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ABSTRACT

Recent evidence suggests an increasing risk of natural disasters of the magnitude of hurricane 
Katrina and Sandy. Concurrently, the number and volume of flood insurance policies has been 
declining since 2008. Hence, households who have purchased a house in coastal areas may be at 
increasing risk of defaulting on their mortgage. Commercial banks have the ability to screen and 
price mortgages for flood risk. Banks also retain the option to securitize some of these loans. In 
particular, bank lenders may have an incentive to sell their worse flood risk to the two main 
agency securitizers, the Federal National Mortgage Association, commonly known as Fannie 
Mae, and the Federal Home Loan Mortgage Corporation, known as Freddie Mac. In contrast with 
commercial banks, Fannie and Freddie follow observable rules set by the FHFA for the purchase 
and the pricing of securitized mortgages. This paper uses the impact of one such sharp rule, the 
conforming loan limit, on securitization volumes. We estimate whether lenders’ sales of 
mortgages with loan amounts right below the conforming loan limit increase significantly after a 
natural disaster that caused more than a billion dollar in damages. Results suggest a substantial 
increase in securitization activity in years following such a billion-dollar disaster. Such increase 
is larger in neighborhoods for which such a disaster is “new news”, i.e. does not have a long 
history of hurricanes. Conforming loans are riskier in dimensions not observed in publicly 
available data sets: the borrowers have lower credit scores and they are more likely to become 
delinquent or default. A structurally estimated model of mortgage pricing with asymmetric 
information suggests that bunching at the conforming loan limit is an increasing function of 
perceived price volatility and declining price trends. A simulation of the impact of increasing 
climate risk on mortgage origination volumes with and without the GSEs suggests that the GSEs 
may act as an implicit insurer, i.e a substitute for the declining National Flood Insurance Program.
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1 Introduction

Place-based asset purchases such as real estate are likely to be exposed to increasing risk in a world con-

fronting ambiguous climate change. Standard financial arguments would argue that such risk, if idiosyn-

cratic, can be diversified away. Yet a host of politically popular subsidies and institutions encourage house-

holds to invest in homes as their primary source of wealth. Lenders and government sponsored enterprises

play a key role in providing the capital to allow households to bid and purchase such place-based wealth.

While the climate change economics literature has explored how real estate prices reflect emerging climate

risk (Bakkensen & Barrage 2017, Ortega & Tas.pınar 2018, Zhang & Leonard 2018, Bernstein, Gustafson &

Lewis 2019), we know little about how the mortgage industry responds.

Recent evidence suggests an increasing risk of natural disasters along the east coast: the empirical analy-

sis of Bender, Knutson, Tuleya, Sirutis, Vecchi, Garner & Held (2010) predicts a doubling of category 4 and

5 storms by the end of the 21st century in moderate scenarios. Lin, Kopp, Horton & Donnelly (2016) sug-

gests that, in the New York area, the return period of Hurricane Sandy’s flood height is estimated to decrease

4 to 5 times between 2000 and 2100.1 Gallagher & Hartley’s (2017) analysis of Hurricane Katrina suggests

that insurance payments due to the federal government’s National Flood Insurance Program (NFIP) led to

reductions in debt. Yet, both the number of NFIP flood insurance policies and their total dollar amount have

declined substantially since 2006 (Kousky 2018), leading to potentially greater losses for mortgage lenders.

With the future of flood insurance in doubt, two key issues arise (i) whether mortgage lenders will transfer

default risk due to floods to the two large securitizers Fannie Mae and Freddie Mac, and hence whether the

two GSEs act as de facto insurers, and (ii) whether their role incentivizes households to borrow to locate in

flood prone parcels.

Such natural disasters may cause losses to mortgage lenders either due to an increasing probability of

household default, or, when households are insured, through an increasing probability of prepayment.2 The

impact of natural disasters varies substantially across neighborhoods at a local scale (Masozera, Bailey &

Kerchner 2007, Vigdor 2008). Hence, the screening of mortgages for securitization may not fully take into

account the risk of natural disasters attached to a particular house and a particular mortgage. As local lenders

1Other key papers predict a similar increase in natural disaster risk over the course of the 21st century (Webster, Holland, Curry

& Chang 2005, Elsner 2006, Mann & Emanuel 2006, Garner, Mann, Emanuel, Kopp, Lin, Alley, Horton, DeConto, Donnelly &

Pollard 2017, Lin, Emanuel, Oppenheimer & Vanmarcke 2012, Grinsted, Moore & Jevrejeva 2013, Lin et al. 2016).
2While securitization insures the lender against the risk of default, prepayments are typically “passed through” back to the lender.

The paper suggests that default risk is a significantly higher risk than prepayment risk.
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with access to better information relating to the local impact and occurrence of natural disasters may secu-

ritize mortgages that are unobservably worse risk, a ‘market for lemons’ in climate risk could develop as a

potential threat to the stability of financial institutions. In particular, the mispricing of disaster risk, either

because of a mispricing of mortgage default or a mispricing of prepayment risk; and the correlation of such

natural disaster risk across loans in a mortgage pool can together be a substantial source of aggregate risk

for holders of mortgage backed securities.

This paper focuses on the impact of 15 “Billion-dollar events” on banks’ securitization activity; and

whether mortgages securitized in areas prone to natural disaster risk are worse risk for financial institutions

that hold them in securitized mortgage pools. Billion-dollar events have caused at least a billion dollar of

losses as estimated by the National Oceanic and Atmospheric Administration (Smith & Katz 2013). Two of

the largest purchasers of securitized mortgages are the Government Sponsored Enterprises (GSEs) Fannie

Mae and Freddie Mac: in 2008, they held or guaranteed about $5.2 trillion of home mortgage debt (Frame,

Fuster, Tracy & Vickery 2015). The GSEs adopt specific sets of observable rules when screening mortgages

for purchase. One such rule is based on the size of the loan: GSEs purchase conforming loans, whose loan

amount does not exceed a limit set nationally. The conforming loan limit is a single limit set by the FHFA

until 2008, and only two different limits set by Congress, the FHFA, and then the CFPB after 2008. As

this national limit varies over time, this offers a unique opportunity to estimate lenders’ response to shifts in

their incentives to securitize mortgages. Previous literature suggests that the discontinuity in securitization

costs at the limit causes a bunching in the number of originated mortgages right below the conforming loan

limit (DeFusco & Paciorek 2017). Yet, it is not known whether (i) natural disaster risk leads to a shift in

lenders’ incentives to securitize, (ii) whether securitized loans right below the conforming loan limit are

worse default or worse prepayment risk, (iii) whether securitization volumes will increase as we likely face

rising disaster risk, and (iv) in the counterfactual scenario where the GSEs would withdraw from risky areas,

whether lenders would bear the risk of default, adjust their interest rates and possibly lower their origination

volumes. In particular, as local loan officers have discretion over the characteristics of the mortgages sold for

securitization, the GSEs’ guidelines for securitization do not rely on the on-the-ground information of loan

officers and may not take into account local climate risk as accurately as the local loan officer with better

knowledge of the future distribution of house prices, e.g. for houses near the bank’s branch network. Lenders

can securitize jumbo mortgages to other, non-GSE, securitizers called Private Label Securitizers (PLS). Yet

evidence suggests that the private label securitization market is small and does not represent a significative
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alternative (Goodman 2016).

This paper’s identification strategy combines a regression discontinuity design at the conforming loan

limit with a difference-in-difference setup comparing the magnitude of the discontinuity in mortgage loan

density at the limit before and after a billion dollar natural disaster. The discontinuity in density follows the

intuition of McCrary’s (2008) test and Keys, Mukherjee, Seru & Vig (2010) application to ad-hoc securiti-

zation rules. The difference-in-difference approach compares the change in the discontinuity in counties hit

by a natural disaster, including Hurricane Sandy, Hurricane Irma, and Hurricane Katrina, with the change in

the discontinuity in counties not affected by a natural disaster. The local natural disasters considered in this

paper are the 15 largest “billion-dollar events” occuring between 2004 and 2012, and as presented in Smith

& Katz (2013) and Weinkle, Landsea, Collins, Musulin, Crompton, Klotzbach & Pielke (2018).

The paper develops a structurally estimated model of monopolistic competition in mortgage pricing with

asymmetric information about local default risk and the ability to securitize conforming loans. Such model

enables two out of sample simulations of the impact of rising disaster risk; and of the impact of such risk

in the counterfactual scenario where the GSEs would withdraw from the mortgage market. In the model,

bunching and discontinuities at the conforming loan limit are increasing function of lenders’ perceived price

volatility and declining price trends. The model is estimated using observations at the discontinuity using

Gourieroux, Monfort & Renault’s (1993) method of indirect inference recently featured in Fu & Gregory

(2019). Keeping household preferences and lenders’ cost of capital constant, simulations of increasing price

volatility and declining price trends provide the two out-of-sample predictions.

Two features of the conforming loan limit are key to the identification of the impact of securitization

costs on lenders’ activity. First, the conforming loan limit is time-varying. As the limits are set nationally

either by the FHFA, by Congress (in 2008), and by the CFPB, they are less likely to be confounded by other

regional discontinuities that would also affect the mortgage market for loans of similar amounts. Second,

there are two limits starting in 2008: there is a higher limit for “high-cost”, as opposed to “general” counties.

As those two limits affect different marginal borrowers in counties whose house prices are either close or far

from the limit, the estimate is more likely to capture an average effect across a large support of borrower and

house characteristics.

The impact of billion dollar events on securitization activity is estimated using four different data sets:

first, a national data set of all mortgage applications, originations, and securitization purchases between

1995 and 2017 inclusive collected according to the Home Mortgage Disclosure Act (HMDA); second, a
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loan-level payment history data set with approximately 65% of the mortgage market since 1989, including

households’ FICO scores, foreclosure events, delinquency, prepayment, and securitization. Third, such data

can be matched to the neighborhood (Census tract) of each mortgaged house, and to the lender’s identity

from the Chicago Federal Reserve’s Report of Income and Condition. Fourth, the treatment group of affected

neighborhoods is estimated by using the path and impact of hurricanes (wind speed data every 6 hours for

all major hurricanes), combined with USGS elevation and land use data that identify disaster-struck coastal

areas. The combination of these four data sources enables a neighborhood-level analysis of the impact of

15 billion dollar events on securitization activity, lending standards, and household sorting. The fifth and

last data set is the universe of banks’ branch network throughout the United States. As bank branches are

geolocalized, we can estimate the geographic coverage of a bank’s branch network and assess which banks

have a branch network that is mostly in counties hit by a billion dollar disaster.

Results suggest that after a billion-dollar event, lenders are significantly more likely to increase the share

of mortgages originated and securitized below the conforming loan limit. After a billion-dollar event, the

difference in denial rates for conforming loans and jumbo loans increases by 5 percentage points. This leads

to a substantial increase in the volume of conforming loans post-billion dollar event. This could be driven by

either a retreat to safer mortgages, if conforming loans are safer, or increasing adverse selection, if mortgages

sold to the GSEs are riskier. Evidence from the national-level BlackKnight data set suggests that conform-

ing loans are likely riskier than jumbo loans and that adverse selection into the conforming loan segment

increases after a natural disaster: borrowers are more likely to experience foreclosure at any point post orig-

ination; they are more likely to be 60 or 120 delinquent; they have lower FICO scores. Banks that originate

conforming loans hold typically less liquidity on their balance sheet, and lenders that originate conforming

loans are less likely to be FDIC-insured commercial banks. Interestingly, while the GSEs’ guarantee fee (paid

by lenders) is a function of observable characteristics such as FICO scores and loan-to-value ratios, there is

evidence of significant unpriced unobservable risk, suggesting a mispricing of the cost of securitization.

While analysis suggests no evidence of significant trends prior to a billion-dollar event, there is a statis-

tically and economically significant increase in securitization volumes at the conforming loan limit in years

following the event. A billion dollar event has a similar effect on securitization activity as 17% employment

decline, which is about twice the standard deviation of employment growth.

The paper’s quasi-experimental findings can be used to simulate the impact of future disaster risk on se-

curitization volumes, with and without the GSEs’ securitization activity. For this purpose, the paper develops
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a model of mortgage pricing with asymmetric information, household location choice, and the dynamics of

mortgage default. The model is structurally estimated at the discontinuities, in the spirit of Fu & Gregory

(2019). The model’s out-of-sample simulations suggest that the GSEs’ securitization activity, without in-

creasing guarantee fees, stabilizes the mortgage market with little change in interest rates and location choice

probabilities. In contrast, increasing disaster risk without the GSEs’ securitization activity leads to substan-

tial shifts in households’ location choices, interest rates, and origination volumes. The model’s findings

thus suggest that the GSEs act as an implicit substitute for the National Flood Insurance Program, and do

not provide significant incentives to either lenders or households to choose different locations and mortgage

amounts when facing increasing climate risk.

This paper contributes to at least three literatures. First, the literature on adverse selection in the mortgage

securitization market. As the GSEs’ securitization rules rely on a finite vector of observable loan, borrower,

and collateral characteristics, lenders may not have an incentive to collect the full range of private information

prior to originating loans, including collecting local information about climate risk. If mortgage lenders

couldn’t securitize loans and sell them, then they would have strong incentives to use their scale and their

human capital to assess what risks are entailed by lending funds for 30-year fixed rate mortgages. Such market

discipline is especially valuable when there is ambiguous risk and heterogeneity among buyers in their risk

assessments (Bakkensen & Barrage 2017). Results of this paper suggest the ability to securitize may weaken

the discipline brought about by the mortgage finance industry in fostering climate change adaptation. In

contrast with Keys et al. (2010), this paper focuses on defaults implied by the strongly correlated, arguably

upward-trending climate risk that is likely harder to hedge than idiosyncratic household-specific income

shocks. Systematic aggregate income risk is present in the real estate literature since at least Shiller (1995).

Banking regulators may need to take into account the new kind of systemic financial risk caused by local

natural disasters (Carney 2015).

This paper also contributes to the literature on financial risk propagation. This paper’s results suggest

that participants in financial markets should likely track the contagion of climate risk. As we show that

such billion dollar events affects aggregate banks’ balance sheets, this paper makes a link between the liter-

ature on local natural disasters and the literature on the transmission of risks in the financial sector through

banks’ balance sheets. A rapidly expanding literature (Elliott, Golub & Jackson 2014, Acemoglu, Ozdaglar

& Tahbaz-Salehi 2015, Heipertz, Ouazad & Rancière 2019) uses microdata on security-level holdings of as-

sets and the supply of liabilities to estimate whether and how networks amplify financial shocks on individual
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banks. In this paper, we find that natural disaster risk is a shock to expected mortgage returns that increases

the return to securitization. As the suggestive evidence presented in this paper indicates that the risk of

such newly-originated mortgages is higher, this suggests caution for securitizers and financial institutions

connected to these exposed banks.

Finally, this paper presents another consequence of increasing local natural disaster risk. As an expanding

literature studies the housing market’s equilibrium pricing of natural disaster risk (Bakkensen & Barrage

2017, Ortega & Tas.pınar 2018, Zhang & Leonard 2018) this paper focuses on a potential mispricing of

assets vulnerable to natural disaster risk: securitizers’ guarantee fees may not be an accurate reflection of

mortgage risk. While accurately-priced risk and returns are part of the typical formula for financial portfolio

composition (Markowitz 1952), the mispricing of mortgage risk, carried onto securitizers’ balance sheets,

can be a source of unhedged and unanticipated systemic risk. The structural model presented in this paper

simulates the evolution of a counterfactual endogenous GSE guarantee fee that reflects the increase in natural

disaster risk.

The paper is organized as follows. Section 2 presents a simple conceptual framework that ties expected

risk to securitization volumes. Section 3 describes the three sources of data used in this paper’s analysis: a

loan-level data set with monthly payment history information; a billion-dollar disaster dataset paired with

blockgroup-level elevation, hurricane wind speeds, and land use information; and a bank-level data set with

geocoded branch networks. Section 3 also presents evidence of negative selection into securitization at

the conforming loan limit. Section 4 estimates the impact of natural disasters on securitization volumes

using an identification strategy that combines time-varying discontinuities with a difference-in-difference

approach. Section 5 suggests that results are driven by changes in lenders’ beliefs about future risks. Section 6

presents and structurally estimates a model of mortgage pricing with asymmetric information and the ability

to securitize mortgages. Such model then provides the main out-of-sample simulations: (i) increasing risk,

(ii) withdrawal of the GSEs, (iii) endogenous guarantee fee. Section 7 concludes.

2 Basic Mechanism and Empirical Predictions

We present here the basic mechanisms of a model of mortgage pricing with asymmetric information about

default risk. The key observation is that the government sponsored enterprises’ rules for securitizing loans

include a strict upper bound on securitizable loan amounts, called the conforming loan limit. This affects
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the lender’s optimal menu of mortgage interest rates and thus also affects households’ self-selection into

mortgage options. Such a simple model yields empirical predictions.

First, the model implies that the lender’s optimal menu of mortgage payments and loan amounts will in-

duce bunching at the conforming loan limit.3 The bunching of loans at the conforming loan limit is positively

related to the value of the securitization option. The value of the securitization is the difference between the

profit of originating and securitizing and the profit of originating and holding a mortgage. Second, under

mild and fairly general assumptions, increases in bunching reveal increases in the value of the securitiza-

tion option for lenders, even after accounting for the endogeneity of household sorting at the limit. Third,

increases in households’ perceived disaster risk leads to demand for higher loan amounts and less bunching.

Such three observations are formalized below.

The Lender’s Menu of Mortgage Options

A lender faces a heterogeneous set of households indexed by � ∈ [�, �] with density f (�). Household

�’s default rate d(�) is an increasing function of the household’s type. The lender offers a menu of loan

sizes and mortgage payments (L,m). The profit �(L,m; �) of the lender depends on the loan amount L, the

mortgage payment m and the household type �. The household derives positive utility from a larger loan size

(at given payment m) and incurs a disutility v(m, �) of mortgage payments; such disutility is decreasing in

the type: households with higher expected probability of default incur less disutility of mortgage payments,

)v∕)� < 0. Such disutility is increasing in the mortgage payment, )v∕)m > 0. Finally the disutility is

convex in the type )2v∕)�2 > 0. If the household does not take up any loan, she gets utility V .

The lender’s objective is to find the menu � ↦ (L(�), m(�)) that maximizes profit given each household’s

participation constraint:

max
L(⋅),m(⋅)∫

�

�

[�(m(�); �) −L(�)] f (�)d�

s.t. L(�) − v(m(�); �) ≥ L(�̂) − v(m(�̂); �) for all �̂, �

L(�) − v(m(�); �) ≥ V

This is a formulation of the monopoly pricing problem with unobservable type (Mirrlees 1971, Maskin &

3Bunching in mechanism design problems has been a subject of analysis at least since Myerson (1981).
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Riley 1984). This leads to a simple optimal menu of mortgage payments and loan sizes where the mortgage

payment for each type maximizes the surplus:

m(�) = argmax�(m(�); �) − v(m(�); �) +
1 − F (�)

f (�)

)v

)�
(m, �). (1)

The first two terms are the total surplus, the sum of the lender’s profit and the household’s disutility. The

last term provides household � with the incentive to choose the option designed for her/him. When the profit

function is smooth, households with higher default probability self-select into loans with higher mortgage

installments, dm∕d� > 0 as in Rothschild & Stiglitz (1976). Households with a lower propensity to default

� take smaller loan amounts to signal their higher creditworthiness, dL∕d� > 0.

Bunching at the Conforming Loan Limit

The key ingredient of this paper is the discontinuity in the lender’s ability to securitize mortgage generated

by the GSEs’ conforming loan limit.4 For loan amounts L ≤ L̃ the lender’s profit � is the maximum of

�ℎ, the profit of holding the mortgage, and �s, the profit of originating and securitizing the mortgage. For

loan amounts L above the conforming loan limit L̃, the lender’s profit � is equal to �ℎ. At L̃ the profit

thus experiences a discontinuity max
{
�ℎ, �s

}
− �ℎ. No discontinuity occurs in at least two cases: (i) when

households are fully insured, and thus �s = �ℎ, and (ii) when the cost of securitization, called the guarantee

fee, is at high levels such that max
{
�ℎ, �s

}
= �ℎ.

We abstract from the ability to sell to non-agency securitizers for the sake of clarity but without loss of

generality.5 Such discontinuity at L̃ in the profit of the seller generates bunching in the density of mortgages

for which L(�) = L̃, as displayed in Figure 1. Noting [�̃, ̃̃�] the set of household types that are offered

and choose a mortgage amount exactly equal to the conforming limit L̃, the lower bound of such segment

satisfies:

L̃ = v(m(�̃), �̃) +U (�̃), U (�̃) = −∫
�

�

v�(m(�), �)f (�)d�, (2)

and the upper bound satisfies:

�(m( ̃̃�), ̃̃�) = �ℎ(m( ̃̃�), ̃̃�) (3)

4While � is discontinuous at L = L̃, the loan amount L(�), the mortgage payment m(�) and utility U (�) are smooth functions

of �.
5Of course, the lender still has the option to sell mortgages to private label (non-agency) securitizers and the results of this paper

can be seen as differences in the value of agency securitization relative to either holding the mortgage or selling to private label

securitizers.
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and the amount of bunching is F�(
̃̃�) −F�(�̃) or alternatively f (L̃) the point density of households choosing

exactly L̃.

Hence bunching at the conforming loan limit reflects (i) the discontinuity in the lender’s profit at such

limit (equation (3)), i.e. depends positively on the difference �s − �ℎ of profits when securitizing and when

holding the mortgage. Bunching at the conforming loan limit also reflects (ii) households’ disutility of mort-

gage payments (equation (2)).

Proposition 1. The amount of bunching at the conforming loan limit is positively related to the difference

between the profit of securitizing mortgages and the profit of originating and holding mortgages. The amount

of bunching is negatively related to borrowers’ disutility of mortgage payments, and thus to average default

rates.

Bunching and Expected Default Risk

The second step is to derive the impact of an across-the-board increase in households’ expected default rate on

the amount of bunching at the conforming limit. Let the default rate d(�, �b) depend on both the household’s

type � and households’ proxy for disaster risk �b. Such increase in disaster risk has the following properties:

(i) it lowers the disutility of mortgage payments as the house is paid off over a shorter period of time, hence

)v∕)�b < 0; (ii) it lowers the marginal impact of an increase in the household’s propensity to default � on the

disutility of mortgage payments )2v∕)�)�b. By lowering both v andU on the right-hand side of equation (2),

it increases the value of the threshold �̃ and leads to less bunching.

An increase in lenders’ expected disaster risk �l has a different effect. By lowering the value of holding a

mortgage, while keeping constant the value �s of securitizing a mortgage, it leads to an increase in the upper

bound ̃̃� and therefore an increase in bunching F�(
̃̃�) − F�(�̃) = f (L̃). We get the following proposition.

Proposition 2. An increase in lenders’ expectation of disaster risk �l leads to an increase in the number

of loans originated at the conforming loan limit L̃. Formally, d ̃̃�∕d�l > 0. An increase in borrowers’

expectation of disaster risk �b leads a decline in the number of loans originated at the conforming loan limit

L̃.

This proposition forms the basis of this paper’s identification strategy, which estimates the impact of

natural disasters on the value of the securitization option by measuring the impact of natural disasters on the
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size of bunching at the conforming limit:

Δf (L̃) = f (L̃)||Disaster − f (L̃)||No disaster (4)

In other words, the disaster provides “new news” to either households or lenders, which shift the expected

disaster risks �l and �b potentially upwards. Bunching provides a source of information on lenders’ and

borrowers’ updated beliefs about future disaster risk. Importantly our analysis is based on newly originated

mortgages rather than current mortgages, reflecting forward-looking expectations of default rather than an

impact on the current stock of houses and loans.

The next section presents the natural disasters, the treatment and control groups, and the mortgage ap-

plication and origination data used for the econometric analysis, performed in Section 4.

3 Data Set and Treatment Group

This paper focuses on the neighborhoods of the 18 Atlantic States. We combine information from four

data sources: (i) mortgage and housing market data, including information from the universe of mortgage

applications and originations, payment history, FICO score, rents and house prices, (ii) natural disaster data,

using the universe of Atlantic hurricanes between 1851 and 2018, (iii) sea-level rise, elevation, land use data,

which enables an identification of at-risk areas, (iv) banking data, on banks’ branch network and balance-

sheet information.

Natural Disasters: Billion Dollar Events and the Treatment Group

The paper focuses on disasters that have caused more than 1 billion dollars in estimated damages. The

estimates come from Weinkle et al.’s (2018) computations for 1900 to now; we focus on events happening

between 2004 and 2012. All of these events are hurricanes, and we extract their path from the Atlantic

Hurricane Data set of NOAA’s National Hurricane Center6. The events post 2004 provide wind radiuses

by speed every 6 hours, enabling the computation of the set of neighborhoods within the 64 knot hurricane

wind path. This wind speed maps naturally into the Saffir Simpson hurricane intensity scale. Examples

of these paths are presented for four hurricanes in Figure 4. Damages to real estate property is however

6Accessed in 2018.
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unevenly distributed within the hurricane’s wind path. In particular, building-level data from Hurricane

Sandy reveals that coastal and low-lying areas are significantly more likely to experience damages. Using

the observed damages from Hurricane Sandy, we define a set of criteria to pinpoint treated areas for all of the

15 hurricanes: first, we focus on blockgroups, the smallest Census geographic area for which the Census long

form and the American Community Survey are available. Second, blockgroups are hit if (i) they are within

the 64kt wind path, (ii) their minimum elevation is below 3 meters, and (iii) they are within 1.5 kilometers of

the coastline, or (iv) they are within 1.5 km of wetland. Such criteria yield a set of blockgroups that correlates

well with observed damages from Hurricane Sandy and Katrina.7 Elevation comes from the USGS’s digital

elevation model, at 1/3 of an arc second precision (about 10 meters). Wetlands come from the 2001 National

Land Cover Database.

The set of treated blockgroups is displayed on Figure 2 for hurricane Katrina and on Figure 3 for hurricane

Sandy. It is also estimated for the other 13 disasters. The dark grey area is the hurricane’s 64kt wind path. The

blue area is the set of coastal areas or areas close to wetland. The red boundaries correspond to blockgroups

whose elevation is less than 3 meters.

Mortgage and Housing Market: HMDA, BlackKnight

The first data source is the universe of mortgage applications and originations from the Home Mortgage Dis-

closure Act, from 1995 to 2016 inclusive. The data is collected following the Community Reinvestment Act

(CRA) of 1975, and includes information from between 6,700 and 8,800 reporting institutions, on between

12 and 42 million mortgage applications. The law mandates reporting by both depository and non-depository

institutions. It mandates reporting by banks, credit unions, savings associations, whose total assets exceeded

a threshold, set to 45 million USD in 2018,8 with a home or branch office in a metropolitan statistical area;

which originated at least one home purchase loan or refinancing of a home purchase loan secured by a first

lien on a one-to-four-family dwelling; and if the institution is federally insured or regulated. The following

non-depository institutions are required to report: for-profit institutions for which home purchase loan orig-

inations equal or exceed 10 percent of its total loan originations or 25 million USD or more; whose assets

exceed 10 million dollars; or who originated 100 or more home purchase loans. HMDA data includes the

identity of the lender, loan amount, the income, race, and ethnicity of the borrower, the census tract of the

7Sandy Damage Estimates Based on FEMA IA Registrant Inspection Data.
8The minimum asset size threshold is typically adjusted according to the CPI for urban wage earners (CPI-W), is currently set

by the Consumer Financial Protection Bureau, and published in the Federal Register.
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house, the property type (1-4 family, manufactured housing, multifamily), the purpose of the loan (home

purchase, home improvement, refinancing), owner-occupancy status, preapproval status, and the outcome of

the application (denied, approved but not accepted, approved and accepted, widthdrawn by the applicant).

This paper focuses on 1-4 family housing, owner-occupied home purchase loans. The census tract of the

loan enables a geographic match with the counties hit by the billion dollar events.

This first data source does not include the full range of proxies for borrowers’ creditworthiness. We

complement HMDA with the BlackKnight financial data files, which follow each loan’s history from origi-

nation to either full payment, prepayment, foreclosure, or bankruptcy. The BlackKnight financial file follows

about 65% of the market, and includes the borrower’s FICO score, the structure of the mortgage ARM, FRM,

Interest Only, the amortization schedule, the interest rate; and follows refinancings, securitizations, and delin-

quencies. In addition, BlackKnight financial data includes the home’s 5-digit ZIP code, which is matched to

natural disaster data.

BlackKnight financial data includes the house price and characteristics of the property. We obtain ZIP-

level house price index data and rental data from Zillow, using two indices: the Zillow Home Value Index

(ZHVI), a smoothed, seasonally adjusted measure of the median estimated home value;9 and the Zillow Rent

Index (ZRI): a similarly smoothed measure of the median estimated market rate rent.

The GSEs’ Mandate and the Conforming Loan Limit

The Governement Sponsored Enterprises’ mandate is set by the National Housing Act, Chapter 13 of the U.S.

Code’s Title 12 on Banks and Banking. In it, Congress establishes secondary market facilities for residen-

tial mortgages. Its stated purposes include providing “stability to the secondary market,” providing “ongoing

assisatnce to the secondary market for residential mortgages,” as well as “manag[ing] and liquidat[ing] feder-

ally owned mortgage portfolios in an orderly manner, with a minimum of adverse effect upon the residential

mortgage market and minimum loss to the Federal Government.” Jaffee (2010) reports that such mandate has

a very substantial influence over the mortgage market, as they cover over 50 percent of all U.S. single-family

mortgages and close to 100 percent of all prime, conforming, mortgages.

This paper assesses the implications of such mandate in the case of climate risk. Section 1719 of such

National Housing Act empowers the Government Sponsored Enterprises to set the standards that determine

eligibility of mortgages for securitization. In particular, a set of observable loan characteristics is part of this

9Zillow Research, accessed October 2018.
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assessment. This paper focuses on one such time-varying and county-specific observable, the conforming

loan limit, set by the Federal Housing Finance Agency, by Congress, or by the Consumer Financial Protection

Bureau (Weiss, Jones, Perl & Cowan 2017). Three interesting features enable an identification of the impact

of such limit on market equilibrium: first, the limit is time-varying, thus enabling an estimation of the impact

of the change in the limit on origination, securitization volumes. Second, the limit is also county-specific after

2007, implying that the limit bites at different margins of the distribution of borrower characteristics. Finally,

the limit for second mortgages (last column) is high, allowing homeowners to combine a first, conforming

mortgage, with a second mortgage to increase the Combined Loan-to-value ratio (CLTV), while maintaining

a loan amount within the upper bound of the conforming loan limit.

The observable loan characteristics that the Government Sponsored Enterprises use also pin down the

guarantee fee that is charged to primary lenders in exchange for purchasing the mortgage. The Loan Level

Price Adjustment Matrix (LLPA) maps the applicant’s credit score and loan-to-value ratio into a guarantee

fee ranging in 201810 for fixed-rate mortgages (FRM) between 0% (for applicants with a FICO score above

660 and an LTV below 60%), and 3.75% (for applicants with a FICO score below 620 and an LTV above

97%). Specific guarantee fees also apply to Adjustable Rate Mortgages, manufactured homes, and investment

property, where fees can reach 4.125% as of 2018.

The Impact of the Conforming Loan Limit: Originations and Adverse Selection

If guarantee fees were substantially above the maximum risk premium that lenders are ready to pay, securiti-

zation volumes would not affect origination volumes. Figure 5 presents evidence that the GSEs’ mandate has

an impact on application and on origination volumes. It uses data from the Home Mortgage Disclosure Act.

In each year and each county, loans with an amount between 90 and 110% of the conforming loan limit are

considered. Such loans are grouped into bins of 0.5%, and the number of applications is computed. The blue

line is the curve fitted using a general additive model. The vertical axis is log scaled. Figure (a) suggests that

there is a discontinuity in the volume of applications at the limit, with significant bunching exactly on the left

side of the limit: the count of applications exactly at the limit is up to twice the volume of applications on the

right side of the limit. Figure (b) suggests that the share of white applicants is substantially higher (between 5

and 10 ppt higher) for applicants of conforming loans. When considering only the first mortgage, Figure (c)

suggests that conforming loans have lower Loan-to-Income ratio, about 0.17 lower. Figure (d) matches the

10The BlackKnight data set used in this paper includes the loan-specific guarantee fee.
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HMDA application and origination file to the balance sheet of the lender, when such information is available:

it includes large, FDIC guaranteed depository institutions, and does not include non-bank lenders. The figure

suggests that the liquidity on lenders’ asset-side is 1.1 ppt lower for originators of conforming loans. This

is consistent with evidence from Loutskina & Strahan (2009) suggesting that the ability to securitize loans

led to the expansion of mortgage lending by banks with low levels of liquidity. In addition, the preferential

capital treatment given to securitized products incentivize the securitization of mortgages.

The evidence presented in this figure also suggests that Private Label Securitizers (PLS) are an imperfect

substitute for the GSEs. Indeed, while PLSs do take on the risk of non-conforming, i.e. jumbo, loans, the

size of the market is smaller and fees are higher.

The discontinuity in the number of mortgages and in their characteristics can stem from a few different

mechanisms; first, a household willing to purchase a house at a given price p0 may choose a lower level

of indebtedness, increasing his cash down and lowering the loan-to-value ratio. Second, the household can

downscale its housing consumption to borrow an amount within the conforming loan limit. A third possibility

is that the household borrows using two mortgages, one conforming mortgage that can be securitized by

the lender, and a second mortgage to achieve the same combined Loan-to-Value ratio (CLTV) as a jumbo

mortgage. Given an interest rate schedule, the choice of one of the three options will depend on the borrower’s

preferences, e.g. for (i) higher indebtedness, including the higher interest cost paid for larger mortgages,

(ii) the household’s preference for higher equity, (iii) and his/her expected risk of default. Thus an important

goal of the analysis is to separate what is driven by the demand for debt from what is driven by the supply

of credit.

Evidence of Negative Selection into Securitization

Evidence present in HMDA and in publicly available GSE loan files does not provide sufficient information to

assess the welfare impact of the GSEs’ securitization program. Indeed, different policy implications would

follow from either positive or negative selection into securitization, i.e. self-selection of safer or riskier

borrowers into securitization.

Figures 6 and 7 present evidence from BlackKnight’s loan-level files. Such files provide data on the

FICO credit score at origination, and on detailed payment history, which are typically absent from publicly

available files. Figure (a) confirms the presence of bunching in loans at the conforming loan limit in this

different dataset. The granularity of the data set enables a focus on a narrower window of 95 to 105% of the
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conforming loan limit. Figure (b) suggests that conforming loans have lower credit scores. The magnitude

of the discontinuity is between 14 and 30 points unconditionally, and between 5 and 3.7 (significant at 1%)

when controlling for zip code and year fixed effects, within a 0.5% window around the conforming loan limit.

This is reflected in the pricing of such mortgages: Figure (c) suggests that interest rates on conforming loans

are higher, with a discontinuity of about 0.8 ppt. This suggests that lenders are pricing delinquency and

default risk. Similarly, Figure (d) presents evidence that conforming loan borrowers are significantly more

likely to purchase private mortgage insurance (PMI), with a discontinuity of about 3 percentage points.

While intriguing, this evidence does not a priori suggest negative selection as GSEs observe FICO scores

and PMI take-up. Figure 7 builds four indicators of ex-post mortgage performance. Indeed, BlackKnight re-

ports monthly updates on each loan covered by its network of servicers. Loans are either current, delinquent

(90, 120 days), in foreclosure, or the household is going through a bankruptcy process. Figure (a) suggests

that conforming loans are more likely to foreclose at any point after origination. The difference is about 2 to

1.4 percentage points depending on the window (+-10% down to 0.5%). Figure (b) presents a larger discon-

tinuity in hazard rates. Figure (c) suggests that conforming loans are more likely to be 60 days delinquent

at any point. The visually most striking discontinuity is in voluntary prepayment: Figure (d) suggests that

conforming loans are more likely to experience a voluntary payoff. Such prepayment is a risk for the lender,

which forgoes interest payments.

Appendix Table B suggests that while jumbo loans seem riskier along observable dimensions, these

loans are safer along unobservable dimensions (Appendix Table C): jumbo loans are less likely to be full

documentation loans, terms are longer (4.3 months), they are more likely to be adjustable rate mortgages,

have higher loan-to-value ratios, and have a higher share of second mortgages. Yet, Appendix Table C

suggests that they are safer along every dimension of ex-post payment history.

Overall the evidence presented in Figure 7 is consistent with negative selection of borrowers into con-

forming loans along unobservable dimensions: while the GSEs’ rules ensure positive selection along observ-

able characteristics, residual variance in borrower quality is sufficient to offset the national selection criteria

enforced by Federal regulators.

Banks’ Branch Network and National Balance Sheet

The third data source is data on banks’ reports of income and condition, collected by the Federal Financial

Institutions and Examination Council (FFIEC). These data can be matched to the depository institutions that
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originate loans in HMDA data using a unique Replication Server System Database ID (RSSDID) and the

identity of the lender’s federal reporting agency. The reports of income and condition includes a range of

balance sheet and income items, from which we build the following statistics: (a) the liquidity of the financial

institution, defined as the ratio of cash and securities to total assets, as in Loutskina & Strahan (2009). (b) the

volume of mortgages held by the financial institution. (c) the amount of recourse on mortgages sold by the

institution. d) the volume of mortgage backed securities sold by the financial institution.

We match such data to the FFIEC’s Summary of Deposits, Annual Survey of Branch Office Deposits.

Reporting is required for all FDIC-insured financial institutions. The FFIEC collects information on the

geographic location of bank branches as of June 30, the amount of deposits in each branch, the date the

branch was established, and matches each branch with its corresponding national bank. The location of bank

branches is then used to estimate the geographic coverage of a bank, and whether such coverage includes

parts of counties hit by billion dollar event.

4 The Impact of Disasters on Agency Securitization

The paper’s main specification estimates the impact of natural disasters on the discontinuity in mortgage

numbers and characteristics at the conforming loan limit, conditional on neighborhood-specific and time-

specific unobservables controls. This identification strategy is first described. The specification follows.

4.1 Identification Strategy

Historical data and statements by the National Oceanic and Atmospheric Administration suggest that a large

share of the year-to-year variation in local hurricane risk is idiosyncratic. Indeed:

NOAA’s Seasonal outlook, issued in May and updated in August, predicts the number of named

tropical storms, hurricanes, and major hurricanes (Category 3 or higher on the Saffir-Simpson

Wind Scale) expected over the entire Atlantic basin during the six-month season. But that’s

where the reliable long-range science stops. The ability to forecast the location and strength of

a landfalling hurricane is based on a variety of factors, details that present themselves days, not

months, ahead of the storm.11

11https://www.noaa.gov/stories/what-are-chances-hurricane-will-hit-my-home
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This paper identifies the impact of natural disasters conditional on the blockgroup-specific history of hurri-

canes across the atlantic coast. This implies that the neighborhood-level occurence of hurricanes is orthog-

onal to local unobservables conditional on history: 12

Hurricanejt+1 ⟂ "jt+1|ℎjt, ℎjt−1, ℎjt−2,… , ℎj0 (5)

where ℎjt, ℎjt−1, ℎjt−2,… , ℎj0 is the history of hurricanes in location j in each time period 0, ..., t. Section 4.2

provides a placebo test based on comparing pre-disaster outcomes.

4.2 The Impact of Natural Disasters on Securitization Volumes and Adverse Selection

The paper identifies the impact of natural disasters on GSE securitization activity by estimating the impact

of natural disasters on the discontinuous bunching in loans at the conforming limit. Hence we combine

the discontinuity estimate of Section 3 with an event-study design for each of the d = 1, 2,… , 15 natural

disasters described in Table 1, from Hurricane Charley (August 2004) to Hurricane Sandy (October 2012).

The year of the disaster is noted y0(d), y0(d) ∈ {2004, 2005, 2008, 2011, 2012}. For each disaster, the

time t relative to the disaster year is t ≡ y− y0(d). The treatment group for each disaster is the set  (d) of

neighborhoods hit by that disaster. The criteria for inclusion in this set are described in Section 3 and combine

elevation, proximity to the coastline or wetland, and belonging to the 64kt hurricane wind path. The control

group  is made of Atlantic neighborhoods of that are not hit by any one of the disasters in 2004–2012.

By controlling for a local neighborhood fixed effect, and for a year fixed effect, we are controlling for two

key confounders: (i) the historical propensity of local hurricane risk, described in the previous section, and

(ii) for the intensity of each particular hurricane season.

The paper’s main specification is:

Outcomeit = � ⋅ Below Conforming Limitit + Below Conforming Limitit × Hitid

+

+10∑
t=−10

�t ⋅ Below Conforming Limitit × Hitid × T ime(t) + T imet=y−y0 + Y eary

+Disasterd +Neigℎborℎoodi + "it, (6)

12Seasonal outlook data stretching back to 1995 is available at the following link
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where i is a mortgage, j(i) is the ZIP code of mortgage i, BelowConforming Limitit is the time and county-

specific conforming loan limit (Weiss et al. 2017). By controlling for both year fixed effects and for the

disaster-specific time fixed effects, we can identify the identify of the disaster separately from time trends,

e.g. the nationwide real estate cycle, which may be a concern for hurricanes occuring at the peak of the

housing boom or a the trough of the housing bust. The Outcomeit variables are: the denial rate for mortgage

applications, the loan-to-income ratio, whether the borrower is white, African-American, or Hispanic, the

log(Income) of the applicant, the credit score, the term, the probability of foreclosure, 30, 60, 90, 120-day

delinquency at any point, and voluntary payoff.

The paper’s coefficients of interest are the �t, where controls range between t = −10 and t = +10. In

particular, the �t for t ≥ 0 measure how the natural disaster causes an increase or a decline in denial rates for

mortgages on the left side of the conforming loan limit. The �t for negative values of t provide a placebo test

for the equality of pre-disaster trends. As we estimate the coefficients on a window around the conforming

loan limit, the specification measures the impact of the disaster on the discontinuity in that location-specific

and time-specific window.

Impact on Denial Rates of Conforming Loans

Results are presented in Tables 3, 4, and in Figure 9. They involve 4.3 million loans in the HMDA files, and

1.7 million loans in the BlackKnight files, with between 8,119 and 9,627 5-digit ZIP codes. Standard errors

are two-way clustered at the 5-digit ZIP and year levels.

A natural disaster leads to a 2.8 ppt decline in the denial rate in the year following the event, and up to a

8.5ppt decline 3 years after the disaster. There are effects up to 7 years inclusive after the event. Importantly in

13 out of 14 regressions, the difference prior to the event is neither statistically nor economically significant.

The loan-to-income ratio of conforming loan originations declines, the fraction of white applicants increases,

the fraction of Black and Hispanic applicants goes down, the income of the applicants increases.

Impact of Disasters on Adverse Selection into Securitization

When turning to ex-post mortgage performance, in Table 4, the evidence suggests that conforming loans

originated after the disaster tend to perform worse. The probability of foreclosure is higher by 3.6 percentage

points in the year following the disaster, and up to 4.9 percentage points in the third year after the disaster. The

probability of 30 day delinquency at any point for conforming loans originated after the event increases by
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3.6 percentage points. Similar long-term changes appear for 60 day, 90 day, 120 day delinquency. Voluntary

prepayment declines as well, by 3.1 ppt in the year following the disaster.

Tables 3 and 4 together suggest that post-disaster, banks increase positive selection in observable dimen-

sions while increasing negative selection in unobservable dimensions.

Specification (6)’s results may be driven by observations away from the conforming loan limit. In particu-

lar, given the 90%-110% window, one question is whether bunching increases exactly at the 90% limit. Hence,

we design an additional test. We running 20 separate estimations where the Below Conforming Limitit vari-

able is replaced by an indicator for Below x% of the conforming limitit, with x ranging from 92% to 108%

of the conforming limit, on a grid of 20 equally spaced points. Figure (9) (a) reports the coefficients �̂t=+1

thus estimated. The figure suggests that the decline in denial rates post-disaster is specific to the conforming

limit, as the treatment effect spikes exactly at the threshold. Figure (b) presents the coefficients �̂t=+1, �̂t=+2,

�̂t=+3 of the treatment effects in years +1, +2, +3, suggesting that the magnitude of the treatment effect’s

spike increases over time.

5 Documenting the Mechanism: Learning About Future Risk

Section 2 suggested that the amount of bunching at the conforming loan limit depends on the lenders’ per-

ceived value of the securitization option and on households’ perceived disutility of mortgage payments.

This section first suggests that natural disasters affect the market’s subjective probability of natural disas-

ter risk: prices and price-to-rent ratios decline. Then the section shows that hurricane risk is autocorrelated:

being treated in a given year is correlated with treatment in the next year. Thus there is local “new news”

contained in a natural disaster’s path.

5.1 The Impact of Natural Disasters on Expected Price Trends

While it is typically hard to identify beliefs, empirical analysis of the price to rent ratio, in the spirit of Giglio,

Maggiori & Stroebel (2014) and Giglio, Maggiori & Stroebel (2016), suggests that fluctuations in the price

to rent ratio can capture changes in the market’s expectation of future price trends. In this section we estimate

the impact of billion dollar natural disasters on expected price trends.

We do so by estimating the impact of the post-2010 natural disasters on the price to rent ratio in a sat-

urated specification. Fluctuations in the price to rent ratio reveals fluctuations in the market’s expectations
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of future rents, future mortgage default, future maintenance costs, time discount factors (cost of capital),

and fluctuations in taxation. The following formula abstracts from property tax, insurance payments, and

assumes full depreciation of assets in case of disaster:

Pricej(i)t =

∞∑
k=0

(1 − �j(i)t+k)
k

(1 + r)k

(
Rentj(i)t+k −Maintenancej(i)t+k

)
, (7)

with j(i) the ZIP code of mortgage i, and �j(i)t+k the probability of future of future disaster risk. While

simple, this formula implies, with a constant rent, a constant expectation of climate risk E�j⋅, and s the share

of maintenance costs over rent, that the log price to rent ratio reflects future risk.

log(Price∕Rent)j(i)t = log

[
1 − E�j(i)⋅

r+ E�j(i)⋅

]
+ log(1 − s) − log(1 − �) (8)

The following regression estimates the impact of the natural disaster controlling for both time, year, neigh-

borhood, and disaster fixed effects:

log(Price∕Rent)j(i) = Constant+

+10∑
t=−10

ΔtHitid × T ime(t) + T imet=y−y0

+ Y eary +Disasterd +Neigℎborℎoodj(i) + "j(i)t (9)

The year fixed effects capture the economy’s cost of capital r. The year fixed effects control for the nation-

wide’s housing cycle. The neighborhood fixed effects capture unobservable differences in neighborhoods’

price to rent ratios, e.g. driven by time-invariant differences in maintenance or state-level taxation differen-

tials. Standard errors are two-way clustered at the neighborhood (zip code) and year levels.

Results are presented on Figure 10 for the price/rent ratio, rents, and prices. The time series come from

Zillow’s rent and house price indices, available after 2010. Yet, even on this more limited set of natural

disasters, the impacts of the disaster on the price/rent ratio and prices are both economically and statistically

significant post-disaster; and the placebo coefficient in the year preceding the event is not statistically sig-

nificant. The price-rent ratio declines by about 3% in the year following the disaster. Using equation 8 with

constant taxes and maintenance costs, and with a discount factor r ≃ 5%, we can estimate a that the expected

risk probability increases by about 52.5%.

While rents either do not significantly change post disaster or slightly increase (in part due to the lower
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supply of rental units), prices and price/rent ratios decline significantly. Given the saturated set of controls

of the specification, we interpret such result as evidence of a decline in the market’s expectation of future

price appreciation at the ZIP level.

5.2 Learning about Local Risk from Past Disasters

The impact of a natural disaster on the amount of bunching at the conforming loan limit depends on whether

a natural disaster brings “new news” that shifts the probability distribution over future risk. Indeed, if the

probability of a natural disaster was simply a constant throughout the period of analysis, the occurence of a

disaster in a specific neighborhood would be the realization of a shock, with no change in the future prob-

ability of a disaster. This section suggests that: (i) hurricane risk is spatially autocorrelated, i.e. occurence

of a hurricane is correlated with the future occurrence of hurricanes, even controlling for average historical

levels and (ii) that lenders’ increasing bunching at the conforming limit is greater in areas with little or no

history of hurricanes, a fact consistent with belief updating.

We start with the first point. To test whether hurricanes bring such new news about the future occurence

of disasters, we use the 168 years of history of geocoded hurricanes provided by the NOAA, between 1851

inclusive and 2018. For each of these events, NOAA provides the hurricane wind path and 64 knot radius

as for the more recent hurricanes used as treatments. A 2018 ZIP code is in the hurricane’s wind path if any

point of its surface is contained in the hurricane’s wind path. And we run the following regression:

In wind pathjt = ZIP Codej + Timet + � ⋅ In wind pathjt−1 + "jt (10)

where In wind pathjt is equal to 1 if a ZIP is in the hurricane’s wind path during decade t = 1, 2,… , 15;

ZIP Codej is a ZIP code fixed effect that captures the average neighborhood probability over the 168-year

history, Timet measures the average intensity of the hurricane season during the decade, and � is an auto-

correlation coefficient. "jt represents idiosyncratic fluctuations. If there is no information contained in the

history of hurricanes in a particular neighborhood, then � ≡ 0, i.e. there is no autocorrelation in hurricane

occurence.

Estimation of the regression requires care as the fixed effect panel estimate typically suffers from the

classic Arellano & Bond (1991) dynamic panel data bias which implies that �̂ can be severely downward

biased. Table 2 presents the estimation results.
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Column (1) includes a set of ZIP code fixed effects, which capture 32% of the variance of the decennial

probability. Column (2) includes both neighborhood and a decade fixed effect, suggesting that the neighbor-

hood f.e. captures most of the variance of the probability. Column (3) includes a linear time trend instead

of a series of decadal fixed effects, suggesting an increase in hurricane propensity over 168 years, by 0.06

percentage points per decade. Column (4) performs a similar analysis with a ZIP code fixed effect. The

time trend is unchanged. Columns (5) and (6) include the lagged decennial probability (i.e. 1861–1870

for 1871-1880), where column (5) is the naive OLS coefficient and (6) is the Arellano-Bond coefficient.

Bother columns present an autoregressive coefficient that is significant at 1%, implying that prior hurricane

occurence is an informative predictor of future hurricane occurence: a 1 percentage point increase in prior

decennial probability increases the next decade’s probability by between 0.3 and 2.3 percentage points. This

suggests that lenders and households learn about the specific location of future events from the windpath of

past events.

We then turn to the second point by estimating this paper’s main treatment effect interacted with the

historical decennial probability of hurricane occurrence. If lenders do update their beliefs about local risk

from the observation of the most recent natural disaster, we should expect that a high historical probability

leads to smaller responses of bunching to natural disasters. Decennial probabilities range from 0% (never in

a hurricane’s wind path) to a maximum of 39%. In areas with low decennial probabilities, a natural disaster

leads to a decline of the denial rate of conforming loans of 2.98% in the year following a disaster, as in the

main baseline Figure 9. In contrast, the denial rate of conforming loans declines by only 1.4%, about half

of the baseline effect, in areas with a historical probability in the 3rd quartile (15.6% decennial probability).

There is no significant impact of natural disasters on denial rate discontinuity for areas with the highest

historical probability (38.9%). Such evidence is consistent with the hypothesis that current natural disasters

provide “new news” about future disaster risk.

5.3 The Impact of Natural Disasters on Current Mortgages’ Default and Prepayment

A key empirical question is whether natural disasters affect households’ payment behavior, and whether dis-

aster trigger either defaults or prepayments. In both cases, increases in either defaults or prepayments affect

the profit of a lender that held the mortgage. Expectations of default risk should lead to greater securitization

probabilities, while expectations of prepayment are less likely to affect securitization behavior as an agency

MBS typically “passes through” mortgage prepayments. In other words, the agency MBS insures the lender
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against default risk, but does not insure the lender against prepayment risk.

We estimate the impact of natural disasters on payment history by considering a dataset made of (i) the

universe of individual loans in ZIPs affected by the billion dollar disasters of Table 1, regardless of the

specific timing of the origination of these loans, and (ii) a 1% random sample of the universe of loans in the

control group. The dataset has a total of 3.68 million loan-month observations.

The following specification controls for ZIP code, year fixed effects, and estimates the impact of a natural

disaster relative to the specific year t0 of that event:

1(Default)it =

+K∑
k=−K

�k ⋅ 1
[
t = (t0(i) + k)

]
+ ZIPj(i) + Yeart + Residualit (11)

where �0, �1,… are the coefficients of interest, which measure the impact of the disaster on default. t0(i)

is the year of the natural disaster of mortgage loan i. j(i) is the ZIP code of mortgage i at origination. The

effect of a natural disaster is identified as disasters occur over a period a 8 years. Year and ZIP code fixed

effects are identified by observations both in the treatment and the control groups. Residuals are two-way

clustered at the ZIP code and year levels.

Results are presented graphically in Figure 11. The solid lines in each graph present the coefficients

�−2 to �+5. The dotted lines are the 95% confidence intervals. Results suggest that a natural disaster has a

statistically significant negative impact on the probability that a loan is current, by about 4 percentage points.

A natural disaster increases the probability that a loan is in foreclosure by 1.6 percentage points. In contrast,

the impact on the probability of prepayment is marginally significant at 5%.

These results suggest that insurance payments and other transfers post-disaster may not mitigate the

impact of natural disasters on delinquencies and foreclosures. This is consistent with recent work (Kousky

2018) suggesting a decline in the number and dollar amount of properties insured through the National Flood

Insurance Program. The next section assesses whether lenders tend to bunch mortgages at the conforming

loan limit in areas where Fannie and Freddie require flood insurance.

5.4 The Impact of Mandated Flood Insurance on Securitization Behavior

The availability, cost, and take-up of flood insurance affects both the option value �s − �ℎ of securitization.

In particular, given that agency mortgage backed securities do not insure lenders against prepayment risk,

full insurance would shift lenders’ focus from default to prepayment risk, and substantially lower the value
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of securitizing mortgages.

We map the areas where flood insurance is mandated at the time of the billion dollar event, using past

flood maps from the National Flood Hazard Layer. In particular, zones A, AE, A1-A30, AH, AO, AR, A99,

V, VE, V1-V30 from the Flood Insurance Rate Maps are areas where homeowners are required to purchase

flood insurance. We compute the share of a ZIP code that is in such a Special Flood Hazard Area (SFHA).

In contrast, Zones D, X, C, X500, B, XFUT are areas where flood insurance can be purchased but is not

required.

As a test of whether flood insurance mandates affect the level of bunching and the discontinuities at the

conforming loan limit, we interact our treatment indicator variable with the share in the SFHA in the paper’s

main specification (equation 6). Results suggest no statistically significant impact of the share in an SFHA

area on bunching and discontinuities. Such result may be consistent with the following recent evidence.

First, average payouts were not exceeding $70,000 for the top 10 highest cost flood events (including Sandy),

except for Katrina, where the average payout was close to $90,000. Second, Kousky (2018) documents a

significant decline in the number and total volume of insurance policies purchased through the National

Flood Insurance Program. Third, Kousky (2019) suggests that the impacts of insurance coverage on risk

reduction and land use patterns may be modest.

6 The Impact of Disasters on Lenders’ Perceptions of Local Risk:

Identifying and Estimating the Mechanism Design Problem

Previous evidence documented an increasing bunching of mortgages at the conforming limit. To make a

statement about lenders’ risk perceptions, which are typically unobservable, we develop an estimated micro

structural model that maps lenders’ risk perceptions into bunching and discontinuities. The key intuition

is that lenders’ perception of greater risk lead to greater bunching, a mechanism described in proposition 2

of Section 2. The structural model estimates how lenders supply a menu of mortgage contracts based on

their expectations of (i) price trends and price volatility, (ii) the sorting of households into each mortgage

contract and location and hence how households’ individual default drivers interact with local risk. The

model replicates the “structure-free” discontinuity estimates established earlier in the paper and allows for

their comparative statics with respect to lenders’ risk perceptions.
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6.1 A Structural Model of Mortgage Pricing with Asymmetric Information

There are j = 1, 2,… , J neighborhoods, each with a vector of amenities zj of size K . Each of the i ∈ [0, N]

households chooses a neighborhood j. Such a continuum of households differs by their observable vector x

of size k and their unobservable scalar ".

There are l = 1, 2,… , L lenders. The lender’s opportunity cost of capital is noted �l. Each lender offers

a fixed rate mortgage with loan amount Lj and maturity T in each location, and chooses an interest rate rlj in

each location.13 Lenders compete in interest rates in each segment defined by x; each lender sets the interest

rate rlj(x) in this segment given the menu of interest rates r−lj(x) chosen by the L− 1 other lenders.

After choosing a location-mortgage contract pair (j,l) ∈ {1, 2,… , J} × {1, 2,… , L}, households start

paying a mortgage with payment mjl(rjl, T , Lj) and can default or prepay every year t = 1, 2,… , T . For

the sake of clarity we abstract from prepayment but those can be introduced at no notational cost.

The annual default probability �(x, ", Bjt, pjt) ∈ [0, 1] is driven both by household fundamentals (x, "),

by the household’s mortgage balance Bjt, and by the house price pjt in year t after origination.

Default∗jt(x, ") = x�default + "+ �BdefaultBjt + �
p
default

log pjt + �jt(x, ") (12)

where � is extreme-value distributed and � = P (Default∗jt(x, ") > 0). The balance follows the mechanical

rule of mortgage amortization:

Bjt+1 = rj(x)Bjt −mjt(x) (13)

The last driver of mortgage default in equation (12) is the current house price. A household whose balance

substantially exceeds the current value of its house is more likely to default. Each lender forecasts the path of

future prices. At the time of origination, each lender l expects that house prices follow a geometric brownian

motion with constant drift �l and volatility �l as is typical in the real estate literature (Bayer, Ellickson &

Ellickson 2010):

dpt = pt ⋅ (�ldt+ �ldWt) (14)

where �l is lender l’s perception of house price log trends, �l the lender’s perception of price volatility.14

13For the sake of clarity we present the structural approach with fixed rate mortgage (FRM) contracts, but the model is extended

and estimated with other contracts such as ARMs and IO loans.
14Such perceptions �l , �l are identified by observing the lender’s menu of mortgage interest rates, approval and securitization

decisions.
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Wt is a brownian motion, i.e. Wt −Ws ∼ N(0, t− s) for any pair (t, s).

If the household default, a foreclosure auction is run that yields a payoff min
{
Bjt, pjt

}
, which is at most

equal to the current mortgage balance.

Lenders’ Optimal Menus of Contracts Lender l chooses a vector of interest rates rl to maximize its

total profit, coming from each of the J locations:

Πl(rl1, rl2,… , rlJ ; r−lj(x)) =

J∑
j=1

Πjl(rl1, rl2,… , rlJ ; r−lj(x)) (15)

where the profit in location j is driven by the default probability, the mortgage payment, and the fraction of

households choosing j:

Πjl =
{
Ejl [�] ⋅m(r

∗
lJ
, T , Lj) −Lj +Ejl [�(�)]

}
⋅ P (j,l) (16)

where the discounting � of mortgage payments depends on the expected default rate, so that:

Ejl [�] ≡ Ejl

[
T∑
t=1

Πt
s=1

(1 − �js(x, "))

1 + �l

]
(17)

In this expression the probability of default of households that choose location j and contract l is driven by

the location choices of households with characteristics x, ".

Ejl [�] = ∫ �(x, ")f (x, "|j)dxd" (18)

In the lender’s profit (16), the term Ejl [�(�)] is the expected revenue generated by a foreclosure sale in case

of default, equal to
∑T

t=1Π
t
s=1

(1 − �js)∕(1 + �l)�jtmin
{
Bjt, pjt

}
.

At this point it is clear that households’ location choices are a key input in lenders’ optimal mortgage

menu.

Households’ Location and Contract Choices A household (x, ") chooses its location and contract based

on local amenities zj and contract features rjl, Lj . It maximizes the indirect utility:

Ujl(x, ") = zj + zjΩx − �rj + �" ⋅ rj − � logLj + ��" logLj +Lenderl +Locationj + �jl (19)
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where �jl is extreme-value distributed as is common in the discrete choice literature. Lenderl andLocationj

are lender and location fixed effects respectively. Here the household’s sensitivity to the interest rate and to

the loan amount depends on its unobservable default driver ". Noting Vjl(x, ") the deterministic part of

utility, the choice probability f (j|x, ") is a logit functional form. Households have the outside option of not

purchasing a house, which yields utility U0 ≡ 0 by convention.

In turn the expected distribution of unobservable household characteristics " in a given contract (j,l) is

given by inverting Bayes’ rule:

f ("|j,l, x) = f (j,l|x, ")f (x, ")
f (j,l)

, (20)

which is a key ingredient in the lender’s calculation of its discounting factor � described in equation 18. It is

also a key ingredient of the lender’s first-order condition as shifts in interest rates affect households’ sorting

in the unobservable dimension ".

Monopolistic Competition and Sorting

Definition 1. An equilibrium is a JL-vector r of interest rates for each location-contract pair (j,l) such

that (i) each lender l chooses a menu rl of interest rates in each location j to maximize its total profit given

the other lenders’ menu and given households’ location choices; (ii) each household i ∈ [0, 1] chooses a

location-contract pair (j,l) that maximizes its utility.

The structure of this problem is in the class of problems first introduced by Mirrlees (1971) and developed

in the case of monopoly pricing by Maskin & Riley (1984).15

The Securitization Option The introduction of the securitization option is straightforward. For mortgages

whose amount Lj is below the conforming limit L̃, the lender can sell the mortgage to the agency securitizers

at a guaranty fee '(x) that depends on the borrower’s FICO score and the LTV.16 In such a case, the multiplier

becomes �(') and the lender does not earn the revenue Ejl [�] of a foreclosure sale. As the lender picks

loans for securitization after observing (x, "), the lender securitizes mortgages for which the profit Πℎ
jl

of

15A recent structural model of business lending with asymmetric information is presented in Crawford, Pavanini & Schivardi

(2018).
16In the model’s simulation upfront fees are converted into ongoing fees following standard formulas.
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originating and holding (equation (16)) is lower than the profit Πs
jl

when originating and securitizing. Then:

Πjl =

⎧⎪⎨⎪⎩

max
{
Πℎ
jl
,Πs

jl

}
for Lj ≤ L̃

Πℎ
jl

otherwise

(21)

Identification using Discontinuities at the Conforming Loan Limit The structural parameters of interest

are lenders’ perceptions of price trends �̂j , �̂j and their cost of capital �̂l that pin down their choice of interest

rates and approval decisions. In turn these interest rate and approval decisions are driven by households’ self-

selection into mortgage options (their unobservable driver "i) and by their propensity to default.

The relationship between default rates �, observables x, unobservables ", mortgage balance Bjt, and

current house price pjt is identified using a discrete choice estimation. The BlackKnight data set described

in Section 3 has each borrower’s payment history at monthly frequency, with the unpaid balance. Such data

is merged at the ZIP level with Zillow’s house price index.

Households’ self-selection into mortgage options is estimated using a discrete choice model akin to Berry,

Levinsohn & Pakes (1995) with JL options, one for each location and each lender. A simple contraction

mapping yields base utilities, which regressed on interest rates rjl, mortgage amounts Ljl, and house prices,

provide the structural drivers of households’ choices conditional on x and ".

The expected price trend �l, volatility �l, and the lender’s cost of capital �l are backed out using the

discontinuities in mortgage characteristics at the conforming loan limit. The estimator �̂l, �̂l of the lender’s

perception of house price dynamics is the quantity that minimizes the distance between the model-predicted

discontinuity in approval rates, securitization rates, interest rates, default probabilities at the conforming loan

limit and the observed discontinuity in each of these dimensions.

(
�̂l, �̂l, �̂l

) ≡ argmin
(
Disc.∗

l
− D̂isc.l

)′

Ψl

(
Disc.∗

l
− D̂isc.l

)
(22)

where Disc.∗
l

is the vector of discontinuities generated by the model, ̂Disc.l is the vector of discontinuities

estimated in the data (without structural assumptions); and Ψl is the positive definite matrix that minimizes

the variance of the estimator.

This method of indirect inference described by Gourieroux et al. (1993) and recently used in Fu & Gre-

gory (2019) provides consistent estimators of lenders’ beliefs about future prices as well as their opportunity
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cost of capital.

6.2 Estimation Results

Baseline Results and Model Predictions The model’s baseline estimates of the average perception of

price trends, price volatility, and cost of capital are:

�̂ = +2.68%, �̂ = 0.48%, �̂ = 4.40% (23)

Figure 13 presents the model’s predictions of discontinuities at the conforming loan limit given the structural

parameters. On these graphs, the lender sets interest rates, makes approval and securitization decisions

optimally. Each point is a neighborhood. Households make neighborhood and lender choices based on their

multinomial discrete choice model; households can also choose not to borrow (choose the outside option).

Households default based on their observables, unobservables, their balance and the neighborhood’s price.

The model predicts a bunching of households at the conforming loan limit, where the probability that a

household chooses a conforming loan is strictly higher than the probability of choosing a jumbo loan with

similar amount. Similarly, the model predicts lower interest rates (at given household observables x) for

conforming loans. Importantly, the model also predicts significantly higher default rates for conforming

loans than for jumbo loans with similar amounts. This is due to the self-selection of worse risk " into the

conforming loan segment. The model is thus able to jointly generate similar dynamics as in this paper’s data

from HMDA and BlackKnight financial.

6.3 Out-of-Sample Predictions

6.3.1 Increasing Disaster Risk

The model enables an out-of-sample estimation of the impact of declining price trends on securitization and

origination volumes. Figure 14 compares the baseline scenarios generated by the estimated parameters (23),

to a scenario with declining expected prices �l = −1% and similar volatility �l = 0.48%. The cost of capital

is kept constant.

As expected, the decline in prices causes a rise in expected default rates (subfigure (b)). The most salient

fact from the simulation is the rise in the fraction of conforming mortgages that are securitized (subfigure

(c)). While interest rates further from the conforming loan limit increase, interest rates at the limit remain

30



stable (subfigure (a)). The increase in securitization coupled with the relative stability of the mortgage at the

limit suggests that the GSEs’ securitization activity acts as an insurance mechanism and that lenders transfer

risk to the GSEs’ balance sheet.

6.3.2 The Withdrawal of the GSEs

Finally, the structural approach also allows a simulation of the impact of the withdrawal of the GSEs with

increasing disaster risk. In particular, the simulation can establish whether lenders would reduce lending

volumes, increase interest rates, in the absence of the option to sell risky mortgages. Elenev, Landvoigt

& Van Nieuwerburgh (2016) predicts that underpriced government mortgage guarantees lead to more and

riskier mortgage originations. This paper’s model predicts both aggregate shifts in default risk and local,

neighborhood-level, shifts in mortgage originations, securitizations, as well as households’ self-selection

into the GSE-guaranteed segment.

This is what Figure 15 presents. The green points depict the equilibrium in the mortgage market when

lenders do not have the option to securitize. The withdrawal of the GSEs causes a substantial decline in

the overall fraction of households who choose to buy a home, and no bunching at the conforming loan limit

(subfigure (a)). Without the securitization option, there is no evidence of adverse selection of households

into lower mortgage volumes (subfigure (c)). Default rates for low mortgage amounts drop substantially, yet

default rates for large mortgage amounts remain similar (subfigure (b)).

Finally, subfigure (d) combines the withdrawal of the GSEs with increasing risk, in the form of a decreas-

ing price trend � = −1%. In the previous subsection, increasing risk translated into greater securitization

volumes with no substantial shift in origination volumes. Without the GSEs however, increasing risk leads

to a substantial decline in origination volumes, consistent with the hypothesis that the securitization option

acts as an implicit insurance mechanism.17

7 Conclusion

Fannie Mae and Freddie Mac have an important public mission (Frame & Tracy 2018): to support liquid-

ity in the secondary U.S. mortgage market, and thereby facilitate access to homeownership for millions of

Americans. They also make possible the popular 30-year, fixed-rate mortgage. Households borrowing in

17This is also consistent with Elenev et al.’s (2016) macro-level findings that “increasing the price of the mortgage guarantee

reduces financial fragility, leads to fewer but safer mortgages.”
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2020 using such a mortgage contract sign loans maturing in 2050. Thus, in a world of increasing disaster

risk, Fannie Mae and Freddie Mac play a key role in guiding lenders and households through the climate

change adaptation process.

This paper uses mortgage-level data merged with neighborhood-level natural disaster data to find that

(i) after natural disasters, lenders have incentives to screen their loans for securitization, (ii) conforming

loans, that are eligible for sale to Fannie Mae or Freddie Mac, are riskier than non-conforming loans at equal

loan amount, (iii) after natural disasters, lenders increase their originations and securitization of conforming

loans. Our out-of-sample simulations suggest that (iv) in the current status quo scenario (at constant agency

guarantee fees), increasing disaster risk would not significantly affect origination volumes, at the cost of

increasing securitization and default. This latter finding would not hold if the GSEs either withdrew or

increased their guarantee fee: origination volumes and interest rates would then significantly respond to

increasing risk.

Given that natural disasters cause correlated mortgage defaults,18 such default may become difficult to

diversify if the volume of at-risk loans increases. Hence this paper’s conclusions should be of interest to

stakeholders interested in monitoring the systemic climate risk held onto lenders’ and GSEs’ balance sheets.
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Figure 1: The Impact of Lender and Borrower’s Risk Perceptions on Bunching at the Conforming Loan Limit

– Theoretical Predictions from the Mechanism Design Model

These two figures present the predictions of the model of mortgage pricing with asymmetric information

(Section 2) when either the lender’s risk perception �l increases (subfigure (a)) or the borrower’s risk per-

ception �b increases (subfigure (b)). Subfigure (a) suggests that bunching at the conforming limit increases,

while subfigure (b) suggests that bunching at the conforming loan limit declines. Such results are described

in Proposition 2.
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Figure 2: The treatment group for Hurricane Katrina

This figure highlights the boundaries of neighborhoods hit by Hurricane Katrina. A neighborhood is in the

treatment group if: (i) its minimum elevation is less than 3 meters, (ii) its distance to the coastline or its

distance to wetland is less than 2 km, and (iii) if it lies in the 64kt wind path. Elevation from USGS’ digital

elevation model. Distance to wetland from the Land Cover data set. Wind speed from the Atlantic Hurricane

data of the National Hurricane Center. The treatment group is at the intersection of the red and blue areas.
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Figure 3: The treatment group for Hurricane Sandy

This figure highlights the boundaries of neighborhoods hit by Hurricane Sandy. A neighborhood is in the

treatment group if: (i) its minimum elevation is less than 3 meters, (ii) its distance to the coastline or its

distance to wetland is less than 2 km, and (iii) if it lies in the 64kt wind path. Elevation from USGS’ digital

elevation model. Distance to wetland from the Land Cover data set. Wind speed from the Atlantic Hurricane

data of the National Hurricane Center. The treatment group is at the intersection of the red and blue areas.
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Figure 4: ZIP Codes in Hurricanes’ Wind Path

These four maps illustrate the determination of 5-digit ZIP codes (ZCTA5) in the 64 knot wind radius of a

hurricane path. These are ZCTAs in grey or red in the previous figure. We present here 4 hurricanes out

of the 20. The red area is the radius of 64 knot winds around each hurricane’s path. Hurricane paths are

measured by NOAA National Hurricane Center’s Atlantic Hurricane Data Set. The grey polygons are the

boundaries of ZCTAs from the 2014 edition of Census maps.

(a) Wilma 2005 (b) Katrina 2005

(c) Ike 2008 (d) Sandy 2012
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Figure 5: Baseline Discontinuities at the Conforming Loan Limit – HMDA Analysis

These figures present the estimates of the impact of the conforming loan limit on the log count of applications,

borrowers’ ethnicity, the loan-to-income ratio of originations, and the liquidity ratio of the lender. The black

points are the value for each 1 ppt bin in the window around the conforming loan limit. The blue lines

are the predictions from a generalized additive model. The red dotted line is the conforming loan limit.

The horizontal axis is the difference between the log loan amount and the log conforming loan limit. The

conforming loan limits are year- and county-specific .
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Figure 6: Baseline Discontinuities at the Conforming Loan Limit – BlackKnight Data Analysis

These figures present the estimates of the impact of the conforming loan limit on mortgage characteristics

in the data set of property transactions for the New York metro area. The solid red lines are the predictions

from a generalized additive model. The red dotted line is the conforming loan limit. The horizontal axis

is the difference between the log loan amount and the log conforming loan limit. The values are year- and

county-specific.
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Figure 7: Default and Prepayment Around the Conforming Limit

These figures estimates delinquency, foreclosure, and bankruptcy probabilities around the conforming loan

limits.

(a) Foreclosure at any point after origination
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(b) Hazard Rate of a Payment Incident (Delinquency, Foreclo-

sure)
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(c) 60 Days Delinquent At Any Point
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(d) Voluntary Payoff
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Figure 8: 168-Year Probability of Hurricane Occurence

This map presents, for each of the 86,455 blockgroups in the Atlantic states, the number of hurricane paths

intersecting the neighborhood divided by 167 years. The time period is 1851-2017. For instance, a prob-

ability of 0.10 implies that there were between 16 and 17 hurricanes going through the neighborhood over

168 years. The hurricane path is the 64kt wind speed path.

Source: NOAA’s Atlantic Hurricane Data Base.
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Figure 9: Main Figure – Impact of Billion Dollar Event on Originations at the Conforming Loan Limit

This figure describes the estimates of the impact of the 15 billion dollar events on the denial rate by loan

volume relative to the conforming loan limit. The horizontal axis is the % distance of the loan volume to the

conforming loan limit. The vertical axis is the impact of the billion dollar event on the probability of denial

(in percentage points) for loan volumes at each level (horizontal axis).
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(b) In the three years after the disaster
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The reported number on the vertical axis is the coefficient of a variable interacting the loan volume with a

treatment dummy. The treatment dummy is equal to 1 if the zip is hit by a natural disaster in year t− k for

k = 1, 2, 3 . The regression includes year, 5-digit Zip fixed effects, indicator variables for the number of

years relative to each disaster. The sample is the set of mortgages with a loan amount between 90 and 110%

of the year- and county-specific conforming loan limit.
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Figure 10: Impact of Billion Dollar Disasters on Prices, Rents, and the Price/Rent Ratio

This figure presents the results of a regression of log price, log rent, and log price/rent ratio on a series of

pre- and post-disaster indicator variables.
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Source: Zillow House Price Index Single Family/Multifamily. Rental Price Index. Billion dollar events after

2010 (first year of data availability for Zillow’s price indices) as in Table 1. Impacts on prices and price/rent

ratios significant at 1% after the event. Standard errors clustered by Zip and by year.
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Figure 11: The Impact of Billion Dollar Events on Default and Prepayment

These figures present the coefficients of a regression of payment history dummies on a set of pre- and post-

natural disaster indicator variables. Regression control for both ZIP code and year fixed effects.
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Figure 12: Bank Branches and Banks’ Geographic Coverage of Billion Dollar Events

Each dot on this figure is a bank branch. The blue areas are 5-digit Zips hit by a billion dollar event. Bank

branches are matched to their corresponding banks. Regression Table 5 uses two measures of a bank’s

geographic coverage: (i) the minimum distance of its branch network to the billion dollar event, and (ii) the

share of a bank’s network in zips hit. The upper panel presents a map, where the color indicates what share

of a bank’s branches are in the area hit by a billion dollar event, i.e. the extent to which a bank’s branch

network is geographically concentrated in this area. The lower panel presents descriptive statistics for the

two measures. This data is built for the 15 billion dollar events described in Table 1.

(i) Share of a Bank’s Network in Disaster-Struck Area: the Case of Hurricane Katrina (2005)

(ii) Descriptive statistics for the case of Hurricane Katrina

Measure P25 Median Mean P75

log Minimum Distance of Branches to Area 0.00 5.20 4.98 6.55

Share of a Bank’s Network in Area 0.00 3.90 22.86 31.80
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Figure 13: Model-Generated Discontinuities at the Conforming Loan Limit

This set of figures presents the predictions of Section 6’s model of monopolistic competition with asymmetric

information. Each lender chooses a menu of interest rates and approval rates optimally given households’

self-selection and future default probabilities. In the graphs below each point is a neighborhood, with loan

amounts displayed as a distance to the conforming loan limit.
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(c) Interest Rate Discontinuity
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(d) Household Sorting by Unobservable Driver of Default
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Figure 14: Impact of Increasing Risk on Mortgage Market Equilibrium

Keeping the cost of capital, neighborhood amenities, household preferences, and the dynamics of default

constant, these figures present the simulation of a decline in expected price trends �, with a constant price

volatility �. This is described in Section 6.3.1. The red points are for the declining price trend.

(a) Evolution of Interest Rates
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(b) Evolution of Default Probabilities

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

−2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

log(Loan Amount) − log(Conforming Limit)

D
e
fa

u
lt
 R

a
te

 (
%

)

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

(c) Evolution of Securitization Probabilities
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Figure 15: Simulating the Impact of the Widthdrawal of the GSEs

Keeping cost of capital, neighborhood amenities, household preferences, and the dynamics of default con-

stant, these figures simulate the removal of the option to securitize on origination volumes and interest rates.

This is described in Section 6.3.2. The green points correspond to the outcome without the option to securi-

tize. Subfigure (d) combines the withdrawal of the GSEs with increasing risk in the form of declining prices

(orange points).

(a) Probability of Neighborhood Choice
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(c) Household Sorting in Unobservable Default Dimension
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(d) Combining the Withdrawal with Increasing Risk
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Table 2: A 150-Year History of Hurricane Risk – Local Determinants, Time Trends, Idiosyncratic Risk, and

Autocorrelation

The first column performs a regression of each of the 15 decennial probabilities for each of the neighborhoods

on neighborhood fixed effects. It thus measures how much the “local” explains the probabilities vs. the

idiosyncratic randomness. The local fixed effect explains 32% of the total variance of the probability. The

second column includes in addition a fixed effect for which decade. The third column performs a regression

on a linear trend, where the lhs is in decades. This predicts that over 150 years, the decennial probability of

being hit has increased by 1 percentage point. The fourth column adds neighborhood fixed effects. The fifth

column performs an autoregressive approach to estimate the amount of persistence, without a neighborhood

fixed effect. The sixth column performs this autoregressive approach with a neighborhood fixed effect.

(1) (2) (3) (4) (5) (6)

Decennial Decennial Decennial Decennial Decennial Decennial

Probability Probability Probability Probability Probability Probability

(ppt) (ppt) (ppt) (ppt) (ppt) (ppt)†

Secular Linear Trend - - 0.064*** 0.064*** - -

(0.002) (0.002)

Lagged Probability - - - - 0.302*** 2.317***

(0.001) (0.112)

Fixed effect Neighborhood Neighborhood None Neighborhood None Neighborhood

Decade

Observations 1296825 1296825 1296825 1296825 1296825 1296825

Neighborhood 86455 86455 86455 86455 86455 86455

Decades 15 15 15 15 15 15

R Squared 0.32 0.33 0.01 0.32 0.09 -†

†: this specification is a dynamic panel with fixed effects. The lagged probability is instrumented by the

second lag following Arellano and Bond (1991).
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Table 5: Impact of Billion Dollar Events on Banks’ Mortgage Credit Supply – Overall (Conforming and

non-Conforming Loans)

This set of tables estimates the impact of billion dollar events on (i) the minimum distance of lenders’ branch

network to the location of the disaster, (ii) the supply of credit by lenders whose branch network is located in

the disaster area, (iii) the supply of credit by banks regulated by the Federal Deposit Insurance Corporation

(FDIC), (iv) the origination of conforming loans by such FDIC-insured banks.

(1) (2) (3)

log(Minimum Distance) % of Branches in Disaster FDIC Insured Lender†

Treated × Disaster −2 −0.858 −0.009 −0.021

(0.768) (0.010) (0.015)

Treated × Disaster Year +1.762** −0.002 +0.003

(0.814) (0.009) (0.013)

Treated × Disaster +1 +1.913*** −0.007 +0.001

(0.756) (0.008) (0.012)

Treated × Disaster +2 +1.388* −0.014** +0.1198

(0.755) (0.007) (0.019)

Treated × Disaster +3 +1.391* −0.011 +0.0415*

(0.729) (0.009) (0.021)

Other Controls Treated, 5-Digit ZIP f.e., Year and Time f.e.

Clustering 2–way 5-Digit ZIP and Year

Observations 1,527,061† 1,527,061† 2,547,648†

5-digit ZIPs 7,721 7,721 8,213

R Squared 0.411 0.241 0.133

F Statistic 136.438 62.072 91.150

†: columns (1) and (2) focus on the set of loans originated by bank lenders. Column (3) includes observations

from all bank and non-bank lenders. The sample is identical to the sample of the paper’s baseline regressions:

loans in the 90%-110% window around the conforming loan limit.
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A Natural Disasters and the Securitization Activity

of Regional and National Banks

Focusing on the impact of billion-dollar events on securitization and origination at the conforming limit

arguably leads to more causal estimates than correlations using aggregate securitization and origination vol-

umes. Yet, understanding the impact of billion dollar events on the composition of the pool of lenders in

disaster-struck areas is key to understanding the mechanism.

The extent of a bank’s involvement in a disaster-struck area is proxied by building two geographic mea-

sures based on their branch networks: (i) first, we measure the minimum distance of its bank branches to ZIP

codes hit by billion dollar disasters; (ii) second, we compute the share of each bank’s branches that are lo-

cated within ZIP codes hit by the natural disaster. The first and the second measures differ: while the second

measure captures the bank’s specialization in the area, the first measure is a proxy for a physical presence of

loan officers in areas hit by the natural disaster.

This is illustrated in the case of Hurricane Katrina in Figure 12. Each point is a bank branch from the

Summary of Deposits. Points are colored according to the share of bank’s branch network that is located in

one of the treated ZIP codes. The lower-panel table suggests that in the case of Katrina, the median bank has

3.9% of its branches in the area, and the average is 22.86%, suggesting that banks that are more geographically

specialized are also banks that originate a larger number of mortgages in the area.

The panel also shows that a share of mortgages are extended by banks whose brick-and-mortar branch

network is far away from the event: the mean minimum log distance is about 4.98, or 90 miles (148 kilome-

ters). There is thus a diversity of banks supplying loans prior to the billion dollar, and this section estimates

the heterogeneous response of such banks to the event.

We perform a pre- post-natural disaster regression to estimate the impact of the billion-dollar event on

the composition of the supply side:

LenderCℎaracteristicsl(i) = Constant+

+10∑
t=−10

ΔtHitid × T ime(t) + T imet=y−y0

+ Y eary +Disasterd +Neigℎborℎoodi + "it (24)

where d indexes disasters, l(i) is the lender of mortgage i, t indexes time, and y indexes years. Δt is the

impact of the event on the outcome in time t = y− y0(d) relative to disaster year. Y eart a year fixed effect,

57



and "it a residual two-way clustered at the ZIP and year levels.

The regression is performed with three types of characteristics: each of the two branch network measures,

and an indicator variable for FDIC insured bank lenders (Table 5). The first two regressions do not include

observations of non-bank lenders. The last regression includes all observations, whether the mortgage was

originated by a bank or a non-bank lender. In Table 5 Column (1), loans tend to be more likely to be originated

by more distant banks. Column (2)’s results although non-significant in years +1 and +3, suggest a similar

pattern: a lower share of branches in the area for the lenders of loans originated post-disaster. Column (3)

presents evidence that the long-run share of bank lenders increases.

Section 5 presented evidence that increasing bunching at the conforming loan limit is consistent with

lenders updating their beliefs about local disaster risk. This section’s results further suggest that national

lenders are more likely than regional banks to shift their securitization behavior following a natural disaster.

Local lenders may have invested in the fixed cost of learning about local disaster.

B Comparing the Impact of Natural Disasters with

the Impact of Income Shocks on Agency Securitization

This paper’s results can be compared to the impacts of other types of predictable yet unpriced local shocks on

securitization activity. Specifically, areas with a declining manufacturing sector should see more securitiza-

tion activity as such predictable trends are not part of the GSEs’ pricing of mortgage default rates: guaranty

fees are not conditional on future income trends.

If the local industrial structure is, like natural disasters, better observed and/or predicted by local loan

officers than by the national securitizers, a secular decline in economic activity should lead to an increase in

securitization volumes as lenders transfer mortgage default risk onto the GSEs’ balance sheets.

Using the Census’s County Business Patterns, we build county-level predictors of local employment

shocks as in David, Dorn & Hanson (2013). Specifically, the Bartik measure Bjt is the inner product of

the share of each industry i = 1, 2,… , N in county j in 1998 with the national log growth of employment

in each industry i between years t and t − 1 for t = 1998,… , 2017. We consider 1998 as this is the first

year of a consistent time series for 2-digit NAICS industries, as prior years present employment statistics in

SIC industry classification. We then proceed by interacting Bartik-predicted local employment shocks on

the discontinuity at the conventional loan limit, in regressions with the number of mortgages (the bunching)
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and the characteristics of the mortgages (the sorting) as left-hand side variables. The following specification

formalizes this idea:

log nkjt = Constant+ � ⋅ 1(k ≥ 0) + � ⋅Bartikjt

+ �b ⋅ 1(k ≥ 0) ⋅Bartikjt

+ f (Lkt) ⋅ 1(k ≥ 0) + g(Lkt) ⋅ 1(k < 0) +Countyj + Y eart + "kjt, (25)

and the Bartikjt =
∑

i Sℎare Industry ij,1998 ⋅Δ logLit; and similarly with characteristics xit as left-hand

side. Bins of width 0.25 percentage points are indexed by k. As long as the local 2-digit NAICS industry

share in 1998 is exogenous to local unobservable shocks in following years, the estimate �̂b will reflect the

impact of employment shocks on bunching at the conventional loan limit. �̂ is the impact of local employment

shocks on origination volumes.

Results are presented in Table D. As expected a downward Bartik employment shock leads to a decline

of originations across the board around the conventional loan limit. It also leads to an increase in bunching

at the conventional loan limit: a billion dollar event corresponds to the effect of a 0.423∕2.531 = −17%

employment decline.
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Appendix Table A: Descriptive Statistics for the BlackKnight and HMDA Samples

This table describes the two main samples used in this paper: (i) the BlackKnight mortgage data set, covering

up to 65% of the mortgage market, and (ii) a national universe of mortgage files, built from Home Mortgage

Disclosure Act data, merged with the Federal Reserve of Chicago’s Report of Income and Condition. Each

of these two data sets are merged with FEMA’s Billion Dollar Events, and with the average number of storms

per county from NOAA. Both samples consider mortgages between 90% and 110% of the year- and county-

specific conforming loan limits.

(a) Home Mortgage Disclosure Act Sample, 1995-2016

Variable Mean P10 P25 P50 P75 P90 Observations

Application Denied 0.152 0.000 0.000 0.000 0.000 1.000 10,835,083

Loan Originated 0.512 0.000 0.000 1.000 1.000 1.000 13,446,510

log(Applicant Income) 11.767 7.032 9.061 13.181 14.532 14.532 990,712

Loan to Income 2.654 1.508 1.976 2.606 3.308 3.889 9,892,849

Asian Applicant 0.099 0.000 0.000 0.000 0.000 0.000 9,084,807

Black Applicant 0.040 0.000 0.000 0.000 0.000 0.000 9,084,807

Hispanic Applicant 0.070 0.000 0.000 0.000 0.000 0.000 9,084,807

White Applicant 0.781 0.000 1.000 1.000 1.000 1.000 9,084,807

Lender’s Liquidity Ratio 0.044 0.001 0.008 0.032 0.032 0.129 1,139,292

Lender’s Securitizability 0.710 0.601 0.638 0.638 0.795 0.883 1,133,724

Credit Union 0.017 0.000 0.000 0.000 0.000 0.000 13,446,510

Reg. by Federal Reserve 0.110 0.000 0.000 0.000 0.000 1.000 13,446,510

(b) BlackKnight McDash Data Set

Variable Mean P10 P25 P50 P75 P90 Observations

Below Conforming Limit 0.620 0.000 0.000 1.000 1.000 1.000 1,746,112

Credit Score 712.481 625.000 671.000 721.000 767.000 790.000 1,086,311

Term 345.996 300.000 360.000 360.000 360.000 360.000 1,744,975
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Appendix Table B: Baseline Sorting Regressions – Observable Mortgage Characteristics

These regressions estimate the sorting of mortgage characteristics around the conforming loan limit, for

windows of decreasing sizes around the limit. All regressions include ZCTA and year fixed effects.

Window around conforming loan limit

Variable ±10.0 pct ±4.0 pct ±3.0 pct ±2.0 pct ±1.0 pct ±0.5 pct

Jumbo Loan 0.871*** 0.865*** 0.833*** 0.782*** 0.680*** 0.567***

(0.002) (0.002) (0.002) (0.003) (0.005) (0.006)

Original Credit Score 4.723*** 4.450*** 4.464*** 3.946*** 3.727*** 3.710***

(0.374) (0.391) (0.449) (0.544) (0.755) (0.946)

Interest Rate Differential (ppt) 0.000*** 0.000*** 0.000** 0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Loan-to-Value Ratio 0.007*** 0.010*** 0.012*** 0.014*** 0.003* -0.001

(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Combined Loan-to-Value Ratio 1.448*** 1.486*** 1.437*** 1.007*** 0.376 -0.088

(0.169) (0.176) (0.206) (0.251) (0.353) (0.446)

Second Mortgage 0.018*** 0.018*** 0.017*** 0.012*** 0.007 0.003

(0.002) (0.002) (0.003) (0.003) (0.004) (0.006)

Full Documentation -0.021*** -0.021*** -0.021*** -0.023*** -0.030*** -0.033***

(0.004) (0.004) (0.004) (0.005) (0.007) (0.009)

Debt to Income Ratio 0.070 0.093 0.060 0.248 0.434* 0.312

(0.133) (0.139) (0.157) (0.189) (0.262) (0.340)

log(Property Value) 0.076*** 0.065*** 0.040*** 0.015*** 0.010*** 0.007*

(0.001) (0.001) (0.002) (0.002) (0.003) (0.004)

Mortgage Term 4.311*** 4.520*** 4.612*** 4.581*** 3.711*** 3.291***

(0.308) (0.321) (0.369) (0.462) (0.651) (0.878)

Fixed Rate Mortgage -0.023*** -0.024*** -0.025*** -0.032*** -0.038*** -0.040***

(0.003) (0.003) (0.004) (0.004) (0.006) (0.008)

Private Mortgage Insurance -0.030*** -0.029*** -0.030*** -0.032*** -0.043*** -0.048***

(0.002) (0.002) (0.003) (0.003) (0.004) (0.005)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered at the ZCTA-year level.
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Appendix Table C: Baseline Sorting Regressions – Defaults

These regressions estimate the impact of the conforming loan limit on the mortgage’s payment history for

windows of decreasing sizes around the limit. All regressions include ZCTA and year fixed effects.

Window around conforming loan limit

Variable ±10.0 pct ±4.0 pct ±3.0 pct ±2.0 pct ±1.0 pct ±0.5 pct

Foreclosure at any point -0.020*** -0.019*** -0.018*** -0.016*** -0.017*** -0.014***

(0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

30 days delinquent at any point -0.009*** -0.008*** -0.007** -0.004 -0.005 -0.004

(0.002) (0.002) (0.003) (0.003) (0.004) (0.005)

60 days delinquent at any point -0.016*** -0.015*** -0.013*** -0.009*** -0.012*** -0.010**

(0.002) (0.002) (0.002) (0.003) (0.003) (0.004)

90 days delinquent at any point -0.014*** -0.013*** -0.012*** -0.008*** -0.010*** -0.007*

(0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

120 days delinquent at any point -0.004** -0.003** -0.003* -0.001 -0.000 -0.004

(0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

Voluntary Payoff 0.053*** 0.052*** 0.043*** 0.034*** 0.026*** 0.011

(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered at the ZCTA-year level.
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Appendix Table D: Impact of Bartik Shocks on the Bunching at the Conforming Loan Limit

This table estimates the impact of labor demand shocks on the bunching at the conforming loan limit. La-

bor demand shocks are predicted using a Bartik (1991) type predictor of employment growth Bartikjt =∑
i Sℎare Industry ij,1998 ⋅Δ logLit where Sℎare Industry ij,1998 is the share of industry i in the employ-

ment of county j in 1998, and Δ logLit is the national log employment growth in industry i.

Dependent variable (Counts):

(1) (2) (3) (4)

log(Applications) log(Originations) log(Denials) log(Securitizations)

Employment Growth Bartik Predictor 0.993*** 1.065*** -0.395 2.091***

( 0.407) ( 0.379) ( 0.266) ( 0.391)

Above Conforming Limit -0.666*** -0.560*** -0.291*** -0.567***

( 0.009) ( 0.009) ( 0.006) ( 0.008)

× Employment Growth Bartik Predictor 1.943*** 2.531*** 0.519*** -0.124

( 0.323) ( 0.327) ( 0.203) ( 0.271)

Other Controls Polynomial in log(Loan) − log(Conforming Loan Limit)

R Squared 0.63 0.56 0.45 0.53

Observations 859679 859679 859679 859679

F Statistic 472.49 356.14 224.45 309.83

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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