Cragg-Donald statistic (F) 474.053
Nb endogenous variables 10
Nb IVs 15

Data generating process: J = 50 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1). The parameter
values are given by: β0 = −3, β1 = 1, βk = 1 for all k. Table 6 in the Appendix presents the variance-covariance
matrix of νik. Number of simulations: 1,000.

the Cragg-Donald rank test statistics. Both tests confirm that the instruments are strong, and

that the IIA hypothesis is easily rejected. The average bias and RMSE are also small, despite the

richness of the model. The differentiation IVs are able to accurately identify both the magnitude

and correlation in taste heterogeneity across consumers.

It is worth noting that this specification is substantially richer than any random-coefficient

model that has previously been studied with aggregate data by researchers, both in empirical

applications and Monte-Carlo simulations. Although we obtain these results in a “controlled”

environment, this result confirms the ideas in Berry et al. 1995 and Berry and Haile (2014) that

it is feasible to estimate very flexible substitution patterns using aggregate data on market shares

and product characteristics.

4 Extension: Endogenous attributes

4.1 Reduced-form and instruments

Incorporating endogenous characteristics, such as prices or advertising, does not fundamentally

change the identification problem, but adds an additional simultaneity problem: in equilibrium

these characteristics are correlated with the unobserved quality of products (Berry, Levinsohn, and

Pakes 1995).

To see how this changes the reduced-form function, consider the following inverse-demand with
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endogenous prices:

σ−1j

(
st,x

(2)
t ,pt;λ

)
= f (ωjt;λ) + Ct(λ).

Element k of the state vector ωjt now includes: {skt,d
(2)
jt,k,d

p
jt,k}, where dpjt,k is the price differences

between product j and k. This inverse demand is generated from a model in which consumers have

heterogenous price coefficients (as in Bresnahan (1987) for instance).

As before, f(·) is a symmetric function of the industry state vector ωjt. Although the conditional

expectation of this function is also symmetric, the conditional mean restriction used equation (5)

to identify the model is no longer satisfied at θ0:

E
[
σ−1j

(
st,x

(2)
t ,pt;λ

0
) ∣∣xt,pt]− xjtβ0 = g(djt,d

p
jt;λ

0) + ct(λ
0)− xjtβ0 6= 0.

Two broad sources of variation have been proposed in the literature to construct valid price

instruments: (i) markup-shifters (e.g. Berry et al. 1995), and (ii) cost-shifters (e.g. Nevo (2001)).

Let wjt denotes a vector of relevant and valid price instruments such that:

E[ξjt|xt,wt] = 0. (16)

The challenge in using this restriction to construct instruments, is that the reduced-form of the

model cannot be written as a symmetric function of the distribution of characteristics differences

{djt,dwjt}. To see this, recall that the symmetry of the reduced-form arises from the symmetry

of the demand function itself. With endogenous prices, the conditional expectation of the inverse

demand is taken with respect to the joint distribution of (st,pt) given (xt,wt), which is determined

endogenously by the conduct of the industry. Except in special cases such as perfect-competition or

single-product Bertrand-Nash, this distribution is not a symmetric function of characteristic differ-

ences. This is because the identity/ownership of products plays an important role in determining

the distribution of markups.

It is therefore impossible to obtain an exact characterization of the reduced-form without know-

ing the exact supply relation governing prices. Importantly, this does not mean that it is infeasible

to construct valid/relevant instruments. It simply means that we cannot solve the curse of dimen-

sionality problem without relying on a heuristic approximation.

To get around this problem, we rely on the heuristic first proposed by Berry, Levinsohn, and

Pakes (1999), and recently reexamined by Reynaert and Verboven (2013). The argument proceeds

in two steps.

First, let p̂jt ≈ E(pjt|xt,wt) denotes an estimate of the reduced-form pricing equation con-

structed from observed characteristics. This exogenous price measure can be constructed using

regressions exploiting random variation from cost and/or ownership shocks (as in Reynaert and
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Verboven (2013)), or by solving an equilibrium pricing game after setting ξjt = 0 (as in Berry,

Levinsohn, and Pakes (1999)). The choice of the approach is application/data specific. For in-

stance, when using a regression approach, it may be advisable to use flexible functional forms or

non-parametric regression techniques to improve the quality of the fit. Since p̂jt is constructed from

(xjt,wjt), the following conditional moment restriction is satisfied:

E [ξjt|xt, p̂t] = 0.

Second, following Berry, Levinsohn, and Pakes (1999), we use the following heuristic approxi-

mation of the reduced-form:

Ep,s

[
σ−1j

(
st,x

(2)
t ,pt;λ

) ∣∣xt,wt

]
≈ Es

[
σ−1j

(
st,x

(2)
t , p̂t;λ

) ∣∣xt, p̂t]
= g

(
djt,d

p̂
jt;λ

)
+ ct(λ)

The idea behind the heuristic is to distribute the expectation operator over prices inside of the

non-linear function σ−1j (·). The second equality follows from the fact that after replacing pjt with

predicted value p̂jt, we obtain a reduced-form representation of the reduced-form that is symmetric

in {d,dp̂jt}.
As before, we can construct an instrument function that exploits the symmetry of g(djt,d

p̂
jt).

For instance, the “local” differentiation IVs example above becomes:

Aj(xt,wt) =

xjt, p̂jt,∑
j′ 6=j

1
(
|d1jt,j′ | < κ1

)
djt,j′ , . . . ,

∑
j′ 6=j

1
(
|dKjt,j′ | < κK

)
djt,j′ , 1

(
|dp̂jt,j′ | < κp̂

)
djt,j′

 ,

where the vector of characteristic differences djt,j′ is expanded to include (exogenous) price differ-

ences dp̂jt,j′ . Note that p̂jt is included in Aj(xt,wt) to instrument for pjt. Similar instruments can

be constructed using the sum of square of characteristics differences or the Euclidian distance.

We can use the same heuristic and the above instrument function to test the IIA hypothesis

with endogenous prices:

E[ln sjt/s0t|xt] = xjtβ + αE[pjt|xt,wt] + E
[
∆j(st,pt,x

(2)
t ;λ0)|xt,wt

]
+ 0

≈ xjtγ0 + αp̂jt +A−xj (xt)γ1,

The IIA-test corresponds to the null hypothesis: H0 : γ̂1 = 0. With the “local differentiation”

instruments, A−xj (xt) includes the number of products with “similar” attributes (including p̂), as

well as possibly additional interaction terms.
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Figure 3: Distribution of estimated price random-coefficient parameter for alternative differentiation
instruments
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4.2 Monte-Carlo simulations

To analyze the performance of the Differentiation IVs when prices are endogenous we consider a

model with a single random-coefficient on price:

uijt = β0 + β1x
(1)
jt + (βp + λpνi) · pjt + ξjt + εjt, j,= 1, . . . , 15 and t = 1, . . . , 100. (17)

where ln νi ∼ N (0, 1).22

To generate a second simultaneity problem, we generate prices using a Bertrand-Nash pricing

game with single-product competitors. Prices are determined by the following vector of first-order

conditions:

p∗jt = cjt − σj(δt,p∗t ;λp)

[
∂σj(δt,p

∗
t ;λp)

∂p∗jt

]−1
(18)

Where, cjt = γ0 + x
(1)
jt γx + ωjt.

The marginal-cost function is assumed to be constant, and the cost-shock ωjt is observed by the

econometrician. We use this variable below to construct a price instrument. The data is generated

22Unlike the previous examples, we approximate the distribution of νi using a fixed sample of 100 pseudo random-
numbers.
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Table 4: Monte-Carlo simulation results for endogenous price specification

(a) Distribution of parameter estimates

(1) (2) (3) (4)
True Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum

bias se rmse bias se rmse bias se rmse

λp -4.00 0.02 0.27 0.28 0.02 0.53 0.55 1.03 158.25 2.10
βp -0.20 0.01 0.37 0.37 0.01 0.31 0.32 -0.67 201.29 1.38
β0 50.00 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.82 26.41 20.65
βx 2.00 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83

(b) Weak identification tests

(1) (2) (3)
IV = Local IV=Quadratic IV = Sum

Frequency conv. 1 1 0.94
IIA-test 109.48 53.90 1.88

p-value 0 0 0.34
1st-stage F-test: Price 191.80 442.10 138.94
1st-stage F-test: Jacobian 214.60 58.40 27.85
Cond. 1st-stage F-test: Price 252.23 479.96 7.92
Cond. 1st-stage F-test: Jacobian 280.31 82.44 6.19
Cragg-Donald statistics 170.19 54.45 4.09

Stock-Yogo size CV (10%) 16.87 13.43 13.43
Nb. endogenous variables 2 2 2
Nb. IVs 4 3 3

Data generating process: J = 15 and T = 100, β0 = 50, βx = 2, βp = −0.2 and λp = −4. Number of simulations:
1,000.

by finding a solution to equation (18) for 1000 × 100 independent markets.23 This leads to 1,000

simulated panels of market shares and characteristics.

We follow the steps described above to construct the instrument function. We first construct

an exogenous price index, p̂jt, using the predicted values from a linear regression of pjt on the

exogenous characteristic and the cost shifter ωjt:

p̂jt = π̂0 + π̂1x
(1)
jt + π̂2ωjt. (19)

We use a linear functional form for expositional purposes. In applications, richer functional forms

might lead to further efficiency gains by improving the fit of the reduced-form regression (see

23The data-generating process for the marginal cost and characteristics is given by: ξjt ∼ N (0, 1), x
(1)
jt ∼ N (0, 1),

ωjt ∼ N (0, 0.1).
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Reynaert and Verboven (2013) for a discussion).

We then construct the Differentiation IVs using the empirical distribution of differences in p̂jt

and x
(1)
jt . In particular, as before, we consider two alternative measures of differentiations:

Quadratic Diff IV: zjt =

xjt, ωjt,∑
j′

(
d
(1)
jt,j′

)2
,
∑
j′

(
dp̂jt,j′

)2
Local Diff IV: zjt =

xjt, ωjt,∑
j′

1
(
|d(1)jt,j′ | < sd1

)
,
∑
j′

1
(
|dp̂jt,j′ | < sdp̂

)
where d

(1)
jt,j′ = x

(1)
j′t − x

(1)
jt and dp̂jt,j′ = p̂j′t − p̂jt. Note that ωjt is added to the list of instruments

since we need two independent sources of variation to identify βp and λp (i.e. own cost shifters,

and cost and characteristics of rival products).

The simulation results are reproduced in Figure 4 and Table 4. In addition to the two sets

of instruments defined above, we also report the results using the “sum of rival characteristics”

in order to illustrate effect weak instruments. The bottom panel reports the results of the weak

identification and IIA tests.

Table 4b confirms the weak identification results obtained in the models with exogenous char-

acteristics. The average test statistics associated the IIA hypothesis and Cragg-Donald rank-test

are below standard critical values when using the sum of characteristics as instruments (column

3). In contrast, the sum of square of characteristic difference (column 2) and the number of “local”

rival products (column 1) both eliminate the weak identification problem. In this example, the

“Local Differentiation IV” tends to perform better than the “Quadratic Differentiation IV”. The

two measures of weakness, the IIA-test and the Cragg-Donald statistic, are on average roughly 2.5

times larger in column (1) than in column (2). In both specifications, we can reject the null of IIA

preferences and under-identification.

To illustrate the dual role of the instruments in this context, Table 4b also report the results

of two first-stage F tests: (i) one that simply regresses price and the Jacobian on the exogenous

variables, and (ii) one that first “projects-out” the exogenous variation induced by the other en-

dogenous variable before computing the first-stage F test. The second test was proposed by Angrist

and Pischke (2009) and Sanderson and Windmeijer (2016) to adjust the standard first-stage tests

for cases with multiple endogenous variables.24

In our example, the standard F-tests conducted using the sum of rival characteristics incorrectly

suggest that weak instruments is not a concern (i.e. 138.94 and 27.85). This is because one of the

instrument is very strong (i.e. cost shifter ωjt). However, once we account for the fact that we

24We use weak-identification tests designed to test the relevance in linear IV models, by evaluating the Jacobian of
the residual function at the true value of the parameters. In practice we obtain similar results when constructing the
tests at the GMM estimates instead, but there are no critical values available in the literature for this test. Deriving
the limiting distribution of these statistics under weak-identification is beyond the scope of this paper.
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Figure 4: Distribution of estimated price random-coefficient parameter for alternative differentiation
instruments
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have more than one parameters to identify with a single strong instrument, the conditional first

stage F-tests are in line with the results of the Cragg-Donald and the IIA tests; both F-tests are

significantly below the Stock-Yogo critical values on average.

Table 4a summarizes the distribution of the estimated parameters across the three IV spec-

ifications. Looking first at specification (3), we see again that using weak instruments lead to

substantial loss in precision and large biases. The RMSE for λp is equal 2.10, and the average bias

is significantly above zero (1.03). This upward bias is partially offset by a “downward” bias in βp

(i.e. −0.67), but the net effect is positive: weak instruments in this example biases the slope of the

demand towards zero.

This bias is eliminated in panel (2) and (3) when we use the stronger differentiation IVs. The

RMSEs are also substantially reduced. Relative to the sum of rival characteristics specification, we

obtain a 7.5 times improvement in precision for σ̂p with the local differentiation IV, and a 4 times

improvement with the quadratic differentiation IV.

Figure 4 illustrates this point graphically by plotting the distribution of σ̂p for the three specifica-

tions. As with the exogenous characteristics, weak instruments lead to a non-Gaussian distribution

of the parameters, characterized by large outliers and a mass around zero. The two other dis-

tributions are symmetric and bell-shape, centered around the true parameter, and do not exhibit

outliers. The comparison between the spread of the distributions with “Quadratic” and “Local”
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Differentiation IVs also illustrates the gain in precision from using a stronger set of moments.

4.3 Natural Experiments

An often expressed criticism of the main identifying assumption in Berry et al. 1995, is that firms

endogenously choose product characteristics (observed and unobserved). This violates Assumption

1 either because of the endogenous selection of products, and/or because of a contemporaneous

correlation between ξjt and the attributes of own and rival products.25 This invalidates the use of

the entire distribution of characteristic differences to identify substitution patterns.

An alternative approach is to look for natural experiments that exogenously change the menu

of product characteristics available to consumers. Such experiments can be induced directly by

researchers (e.g. Conlon and Mortimer (2015)), caused by technology changes that induce market-

structure changes (e.g. Houde (2012)), or by government regulations that generate suboptimal

product offering (e.g. zoning). To illustrate this, consider the following mixed-logit Hotelling

demand model:

uijmt =

ξjmt − λ(νi − xjmt)2 + εijmt If j > 0,

εijmt If j = 0.

where j = 1, . . . , 15 indexes products, m = 1, . . . , 100 indexes markets, and t = 0 or 1 indexes the

pre/post natural experiment periods. In this example, the non-linear characteristic of products,

xjmt, measures their location in the product space, and the random-coefficient, νi, measures the

“ideal” address of consumers. We assume that both variables are uniformly distributed between 0

and 10. The goal is to estimate the travel cost of consumers: λ.

We consider a natural experiment associated with the entry of a new product in each market

at location x∗ = 5 in the post-period (i.e. t = 1). Within each market, distance to x∗ measures the

strength of the “treatment”. The characteristics of incumbent products are constant across periods

(i.e. xjmt = xjm).

We introduce a correlation between ξjmt and xm as follows:

E(ξjmt) = 0 and corr(ξjmt,EDjm) = a < 0

where EDjm =
√∑

j′(xjm − xj′m)2 is the Euclidian distance of incumbent product j. The pa-

rameter a creates a standard simultaneity problem: products facing close substitutes have higher

unobserved quality. Since characteristics are constant across the two periods, this correlation can

be absorbed by conditioning on product/market fixed-effects. Assumption 4 formalizes this quasi-

experimental design assumption.

25See Ciliberto, Murry, and Tamer (2016) for a recent examination of this problem.
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Assumption 4. The change in the unobserved quality of products is mean zero conditional on the

observed menu of characteristics and product/market fixed-effects µmt:

E [∆ξjm|µjm,xmt] = 0,

where ∆ξjm = ξjm1 − ξjm0 and ξjm1 = µjm + ∆ξjm

To construct the instruments, we consider two distance measures similar to the Differentiation

IVs discussed above:

w1
jm = 1(|xjm − x∗| < κ)

w2
jm = (xjm − x∗)2

where the threshold κ is defined as the standard deviation of xjm across all products/markets. Let

zjm = {1, w1
jm, w

2
jm} denotes the instrument vector. This leads to the following moment condition:

mn(λ) =
1

n

∑
m

∑
j

[ρj(sm1,xm1;λ)− ρj(sm0,xm0;λ)] · zjm = ∆ρ(λ)Tz/n

where n is the number of unique market/product observations. Using this specification, the struc-

tural parameters of the model are identified solely from the quasi-experimental variation. In par-

ticular, the reduced-form is approximated by a difference-in-difference regression, in which the

“control” group is defined as the set of products located relatively far from the exogenous new

entrant.

Figure 5 illustrates the ability of this identification strategy to eliminate the simultaneity bias

associated with the endogenous location of products. The dash curves correspond to the Kernel

density of the parameters estimated using the “difference-in-difference” moment conditions (5a),

or the full “Differentiation IVs” moments (5b).26

The data generating process is designed so that the correlation between ξjmt and the Euclidian

distance between rival products is a = −0.25. As Figure 5b illustrates, this leads to an attenuation

bias in the estimate of the travel cost parameter obtained using standard instruments (λ̂ ≈ 1.89,

compared to λ0 = 4). Since products located in “denser” regions of the product space have higher

quality, the GMM specification that exploits variation in the distance to all products wrongly infer

that consumers have a small disutility from distance. Figure 5b illustrates that the difference-in-

difference moment conditions eliminate this bias. The distribution is centered around λ0 = 4, and

the average bias is less than 1% of the parameter value.

Comparing the two distributions, it is important to note that by exploiting solely the variation

created by the entry of a new product, the difference-in-difference GMM estimator is less precise,

26The Differentiation IVs specification combines the sum of square of characteristic differences (i.e. quadratic IV),
and the number of competing products within one standard-deviation (i.e. local IV).
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Figure 5: Monte-Carlo simulated distribution of the travel cost parameter estimates with endoge-
nous product locations
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Data generating process: xjm ∼ U [0, 2], ξjmt = ξ̄jm + ∆ξjmt, where ξ̄jm = −0.25
(
EDjm − EDm

)
+ ζjm, ζjm ∼

N(0, 0.5) and ∆ξjmt ∼ N(0, 0.25). Consumer addresses: νi ∼ U [0, 2] approximated using 100 equally spaced grid
points. Number of Monte-Carlo replications: 1,000. Sample size: M = 100, Jm0 = 15 for all m, Jm1 = 16 for all m,
T = 2.

and the distribution of λ̂ is less well approximated by the normal density than the specification that

uses the larger set of instruments. In Figure 5b the p-value associated with Shapiro-Wilk normal test

is 11%, compared to less than 1% in Figure 5a. This suggests that the asymptotic approximation

used to conduct inference on λ is less likely to be valid when the model is estimated solely using

quasi-experimental variation; therefore requiring larger sample sizes or inference methods that are

robust to weak identifications. Alternatively, additional equilibrium restrictions can be used to

solve the simultaneity problem (as in Ciliberto, Murry, and Tamer (2016)).

5 Comparison with other approaches

Finally, we conclude by comparing the performance of the Differentiation IVs, with the approxima-

tion to the optimal IV proposed by Berry, Levinsohn, and Pakes (1999) and Reynaert and Verboven

(2013).

Recall that, abstracting away from concerns related to heteroskedasticity, the instrument vector

that minimizes the asymptotic variance of the parameter estimates is given by the conditional

expectation of the Jacobian of the residual function (Amemiya (1977), Chamberlain (1987)):

A∗j (xt) = E

[
∂ρj(st,xt;θ)

∂θ

∣∣∣xt] =

{
−xjt, E

[
∂σ−1j (st,x

(2)
t ;λ)

∂λ

∣∣∣xt]}
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This is very intuitive: Because the asymptotic distribution of (λ,β) is derived from a first-order

approximation of the residual function, the most efficient instruments correspond to the best-

predictor of the slopes of that function with respect to each of the parameters.27

This efficiency bound cannot be achieved in practice since the model is semi-parametric in ξjt.

Rather than using non-parametric regression techniques to estimate A∗j (xt) (as in Newey (1990)),

Berry, Levinsohn, and Pakes (1999) proposed the following heuristic approximation to the optimal

IV:

E

[
∂ρj(st,x

(2)
t ;θ)

∂θ

∣∣∣xt] ≈ ∂ρj(st,x
(2)
t ;θ)

∂θ

∣∣∣∣
ξjt=0,∀j,t

= Ãj(xjt|θ). (20)

Since the instrument vector depends on θ, users must first obtain an estimate of the parameters,

denoted by θ1. This leads to a two-step estimator: (i) estimate θ1 by GMM using instrument

vector zjt, and (ii) construct Ãj(xjt|θ1) and estimate θ̂ by GMM. The second step corresponds to

a just-identified system of moment conditions.

When prices enter non-linearly in the model, a similar heuristic can be used to avoid taking an

expectation over the second set of endogenous variables:

E

[
∂σ−1j (st,pt,x

(2)
t ;θ)

∂λ

∣∣∣xt,wt

]
≈
∂σ−1j (st,pt,x

(2)
t ;θ)

∂λ

∣∣∣∣
pjt=p̂jt,ξjt=0,∀j,t

= Ãj(xjt|θ), (21)

where p̂jt ≈ E(pjt|xt,wt) is a “reduced-form” model for prices independent of ξjt.

Reynaert and Verboven (2013) conducted a series of Monte-Carlo simulations to illustrate that

this heuristic leads to substantial efficiency gains over the standard instruments proposed in Berry

et al. 1995 (i.e. sum of rival characteristics). One remaining question however is to what extent

the approximation remains valid when the first-stage estimates are not consistent, which is the

case for instance with weak instruments. To illustrate when consistency is likely to matter, we first

study two simple mixed-logit models: (i) normal random-coefficient, and (ii) Hotelling. These two

models satisfy our “linear-in-characteristic” random-coefficient assumption and have the following

indirect-utility function:

Normal RC: uijt = δjt + ληix
(2)
jt + εijt

Hotelling: uijt = δjt − λ
(
ηi − x(2)jt

)2
+ εijt.

where ηi ∼ N (0, 1) and x
(2)
jt ∼ N (0, 1). For our purpose, the key distinction between these two

models is that the value of λ in the “Normal RC” model only affects the magnitude of the elasticity

of substitution, and not the relative ranking of each products’ cross-elasticty (which is function

only of x’s). In contrast, in the Hotelling model, when λ goes from positive to negative, the identity

of the “closest” competitor changes from the “closest” x to the “furthest” x. It is easy to see that

27See Newey (1993) for an illuminating discussion.
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Table 5: Optimal IV approximation with alternative initial parameter values

Normal RC Hotelling
λ1 bias rmse λ1 bias rmse

Optimal IV approx.:
(1) 0.5 0.001 0.027 4 -0.003 0.140
(2) 1.5 0.001 0.026 2 -0.004 0.126
(3) 2 0.001 0.026 0 -0.079 0.509
(3) 2.5 0.001 0.026 -1 -0.344 1.687
(4) 3 0.002 0.028 -2 -0.282 1.254

Differentiation IV — 0.001 0.031 — 0.017 0.310

Data generating process: J = 15 and T = 100, xkjt ∼ N(0, 1) for k = 1, . . . ,K and ξjt ∼ N(0, 1). The parameter
values are given by: β0 = −3, β1 = 1, βk = 1, λ = 2 for all k. Number of simulations: 1,000.

this Hotelling model is a special case of the linear-in-characteristics random-coefficient model.

Table 5 summarizes the results of 1,000 Monte-Carlo replication simulations. The first five

rows correspond to different values of the initial parameter used to evaluate the Jacobian. In both

specifications, the true value of parameter is λ0 = 2. The numbers in bold correspond to GMM

results obtained by setting the first-stage parameter equal to the true parameter value . The rest of

the rows correspond to different levels of inconsistencies. For the “Normal RC” mode, we consider

a grid between 0.5 and 3. For the Hotelling model, we consider grid between −2 (wrong sign) and

4.

Looking first at the “Normal RC” model, the performance of the optimal IV approximation

estimator is remarkably robust to inconsistencies in the first-stage parameter values. The efficiency

gains from using the “true” parameter value are fairly small (i.e. 0.026 vs 0.028). This is consistent

with the results presented in Reynaert and Verboven (2013).

The results from the “Hotelling” specification are quite different. The first two rows show that

using using an inconsistent first-stage parameter with the correct sign does not reduce dramatically

the precision of the estimates (i.e. 0.14 vs 0.126). However, using first-stage values that are

inconsistent and have the wrong sign leads to large attenuation biases and very imprecise estimates.

The RMSE in the last two rows are more than 10 times larger than in specification (2) (i.e. true

λ). This suggests that the consistency of the first-stage estimate is important for the validity of the

heuristic approximation approach, especially when the substitution patterns depend on the sign of

the parameter values.

The last row of Table 5 reports the results obtained with the Differentiation IVs. To obtain

these results we combine the sum of square of characteristic difference, and the number of local

competitors. When using an unbiased first-stage parameter, the optimal IV approximation improves

the precision of the estimates by 60% in the Hotelling model, and by 17% in the Normal RC model.

However, these efficiency gains are quickly eliminated when the first-stage parameter is set far from
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θ0. This is an important advantage of the Differentiation IVs, since their exact structure does

not depend on the availability of consistent estimates, or on prior the knowledge of the model of

differentiation (e.g. Hotelling versus normal).

The previous examples are very stylized. Another setting in which the sign and magnitude of

θ determines substitution patterns is the correlated random-coefficient model studied in Section

3.4. To illustrate the importance of using consistent estimates in the first-stage, we implement the

optimal IV approximation using pseudo-random values that are not centered around the truth.

The point here is not to replicate the results from Reynaert and Verboven (2013), but rather to

highlight the importance of using consistent estimates in the first stage.

The results are summarized in Table A2 in the Appendix. In columns (2)-(4), each element

of θ1 is drawn from a standard-normal distribution, while in columns (4)-(6) they are drawn from

a normal distribution with a standard-deviation of 2. The results are in line with the single-

address Hotelling example. Using inconsistent parameter estimates to approximate the optimal

instruments leads to a weak identification problem, associated with very noisy and often biased

parameter estimates. In addition, as we increase the variance of θ1, the precision and bias of θ̂

both increase substantially. The contrast with the Differentiation IVs is quite striking: the average

RMSEs are roughly 5 times smaller with the Differentiation IVs than with the less noisy optimal

IV approximation.

A valid strategy to improve the efficiency of the estimates is to obtain first-stage estimates using

the instruments proposed in this paper, and then construct an approximation to the optimal IV. The

second-stage can be conducted using the heuristic approximation discussed in Berry, Levinsohn, and

Pakes (1999) and Reynaert and Verboven (2013), or using non-parametric regressions as discussed

in Newey (1993) for instance.

We illustrate the performance of the former approach using the model with endogenous prices

studied in Section 4.2. Table A3 in the Appendix summarizes the results. The top-panel corre-

sponds to the GMM estimates obtained using three alternative Differentiation IV: (i) local com-

petition, (ii) sum of square of characteristic differences, and (iii) sum of rival characteristics. In

each specification we use the residual cost-shock, ωjt, as a price instrument. In the bottom-panel,

we use the GMM results from the corresponding specification to construct an approximation to

the optimal IV, as described in equation (20). Each entry is averaged over 1,000 Monte-Carlo

replications.

The results suggest that the Berry, Levinsohn, and Pakes (1999) approximation successfully

corrects the weak identification problem. For instance, the sum of rival characteristics specification

is associated with very noisy estimates of λp in the top panel, but the average bias and RMSE are

mostly comparable across columns in the bottom panel. Similarly, the RMSE of λp estimated with

the quadratic Differentiation IVs is roughly 50% smaller in the second-stage. The efficiency gains

are much smaller in the first specification (17%), mostly because the local Differentiation IVs are
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stronger instruments in this case.

Importantly, the simulation results illustrate a strong complementarity between the two ap-

proaches. The second-stage estimates are more precisely estimated when the Differentiation-IVs

are used in the first-stage. In other words, using stronger instruments in the first stage lead to more

precise results in the second stage. This should be thought of as a lower bound on the efficiency

gains of using strong versus weak first-stage instruments. As we saw in the “Hotelling” vs “Nor-

mal RC” examples above (see Table 5) the efficiency loss from using inconsistent initial parameter

values is small in the multiplicative random-coefficient specification. Also, Reynaert and Verboven

(2013)’s simulation results suggest that the heuristic approximation is becoming weaker as the the

number of random-coefficients increases beyond four. It is likely that the complementarity between

the two approaches would increase with the number of non-linear parameters, since the performance

of the Differentiation-IVs is very stable across different dimensions of consumer heterogeneity.

Conclusion

In this paper, we have analyzed the theoretical and small-sample properties of a new family of

instruments used to estimate substitution patterns: the Differentiation IVs. We demonstrate that

exogenous measures of differentiation (or proximity in characteristics) solves the weak identification

problem associated with commonly used moment conditions.

Importantly, these instruments are derived from two common assumptions on the primitives of

the demand model: (i) linear-in-characteristics indirect utility function, and (ii) exchangeability of

the residual demand shocks. We use these two restrictions to establish that the reduced-form of

the model is a vector-symmetric function of characteristic differences; a property that solves the

curse-of-dimensionality problem in the reduced-form.

The results have important implications for applied work. The proposed instruments are low-

dimension functions that are easy to construct, and have a close connections with theories of product

differentiation. Our empirical simulations show that they are powerful even in moderately samples,

and yield precise and unbiased of the key parameters determining the elasticity of substitution

between products. We also show how the Differentiation IVs can be extended to identify models

with endogenous characteristics, demographic characteristics, and correlated random-coefficients.

These results are confirmed by a growing number of applications (including for instance: Miravete,

Moral, and Thurk 2018, Coşar, Grieco, and Tintelnot 2018, Chaves 2019, and Singleton 2019), as

well as recent monte-carlo simulation analysis (e.g. Conlon and Gortmaker (2019)).

Our approach to identification and estimation also suggest a natural methodology to conduct

empirical work and report results when estimating demand for differentiated-products. Prior to

estimating the model, researchers should first conduct an analysis of the reduced-form of the model,

by estimating the IIA regression described in Section 1. Our simulation results demonstrate that

the model is weakly identified if the IIA hypothesis cannot be rejected (only weakly rejected).
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This test is easy to implement, and can be useful to help identifying strong moment restrictions.

Furthermore, after estimating the model, Differentiation IVs can be used to conduct specification

tests evaluating the validity of alternative modeling choices. In particular, the relevance of the

instruments is independent of the assumptions regarding the distribution for the random-coefficients

(e.g. normal, log-normal, correlated), or the functional form of the utility function (e.g. vertical

form vs Hotelling). This feature allow researchers to conduct non-nested specification tests, based

on the validity of the over-identification restrictions.

Finally, the results open several avenues for future research. For instance, the IIA regression

can be used to identify more flexible basis functions capable of approximating the reduced-form.

In many applications the number of product characteristics is large, and machine-learning method-

ologies can be used to select the “best” combinations of Differentiation IVs that can reject the

IIA hypothesis.28 Another potential application our symmetry result is for the estimation of semi-

parametric models of demand for differentiated-products. As we have shown, symmetric models of

demand do not suffer from a curse of dimensionality problem, and could in principle be estimated

non-parametrically using an approach similar to Compiani (2019).

28See Gillen, Moon, Montero, and Shum (2019) for an analysis of LASSO methods in a related context.
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A Proofs and additional derivations

A.1 IIA-regression and GMM

In this subsection we formally derive a minimum distance estimator based on the IIA-regression

introduced in Section 1, and discuss its equivalence with GMM.

Let Aj(xt) denotes a 1 × L vector of basis functions summarizing the choice-set in market t.

Importantly Aj(xt) includes the vector of characteristics of product j (xjt).

The IIA-regression is obtained by projecting the inverse-demand under logit onto Aj(xt):

E[ln sjt/s0t|xt] = xjtβ
0 + E

[
∆j

(
st,x

(2)
t |θ0

) ∣∣xt]+ E[ξjt|xt]︸ ︷︷ ︸
=0

= Aj(xt)γn (22)

where ∆j

(
st,x

(2)
t |θ0

)
= σ−1

(
st,x

(2)
t |λ = 0

)
− σ−1

(
st,x

(2)
t |λ0

)
is the deviation from IIA in the

inverse-demand function, and θ0 = (β0,λ0) is the true vector of parameters.

The same conditional expectation evaluated at parameter θ can be estimated from the following

regression:

E [yjt(θ)|xt] ≈ Aj(xt)γ(θ) (23)

where yjt(θ) = σ−1
(
st,x

(2)
t |λ = 0

)
−σ−1

(
st,x

(2)
t |λ

)
+xjtβ, and γ(θ) is the regression coefficient

vector obtained by regressing yjt(θ) on Aj(xt).

A minimum-distance estimator can be constructed by matching the IIA reduced-form model

estimated from the data, with the model-based prediction obtained from equation (23). This is a

valid estimator of the parameters since the two conditional expectations are equal when evaluated

at the true parameter value:

E [ln sjt/s0t|xt]− E [yjt(θ)|xt] = 0 If θ = θ0

→ E

Ajt(xt)γn −Ajt(xt)γ(θ0)︸ ︷︷ ︸
ejt(θ

0)

 = 0.

The minimum-distance estimator of θ is obtained by minimizing the (weighted) sum of square of

residuals ejt(θ):

θMD = min
θ

e(θ)′Σ−1e(θ)

In contrast, the GMM estimator proposed by Berry et al. (1995) is given by:

min
θ

gn(θ)Wgn(θ)T (24)

where gn(θ) = ρ(s,x|θ)TA(x) =
(
σ−1(s,x2|λ)− xβ

)T
A(x).
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Recall that the two conditional expectations in equations (22) and (23) are obtained using the

same projection matrix: PA = A(ATA)−1AT . The residual from the minimum distance estimator

can thus be re-written as:

ejt = PA

[
ln sjt/s0t −

(
ln sjt/s0t − σ−1

(
st,x

(2)
t |λ

)
+ xjtβ

)]
= PAρ(θ)

Therefore, the minimum-distance estimator is equivalent to a GMM problem with a “sandwich”

weighting matrix given by: W = (ATA)−1ATΣ−1A(ATA)−1.

A.2 First Proposition

Proposition 1 can be restated as follows. For simplicity we remove the t subscript associated with

each matrix, and drop the parameter vector from the conditioning variables.

Proposition 1. In the linear characteristics model the market inverse function can be expressed
as

σ−1j (s0, s1, . . . , sJ ;x) = G

(
sj ,
{
sk,d

(2)
jk

}
k 6=j

)
+ C

where djk = xk − xj and C is a constant that is common to all products j = 1, . . . , J .

The proposition implies that all the cross sectional variation in the inverse function comes from

the component

G
(
sj , {sk,djk}k 6=j

)
= G

(
sj ,F j

(
s, d(2)

))
where we have equivalently expressed the second argument as the empirical distribution of

(
sk,d

(2)
jk

)
among products k 6= j (which includes the outside good 0 in this sample). It is important to note

that from this empirical distribution, we can only recover the set of the differences djk but cannot

isolate the difference with respect to any particular product, and also cannot recover xj itself from

this distribution (because we cannot identify the outside good in this set). This brings to light that

the cross sectional variation in the inverse function does not actually depend on a product’s level

of own xj , but rather the distribution of differences djk for k 6= j this product faces.

We will spend the rest of this section proving the result.

Step 1

The first step is to re-parameterize the demand function σj
(
δ1, . . . , δJ ,x

(2)
)

in terms of

tj =
exp (δj)∑J
l=0 exp (δl)

.
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The advantage of this re-parameterization is that it is an alternative location normalization (re-

quiring that all products t’s to sum to one) that does not create an asymmetry between the outside

good 0 and the inside goods j > 1. This will be analytically more convenient than the standard

normalization of δ0 = 0. But they are mathematically identical. In particular observe that

Tj = log (tj) = δj + C

where C is a constant that is common to all products in a market (that can be solved by recognizing

log t0 = −C).

Let θi = (vi1, . . . , viK2 , εi0, . . . , εiJ) denotes the vector consumer taste parameters with joint

CDF Φ(·). We can thus express demand in terms of this re-parameterization, i.e.,

u (tj ,xj ,θi) = Tj +

K2∑
k=1

vikx
(2)
jk + εij

and

Dj (t0, . . . , tJ) =

∫
1 [u (tj , xj , θ) ≥ u (tk, xk, θ) ∀k = 0, . . . , J, k 6= j] dΦ (θ) . (25)

We then have that

Dj
(
t0, . . . , tJ ,x

(2)
)

= Dj

(
δ1, . . . , δJ ,x

(2)
)
.

This is because preferences are translation invariant. Moreover we have that

logD−1j
(
s0, . . . , sJ ,x

(2)
)

+ C = D−1j

(
s0, . . . , sJ ,x

(2)
)
.

Our strategy moving forward is to show that

D−1j
(
s0, . . . , sJ ,x

(2)
)

= D−1
(
sj ,
{
sk,d

(2)
jk

}
k 6=j

)
. (26)

Then defining G = logD−1 will give us the Theorem.

Step 2

We now establish 3 properties of Dj
(
t1, . . . , tJ ,x

(2)
)

: symmetry, anonymity, and translation in-

variance. Each of these properties will then be preserved by the inverse mapping D−1j . To establish

these properties let us define a product j’s state ωj as

ωj = (tj ,xj)

and note that

Dj
(
t0, . . . , tJ ,x

(2)
)

= Dj
(
ωj ,ω−j ,x

(2)
)
.
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The following two properties are relatively straightforward to show using the definition of demand

(25) and the symmetry of the idiosyncratic errors (εij). The first property is

Definition 3. The function Dj
(
ωj ,ω−j ,x

(2)
)

is symmetric if Dj
(
ωj ,ω−j ,x

(2)
)

= Dk
(
ωj ,ω−j ,x

(2)
)

for any k 6= j.

This implies we can write Dj
(
ωj ,ω−j ,x

(2)
)

= D
(
ωj ,ω−j ,x

(2)
)
.

Definition 4. The function D
(
ωj ,ω−j ,x

(2)
)

is anonymous if D
(
ωj ,ωρ(−j),x

(2)
)

where ρ is any

permutation of the indices −j.

We note that symmetry and anonymity are the same properties that Doraszelski and Pakes

(2007) use to reduce the dimensionality of value functions in dynamic games. These properties can

be established for the demand functions Dj .
There is one last property of demand we will exploit which is the following:

Definition 5. The function D
(
ωj ,ω−j ,x

(2)
)

is translation invariant if for any c ∈ RK we have

that

D
(
ωj + (0, c) ,ω−j + ~(0, c),x(2)

)
= D

(
ωj ,ω−j ,x

(2)
)

where ~(0, c) is the J dimensional vector consisting of elements (0, c).

This property can be established using the linearity of the characteristics utility uij in xj . It is

important to note that the second argument in D includes the outside good.

Step 3

Now define the relevant state for the inverse mapping as

mj = (sj ,xj) .

Then

D−1j
(
s0, . . . , sJ ,x

(2)
)

= D−1j (mj ,m−j) .

Using the above properties of the demand function D, we can establish precisely the same properties

for D−1j , namely symmetry, anonymity, and translation invariance. Thus we have that

D−1j (mj ,m−j) = D−1
(
mj +

〈
0,−x(2)

j

〉
,m−j +

〈
0,−x(2)

j

〉)
= D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
where the first equality follows from symmetry and translation invariance, and the second equality

follows from anonymity. We have thus succeeded in establishing (26) and hence Theorem 1.
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A.3 Second Proposition

Let x = (x0, . . . , xJ) be the entire market menu of product characteristics. We assume here for

simplicity that x is fully independent of ξ = ξ1, . . . , ξJ . Consistent with the symmetry of the model,

the distribution Fξ is assumed to have a symmetric distribution. Then we have the following result

which suffices to establish Proposition 2 in the paper.

Proposition 2. The conditional expectation of interest in the model can be expressed as

E

[
D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
| x
]

= E

[
D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
| {djk}k 6=j

]
= E

[
D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
| Fj (d)

]
where Fj (d) is the empirical distribution of the sample of differences {djk}k 6=j.

Assume that the djk can be canonically ordered (based on some complete ordering in RK , such

as the lexicographic ordering) such that d̃j1 ≤ · · · ≤ d̃jK where d̃jl is the lth largest from the

{djk}k 6=k. Then we can express

D−1
(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
= D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)
j1 , . . . , d̃

(2)
jJ

)
where s̃j0 is sj and s̃ji is the market share corresponding to the product with difference d̃

(2)
ji . Now

it can be shown that the distribution

Fs̃j0,s̃j1,...,s̃jJ |x = Fs̃j0,s̃j1,...,s̃jJ |d̃j1,...,d̃jJ .

That is d̃j1, . . . , d̃jJ is a sufficient statistic of the market menu x to determine the distribution of

the shares (s̃j0, . . . , s̃jJ). We then have that

E

[
D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
| x
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)
j1 , . . . , d̃

(2)
jJ

)
| x
]

= E
[
D−1

(
s̃j0, s̃j1, . . . , s̃jJ ; d̃

(2)
j1 , . . . , d̃

(2)
jJ

)
| d̃j1, . . . , d̃jJ

]
= E

[
D−1

(
sj ,
{(
sj ,d

(2)
jk

)}
k 6=j

)
| Fj (d)

]
A.4 Derivation of example with demographic differences

Consider the following single dimension example (Nevo 2001):

uijt = δjt + bitx
(2)
jt + εijt, bit = λyyit + ηi. (27)
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The random coefficient is composed of a demographic component yit that is distributed according

to (known) CDF Dt(y), and a residual component νi that is normally distributed with mean zero

and variance λ2η. The vector of non-linear parameters contains two elements: λ = {λy, λη}.
Assume that the distribution of demographic characteristics can be well approximated using

the following affine transformation of random variable ei:

yit = mt + sdtei such that Pr(ei < x) = Ψe(x).

where {mt, sdt}t=1,...,T and Ψe(x) are known transformation of the observed distribution Dt(y).

We can use this standardization to express the aggregate demand function:

σjt(δt,x
(2)
t ;λ) =

∫ ∫ exp
(
δjt + λyyitx

(2)
jt + ληηix

(2)
jt

)
1 +

∑Jt
j′=1 exp

(
δj′t + λyyitx

(2)
j′t + ληηix

(2)
j′t

)ψη(dηi;λη)dΨe(yit; mt, sdt)

=

∫ exp
(
δ̃jt +

∑K2
k=1 vikx̃

(2)
jt,k

)
1 +

∑Jt
j′=1 exp

(
δ̃j′t +

∑K2
k=1 vikx̃

(2)
jt,k

)ψ(vi;λ)dvi

= σj(δ̃t, x̃
(2)
t ;λ).

where x̃
(2)
jt =

{
sdtx

(2)
jt , x

(2)
jt

}
is an expanded vector of non-linear characteristics, vi = {ei, ηi}, and

is the joint density of vi defined from φη(·) and Ψe(·).
Note that the change of variables allows us to eliminate the t subscript from the demand

function, and expand the state space by adding two new interactions: (i) the mean of yit times

x
(2)
jt , and (ii) the standard-deviation of yit times x

(2)
jt .

Under this new parametrization of the model, we can use directly Proposition 2 to write the

reduced-form of the model as follows:

πjt(xt;λ) = g
(
djt, sdt · d(2)jt ;λ

)
+ ct(λ) (28)

B Monte Carlo Simulation Designs and Algorithms

B.1 Monte Carlo Simulations

We use the following parametrization for the independent random-coefficients specifications:

• Σk,k = λ = 4 for all k = 1, . . . ,K2

• νik ∼ N(0, 1) for all k = 1, . . . ,K2

• εij ∼ T1EV(0, 1)

We use the following covariance matrix for the correlated random-coefficient example:
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Table 6: Random Coefficient Covariance Matrix

c1 c2 c3 c4

r1 4.000
r2 -2.000 4.000
r3 2.000 -2.000 4.000
r4 2.000 -2.000 2.000 4.000

The data-generating process for all numerical exogenous characteristics examples in Sections

3.4 and 4.2 is described as:

• Number of products (Jt): 15

• Number of market (T ): 100

• Observed characteristics: xjt,k ∼ N(0, 1) for all k = 1, . . . ,K

• Cost shifter: ωjt ∼ N(0, 1)

• Unobserved quality: ξjt ∼ N(0, 1)

B.2 Computational Procedure

All numerical simulations and optimizations were done using the matrix programming language Ox

(Doornik 2007). We use a nested fixed-point algorithm to solve the non-linear GMM problem:

minθ ngn(θ)W ngn(θ)T (29)

whereW n is an L×L efficient weighing matrix, and gn(θ) = ρ(θ)TZ/n is the empirical counterpart

of the moment conditions defined in equation (6).

The residual function is obtained by inverting the demand function for a candidate parameter

vector λ. We use the following Newton-Raphson method root-finding algorithm to solve this

problem separately for each market t. Following Berry et al. 1995, the algorithm solves the

following non-linear system of equation:

fj(δ) = ln sjt − lnσj(δt,x
(2);λ) = 0 ∀j = 1, . . . , J. (30)

Algorithm 1 (Demand Inversion). Initiate the algorithm at vector of quality δ1t (e.g. solution

evaluated at last iteration parameter’s guess). Iteration l:

1. Evaluate the predicted demand via Monte-Carlo simulation:

σj(δ
k
t ,x

(2);λ) =
1

S

∑
i

exp(δljt +
∑

k λkνikxij,k)

1 +
∑

j′ exp(δlj′t +
∑

k λkνikxij′,k)
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2. Use the implicit theorem to calculate the J × |λ| Jacobian matrix of the zero-function f(δ)

above:

F (δl) =
〈
−1/σ(δl,x(2);λ)

〉
◦

〈
−∂σ(δl,x(2);λ)

∂δT

〉−1〈
∂σ(δl,x(2);λ)

∂λ

〉

3. Updating:

δl+1 =

δl + f(δl) If ||f(δl)|| > ε1

δl + F (δl)−1f(δl) If ||f(δl)|| ≤ ε1

4. If ||f(δl)|| < ε2, stop. Else repeat step 1-3.

This root-finding algorithm use two tolerance variables (ε1 and ε2). The first one determines the

threshold after which the algorithm starts to use Newton-Raphson steps. We set ε1 = 0.1. When

this value is increased, the algorithm is equivalent to the contraction-mapping algorithm proposed

by Berry et al. 1995. The advantage of the Newton-Raphson steps is that it converges at a faster

rate than the contraction-mapping. However, it can diverge when the starting values are too far

from the truth. We set the overall convergence criteria equal to: ε2 = 10−16. Note also that this

algorithm is easily parallelizable, since a fixed-point vector needs to be calculate separately for each

market.

Since the GMM objective function is a quadratic form, the Gauss-Newton Regression (GNR)

algorithm is a computationally efficient method for finding the minimum (see for instance Newey

(1993)). Each optimization step is obtained by estimating a linear GMM problem corresponding

to a linear approximation of the residual function.

Algorithm 2 (Gauss-Newton Regression). Initiate the algorithm at parameter θ1. Iteration k:

1. Invert demand system at θk: ρj
(
st,xt;θ

k
)

= σ−1j

(
st,x

(2)
t ;λk

)
− xjtβk

2. Evaluate the Jacobian of the residual-function using the implicit function theorem:

∂ρj
(
st,xt;θ

k
)

∂θT
=

−xjt, ∂σ
−1
j

(
st,x

(2)
t ;λk

)
∂λT

 = Y jt(θ
k)

3. Compute the Guass-Newton step using linear GMM:

ρjt(θ
k) = Y jt(θ

k)b+ ejt ⇒ b̂ =
(
(Y TZ)W n(ZTY )

)−1
(Y TZ)W n(ZTρ)

4. Update parameter vector:

θk+1 = θk + b̂
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5. Stop if ||b̂|| < ε. Else repeat steps 1-5.

The Gauss-Newton algorithm has good convergence properties when the moments are strong.

This is because strong instruments imply a lot of curvature in the GMM objective function, which is

therefore well approximated by a quadratic function. In contrast, weak instruments are associated

with little or no curvature in the objective function, which leads to convergence problems. We use

the GNR algorithm in all specifications using Differentiation IVs. To estimate the model with weak

instruments, we use a Nelder-Mead (or Simplex) algorithm to find the local minimum

The Gauss-Newton algorithm also highlights the fact the model can be represented by a linear

GMM problem. Step (3) corresponds to a Gauss-Newton regression. The solution, θ̂, is implicitly

defined by setting the linear parameters of Gauss-Newton regression to zero: b̂(θ̂) = 0. This defines

a linear (local) reduced-form for the GMM problem:

ρ(θ̂) = Zπb+ v1 (31)

J(θ̂) = Zπ + v2 (32)

where J(θ̂) is a n × |λ| matrix containing the slopes of the inverse demand with respect to each

of the non-linear parameters (i.e. Jjt,k(θ) = ∂σ−1j

(
st,x

(2)
t ;λk

)
/∂λk), π is a K × |λ| matrix of

reduced-form parameters, and (v1,v2) are the reduced-form residuals. Standard rank conditions

for local identification of the model requires that the moment conditions contain enough excluded

instruments correlated with the slope of the inverse demand (i.e. the endogenous variables of the

model).
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C Additional Tables

Table A1: Monte-Carlo simulation results for exogenous characteristics model with strong instru-
ments

(a) Differentiation IV: Quadratic

bias rmse bias rmse bias rmse bias rmse
log λ1 0.000 0.030 -0.000 0.032 -0.001 0.033 -0.001 0.036
log λ2 -0.002 0.031 0.000 0.032 -0.002 0.035
log λ3 -0.000 0.031 -0.001 0.034
log λ4 -0.002 0.036

λ1 0.002 0.122 0.001 0.130 -0.003 0.133 -0.003 0.142
λ2 -0.004 0.125 0.004 0.128 -0.004 0.141
λ3 0.001 0.125 -0.001 0.137
λ4 -0.005 0.146

1(Local) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1202.104 564.033 330.399 206.417

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 359.409 363.224 321.730 276.135

p-value 0.000 0.000 0.000 0.000

(b) Differentiation IV: Local

bias rmse bias rmse bias rmse bias rmse
log λ1 -0.000 0.032 -0.001 0.034 -0.000 0.034 -0.001 0.037
log λ2 -0.002 0.032 0.000 0.033 -0.001 0.037
log λ3 -0.001 0.033 -0.001 0.037
log λ4 -0.003 0.038

λ1 0.002 0.126 0.000 0.135 0.002 0.137 -0.003 0.147
λ2 -0.007 0.128 0.004 0.131 -0.003 0.148
λ3 -0.002 0.130 -0.001 0.148
λ4 -0.008 0.152

1(Local-min) 0.000 0.000 0.000 0.000
Rank-test – F (1) 1050.015 523.760 322.288 204.402

p-value 0.000 0.000 0.000 0.000
IIA-test – F (K) 297.544 298.073 262.636 222.932

p-value 0.000 0.000 0.000 0.000
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Table A2: Monte-Carlo simulation results for correlated random-coefficient specification with op-
timal IV approximation and inconsistent initial parameter values

Choleski Opt. IV: θ1 ∼ N(0, 1) Opt. IV: θ1 ∼ N(0, 4) Diff. IV: Quad.
matrix True bias rmse se bias rmse se bias rmse se

(1) (2) (3) (4) (4) (5) (6) (7) (8) (9)

log c11 0.69 0.00 0.22 5.42 0.01 1.22 11.92 -0.00 0.03 0.03
log c22 0.55 -0.01 0.19 2.50 -0.16 2.36 192.70 -0.00 0.04 0.04
log c33 0.49 -0.02 0.15 0.46 -0.44 2.69 ++ -0.00 0.04 0.04
log c44 0.46 -0.22 1.83 ++ -1.78 5.57 ++ -0.00 0.04 0.04
c21 -1.00 0.01 0.47 4.51 0.03 0.77 781.85 0.00 0.06 0.06
c31 1.00 0.00 0.33 0.86 -0.02 0.63 23.48 -0.00 0.07 0.07
c32 -0.58 0.02 0.27 2.69 0.03 0.56 285.80 0.00 0.07 0.08
c41 1.00 0.00 0.23 1.37 0.00 0.58 333.93 0.00 0.07 0.07
c42 -0.58 0.01 0.23 2.69 0.04 0.50 484.88 0.00 0.08 0.08
c43 0.41 0.00 0.23 1.59 0.03 0.52 ++ 0.00 0.08 0.08

Table A3: Monte-Carlo simulation results for endogenous price specification and optimal IV ap-
proximation

Diff. IV = Local Diff. IV = Quadratic Diff. IV = Sum
True bias se rmse bias se rmse bias se rmse

1s
t-

st
ag

e λp -4 0.02 0.27 0.28 0.02 0.53 0.55 1.01 2.66 2.09
β0 50 -0.26 3.92 3.92 -0.28 7.36 7.45 -9.63 26.48 20.46
βx 2 -0.02 0.46 0.45 -0.02 0.47 0.47 0.34 1.11 0.83
βp -0.2 0.01 0.37 0.37 0.01 0.31 0.32 -0.66 1.76 1.37

2n
d

-s
ta

ge λp -4 0.00 0.24 0.23 0.00 0.24 0.23 0.01 0.26 0.31
β0 50 -0.07 3.99 3.84 -0.06 3.72 3.65 0.05 4.32 4.61
βx 2 -0.01 0.48 0.47 -0.01 0.41 0.41 0.03 0.52 0.51
βp -0.2 0.01 0.36 0.36 0.00 0.31 0.32 -0.03 0.40 0.40
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Coşar, K. A., P. L. Grieco, and F. Tintelnot (2018). What drives home market advantage. Journal

of International Economics 110, 135–150.

Compiani, G. (2019). Market counterfactuals and the specification of multi-product demand: A

nonparametric approach. working paper, Berkeley University.

Conlon, C. (2013, September). The empirical likelihood mpec approach to demand estimation.

working paper, Columbia University.

Conlon, C. and J. Gortmaker (2019, May). Best practices for differentiated products demand

estimation with pyblp. working paper, NYU-Stern.

Conlon, C. and J. H. Mortimer (2015, April). Efficiency and foreclosure effects of vertical rebates:

Empirical evidence. working paper, Columbia University.

Cragg, J. G. and S. G. Donald (1993). Testing identifiability and specification in instrumental

variable models. Econometric Theory 9, 222–240.

Davis, P. (2006, Winter). Spatial competition in retail markets: Movie theaters. Rand Journal

of Economics.

Doornik, J. A. (2007). Ox - An Object-Oriented Matrix Programming Language. Timberlake

Consultants.

Doraszelski, U. and A. Pakes (2007). A framework for applied dynamic analysis in io. In M. Arm-

strong and R. Porter (Eds.), Handbook of Industrial Organization, Volume 3, Chapter 30, pp.

1557–2440. Elsevier.

52



Dube, J.-P., J. Fox, and C.-L. Su (2012, September). Improving the numerical performance of

blp static and dynamic discrete choice random coefficients demand estimation. Econometrica.

Eizenberg, A. (2014). Upstream innovation and product variety in the u.s. home pc market.

Review of Economic Studies.

Fan, Y. (2013, November). Ownership consolidation and product characteristics: A study of the

u.s. daily newspaper market. American Economic Review 103 (5), 1598–1628.

Farias, V., D. Saure, and G. Y. Weintraub (2012, Summer). An approximate dynamic pro-

gramming approach to solving dynamic oligopoly models. Rand Journal of Economics 43 (2),

253–282.

Gentzkow, M. and J. Shapiro (2010). What drives media slant? evidence from u.s. news- papers.

Econometrica 78, 35–71.

Gillen, B., R. Moon, S. Montero, and M. Shum (2019). “blp-2lasso” for aggregate discrete-choice

models with rich covariates. Econometrics Journal .

Hausman, J. A. (1994). Valuation of new goods under perfect and imperfect competition. NBER

wp 4970.

Hausman, J. A. and D. McFadden (1984). Specification tests for the multinomial logit model.

Econometrica 52 (5), 1219–1240.

Houde, J.-F. (2012, August). Spatial differentiation and vertical mergers in retail markets for

gasoline. American Economic Review 102 (5), 2147–2182.

Jorgensen, D. W. and J.-J. Laffont (1974). Efficient estimation of nonlinear simultaneous equa-

tions with additive disturbances, Volume 3 of Annals of Economic and Social Measurement,

pp. 615–640. NBER.

Metaxoglou, K. and C. R. Knittel (2014, October). Estimation of random coefficient demand

models: Two empirisists’ perspectives. The Review of Economic and Statistics 96 (1).

Miravete, E., M. Moral, and J. Thurk (2018, Fall). Fuel taxation, emissions policy, and compet-

itive advantage in the diffusion of european diesel automobiles. Rand Journal of Economics,

504–540.

Miravete, E., K. Seim, and J. Thurk (2018). Market power and the laffer curve. Economet-

rica 86 (5), 1651–1687.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Economet-

rica 69 (2), 307.

Newey, W. K. (1990). Efficient instrumental variables estimation of nonlinear models. Economet-

rica 58 (809-837).

53



Newey, W. K. (1993). Efficient estimation of models with conditional moment restrictions. In

G. S. Maddala, C. R. Rao, and H. D. Vinod (Eds.), Handbook of Statistics, Volume 11.

Elsevier.

Newey, W. K. and J. L. Powell (2003). Instrumental variable estimation of nonparametric models.

Econometrica 71 (5), 1565–1578.

Nielson, C. (2017). Targeted vouchers, competition among schools, and the academic achievement

of poor students. Working paper, Princeton University.

Pakes, A. (1994). Dynamic structural models, problems and prospects: mixed continuous dis-

crete controls and market interactions. In J.-J. Laffont and C. A. Sims (Eds.), Advances in

Econometrics: The sixth world congress of the econometric society, Volume 2. Cambridge

University Press.

Petrin, A. (2002). Quantifying the benefits of new products: The case of the minivan. Journal

of Political Economy 110, 705.

Pinkse, J., M. E. Slade, and C. Brett (2002). Spatial price competition: A semiparametric

approach. Econometrica 70 (3), 1111–1153.

Reynaert, M. and F. Verboven (2013). Improving the performance of random coefficients demand

models: The role of optimal instruments. Journal of Econometrics 179 (1), 83–98.

Romeo, C. J. (2010). Filling out the instrument set in mixed logit demand systems for aggregate

data. working paper, US Department of Justice.

Sanderson, E. and F. Windmeijer (2016). A weak instrument f -test in linear iv models with

multiple endogenous variables. Journal of Econometrics 190, 212–221.

Singleton, J. D. (2019). Incentives and the supply of effective charter schools. American Economic

Review 109 (7), 2568–2612.

Starc, A. (2014). Insurer pricing and consumer welfare: evidence from medigap. RAND Journal

of Economics 45 (1), 198–220.

Stock, J. H. and J. Wright, Jonathan H. (2000). Gmm with weak identification. Economet-

rica 68 (5), 1055–1096.

Stock, J. H., J. H. Wright, and M. Yogo (2002). A survey of weak instruments and weak identi-

fication in generalized method of moments. Journal of Business and Economic Statistics 20,

518 – 529.

Stock, James H, Y. M. (2005). Testing for Weak Instruments in Linear IV Regression, pp. 80–108.

Identification and Inference for Econometric Models.

Thomadsen, R. (2007). The effect of ownership structure on prices in geographically differentiated

industries. Rand Journal of Economics.

54



Verboven, F. (1996). International price discrimination in the european car market. Rand Journal

of Economics 27 (2), 240–268.

Waldfogel, J. (2003, Autumn). Preference externalities: An empirical study of who benefits whom

in differentiated-product markets. RAND Journal of Economics 34 (3), 557–568.

Wright, J. H. (2003). Detecting lack of identification in gmm. Econometric Theory 19 (2), 322–

330.

55




