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Abstract

We show that moment inequalities in a wide variety of economic applications
have a particular linear conditional structure. We use this structure to construct
uniformly valid confidence sets that remain computationally tractable even in settings
with nuisance parameters. We first introduce least favorable critical values which
deliver non-conservative tests if all moments are binding. Next, we introduce a
novel conditional inference approach which ensures a strong form of insensitivity to
slack moments. Our recommended approach is a hybrid technique which combines
desirable aspects of the least favorable and conditional methods. The hybrid approach
performs well in simulations calibrated to Wollmann (2018), with favorable power
and computational time comparisons relative to existing alternatives.
Keywords: Moment Inequalities, Subvector Inference, Uniform Inference
JEL Codes: C12

1 Introduction

Moment inequalities are a useful tool in a wide range of fields in empirical economics. As
described in recent reviews by Ho & Rosen (2017) and Molinari (2020), moment inequalities
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can be used to exploit the most direct implications of utility or profit maximization for infer-
ence in both single-agent settings and games. They can also be used to weaken parametric,
behavioral, measurement, and selection assumptions in a range of problems. Inference
using moment inequalities raises practical challenges, however, particularly when there are
nuisance parameters (e.g. coefficients on control variables) that are not of direct interest.

A first challenge is obtaining tests that are computationally tractable. Many available
moment inequality methods rely on test inversion over a grid for the full parameter vec-
tor (including the nuisance parameters), but the computational costs of such approaches
grow exponentially in the dimension of the parameter vector. This has necessitated the
development of alternative approaches that either profile out (i.e. optimize over) the
nuisance parameters in the computation of the test statistic (e.g., Bugni et al. 2017) or use
computational shortcuts to form projection confidence sets without computing the test for
all values of the nuisance parameter (e.g., Kaido et al. 2019). Nevertheless, computation
can still be challenging when the dimension of the nuisance parameters is moderate or large.

A second challenge is obtaining tests with good power. When there are nuisance
parameters, tests for the parameter of interest can be obtained via projection, but this
can lead to conservative tests with poor power (see Bugni et al. 2017, Kaido et al. 2019).
Moreover, the power of many existing procedures can be negatively affected by the inclusion
of non-binding moments, yet it may not be clear ex ante which of the moments implied by
economic theory will be binding. This has prompted a variety of approaches to eliminate
or reduce the sensitivity of moment inequality tests to slack moments (e.g., Andrews &
Soares 2010, Andrews & Barwick 2012, Romano et al. 2014, Chernozhukov et al. 2015,
Bugni et al. 2017, Belloni et al. 2018, among many others).

In this paper, we show that a variety of applications of moment inequalities have a
particular structure that can be exploited to address these challenges. Specifically, we study
settings with conditional moment inequalities that (a) are linear in nuisance parameters and
(b) have conditional variance (given the instruments) that does not depend on the nuisance
parameters. In Section 2, we highlight several recent applications of moment inequalities that
have this structure, including interval-valued regression and revealed preference models in
industrial organization. Under this linear conditional structure, the profiled studentized max
statistic can be represented as a linear program, and can thus be computed efficiently even
when the dimension of the nuisance parameters is large. Linear conditional structure is also
helpful for deriving tractable critical values, since it implies that the asymptotic variance of
the moments (conditional on the instruments) does not depend on the value of the nuisance
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parameters. These features allow us to construct profiling-based confidence sets that rely on
test inversion only for the target parameter and not for the nuisance parameters, and thus are
computationally tractable even when the dimension of the nuisance parameters is large. We
exploit this linear conditional structure to develop two tests that have different desirable prop-
erties, as well as a third hybrid approach that combines the two and is our preferred approach.

Our first approach is based on the least-favorable (LF) asymptotic distribution of our
test statistic. We show that the distribution of the test statistic is increasing (in the sense of
first-order stochastic dominance) in the mean of the moments, and thus the least-favorable
distribution under the null corresponds with the case where the mean of all of the moments
is zero.1 It is then straightforward to calculate a critical value under the least-favorable
distribution via simulation. The LF test has exact asymptotic size when all of the moments
are simultaneously binding in population, and thus avoids conservativeness from projection
in this case. A downside of the LF test, however, is that its power can be negatively affected
by the inclusion of slack moments.

To address sensitivity to slack moments, we introduce a second test based on a novel
conditioning argument. We condition on the Lagrange multipliers in the optimization to
compute the test statistic, which intuitively correspond with the set of binding moments
in sample after profiling out the nuisance parameters. We show that the set of values of
the moments for which a particular Lagrange multiplier is optimal is a polyhedron, and we
then derive critical values using results from Lee et al. (2016) on polyhedral conditioning
events. We prove that the resulting conditional test is insensitive to slack moments in the
strong sense that, as a subset of the moments becomes arbitrarily slack, the conditional
test converges to the test that drops these moments ex-ante. A downside of the conditional
test, however, is that it may have poor power in settings where multiple moments are
approximately equally-violated. Finally, given the different relative strengths of the LF
and conditional approaches, we introduce a hybrid approach that combines the LF and
conditional approaches, while avoiding the conservativeness of Bonferroni approaches.

The critical values for all of our tests are based on a normal approximation to the distri-
bution of the moments conditional on the instruments. If this normal approximation holds
exactly with known variance, our proposed tests control size in finite samples. In Section
4, we provide regularity conditions under which size control in this finite sample normal
model translates to uniform asymptotic size control over a large class of data-generating

1This presumes the set of data-generating processes considered allows for the possibility that all
moments can bind simultaneously. If not, then the distribution used for our critical value is an upper-bound
on the least-favorable distribution under the null.
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distributions. A desirable feature of our proposed tests is that they they achieve uniform
asymptotic size control without having to specify a sequence of tuning parameters that
converges at a certain rate. Nevertheless, our tests do require the researcher to make some
choices. To use the hybrid test, the researcher must specify the size of the “first-stage”
least favorable test κ, although this choice only affects the power of the test and not its
asymptotic validity.2 Additionally, although conditional moment inequalities can imply
an infinite number of unconditional moments, our tests only exploit the implications of
k unconditional moments that must be specified by the researcher. We provide heuristic
guidance on the choice of the k moments in Section 5.1.

To explore the numerical performance of our methods, we apply our techniques in
simulations calibrated to Wollmann (2018)’s study of the US auto bailout. We consider
designs with up to ten nuisance parameters, and find that our proposed tests remain
computationally tractable and have good size control in all specifications. The power of the
hybrid test is similar to or better than that of the LF and conditional tests in all specifications,
and we thus recommend the hybrid approach among our proposed procedures. We also find
that the hybrid test has power dominating that of the projection-based tests of Andrews &
Soares (2010) and Kaido et al. (2019) in all specifications for which we are able to compute
these tests, and computation time for the hybrid can be over 10 times faster than for either of
the projection-based approaches. The hybrid approach is also competitive with the sCC and
sRCC tests proposed in concurrent work by Cox & Shi (2021), although neither approach
dominates the other across all specifications in terms of power or computational speed.

Related Literature. Cox & Shi (2021) consider the class of linear conditional moment
inequalities introduced in this paper, and propose tests based on a profiled quasi-likelihood
ratio (QLR) statistic, whereas our tests are based on the profiled studentized max statistic.
Cox & Shi (2021) and the present paper independently developed conditional testing
approaches, but due to the difference in test statistics, the conditioning events and resulting
tests are different. As discussed in Section 6, we find in our Monte Carlo simulations that
our preferred test (the hybrid) has non-nested power with those proposed by Cox & Shi
(2021), which accords with the intuition that tests based on the max and QLR statistics
direct power towards different parts of the parameter space.

Sub-vector inference for moment inequalities with linear parameters is also considered in
Cho & Russell (2021), Gafarov (2019) and Flynn (2019). These papers consider the more

2We recommend using κ = α/10, and implement this choice in our simulations, following the
recommendation for the two-step procedure in Romano et al. (2014).
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general setting of unconditional moment inequalities, but unlike our paper do not discuss
the case where the target parameters enter the moments non-linearly. One advantage of our
approach relative to these previous papers is that we do not require a linear independence
constraint qualification (LICQ) assumption, which restricts what moments can bind in
population; see Section 4 for further discussion.3 Another related paper is Kaido & Santos
(2014), who consider efficient estimation and inference for the support function in settings
with convex moment inequalities, which nests the problem of subvector estimation/inference
in moment inequality models where all parameters enter linearly. Their approach, however,
relies on a Slater constraint qualification that, for example, rules out moment equalities
cast as inequalities. Our approach is thus complementary, since we do not require such
a constraint qualification but also do not provide any formal efficiency results.

Our approach uses a profiled maximum statistic, and thus is also related to other profiling-
based methods for moment inequalities. The profiling-based approach in Bugni et al. (2017)
is substantially more general than ours in that it accommodates unconditional moment
inequalities and does not require that the target parameters enter the moments linearly.
However, the linear structure that we consider enables highly-tractable computation since
the profiled test statistic is computed with a linear program, and also enables us to develop
tests that are uniformly asymptotically valid without relying on drifting sequences of tuning
parameters. Belloni et al. (2018) build on the approach of Bugni et al. (2017) to develop
methods for subset inference with high-dimensional unconditional moments. Fang et al.
(2021) propose a test based on the solution to a linear program that is applicable for a large
class of problems that nests a high-dimensional version of the conditional linear inequalities
considered in this paper, although at the cost of either introducing a sample-size dependent
tuning parameter or obtaining a conservative test. Alternative approaches to sub-vector
inference in moment inequality models include projection-based methods (e.g., Kaido et al.
2017); sub-sampling approaches (e.g., Romano & Shaikh 2008); and quasi-posterior Monte
Carlo methods (Chen et al. 2018).4 We provide comparisons to the profiling-based approach
of Cox & Shi (2021) as well as two projection-based methods in our Monte Carlo simulations.

One important limitation of our approach is that — while we assume that conditional
moment inequalities are satisfied — we consider tests that exploit only a fixed number
(k) of the implied unconditional inequalities. This contrasts with papers that consider

3Cho & Russell (2021) show that LICQ can be guaranteed to hold by adding a stochastic perturbation
to the moments, at the expense of obtaining inference on an outer set of the sharp identified set.

4The approach of Chen et al. (2018) delivers inference on the identified set, rather than on points
within the identified set.
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asymptotics in which the number of moments grows with the sample size, such as Andrews
& Shi (2013) for full-vector inference, and Chernozhukov et al. (2015) and Belloni et al.
(2018) for sub-vector inference.5 An interesting open question is whether the tests proposed
in this paper can be extended to the setting with a diverging number of moments. See
Section 2 below for additional discussion.

2 Linear Conditional Moment Inequalities

We assume that we observe independent and identically distributed data Di, i= 1,...,n

drawn from an unknown distribution P ∈P. The true values of the parameters (β,δ) are
assumed to satisfy the conditional moment inequalities

EPD|Z [Yi(β)−Xi(β)δ|Zi]≤0 almost surely, (1)

where Zi is a subvector of Di, Yi(β)=y(Di,β)∈Rk and Xi(β)=x(Zi,β)∈Rk×p for known
functions y(·,·) and x(·,·), and PD|Z denotes the conditional distribution of Di given Zi.
We are interested in β, while δ∈Rp is a nuisance parameter. Specifically, we want to test
that a given value β0 belongs to the identified set for β, H̃0 :β0∈BI(P), where

BI(P)=
{
β : there exists δ such that EPD|Z [Yi(β)−Xi(β)δ|Zi]≤0 almost surely

}
is the set of values β such that there exists δ which makes (1) hold. For the remainder
of the paper we omit the phrase “almost surely” for brevity. We call restrictions of the
form (1) linear conditional moment inequalities. They have two key properties: first, the
nuisance parameter δ enters linearly and, second, the Jacobian of the moments with respect
to δ, −Xi(β), is non-random conditional on Zi. This structure implies that the variance
of the moments conditional on Zi does not depend on δ.

It is helpful to compare (1) to the linear regression model

Y ∗i =X∗i
′δ+εi where EPD|X∗ [εi|X

∗
i ]=0 (2)

for Y ∗i ∈R and X∗i ∈Rp. Specifically, (1) implies

Yi(β)=Xi(β)δ+εi(β) where EPD|Z [εi(β)|Zi]≤0, (3)

where again Yi(β)∈Rk and Xi(β)∈Rk×p. Linear conditional moment inequalities thus
5Flynn (2019) considers a continuum of unconditional moment inequalities.
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generalize the traditional regression model to (a) relax the conditional moment restriction
on the errors εi to an inequality, (b) allow the possibility that there are instruments Zi
beyond the regressors Xi, and (c) allow a vector-valued outcome.

2.1 Examples of Linear Conditional Moment Inequalities

Linear conditional moment inequalities appear in a variety of economic applications.

Example 1 Linear conditional moment inequalities arise naturally from the linear regres-
sion model (2), and its instrumental variables generalization, when we observe only bounds
on the outcome Y ∗i . Consider the model

Y ∗i =Tiβ+V ′i δ+εi, EPD|Z [εi|Zi]=0 (4)

where Vi is a function of Zi while Ti may be endogenous. For instance, β may be a causal
effect of interest whereas Vi represents a set of control variables. This is a linear instrumental
variables model where the error is mean-independent of the instrument.

As in e.g. Manski & Tamer (2002), suppose that rather than observing Y ∗i we instead
observe bounds Y L

i and Y U
i where Y L

i ≤Y ∗i ≤Y U
i with probability one. The model (4)

implies that EPD|Z [Y L
i −Tiβ−V ′i δ|Zi]≤0 and EPD|Z [Tiβ+V ′i δ−Y U

i |Zi]≤0, so we obtain
conditional moment inequalities. To cast these inequalities into our framework, suppose
we are interested in inference on β, and for any vector of non-negative functions of the
instruments f(Zi) let Yi(β)=(Y L

i −Tiβ,Tiβ−Y U
i )′⊗f(Zi), and Xi=(V ′i ,−V ′i )′⊗f(Zi), for

“⊗” the Kroneker product. This yields the momentsEPD|Z [Yi(β)−Xiδ|Zi]≤0, as desired.64

Example 2 Katz (2007) studies the impact of travel time on supermarket choice. Katz
assumes that utility is additively separable in the basket of goods bought (Bi), the travel
time to the supermarket chosen (Ti,s), and the cost of the basket (π(Bi,s)). Normalizing
coefficient on cost to one, agent i’s realized utility is

Ui(Bi,s)=Ui(Bi)+C′sδ−(β+νi)Ti,s−π(Bi,s),

where Cs are observed characteristics of the supermarket, Ti,s is the travel time for i
6Our approach to this application relies on the conditional moment restriction EPD|Z [εi|Zi]=0. As

discussed by Ponomareva & Tamer (2011), this means that the identified set may be empty if the linear
model is incorrect. For Zi=(Ti,V

′
i )
′, Beresteanu & Molinari (2008) assume only that EP [εiZi]=0 and

conduct inference on the (necessarily nonempty) set of best linear predictors. Bontemps et al. (2012) study
identification and inference, including specification tests, for a class of linear models with unconditional
moment restrictions.
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going to s, and β+νi is its impact on utility, where νi has mean zero given supermarket
characteristics and travel times.

Katz assumes travel times and store characteristics are known to the shopper. For s̃ a su-
permarket with Ti,̃s>Ti,s that also marketed Bi, he divides the difference Ui(Bi,s)−Ui(Bi,s̃)
by Ti,s−Ti,̃s and notes that a combination of expected utility maximization and revealed
preference implies that EPD|Z [Yi(β)−Xiδ|Zi]≤0, for

Yi(β)≡−β− [π(Bi,s)−π(Bi,s̃)]

Ti,s−Ti,̃s
,Xi≡−

Cs−Cs̃
Ti,s−Ti,̃s

, and Zi≡(Ti,s,Ti,̃s,Cs,Cs̃)
′.

Together with an analogous inequality which uses a store closer to the agent, Katz obtains
both upper and lower bounds for β. 4

Example 3 Wollmann (2018) considers the bailout of GM and Chrysler’s commercial
truck divisions during the 2008 financial crisis and asks what would have happened had
they instead been allowed to either fail or merge with another firm. This example is the
basis for our simulations below.

Merger analysis focuses on price differences pre- and post-merger. Wollmann notes
that some commercial truck production is modular (it is possible to connect different cab
types to different trailers), so some products would likely have been repositioned after the
change in the environment. To analyze product repositioning he requires estimates for the
fixed costs of marketing a product. His estimated demand and cost systems enable him to
estimate counterfactual profits from adding or deleting products. Assuming firms maximize
expected profits, differences in expected profits from adding or subtracting products imply
bounds on fixed costs.

To illustrate, let Jf,t be the set of models that firm f marketed in year t and let Jf,t\j
be that set excluding product j, while ∆π(Jf,t,Jf,t\j) is the difference in expected profits
between marketing Jf,t and Jf,t\j. The fixed cost to firm f of marketing product j at
time t is given by (δc,f+δggj) if the product was not marketed previously (j 6∈Jf,t−1), and
β(δc,f+δggj) if it was previously marketed. Here δc,f is a firm-specific intercept, gj is the
weight of product j, δg is the cost of adding additional weight (assumed common across firms),
and β captures the cost savings of marketing a pre-existing product. We can write the fixed
cost asX∗j,f,t(β)δ, whereX∗j,f,t(β) contains a firm indicator and the product’s weight, possibly
multiplied by β depending on whether j∈Jj,f,t−1. For Zf,t a set of variables known to the
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the firm when marketing decisions were made, including the variables used to form X∗j,f,t(β),

EPD|Z [Yj,f,t−Xj,f,t(β)δ|Zf,t]≥0 for all j, (5)

by the firm’s equilibrium conditions, where

Yj,f,t≡∆π(Jf,t,Jf,t\j)·1{j∈Jf,t,j∈Jf,t−1}, Xj,f,t(β)≡X∗f,j,t(β)·1{j∈Jf,t,j∈Jf,t−1}

and 1{A} is an indicator for the event A. Additional inequalities can be added for marketing
a product that was not marketed in the prior period, for withdrawing products, and for
combining the withdrawal of one product with adding another. 4

Cox & Shi (2021) note that moment inequalities in Eizenberg (2014) and Gandhi et al.
(2019) also have linear conditional structure. Further recent examples appear in Ho &
Pakes (2014), Morales et al. (2019), Rambachan & Roth (2021), and Rambachan (2021).

2.2 Simplifications from Linear Conditional Structure

In addition to arising frequently in applications, the structure of linear conditional moment
inequalities can be exploited to develop simple and computationally tractable tests of
(1). We begin by describing an asymptotic framework frequently used to test moment
inequalities, and some challenges it generates. We then describe how conditional linear
structure can be used to circumvent some of these issues. We focus on the intuition here,
deferring formal results to the following sections.

Unconditional asymptotics Conditional moment inequalities are often tested indirectly.
In particular, (1) implies that EP [Yi(β)−Xi(β)δ]≤ 0. To test H̃0 : β0 ∈BI(P), we may
therefore test that there exists a value of δ such that EP [Yi(β0)−Xi(β0)δ]≤ 0. Letting
Yn,0 = 1√

n

∑
iYi(β0) and Xn,0 = 1√

n

∑
iXi(β0), the central limit theorem implies that for each

δ, Yn,0−Xn,0δ−EP [Yn,0−Xn,0δ]→d N(0,ΣU,0(δ)), for ΣU,0(δ) = V arP (Yi(β0)−Xi(β0)δ).
This suggests the approximation

Yn,0−Xn,0δ≈dN(EP [Yn,0−Xn,0δ],ΣU,0(δ)), (6)

where ≈d denotes approximate equality in distribution. The normal approximation (6) may
be used to test Hjoint

0 (δ0):EP [Yn,0−Xn,0δ0]≤0, which jointly restricts (β,δ). This allows a
projection test of H̃0 :β0∈BI(P), which rejects if and only if we reject Hjoint

0 (δ0) for all δ0.
Simple projection tests can be quite conservative, however, which has motivated approaches
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based on the joint limiting distribution across different values of δ (e.g. Kaido et al. 2019).
Even if we are happy to use the projection method, projection tests based on (6) are

complicated by the dependence of the variance matrix ΣU,0(δ0) on the value of δ0, since
critical value for tests of Hjoint

0 (δ0) will typically depend on δ0 as well. When the nuisance
parameter δ has even moderate dimension, calculating the critical value for many values of
δ0 can become computationally burdensome, necessitating careful attention to algorithms
to mitigate the computational cost (e.g., Kaido et al. 2019).

Conditional asymptotics Linear conditional structure allows an alternative asymp-
totic approximation, which avoids complications discussed above by conditioning on the
sequence of realized instrument values {Zi}= {Zi}∞i=1. For µi(β,PD|Z) =EPD|Z [Yi(β)|Zi]
and µn,0 = 1√

n

∑
iµi(β0,PD|Z), the Lindeberg-Feller central limit theorem implies that under

mild conditions Yn,0−µn,0|{Zi}→dN(0,Σ0), where Σ0 =EP [V arPD|Z(Yi(β0)|Zi)]. Since
Xi(δ) is non-random conditional on {Zi}, this suggests the approximation

Yn,0−Xn,0δ|{Zi}≈dN(µn,0−Xn,0δ,Σ0). (7)

Importantly, and in contrast to (6), the variance Σ0 in (7) does not depend on the value
of δ. This substantially simplifies the problem of constructing tests. Further, since Xn,0

is non-stochastic conditional on {Zi}, (7) holds jointly across values of δ.
To construct tests based on this conditional approximation, observe that if H̃0 :β0∈BI(P)

holds, then there exists (almost surely) a value of δ such that µn,0−Xn,0δ≤0. The null
H̃0 :β0∈BI(P) thus implies the null H0 :µn,0∈Mn,0, whereMn,0 ={µ :∃δ s.t. µ−Xn,0δ≤
0} is non-stochastic conditional on {Zi}.7 Equation (7) with δ= 0 further implies that
Yn,0|{Zi}≈dN(µn,0,Σ0), so testing H0 reduces, asymptotically, to testing a restriction on
the mean of a multivariate normal vector.

Indirect Tests While indirect tests of H̃0 : β0 ∈BI(P) are natural, they can entail a
loss of consistency. The original null hypothesis H̃0 :β0∈BI(P) implies that there exists
δ such that 1√

n

∑
i(EPD|Z [Yi(β0)|Zi]−Xi(β0)δ)⊗f(Zi)≤ 0 for all non-negative functions

7In fact, H̃0 implies that µn,0∈Mn,0∩Mn,0,PD|Z , where PD|Z is the family of conditional distributions

implied by P, whileMn,0,PD|Z =
{

1√
n

∑
iEPD|Z [Yi(β0)|Zi]|P ∈PD|Z

}
. For tractability, we focus on the

implied null that µn,0 ∈Mn,0 rather than µn,0 ∈Mn,0∩Mn,0,PD|Z . This yields valid but potentially
conservative tests if 0 6∈Mn,0,PD|Z , i.e. if P does not allow all moments to simultaneously bind; see Section
3.2 for additional discussion.
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f(Zi), whereas H0 : µn,0 ∈Mn,0 only tests that this is satisfied for f(Zi) = 1.8 Indeed,
conditional moment inequalities based on continuously distributed instruments Zi generate
an infinite number of unconditional inequalities, as discussed in e.g. D. Andrews & Shi
(2013), Armstrong (2014), Chernozhukov et al. (2015), and Chetverikov (2018). As a result,
the tests we develop do not in general yield consistent tests when the instruments are
continuously distributed. This contrasts with the aforementioned papers, which develop
consistent tests by checking a growing number of moment restrictions.

Inference based on a finite, researcher-selected set of inequalities nonetheless appears
widespread in applications, and is the approach adopted in all the empirical applications
discussed above save Gandhi et al. (2019). This raises the question of how to select the
finite set of moments (i.e, which restrictions to include in Yi), which we discuss informally
in Section 5.1 below. Whether one can go further, either characterizing an optimal selection
of moments or combining our results with those in the previous literature on conditional
moment inequalities to ensure consistent inference in settings with continuously distributed
Zi, is an interesting question for future work.

3 Inference Procedures in the Normal Model

We now introduce our tests. Motivated by the asymptotic approximation (7), we begin
with tests of H0 :µn,0∈Mn,0 in the exact normal model

Yn,0∼N(µn,0,Σ0) for known Σ0. (8)

The next section presents sufficient conditions for feasible versions of our tests, based on
non-normal data and estimates of Σ0, to uniformly control asymptotic size.

3.1 Test Statistic

Given Yn,0∼N(µn,0,Σ0) for known Σ0, we construct tests for the hypothesisH0 :µn,0∈Mn,0,
that is, that there exists some δ such that µn,0−Xn,0δ≤ 0. We eliminate the nuisance
parameter δ by using the profiled max statistic,

η̂n,0 =min
δ

max
j

{
e′j(Yn,0−Xn,0δ)/σ0,j

}
8Note that if one starts with (Yi,Xi) satisfying (1), then EPD|Z [Ỹi − X̃iδ|Zi] ≤ 0 for (Ỹi, X̃i) =

(Yi,Xi)⊗f(Zi) and any non-negative finite instrument function f(Zi). Thus, a key restriction imposed in our
framework is that the researcher chooses a finite set of instruments with which to interact the initial moments.
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for ej the jth standard basis vector and σ0,j =
√
e′jΣ0ej.9 To interpret η̂n,0, note that

maxj
{
e′j(Yn,0−Xn,0δ)/σ0,j

}
calculates the maximum studentized violation of the sample

moments at a given δ, so η̂n,0 is the minimizedmaximum violation. Our test statistic thus pro-
files the maximum-criterion statistic (S3 in the notation of D. Andrews & Soares (2010)).10

One could profile test statistics other than the max statistic — e.g. Cox & Shi (2021) study
profiled QLR statistics and Bugni et al. (2017) study profiled modified method of moments
(MMM) statistics (among others) — but it will be helpful for our analysis that the profiled
max statistic admits an equivalent representation as the solution to the linear program,

η̂n,0 =min
η,δ

η subject to Yn,0−Xn,0δ≤η·σ0, (9)

for σ0 =(σ0,1,...,σ0,k)
′. This allows for tractable computation of η̂n,0 even when the dimension

of δ is large, and the linear structure plays a key role in the construction of our tests.
To derive critical values we use the dual representation of the linear program (9).

Lemma 1 (Dual representation of η̂n,0) Provided η̂n,0>−∞,11

η̂n,0 =max
γ

γ′Yn,0 s.t. γ≥0,γ′Xn,0 =0,γ′σ0 =1. (10)

Moreover, the maximum is obtained at an element of the finite set of dual vertices V (Xn,0,σ0),
which collects the set of vectors γ∈Rk such that, for any B⊂{1,...,k} with |B|=p+1, MB

the rows of matrix M corresponding to B, and Wn,0 =(σ0,Xn,0), rk(Wn,0,B)=p+1, e′jγ=0

for j 6∈B, γ′B=e′1W
−1
n,0,B, and e′1W

−1
n,0,B≥0.

From the representation in Lemma 1 (which follows from standard duality arguments for lin-
ear programs) we see that in the finite sample normal model the test statistic η̂n,0 is the maxi-
mum of a multivariate normal vector, η̂n,0 =maxγ∈V (Xn,0,σ0)γ

′Yn,0 =max{γ′(1)Yn,0,...,γ
′
(J)Yn,0},

for γ(1),...,γ(J) the elements of V (Xn,0,σ0).

9We define c
0 =∞ for all c>0.

10By profiling, we mean that we find the value of the nuisance parameter δ to minimize the value of
the test statistic; see, e.g., Bugni et al. (2017) for additional discussion.

11Observe that η̂n,0 is equal to −∞ if and only if minδmaxje
′
jXn,0δ=−∞, in which case H0 is satisfied

regardless of the value of µn,0, so the testing problem is trivial. Finiteness of η̂n,0 implies that Xn,0 does
not have full row rank, for instance because k>p.
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3.2 Least Favorable Tests

Our first test is based on the “least-favorable” value of µn,0 under the null hypothesis H0.
From Lemma 1, we have that η̂n,0 =maxγ∈V (Xn,0,σ0)γ

′Yn,0. Hence

η̂n,0 = max
γ∈V (Xn,0,σ0)

{γ′µn,0+γ′(Yn,0−µn,0)}≤ max
γ∈V (Xn,0,σ0)

γ′µn,0+ max
γ∈V (Xn,0,σ0)

γ′(Yn,0−µn,0).

Under H0, however, there exists δ such that µn,0−Xn,0δ ≤ 0. From the definition of
V (Xn,0,σ0), we also have that γ′Xn,0 =0 and γ≥0 for all γ∈V (Xn,0,σ0). It follows that
under the null, γ′µn,0 = γ′(µn,0−Xn,0δ)≤ 0 for all γ ∈ V (Xn,0,σ0). Combined with the
previous display, this implies that under H0,

η̂n,0≤ max
γ∈V (Xn,0,σ0)

γ′(Yn,0−µn,0). (11)

Since Yn,0−µn,0∼N(0,Σ0), we define the least-favorable critical value cα,LF =cα,LF (Xn,0,σ0)

as the 1−α quantile of maxγ∈V (Xn,0,σ0)γ
′ξ for ξ ∼ N(0,Σ0) and consider the test that

rejects when η̂n,0 exceeds this critical value, φLF =1{η̂n,0>cα,LF}. It follows immediately
from the inequality (11) that under the finite sample normal model E[φLF ]≤α whenever
H0 :µn,0∈Mn,0 holds. Moreover, the inequality (11) reduces to an equality if γ′µn,0 =0

for all γ∈V (Xn,0,σ0), as for example occurs if µn,0 =0 or more generally if µn,0 =Xn,0δ for
some δ, in which case E[φLF ]=α. Thus, the LF test has exact size in the finite sample
normal model if it is possible for all moments to bind simultaneously. We note, however,
that this may not be possible for some data-generating processes (e.g., if certain pairs
of moments correspond to upper and lower bounds that cannot simultaneously bind), in
which case the least favorable test may have size strictly less than α.12

Sensitivity to slack moments An undesirable feature of the LF test is that it may be
sensitive to the inclusion of slack moments. That is, the power of the test may be negatively
affected if one includes in Yn,0 moments that are very far from binding (i.e. elements j
with µn,0,j�0). The reason is that the critical value cα,LF is based on the distribution
of the test statistic when µn,0 = 0, and thus generally increases when adding additional
moments, even though the test statistic η̂n,0 will generally not be affected by the inclusion
of very slack moments. Motivated by this fact, D. Andrews & Soares (2010), D. Andrews

12 In such cases, where 0 6∈Mn,0∩Mn,0,PD|Z forMn,0,PD|Z as defined in footnote 7, tests based on the
critical value cα,LF+ψ for ψ=maxµn,0∈Mn,0∩Mn,0,PD|Z

maxγ∈V (Xn,0,σ0)γ
′µn,0 will also control size. These

tests have (weakly) improved power since ψ≤0 by definition. The adjustment factor ψ depends on the
class of data generating processes P considered, however, so we focus on results using cα,LF for simplicity.
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& Barwick (2012), Romano et al. (2014), and related papers propose techniques that use
information from the data to either select moments or shift the mean of the distribution
from which the critical values are calculated. This yields tests with higher power in cases
where many of the moments are slack. Unfortunately, applying these existing methods in
our setting breaks the linear structure, and hence the computational advantages from using
linear programming, which motivates us to introduce an alternative approach.

3.3 Conditional Test

We next introduce a test that is less sensitive to the inclusion of slack moments than the
LF test while also exploiting the linear conditional structure in our context. This test is
based on the distribution of η̂n,0 conditional on the identity of the optimal vertex in the
dual problem, γ̂=argmaxγ∈V (Xn,0,σ0)γ

′Yn,0.13 For simplicity of exposition we assume that
γ̂ is unique, in the sense that argmaxγ∈V (Xn,0,σ0)γ

′Yn,0 is a singleton.14 If γ̂′Σ0γ̂=0 then
we define the conditional test to reject if and only if η̂n,0>0. For the remainder of this
section, we thus assume that γ̂′Σ0γ̂ > 0. For any γ ∈ V (Xn,0,σ0), note that γ̂ = γ only
if γ′Yn,0 ≥ γ̃′Yn,0 for all γ̃ ∈ V (Xn,0,σ0). Hence, γ̂ = γ is optimal only if Yn,0 lies in the
polyhedron {y|(γ−γ̃)′y≥0,∀γ̃∈V (Xn,0,σ0)}. This representation allows us to characterize
the distribution of η̂n,0 conditional on γ̂=γ using Lemma 5.1 in Lee et al. (2016), who
characterize the behavior of Gaussian random variables conditional on polyhedral events.

Lemma 2 Let Sn,0,γ=
(
I−Σ0γγ′

γ′Σ0γ

)
Yn,0. Then under (8),

η̂n,0|{γ̂=γ,Sn,0,γ=s}∼TN(γ′µn,0,γ
′Σ0γ,[Vlon,0,V

up
n,0]), (12)

where TN(µ,σ2,[a,b]) denotes the N(µ,σ2) distribution truncated to [a,b],

Vlon,0 = max
γ̃∈V (Xn,0,σ0):

γ′Σ0γ>γ
′Σ0γ̃

γ′Σ0γ ·γ̃′s
γ′Σ0γ−γ′Σ0γ̃

, Vupn,0 = min
γ̃∈V (Xn,0,σ0):

γ′Σ0γ<γ
′Σ0γ̃

γ′Σ0γ ·γ̃′s
γ′Σ0γ−γ′Σ0γ̃

, (13)

and we define Vlon,0 =−∞ and Vupn,0 =∞, respectively, when we optimize over the empty set.

Recall that under H0, γ′µn,0≤0 for all γ∈V (Xn,0,σ0). Additionally, Lemma A.1 in
Lee et al. (2016) shows that the TN(µ,σ2;[a,b]) distribution is increasing in µ in the sense

13γ̂ depends on n and β0, but we leave this dependence implicit for simplicity of notation.
14Our asymptotic results in the next section impose a sufficient condition for uniqueness to hold with

probability one asymptotically. Uniqueness is not, however, necessary for validity of the conditional test
in the normal model. See the appendix to the earlier version of this paper, Andrews et al. (2019), for
the definition of the conditional test and a proof of validity without uniqueness.
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of first order stochastic dominance. It follows that the distribution on the right-hand
side of (12) is weakly dominated by the TN(0,γ̂′Σ0γ̂,[Vlon,0,V

up
n,0]) distribution under the

null. We therefore base our test statistic on this distribution. Letting c̄α,C be the 1−α
quantile of the TN(0,γ̂′Σ0γ̂,[Vlon,0,V

up
n,0]) distribution, we define the conditional critical value

as cα,C=cα,C(Yn,0,Xn,0,Σ0)=max{c̄α,C,0} and reject if η̂n,0 exceeds it, φC=1{η̂n,0>cα,C}.15

It follows immediately that φC controls size conditionally in the finite sample normal model,
with E[φC|γ̂=γ,Sn,0,γ]≤α whenever µn,0∈Mn,0.16 Unconditional size control follows by
the law of iterated expectations.

Example (uncorrelated moments) Consider the case where Yn,0 ∼N(µn,0,I), and
Xn,0 =0, so that the nuisance parameter δ is irrelevant. Then V (Xn,0,σ0) is simply the set
of standard basis vectors, so η̂n,0 =maxje

′
jYn,0 is the maximum component of Yn,0. In this

case Vlon,0 corresponds to the second-largest component of Yn,0, i.e. maxj 6=ĵe
′
jYn,0, for ĵ the

location of the maximum, and Vupn,0 =∞. The conditional test thus rejects if η̂n,0 exceeds
the 1−α quantile of the standard normal distribution truncated to [Vlon,0,∞].

Insensitivity to Slack Moments In contrast with the LF test, the conditional test has
the desirable property that it is insensitive to the inclusion of slack moments. Specifically,
our next result shows that the conditional test is insensitive to slack moments in the
strong sense that as a moment becomes arbitrarily slack the conditional test converges to
the conditional test that drops that moment ex-ante. Intuitively, this happens because
(under mild conditions) sufficiently slack moments make no contribution to η̂n,0, Vlon,0, or
Vupn,0, and so have no impact on the conditional test. To state this result formally, define
Y j,d
n,0 =Yn,0−ej ·d as a version of Yn,0 which decreases the jth moment by d. Let Y −jn,0 collect

the rows of Yn,0 other than the jth, and define X−jn,0 and Σ−j0 accordingly. Define η̂j,dn,0 and

η̂−jn,0 as versions of η̂n,0 based on
(
Y j,d
n,0 ,Xn,0,Σ0

)
and

(
Y −jn,0 ,X

−j
n,0,Σ

−j
0

)
, respectively, and let

φj,dC and φ−jC denote the corresponding tests.

Lemma 3 For any Yn,0 such that γ′Yn,0 6= γ̃′Yn,0 for all distinct γ,γ̃ ∈ V (Xn,0,σ0) and
η̂−jn,0 6=cα,C

(
Y −jn,0 ,X

−j
n,0,Σ

−j
0

)
, we have limd→∞φ

j,d
C =φ−jC .

15The truncation of the critical value at 0 is unnecessary for size control in the finite-sample normal
model, but simplifies asymptotic arguments. It is also substantively reasonable as it prevents the test
from rejecting when all of the moment inequalities are satisfied in sample (η̂n,0≤0).

16As for the least favorable test, if 0 6∈ Mn,0 ∩ Mn,0,PD|Z we can potentially use smaller criti-
cal values, replacing c̄α,C with the 1 − α quantile of a TN(ψγ̂, γ̂

′Σ0γ̂, [Vlon,0,V
up
n,0]) distribution for

ψγ̂ =maxµn,0∈Mn,0∩Mn,0,PD|Z
γ̂′µn,0. As before, ψγ̂ will depend on the specification of P, and we focus

on tests based on c̄α,C for simplicity.

15



The conditions of Lemma 3 hold for Lebesgue almost every Yn,0, and hold with prob-
ability 1 under (8) provided that γ′Σ0γ > 0 and (γ− γ̃)′Σ0(γ− γ̃) > 0 for all distinct
γ,γ̃∈V (Xn,0,σ0), so that the variables γ′Yn,0 have positive variance and are not perfectly
correlated with one another. The only other tests we are aware of that both control size
in the finite-sample normal model and are unaffected by the inclusion of arbitrarily slack
moments are those of Cox & Shi (2021).

Power with Multiple Violated Moments. Although the conditional test exhibits a
desirable insensitivity to the inclusion of slack moments, it may exhibit poor power in cases
where two (or more) moments are approximately equally violated. This is most easily seen in
the example of uncorrelated moments from above, where Vlon,0 corresponds with the value of
the second-largest sample moment, and the critical value is the 1−α quantile of the standard
normal distribution truncated to [Vlon,0,∞]. If two moments are approximately equally vio-
lated, then the largest and second largest sample moments (η̂n,0 and Vlon,0, respectively) may
be close together, so the conditional test need not reject even if both of these are large. This
phenomenon is highlighted in parts of the parameter space in our simulations in Section 6.

3.4 Hybrid Tests

To mitigate the possible power losses of the conditional test when multiple moments are
approximately equally violated, we next introduce a hybrid test that combines the least
favorable and conditional approaches. For some 0<κ<α, we define the size-α hybrid
test to reject whenever the size-κ least favorable test does. If the least favorable test does
not reject, we then consider a size-α−κ

1−κ test that conditions on both γ̂=γ and the event
that the least-favorable test did not reject. Specifically, the same argument used to prove
Lemma 2 yields that

η̂n,0|{γ̂=γ,Sn,0,γ=s,φLF,κ=0}∼TN(γ′µn,0,γ
′Σ0γ,[Vlon,0,V

up,H
n,0 ]),

where Vup,Hn,0 =min{Vupn,0,cα,LF}. We then construct the second-stage critical value c̄α−κ
1−κ ,H

=

c̄α−κ
1−κ ,H

(Yn,0,Xn,0,Σ0) analogously to the conditional critical value cα−κ
1−κ ,C

except using the

modified truncation point Vup,Hn,0 . Letting cα−κ
1−κ ,H

= min{cκ,LF ,c̄α−κ
1−κ ,H

}, the hybrid test is
then φH=1{η̂n,0>cα−κ

1−κ ,H
}. Observe that the critical value for the hybrid test approaches

that of the LF test as κ→α, while it approaches that of the conditional test as κ→0.
As argued above, the first-stage LF test for the hybrid rejects with probability not

exceeding κ under the null in the finite-sample normal model. Likewise, by arguments
analogous to those for the conditional test, the second stage test rejects with probability no
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more than α−κ
1−κ conditional on the first stage not rejecting. It follows that when µn,0∈Mn,0,

the hybrid test rejects with probability

E[φLF,κ]+(1−E[φLF,κ])E
[
η̂n,0>c̄α−κ

1−κ ,H
|φLF,κ=0

]
≤κ+(1−κ)

α−κ
1−κ

=α,

and so controls size in the finite sample normal model.
The hybrid test proposed above always rejects whenever a simple Bonferroni combination

of a size-κ LF test and size-(α−κ) conditional test would reject, and can reject in cases where
the simple Bonferroni does not. The proposed method improves upon the simple Bonferroni
approach in two ways, first modifying the second-stage test to condition on the event that
the LF test does not reject (which truncates the distribution above and so reduces the critical
value), and then using a size α−κ

1−κ >α−κ critical value. This helps to reduce the conservative-
ness usually associated with Bonferroni approaches. In the simple example of uncorrelated
normal moments from above, for instance, the proposed hybrid has size exactly α if µn,0 =0.

Sensitivity to Slack Moments The hybrid test will be sensitive to the inclusion of
slack moments via its dependence on the LF critical values. However, this sensitivity will
be small when κ is close to zero, since in this case the critical values will tend to be close to
those of the conditional test, which as shown above do not depend on the inclusion of slack
moments. Similar to Romano et al. (2014), we consider κ=α/10 in our simulations below.

4 Asymptotic Validity

We conduct our analysis conditional on a sequence of values for the instruments, {Zi}=
{Zi}∞i=1, where the data are independent but potentially not identically distributed con-
ditional on {Zi}, Di⊥⊥Di′|{Zj} for all i 6=i′. Define P0

D|Z⊆PD|Z as the class of conditional
distributions consistent with our conditional moment restriction,

P0
D|Z=

{
PD|Z∈PD|Z : there exists δ s.t. EPD|Z [Yi(β0)−Xi(β0)δ|Zi]≤0 for all i

}
.

We provide conditions under which our tests uniformly control rejection probabilities over
P0
D|Z in large samples.
Our first assumption is that, conditional on Zi, Yi(β0) can be written as a known linear

transformation of a vector Ui(β0), whose average conditional variance given Zi converges
uniformly to a bounded and full-rank limit.

Assumption 1 Suppose that we can write Yi(β0)=TUi(β0)+ζi(β0), where T is a known

17



k× l matrix while ζi(β0) ∈Rk is known and non-random conditional on {Zi}. Further
suppose that, (i), for some Ω

(
PD|Z

)
,

lim
n→∞

sup
PD|Z∈P0

D|Z

∥∥∥∥∥1

n

n∑
i=1

V arPD|Z(Ui(β0)|Zi)−Ω
(
PD|Z

)∥∥∥∥∥→0. (14)

and, (ii), for λ̄>0 a finite constant, Ω
(
PD|Z

)
∈Ωλ̄ for all PD|Z∈P0

D|Z, where

Ωλ̄={Ω|λ̄−1≤λmin(Ω)≤λmax(Ω)≤ λ̄}

is the set of matrices with minimal and maximal eigenvalues bounded by λ̄−1 and λ̄.

Structure of the form Yi(β0) = TUi(β0)+ ζi(β0) commonly arises in moment inequality
applications, e.g. when moment equalities are represented as pairs of inequalities. If the
only moments are of this form, for instance, then we can take T=[Idim(Un,0) −Idim(Un,0)]

′

and ζi(β0)=0. If instead the conditional variance of Yi(β0) given Zi is full-rank, then we
can take T=I and ζi(β0)=0.

Assumption 1 implies that the average conditional variance of Yi(β0) given Zi con-
verges, 1

n

∑
V arPD|Z(Yi(β0)|Zi)→Σ(PD|Z)=TΩ

(
PD|Z

)
T ′. Although Ω

(
PD|Z

)
has full rank,

Σ(PD|Z) may have reduced rank since e.g. the dimension of Σ
(
PD|Z

)
may exceed that of

Ω
(
PD|Z

)
. We next assume that we have a uniformly consistent estimator for Ω(PD|Z), and

thus for Σ(PD|Z).

Assumption 2 Σ̂n,0 =T ′Ω̂n,0T , where Ω̂n,0 is uniformly consistent for Ω
(
PD|Z

)
,

lim
n→∞

sup
PD|Z∈P0

D|Z

PrPD|Z

{∥∥∥Ω̂n,0−Ω
(
PD|Z

)∥∥∥>ε}=0 for all ε>0.

We discuss sufficient conditions for uniform consistency of Ω̂n,0 in Appendix B.
We further assume that the scaled sample average of Ui(β0) is uniformly asymptoti-

cally normal once recentered around its mean. To state this assumption we use the fact
that uniform convergence in distribution is equivalent to uniform convergence in bounded
Lipschitz metric (see e.g. Theorem 1.12.4 of van der Vaart and Wellner, 1996).

Assumption 3 For BL1 the class of functions which are bounded in absolute value by one
and have Lipschitz constant bounded by one, Un,0 = 1√

n

∑
Ui(β0), πi(β0)=EPD|Z [Ui(β0)|Zi],
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πn,0 = 1√
n

∑
iπi(β0), and ξPD|Z∼N

(
0,Ω
(
PD|Z

))
,

lim
n→∞

sup
PD|Z∈P0

D|Z

sup
f∈BL1

∣∣∣EPD|Z [f(Un,0−πn,0)]−E
[
f
(
ξPD|Z

)]∣∣∣=0.

Under Assumption 1, Assumption 3 holds whenever the average conditional distribution
of Ui(β0)−πi(β0) is uniformly integrable over PD|Z∈P0

D|Z.

Lemma 4 Under Assumption 1, if for all ε>0

limsup
n→∞

sup
PD|Z∈P0

D|Z

1

n

n∑
i=1

EPD|Z
[
‖Ui(β0)−πi(β0)‖21

{
‖Ui(β0)−πi(β0)‖>ε

√
n
}
|Zi
]
=0,

then Assumption 3 holds.

Our final assumption, which is needed for the conditional and hybrid approaches,
restricts T and Xn,0. Before stating this assumption, we note that the structure imposed
by Assumption 1 allows us to consider a subset of the vertices V (Xn,0,σ0) discussed in the
previous section. Intuitively, the optimal vertex γ̂ corresponds to a vector of Langrange
multipliers for the primal problem (9), and thus γ̂ must satisfy the complementary slackness
conditions. Assumption 1 then implies that certain vertices can never be optimal when
the test rejects – for example, if the matrix T encodes moment equalities as inequalities,
then the positive and negative copies of a given moment cannot bind simultaneously unless
η̂n,0 =0, in which case our tests do not reject. The following lemma shows that we can
ignore such “non-optimal” vertices when establishing size control.

Lemma 5

1. V (Xn,0, σ̂n,0) = {λ(1)(Xn,0, σ̂n,0)γ(1)(Xn,0), ..., λ(J)(Xn,0, σ̂n,0)γ(J)(Xn,0)}, where the
λ(j)(·,·) are scalar functions of X and σ, while γ(1)(Xn,0),...,γ(J)(Xn,0) are the elements
of V (Xn,0,υ) for υ=

√
Diag(TT ′).

2. Let Υn,0 = {Tu+ ζn,0|u ∈ Rl}, where ζn,0 = 1√
n

∑
iζi(β0). Let V†(Xn,0,σ̂n,0) be the

subset of V (Xn,0,σ̂n,0) corresponding with the indices j such that there there exists
some σ>0 and some y∈Υn,0 such that λ(j)(Xn,0,σ)γ(j)(Xn,0)∈argmaxγ̃∈V (Xn,0,σ)γ̃

′y

and λ(j)(Xn,0,σ)γ(j)(Xn,0)
′y>0. Suppose V†(Xn,0,σ̂n,0) is non-empty.17 Then for any

17If not, then η̂n,0≤0 with probability 1, and thus none of our tests ever rejects for α<0.5.

19



α<0.5, the LF, Conditional, and Hybrid tests constructed using V (Xn,0,σ̂n,0) reject
only if their analogs constructed using V†(Xn,0,σ̂n,0) also reject.

With the definition of V†(Xn,0,σ̂n,0) in hand, we can now state our final assumption.

Assumption 4 For n sufficiently large, Xn,0∈X ∗ for X ∗ a closed set such that

inf
Ω∈Ωλ̄

inf
X∈X∗

min
γ,γ̃∈V†(X,σ(Ω)),γ 6=γ̃,c∈R≥0

(γ−c·γ̃)′TΩT ′(γ−c·γ̃)>0,

where σ(Ω)=
√
Diag(TΩT ′).

Together with the structure for the variance matrix Σ imposed in Assumption 1, As-
sumption 4 ensures that (i) γ′Yn,0 has nonvanishing asymptotic variance for all dual vertices
γ ∈ V†(Xn,0,σ̂n,0), and (ii) for distinct dual vertices γ and γ̃ in V†(Xn,0,σ̂n,0), γ′Yn,0 and
γ̃′Yn,0 are not perfectly positively correlated asymptotically. The former implies that η̂n,0
is continuously distributed in large samples, while the latter ensures that the dual problem
maxγ∈V†(Xn,0,σ̂n,0)γ

′Yn,0 has a unique solution with probability tending to one. In Appendix
C, we provide lower-level sufficient conditions for Assumption 4 in settings where the only
sources of degeneracy in Σ(PD|Z) are moment equalities represented as pairs of inequalities
(or other moment pairs which cannot bind simultaneously). These sufficient conditions
ensure that set of dual vertices is sufficiently continuous in X.

It is worth highlighting that Assumption 4 places restrictions on the variance of Yn,0 but
not on its mean µn,0. This contrasts with linear independence constraint qualification (LICQ)
assumptions that have been considered in other work (e.g., Cho & Russell 2021, Gafarov
2019), which restrict the set of moments that can be binding in population and thus the value
of µn,0 (see Kaido et al. (2021) for discussion). In the simplest case without nuisance param-
eters (Xn,0 =0), for example, Assumption 4 holds if all of the elements of Yn,0 have positive
variance and are not perfectly correlated, whereas a standard LICQ condition would impose
that µn,0 has a unique maximum element.18 We explore the connections between LICQ and
Assumption 4 more formally in Appendix E, where we show that LICQ implies that there is
a unique solution to a “population version” of the dual for η̂n,0, whereas Assumption 4 implies
restrictions only on the sample version of the problem. We note that the validity of the tests
proposed in Cox & Shi (2021), as well as our LF test, do not require Assumption 4, and thus
may be attractive in settings where the researcher is not comfortable with this assumption.

18Rambachan & Roth (2021) show that in a special setting where β0 enters the moments linearly, a
population version of LICQ implies that our conditional test has optimal local asymptotic power.
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Under these assumptions, feasible versions of our tests, based on the observed (Yn,0,Xn,0),
and the estimated variance Σ̂n,0, are uniformly asymptotically valid.

Proposition 1 Under Assumptions 1, 2, and 3 the least favorable test is uniformly asymp-
totically valid for α<0.5,

limsup
n→∞

sup
PD|Z∈P0

D|Z

PrPD|Z

{
η̂n,0>cα,LF

(
Xn,0,Σ̂n,0

)}
≤α.

Proposition 2 Under Assumptions 1, 2, 3, and 4, the conditional and hybrid tests are
uniformly asymptotically valid for α<0.5,

limsup
n→∞

sup
PD|Z∈P0

D|Z

PrPD|Z

{
η̂n,0>cα,C

(
Yn,0,Xn,0,Σ̂n,0

)}
≤α,

limsup
n→∞

sup
PD|Z∈P0

D|Z

PrPD|Z

{
η̂n,0>cα−κ

1−κ ,H

(
Yn,0,Xn,0,Σ̂n,0

)}
≤α.

5 Implementation

We next provide practical guidance on implementing the tests described above. We also
provide Matlab code to facilitate implementation.19

5.1 Choice of Moments

Researchers can use our methods whenever their model implies conditional moment in-
equalities of the form (1). As discussed in Section 2.2, if the model (1) holds for a given
(Y,X) pair, then it also holds if Y and X are interacted with any non-negative function
of the instruments – i.e., if we replace Y and X with Ỹ =Y ⊗f(Z) and X̃=X⊗f(Z). An
important choice in implementing our methods is thus the choice of the k moments (i.e.,
the choice of Y ). A formal analysis of how to optimally choose the k moments is beyond
the scope of this paper, but we offer some heuristic guidance.

Intuitively, including more informative moments can tighten the identified set based on
the included moments, but including too many moments relative to the sample size can harm
the quality of the normal approximation. Including uninformative moments (that are not
infinitely slack) can also reduce the finite-sample power of our tests. The multivariate Berry-
Esseen theorem (e.g. Bentkus 2003) suggests that the normal approximation to the distribu-
tion of the sample average should perform well when the number of moments included is suf-

19The code is available at https://github.com/jonathandroth/LinearMomentInequalities/.
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ficiently small relative to the sample size.20 As a heuristic, Cox & Shi (2021) suggest that one
should ensure there are at least 15 observations per cell in cases where the instruments f(Z)

are binary indicators for whether Z falls in a particular cell. In our Monte Carlo simulations
below, where the instrument functions are continuous, we find that our proposed tests have
good size control with 500 observations and up to 110 moments, although we caution that
the quality of the normal approximation may depend on the specific data-generating process.

Regarding the choice of which k moments to use, researchers should include the
moments that they think will be most informative about the parameter of interest. Note
that interacting an original set of moments with an instrument function f(Z) will only add
identifying information to the extent that f(Z) is correlated with Y and X, since if (Y,X)

and f(Z) are uncorrelated EP [f(Z)(Y −Xδ)] =EP [f(Z)]EP [Y −Xδ]∝EP [Y −Xδ], so
adding the interaction does not shrink the set of values where the moment inequalities are
satisfied on average. Heuristically, researchers should therefore include instrument functions
that are likely to be strongly related to (Y,X). Consistent with this intuition, Ho & Pakes
(2014) use instrument functions based on the distance of an individual to a hospital, since
their Y andX relate to individuals’ choices of hospitals, and distance to the hospital is known
to be an important determinant of hospital choice; see Section VI.B of Ho & Pakes (2014)
for an intuitive discussion of how economic knowledge can inform the choice of moments.
We also emphasize that applied researchers frequently conduct inference based on a finite
set of unconditional moments implied by conditional moment inequalities, so the use of our
methods does not introduce a new choice relative to this common practice in empirical work.

5.2 Forming confidence sets

Researchers often wish to compute confidence sets for the target parameter β. This can
be achieved by discretizing the parameter space for β as {β(1),...,β(L)} and testing the null
hypothesis H0 :β=β(l) for each l using the tests described above. A confidence set can then
be formed by collecting the grid points for which the test fails to reject. If the researcher
is interested in a sub-vector of β – e.g. the first component of β is of interest, whereas the
remaining components are nuisance parameters that enter the moments non-linearly – then
the researcher can first form a confidence set for the full parameter vector β, and then obtain
a confidence set for the parameter of interest by projection. We emphasize that test inversion
is only required for β, and not for the nuisance parameters δ, which can lead to substantial

20Specifically, as discussed in Chernozhukov et al. (2017), we need the dimension of the moments to
be smaller than o(n

2
7 ) for the approximation to hold uniformly over all convex sets. If the moments are

of the form Y =TU , as in Assumption 1, then the relevant dimension is dim(U) rather than dim(Y ).

22



computational simplifications when the dimension of δ is large. For the remainder of the
section, we focus on the implementation of our tests for a particular null value β0.

5.3 Estimating the conditional covariance

Our tests require an estimate of the average conditional variance, Ω0 =EP [V ar(Ui(β0)|Zi)].
We briefly describe how the matching procedure proposed by Abadie et al. (2014) can be
used to estimate Ω0 when the data are i.i.d. across i; see Chetverikov (2018) and Horowitz
& Spokoiny (2001) for alternative estimators. Let Σ̂Z be the sample variance of Zi.21 For
each i, find the nearest neighbor using the Mahalanobis distance for Zi:

`Z(i)=argminj∈{1,...,n},j 6=i(Zi−Zj)
′Σ̂−1
Z (Zi−Zj).

For ease of exposition we assume that Zi has at least one continuously distributed dimension,
so that `Z(i) is unique for all i.22 The estimate of Ω0 is then:

Ω̂n,0 =
1

2n

n∑
i=1

(
Ui(β0)−U`Z(i)(β0)

)(
Ui(β0)−U`Z(i)(β0)

)′
. (15)

Appendix B provides regularity conditions under which Ω̂n,0 is uniformly consistent for Ω0.

5.4 Computation of test statistic and critical values

To test the null hypothesis for a particular null value β0, one needs to compute the test
statistic η̂n,0 and the critical value for the relevant test (cα,LF ,cα,C, or cα,H). We discuss
computation of each component in turn.

5.4.1 Computing η̂n,0

The test statistic η̂n,0 can be computed by solving the linear program (9). This can be
achieved using standard software, such as Matlab’s linprog command. We recommend
using the dual-simplex method in Matlab, which conveniently returns both the optimal value
η̂n,0 as well as the optimal vector of Lagrange multipliers γ̂, which is used for computing
the conditional and hybrid critical values.

21The matching procedure described below assumes that Σ̂Z is non-singular. In certain applications,
such as in our Monte Carlo, elements of Zi may be linearly dependent by construction, leading Σ̂Z to
be singular. In this case conditioning on a maximal linearly independent subset of Zi is equivalent to
conditioning on the full vector, so one can drop dependent elements from Zi until Σ̂Z is non-singular.

22If instead Zi is entirely discrete, one can estimate Ω̂n,0 using the average of the sample conditional
variances across Zi cells.

23



5.4.2 Computing LF critical values

Recall that the LF critical value cα,LF is the 1−α quantile of maxγ∈V (Xn,0,σ̂n,0)γ
′ξ for

ξ∼N(0,Σ̂n,0). By duality results for linear programming, we have that

η̂(ξ)= max
γ∈V (Xn,0,σ̂n,0)

γ′ξ=

(
min
η,δ

η subject to ξ−Xn,0δ≤η·σ̂n,0
)
,

where σ̂n,0 =

√
Diag(Σ̂n,0). To compute cα,LF , one can simulate ξ(1),...,ξ(S)∼N(0,Σ̂n,0),

compute η̂(ξ(s)) using the linear program in the previous display and then take the 1−α
quantile of η̂(ξ(1)),...,η̂(ξ(S)).23 We use S=1000 in our simulations below.

5.4.3 Computing conditional and hybrid critical values

To compute the conditional and hybrid critical values, one needs to compute Vlon,0 and Vupn,0.
Equation (13) gives an analytical formula for these quantities that involves a minimum
and maximum over the set of dual vertices V (Xn,0,σ̂n,0). Enumerating all of the vertices is,
however, computationally prohibitive when there are many moments or nuisance parameters.
Fortunately, we show in Appendix D that there are two computational shortcuts available
that allow for computation of Vlon,0 and Vupn,0 without vertex enumeration. First, when
the problem for η̂n,0 has a unique and non-degenerate solution, Vlon,0 and Vupn,0 can each
be written as the minimum/maximum of a set of at most k easy-to-compute elements.24

Second, if the problem for η̂n,0 is non-unique or degenerate, Vlon,0 and Vupn,0 can be solved
using a computationally-tractable bisection approach. We thus recommend to first check
whether the solution to the primal problem (9) is unique and non-degenerate, and if so,
use the formula given in Lemma D.1; if not, then use the bisection approach described
in Appendix D. We implement this approach in our publicly-available Matlab code, and
find that it yields computationally tractable tests with as many as 110 moments and 11
parameters in our simulations below.

5.4.4 Simplifications when target parameters enter the moments linearly

In some settings, we may have inequalities of the form

EPD|Z [Yi−Xβ,iβ−Xδ,iδ|Zi]≤0,

23To increase computational speed and stability across different values of β, one can fix Z1,...,ZS∼N(0,I),
and then set ξs=Σ̂

1
2
n,0Zs.

24The solution to the primal problem is said to be non-degenerate if the rows of the matrix
Wn,0=(σ̂n,0, Xn,0) corresponding to the binding moments are linearly independent.
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where β is the parameter of interest, δ is again a nuisance parameter, Xβ,i and Xδ,i are
non-random conditional on Zi, and the value of (Yi,Xβ,i,Xδ,i) does not depend on β or
δ. This structure arises, for example, in interval-valued regression if we are interested in
the coefficient on an exogenous variable. This structure also arises in Rambachan & Roth
(2021), who consider bounds on treatment effects in difference-in-differences settings under
linear constraints on the possible violations of parallel trends. Moment inequalities of this
sort can be cast into the form (1) by setting Yi(β) = Yi−Xβ,iβ and Xi(β) =Xδ,i. The
methods described above can thus be applied directly.

The additional linear structure allows for multiple computational shortcuts, however.
First, the conditional covariance matrix EP [V arPD|Z(Yi(β)|Zi)] does not depend on β, and
thus the estimated variance Σ̂n need only be calculated once, rather than for every candidate
value of β.25 Second, the LF critical value cα,LF (Xn,Σ̂n) likewise does not depend on the
value of β. As a result, a confidence set for the LF test can be computed by solving a linear
program for each of the upper and lower bounds, without any test inversion at all. For
instance, the lower bound of the confidence set for the LF test can be calculated by solving

min
β,δ

β subject to Yn−Xn,ββ−Xn,δδ≤cα,LF ·σ̂n,

where Yn= 1√
n

∑
iYi, and Xn,β and Xn,δ are defined analogously. Computation of confidence

sets for the conditional and hybrid tests still requires test inversion over a grid for β, but
will be faster because Σ̂n and the first-stage LF critical value for the hybrid need only be
computed once.

6 Simulations

6.1 Simulation Design

Our simulations are calibrated to Wollmann (2018)’s study of the bailouts of GM and
Chryslers’ truck divisions. As discussed in Example 3 above, Wollmann obtains bounds on
the fixed cost of marketing a product using moment inequalities derived from revealed pref-
erence arguments. The fixed cost to firm f of marketing product j at time t is β(δc,f+δggj)

if the product was marketed at time t−1, and δc,f+δggj otherwise. Consistent with (1),
the parameter δ=(δg,{δc,f}) enters the moments linearly for a fixed value of β.

The moments we consider take the form of the example given in equation (5) for the case

25We write Σ̂n instead of Σ̂n,0, since the value does not depend on the null hypothesis. We apply an
analogous convention for other variables, e.g. writing Xn instead of Xn,0 and σn instead of σn,0.
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where a product was marketed in both periods. To illustrate how performance varies with the
number of parameters, we consider specifications where the intercept δc,f is constant across
firms, specifications where it is allowed to vary across three groups of firms, and specifications
where each of the nine firms in the data has its own intercept. In each case, we average the
moment inequalities involving δc,f across firms assumed to have the same coefficient. We also
vary the instruments used. See Appendix F for details on the exact construction of the mo-
ments. Overall, the number of moments varies between 6 and 110 across our specifications.

We consider inference on three parameters of interest: the cost of marketing the truck
of mean weight when it was marketed in the prior year;26 the incremental cost of changing
the weight of a product, δg; and the non-linear parameter β, where 1−β represents the
proportional cost savings from marketing a product that was previously marketed relative to
a new product. For the first two target parameters, which can be written in the form l′δ, we
hold β fixed at its true value and treat the component of δ orthogonal to l′δ as the nuisance
parameter. This allows us to examine performance in the linear case discussed in Section 5.4.
InWollman’s setting the parameter β might be calibrated based on industry knowledge about
the relative cost of marketing a new versus pre-existing product. As discussed in Section 5.4,
if we instead treated β as unknown we could form joint confidence sets for β along with the
linear combination of interest and obtain confidence sets for the linear parameter alone by
projection. For inference on β we treat the entire vector δ as a nuisance parameter. Overall,
the number of unknown parameters varies between 2 and 11 across our specifications.

We calibrate the data-generating process in our simulations using moments reported
in Wollmann – see Appendix F for details. In each simulation draw, we generate data
from a cross-section of 500 independent markets.27 This is substantially larger than the
27 independent observations used by Wollmann, but allows us to consider specifications
with a widely varying number of moments. All results are based on 500 simulations.

We consider the performance of the LF, Conditional, and Hybrid tests and compare these
to several benchmarks. First, we compare to a studentized-max-statistic-based projection
test which we label the least favorable projection, or LFP, test. Second, we compute the sCC
and sRCC tests proposed in Cox & Shi (2021). The sRCC test, which is a refinement of the

26When we assume δc,f is common across firms this is δc+δgµg, where µg is the population average
weight of trucks. When we allow the estimated δc parameters to vary across groups, we estimate l′δ, for
l= ( 1

G ,...,
1
G ,µg)

′, where G denotes the number of groups and δ= (δc,1,...,δc,G,δg)
′. Note that since the

simulation DGP holds the true value of δc constant across groups, the true value of the parameter is the
same in all specifications.

27The data in Wollmann (2018) are a time-series but his variance estimates assume no serial correlation,
so we adopt a simulation design consistent with this.
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sCC test, can be computationally difficult when there are many parameters. For the specifi-
cations with 10+ parameters and 100+moments, we therefore report an upper bound for the
power of the sRCC test using the fact that the refinement to the sCC test can only matter
when the test statistic falls in a certain range.28 Third, we compute the projection tests of
Andrews & Soares (2010, AS) and Kaido et al. (2019, KMS) using the EAM algorithm im-
plemented in Matlab by Kaido et al. (2017). The AS and KMS tests can be computationally
taxing when there are many parameters, and the Matlab implementation requires the param-
eters to enter in an additively separable way. We therefore compute the AS and KMS tests
only for the specifications when the parameters enter linearly and there are fewer than 10 pa-
rameters. See Appendix F for additional details on the implementation of these comparisons.

6.2 Results

Table 1 reports the maximum null rejection probability (size) over a conservative estimate of
the identified set. Since we do not have an analytical characterization of the identified set, we
approximate it by the set satisfying the sample (unconditional) moment inequalities based on
a simulation run with five million observations. To ensure that our estimate of the identified
set is conservative, we follow Chernozhukov et al. (2007) and add a correction factor to the
moments of log(n)/

√
n≈ .003. Our estimate of the identified is thus conservative due to both

(a) the Chernozhukov et al. (2007) correction factor and (b) the use of unconditional rather
than conditional moment inequalities. All of the procedures nevertheless approximately con-
trol size on this set, with rejection probabilities never exceeding 0.08 for any of the procedures.

We next turn to comparisons of power. Figure 1 shows the rejection rates for each of
our three main tests in the simulation design where the target parameter is the cost of the
mean-weight truck. The vertical dashed lines denote conservative estimates of the bounds of
the identified set, and the remaining curves show the probability that each of the tests rejects
given a null value of the parameter of interest (holding fixed the DGP). Overall, the figure
indicates that the hybrid approach performs best, with rejection probabilities comparable
to or above those of the LF and conditional approaches at all points in the parameter space.
To understand the superior performance of the hybrid approach, it is worth highlighting
that the rejection curves for the LF and conditional approaches cross: in some specifications,
the conditional approach has power substantially above that of the LF test at all parameter

28Specifically, the sRCC test always rejects when the sCC test reject does, and can only differ from the sCC
test when one moment is active (k=1) and the test statistic falls between the 1−α and 1−α/2 quantiles of
the chi-squared distribution. When there are 10 or more parameters, we thus report the power of the test that
rejects whenever either the sCC test rejects or the refinement could potentially lead the sRCC test to reject.
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values (e.g. panel (e) of Figure 1). In other specifications, however, the conditional approach
exhibits poor power relative to the LF test in some areas of the parameter space – e.g.,
in the area above the identified set in panel (d) of Figure 1. We have confirmed that in
this simulation design there are two vertices which are optimal with approximately equal
probability in this part of the parameter space, which as discussed in Section 3 can lead
to poor power for the conditional test. The hybrid approach has similar power to the
conditional approach in most of the parameter space, while mitigating the issues in regions
of the parameter space where multiple vertices are close to binding, thus leading to better
performance overall. Appendix Figures F.1-F.2 show analogous results when the parameter
of interest is δg or β: the qualitative patterns are similar, with the hybrid exhibiting power
comparable to or above the other two methods throughout the parameter space.

Table 2 provides a comparison of our three procedures relative to the other benchmarks.
We report the median excess length for confidence sets formed based on each approach, where
excess length is defined as the length of the confidence set minus the length of the identified
set. We find that the median excess length of the hybrid confidence set is below that for the
AS and KMS sets in all specifications.29 The median excess length for the hybrid is also better
or equal to that for the sCC and sRCC sets in most specifications, although the sRCC set
outperforms the hybrid for three of the specifications with target parameter β.30 The ranking
of the hybrid and sRCC approaches in these results differs from that in the simulations in
Cox & Shi (2021), who find better performance for sRCC. One potential factor is that the
hybrid test is based on the max statistic whereas the sRCC test uses a QLR statistic, so the
hybrid may be more powerful in settings where one moments is violated to a large extent,
whereas the sRCC test may be more powerful when several moments are locally violated.
Finally, it is worth highlighting that all of the procedures considered have better power than
the LFP test in nearly all specifications. Appendix Figures F.3-F.7 display comparisons
of the full power curves of the hybrid relative to the LFP, sCC, sRCC, AS, and KMS tests.

Lastly, Table 3 reports runtimes in minutes to calculate confidence sets for each
parameter, averaging over 5 runs on a 2019 Macbook Pro without parallelizing the test

29In theory the KMS test should reject whenever the AS test rejects, and thus should have uniformly
shorter excess length. In practice, however, there is computational error and thus the computed bounds
for the AS set can be tighter than for the KMS set. This leads the median excess length of the AS set to
be slightly smaller than for the KMS set in two of our specifications. We found that reducing the objective
tolerance to half the default value reduced (but did not fully eliminate) this issue, but were unable to
reduce the tolerance further owing to computational constraints.

30Appendix Figures F.3-F.5 show a comparison of the power curves of the hybrid and the sCC and sRCC
tests. The figures show that for several specifications the rejection curves for the hybrid and sRCC tests cross.

28



inversion. Perhaps the most remarkable feature of the table is that our proposed tests are
computationally tractable even in settings with as many as 11 parameters and 110 moments.
Our preferred test, the hybrid, has runtimes under 10 minutes for all specifications in panels
(a) and (b), where all of the parameters enter the moments linearly, and under 2.5 hours in all
specifications in panel (c), where the target parameter enters the moments non-linearly. We
emphasize that these runtimes could be further improved by parallelizing the test inversion.

We highlight a few noteworthy comparisons of runtimes across both procedures and
specifications. First, the runtime of the hybrid test can be either faster or slower than
the runtime of the sCC and sRCC tests proposed by Cox & Shi (2021) depending on the
specification.31 The hybrid test is faster in the majority of simulations where all parameters
enter the moments linearly; this is because the LF test used in the first-stage of the hybrid is
particularly fast for these specifications, as the LF confidence set can be calculated without
any test inversion (see Section 5.4). The Cox & Shi (2021) tests are faster in panel (c),
where the target parameter enters the moments non-linearly and thus the LF critical value
must be re-calculated for each candidate value of β. Second, both the hybrid and Cox & Shi
(2021) tests are substantially faster than the AS and KMS projection tests in settings with
more than 2 parameters. For example, in the specification in the fourth row of panel (b),
both the hybrid and Cox & Shi (2021) tests are more than 20 times faster than AS and over
14 times faster than KMS.32 Third, both the conditional and hybrid tests are substantially
slower when the target parameter is δg (panel b) relative to the cost of the mean-weight
truck (panel a). The reason is that the primal solution for η̂n,0 is often non-unique, and thus
we must use a bisection method to calculate the Vlon,0 and Vupn,0, as described in Appendix D.

7 Conclusion

This paper considers the problem of inference based on linear conditional moment in-
equalities, which arise in a wide variety of economic applications. Using linear conditional
structure, we develop inference procedures which remain both computationally tractable
and powerful in the presence of nuisance parameters. We find good performance for our
procedures under a variety of simulation designs based on Wollmann (2018), with especially
good performance for our recommended hybrid procedure.

31We report average runtimes over 5 simulations run on a laptop. The refinement for the sRCC test
is needed relatively rarely, and was not used in any of our 5 simulations, and thus the runtimes for the
sRCC and sCC test are identical.

32We attempted to run a single iteration of AS for the specification with 10 parameters and 38 moments,
and found that it took 14 hours to compute the upper bound of the confidence set.
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Figure 1: Rejection probabilities for 5% tests of fixed cost for truck of mean weight

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Table 1: Size Comparisons

(a) Parameter: Cost of Mean-Weight Truck

#Params #Moments

2 6
2 14
4 14
4 38
10 38
10 110

Max Size

LF Cond. Hybrid LFP sCC sRCC AS KMS

0.02 0.02 0.02 0.00 0.01 0.02 0.02 0.02
0.00 0.02 0.02 0.00 0.01 0.02 0.02 0.02
0.00 0.02 0.02 0.00 0.01 0.02 0.03 0.05
0.00 0.04 0.04 0.00 0.01 0.03 0.00 0.00
0.00 0.02 0.01 0.00 0.01 0.02
0.00 0.07 0.07 0.00 0.00 0.00

(b) Parameter: δg

#Params #Moments

2 6
2 14
4 14
4 38
10 38
10 110

Max Size

LF Cond. Hybrid LFP sCC sRCC AS KMS

0.04 0.04 0.06 0.01 0.02 0.04 0.03 0.03
0.02 0.05 0.05 0.00 0.03 0.05 0.02 0.02
0.03 0.04 0.05 0.00 0.03 0.04 0.04 0.05
0.00 0.05 0.05 0.00 0.03 0.05 0.07 0.08
0.00 0.05 0.05 0.00 0.03 0.05
0.00 0.03 0.03 0.00 0.02 0.02

(c) Parameter: β

#Params #Moments

3 6
3 14
5 14
5 38
11 38
11 110

Max Size

LF Cond. Hybrid LFP

0.00 0.00 0.00 0.00
0.00 0.01 0.01 0.00
0.00 0.01 0.01 0.00
0.00 0.03 0.02 0.00
0.00 0.01 0.01 0.00
0.00 0.05 0.04 0.00

sCC sRCC

0.00 0.00
0.00 0.01
0.01 0.01
0.02 0.02
0.00 0.01
0.01 0.01
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Table 2: Excess Length Comparisons

(a) Parameter: Cost of Mean-Weight Truck

Median Excess Length

#Params #Moments LF Cond. Hybrid LFP sCC sRCC AS KMS

2 6 3.99 4.08 3.76 5.33 4.73 4.08 4.12 4.14
2 14 10.30 10.31 8.36 12.57 9.66 8.36 9.67 9.80
4 14 5.92 4.37 4.37 7.57 5.02 4.37 5.82 5.38
4 38 16.14 14.49 11.56 18.88 12.86 12.54 15.90 15.41

10 38 10.21 4.72 4.72 12.71 5.37 4.72
10 110 22.24 17.80 14.25 25.50 18.45 18.45

(b) Parameter: δg

Median Excess Length

#Params #Moments LF Cond. Hybrid LFP sCC sRCC AS KMS

2 6 4.29 4.20 3.95 6.04 4.95 4.20 4.94 4.74
2 14 5.41 4.45 4.20 6.93 5.20 4.45 5.31 5.26
4 14 5.19 4.43 4.18 6.99 5.18 4.43 5.48 5.13
4 38 6.68 4.43 4.43 7.97 5.43 4.43 6.23 6.08

10 38 6.58 4.43 4.43 8.09 5.43 4.43
10 110 7.69 5.18 5.18 9.11 7.43 7.18

(c) Parameter: β

Median Excess Length

#Params #Moments LF Cond. Hybrid LFP

3 6 61.87 42.93 36.62 118.69
3 14 0.55 0.45 0.35 0.76
5 14 7.78 6.01 5.30 10.25
5 38 0.66 0.96 0.45 0.86
11 38 1.01 1.01 0.81 1.41
11 110 0.66 2.57 0.55 0.86

sCC sRCC

60.61 42.93
0.45 0.35
6.36 5.66
0.40 0.35
0.71 0.71
0.45 0.45
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Table 3: Computational Time Comparison

(a) Parameter: Cost of Mean-Weight Truck

Average Runtime in Minutes

#Params #Moments LF Cond. Hybrid LFP sCC sRCC AS KMS

2 6 0.06 0.33 0.32 0.02 1.17 1.17 5.82 3.55
2 14 0.05 0.44 0.38 0.00 3.52 3.52 1.77 1.18
4 14 0.05 0.58 0.55 0.00 3.00 3.00 46.19 45.32
4 38 0.05 0.67 0.62 0.00 9.73 9.73 16.12 35.59

10 38 0.05 2.31 2.26 0.00 8.67 8.67
10 110 0.10 1.23 1.28 0.01 31.00 31.00

(b) Parameter: δg

Average Runtime in Minutes

#Params #Moments LF Cond. Hybrid LFP sCC sRCC AS KMS

2 6 0.05 6.73 2.89 0.00 1.05 1.05 0.20 0.38
2 14 0.05 5.71 1.41 0.00 2.31 2.31 3.69 3.83
4 14 0.05 8.35 4.51 0.00 2.06 2.06 6.74 26.84
4 38 0.05 13.15 8.48 0.00 6.35 6.35 201.20 123.58

10 38 0.05 12.46 8.13 0.00 5.82 5.82
10 110 0.10 14.01 9.45 0.01 19.26 19.26

(c) Parameter: β

Average Runtime in Minutes

#Params #Moments LF Cond. Hybrid LFP sCC sRCC

3 6 48.40 0.57 48.66 0.32 1.74 1.74
3 14 66.22 1.11 66.55 0.72 5.05 5.05
5 14 47.89 10.04 51.56 0.48 4.06 4.06
5 38 71.82 19.09 75.04 1.63 13.18 13.18

11 38 53.31 14.41 58.45 1.09 9.14 9.14
11 110 144.13 31.39 147.80 9.96 47.94 47.94
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Supplement to the paper

Inference for Linear Conditional
Moment Inequalities

Isaiah Andrews Jonathan Roth Ariel Pakes

January 14, 2022

This supplement provides proofs and additional results for the paper “Inference for
Linear Conditional Moment Inequalities.” Appendix A proves the results stated in the main
text. Appendix B discusses an estimator for the variance Ω(PD|Z), and provides sufficient
conditions for it to be uniformly consistent. Appendix C provides sufficient conditions for
Assumption 4 in the main text. Appendix D discusses how to quickly compute the bounds
Vlon,0 and Vupn,0 used by the conditional and hybrid tests. Finally, Appendix E discusses
connections to LICQ conditions considered in the previous literature, while Appendix F
provides further details on our simulations.

A Proofs for Results in Main Text

Proof of Lemma 1 This result follows from standard duality results for linear program-
ming. Note, in particular, that the primal problem (9) is equivalent to

−η̂n,0 =maxθ−e′1θ
subject to Yn,0,j−Wn,0,jθ≤0 ∀j.

for θ=(η,δ′)′. The duality theorem for linear programming (see e.g. (24) in Chapter 7.4
of Schrijver (1986)) implies that if the optimum in this problem is finite, it is equal to the
solution in the dual problem

−η̂n,0 =minγ−γ′Yn,0
subject to γ≥0, −W ′n,0γ=−e1,

which is equivalent to equation (10). Due to the linearity of the objective, however, the
optimal solution to the dual problem must be obtained at one of the vertices of the solution
set, also known as the basic feasible solutions, given by V (Xn,0,σ0). See e.g. Chapter 8.5
of Schrijver (1986). �
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Proof of Lemma 2 Observe that γ̂=γ only if Yn,0 lies in the polyhedron {y :(γ−γ̃)′y≥
0,∀γ̃∈V (Xn,0,σ0)}. The result is then immediate from Lemma 5.1 in Lee et al. (2016).

Proof of Lemma 3 Let

V ∗
(
X−jn,0,σ

−j
0

)
=
{
γ∈Rk :e′jγ=0,γ−j∈V

(
X−jn,0,σ

−j
0

)}
be the k-dimensional version of V

(
X−jn,0,σ

−j
0

)
, and note that V ∗

(
X−jn,0,σ

−j
0

)
⊆V (Xn,0,σ0)

by construction. Let F(Xn,0, σ0) = {γ |γ ≥ 0, γ′Xn,0 = 0, γ′σ0 = 1} denote the dual
feasible set using (Xn,0,σ0), and define F(X−jn,0,σ

−j
0 ) analogously. Observe that for any

γ∈V (Xn,0,σ0)\V ∗
(
X−jn,0,σ

−j
0

)
, either e′jγ>0 or γ−j∈F

(
X−jn,0,σ

−j
0

)
.

We first show that η̂j,dn,0→ η̂−jn,0. To this end, consider γ∈V (Xn,0,σ0)\V ∗
(
X−jn,0,σ

−j
0

)
. If

e′jγ>0, then γ′Y j,d
n,0→−∞ as d→∞. Hence, if V

(
X−jn,0,σ

−j
0

)
6=∅ (i.e. if the dual problem for

(X−jn,0,σ
−j
0 ) is feasible) then for d sufficiently large we must have γ 6∈argmaxγ∈V (Xn,0,σ0)γ

′Y j,d
n,0 .

If instead e′jγ=0 then γ−j∈F
(
X−jn,0,σ

−j
0

)
, so γ′Y j,d

n,0≤maxγ∈V ∗(X−jn,0,σ
−j
0 )γ

′Y j,d
n,0 = η̂−jn,0 for all

d, and either γ̂j,d∈V ∗
(
X−jn,0,σ

−j
0

)
for d sufficiently large or there exists γ̃∈V ∗

(
X−jn,0,σ

−j
0

)
such that γ′Yn,0 = γ̃′Yn,0, which we rule out by assumption. Hence, either η̂j,dn,0 = η̂−jn,0 and
γ̂j,d∈V ∗

(
X−jn,0,σ

−j
0

)
for d sufficiently large or the dual is infeasible and η̂j,dn,0→−∞. Infea-

sibility of the dual corresponds to unboundedness of the primal, so in this case η̂−jn,0 =−∞
and we again have η̂j,dn,0→ η̂−jn,0.

By the definition of the conditional test, if η̂j,dn,0→ η̂−jn,0 =−∞ then φj,dC →φ−jC =0. Hence,
for the remainder of the proof we consider the case with η̂−jn,0 >−∞. In this case, the
argument above implies that e′jγ̂j,d=0 for d sufficiently large. It is straightforward to verify
that if γ̂j,d∈V ∗(X−jn,0,σ

−j
0 ), then S−j

n,0,γ̂−j =M−jS
j,d
n,0,γ̂j,d

, whereM−j is the matrix that selects
all of the rows except row j. It follows that

Vlo,−jn,0 =maxγ−j∈V (X−jn,0,σ
−j
0 ):(γ̂−j)′Σ−j0 (γ̂−j)>(γ̂−j)′Σ−j0 (γ−j)

(γ̂−j)′Σ0(γ̂
−j)·(γ−j)′S−j

n,0,γ̂−j

(γ̂−j)′Σ0(γ̂−j)−(γ̂−j)′Σ0(γ−j)

=maxγ∈V ∗(Xn,0,σ0):γ̂′jdΣ0γ̂jd>γ̂
′
jdΣ0γ

γ̂′jdΣ0γ̂jd·γ′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ

for d sufficiently large, where for brevity of notation we write γ̂jd instead of γ̂j,d. Considering
γ∈V (Xn,0,σ0)\V ∗

(
X−jn,0,σ

−j
0

)
, note that if e′jγ>0 then γ′Sj,dn,0,γ̂jd→−∞ as d→∞, which
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implies that either

γ 6∈argmaxγ̃∈V (Xn,0,σ0):γ̂′jdΣ0γ̂jd>γ̂
′
jdΣ0γ̃

γ̂′jdΣ0γ̂jd·γ̃′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ̃

for d sufficiently large or Vlo,j,dn,0 →V
lo,−j
n,0 =−∞, and similarly for Vup,j,dn,0 .

If instead e′jγ=0, then as noted above γ−j∈F
(
X−jn,0,σ

−j
0

)
, so for any y∈Rk

γ′y≤ max
γ̃∈V ∗(X−jn,0,σ

−j
0 )
γ̃′y= max

γ̃∈V (X−jn,0,σ
−j
0 )
γ̃′y−j.

Lemma 5.1 of Lee et al. (2016) implies, however, that

Vlo,j,dn,0 =min
y

(γ̂j,d)′y, s.t. (γ̂j,d)′y≥ max
γ̃∈V (Xn,0,σ0)

γ̃′y and S(y,γ̂j,d)=Sj,d
n,0,γ̂j,d

,

where S(y,γ̂)=
(
I−Σ0γ̂γ̂′

γ̂′Σ0γ̂

)
y. The previous two displays together imply that

Vlo,j,dn,0 =min
y

(γ̂j,d)′y, s.t. (γ̂j,d)′y≥ max
γ̃∈V (Xn,0,σ0)\{γ}

γ̃′y and S(y,γ̂j,d)=Sj,d
n,0,γ̂j,d

.

Applying Lemma 5.1 of Lee et al. (2016) in the opposite direction,

max
γ̃∈V (Xn,0,σ0):γ̂′jdΣ0γ̂jd>γ̂

′
jdΣ0γ̃

γ̂′jdΣ0γ̂jd·γ̃′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ̃

= max
γ̃∈V (Xn,0,σ0)\{γ}:γ̂′jdΣ0γ̂jd>γ̂

′
jdΣ0γ̃

γ̂′jdΣ0γ̂jd·γ̃′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ̃

.

Iterating this argument, we obtain that

max
γ̃∈V (Xn,0,σ0):γ̂′jdΣ0γ̂jd>γ̂

′
jdΣ0γ̃

γ̂′jdΣ0γ̂jd·γ̃′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ̃

= max
γ̃∈V ∗(Xn,0,σ0):γ̂′jdΣ0γ̂jd>γ̂

′
jdΣ0γ̃

γ̂′jdΣ0γ̂jd·γ̃′Sj,dn,0,γ̂jd
γ̂′jdΣ0γ̂jd−γ̂′jdΣ0γ̃

,

where we showed above that the expression on the right-hand side is equal to Vlo,−jn,0 for
d sufficiently large. A similar argument applies for Vup,j,dn,0 . We have thus shown that(
Vlo,j,dn,0 ,Vup,j,dn,0

)
→
(
Vlo,−jn,0 ,Vup,−jn,0

)
as d→∞.

This convergence, combined with the fact that γ̂j,d ∈V ∗
(
X−jn,0,σ

−j
0

)
for d sufficiently

large and the fact that for γ∈V ∗
(
X−jn,0,σ

−j
0

)
, γ′Σ0γ=γ−jΣ−j0 γ−j, implies that cα,C

(
Y j,d
n,0 ,Xn,0,Σ0

)
→

cα,C
(
Y −jn,0 ,X

−j
n,0,Σ

−j
0

)
. Hence, so long as η̂−jn,0 6=cα,C

(
Y −jn,0 ,X

−j
n,0,Σ

−j
0

)
, φj,dC →φ−jC , as desired. �
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Proof of Lemma 4 Towards contradiction, suppose the conclusion of the lemma fails.
Then there exists a sequence of distributions and sample sizes

{
PD|Z,nm,nm

}
and a constant

ε>0 such that

liminf
m→∞

sup
f∈BL1

∣∣∣EPD|Z,nm [f(Unm,0−πnm,0)]−E
[
f
(
ξPD|Z,nm

)]∣∣∣>ε. (16)

Since the set of possible variances Ω consistent with Assumption 1 is compact, there exists
a subsequence of distributions and sample sizes

{
PD|Z,nl,nl

}
⊆
{
PD|Z,nm,nm

}
along which

Ω
(
PD|Z,nl

)
→ Ω∗ for some Ω∗. Under this subsequence, however, the Lindeberg Feller

Central Limit Theorem (see e.g. Proposition 2.27 in Van der Vaart 1998), along with the
assumptions of the lemma, implies that

Unl,0−πnl,0→dN(0,Ω∗),

and thus that

lim
l→∞

sup
f∈BL1

∣∣∣EPD|Z,nl [f(Unl,0−πnl,0)]−E
[
f
(
ξPD|Z,nl

)]∣∣∣=0.

This contradicts (16), completing the proof. �
To prove our remaining results it is helpful to introduce some additional notation. Let

Γ(X,σ) be a matrix whose rows collect the elements of V (X,σ),

V (X,σ)=
{
γ∈Rk :γ′=e′jΓ(X,σ) for some j∈{1,...,dim(Γ(X,σ)σ)}

}
.

Defining A(X,σ)=[σ, X] and B={B⊆{1,...,k} : |B|=p+1}, recall that V (X,σ) is equal to
the set of γ∈Rk such that, for some B∈B with rk(AB(X,σ))=p+1 and e′1AB(X,υ)−1≥0,
we have e′jγ = e′1AB (X,υ)−1eB,j for all j ∈B, for eB,j the basis vector which picks out
the element of B corresponding to j, and e′jγ=0 for any j 6∈B. We first prove a lemma
describing how Γ(X,σ) varies with σ.

Lemma A.1 For υ=
√
Diag(TT ′) and σ=

√
Diag(TΩT ′) for some positive-definite Ω,

Γ(X,σ)=Λ(X,σ)Γ(X,υ) where Λ(X,σ) is a diagonal matrix with Λjj(X,σ)= 1
e′jΓ(X,υ)σ

.

Proof of Lemma A.1 This follows by an argument as in Lemma C.1 of Rambachan and
Roth (2020), but is included for completeness. The nonzero coefficients in the rows of Γ(X,σ)

take the form e′1AB(X,σ)−1 forB∈B such thatAB(X,σ) has full rank and e′1AB(X,σ)−1≥0.
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For the (p+1)×(p+1) matrix AB(X,σ) to have full rank, XB must have rank exactly p.
Hence, the space of vectors v such that v′XB=0 is a 1-dimensional linear subspace. Note,
however, that by the definition of the feasible set e′1AB(X,σ)−1XB=0 for all σ, which im-
plies that if AB(X,σ) and AB(X,σ̃) both have full rank, then e′1AB(X,σ)−1∝e′1AB(X,σ̃)−1.
Further, by construction we must have that e′1AB(X,σ)−1σB = 1. Together, these facts
imply that if AB(X,σ) and AB(X,υ) both have full rank, then

e′1AB(X,σ)−1 =
e′1AB(X,υ)−1υB

e′1AB(X,υ)−1σB
e′1AB(X,υ)−1 =

1

e′1AB(X,υ)−1σB
e′1AB(X,υ)−1.

It remains to be shown that AB(X,σ) has full rank if and only if AB(X,υ) does. To this end,
suppose AB(X,υ) has full rank and e′1AB(X,υ)−1≥0. Let ϑ=

(
e′1AB(X,υ)−1)′, and note

that by construction ϑ′XB=0, ϑ≥0, and ϑ′υB=1. Note, however, the structure of σ implies
that υj=0 if and only if σj=0, so ϑ′υB=1 and ϑ≥0 implies that ϑ′σB>0. Hence, since
ϑ′XB=0 while ϑ′σB>0, we see that σB is linearly independent of XB, so AB(X,σ) has full
rank. Since we can repeat the same argument going in the other direction, we have shown
that AB(X,σ) has full rank if and only if AB(X,υ) does, which completes the proof. �

Proof of Lemma 5 The first part of the Lemma follows immediately from Lemma A.1
above. To show the second part, let η̂†=maxγ∈V†(Xn,0,σ̂n,0)γ

′Yn,0 denote the analog to η̂n,0
using V† instead of V , and define other variables subscripted with † analogously. Observe
that by construction, η̂†= η̂n,0 unless η̂n,0≤0. Next, consider the modified least favorable
critical value, cα,LF,†, which is the 1−α quantile of maxγ∈V†(Xn,0,σ̂n,0)γ

′ξ, for ξ∼N(0,Σ̂n,0).
By construction, maxγ∈V†(Xn,0,σ̂n,0)γ

′ξ=maxγ∈V (Xn,0,σ̂n,0)γ
′ξ unless maxγ∈V (Xn,0,σ̂n,0)γ

′ξ≤0.
Now, for any γ1,† ∈ V†(Xn,0,σ̂n,0), we have that γ′1,†ξ ≤maxγ∈V†(Xn,0,σ̂n,0)γ

′ξ, and γ′1,†ξ ∼
N(0,γ′1,†Σ̂n,0γ1,†), which has median of zero. It follows that for α<0.5, the 1−α quantile
of maxγ∈V†(Xn,0,σ̂n,0)γ

′ξ is weakly positive, and hence that cα,LF = cα,LF,†. We have thus
established the result for the LF test.

Next consider the conditional test. By construction the conditional test never rejects
when η̂n,0≤0, so we will consider the case where η̂n,0>0. As argued above, in this case η̂n,0 =

η̂†, and moreover, γ̂= γ̂† from the definition of V†(Xn,0,σ̂n,0). Finally, recall that Lemma 5.1
in Lee et al. (2016) implies that Vlon,0 and Vupn,0 are the minimum and maximum of the set

{γ̂′y|y s.t. γ̂′y≥ max
γ̃∈V (Xn,0,σ̂n,0)

γ̃′y and S(y,γ̂)=Sn,0,γ̂}.

Since maxγ̃∈V (Xn,0,σ̂n,0)γ
′y is equal to maxγ̃∈V†(Xn,0,σ̂n,0)γ

′y whenever the former is positive,
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we see that Vupn,0 =Vup† , since Vupn,0≥ η̂n,0 > 0. Further, since V†(Xn,0,σ̂n,0)⊆V (Xn,0,σ̂n,0),
we have that γ̂′y≥maxγ̃∈V†(Xn,0,σ̂n,0)γ̃

′y whenever γ̂′y≥maxγ̃∈V (Xn,0,σ̂n,0)γ̃
′y. It follows that

Vlo† ≤Vlon,0. Note, however, that the critical value for the conditional test is increasing in
the value of Vlon,0, and thus cα,C ≥ cα,C,†. It follows that η̂n,0 >cα,C only if η̂†>cα,C,†, as
we wished to show. The desired result for the hybrid test follows immediately from the
arguments for the LF and Conditional tests. �

Following D. Andrews et al. (2019), we establish size control using a subsequencing
argument.

Lemma A.2 Under Assumptions 1, 2, and 3, to show that a test φ which (i) depends on
the data through

(
Yn,0,Xn,0,Σ̂n,0

)
and (ii) does not reject when η̂n,0 =−∞ has uniformly

correct asymptotic size,
limsup
n→∞

sup
PD|Z∈P0

D|Z

EPD|Z [φ]≤α,

it suffices to show that limsupl→∞EPD|Z ,nl[φ]≤α for all subsequences {nl}⊆{n},
{
PD|Z,nl

}
∈

P0,∞
D|Z =×∞n=1P0

D|Z with

1. minδmaxje
′
jXn,0δ>−∞ and Ω

(
PD|Z,nl

)
→Ω∗ for some Ω∗∈Ωλ̄

2. For each j and ψj,nl =
√
e′jΓ(Xnl,0,υ)TT ′Γ(Xnl,0,υ)ej, either ψj,nl = 0 for all l or

ψj,nl 6=0 for all l

3. If ψj,nl>0 for some j then for ψnl =maxjψj,nl, we have ψ−1
nl

Γ(Xnl,0,υ)T→Π∗ for
some Π∗ 6=0

4. If ψnl>0, then ψ−1
nl

Γ(Xnl,0,υ)µnl,0→ν∗∈ [−∞,0]dim(Yn,0)

5. For σ(Ω)=
√
Diag(T ′ΩT) and Λ(X,σ) as defined in Lemma A.1, Λ(Xnl,0,σ(Ω(PD|Z,nl)))→

Λ∗ for Λ∗ a diagonal, positive-definite matrix. Likewise, Λ(Xnl,0,σ̂nl,0)→p Λ∗ for
σ̂nl,0 =σ(Ω̂nl,0).

Proof of Lemma A.2 We establish that if size control fails, then there always exists
a sequence satisfying the conditions of the lemma under which size control also fails.

If size control fails, then limsupn→∞ supPD|Z∈P0
D|Z

EPD|Z [φ] ≥ α+ 2ε for some ε > 0.

This implies that there exists a subsequence {n1
t} ⊆ {n},

{
PD|Z,n1

t

}
∈ P0,∞

D|Z such that
liminft→∞EP

D|Z,n1
t

[φ]≥α+ε. Since φ is assumed not to reject when η̂n,0 =−∞, it must be
that minδmaxje

′
jXn,0δ is finite for all t, since otherwise η̂nt,0 =−∞ with probability 1 and
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the test never rejects. Since Ω
(
PD|Z,n1

t

)
∈Ωλ̄ for all t by assumption, and Ωλ̄ is compact,

there exists a further subsequence {n2
t}⊆{n1

t} with Ω
(
PD|Z,n2

t

)
→Ω∗∈Ωλ̄.

For each t, Γ
(
Xn2

t ,0
,υ
)
is a matrix with dim (Yn,0) columns, and at most |B| =(

dim(Yn,0)

p+1

)
rows. Hence there exists a subsequence {n3

t} ⊆ {n2
t} along which the

dimension of Γ
(
Xn3

t ,0
,υ
)
is constant. For each j and any subsequence {nr}⊆{n}, either

ψj,nr =0 infinitely often or not. We can thus extract a further subsequence {n4
t}⊆{n3

t}
along which part (2) of the lemma holds. If ψj,n4

t
=0 for all j then part (3) of the lemma

is vacuous, while if ψj,n4
t
> 0 for some j, ψ−1

j,n4
t

∥∥e′jΓ(Xn4
t ,0
,υ
)
T
∥∥= 1 by construction, so

ψ−1
n4
t

∥∥e′jΓ(Xn4
t ,0
,υ
)
T
∥∥≤1 for all j, and there exists a subsequence {n5

t}⊆{n4
t} along which

ψ−1
n5
t
Γ
(
Xn5

t ,0
,υ
)
T→Π∗, where Π∗ 6=0 since ψ−1

n5
t

∥∥e′jΓ(Xn5
t ,0
,υ
)
T
∥∥=1 for at least one j, thus

establishing part (3) of the lemma.
Part (4) of the lemma is again vacuous if ψnl =0. Otherwise, note that since

max
j
e′jΓ(Xn,0,υ)µn,0 =min

δ
max
j
e′j(µn−Xn,0δ)

whenever the solution is finite, Γ
(
Xn5

t ,0
,υ
)
µn5

t ,0
≤0 for all t. For any subsequence {nr}⊆{n5

t}
and any j, ψ−1

nr e
′
jΓ(Xnr,0,υ)µnr,0 is either bounded or unbounded as r→∞, allowing us to

extract a further subsequence {n6
t}⊆{n5

t} along which ψ−1
n6
t
e′jΓ
(
Xn6

t ,0
,υ
)
µn6

t ,0
→ν∗j ∈ [−∞,0].

Starting from {n5
t} and iterating this argument over the rows of ψ−1

n5
t
Γ
(
Xn5

t ,0
,υ
)
µn5

t ,0
delivers

a subsequence {ns} satisfying properties (1)-(4) of the lemma.
Next, let M be the matrix that selects the non-zero rows of T , and observe that M

also selects the non-zero elements of υ and of σ(Ω) for any positive definite Ω. Let γ′n,j=
e′j(Γ(Xn,0,υ)). By construction, γ′n,jυ=(Mγn,j)

′(Mυ)=1. Since Mυ>0 and Mγn,j≥0 by
construction, it follows that ||Mγn,j|| is bounded. However, for σn,0 =σ(Ω(PD|Z,n)), we have
|γ′n,jσn,0|= |(Mγn,j)

′(Mσn,0)|≤||Mγn,j||·||Mσn,0||, where part (ii) of Assumption 1 implies
that ||Mσn,0|| is also bounded. It follows that there exists a subsequence

{
njl
}
⊆{nq} such

that γ′
njl ,j
σnjl ,0

converges. Moreover, the limit must be strictly positive, since by construction
γ′
njl ,j
υ=1 and γnjl ,j≥0, whereas the fact that the eigenvalues of Ωnjl ,0

are bounded from below
implies σnjl ,0≥cυ for some c>0. Iterating this argument for each j, we obtain a subsequence
{nl}⊆{nq} such that γ′nl,jσnl,0 converges to a positive limit for all j. The jth diagonal
element of Λ

(
Xnl,0,σ(Ω(PD|Z,nl))

)
is 1/(γ′nl,jσnl,0), and hence Λ

(
Xnl,0,σ(Ω(PD|Z,nl))

)
→Λ∗

for Λ∗ a positive-definite and diagonal matrix, which establishes that the sequence also meets
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the first part of condition (5). To establish the second part of condition (5), observe that

||γ′n,jσ̂nl,0−γ′n,jσnl,0||= ||(Mγn,j)
′M(σ̂nl,0−σnl,0)||≤||Mγn,j||·||M(σ̂nl,0−σnl,0)||→p0.

However, the jth diagonal element of Λ(Xnl,0,σnl,0) is equal to 1/(γ′n,jσnl,0), which we
showed above converges to a positive constant e′jΛ∗ej. The continuous mapping theorem
thus implies that e′jΛ(Xnl,0,σ̂nl,0)ej=1/(γ′n,jσ̂nl,0)→pe

′
jΛ
∗ej.

We have thus established that there exists a sequence satisfying the conditions of the
lemma under which size control fails, as we wished to show. �

Proof of Proposition 1 By construction, the least favorable test never rejects when
η̂n,0 =∞. Hence, by Lemma A.2, it suffices to show size control for sequences

{
nl,PD|Z,nl

}
satisfying the conditions of the lemma.

Note that by Lemma A.1 we can write

η̂nl,0 =max
j

{
e′jΓ(Xnl,0,σ̂nl,0)Ynl,0

}
=max

j
{e′jΛ(Xnl,0,σ̂nl,0)Γ(Xnl,0,υ)Ynl,0}

=max
j

{
e′jΛ(Xnl,0,σ̂nl,0)(Γ(Xnl,0,υ)(Ynl,0−µnl,0)+Γ(Xnl,0,υ)µnl,0)

}
.

Assumption 1 implies that we can re-write Ynl,0−µnl,0 as T(Unl,0−πnl,0). Hence,

η̂nl,0 =max
j

{
e′jΛ(Xnl,0,σ̂nl,0)(Γ(Xnl,0,υ)T(Unl,0−πnl,0)+Γ(Xnl,0,υ)µnl,0)

}
.

First consider the case where ψnl =0. This implies that Γ(Xnl,0,υ)T=0 for all l, which
in turn implies that Γ(Xnl,0,υ)Ynl,0≤0 with probability one under the null hypothesis. The
least favorable test never rejects in this case, since α< 1

2
implies that cα,LF

(
Xn,0,Σ̂n,0

)
≥0.

Next consider the case where ψnl > 0. Assumption 3 implies that Ynl,0−µnl,0 →d

N(0,TΩ∗T ′). Parts (3) and (4) of Lemma A.2 thus imply that

ψ−1
nl

(Γ(Xnl,0,υ)T(Unl,0−πnl,0)+Γ(Xnl,0,υ)µnl,0)→N
(
ν∗,Π∗Ω∗Π∗

′
)

By part (5) of Lemma A.2, Λ(Xnl,0,σ̂nl,0)→pΛ∗, for Λ∗ diagonal and positive definite, so
by the continuous mapping theorem,

ψ−1
nl

Λ(Xnl,0,σ̂nl,0)(Γ(Xnl,0,υ)T(Unl,0−πnl,0)+Γ(Xnl,0,υ)µnl,0)

→dG
∗∼N

(
Λ∗ν∗,Λ∗Π∗Ω∗Π∗

′
Λ∗
)
.
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Hence, by another application of the continuous mapping theorem, ψ−1
nl
η̂nl,0→dmaxje

′
jG
∗,

where since Λ∗ν∗≤0, the limiting distribution is continuous at all strictly positive values.
To show size control for the least favorable test, we must further show convergence of

the critical value. To this end, note that Assumptions 1 and 2, together with convergence
of Λ(Xnl,0,σ̂nl,0), imply that

ψ−2
nl

Γ(Xnl,0,σ̂nl,0)Σ̂n,0Γ(Xnl,0,σ̂nl,0)
′→pΛ∗Π∗Ω∗Π∗

′
Λ∗,

where the limit is nonzero. Note, moreover, that

cα,LF

(
Xnl,0,Σ̂n,0

)
=ψnl ·cα,LF

(
Xnl,0,ψ

−2
nl
·Σ̂n,0

)
.

Hence, cα,LF
(
Xnl,0,ψ

−2
nl
·Σ̂n,0

)
converges in probability to c∗α,LF , the 1− α quantile of

maxje
′
jG̃ for G̃∼N

(
0,Λ∗Π∗Ω∗Π∗

′
Λ∗
)
, where c∗α,LF >0 for α< 1

2
. Note, further that

φLF =1
{
η̂nl,0>cα,LF

(
Xnl,0,Σ̂n,0

)}
=1
{
ψ−1
nl
η̂nl,0>cα,LF

(
Xnl,0,ψ

−2
nl
·Σ̂n,0

)}
,

so by another application of the continuous mapping theorem,

φLF→d1

{(
max
j
e′jG

∗
)
>c∗α,LF

}
,

which implies that limsups→∞EPD|Z ,nl[φLF ]≤α, as we wanted to show. �

Proof of Proposition 2 We first prove the result for the conditional test. As in Lemma
A.2, we use a subsequencing argument. Specifically, begin with sequences of sample sizes
and data generating processes {ns}⊆{n} and {PD|Z,ns}∈P

0,∞
D|Z . Observe that whether

V†(Xns,0,σ̂ns,0) is empty depends only on Xns,0. If Xns,0 is such that V†(Xn,0,σ̂ns,0) is empty,
then η̂n,0≤ 0 with probability 1, and thus the conditional and hybrid tests never reject.
For the remainder of the proof, we therefore consider sequences where Xns,0 is such that
V†(Xns,0,σ̂ns,0) is non-empty, which implies that minjinfδe

′
jXns,0δ>−∞, and thus η̂ns,0 is

finite with probability 1. It then suffices to establish size control for the test φC,†, since
φC≤φC,† with probablity 1 by Lemma 5.

Let M be the selection matrix such that M ′T picks out the nonzero rows of T , and
note that by construction Γ†(Xn,0,υ)MM ′υ= ι, where Γ† denotes the subset of rows of
Γ corresponding with vertices in V†(Xn,0,υ) and ι is the vector of ones. Since M ′υ is
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strictly positive, Γ†(Xn,0,υ)M is a non-negative matrix with a uniformly bounded number
of rows and uniformly bounded row-sums. There thus exists a subsequence of sample sizes
{nr}⊆{ns} such that Γ†(Xnr,0,υ)M has fixed dimensions and Γ†(Xnr,0,υ)M→Γ∗†M for
Γ∗† a non-negative matrix with Γ∗†υ=ι. Since Ω

(
PD|Z,nr

)
∈Ωλ̄ for all r by assumption, and

Ωλ̄ is compact, there exists a further subsequence {nt}⊆{nr} with Ω
(
PD|Z,nt

)
→Ω∗∈Ωλ̄.

Note, next, that

Γ†(Xnt,0,υ)Ynt,0 =Γ†(Xnt,0,υ)(Ynt,0−µnt,0)+Γ†(Xnt,0,υ)µnt,0

=Γ†(Xnt,0,υ)MM ′T(Unt,0−πnt,0)+Γ†(Xnt,0,υ)µnt,0, (17)

where under the null hypothesis Γ†(Xnt,0,υ)µnt,0≤0 for all t. Assumptions 1 and 3 imply that

Unt,0−πnt,0→dN(0,Ω∗),

so for Σ∗=TΩ∗T ′,

Γ†(Xnt,0,υ)MM ′T(Unt,0−πnt,0)→dN
(

0,Γ∗†MM ′Σ∗MM ′Γ∗
′

†

)
=N

(
0,Γ∗†Σ

∗Γ∗
′

†

)
(18)

by the continuous mapping theorem, where Assumption 4 implies that the diagonal elements
of Γ∗†TΩ∗T ′Γ∗

′

† =Γ∗†Σ
∗Γ∗

′

† are bounded away from zero. As argued in the proof of Lemma
A.2, we can extract a further subsequence {nl} where

Γ†(Xnl,0,υ)µnl,0→ν∗∈ [−∞,0]dim(Γ∗†υ).

By an argument analogous to that for part (5) of Lemma A.2, we can also choose
{nl} such that, for σnl,0 = σ(Ω(PD|Z,nl)) and σ̂nl,0 = σ(Ω̂nl,0), Λ† (Xnl,0,σnl,0)→ Λ∗† and
Λ†(Xnl,0,σ̂nl,0)→pΛ∗† for Λ∗† diagonal and positive definite.

Note next that if η̂†→p−∞ (because ν∗j =−∞ for all j) then the rejection probability
of the test φC,† converges to zero. If instead η̂† 6→p−∞, then it must be that ν∗j >−∞
for some j. Let M+ be a selection matrix such that M+ν

∗ picks out the finite elements
of ν∗. Note that for any γ corresponding to a row of Γ†(Xnl,0,σ̂n,0) not selected by M+,
PrPD|Z,nl{γ̂†=γ}→0, and thus asymptotically neither γ̂† nor η̂† is affected by γ′Ynl,0. By an
argument analogous to that in the proof to Lemma 3, one can also show that asymptotically
γ′Ynl,0 does not affect the values of Vlon,0,† or Vlon,0,†. The asymptotic behavior of the φC,†
test is thus determined by (M+Γ†(Xnl,0,σ̂n,0)Ynl,0,M+Γ†(Xnl,0,σ̂n,0)Σ̂n,0Γ†(Xnl,0,σ̂n,0)

′M ′+).

47



Next, observe from equations (17) and (18), combined with the fact that Γ†(Xn,0,σ̂n,0)=

Λ†(Xn,0,σ̂n,0)Γ†(Xn,0,υ), that

M+Γ†(Xn,σ̂n,0)(Yn,0−µn,0)→dN(0,M+Λ∗†Γ
∗
†Σ
∗Γ∗

′

† Λ∗†M
′
+).

Further, sinceM+Γ†(Xnl,0,υ)µnl,0 converges to a finite vector by construction, we have that

M+(Γ†(Xnl,0,σ̂n,0)−Γ†(Xnl,0,σnl,0))µnl,0 =M+(Λ†(Xnl,0,σ̂nl,0)−Λ†(Xnl,0,σnl,0))Γ†(Xnl,0,υ)µnl,0→p0,

where we use the fact that Λ†(Xnl,0,σnl))→Λ∗† and Λ†(Xnl,0,σ̂nl,0)→pΛ∗†. Hence,

M+Γ†(Xnl,0,σ̂nl,0)Ynl,0−M+Γ†(Xnl,0,σnl,0)µnl,0→dG
∗∼N(0,M+Λ∗†Γ

∗
†Σ
∗Γ∗

′

† Λ∗†M
′
+),

where Assumption 4 implies (i) that the diagonal elements of the limiting variance are
nonzero and (ii) that no two rows of G∗ are perfectly positively correlated. Further, by
the continuous mapping theorem

M+Γ†(Xnl,0,σ̂nl,0)Σ̂n,0Γ†(Xnl,0,σ̂nl,0)
′M ′+→pM+Λ∗†Γ

∗
†Σ
∗Γ∗

′

† Λ∗†M
′
+.

These are precisely the conditions assumed in Andrews et al. (2021), which we shorthand as
AKM, to establish uniform asymptotic size control, so we can use their results to establish
size control in our setting.

Specifically, to connect our setting to that in AKM, let Xn and Yn in the notation
of AKM both be equal to M+Γ†(Xnl,0,σ̂n,0)Ynl,0, and let µX,n and µY,n both be equal to
M+Γ†(Xnl,0,σnl,0)µnl,0. Let ĵ be the row of M+Γ†(Xnl,0,σ̂n,0) corresponding to γ̂†, and let
γ̂†,∗ be the ĵth row of M+Γ†(Xnl,0,σnl,0). We have established that Assumptions 2-4 of
AKM hold under the sequence {nl,PD|Z,nl}, so Proposition 10 in AKM establishes that for
µ̂α,n the α-quantile unbiased estimator for γ̂′†,∗µnl,0 (see AKM for details),

limsup
l→∞

∣∣∣PrPD|Z,nl{µ̂α,n≥ γ̂′†,∗µnl,0}−α∣∣∣=0.

The quantile unbiased estimator is closely related to our conditional test, however: the φC,†
test rejects if and only if µ̂α,n>0 and η̂†>0, provided that the test statistic and critical
value for the φC,† test are determined only by the vertices in M+Γ†(Xnl,0,σ̂nl,0), which we
have established occurs w.p.a. 1. Since γ̂′†,∗µnl,0≤0 under the null hypothesis, this suffices
to establish that limsupl→∞PrPD|Z,nl{φC,†=1}≤α, as we wanted to show. As in the proof
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of Lemma A.2, this implies size control for the conditional test.
Next consider the hybrid test. For µ̂Hα,nl the α-quantile hybrid estimator of AKM with

conditioning event
{
η̂≤cκ,LF,†(Xnl,0,Σ̂n,0),γ̂†=γ

}
, Proposition 12 of AKM implies that

limsup
l→∞

∣∣∣PrPD|Z,nl{µ̂Hα,nl≥ γ̂′†,∗µnl,0|η̂†≤cκ,LF,†(Xnl,0,Σ̂n,0),γ̂†=γ
}
−α
∣∣∣PrPD|Z,nl{η̂†≤cκ,LF,†(Xnl,0Σ̂n,0),γ̂†=γ

}
is equal to 0. Since the vertex set is finite, it follows that

limsup
l→∞

∣∣∣PrPD|Z,nl{µ̂Hα,nl≥ γ̂′†,∗µnl,0|η̂†≤cκ,LF,†(Xnl,0,Σ̂n,0)
}
−α
∣∣∣PrPD|Z,nl{η̂†≤cκ,LF,†(Xnl,0Σ̂n,0)

}
=0.

Note, however, that the φH,† test rejects only if η̂†>cκ,LF,† or µ̂Hα−κ
1−κ ,n

>0 (again, assuming
the test is determined only by the vertices of M+Γ†(Xnl,0,σ̂nl,0)), and 0≥ γ̂′†,∗µnl,0, so

PrPD|Z,n{φH,†=1}≤PrPD|Z,n
{
η̂†>cα,LF,†(Xnl,0,Σ̂n,0)

}
+

PrPD|Z,n

{
µ̂Hα−κ

1−κ ,n
≥ γ̂′†,∗µnl,0|η̂†≤cα,LF,†(Xnl,0,Σ̂n,0)

}
PrPD|Z,n

{
η̂†≤cα,LF,†(Xnl,0,Σ̂n,0)

}
.

Proposition 1 establishes that liminfl→∞PrPD|Z,nl{η̂†≤cκ,LF,†}≥1−κ, so

limsup
l→∞

PrPD|Z,nl{φH,†=1}≤κ+
α−κ
1−κ

(1−κ)=α,

implying size control for the hybrid test. �

B Asymptotic Variance Estimation

Assumption 2 assumes the existence of a uniformly consistent estimator Ω̂n,0 for the condi-
tional variance Ω

(
PD|Z

)
. Here, we establish the uniform consistency of the matching estima-

tor discussed in Section 5.3 under mild conditions. For brevity, we shorthand Ui(β0) as Ui.
Following Abadie et al. (2014), we consider the nearest-neighbor variance estimator given

in (15). The intuition for the estimator Ω̂n,0 is straightforward: provided the conditional
mean and variance of Ui given Zi = z are smooth in z, if Z`Z(i) is close to Zi, then the
mean and variance of Ui|Zi will be nearly the same as the mean and variance of Ul(i)|ZlZ(i).
Hence, the variance of Ui−U`Z(i) will be approximately twice the variance of Ui|Zi, and the
approximation error will vanish as Z`Z(i) approaches Zi. If the support of Zi is compact,
however, then with a large enough sample we are guaranteed to have observations quite
“close” to almost all of our observations, and Ω̂n,0 will converge to the average conditional
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variance Ω
(
PD|Z

)
. The next assumption formalizes the conditions needed for this argument.

Assumption B.1 For λmax (A) the maximal eigenvalue of a matrix A, the following
conditions hold

1. {Zi}∞i=1⊆Z for Z a compact set

2. limsupn→∞supPD|Z∈P0
D|Z

1
n

∑
EPD|Z

[
‖Ui‖4|Zi

]
is finite

3. µPD|Z(z)=EPD|Z [Ui|Zi=z] is Lipschitz in z with Lipschitz constant uniformly bounded
over PD|Z∈P0

D|Z, and is uniformly bounded over PD|Z∈P0
D|Z

4. VPD|Z (z) = EPD|Z [UiU
′
i|Zi=z] is Lipschitz in z with Lipschitz constant uniformly

bounded over PD|Z∈P0
D|Z

5. supPD|Z∈P0
D|Z

supz∈Zλmax

(
V arPD|Z(Ui|Zi=z)

)
is finite

6. For Σ̂Z= V̂ ar(Zi) the sample variance of Zi, Σ̂Z→ΣZ for a positive-definite limit ΣZ

Assumption B.1(1) is used only to establish that the average distance between Zi

and Z`Z(i) converges to zero, 1
n

∑∥∥Zi−Z`Z(i)

∥∥→0. Hence, one may instead assume this
condition directly. Assumption B.1(2) and (5) restrict the variance and fourth moment of
Ui, and are satisfied under a wide range of data generating processes. Assumption B.1(3)
and (4) impose Lipschitz continuity on the mean and second moment of Ui, consistent
with the heuristic argument given above. Finally, Assumption B.1(6) requires only that
Σ̂Z converge to a positive-definite limit.

Proposition B.1 Under Assumptions 1 and B.1, for Ω̂n,0 as defined in (15) and all ε>0

lim
n→∞

sup
PD|Z∈P0

D|Z

PrPD|Z

{∥∥∥Ω̂n,0−Ω
(
PD|Z

)∥∥∥>ε}=0,

so Assumption 2 holds.

B.1 Proof of Variance Consistency

We first prove two auxiliary lemmas, which we then use to prove Proposition B.1.
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Lemma B.1 Under Assumption B.1,

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z(Zi)

)
→p0

uniformly over PD|Z∈P0
D|Z.

Proof of Lemma B.1 Note that we can write

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z(Zi)

)
=

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z

(
Z`Z(i)

))
+

1

n

n∑
i=1

(
VPD|Z

(
Z`Z(i)

)
−VPD|Z(Zi)

)
,

so to prove the result it suffices to show that both terms tend to zero. To show that the
second term tends to zero, note that by the triangle inequality and Assumption B.1(4),∥∥∥∥∥1

n

n∑
i=1

(
VPD|Z

(
Z`Z(i)

)
−VPD|Z(Zi)

)∥∥∥∥∥≤ 1

n

n∑
i=1

∥∥∥VPD|Z(Z`Z(i)

)
−VPD|Z(Zi)

∥∥∥
≤K
n

n∑
i=1

∥∥Zi−Z`Z(i)

∥∥
for K the upper bound on the Lipschitz constant. Note, next, that since Z is compact
by Assumption B.1(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that

1

n

n∑
i=1

∥∥Zi−Z`Z(i)

∥∥→0.

Thus, we immediately see that 1
n

∑n
i=1

(
VPD|Z

(
Z`Z(i)

)
−VPD|Z(Zi)

)
→ 0 uniformly over

PD|Z∈P0
D|Z.

We next show that

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z

(
Z`Z(i)

))
→p0.

To do so, note first that the number of observations that can be matched to a given Zi,
|{j :`Z(j)=i}|, is bounded above by the so-called “kissing number” which is a finite function
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K(dim(Zi)) of the dimension of Z (see Abadie et al. (2014)). Since Ui is independent across
i, this implies that for (A)jk the (j,k) element of a matrix A,

V ar

(
1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z

(
Z`Z(i)

))
jk
|{Zi}∞i=1

)

≤K(dim(Zi))
2V ar

(
1

n

n∑
i=1

(UiU
′
i)jk|{Zi}

∞
i=1

)

=
K(dim(Zi))

2

n2

n∑
i=1

V ar
(

(UiU
′
i)jk|Zi

)
.

By Assumption B.1(2) and Chebyshev’s inequality, however, this implies that

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z

(
Z`Z(i)

))
→p0,

uniformly over PD|Z∈P0
D|Z, which completes the proof. �

Lemma B.2 Under Assumption B.1,

1

n

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z(Zi)

′
)
→p0,

uniformly over PD|Z∈P0
D|Z.

Proof of Lemma B.2 Note that we can write

1

n

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z(Zi)

′
)

=

=
1

n

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′)

+
1

n

n∑
i=1

(
µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′−µPD|Z(Zi)µPD|Z(Zi)
′
)
.

We first show the initial term converges in probability to zero, and then do the same for
the second term.
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By independence,

E
[
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′|Zi,Z`Z(i)

]
=0,

while the variance of the jkth element is

V arPD|Z

((
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′)
jk
|Zi,Z`Z(i)

)

=EPD|Z

[(
Ui,jU`Z(i),k−µPD|Z ,j(Zi)µPD|Z ,k

(
Z`Z(i)

))2

|Zi,Z`Z(i)

]

=
µ2
PD|Z ,j

(Zi)V arPD|Z
(
U`Z(i),k|Z`Z(i)

)
+V arPD|Z(Ui,j|Zi)µ2

PD|Z ,k

(
Z`Z(i)

)
+V arPD|Z(Ui,j|Zi)V arPD|Z

(
U`Z(i),k|Z`Z(i)

)
.

Assumption B.1(5) thus implies that for some constant C,

V arPD|Z

((
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′)
jk
|Zi,Z`Z(i)

)
≤
(
µ2
PD|Z ,j

(Zi)+µ2
PD|Z ,k

(
Z`Z(i)

)
+C
)
C

,

which, together with Assumption B.1(3) and the finiteness of the “kissing number” K(dim(Zi))

(see the proof of Lemma B.1 above) implies that

limsup
n→∞

sup
PD|Z∈P0

D|Z

V ar

(
1

n

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′)|{Zi}∞i=1

)
=0,

and thus by Chebyshev’s inequality that

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′)→p0,

uniformly over PD|Z∈P0
D|Z, as we wanted to show.

To complete the proof, we need only show that

1

n

n∑
i=1

(
µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′−µPD|Z(Zi)µPD|Z(Zi)
′
)
.

converges to zero uniformly over PD|Z∈P0
D|Z. Note, however, that by the triangle inequality
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and Assumption B.1(3),∥∥∥∥∥1

n

n∑
i=1

(
µPD|Z(Zi)µPD|Z

(
Z`Z(i)

)′−µPD|Z(Zi)µPD|Z(Zi)
′
)∥∥∥∥∥

≤ 1

n

n∑
i=1

∥∥∥µPD|Z(Zi)µPD|Z
(
Z`Z(i)

)′−µPD|Z(Zi)µPD|Z(Zi)
′
∥∥∥

≤ 1

n

n∑
i=1

∥∥∥µPD|Z(Zi)
∥∥∥·∥∥∥µPD|Z(Z`Z(i)

)
−µPD|Z(Zi)

∥∥∥
≤K
n

n∑
i=1

∥∥∥µPD|Z(Zi)
∥∥∥·∥∥Z`Z(i)−Zi

∥∥≤KC
n

n∑
i=1

∥∥Z`Z(i)−Zi
∥∥ (19)

for K a Lipschitz constant and C a constant. As above, since Z is compact by Assumption
B.1(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that

1

n

n∑
i=1

∥∥Zi−Z`Z(i)

∥∥→0,

and thus that (19) converges to zero uniformly over PD|Z∈P0
D|Z. �

Proof of Proposition B.1 Following proof of Lemma A.3 in Abadie et al. (2014), note
that

Ω̂n,0 =
1

2n

n∑
i=1

(
Ui−U`Z(i)

)(
Ui−U`Z(i)

)′
=

1

2n

n∑
i=1

UiU
′
i+

1

2n

n∑
i=1

U`Z(i)U
′
`Z(i)−

1

2n

n∑
i=1

(
UiU

′
`Z(i)+U`Z(i)U

′
i

)
.

Assumption B.1(2) together with Chebyshev’s inequality implies that

1

2n

n∑
i=1

(
UiU

′
i−VPD|Z(Zi)

)
→p0

uniformly over PD|Z∈P0
D|Z. Since

V ar(Ui|Zi)=VPD|Z(Zi)−µPD|Z(Zi)µPD|Z(Zi)
′,
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however, we see that

1

n

n∑
i=1

V arPD|Z(Ui|Zi)=
1

n

n∑
i=1

VPD|Z(Zi)−
1

n

n∑
i=1

µPD|Z(Zi)µPD|Z(Zi)
′.

Thus, to prove that

Ω̂n,0−
1

n

n∑
i=1

V arPD|Z(Ui|Zi)→p0,

it suffices to prove that

1

n

n∑
i=1

(
U`Z(i)U

′
`Z(i)−VPD|Z(Zi)

)
→p0

and
1

n

n∑
i=1

(
UiU

′
`Z(i)−µPD|Z(Zi)µPD|Z(Zi)

′
)
→p0,

where the first statement follows from Lemma B.1 and the second from Lemma B.2. Since

1

n

n∑
i=1

V arPD|Z(Ui|Zi)−Ω
(
PD|Z

)
→0

uniformly over PD|Z∈PD|Z by Assumption 1, however, the result follows by the triangle
inequality. �

C Sufficient Conditions for Assumption 4

We now provide lower-level sufficient conditions for Assumption 4 for the case where the
degeneracy in Σ0 arises from moment equalities represented as inequalities, or other moment
pairs which cannot bind simultaneously. This setting is similar to that in Assumption E.3.2
in Kaido et al. (2018).

Assumption C.1 We can write Yi(β0)=TUi(β0)+ζi(β0) for ζi(β0) non-stochastic condi-
tional on Zi. Further, we can decompose Un,0 = 1√

n

∑
Ui(β0) as Un,0 =(U ′n,0,1,U

′
n,0,2)

′, where
the matrix T takes the form

T=

 Idim(Un,0,1) 0

−Idim(Un,0,1) 0

0 Idim(Un,0,2)

,

55



while ζi(β0) = [ζi1(β0) ζi2(β0) ζi3(β0)]
′ with ζi1(β0)+ζi2(β0)≤ 0 (elementwise).33 We can

decompose Xn,0 =TQn,0 for a comformable matrix Qn,0.

Our second primitive condition ensures that the sequence of matrices Xn,0, appropri-
ately normalized, converge to some limit X∗ such that the set of dual vertices V (X,υ) is
continuous at X∗. To state this assumption, let B={B⊆{1,...,k} : |B|=p+1} be the set
of size-(p+1)-subsets of {1,...,k} and v=

√
Diag(TT ′).

Assumption C.2 1√
n
Xn,0→X∗ for a constant matrix X∗. Define A(X,σ)=[σ, X] and

let X be some set such that 1√
n
Xn,0∈X for n sufficiently large and X∗∈X . We assume that

rk(AB(X,υ)) is continuous (i.e. locally constant) at X∗ relative to X for all B∈B, while
for all B∈B such that AB(X∗,υ) has full rank, 1

{
e′1AB(X,υ)−1ek=0

}
is continuous at X∗,

again relative to X . Further, for all B,B′∈B such that rk(AB(X∗,υ))=rk(AB′(X
∗,υ))=

p+1, e′1AB(X∗,υ)−1≥0, and e′1AB′(X∗,υ)−1≥0, 1{e′1AB(X,υ)−1eB,j=e′1AB′(X,υ)−1eB′,j}
is continuous at X∗ for all j∈B∩B′.

Recall that the full-rank matrices AB(X,σ) with e′1AB(X,σ)−1≥0 define the set of dual
vertices V (X,σ).As shown in Lemma A.1, σ enters only through a scaling term, so we can in-
stead work withAB(X,υ). Assumption C.2 requires that the rank ofAB(Xn,0,υ) and the sign
of e′1AB(Xn,0,υ)−1 both stabilize asymptotically, which ensures that V (Xn,0,υ)→V (X∗,υ)

in Hausdorff metric. Assumption C.2 further requires that there not exist B,B′∈B such
that e′1AB(Xn,0,υ)−1 6= e′1AB′ (Xn,0,υ)−1 for finite n but e′1AB(X∗,υ)−1 = e′1AB′ (X

∗,υ)−1,
which ensures that |V (Xn,0,υ)|= |V (X∗,υ)| for n sufficiently large, so the cardinality of
V (X,υ) is also continuous at X∗. Together with the structure imposed by Assumption C.1,
this continuity is sufficient for Assumption 4.

Proposition C.1 Assumptions C.1 and C.2 imply Assumption 4.

Proof of Proposition C.1 For γ∈V (X,σ), partition γ=(γ′1 γ
′
2 γ
′
3)
′ comformably with

the rows of T . Assumption C.1 implies that for γ,γ̃∈V (X,σ) and c≥0, (γ−c·γ̃)′T =0

if and only if (
γ1−γ2

γ3

)
=c·

(
γ̃1−γ̃2

γ̃3

)
.

Observe that if γ,γ̃ are such that min{e′jγ1,e
′
jγ2} = 0 = min{e′jγ̃1,e

′
jγ̃2} for all j, then

since γ,γ̃ ≥ 0, the equality in the previous display can hold only if γ = c · γ̃. However,
33Observe that e′jE[Ui(β0) + ζi1 − Qδ|Zi] + e′jE[−Ui(β0) + ζ2i + Qδ|Zi] = ζ1i + ζ2i, regardless of

E[Ui(β0)|Zi], and thus the null hypothesis can only possibly be satisfied if ζi1+ζi2≤0.
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the definition of V (X,σ) requires that γ′σ= γ̃′σ= 1, so this would imply that γ= γ̃. It
follows that we can have (γ−cγ̃)′T =0 for distinct γ,γ̃ only if either min{e′jγ1,e

′
jγ2,j}>0

or min{e′jγ̃1,e
′
jγ̃2}>0 for some j. The structure of the dual vertices together with Lemma

C.1 imply that min{e′jγ1,e
′
jγ2}> 0 for some j if and only if the non-zero elements of γ

are proportional to e′1AB(X,σ)−1 for some B that contains indices corresponding with the
same moments of opposite signs (i.e. j,j′ such that Tj =−Tj′). Denote by B∗ the set of
B∈B that do not contain indices corresponding with the same moments of opposite signs,
and let VB∗(X,σ) denote the subset of V (X,σ) corresponding with the elements of B∗. The
argument above thus implies that for any c∈R≥0 and Ω∈Ωλ̄,

inf
γ,γ̃∈VB∗(X,υ),γ 6=γ̃

(γ−c·γ̃)′TΩT ′(γ−c·γ̃)>0.

Further, since Ωλ̄ is compact while the objective in the previous display is continuous in
c and Ω and diverges as c→∞, it follows that

inf
γ,γ̃∈VB∗(X,υ),γ 6=γ̃

inf
Ω∈Ωλ̄

inf
c∈R≥0

(γ−c·γ̃)′TΩT ′(γ−c·γ̃)>0.

From Lemma A.1, however, the non-zero components of each element of VB∗(X,σ)

can be written in the form λB(X,σ)e′1AB(X,υ)−1 for some B ∈ B∗ such that AB(X,υ)

has full rank and e′1AB(X,υ)−1≥0. Assumption C.2 implies that the set of B∈B∗ such
that AB(X,υ) has full rank and e′1AB(X,υ)−1≥0 is constant for X in a neighborhood of
X∗, and that AB(X,υ)−1 is continuous in a neighborhood of X∗. Assumption C.2 further
implies that the cardinality of VB∗(X,υ) is locally constant at X∗. Moreover, observe that
λB(X,σ)=1/(e′1AB(X,υ)−1σ)=(e′1AB(X,υ)−1υ)/(e′1AB(X,υ)−1σ), where we use the fact
that e′1AB(X,υ)−1υ=1 by construction. Observe that if Ω has eigenvalues bounded between
λmin and λmax then for σ2(Ω)=Diag(TΩT ′), we have that ||Tj||2λmin≤σ2

j (Ω)≤||Tj||2λmax.
This implies that the ratio λB(X,σ(Ω))=(e′1AB(X,υ)−1υ)/(e′1AB(X,υ)−1σ(Ω)) is bounded
both above and away from zero. The continuity of e′1AB(X,υ)−1 and bounds on λB(·,·), com-
bined with the inequality in the previous display together imply that for X ∗ a neighborhood
of X∗, we have that

inf
X∈X∗

inf
Ω∈Ωλ̄

inf
γ,γ̃∈VB∗(X,σ(Ω)),γ 6=γ̃

inf
c∈R≥0

(γ−c·γ̃)′TΩT ′(γ−c·γ̃)>0.

To complete the proof, it thus suffices to show that V †(X,σ)⊆ VB∗(X,σ) for all σ.
Suppose that γ∈V †(X,σ). By part 1 of Lemma 5, γ=λ(σ)γ̄ for a scalar function λ(σ)
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and vector γ̄ (both depending on X). Under the structure imposed by Assumption C.1,
the fact that γ∈V †(X,σ) implies that for some σ̃, γ̃=λ(σ̃)γ̄ is a Lagrange multiplier for
the primal linear program

η̂=min
η,δ

η subject to
(
Tu+

(
ζ′1 ζ′2 ζ′3

)′
−TQδ≤η·σ̃

)
for some u such that η̂>0. Observe, however, that the moments corresponding with γ̃1,j

and γ̃2,j can bind simultaneously only if

e′j(u−Qδ∗)+e′jζ1 = η̂e′jσ̃=−e′j(u−Qδ∗)+e′jζ2,

for δ∗ an optimizer to the linear program for η̂, which implies that η̂= 1
2e′jσ̃

e′j(ζ1+ζ2)≤0.
Since η̂>0, it must be that at most one of the moments corresponding with γ̃1,j and γ̃2,j

is binding. Hence, complementary slackness implies that min{e′jγ̃1,e
′
jγ̃2}=0, and thus that

min{e′jγ1,e
′
jγ2}= 0 since γ=λ(σ)/λ(σ̃)γ̃. It follows that γ ∈VB∗(X,σ), as we wished to

show. �

Lemma C.1 Suppose Assumption C.1 holds. Let j and j′ be indices such that Tj=−Tj′
(i.e. j and j′ correspond with the same moment of opposite of signs). Suppose B∈B with
{j,j′}∈B. Let X=TQ and σ=

√
Diag(TΩT ′) for Ω positive definite. If AB(X,σ) has

full rank, then for the vertex γ∈V (X,σ) such that γ′B∝e′1AB(X,σ)−1 and e′jγ=0 for j 6∈B,
we have that γj=γj′>0.

Proof of Lemma C.1 Observe that σj = σj′ =
√
TjΩT ′j > 0. Let ẽj be the vector

so that ẽ′jAB(X,σ) selects the row of AB(X,σ) corresponding with Tj, and analogously
for ẽj′. Let M−1 be the matrix so that M−1AB(X,σ) selects all but the first row of
AB. Note that ẽ′jAB(X,σ) = [σj ,TjQ] and ẽ′j′AB(X,σ) = [σj ,(−TjQ)]. By definition,
AB(X,σ)AB(X,σ)−1 =I. Hence, ẽ′jAB(X,σ)AB(X,σ)−1ẽj=1. By the properties of matrix
multiplication, this implies that

1=(ẽ′jAB(X,σ))(AB(X,σ)−1ẽ′j)

=σje
′
1(AB(X,σ)−1ẽ′j)+TjQM−1(AB(X,σ)−1ẽ′j)
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Similarly, ẽ′j′AB(X,σ)AB(X,σ)−1ẽj=0, which implies that

0=(ẽ′j′AB(X,σ))(AB(X,σ)−1ẽ′j)

=σje
′
1(AB(X,σ)−1ẽ′j)−TjQM−1(AB(X,σ)−1ẽ′j)

Adding the equations in the previous two displays yields that

e′1(AB(X,σ)−1ẽ′j)=
1

2σj
.

However, replaying the same argument but reversing the roles of j and j′, we likewise
obtain that

e′1(AB(X,σ)−1ẽ′j′)=
1

2σj
,

which yields the desired result. �

D Computation of Vlon,0 and Vupn,0
We now provide additional details on the computation of the truncation points Vlon,0 and
Vupn,0 for the conditional and hybrid tests. Equation (13) gives formulas for Vlon,0 and V

up
n,0 that

require taking a maximum/minimum over all of the dual vertices, which may be computation-
ally challenging in practice. To facilitate computation, we provide two results which together
allow for rapid calculation of these endpoints even when the number of dual vertices is large.

Our first result provides conditions under which Vlon,0 and Vupn,0 can be calculated as the
maximum/minimum over sets with at most k elements.

Lemma D.1 Suppose the primal problem (9) has a unique solution, with corresponding
dual solution γ̂=γ. Let B⊂{1,...,k} denote the set of binding moments at the optimum
to the primal.34 Let Wn,0 =(σ̂n,0, Xn,0) and let MB be the matrix so that MBWn,0 selects
the rows of Wn,0 corresponding with the index set B. If |B|=p+1 and Wn,0,B is invert-
ible (i.e., the primal solution is non-degenerate), then for L= (I−Wn,0W

−1
n,0,BMB) and

∆=Σ̂n,0γ/(γ
′Σ̂n,0γ), we have that

Vlon,0 = max
j:(L∆)j<0

−
(LSn,0,γ)j

(L∆)j
and Vupn,0 = min

j:(L∆)j>0
−

(LSn,0,γ)j
(L∆)j

. (20)

34That is, for (η∗, δ∗) the optimal solution, we have that Yn,0,B − Xn,0,Bδ
∗ = η∗ · σ̂n,0,B and

Yn,0,−B−Xn,0,−Bδ∗<η∗·σ̂n,0,−B, where we use the notation −B to denote rows not contained in B.
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Proof of Lemma D.1 Consider the vertex γ∗ such that MBγ
∗= (e′1W

−1
n,0,B)′ and the

remaining elements of γ∗ are zero. If (η∗,δ∗) is a solution to the primal problem with
rows indexed by B binding, then γ∗ satisfies the Karush-Kuhn-Tucker (KKT) conditions
at (η∗,δ∗). The KKT conditions are necessary and sufficient for the solution to a linear
program, and thus γ∗ is a solution to the dual problem. (In fact, if the primal is unique and
non-degenerate, then the dual is also unique and non-degenerate (Sierksma 2001, p. 144),
so γ∗ must be the unique dual solution, γ̂=γ=γ∗.) Observe that if (η∗,δ∗) is a solution to
the primal problem with rows indexed by B binding, then (η∗,δ∗′)′=W−1

n,0,BMBYn,0. Since
the KKT conditions are necessary and sufficient, it follows that γ∗′y=maxγ̃∈V (Xn,0,σ̂n,0)γ̃

′y

if and only if Ly=y−Wn,0W
−1
n,0,BMBy≤0. But we argued in the proof to Lemma 5 that

when γ̂=γ∗, Vlon,0 and Vupn,0 are respectively the minimum and maximum of the set

{γ∗′y|y s.t. γ∗′y≥ max
γ̃∈V (Xn,0,σ̂)

γ̃′y and S(y,γ∗)=Sn,0,γ∗},

which by the preceeding argument is equivalent to the set

{γ∗′y|y s.t. Ly≤0 and S(y,γ∗)=Sn,0,γ∗}.

The result then follows from Lemma 5.1 in Lee et al. (2016). �
A sufficient condition for the primal problem to be unique is that the corresponding dual

solution γ̂ has positive entries in positions corresponding with the binding moments B (e.g.,
Appa 2002). Since the dual-simplex method naturally returns the solution η∗, optimizer δ∗,
and dual solution γ̂, it is straightforward to verify thatWn,0,B has full rank and that γ̂B>0.
If these conditions are met, then Vlon,0,V

up
n,0 can be calculated using (20), which is computation-

ally straightforward since it involves a minimum/maximum over sets of at most k elements.
For cases where the conditions for Lemma D.1 are not met, the following result provides

a useful alternative method for computing Vlon,0,V
up
n,0.

Lemma D.2 Suppose γ̂=γ and γ′Σ̂n,0γ>0. Then Vlon,0 and Vupn,0 correspond, respectively,
to the minimum and maximum of the convex set

C=

{
c|c= max

γ̃∈V (Xn,0,σ̂n,0)
γ̃′

(
Sn,0,γ+

c

γ′Σ̂n,0γ
Σ̂n,0γ

)}
.
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Proof of Lemma D.2 Recall that Vlon,0 and V
up
n,0 are the minimum andmaximum of the set

C̃=

{
γ′y|y s.t. γ′y≥ max

γ̃∈V (Xn,0,σ̂n,0)
γ̃′y and S(y,γ)=Sn,0,γ

}
.

From the definition of S(y,γ) =

(
I−
(
γ′Σ̂n,0γ

)−1

Σ̂n,0γγ
′
)
y, we have that y= S(y,γ)+

(γ′y)/
(
γ′Σ̂n,0γ

)
·Σ̂n,0γ, from which it follows that

C̃=

{
γ′y|y s.t. γ′y≥ max

γ̃∈V (Xn,0,σ̂n,0)
γ̃′

(
Sn,0,γ+

γ′y

γ′Σ̂n,0γ
Σ̂n,0γ

)
and S(y,γ)=Sn,0,γ

}
.

To establish that C̃ =C, it thus suffices to show that {γ′y|S(y,γ) = Sn,0,γ}=R, which
follows from the assumption that γ′Σ̂n,0γ>0 along with the fact that if S(y,γ)=s then
S
(
y+a·Σ̂n,0γ,γ

)
= s for any a ∈ R (which follows immediately from the definition of

S(y,γ)). Finally, convexity follows immediately from the form of C̃ and the fact that
maxγ̃∈V (Xn,0,σ̂n,0)γ̃

′y is convex in y. �
Lemma D.2 implies that Vlon,0,V

up
n,0 can be calculated via a bisection method. The

intuition for the algorithm is as follows. By construction, η̂n,0∈C. If there is some large
value M such that M 6∈C, then we know that Vupn,0 lies between η̂n,0 and M. We start
by testing whether the midpoint between η̂n,0 and M falls in the set C by solving the
linear program in the definition of C. If this point lies within C, then we can test the
midpoint between the previously tested value and M, whereas if it does not, then we can
test the midpoint between η̂n,0 and the previous midpoint. We can proceed in this way to
narrow down the range in which Vupn,0 must fall. This tends to be computationally efficient,
since the range in which Vupn,0 can lie is reduced by a factor of 2 in each step. Algorithm
D.1 below formally describes the algorithm used for bisection (and is implemented in our
Matlab code). We recommend initializing the value of M to some large value such that,
for computational purposes, if Vupn,0>M then it would suffice to set Vupn,0 =∞.35

35In our implementation, we set M=max

(
100,η̂n,0+20

√
γ′Σ̂γ

)
, which guarantees that M is at least

20 standard deviations above η̂n,0.
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Algorithm D.1 Bisection Method for Calculating V up
n,0

1: procedure computeVUP
2: if CheckIfInC(M) then
3: V up

n,0←∞
4: else
5: lb← η̂n,0
6: ub←M
7: while ub−lb>TolV do
8: mid← 1

2
(lb+ub)

9: if CheckIfInC(mid) then
10: lb← mid
11: else
12: ub← mid
13: V up

n,0← 1
2
(lb+ub)

where we define the functions:
1: function LPValue(c)
2: return

maxγ̃γ̃
′
(
Sn,0,γ+ Σ̂n,0γ

γ′Σ̂n,0γ
c
)

subject to γ̃≥0,W ′n,0γ̃=e1

3: function CheckIfInC(c)
4: if | c−LPV alue(c)|<TolLP then
5: return True
6: else
7: return False
8:
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E Connections to LICQ

We now briefly discuss the connections and differences between Assumption 4 and linear
independence constraint qualification (LICQ) conditions that have been imposed in the
literature. We refer the reader to Kaido et al. (2021) for detailed discussion of constraint
qualifications in the moment inequality literature, and Appendix A.2 of Rambachan &
Roth (2021) for additional results for our conditional test under LICQ.

We focus on the special case where the target parameter is scalar (β∈R) and enters the
moments linearly, which simplifies exposition and facilitates comparisons to other papers that
consider the LICQ or closely related assumptions in the linear case (e.g. Cho & Russell 2021,
Gafarov 2019, Kaido & Santos 2014). That is, we consider moments of the form Yi−Xi,ββ−
Xi,δδ, where Yi∈Rk, Xi,β∈Rk, Xi,δ∈Rk×p, and (Yi,Xi,δ,Xi,β) doesn’t depend on β or δ.

To give a formal definition of LICQ, we introduce the following notation. Let
Xi = (Xi,β,Xi,δ) and τ = (β,δ′)′, so that we can write the moments as Yi−Xiτ . Define
T={τ |EP [Yi−Xiτ ]≤0} to be the set of values for τ such that the unconditional moments
are satisfied, and define the set of support points in direction p by S(p)={τ |p′τ=supτ̃∈Tp

′τ̃}.
We will be most interested in the support points in the directions e1 and −e1, so that the
optimization in the definition of S(p) corresponds with the upper and lower bounds for
β. We say that LICQ holds in the direction p if for all τ∗∈S(p), the matrix XB has full
row rank, where X=EP [Xi] and B is the set of rows such that EP [Yi,B−Xi,Bτ

∗]=0.36

We now show that LICQ implies non-degeneracy in a “population version” of the primal
problem for our test statistic η̂. Specifically, for any σ∈Rk with σ>0, let

η(Y,X,β,σ)=min
η,δ

η s.t. Y −Xββ−Xδδ≤σ·η.

We then have the following result.

Lemma E.1 Let βub=supτ∈Te
′
1τ and µ=EP [Yi]. If LICQ holds in the direction e1, then

for any σ>0, all solutions to η(µ,X,βub,σ) are non-degenerate, i.e. the rows of W=(σ,Xδ)

corresponding with binding constraints at the optimum are linearly independent.

Proof of Lemma E.1 We first show that η(µ,X,βub,σ) = 0. Since βub = supτ∈Te
′
1τ

by definition, we must have that η(µ,X,βub,σ)≤0. Towards contradiction, suppose that
36LICQ is typically defined in terms of the Jacobian of the expectation of the moments with respect

to τ , but in our linear setting the Jacobian of EP [Yi−Xiτ ] is simply −X.
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η(µ,X,βub,σ)<0. Then there exists δ∗ such that µ−Xββ
ub−Xδδ

∗<0. But then for some
ε>0, µ−Xβ(βub+ε)−Xδδ

∗<0, which is a contradiction, since it implies that supτ∈Te
′
1τ >β.

We thus see that if δ∗ is a solution for η(µ,X,βub,σ), then (βub,δ∗′)′ ∈S(e1). Hence,
LICQ implies that for B the set of binding moments at δ∗, we have that XB=(Xβ,B,Xδ,B)

has rank |B|. It follows that Xδ,B has rank |B|−1. However, observe that there can be
no δ̃ such that Xδ,Bδ̃>0, since if there were, then for ε>0 sufficiently small we would have
that µB−Xβ,Bβ

ub−Xδ,B(δ∗+εδ̃)<0 while the remaining moments are still slack, and thus
η(µ,X,βub,σ)<0. Since σB>0, it follows that WB=(σB,Xδ,B) has rank |B|, as we wished
to show. �

Non-degeneracy in the primal problem implies uniqueness in the dual (Sierksma 2001, p.
144), from which it is immediate from Lemma E.1 that LICQ in direction e1 implies that the
dual problem, maxγ∈V (Xδ,σ)γ

′(µ−Xββ
ub), has a unique solution. This can imply restrictions

on the possible values of µ — for example, if Xδ=0 and Xβ=σ=ι, then it implies that µ
has a unique maximal element. By comparison, Assumption 4 implies that with probability
approaching one, the sample dual problem η(Yn,0,Xn,0,β0,σ̂n,0) has a unique solution with
probability approaching 1. As discussed in Section 4, however, this assumption does not
place any restrictions on µn,0, and for example, is satisfied if V (X,υ) is suitably continuous in
X in the setting where degeneracy of Σ arises from moment equalities (see Proposition C.1).

F Simulation Details

F.1 Moment Inequality Specification

We adopt the notation of Example 3 in the main text, so Jf,i,t is the set of products
marketed by firm f in market i in period t, and ∆π(Jf,i,t,J

′
f,i,t) is the difference in expected

profits from marketing Jf,i,t rather then J ′f,i,t. Following Wollmann (2018), and as discussed
in the main text, the fixed cost to firm f of marketing product j at time t is β(δc,f+δggj)

if the product was marketed last year (j∈Jf,i,t−1), and δc,f+δggj otherwise. Here δc,f is
a per-product cost which is constant across products but may differ across firms, while gj
is the gross weight rating of product j.

If we begin with the case where fixed costs are constant across firms (δc,f =δc for all
f) and again let 1{·} denote the indicator function, we obtain four conditional moment
inequalities by adding and subtracting one product at a time from the set marketed. For
instance, similar to the Example 3, if firm f markets product j at both t−1 and t, then for

m1(θ)j,f,i,t≡−[∆π(Jf,i,t,Jf,i,t\j)−(δc+δggj)β]×1{j∈Jf,i,t,j∈Jf,i,t−1},
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we must have E[m1(θ)j,f,i,t|Vf,i,t]≤0 for all variables Vf,i,t in the firm’s information set when
time-t production decisions were made, since otherwise the firm would have chosen not to
market product j in period t. We can analogously obtain moments m2(θ)j,f,i,t,...,m

4(θ)j,f,i,t

corresponding with the cases where a firm markets product j only at period t, only at
period t−1, or in neither period.

We obtain two further conditional moment inequalities by considering the case where
a firm markets a product of a given weight gj but not a higher or lower weight gj′. For
example, we obtain the moment

m5
j,f,i,t(θ)≡

−

(∑
j′∈J−(j,f,i,t)[∆π(Jf,i,t,(Jf,i,t\j)∪j′)−δg(gj−gj′)]

#J−(j,f,i,t)

)
×1{j∈Jf,i,t,j /∈Jf,i,t−1},

where J−(j,f,i,t) is the set of products not marketed by firm f at time t or t−1 with weight
below gj. We likewise construct a moment for heavier products that were not marketed.

As in Wollmann, there are nine firms (F=9). To generate data we model the expected
and observed profits for firm f from marketing product j in market i in period t, denoted
by π∗j,f,i,t and πj,f,i,t respectively, as

π∗j,f,i,t=ηj,i,t+εj,f,i,t, and πj,f,i,t=π
∗
j,f,i,t+νj,i,t+νj,f,i,t,

where the ν terms are mean zero disturbances that arise from expectational and measure-
ment error and the η and ε terms represent product-, market-, and firm-specific profit shifters
known to the firm when marketing decisions are made. The distributions of these errors
are calibrated to match moments in Wollmann’s data, as described in the next section.37

As described below, each simulated dataset is a cross-section containing data on one
period for 500 markets following the sequential process described above. The moments
used in our simulations are then averages (over markets i) of

1

J

∑
j

(
ml
j,f,i(θ)⊗Z̃j,f,i

)′
, (21)

where we also average over all firms f assumed to share the same fixed cost δf,c. Since we
37The terms ηj,i,t and νj,i,t reflect product/market/time “shocks” that are known and unknown to the

firms, respectively, when they make their decisions. Shocks of this sort are an important aspect ofWollmann’s
setting. Note that Wollmann also estimates (point-identified) demand and variable cost parameters in
a first step, while for simplicity we treat the variable profits πj,f,i,t as known to the econometrican.
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consider a single period for each market i in cross-section, we suppress the time subscript.
We present results both for the case where Z̃j,f,i includes only a constant, and for the
case where all moments are interacted with a constant and the first four moments are
additionally interacted with the common profit-shifters η,

Z̃j,f,i=(1,η+
j,i,η

−
j,i),

for q+ =max{q,0} and q−=−min{q,0}. In the model with a single constant term, δc,f =δc

for all f, this generates 6 and 14 moment inequalities. We also present results when the
nine firms are divided into three groups each with a separate constant term, and when
each firm has a separate constant term. For each specification we consider the first four
moments separately for the firm(s) associated with distinct parameters δc,f , but average
the last two moments across all firms as they do not depend on the constant terms. This
generates 14 and 38 moments for the three group classification, and 38 and 110 moments
when each firm has a separate constant term. To estimate the conditional variance Σ=Ω,

in each specification we define the value of the instrument Zi in market i as the Jacobian
of (21) with respect to the linear parameters (δg,{δc,f}).

F.2 Data-generating Process Details

F.2.1 Competition and Firm Decisions

We now describe the data-generating process for a single market, suppressing the i subscript
for notational brevity. We consider competition between F firms, who in each period decide
which set of products to offer. Firm f estimates that marketing product j in period t will
earn variable profits π∗jft, and chooses to market the product if and only if the expected
profits exceed the fixed costs. Thus, if a firm marketed product j in period t−1, then the
firm chooses to market j in period t if and only if

π∗jft−βθc−βθggj >0.

If the firm didn’t market the product j in period t−1, then it chooses to add product j
if and only if

π∗jft−θc−θggj >0.
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F.2.2 Distributional Assumptions

We set π∗jft=ηjt+εjft, the sum of a product-level shock that is common to all firms and a
firm-product idiosyncratic shock. We assume that ηjt∼N (0,σ2

η). If j was not marketed in
the previous period, then εjft∼N (βµf+βθggj,σ

2
ε ); if the product was marketed previously,

then εjft∼N (µf+θggj,σ
2
ε ). Note that the mean profitability of marketing a product depends

on a firm-specific mean, µf , which allows us to match the firm-level market shares observed
in Wollmann’s data. We also constuct the mean of the εjft term to depend on the product’s
weight and whether it was marketed in the previous period in a way that guarantees that
all simulated products will be offered with the same probability in our simulations.

While firms make their decisions using π∗jft, we assume that the econometrician observes
only πjft=π∗jft+νjt+νjft. The ν terms represent measurement or expectational errors. We
assume that νjt and νjft are independently drawn from a normal distribution with mean
0 and variance σ2

ν.

F.3 Calibration

We calibrate our parameters to estimates and moments reported in the November 2014 ver-
sion of Wollmann. We set F=9 to match the number of firms in Wollmann’s data, and G=

22 to match the number of unique values of GWR. We use θc=129.73, θg=−21.38, and β=

0.386 to match the results from the estimates in Table VII in Wollmann.38 We set the values
of g to be 22 evenly spaced points between 12,700 and 54,277 to match the lowest and highest
GWR figures reported in Table II, which gives the average GWR for different buyer types.

To calibrate the remaining parameters, we simulate data according to the process
described above, and set the parameters to match moments of the simulated data to those
in Wollmann’s data. In order to simulate the data for the calibration, we first fix standard
normal draws that are used to construct the η, ε, and ν shocks. These standard normals
draws are then scaled by the desired variance parameters in each simulation. Letting Jft
denote the set of products offered by firm f in period t, the simulations begin in state 0
with Jf0 =∅ for all firms. We then simulate Jft and π∗ going forward using the dynamics
described above. We discard the first 1,000 periods as burnout so as to obtain draws from
the stationary distribution, and calibrate the model using 27,000 subsequent periods. After
discarding 1,000 draws, we obtain essentially identical results if we begin from the state
where all products are in the market in rather than all products out of the market.

The remaining parameter values to calibrate are {µf},ση,σε,σν. The intuition for the

38Note that Wollmann denotes by − 1
λ what we have been calling β.

67



calibration is as follows. The firm-specific means µf affect the number of products each
firm offers, and so we calibrate these to match the market shares and total number of
products offered in Wollmann’s data. The σε and ση terms affect how often firms add
and remove products, and so we calibrate these to match the variability of the number
of products offered over time in Wollmann’s data. Lastly, we calibrate σν, which governs
the variance of the expectational/measurement error. We do not have direct measures of
the variability of firm profits in Wollmann’s data, but if markups are constant, then the
variance in firm profits is one-to-one with the variance of quantity sold, and so we calibrate
σν to match the variability of quantities sold assuming mark-ups are fixed at 35%.

Specifically, the calibration uses the following steps:
1) We first calibrate (ση,σε) and the µf terms to match the market shares and variability

of products offered in Wollmann. This calibration process involves an inner and outer loop,
described below.

a) The inner loop for µf . Given a guess for (ση,σε), we calibrate µf to match the market
share and average number of products in Wollmann’s data. Market shares are taken from
Table III in Wollmann. Wollmann does not provide the mean number of products offered
by year, only the min and max, so we approximate it by taking the midpoint between the
two extremes, which gives 48 total products per year on average.

b) In the outer loop, we calibrate (ση,σε) to match a measure of the variability of the
number of products offered in Wollmann’s data. In particular, Table I in Wollmann lists
9-year averages for the total number of products offered for three 9-year periods (he has
27 years of data). We run 1,000 simulations of 27 periods, and for each 27-year period
we calculate the average number of products offered within each 9-year subinterval, just
as Wollmann does. We then calibrate ση so that the average variance in the number of
products offered across three consecutive 9 year periods matches that in Wollmann’s data.

The simulated variance comes very close to the target variance whenever ση = σε,
regardless of scaling. We therefore choose ση =σε=30, which gives that the variance of
π∗ is roughly half of the variance of π.

2) Lastly, we calibrate σν to match a moment implied by the variability in quantity
sold across time in Wollmann. If prices and markups are relatively constant, then the
variance in quantities will be well-approximated by a constant times the variance in profits:
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V ar(πjft)≈ p̄2m̄2V ar(Qjft), where p̄ and m̄ are the average prices and markups.39 For our
calibration, we set p̄ to be the average price inWollmann’s data ($66,722), and set m̄ equal to
0.35. As with the number of products offered, Wollmann does not report annual quantities,
but rather the average for three 9-year periods. We thus use a procedure analogous to that
described in step 1b) to match the variance of the 9-year averages of quantity sold.

F.3.1 Calibrated Parameters

Tables F.1 and F.2 show the calibrated values for the µf and variance parameters, respec-
tively.

Table F.1: Calibrated µf Parameters

Firm µf
Chrysler 74.31
Ford 98.36
Daimler 114.69
GM 80.11
Hino 67.71
International 110.63
Isuzu 80.15
Paccar 114.63
Volvo 94.17

F.3.2 Sampling from the DGP

Wollmann’s data involves observations of sequential periods from the same market. If we
were to construct moments at the product-period level in this setting, then the sequential
nature of the model would induce serial correlation in the realizations of the moments.
Although Σ can be estimated in this setting, accounting for serial correlation substantially
complicates covariance estimation. Since covariance estimation is not the focus of this paper,

39This is because if prices and costs are constant across firms,

πjft=Qjft(p−c)

=Qjft
p−c
p
p

=Qjft×m×p.

Thus, V ar(πjft)=m2p2V ar(Qjft) when p and c are constant, and this holds approximately with averages
if the variance in m and p is small relative to that in Q.
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Table F.2: Calibrated Variance Parameters

Parameter Value
ση 30.00
σε 30.00
σν 57.96

andWollmann (2018) performs inference assuming no serial correlation, we instead focus on a
modified DGP corresponding to a cross-section of independent markets, a common setting in
the industrial organization literature. To do this, we sample from the stationary distribution
of the calibrated DGP described above as follows. We draw a 51,000 period sequential
chain, and discard the first 1,000 observations as a burn-in period. For each simulated
dataset, we then randomly subsample 500 periods from this chain. This cross-sectional
set-up also allows us to consider specifications with more moments than in Wollmann.

F.4 Implementation Details

F.4.1 Parameter Grids

For procedures that require test inversion for the parameter of interest, we invert tests over
a discretized parameter space.40 For δg and the cost of the mean-weight truck, we use 1,001
gridpoints (plus estimates of the identified set bounds); for β, we use 100 gridpoints for
our main simulations, and 1,000 gridpoints for timing comparisons.

F.4.2 Implementation of LF and LFP tests

To calculate the LFP critical values, we draw a fixed matrix Ξ of standard normal draws
of size k×10,000, and we use these for all of our calculations. Since the LF procedure is
more computationally intensive, we calculate it using a matrix of size k×1000.

In simulating the draws for the LF approach, in certain very rare cases we encountered
computational issues in which the linear program for one of the draws did not converge.
In these cases, we treat the draw as if it were infinity, which pushes the estimated critical
value slightly higher. However, in all specifications this happens in no more than 0.01% of
cases (of approximately 50 million simulations), and is thus unlikely to have any substantial
impact on our results.

40For the LF and LFP approaches, we do not need to discretize the parameter space when the parameter
of interest enters the moments linearly, since the endpoints of the confidence set can be calculated
analytically using linear programming, as discussed in Section 5.
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F.4.3 Implementation of the sCC and sRCC tests

We implement the sCC and sRCC tests using code provided by the authors. The refinement
needed for the sRCC test is difficult to compute with many moments and many parameters.
Thus, when our specification has both 100+ moments and 10+ parameters, we instead
report the results of a test that rejects whenever the sRCC test rejects. In particular, the
refinement to the sRCC test can matter only when there is one active moment (r̂=1) and the
test statistic falls between the 1−α and 1−α/2 quantile of the χ2 distribution with 1 degree
of freedom. For specifications with 100+ moments and 10+ parameters, we thus report
the power of the test that rejects when either the sCC test rejects or the refinement could
matter. The power and size of this test can thus be viewed as upper bounds on the power
and size of the sRCC test, and its runtime is a lower bound on the runtime of the sRCC test.

F.4.4 Implementation of the AS and KMS tests

We next describe the implementation of the AS and KMS tests, which uses the Matlab pack-
age developed by Kaido et al. (2017). The Matlab package is developed for the case where
the moments are additively separable in the data and the parameters, i.e. when the moments
take the formE[m(Di)]−g(θ)≤0, where θ is a vector of parameters and the target parameter
takes the form l′θ. Note that in our first two simulation designs, where the target parameter
is δg or the cost of the mean-weight truck (and β is known), the moments take the form
E[Yi|Xi]−Xiδ≤0 and the target parameter is l′δ. The moments thus take the form needed
to use theMatlab package conditional onXi. TheMatlab package, however, uses a bootstrap
procedure that samples from the unconditional distribution of the data, which is unsuitable
for our setting. To use the package in our setting with conditional moments, we adopt the fol-
lowing procedure. Given Yn,0,Xn,0,Σ̂n,0, we draw Y ∗i ∼N(n−

1
2Yn,0,Σ̂n,0) independently for i=

1,...,n.41 We then provide the Matlab package with the data (Y ∗i )ni=1 and setm(Y ∗i )=Y ∗i and
g(θ)=Xnθ. This ensures that the bootstrap distribution of the sample mean of Y ∗i (scaled
by
√
n) within the Matlab package approximates the conditional distribution of Yn,0|Xn,0.

We use the default tolerances in the Matlab package except we halve the default
tolerance for the objective (i.e., we set EAM_obj_tol and EAM_thetadistort to 0.005/2).
Tightening the objective tolerance appears to reduce numerical precision errors that can, for
instance, lead the estimated bounds for the AS test to be tigher than for the KMS test. On
the other hand, the tighter tolerances increase runtime and lead to some convergence issues.

41We re-center and re-scale the draws so that the sample mean of Y ∗i is exactly n−
1
2Yn,0 and the sample

covariance is Σ̂n,0.
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In the specification with the most moments and parameters, the KMS test fails to converge
correctly in 6% of the cases with the tigher tolerances. We discard all such draws and
report size and excess length conditional on the algorithm converging correctly. We obtain
qualitatively similar results using the default tolerances, which have fewer convergence
issues but are less numerically precise.

F.5 Additional Simulation Results

This appendix reports additional simulation results to complement the results reported
in Section 6 of the main text. Figures F.1-F.2 show comparisons analogous to Figure 1
except for the alternative parameters δg and β. Figures F.3-F.5 show comparisons of the
hybrid to the LFP, sCC, and sRCC tests, while Figures F.6-F.7 show comparisons to the
AS and KMS tests.
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Figure F.1: Rejection probabilities for 5% tests of θg

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure F.2: Rejection probabilities for 5% tests of β

(a) 3 Parameters, 6 Moments
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(b) 3 Parameters, 14 Moments
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(c) 5 Parameters, 14 Moments
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(d) 5 Parameters, 38 Moments
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(e) 11 Parameters, 38 Moments
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(f) 11 Parameters, 110 Moments
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Figure F.3: Rejection Probabilities for 5% tests of Cost of Mean-Weight Truck:
Comparisons to Cox & Shi (2021) and LFP tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure F.4: Rejection Probabilities for 5% tests of θg: Comparisons to Cox & Shi (2021)
and LFP tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Figure F.5: Rejection Probabilities for 5% tests of β: Comparisons to Cox & Shi (2021)
and LFP tests

(a) 2 Parameters, 6 Moments
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(b) 2 Parameters, 14 Moments
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(c) 4 Parameters, 14 Moments
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(d) 4 Parameters, 38 Moments
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(e) 10 Parameters, 38 Moments
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(f) 10 Parameters, 110 Moments
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Figure F.6: Rejection Probabilities for 5% tests of Cost of Mean-Weight Truck:
Comparisons to AS and KMS tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments
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Figure F.7: Rejection Probabilities for 5% tests of θg: Comparisons to AS and KMS tests

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments
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