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1. Introduction

A single product often bundles together many functions. Smartphones and computers are
extreme examples that combine communications (text, audio and visual) with photography, effi-
ciency tools and other functions. Automobiles combine a basic driving experience with features
ranging from a simple heated seat to consumer electronics through to AI-controlled brakes and
steering. Even low-tech products can have many functions. A refrigerator may come with a
defroster, an ice maker, an LED display, and a smart temperature control, none of which overlap
technologically with the core compressor technology. Products often have multiple functions that
are technologically distinct but are nevertheless bundled together to raise product demand. The
firm provides the Big Idea by identifying and bundling clusters of functions that most interest
consumers. For each function the firm then pairs with a supplier who helps develop and produce
it. Multiple functions require a network of suppliers.

What implications flow from the fact that some firms are so much better than others at the Big
Idea, that is, at identifying and bundling clusters of functions? And given the holdup problems
associated with bringing ideas to market and coordinating multiple suppliers, how do firms
decide whether to outsource functions or produce them in-house? We introduce the notion of an
‘ideas-oriented’ industry as one in which more productive firms have high marginal returns to
adding a function relative to less productive firms. That is, productivity is the ability to identify
and bundle valuable clusters of functions. It follows immediately that a more productive firm
will imbed more functions into its product, which is what we mean by greater scope. However,
if more functions require more suppliers then greater scope comes with greater potential for
holdup by suppliers. Central to our paper is this trade-off between scope and holdup, and our
main conclusion is that in ideas-oriented industries more productive firms can partially relax this
trade-off and increase their scope by vertically integrating their suppliers.

This paper is about how multi-functionality connects two famous questions: What explains
firm scope and what explains the boundaries of the firm? We assume that each function requires
a unique supplier and non-contractible, relationship-specific investments from both the firm and
the supplier. As a result, there is a bilateral holdup problem (Grossman and Hart, 1986, Hart
and Moore, 1990). The firm engages in multilateral bargaining with its suppliers and the firm’s
bargaining power is given by its Shapley value as share of total revenue. We assume that each
function is essential for the final good, which makes the firm’s bargaining power a declining
function of the number of suppliers. This sets up the scope-holdup trade-off: Multi-functionality
increases the firm’s scope, but reduces the firm’s incentives to invest.

To be more concrete, we suppose as in Antràs (2003) that vertical integration raises the
firm’s incentives by raising its bargaining power while outsourcing raises suppliers’ incentives
by lowering the firm’s bargaining power. Start with a situation in which a firm has so few
suppliers that its bargaining power is very high, so high that supplier investments are inefficiently
discouraged. On ex ante efficiency grounds the firm should relinquish some bargaining power
by outsourcing. As the number of suppliers increases, the firm’s bargaining power erodes and if
it erodes enough, efficient incentives require the firm to vertically integrate in order to partially
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restore its bargaining power. This creates a natural link between firm scope and firm boundary
decisions.

Our main point flows from the empirical observation documented below of tremendous
heterogeneity across firms in the number of suppliers used and the extent to which these sup-
pliers are vertically integrated. To explain this, we first introduce within-industry productivity
dispersion as in Melitz (2003) and especially Antràs and Helpman (2004). We then introduce
the concept of an ‘ideas-oriented’ industry. In such an industry, productivity means the ability
to squeeze out more demand from any level of functionality. More precisely, let θ be a firm’s
productivity, let N be the firm’s number of functions or suppliers and let D(N ,θ) be the firm’s
demand shifter. An ideas-oriented industry is one for which D is log-supermodular. That is, DN

is increasing in θ.
Our model makes two predictions about heterogeneous firms in ideas-oriented industries.

1. Firm scope with heterogeneity: In ideas-oriented industries, more productive firms will have
more suppliers.

2. Firm boundaries with heterogeneity: In ideas-oriented industries, more productive firms will
be more likely to integrate these suppliers.

The logic for both is simple. A more productive firm has a higher marginal return to an additional
function (a higher DN ) and so has more functions and, correspondingly, more suppliers. This
reduces the firm’s bargaining power and to partially rebalance incentives the firm vertically
integrates those suppliers.1

This paper is about these two theoretical predictions and their empirical validity. The remain-
der of this introduction reviews the related theoretical literature and describes the empirics.

1.1. Related Theoretical Literature

The notion of endogenous limits to scope appears most famously in Kremer (1993), which takes a
purely technological approach (O-ring technology). Incentives appear in Acemoglu, Antràs and
Helpman (2007), henceforth AAH, a paper which provides the starting point for our own work.
AAH discuss how the multilateral holdup problem constrains the number of suppliers. We depart
from AAH in two ways. First and most importantly, in that paper a firm’s bargaining power is
independent of the number of suppliers. Thus, our key mechanism is killed off. Second, in their
paper all investment is done by the supplier and, since the firm does not need to be incentivized,
there is always outsourcing.2

1Each of the two predictions involves a double difference: (a) Within an industry it compares low-productivity firms
with high-productivity firms and (b) across industries it compares ideas-oriented industries with non-ideas-oriented
industries. A non-ideas-oriented industry is better described as a ‘cost-oriented’ industry. This is an industry in which
more productive firms are better able to control costs as the number of functions increases. In such an industry the
cost reduction from eliminating one extra function (i.e., from simplifying the production process) is larger for more
productive firms than less productive firms. Letting C(N ,θ) be the unit cost of producing a product with N functions, a
cost-oriented industry is one for which C is log-submodular i.e., CN > 0 is decreasing in θ. In cost-oriented industries
(1) more productive firms will have fewer suppliers and (2) more productive firms will be more likely to outsource to
these suppliers.

2AAH briefly discuss vertical integration, but vertical integration is preferred to outsourcing only if suppliers face
a binding limited liability constraint.
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Another closely related strand of the theoretical literature starts with Antràs and Helpman
(2004) who introduce productivity heterogeneity into the Antràs (2003) model. To get at within-
industry heterogeneity in firms’ boundary choices, Antràs and Helpman (2004) introduce fixed
costs of integrating and outsourcing. If the two fixed costs are equal then within an industry
all firms either integrate or outsource while when fixed costs differ integration and outsourcing
coexist within an industry. In contrast, we get coexistence without fixed costs. This is because in
ideas-oriented industries more productive firms have more functions, more suppliers, and hence
endogenously lower bargaining power. The lower bargaining power of more productive firms
leads them to integrate while the higher bargaining power of less productive firms leads them to
outsource.

More tangentially related to our work is Antràs and Chor (2013) and Alfaro, Antràs, Chor and
Conconi (2019) who consider chains of suppliers and the decision about which suppliers on the
chain to integrate.

1.2. Empirics

There is a long and established empirical literature on holdup that tests the international trade
models of of Antràs (2003) and Antràs and Helpman (2004). See for example Yeaple (2006), Nunn
and Trefler (2008, 2013, 2014) and Alfaro and Charlton (2009). For a survey see Antràs (2015).
There is also a related industrial organization literature of which Acemoglu, Johnson and Mitton
(2009), Acemoglu, Aghion, Griffith and Zilibotti (2010) and Liu (2019) are most relevant.

We build on this literature by considering firms with multiple suppliers and by introducing
the notion of ideas-oriented industries. An empirical assessment of our two hypotheses requires
(1) data on whether or not an industry is ideas-oriented, (2) data on each firm’s productivity
and industry of affiliation, and (3) data on each firm’s network of suppliers. To construct such a
database we start with the S&P Capital IQ database, which contains firm-level data on industry
of affiliation, sales and networks of suppliers. We then use an unsupervised machine learning
algorithm (n-gram) to merge these data with the PATSTAT database on patent applications.

We use patent applications to define whether or not an industry is ideas-oriented. This
is implemented as follows. We start with a random subset of 6,000 patent applications and,
using their texts, we hand code a training set that assigns each patent a binary classifier that
equals 1 if it “improves the performance of an existing function/product or introduces a new
function/product" and equals 0 if it “improves production efficiency or reduces production costs.”
We use this to train a neural network model called a multi-layer perceptron (MLP) with 4 layers,
16 neurons per layer and a 20% dropout rate. Our trained MLP has an accuracy rate of over
85%. The model is then applied to the 29,666,609 PATSTAT patent applications taken out by
firms that have been matched to the S&P Capital IQ database. Finally, an industry is classified as
ideas-oriented if a large fraction of its patents improve functionality. The resulting classification
is sensible. For example, cell phones and autos are classified as ideas-oriented whereas energy
and materials are classified as cost-oriented.

The final database contains 251,484 companies that hold 29,666,609 patent applications, have
on average 5.30 suppliers, and integrate on average 55% of these suppliers.
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Armed with these data we examine our two predictions about heterogeneous firms in ideas-
oriented industries. Both are supported. The rest of the paper is organized as follows. Section
2 develops the theory, Section 3 describes the data, Section 4 reports our empirical findings and
Section 5 concludes the paper.

2. Theory

2.1. Setup

2.1.1. Preferences and Production

Consider a final good sector with a continuum of varieties. The representative consumer’s
preference is:

U =

{∫
ω∈Ω

[ϕ(ω)νy(ω)](σ−1)/σ
dω

}σ/(σ−1)

,

where ω is a variety index. Ω is the set of varieties available to this consumer. y(·) is the
consumer’s consumption level of a variety. ϕ(·)ν is a demand shifter (ν is a parameter and ϕ is
explained in detail below). σ is the elasticity of substitution. We assume σ > 1 and ν(σ − 1) ∈
(0,1).

Production of a variety has three stages. The firm first decides on a level of multi-functionality
N , that is, on the number of functions the product will have. Second, the firm identifies N
suppliers, each of which will help the firm develop one of the functions. This blueprint or ‘ideas’
stage involves non-contractible, relationship-specific inputs from both the firm and the supplier.
Third, in the ‘production’ stage the final good is produced in a complete-contracting environment.
The ideas stage is the key stage and we discuss it in detail next.

In the ideas stage, each function is developed using the shared inputs of the firm and the
supplier. For simplicity, we assume that each function is developed by the firm with the help of a
single supplier.3 A function can be of variable quality. For example, facial recognition is better in
some cell phones than in others and compressors are better in some refrigerators than in others.
Let qj be the quality of function j = 1, . . . ,N . It depends on the firm’s input hj and the seller’s
input mj :

qj = hηjm
1−η
j /η̂,

where η̂ ≡ ηη(1− η)1−η. 0 < η < 1. Quality qj and inputs (hj ,mj) are non-contractible.
Consumer valuation of functionality and function quality is captured by the demand shifter

ϕ = D(N ,θ)min{q1,q2,...,qN}, (1)

where θ ∈ [0,1] is a firm index that replaces ω; it plays no role yet, but we will later interpret it as
the firm’s productivity as in Melitz (2003).

3It is possible to allow for multiple suppliers of a single function.
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The particular functional form in equation (1) is not all that important to our argument. Similar
results hold with an O-Ring production function. They also hold for a CES production function
provided that one function is not too substitutable for another.4

The marginal cost of input j ∈ {h,m} is Cj(N ,θ). For simplicity, we assume that Cj(N ,θ) =

wjC(N ,θ), where the constant wj (j = h,m) captures the price of inputs and other things that are
log-separable from N and θ. Note that both D and C depend on θ. Not surprisingly, we will find
(roughly) that only D/C matters. This is the usual point that demand shifters and productivity
are isomorphic.

The inverse demand for a final product is

y = Aϕαp−σ,

where α ≡ ν(σ− 1) ∈ (0,1), and A is a collection of industry and country characteristics.
The firm is a monopolistic competitor and sets price equal to [σ/(σ − 1)]c, where c is the

marginal cost for producing the final product. This generates the following revenue function:

R = Âϕα = Â [D(N ,θ)min{q1,q2,...,qN}]α (2)

where Â ≡ σ−σ[(σ− 1)/c]σ−1A.

2.1.2. Timing

The production process is as follows. First, the firm and all the potential suppliers observe θ. The
firm then chooses organizational form k ∈ {O,V } (O is outsourcing and V is vertical integration),
adopts technology N , and offers contract {τj}Nj=1, where τj is an upfront payment to supplier j.
τj ∈ R, ∀j. A continuum of potential suppliers apply for the contract and the firm chooses N
suppliers from them. The firm and the suppliers then simultaneously choose their investment
levels {(hj ,mj)}Nj=1. After investments are made, the firm and the suppliers bargain over the
division of future revenue. At this stage, the firm and the suppliers can decide to withdraw
their investments. After the firm and the suppliers reach an agreement, ideas are generated (ϕ
is determined). Output is produced and sold. Revenue is divided according to the bargaining
agreement.

2.1.3. Holdup

We assume that in the bargaining stage, if supplier j decides to withdraw from the production
process, the firm cannot use the input as efficiently. We model this by assuming that the quality
of the input drops from qj to ∆kqj , where k ∈ {O,V } and 0 ≤ ∆O < ∆V < 1. On the other hand,
if the firm withdraws its investment for function j, qj drops to 0 regardless of the organizational
form k.

4To see this, note that under the symmetry that we impose below, min{q1,...qN} = q. Uner CES,
{

∑Nj=1 q
β
j

}1/β

becomes N1/βq. Under O-Ring, B(N)ΠN
j=1qj becomes B(N)qN . These different specifications affect the functional

form of the optimal inputs (hj ,mj), but otherwise do not matter. See the online appendices A and B for proof.
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2.2. Equilibrium

2.2.1. SSPE

We define the symmetric sub-game perfect equilibrium (henceforth SSPE) as a tuple {N ,τ ,h,m},
where N is the firm’s choice of functionality. In SSPE, τ is the firm’s upfront payment to every
supplier, that is, τj = τ for j = 1,...,N . Similarly, h is the firm’s investment for each function, and
m is each supplier’s investment. That is (hj ,mj) = (h,m), for j = 1,...,N .

SSPE can be characterized by backward induction as in AAH. Since this is familiar (and
notationally difficult) territory, we jump immediately to the revenue in any SSPE.5 This is given
by

R = Â
{
D(N ,θ)hηm1−η/η̂

}α
, (3)

where Â and η̂ are as previously defined.

Lemma 1 In every SSPE, the firm’s Shapley value under organizational form k ∈ {O,V } is γk(N)R,
where

γk(N) =
δkN + 1
N + 1

,

and δk ≡
(
∆k
)α. Each seller’s Shapley value is (1− γk(N))R/N .

Proof Appendix B.6 �

In AAH, the firm’s share of revenue γk is independent of N . Here, organizations with more
suppliers face larger holdup problems, as reflected in the fact that γk is decreasing in N . This has
an important implication. If in our model γk were independent of N , then the choice of number
of suppliers and the choice of organizational form would not interact. Specifically, the choice of
organizational form would be determined as in Antràs (2003) or as in Antràs and Helpman (2004)
with fV = fO, i.e., if η is large then all firms integrate and if η is small then all firms outsource.
Here, a productive firm may want to have a large N that will lead to a smaller share of revenue (a
small γk); the firm may find it optimal to offset this loss of revenue by moving from the O form
to the V form, which has the effect of increasing the firm’s revenue share from γO to γV .

2.2.2. Optimal Choice of Inputs

The firm and the suppliers’ problems are familiar from Antràs (2003) and Antràs and Helpman
(2004), henceforth AH. They simultaneously choose their investment levels taking the others’
investment levels as given.

The firm’s problem can be written as:

max
(h1,h2,...,hN )

γk(N)
Â

η̂α

[
D(N ,θ) min

j=1,...,N
{hηjm

1−η
j }

]α
−whC(N ,θ)

N

∑
j=1

hj . (FP1)

5Appendix A proves the existence and uniqueness of SSPE.
6Appendix B derives the Shapley value under a Leontief production fucntion. See the online appendix for the

Shapley values under O-Ring and CES production functions.
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Supplier j’s problem can be written as:

max
mj

1− γk(N)

N

Â

η̂α

[
D(N ,θ) min

j=1,...,N
{hηjm

1−η
j }

]α
−wmC(N ,θ)mj . (SP1)

We assume α ∈ (0,1) so that the firm’s problem (FP1) and the supplier’s problem (SP1) are
concave.

Lemma 2 In every SSPE, the unique solution to (FP1) and (SP1) under organizational form k is

hk(N ,θ,η) =

{
αÂ

η̂

D(N ,θ)α

NC(N ,θ)

[
ηγk(N)

wh

]1−α+αη [
(1− η)(1− γk(N))

wm

]α−αη}1/(1−α)

mk(N ,θ,η) =

{
αÂ

η̂

D(N ,θ)α

NC(N ,θ)

[
ηγk(N)

wh

]αη [
(1− η)(1− γk(N))

wm

]1−αη}1/(1−α) (4)

with hk(N ,θ,η) and mk(N ,θ,η) satisfying the following relationship:

hk(N ,θ,η)
mk(N ,θ,η)

=
γk(N)

1− γk(N)

η/wh
(1− η)/wm

. (5)

Proof Appendix C. �

These are messy expressions, but ones that are not fundamentally new. The only new insight
comes from equation (5): h/m will vary within an industry not only because different firms choose
different organizational forms k, but also because they choose different-sized organizations which
affect hk/mk via the effects of N on γk. Thus, our framework offers a natural explanation of the
enormous within-industry heterogeneity in relationship-specific investments that we see in the
data. There are two main (old) insights from equation (4). First and obviously, the optimal input
levels are both less than the first-best (contractible) input levels, as summarized by the product of
the exponents of γk and (1− γk). Second, hk/mk equals the first-best input ratio if and only if
γk = 1/2. This points to how the Grossman-Hart logic plays out in this model. When η is large
so that the firm’s investment is most important, the firm wants to choose a form that will raise
hk/mk. This is the form with the larger γk and, since γV > γO, vertical integration is preferred.

2.2.3. Optimal Choice of Scope and Organizational Form

Rewriting the firm’s problem in equation (FP1) with the optimal inputs from Lemma 2 generates
the firm’s surplus Πk(N ,θ,η). The firm designs a contract (or blueprint) to maximize its surplus:

max
k∈{O,V },N∈[1,∞)

Πk(N ,θ,η) = ÃG(N ,θ)Ψ (γk(N),η), (FP2)

where Ã ≡ Â1/(1−α),

G(N ,θ) ≡
[
D(N ,θ)
NC(N ,θ)

] α
1−α

,

and
Ψ (γ,η) ≡ 1− α[γη+ (1− γ)(1− η)]

[γη(1− γ)1−η]−
α

1−α
.
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It is now apparent that only D/(NC) matters, not D or NC separately.7 Note that up to this
point we have not said anything about θ. It is now clear that the appropriate assumption is that
G is increasing in θ.

Assumption 1 G(N ,θ) is strictly increasing in θ.

This is a good spot to compare our model with that of Antràs and Helpman (2004), equa-
tion (10). Their model has an almost identical profit function: In our notation it is basically
Πk(1,θ,η) = θσ−1Ψ (γ,η) where, as is standard in Melitz-like models, G(1,θ) = θσ−1. However,
there are three differences to note:

1. N is a choice variable.

2. There are no fixed costs of organizations (fV and fO in their notation). Recall that in their
model, when there are no fixed costs as is the case here (or even when there are fixed costs
and fV = fO) then their model reduces to Antràs (2003). That is, when η is small all firms
outsource and when η is large all firms vertically integrate.

3. The most important difference is that Ψ (γk(N),η) depends on N . In Antràs (2003) or
Antràs and Helpman (2004) with fV = fO, the firm chooses the organizational form k

that maximizes Ψ (γk(1),η) where γk(1) and η are parameters. In our setting, the larger is
the organization (N ), the smaller is γk(N). This creates a tension: the firm might want to
increase the number of functions N in order to increase demand, but this weakens the firm’s
bargaining power γk(N). In the next section, we show how this leads to within-industry
heterogeneity of organizational forms even though there are no fixed costs.

This is also a good spot to compare our profit function to that in AAH. First, in AAH only the
supplier makes a relationship-specific investment (η = 0) so that the firm always outsources.
Second and more importantly, in AAH the Shapley value is completely determined by exogenous
parameters so that there is no trade-off between size and holdup, i.e., γk(N) is independent of N
in AAH but decreasing in N our model.

We now make assumptions that make it easier to solve for the optimal N . We will use first-
order conditions and so ignore the integer constraint on N . The following assumption ensures
that for each choice of k, there is a unique number of suppliers that is bounded away from 1 and
infinity.

Assumption 2 G(N ,θ) satisfies the following conditions:

1. G(N ,θ) is strictly log-concave in N :
∂2 lnG(N ,θ)

∂N2 < 0.

2. lim
N→1

∂ lnG(N ,θ)
∂ lnN

>
1
2

.

3. lim
N→∞

∂ lnG(N ,θ)
∂ lnN

< 0.

Note that some of our main results rely on monotone comparative static arguments and thus do
not require convexity or uniqueness.

7Note that in the expressions for hk and mk in equation (4), what matters is Dα/NC, so D and NC matter
separately. However, they only matter for the levels of hk, mk and hence for quality qj . They do not matter separately
for anything else whatsoever. See Appendix C for the expressions for Qual, demand shifter, and revenue.
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2.3. Two Types of Industries

There are two types of industries, ideas-oriented and cost-oriented. In ideas-oriented indus-
tries, consumers highly value multi-functionality N so that DN > 0 is salient. Further, high-
productivity firms develop the best functions in the sense that each function generates a high
marginal revenue conditional on the same N . Mathematically, DN is increasing in θ or D(N ,θ) is
log-supermodular in (N ,θ).8 One can get at this same notion of ideas-oriented industries from the
cost side by noting that in these industries, high-productivity firms are really good at managing
the integration of complex designs. With complex designs, more functions raise the marginal
costs for each supplier because each firm-supplier pair must ensure its design is compatible with
all the other suppliers’ designs. That is CN > 0. Moreover, this problem is less salient for more
productive firms. That is C(N , θ) is log-submodular in (N ,θ). Thus in ideas-oriented industries,
more productive firms hire managers who are better at keeping cost low. Whether tackled from
the demand side or the supply side, both imply the following:

Definition 1 Ideas-oriented industries are industries where G(N ,θ) is log-supermodular in (N ,θ).

In cost-oriented industries, high multi-functionality comes with a complicated production
chain that involves many steps. A productive firm does not get a big bang for its multi-
functionality, rather, a complex production network comes at great management cost. Mathe-
matically, DN is non-increasing in θ and CN > 0 is salient. A better manger is able to reduce pro-
duction cost by reducing the size of the production network. That is C(N ,θ) is log-supermodular
in (N ,θ).

Definition 2 Cost-oriented industries are industries where G(N ,θ) is log-submodular in (N ,θ).

2.3.1. Ideas-Oriented Industry

Taking the log-transformation of the firm’s problem in (FP2) yields

max
k∈{O,V },N∈[1,∞)

πk(N ,θ,η) = ã+ g(N ,θ) + ψ(γk(N),η), (fp1)

where πk(N ,θ,η) ≡ lnΠk(N ,θ,η), ã ≡ ln Ã, g(N ,θ) ≡ lnG(N ,θ), and ψ(γ,η) ≡ lnΨ (γ,η). Since
the transformation from (FP2) to (fp1) is monotone, the optimal k and N that solve (FP2) also
solve (fp1).

By choosing k ∈ {O,V }, the firm is indirectly choosing the value of δk ∈ {δO,δV }. To find the
optimal δk we adopt the methodology used in Antràs and Helpman (2004), where we begin by
allowing the firm to treat δ as a continuous variable on the interval (0,1). Then (fp1) generalizes
to

max
δ∈(0,1),N∈[1,∞]

π(N ,δ,θ,η) = ã+ g(N ,θ) + ψ(γ(N ,δ),η), (fp2)

8We assume log-supermodularity instead of supermodularity for D(N ,θ) (and log-submodularity instead of
submodularity for C(N ,θ)) because the former is more convenient for our derivation. Mathematically, log-
supermodularity implies supermodularity when DθDN/D2 ≥ 0, and log-submodularity implies submodularity when
CθCN/C2 ≤ 0. For these two conditions to hold, we need only assume that Dθ ≥ 0 and Cθ ≤ 0, which are consistent
with the definition of θ as firm productivity.
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where γ(N ,δ) ≡ δαN+1
N+1 . By Assumption 1, G(N ,θ) is log-supermodular in (N , θ), so g(N ,θ) is

supermodular in (N ,θ). In equation (fp2), N and θ jointly appear in g(N ,θ) only, so the log-profit
function π(N ,δ,θ,η) is supermodular in (N ,θ).

In ideas-oriented industries, the profit function is log-supermodular in (N ,θ), meaning a more
productive firm has a higher profit margin from a larger N . However, the firm’s revenue share
γk(N) is decreasing in N . Therefore, a more productive firm is more likely to choose k =

V because integration helps mitigate the firm’s loss in revenue share from a larger N . This
tension only works in certain industries. In industries with extremely low η, suppliers’ inputs
are extremely important. The firm will always find it optimal to incentivize its suppliers by
outsourcing. In industries with extremely high η, the firm’s inputs are much more important
than the suppliers. The firm always chooses k = V to incentivize itself. Therefore, there are
two threshold values of η, ηLio and ηHio with ηLio < ηHio , such that in industries with η < ηLio, firms
always choose k = O regardless of their productivity levels. In industries with η > ηHio , firms
always choose k = V regardless of its productivity. In those industries in between, a more
productive firm has a larger N and so chooses k = V to compensate its lower revenue share. A
less productive firm has a smaller N and so has a higher revenue share even with k = O. This
intuition is formalized in Theorem 1.

Theorem 1 In an ideas-oriented industry, there exist two threshold values of η, ηLio and ηHio , with 0 <

ηLio < ηHio < 1, such that:

1. In industries with η < ηLio, all firms choose outsourcing;

2. In industries with η > ηHio , all firms choose vertical integration;

3. In industries with η ∈ (ηLio, η
H
io ), there exists a threshold θ̃io(η), such that

(a) firms with θ < θ̃io(η) choose outsourcing,

(b) firms with θ > θ̃io(η) choose vertical integration,

(c) θ̃io(η) is strictly decreasing in η.

Proof Appendix D. �

Compared to Antràs (2003), Antràs and Helpman (2004) and AAH, the within-industry het-
erogeneity in organizational forms in our model does not rely on the assumptions on fixed costs
of production. In Antràs (2003), all firms outsource in low η industries and integrate in high η

industries. In Antràs and Helpman (2004), productive firms integrate because integration brings
higher variable profit that outweighs the high fixed costs. In Acemoglu et al. (2007), a firm never
chooses integration because all relationship-specific investments are made by the suppliers, not
the firm.

We now focus on the ideas-oriented industries with heterogeneous organizational forms, i.e.,
industries with η ∈ (ηLio, η

H
io ). The firm’s problem in (fp1) can be broken down into two steps.

First, the firm chooses an optimal N for each organizational form k ∈ {O,V }. Denote this choice
by Nk

io(θ,η), and the resulting profit by πkio(N
k
io(θ,η),θ,η). The firm then compares its profits under
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k = O,V , and chooses the k that brings it the higher profit. Denote this optimal solution to (fp1)
by N ∗io(θ,η). Denote the corresponding revenue shares under the three scenarios (outsourcing,
integration and optimal) by γOio(θ,η), γVio(θ,η) and γ∗io(θ,η).

Theorem 2 In an ideas-oriented industry with η ∈ (ηLio,η
H
io ), the following results are true:

1. NO
io (θ,η), NV

io (θ,η) and N ∗io(θ,η) are strictly increasing in θ.

2. γOio(θ,η), γVio(θ,η) and γ∗io(θ,η) are strictly decreasing in θ.

3. NO
io (θ̃io(η),η) < NV

co(θ̃io(η),η) and γOio(θ̃io(η),η) > γVio(θ̃io(η),η).

Proof Appendix D. �

Parts 1 and 2 of Theorem 2 capture the key tradeoff of the paper: A more productive firm
chooses a larger scope (a larger N ), but also faces a more severe holdup problem (a lower γ). Part
3 deals with a firm that is just indifferent between the two organizational forms. By Theorem
1, this firm has productivity θ = θ̃io(η). As the firm moves from O to V , two offsetting things
happen to its revenue share. The direct effect is the improved outside option (δO < δV ), which
raises its share of revenue. The indirect effect is that the firm expands its organization (NO < NV )
which lowers the firm’s share of revenue. Part 3 states that the indirect effect dominates, meaning
the revenue share is lower under V . Part 3 is ancillary to parts 1 and 2.

2.3.2. Cost-Oriented Industries

In cost-oriented industries, a high-productivity firm features a manager that is good at cutting
costs. The profit function is log-submodular in N and θ, meaning a high-productivity (high θ)
firm benefits more from a smaller organization (N ). A smaller N increases γk(N). The firm finds
it less compelling to choose k = V to compensate for its loss of bargaining power. Therefore,
high-productivity firms choose smaller, more outsourced production networks. Again, this is
only true in industries where η is neither too high nor too low. When η is close to 1, the firm may
always find it optimal to choose k = V ; when η is close to 0, the firm may always find it optimal
to choose k = O. This intuition is formally stated in the following theorem.

Theorem 3 In a cost-oriented industry, i.e., when G(N ,θ) is log-submodular in (N ,θ), there exist two
threshold values of η, ηLco and ηHco, with 0 < ηLco < ηHco < 1, such that:

1. In industries with η < ηLco, all firms choose outsourcing;

2. In industries with η > ηHco, all firms choose vertical integration;

3. In industries with η ∈ (ηLco,ηHco), there exists a threshold θ̃co(η), such that

(a) firms with θ > θ̃co(η) choose outsourcing,

(b) firms with θ < θ̃co(η) choose vertical integration,

(c) θ̃co(η) is strictly increasing in η.
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Now focus on the cost-oriented industries with heterogeneous organizational forms, i.e.,
industries with η ∈ (ηLco,ηHco). Denote firm θ’s optimal choice of N under k ∈ {O,V } by Nk

co(θ,η),
and the resulting profit by πkco(N

k
co(θ,η), θ,η). Similar to the ideas-oriented industries, the firm

compares its profit under k = O,V , and chooses the k that brings it a higher profit. Denote
this optimal solution by N ∗co(θ,η) and the revenue shares under the three scenarios (outsourcing,
integration and optimal) by γOco(θ,η), γVco(θ,η) and γ∗co(θ,η).

Theorem 4 In a cost-oriented industry with η ∈ (ηLco,ηHco), the following results are true:

1. NO
co(θ,η), NV

co(θ,η) and N ∗co(θ,η) are strictly decreasing in θ.

2. γOco(θ,η), γVco(θ,η) and γ∗co(θ,η) are strictly increasing in θ.

3. NO
co(θ̃co(η),η) > NV

co(θ̃co(η),η) and γOco(θ̃co(η),η) < γVco(θ̃co(η),η).

Parts 1 and 2 of Theorem 4 is a description of lean-and-mean production. High-productivity
firms feature managers that can consolidate the production process (reducing N ), which mitigates
the holdup problem (a higher γ). Part 3 deals with a firm that is indifferent between the two
organizational forms (the firm with productivity θ = θ̃co(η)). As the firm moves from O to V ,
the direct effect is improved outside option (δO < δV ), which raises the firm’s revenue share. The
indirect effect is a smaller organization (NO > NV ), which also raises the firm’s revenue share.
Both effects imply that the firm’s revenue share increases.

3. Data and Descriptive Statistics

We compile a novel dataset from two sources. (1) PATSTAT – a patent database with patent
applications from 194 patenting authorities around the world.9 (2) S&P Capital IQ – a global
database with information on companies’ industry affiliation, financial statement variables, and
relationship information.10 We use the first database to define ideas-oriented and cost-oriented
industries, and the second database to gather firm-level financial and production-network char-
acteristics.

The dataset is constructed in two steps. First, we use an approximate string matching algo-
rithm that links 29,966,609 PATSTAT patent applications to 251,484 S&P Capital IQ companies,11

which is 55% of all PATSTAT patents owned by companies.12 We then train a neural network
model called multilayer perceptron (MLP) to classify the matched patents. To this end we start

9The top patenting authorities in PATSTAT include the Japanese Patent Office (19,779,900 patent applications),
the USPTO (15,161,843 patent applications), the Chinese National Intellectual Property Administration (14,535,117

patent applications), the German Patent and Trade Mark Office (7,424,621 patent applications), the Korean Intellectual
Property Office (3,810,155 patent applications), the UK Patent Office (3,440,561 patent applications), and the European
Patent Office (3,397,668 patent applications). The period of coverage begins at different times for different patenting
authorities, and ends in January, 2018.

10The period of coverage for the financial data is 2009-2016. The period of coverage for the industry affiliation and
relationship data is 2010-2017.

11The majority of these companies come from the U.S., China, Japan, and Europe. Table A2 in Appendix F
summarizes the geographic location of these companies.

12Other patent holders include individuals, governments, and universities.
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with a random sample of 6,000 PATSTAT patent applications and, using their texts, we hand
code a training set that assigns each patent a binary classifier that equals 1 if it “improves the
performance of an existing function/product or introduces a new function/product,” and equals
0 if it “improves production efficiency or reduces production costs.” We use this hand-coded
sample to train an MLP with 4 layers, 16 neurons per layer and a dropout rate of 20%.13 Our
trained model has an accuracy rate of over 85%. The model is then applied to the 29,966,609

PATSTAT patent applications taken out by firms that have been matched to the S&P Capital IQ
database. The matching and classification procedures are further explained in Appendix F and
Appendix G, and elaborated in the online appendix.

Since the S&P Capital IQ database reports each company’s industry, we can compute the
fraction of patents in each industry that improve the performance of an existing function/product
or introduce a new function/product. To help readers understand this, we start with S&P Capital
IQ aggregation of industries into 10 sectors.14 In column 1 of Table 1, the sectors are ranked by
sectors’ fractions of such patents. At the 10-sector level, we refer to a sector as ideas-oriented
if its fraction is above 0.60 and cost-oriented if the fraction is below 0.50. We define two binary
variables at the sector level: IdeaDummy equals 1 if the fraction is above 0.60 and equals 0 if
the fraction is below 0.60; CostDummy equals 1 if the fraction is below 0.50 and equals 0 if the
fraction is above 0.50.

Table 1: Firm Innovation and Production Network Characteristics

Sector Fraction of Ideas-
oriented Patents

Patents/
Revenue

R&D/
Revenue

Partners Fraction of Inte-
grated Partners

(1) (2) (3) (4) (5)

Telecom. Services 0.68 0.09 0.54% 9.90 0.45
Consumer Discretionary 0.63 0.22 1.53% 4.87 0.47
Information Technology 0.60 0.30 5.57% 7.74 0.43
Healthcare 0.60 0.20 5.15% 5.02 0.40

Financials 0.58 0.12 0.10% 3.80 0.76
Industrials 0.57 0.19 1.01% 5.13 0.55
Consumer Staples 0.55 0.06 0.34% 4.83 0.54

Energy 0.50 0.04 0.22% 7.33 0.52
Materials 0.49 0.17 0.80% 4.86 0.58
Utilities 0.48 0.04 0.13% 6.50 0.25
Total 0.57 0.15 1.25% 5.30 0.55

Ideas-oriented

Intermediate

Cost-oriented

Notes: This table reports statistics on the 251,484 S&P Capital IQ companies that are matched with PATSTAT companies.
R&D and revenue are averaged over the period 2009-2016 at historical rates and measured in millions of U.S. dollars.

13These hyperparameters are chosen based on training and validation accuracy rates. See the online appendix for
more information.

14The 10 sectors are listed in Table 1 and come from the Global Industry Classification Standard (GICS), which is
the generic industry classification in S&P Capital IQ. GICS (2017 version) contains 10 sectors, 24 industry groups, 67

industries, and 156 subindustries.
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Table 1 provides several indications that our classification is sensible. First, the highest
fractions are for Telecommunications Services (e.g., AT&T in mobile phones and Comcast in
cable TV), Information Technologies (e.g., Samsung and Apple) and Consumer Discretionary (e.g.,
automobiles, auto components, multiline retail, and household durables). These are sectors that
are consumer-facing and whose firms are sensitive to designing the right bundles for consumers.
The lowest fractions are for Energy (e.g., oil, gas, and consumable fuels), Materials (e.g., chemicals,
metals, and mining) and Utilities (e.g., electric and gas utilities), sectors that tend to be less
sensitive to consumer demand for multi-function products.

A second indication that our classification is sensible is given by columns (2) and (3) in Table
1. Compared to companies in the cost-oriented group, companies in the ideas-oriented group
tend to have higher innovation intensities as measured by patent-to-revenue and R&D-to-revenue
ratios. The average patent-to-revenue ratio is 0.20 in the ideas-oriented group and only 0.08

in the cost-oriented group. The average R&D-to-revenue ratio is 3.20% in the ideas-oriented
group and only 0.38% in the cost-oriented group. Thus, ideas-oriented sectors tend to be more
innovation-intensive relative to cost-oriented sectors.

IdeaDummy and CostDummy will be central to our regression specification below. We also
define them at finer levels of industry aggregations. At the level of 67 industries, we compute
the total number of patents held by companies in each industry, and the fraction of these patents
that improve the quality of an existing function/product or introduce a new function/product.
IdeaDummy equals 1 if an industry’s fraction of such patents is above the mean for all industries,
and equals 0 otherwise. CostDummy equals 1 if an industry’s fraction of such patents is below
the mean for all industries, and equals 0 otherwise. We also consider using the median of all
industries rather than the mean. In this case, IdeaDummy equals 1 if an industry’s fraction of
such patents is above the median for all industries, and equals 0 otherwise. CostDummy equals
1 if an industry’s fraction of such patents is below the median for all industries, and equals 0

otherwise.15

Having constructed key variables IdeaDummy and CostDummy, we turn to data on produc-
tion networks and vertical integration. We construct production network information for the
251,484 S&P Capital IQ companies that are matched with patent information.16 Each company’s
production network is composed of the focal company and its representative customers and
suppliers over 2010-2017.17 In the theory section we defined a company’s production network
as consisting of itself and its suppliers; however, the empirical counterpart to a supplier is not
immediate because a company’s downstream customer could also be its “supplier.” For example,
consider the relationship between Apple headquarters and its retail arm, the Apple Store. The
Store is an (upstream) customer in that it receives iPhones and it is a (downstream) supplier in

15We also define IdeaDummy and CostDummy at the levels of 24 industry groups and 156 subindustries. They
generate similar empirical results as the sector- and industry-level variables.

16The production networks are constructed using S&P Capital IQ’s business relationships data. Appendix H explains
how we compile the business relationships data from S&P Capital IQ. Appendix I explains how we use the business
relationships data to construct production networks.

17A customer is a company that purchases products or services from the focal company. A supplier is a company
that sells its products or services to the focal company. The customer and supplier relationships are either reported by
S&P Capital IQ or imputed from parent-subsidiary relationships. See Appendix I for more information.
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that it supplies retail services. For this reason, we include both the company’s customers and
suppliers in its production network.18 We refer to any company in a focal company’s production
network other than itself as its partner. We refer to a firm’s number of partners as its scope. A
partner is integrated if the focal company owns more than a 50% stake in the partner. Since we
assume that the focal company is the one deciding whether to integrate its partners, the focal
company’s owner (a company that owns more than 50% of the focal company) is excluded from
its production network.19 The dataset contains 2,611,861 firm-partner relationships for 615,405

companies. 842,774 of these relationships are integrated. The average company has 4.24 partners,
with 1.37 of them integrated. 73,914 of these companies are matched with patent information.
Their production network characteristics are reported in columns (4) and (5) of Table 1.

The dataset does not contain information on a firm’s entire production network. Rather, it is a
collection of the firm’s representative customer and supplier relationships.20 To proceed, we need
two minimal assumptions: (i) a company’s measured number of partners is proportional to its
actual number of partners, and (ii) a company’s measured integration decision is driven by the
same factors as all of its integration decisions.

4. Empirical Results

We examine two testable predictions from Theorems 1-4, one on integration decisions and the
other on scope decisions, where scope is measured by a company’s number of partners.

Theorems 2 (part 2) and 4 (part 2) make predictions about scope decisions. Combined, they
imply the following:

Hypothesis 1 (Firm scope with heterogeneity) In ideas-oriented industries, a high-productivity firm
is likely to have more partners than a low productivity firm. In cost-oriented industries, a high-productivity
firm is likely to have fewer partners than a low productivity firm.

Theorems 1 (part 3) and 3 (part 3) make predictions about integration decisions. Combined,
they imply the following:

Hypothesis 2 (Firm boundaries with heterogeneity) In ideas-oriented industries, a high-productivity
firm is more likely to integrate its partner than a low productivity firm. In cost-oriented industries, a
high-productivity firm is less likely to integrate its partner than a low productivity firm.

18This is not important empirically. We can define a company’s downstream production network as consisting of
itself and its customers, and its upstream production network as consisting of itself and its suppliers. In the empirical
section, we focus on the production network defined in the main text. Repeating the empirical exercise for only the
upstream or downstream production networks does not qualitatively change our empirical results.

19In actual execution, we also have to deal with those “partially owned” relationships where one company is
the other’s limited partner, investor, or pending parent/investor. Appendix H elaborates on our treatment of such
relationships.

20
2,227,879 customer and supplier relationships are used to construct production network characteristics. 954,410 of

these relationships are collected by S&P Capital IQ from sources including companies’ 10K and annual reports, and
newswires such as Bloomberg and Reuters. 1,286,076 relationships are imputed from parent-subsidiary relationships
using S&P Capital IQ’s ownership data and BEA 2002 Input-Output Table (Acemoglu et al., 2010, Antràs and Chor,
2013). There is an overlap of 12,617 relationships between these two sources. See Appendix I for more information.
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4.1. The Scope Decision

Hypothesis 1 predicts that a firm’s scope decision depends on its productivity and the type of
industry (ideas-oriented or not, cost-oriented or not) that it operates in. We test this hypothesis
using the following system of equations:

Partnersfi = αI1 ln(Salesfi) + αI2 IdeaDummyi + αI3 ln(Salesfi) ∗ IdeaDummyi + βIXfi + γIi′ + εIfi; (6)

Partnersfi = αC1 ln(Salesfi) + αC2 CostDummyi + αC3 ln(Salesfi) ∗CostDummyfi + βCXfi + γCi′ + εCfi.

(7)

f is a firm index and i is either a sector index (10 sectors) or an industry index (67 industries).
Note that each firm appears in only one sector or industry. Partnersfi is the number of partners
firm f had over the period 2010-2017.21 It measures firm f ’s scope decision. ln(Salesfi) is the
log of firm f ’s average sales over 2009-2016. Since state-of-the-art productivity measures (e.g.,
Orr, Trefler and Yu, 2019) require data that are very often missing, we use sales as a proxy
for firm productivity.22 IdeaDummyi and CostDummyi are indicators for ideas-oriented and
cost-oriented sectors or industries as defined in Section 3. Xfi is a vector of control variables
including the log of firm f ’s partners’ average sales and the log of the average number of firm f ’s
partners’ partners.23 We include these variables in order to control for other production network
characteristics that may be correlated with firm productivity. εIfi and εCfi are error terms. Finally,
we include subindustry dummies (156 subindustries) γIi′ and γCi′ where i′ indexes subindustries.
Notice that IdeasDummyi and CostDummyi are subsumed in these subindustry dummies.

These specifications are difference-in-difference specifications. In the first equation we
have ln(Salesfi), IdeaDummyi (subsumed by the subindustry dummies) and their interaction
ln(Salesfi) ∗ IdeaDummyi. The focus is on the interaction terms. That is, the coefficients of
interests are αI3 and αC3 . According to Hypothesis 1, αI3 > 0 and αC3 < 0. Note that when they are
defined using the industry mean, IdeaDummyi and CostDummyi always sum up to one, so that
αI3 + αC3 = 0.

Table 2 reports the regression results. Panels (a) and (b) respectively correspond to equa-
tions (6) and (7). The positive coefficients on ln(Salesfi) ∗ IdeaDummyi suggest that in ideas-
oriented industries, high-productivity firms tend to have more partners (larger scope) than
low-productivity ones. The negative coefficients on ln(Salesfi) ∗ CostDummyi suggest that in
cost-oriented industries, high-productivity firms tend to have fewer partners (smaller scope) than
low-productivity firms. The results confirm Hypothesis 1.

The table has other results that are unrelated to Hypothesis 1. The coefficients on ln(Salesf )
are positive in both panels, suggesting that in both ideas-oriented and cost-oriented industries,
high-productivity firms manage larger production networks. In addition, the positive coefficients

21More specifically, Partnersfi is the number of unique companies that have appeared as a customer or a supplier
of the focal company during 2010-2017. We do not know the beginning and ending time of a customer or supplier
relationship so an annual partner count does not have much advantage.

22The financial variables are obtained from S&P Capital IQ, where non-revenue variables contain many missing
values.

23For example, if a firm has two partners, the first partner has 3 partners and the second partner has 5 partners, then
the firm’s average partner has 4 partners.
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Table 2: Hypothesis 1: The Scope Decision (Number of Partners)

(a) Ideas-oriented Industries

IdeaDummyi defined at: sector industry mean industry median
(1) (2) (3)

ln(Salesfi) 5.875*** 6.662*** 6.911***
(0.189) (0.241) (0.252)

ln(Salesfi)*IdeaDummyi 4.695*** 1.597*** 1.591**
(0.576) (0.437) (0.502)

ln(Average Partner Salesfi) 3.291*** 3.294*** 3.305***
(0.0705) (0.0700) (0.0695)

ln(Average Partners' Partnersfi) -2.096*** -2.036*** -2.042***
(0.120) (0.120) (0.120)

constant -27.68*** -27.43*** -27.24***
(0.913) (0.902) (0.884)

Subindustry fixed effects Y Y Y
Observations 55,353 55,353 55,353
R-squared 0.171 0.165 0.165

(b) Cost-oriented Industries

CostDummyi defined at: sector industry mean industry median
(1) (2) (3)

ln(Salesfi) 8.223*** 8.259*** 8.321***
(0.290) (0.369) (0.422)

ln(Salesfi)*CostDummyi -3.124*** -1.597*** -1.319**
(0.379) (0.437) (0.492)

ln(Average Partner Salesfi) 3.277*** 3.294*** 3.300***
(0.0704) (0.0700) (0.0697)

ln(Average Partners' Partnersfi) -2.001*** -2.036*** -2.039***
(0.121) (0.120) (0.120)

constant -27.71*** -27.43*** -27.29***
(0.917) (0.902) (0.888)

Subindustry fixed effects Y Y Y
Observations 55,353 55,353 55,353
R-squared 0.166 0.165 0.164

Notes: The dependent variable is a firm’s number of partners. Panels (a) and (b) respectively report the results for
equations (6) and (7). There are 156 subindustry fixed effects. The complete list of the GICS subindustries can be found
at https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard. Numbers in parentheses report robust
standard errors. *p<0.05, ** p<0.01, *** p<0.001.

on ln(Average Partner Salesf ) and the negative coefficients on ln(Average Partner’s Partnersf ) in
both panels suggest that connected firms (i.e., firms with more partners) tend to work with firms
that are also connected. This is consistent with Bernard, Moxnes and Saito (2019) using Japanese
production networks.24

24See also Bernard and Moxnes (2018) for a review of the literature on production networks.
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4.2. Firm Boundaries/Integration Decision

Hypothesis 2 predicts that a firm’s decision about integrating its partner depends on (1) the
firm’s productivity and (2) the industry’s type (ideas-oriented or not, cost-oriented or not). Since
the dependent variable is a firm’s choice of whether or not to integrate its partner, we need
to work at the firm-partner level. This raise a new issue because the theory assumes that all
partners are symmetric, while in the data they definitely are not. So we need to deal with partner
heterogeneity.

The most direct way is to allow partners to differ in productivity. Conditional on firm
characteristics, a high-productivity partner is less likely to be integrated than a low-productivity
one. To understand why, recall that a key parameter driving firm integration decisions is
η, which measures the relative importance of the firm’s non-contractible, relationship-specific
investments in a firm-partner relationship. 1 − η is therefore the relative importance of the
partner’s non-contractible, relationship-specific investments. Introducing partner heterogeneity
is similar to allowing η to vary across partners for a given firm. If a high-productivity partner
also makes more non-contractible, relationship-specific investments, it is also more important in
a firm-partner relationship. In other words, a high-productivity partner corresponds to a lower η.
According to Theorems 2 and 4, the firm is less likely to integrate a partner with low η because
integration hurts this important partner’ investment incentive.

We specify the following system of equations to examine Hypothesis 2:

Integrationfi,pi′ = αI1 ln(Salespi′) ∗ IdeaDummyi ∗HighProdfi + αI2 ln(Salespi′) ∗HighProdfi

+αI3 ln(Salespi′) ∗ IdeaDummyi + αI4 IdeaDummyi ∗HighProdfi + αI5 IdeaDummyi + αI6HighProdfi

+αI7 ln(Salespi′) + βIXpi′ + γIfi + γIi′ + εIfi,pi′ ;

(8)

Integrationfi,pi′ = αC1 ln(Salespi′) ∗CostDummyi ∗HighProdfi + αC2 ln(Salespi′) ∗HighProdfi

+αC3 ln(Salespi′) ∗CostDummyi + αC4 CostDummyi ∗HighProdfi + αC5 CostDummyi + αC6 HighProdfi

+αC7 ln(Salespi′) + βCXpi′ + γCfi + γCi′ + εCfi,pi′ .
(9)

f and p are firm and partner indexes. i is an index for the firm’s sector or industry. i′ is an
index for the partner’s subindustry. Integrationfi,pi′ is a binary variable that equals 100 if partner
p is integrated by firm f , and 0 otherwise. The dependent variable allows us to interpret the
coefficients in terms of percentages. ln(Salespi′) is the log of partner p’s average sales over the
period 2009-2016. It is a proxy for the partner’s productivity. IdeaDummyi and CostDummyi
are respectively indicators for ideas-oriented and cost-oriented industries as defined in Section
3. HighProdfi is a dummy variable that equals 1 if firm f ’s sales is above the industry mean,
and 0 otherwise. Xpi′ is a vector of control variables including the log of the average sales of all
the firms that work with partner p, and the log of the average number of partners of these firms.
They control for the partner’s production network characteristics. εIfi,pi′ and εCfi,pi′ are error terms.
Note that these are relationship-level specifications so a firm can appear in multiple regressions.
We use γIfi and γCfi to control for firm fixed effects. We also include the partner’s subindustry
dummies γIi′ and γCi′ .
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The specification in equation (8) includes all possible interactions between ln(Salespi′),
IdeaDummyi, and CostDummyi. However, the double-interaction term IdeaDummyfi ∗
HighProdfi and the individual terms IdeaDummyIi and HighProdIfi are absorbed by the firm
fixed effect γIfi. Similarly, in equation (9) the double-interaction term CostDummyfi ∗HighProdfi
and the individual terms CostDummyCi and HighProdCfi are absorbed by the firm fixed effect γCfi.

Of all these interactions it is the triple-interaction terms that are the key variables of interest.
According to Hypothesis 2, we expect to see two patterns: (i) In an ideas-oriented industry,
conditional on partner characteristics, a high-productivity firm is more likely to integrate its
partner than a low-productivity firm; (ii) In a cost-oriented industry, conditional on partner char-
acteristics, a high-productivity firm is less likely to integrate its partner than a low-productivity
firm. In other words, we expect to see αI1 > 0 and αC1 < 0.

Table 3 reports the regression results. Panels (a) and (b) respectively correspond to equations
(8) and (9). Consistent with Hypothesis 2, αI1 > 0 and αC1 < 0. This is the main result in the table.

In addition, the coefficients on the ln(Average Firm Salespi′) are negative in both panels, and
the coefficients on ln(Average Firm Partnerspi′) are positive in both panels. The results suggest
that a partner that works with large firms is less likely to be integrated, but a partner that
works with more connected firms is more likely to be integrated. These findings have not been
previously documented.

5. Conclusions

One of the firm’s most important tasks is to design a product and bring it to market, that is, to
identify a cluster of functions which consumers value and then develop and bundle the functions
into a final product. Examples abound, from high-tech smartphones to lowly refrigerators. Since
these functions are often technologically distinct, we assumed that the firm needs a separate
supplier for each function. We also assumed that for each function both the firm and supplier
make non-contractible, relationship-specific investments that create a two-sided holdup problem.
Finally, we assumed that once a product is designed each function (supplier) is essential. As a
result the firm’s Shapley value as share of total revenue or bargaining power is decreasing in the
number of suppliers. This sets up a trade-off between the number of functions and bargaining
power.

Following Antràs (2003), we modeled vertical integration as the firm’s way of increasing its
bargaining power relative to outsourcing. While greater scope as measured by the number
of functions/suppliers reduces the firm’s bargaining power, this can be partially offset by the
appropriate choice of vertical integration or outsourcing. The starting point of this paper is this
link between firm scope (number of functions/suppliers) and firm boundaries (choice between
vertical integration and outsourcing).25

25Our approach built on Acemoglu et al. (2007), but there the firm’s bargaining power is independent of the number
of suppliers. They thus do not consider our core mechanism. Indeed, they are more interested in technology adoption
(what we called the adoption of a function) than in the choice between vertical integration and outsourcing.
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Table 3: Hypothesis 2: The Firm Boundaries Decision (Integration vs. Outsourcing)

(a) Ideas-oriented Industries

IdeaDummyi defined at: sector-level industry mean industry median
(1) (2) (3)

ln(Salespi')*IdeaDummyi*HighProdfi 0.622*** 0.311*** 0.378***
(0.0641) (0.0669) (0.0635)

ln(Salespi')*HighProdfi -1.314*** -1.242*** -1.223***
(0.0505) (0.0544) (0.0455)

ln(Salespi')*IdeaDummyi 0.835*** 0.271*** 0.271***
(0.0474) (0.0491) (0.0465)

ln(Salespi') -1.763*** -1.456*** -1.418***
(0.0375) (0.0402) (0.0336)

ln(Average Firm Salespi') -3.588*** -3.569*** -3.555***
(0.0423) (0.0423) (0.0423)

ln(Average Firm Partnerspi') 0.944*** 0.774*** 0.762***
(0.0784) (0.0783) (0.0783)

constant 48.71*** 49.22*** 49.19***
(0.376) (0.377) (0.376)

Firm fixed effects Y Y Y
Partner subindustry fixed effects Y Y Y
Observations 443,636 443,636 443,636
R-squared 0.461 0.459 0.459

(b) Cost-oriented Industries

CostDummyi defined at: sector-level industry mean industry median
(1) (2) (3)

ln(Salespi')*CostDummyi*HighProdfi -0.101 -0.311*** -0.378***
(0.0964) (0.0669) (0.0635)

ln(Salespi')*HighProdfi -1.039*** -0.931*** -0.845***
(0.0346) (0.0397) (0.0451)

ln(Salespi')*IdeaDummyi -0.249*** -0.271*** -0.271***
(0.0712) (0.0491) (0.0465)

ln(Salespi') -1.251*** -1.186*** -1.147***
(0.0257) (0.0296) (0.0334)

ln(Average Firm Salespi') -3.579*** -3.569*** -3.555***
(0.0423) (0.0423) (0.0423)

ln(Average Firm Partnerspi') 0.782*** 0.774*** 0.762***
(0.0785) (0.0783) (0.0783)

constant 49.23*** 49.22*** 49.19***
(0.377) (0.377) (0.376)

Firm fixed effects Y Y Y
Partner subindustry fixed effects Y Y Y
Observations 443,636 443,636 443,636
R-squared 0.459 0.459 0.459

Notes: The dependent variable is a binary variable that equals 100 if a firm-partner relationship is integrated, and 0
other wise. Panels (a) and (b) respectively report the results for equations (8) and (9). 25,834 singleton observations
were dropped. Numbers in parentheses report robust standard errors. *p<0.05, ** p<0.01, *** p<0.001.
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Our main interest flowed from the empirical observation that the number of functions varies
across products within an industry (firm heterogeneity). We introduced the notion of an
‘ideas-oriented’ industry as one in which more productive firms have higher marginal returns
to introducing a new function. This leads to two testable hypotheses.

1. Firm scope with heterogeneity: In ideas-oriented industries, more productive firms will
have more suppliers.

2. Firm boundaries with heterogeneity: In ideas-oriented industries, more productive firms
will be more likely to integrate its suppliers.

In contrast, in cost-oriented industries, more productive firms will have fewer suppliers and will
be less likely to integrate its suppliers.

We took these predictions to the data by training a neural network model called a multilayer
perceptron to predict whether or not each of 29 million PATSTAT patent applications involves
new/improved functions. Industries where patents are skewed towards new/improved func-
tions were deemed ideas-oriented (IdeaDummy = 1), while industries where patents are skewed
towards cost reductions were deemed cost-oriented (CostDummy = 1).

We then merged these patents with S&P Capital IQ data on about 55,000 companies and their
supplier networks. We considered two regressions. At the firm level, we regressed the number
of a firm’s partners on an interaction between IdeaDummy and firm productivity. We found that
more productive firms have more partners and, importantly, they have more partners in ideas-
oriented industries relative to other industries. This difference-in-difference (DiD) confirmed our
firm-scope hypothesis. In cost-oriented industries this DiD pattern was reversed, as expected.

At the firm-partner level we regressed a binary indicator of whether or not the partner is
vertically integrated on a triple interaction between IdeaDummy, firm productivity, and partner
productivity. We found that more productive firm-partner pairs are more likely to integrate
and, importantly, they are more likely to integrate in ideas-oriented industries relative to other
industries. This triple difference confirmed our firm-boundaries hypothesis. Further, in cost-
oriented industries the triple difference pattern was reversed, as expected.

Summarizing, we presented a theory of the Big Idea, namely, a firm’s choice of how many
functions to bundle in a product. We showed that this leads naturally to a link between firm
scope and firm boundaries. Finally and most importantly, we derived testable implications for
how more productive firms use vertical integration to increase scope while limiting the damage
from holdup.
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Appendix

Appendix A. Existence and Uniqueness of SSPE

We show that in any SSPE, the firm chooses (h1,h2,...,hN ) = (h,h,...,h), where h solves the
following problem:

max
h

γk(N)
Â

η̂α
D(N ,θ)αhαηmα(1−η)} −whC(N ,θ)Nh.

Each supplier chooses mj = m, where m solves the following problem:

max
m

γk(N)
Â

η̂α
D(N ,θ)αhαηmα(1−η)} −wmC(N ,θ)m.

The solutions to h and m simultaneously and uniquely solve the above two problems.

First, consider the firm’s problem in (FP1):

max
(h1,h2,...,hN )

γk(N)
Â

η̂α
D(N ,θ)α min

j=1,...,N
{hαηj m

α(1−η)
j } −whC(N ,θ)

N

∑
j=1

hj .

Suppose all suppliers stick to their equilibrium strategies. The firm’s problem can be simplified
to

max
(h1,h2,...,hN )

γk(N)
Â

η̂α
D(N ,θ)α min

j=1,...,N
{hαηj }m

α(1−η) −whC(N ,θ)
N

∑
j=1

hj .

The firm always chooses (h1,h2,...,hN ) = (h,h,...,h) to maximize its surplus because it is never
optimal for the firm to deviate from this strategy. If the firm deviates by choosing (h1,h2,...,hN ) 6=
(h,h,...,h):

1. The firm always chooses (h1,h2,...,hN ) such that h1 = h2 = ... = hN ≡ h′. Because if not, the
firm can do strictly better by lowering the levels of all hi > minj{hj} to hi = minj{hj}. The
firm’s problem can therefore be further simplified to:

max
h′

γk(N)
Â

η̂α
D(N ,θ)α

(
h′
)αη

mα(1−η) −whC(N ,θ)Nh′.

2. It is never optimal for the firm to choose h′ 6= h because the objective function is strictly
concave in h′, so h′ = h is, by definition, the unique maximizer of the objective function.

Therefore, as long as the suppliers stick to their equilibrium strategies, the firm always chooses
an h that maximizes the firm’s surplus.

Now consider supplier j’s problem:

max
mj

1− γk(N)

N

Â

η̂α
D(N ,θ)α min

−j∈{1,...,N}\j
{hαη−jm

α(1−η)
−j ,hαηj m

α(1−η)
j } −wmC(N ,θ)mj .

Suppose the firm and all the other suppliers stick to their equilibrium strategies. Supplier j’s
problem can be written as:

max
mj

1− γk(N)

N

Â

η̂α
D(N ,θ)αhαη min{mα(1−η),mα(1−η)

j } −wmC(N ,θ)mj .

Supplier j is strictly worse off if it deviates by choosing mj 6= m because its objective function is
strictly concave in mj , which means mj = m is the unique maximizer of the supplier’s objective
function.
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Appendix B. Multilateral Bargaining Problem with Leontief Production Function

We use Shapley value to solve for the multilateral bargaining problem between the firm and its
N suppliers. Each player’s Shapley value is the average of her contributions to all coalitions that
consist of players ordered below her in all permutations of the order. A coalition generates one
of three possible values.

1. In a coalition without the firm, the value is V1 = 0.

2. In a coalition with the firm and all the suppliers, the value is revenue V2 = R =
ÂD(N ,θ)αqα, where q = hηm1−η/η̂ as in the statement of the Lemma.

3. In a coalition with the firm, but not all the suppliers, the minimum quality is ∆kq so that
the value is a fraction of total revenue: V3 = δkR = ÂD(N ,θ)α(∆kq)α, where δk ≡ (∆k)α.

Consider the firm’s contribution. Pick a permutation (a ranking of each player from 0 to N )
and let g(B) be the firm’s rank in this permutation. If g(B) < N then there is at least one supplier
not in the coalition and the firm’s contribution is V3 − V1 = δkR. If g(B) = N then all suppliers
are in the coalition and the firm’s contribution is V2 − V1 = R. The share of permutations with
g(B) = N is 1/(N + 1). The share of permutations with g(B) < N is N/(N + 1). Therefore, the
firm’s Shapley value is

R
1

N + 1
+ δkR

N

N + 1
=
δkN + 1
N + 1

R.

The value generated by a coalition of all players is R (case 2). Since the Shapley value is efficient,
suppliers must receive

R− δkN + 1
N + 1

R =
1− δk
N + 1

NR.

The Shapley value is symmetric so that all suppliers have the same Shapley value. Dividing the
above expression by the N suppliers gives each supplier’s Shapley value: [(1− δk)/(N + 1)]R.

The online appendix considers multilateral bargaining problems with CES and O-Ring pro-
duction functions.

Appendix C. Firm and Suppliers’ Levels of Investments

Solving for the firm and supplier’s problems in SSPE gives the following expressions:

hk(N ,θ,η) =

{
αÂ

η̂

D(N ,θ)α

NC(N ,θ)

[
ηγk(N)

wh

]1−α+αη [
(1− η)(1− γk(N))

wm

]α−αη}1/(1−α)

;

mk(N ,θ,η) =

{
αÂ

η̂

D(N ,θ)α

NC(N ,θ)

[
ηγk(N)

wh

]αη [
(1− η)(1− γk(N))

wm

]1−αη}1/(1−α)

.

Substituting hk(N ,θ,η) and mk(N ,θ,η) into the definitions of q, ϕ and R gives the following
expressions:

qk(N ,θ,η) =

{
αÂ

D(N ,θ)α

NC(N ,θ)

(
γk(N)

wh

)η (1− γk(N)

wm

)1−η}1/(1−α)

;

ϕk(N ,θ,η) =

{
αÂ

D(N ,θ)
NC(N ,θ)

(
γk(N)

wh

)η (1− γk(N)

wm

)1−η}1/(1−α)

;

Rk(N ,θ,η) =

{
αÂ1/α D(N ,θ)

NC(N ,θ)

(
γk(N)

wh

)η (1− γk(N)

wm

)1−η}α/(1−α)

.
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Appendix D. Firm Decisions in the Ideas-oriented Industry

The log-transformation of the firm’s problem in FP2 is

max
k∈{O,V },N∈[1,∞)

πk(N ,θ,η) = ã+ g(N ,θ) + ψ(γk(N),η), (fp1)

which can be indirectly solved by solving

max
δ∈(0,1),N∈[1,∞]

π(N ,δ,θ,η) = ã+ g(N ,θ) + ψ(γ(N ,δ),η). (fp2)

Appendix D.1. π(N ,δ) is strictly concave in (N ,δ)

Since the firm takes θ and η as given, the choice variables in (fp2) are N and δ. Let us write the
log-profit function as π(N ,δ). π(N ,δ) is strictly concave in (N ,δ) if and only if its Hessian matrix
is negative definite. Assume that π(N ,δ) is twice continuously differentiable, The Hessian matrix
can be written as (

πNN πNδ
πδN πδδ

)
=

(
gNN + ψγγγ

2
N , ψγγγNγδ

ψγγγNγδ, ψγγγ
2
δ

)
, (10)

The above matrix is negative definite if and only if gNN and ψγγ are both negative.26 ψγγ is always
negative because

ψγγ = −
{

α(2η− 1)
1− α[γη+ (1− γ)(1− η)

}2

− α

1− α

[
η

γ2 +
1− η

(1− γ)2

]
< 0,

so π(N ,δ) is strictly concave if and only if

gNN =
α

1− α

{
∂2 lnD(N ,θ)

∂N2 − ∂2 lnC(N ,θ,η)
∂N2 + 1

}
< 0,

or
∂2 lnC(N ,θ,η)

∂N2 >
∂2 lnD(N ,θ)

∂N2 +
1
N2 .

By Assumption 2, G(N ,θ) is strictly log-concave in N , so gNN < 0. The Hessian matrix is thus
negative definite so that π(N ,δ,θ,η) is strictly concave in (N ,δ). The firm’s choice of N solves

πN (δ(N),N) = 0.

Taking the derivative of the above equation w.r.t. N generates the following equation:

∂δ(N)

∂N
= −πNN

πNδ
= −gNN + ψγγγ

2
N

ψγγγNγδ
.

Since γ(N ,δ) ≡ (δN + 1)/(N + 1), γN < 0 and γδ > 0. We have shown that ψγγ < 0 and gNN < 0.
Therefore, ∂δ(N)/∂N > 0. δ(N) is strictly increasing in N . Figure A1 shows a simulation of
δ(N). We use this figure and the strict concavity of π(N ,δ) to illustrate our later proofs.

26A 2× 2 matrix is negative definite if and only if its first determinant is negative and its second determinant is
positive. These conditions translate to gNN + ψγγγ

2
N < 0 and gNNψγγγ

2
δ > 0. These two inequalityities hold if and

only if gNN < 0 and ψγγ < 0.
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Figure A1: Simulation of δ(N)

Appendix D.2. The marginal firm’s organizational behavior

Now refer to the firm’s actual problem in equation (fp1). The firm cannot choose any combination
of (N ,δ) on δ(N). Instead, the firm can only choose N from two horizontal lines δ = δO and
δ = δV . Assume for now that δ(N) crosses δ = δO at (nO,δO) and δ = δV at (nV ,δV ), as shown
in Figure A1. Define the marginal firm as the firm that is indifferent between k = O and V .
Denote the marginal firm’s productivity by θ̃(η) and its choice under k = O and V by NO and
NV , respectively. Depending on the values of NO and NV relative to the interval (nO,nV ), there
are 9 cases, as shown in the table below:

Table A1: Relationship between (NO,NV ) and (nO,nV )

NV < nO nO < NV < nV nV < NV

NO < nO N/A N/A N/A
nO < NO < nV N/A NO < NV , γO < γV N/A
nV < NO N/A N/A N/A

We show by exclusion that for θ̃(η) to exist, only the middle cell in Table A1 is possible, i.e.,
when NO,NV ∈ (nO,nV ). We also show that in this scenario, the marginal firm’s choice satisfies
NO < NV and γO < γV , as stated in Theorem 2, part 3. We then prove the existence and
monotonicity of θ̃(η) under this scenario.

1. NV < nO contradicts the definition of θ̃(η).

Refer to Figure A2. Recall that we assumed δ(N) crosses δ = δO and δ = δV at (nO,δO) and
(nV ,δV ). Since π(N ,δ) is strictly concave in (N ,δ), moving from (NV ,δV ) to (NV ,δO) increases
firm’s profit because keeping N = NV constant, we are approaching the optimal δ at δ(NV ).
Denote the profits at (NV ,δV ) and (NV , δO) by π(NV ,δV ,θ̃(η),η) and π(NV ,δO,θ̃(η),η). Based on
our argument,

π(NV ,δV ,θ̃(η), η) < π(NV ,δO,θ̃(η), η).

NV may or may not be the optimal N that maximizes firm’s profit at δ = δO, so

π(NV ,δO,θ̃(η), η) ≤ max
N∈(1,∞)

π(N ,δO,θ̃(η), η).
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Figure A2: NV < nO

The above two inequalityities imply

π(NV ,δV ,θ̃(η), η) < π(NV ,δO,θ̃(η), η) ≤ max
N∈(1,∞)

π(N ,δO,θ̃(η), η).

The left and right ends of the above inequalityity are respectively the firm’s optimal profits at
k = V and k = O. This inequalityity contradicts the definition of the marginal firm because it
implies that the marginal firm’s profit under integration is lower than its profit under outsourcing.
The first column of Table A1 is ruled out.

2. NO > nV contradicts the definition of θ̃(η).

N

𝛿(N)

𝛿%

𝛿&

n% n& N%

Figure A3: NO > nV

Refer to Figure A3. Since π(N ,δ) is strictly concave in (N ,δ), moving from (NO,δO) to
(NO,δV ) increases the firm’s profit because keeping N = NO constant, we are approaching
the optimal δ(NO). Denote the firm’s profit at (NO,δO) and (NO,δV ) by π(NO,δO,θ̃(η), η) and
π(NO,δV ,θ̃(η), η). Our argument implies

π(NO,δO,θ̃(η), η) < π(NO,δV ,θ̃(η), η).

28



NO may or may not be the optimal N that maximizes the marginal firm’s profit at k = V , so

π(NO,δV ,θ̃(η), η) ≤ max
N∈[1,∞)

π(N ,δV ,θ̃(η), η).

The above two inequalityities imply

π(NO,δO,θ̃(η), η) < π(NO,δV ,θ̃(η), η) ≤ max
N∈[1,∞)

π(N ,δV ,θ̃(η), η).

The left and right ends of the above inequality are respectively the firm’s optimal profits under
k = O and k = V . The inequality contradicts the definition of the marginal firm because it implies
that the marginal firm’s profit under outsourcing is lower than its profit under integration. The
third row of Table A1 is ruled out.

3. NO < nO < NV < nV contradicts the definition of θ̃(η).

We now show that the upper-middle cell of Table A1 is impossible. To see this, draw an iso-γ
line through (NV ,δV ). Since γ ≡ (δN + 1)/(N + 1) is increasing in δ and decreasing in N , the iso-
γ line is upward-sloping. Suppose this iso-γ line crosses δ = δO at N ′. Based on the relationship
between N ′ and (NO,NV ), there are two cases: NO ≤ N ′ < NV and N ′ < NO < NV .27

3(a). NO ≤ N ′ < NV

N

𝛿(N)

𝛿%

𝛿&

n% n&N% N&N'

Figure A4: NO ≤ N ′ < NV

See Figure A4. In this case, both (NO, δO) and (NV , δV ) are above δ(N), which is the “ridge”
of the profit function. It implies that δk (k = O,V ) is “too small”–if the firm were allowed to
choose δk from [0,1] (conditional on the same Nk), the firm would have chosen a bigger δk, which
translates to a bigger γk. Since the profit function is strictly concave in γ, πγ > 0 when γk is
too small.28 To generalize this argument, πγ = ψγ > 0 whenever (Nk,δk) is above δ(N), and
πγ = ψγ < 0 whenever (Nk,δk) is below δ(N). Since the profit function is strictly concave in N ,

27N ′ > NV is not possible because of the monotonicity of the iso-γ line.
28The profit function can be written as π(γ,N ,θ̃(η), η) = ψ(γ,η) + g(N ,θ̃(η)). γ appears only in ψ(γ,η) so πγγ = ψγγ .

We have previously shown that ψγγ < 0, which implies πγγ < 0. The profit function is strictly concave in γ, so that
when γ is smaller (bigger) than the optimal value, πγ is strictly positive (negative).
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Nk (k = O,V ) solves

πN (N
k,δk,θ̃(η), η) = gN (N

k,θ̃(η), η) + ψγ(γ
k,η)γN (Nk,δk) = 0.

We have shown that ψγ < 0. γN (Nk,δk) = (δk − 1)/(N + 1)2 < 0, so that ψγγkN > 0. It must be
that gN (Nk,θ̃(η), η) < 0 for k = O,V . By Assumption 2, G(N ,θ) is log-concave in N so gNN < 0.
Since NV > N ′ ≥ NO, gN (NV ,θ̃) < gN (N ′,θ̃) ≤ gN (NO,θ̃) < 0. If we move from (δV ,NV ) to
(δO,N ′) along the iso-γ line (the arrowed path), ψ(γ,η) remains constant. But g(N ,θ) increases
because gN (N ,θ) remains negative as we decrease the value of N . It follows that profit increases
from (NV ,δV ) to (N ′,δO). If we then move from (N ′,δO) to (NO,δO), profit continues to increase
because gN (N ,θ̃) remains negative and ψγ(γ,η) remains positive as we decrease N and increase
γ, so both g(N ,θ̃,η) and ψ(γ) increase. This argument implies the following inequalityities:

π(NV ,δV ,θ̃(η), η) < π(N ′,δO,θ̃(η), η) < π(NO,δO,θ̃(η), η)

The above inequality implies that the marginal firm’s profit under integration is lower than its
profit under outsourcing, hence contradicting the definition of a marginal firm. NO ≤ N ′ < NV

is impossible when NO < nO < NV < nV .

3(b). N ′ < NO < NV

N

𝛿(N)

𝛿%

𝛿&

n% n&N% N&N'

𝛿'

Figure A5: N ′ < NO < NV

See Figure A5. We can use similar logic to show that gN (N ′,θ̃) < gN (NV ,θ̃) < gN (NO,θ̃) < 0
holds. From (NV ,δV ) to (NO,δ′) along the iso-γ line, ψ(γ,η) remains constant, g(N ,θ̃) increases
because gN (N ,θ̃) < 0 and N decreases, so profit increases. From (NO,δ′) to (NO,δO), g(N ,θ̃)
remains constant because N does not change. ψ(γ,η) increases because ψγ < 0 and γ decreases
as δ shrinks and N remains constant. So profit increases along the arrowed path, which again
implies that the marginal firm’s profit under integration is lower than its profit under outsourcing,
contradicting the definition of the marginal firm. Combined with the previous part, we have
shown that NO < nO < NV < nV is impossible, ruling out the upper-middle cell of Table A1.
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4. NO < nO < nV < NV is impossible.

N

𝛿(N)

𝛿%

𝛿&

n% n& N&N%

Figure A6: NO < nO,NV > nV

See Figure A6. In this case, (NO,δO) is above δ(N) and (NV ,δV ) is below δ(N), so ψγ(γO,η) <
0 < ψγ(γV ,η). Recall from previous analyses that gN (Nk,θ̃) is of the same sign as ψγ(γ,η), so
gN (NO,θ) < 0 < gN (NV ,θ). This implies NO > NV because gNN (N ,θ) < 0, which contradicts the
assumption of NO < NV . The upper-right cell of Table A1 is ruled out.

5. nO < NO < nV < NV contradicts the definition of θ̃(η).

We now rule out the middle-right cell of Table A1. In this case, both (NO,δO) and (NV ,δV )
are below δ(N) so ψγ(γk,η) > 0 for k ∈ {O,V }. We can further deduce that gN (Nk,θ̃) > 0 for
k ∈ {O,V }. Let’s draw an iso-γ line through (NO,δO). Suppose it crosses δ = δV at (N ′,δV ).
There are two possible cases: NO < N ′ ≤ NV and NO < NV < N ′.

5(a). NO < N ′ ≤ NV

See Figure A7. gNN < 0, gN > 0, and NO < N ′ < NV imply that gN (NO,θ̃) > gN (N ′,θ̃) >
gN (NV ,θ̃) > 0. From (NO,δO) to (N ′,δV ) along the iso-γ line, γ remains constant while N
increases so ψ(γ,η) remains constant and g(N ,θ̃) increases. From (N ′,δV ) to (NV ,δV ), δ remains
constant and N increases so ψ(γ,η) increases because ψγ(γ,η) > 0 and γ increases. g(N ,θ)
increases because gN > 0 and N increases, so profit increases along the arrowed path, which
implies that the marginal firm’s profit is higher under integration than outsourcing, contradicting
the definition of a marginal firm.
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Figure A7: NO < N ′ ≤ NV

5(b). NO < NV < N ′
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Figure A8: NO < NV < N ′

See Figure A8. From (NO,δO) to (NV ,δ′) along the iso-γ line, γ remains constant while N
increases, so ψ(γ,η) remains constant while g(N ,θ̃) increases and profit increases. From (NV ,δ′) to
(NV ,δV ), δ increases and NV remains constant, so g(N ,θ̃) remains constant and ψ(γ,η) increases
because ψγ > 0 and γ increases. Profit increases along the arrowed path, contradicting the
definition of the marginal firm. Combined with the previous part, we can rule out the middle-
right cell of Table A1.

6. NO,NV ∈ (nO,nV ).

We have excluded all the other possibilities in Table A1 except for the middle cell. If θ̃(η) does
exist, it must be that NO,NV ∈ (nO,nV ). We now prove that if the this condition holds, NO < NV

and γO < γV .

6(a). NO < NV
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We have shown that π(N ,δ; θ(η)) is strictly concave in (N ,δ), which implies that π(N ,δ,θ̃(η), η)
is supermodular in (N ,δ). Since δV > δO, by Topkis’s Theorem, it must be that NV > NO.

6(b). γO < γV
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Figure A9: nO < NO < NV < nV

See Figure A9. (NO,δO) and (NV ,δV ) are the firm’s optimal choice under k = O,V . From
(NO,δO) to (NO,δ′), N is constant while δ increases, so γ increases. From (NO,δ′) to (nV ,δV ) along
the iso-γ line, γ remains constant. From (nV ,δV ) to (NV ,δV ), δ is constant while N decreases. γ
increases because γN < 0. Along the arrowed path, γ increases so γO < γV .

We have now proved that if δ(N) crosses both δ = δO and δ = δV , and if the marginal firm
exists, then the marginal firm’s choice satisfies NO < NV and γO < γV . We will then prove that
the marginal firm does exist for η < η < η, and that δ(N) has to cross δ = δO and δ = δV when
η ∈ (η,η).

Appendix D.3. Uniqueness of θ̃(η)

Denote by Nk(θ,η) the scope decision of a firm with productivity θ in industry η under organiza-
tional form k = O,V . Express this firm’s profit under organizational form k as

π(Nk,δk,θ,η) = ψ(γk,η) + g(Nk,θ).

By Envelope Theorem, πθ(Nk,δk,θ,η) = gθ(N
k,θ) > 0 iff

gθ(N
k,θ) =

α

1− α

{
∂ lnD(N ,θ)

∂θ
− ∂ lnC(N ,θ,η)

∂θ

}
> 0,

or
∂ lnD(N ,θ)

∂θ
>
∂ lnC(N ,θ,η)

∂θ
.

We have shown in Appendix D.2 that for the marginal firm, NV (θ̃,η) > NO(θ̃,η). By Assump-
tion 1, g(N ,θ) is supermodular in (N ,θ) in the ideas-oriented industry, meaning that gθ(N ,θ) is
increasing in N . Thus

gθ(N
V ,θ̃) > gθ(N

O,θ̃),
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which is equivalent to
πθ(N

V ,δV ,θ,η) > πθ(N
O,δO,θ,η).

As θ increases, the difference between πV and πO increases. This means that if πV and πO cross,
they can cross only once. This crossing point is θ̃(η). Therefore, if θ̃(η) exists, it is unique.
Moreover, firms with θ < θ̃(η) choose outsourcing and firms with θ > θ̃(η) choose vertical
integration.

Appendix D.4. Monotonicity of θ̃(η)

By definition of θ̃,
π(NV ,δV ,θ̃,η) = π(NO,δO,θ̃,η).

By Implicit Function Theorem,

dθ̃

dη
= − πη(NV ,δV ,θ̃,η)− πη(NO,δO,θ̃,η)

πθ(NV ,δV ,θ̃,η)− πθ(NO(η̃(η),η),δO,θ̃,η)

= − ψη(γ
V ,η)− ψη(γO,η)

gθ(NV ,θ̃)− gθ(NO,θ̃)

We have shown that γV > γO and NV > NO. ψ(γ,η) is supermodular in (γ,η). By Assumption
1, g(N ,θ) is supermodular in (N ,θ). Therefore, ψη(γV ,η) > ψη(γO,η) and gθ(N

V ,θ̃) > gθ(N
O,θ̃).

dθ̃/dη < 0. If it exists, θ̃ is decreasing in η.

Appendix D.5. Existence of θ̃(η), η, and η

1. Firms’ choice of scope (N ) is bounded between 1 and ∞.

Since π(N ,δ,θ,η) is strictly concave in N , the sufficient conditions for 1 < Nk(θ,η) < ∞ are
limN→1 πN (N ,δ,θ,η) > 0 and limN→∞ πN (N ,δ,θ,η) < 0.

πN (N ,δ,θ,η) =
α

1− αgN (N ,θ)− 1− δ
(N + 1)2 · ψγ(γ(N ,δ),η)

lim
N→1

πN (N ,δ,θ,η) =
α

1− α · lim
N→1

gN (N ,θ)− 1− δα
4
· ψγ(

δα + 1
2

,η)

>
α

1− α · lim
N→1

gN (N ,θ)− 1− δα
4
· ψγ(

δα + 1
2

,1)

=
α

1− α

{
lim
N→1

gN (N ,θ)− (1− δα)2

2(1 + δα)(2− α− αδα)

}
≥ α

1− α

{
lim
N→1

gN (N ,θ)− lim
δ→0

(1− δα)2

2(1 + δα)(2− α− αδα)

}
=

α

1− α

{
lim
N→1

gN (N ,θ)− 1
4− 2α

}
>

α

1− α

{
lim
N→1

gN (N ,θ)− 1
2

}
.

By Assumption 2, gN (N ,θ) > 1/2, so limN→1 πN (N ,δ,θ,η) > 0
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lim
N→∞

πN (N ,δ,θ,η) =
α

1− α · lim
N→∞

gN (N ,θ)− 0 · ψγ(δα)

=
α

1− α · lim
N→∞

gN (N ,θ).

By Assumption 2, limN→∞ gN (N ,θ) < 0, so limN→∞ πN (N ,δ,θ,η) < 0. Since limN→1 πN (N ,δ,θ,η) >
0 and limN→∞ πN (N ,δ,θ,η) < 0, it must be that 1 < Nk(θ,η) < ∞ for k ∈ {O,V }. Denote the
optimal scope decision by N(θ,η). N(θ,η) must also be bounded between 1 and ∞.

2. Existence of the threshold industries

ψ(γ,η) ranges from zero to infinity on η ∈ (0,1) for any given γ ∈ (0,1). Given that there is
increasing difference between πV and πO, for each value of θ, there must be at lease one η, such
that πV (θ,η) = πO(θ,η). There cannot be more than one η that satisfies this condition because
this would violate the monotonicity of θ(η). Therefore, there is a one-to-one mapping from θ to
η. Since θ(η) is strictly decreasing, η(θ) is also strictly decreasing over the interval θ ∈ [0,1], so
η(1) ≤ η(θ) ≤ η(0). Define η ≡ η(1) and η̄ ≡ η(0). For η < η, πV (θ,η)− πO(θ,η) < 0 for all θ, all
firms choose outsourcing. For η > η̄, πV (θ,η)− πO(θ,η) > 0, all firms choose vertical integration.
In other words, η and η̄ exist and 0 < η < η̄ < 1.

Appendix E. Firms’ scope decisions in the ideas-oriented industry

We have proved that the marginal firm’s behavior satisfies NV > NO and γV > γO. We now
prove the first two statements in Theorem 2.

Appendix E.1. Firm’s scope decision in (fp2) is monotone in θ.

Since π(N ,δ,θ,η) is strictly concave in (N ,δ), the optimal (N ,δ) is determined by the two first
order conditions, πN = 0 and πδ = 0. Differentiating these two equations with respect to θ and
rearranging, (

dN/dθ
dδ/dθ

)
=

1
det

(
πδδ −πNδ
−πNδ πNN

)(
πNθ
πδθ

)
where det is the determinant of the Hessian matrix. The above equation can be simplified to(

dN/dθ
dδ/dθ

)
=
gNθψγγ
det

(
γ2
δ

−γδγN

)
It can be easily shown that ψγγ < 0, det > 0. γδ = N

N+1 > 0 and γN = δ−1
(N+1)2 < 0. By Assumption

1, gNθ > 0, so dN/dθ > 0, and dδ/dθ > 0.

Appendix E.2. Firm’s scope decision in (fp1) is monotone in θ.

We know that πk(N ,θ,η) = ã + g(N ,θ,η) + ψ(γk(N),η), and πkNθ = gNθ, so gNθ > 0 implies
πkNθ > 0, and that Nk(θ,η) is strictly increasing in θ.
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Appendix F. Merging S&P Capital IQ and PATSAT

We use an unsupervised machine learning algorithm (an n-gram model) to match 3,165,143 PAT-
STAT companies with 33,783,284 S&P Capital IQ companies based on their names and countries
of location. The matching is implemented in three stages:

1. Parsing: company names are standardized through a string cleaning procedure including
converting company names to unicode letters in lower cases, removing stock exchange
abbreviations and legal suffixes such as ltd, gmbh, and llc.

2. Matching: the company names across the two sources are combined and transformed into
a sparse matrix, with each row corresponding to a company name and each column a
numeric value indicating whether a three-letter gram exists in the company name, and how
important this gram is (its TF-IDF score).

3. Filtering: similarity scores are computed for each pairwise combination of company names
from the two sources (PATSTAT and S&P Capital IQ). Mutual top matches, i.e., those
matches where the two companies are each other’s top match are kept.

Using this method, we are able to match 251,484 companies across the two sources. Table
A2 reports the top locations of these companies. See the online appendix for a more detailed
description of the matching process.

Table A2: Geographic Location of the Matched Companies

Country/region Companies Percentage
United States 73,708 29%
China 31,266 12%
Japan 22,082 9%
Germany 15,131 6%
United Kingdom 12,681 5%
South Korea 9,583 4%
France 8,959 4%
Canada 5,803 2%
Italy 5,015 2%
Spain 4,085 2%
Taiwan 3,361 1%
Australia 3,340 1%
Sweden 3,073 1%
Switzerland 2,915 1%
Netherlands 2,896 1%
Russia 2,625 1%
Other 44,961 18%
Total 251,484 100%
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Appendix G. Patent Classification

We use a supervised learning algorithm (a mutilayer perceptron, or MLP model) to classify the
29,666,609 patents held by the 251,484 PATSTAT companies that are matched with S&P Capital
IQ companies.

First, the research assistants are asked to read the titles and abstracts of 6,000 randomly selected
patents, and assign a binary classifier for each patents. The classifier equals 1 if the patent
improves the quality of an existing function/product, and 0 if the patent improves production
efficiency or reduces production cost.

Second, we use the classified sample as a training set to train a multilayer perceptron (MLP)
with different combinations of hyperparameters. The best MLP model has 4 layers with 16

neurons per layer, and generates training and validation accuracies of over 85%. This model
is then used to classify the patents.

A detailed description of the classification procedure can be found in the online appendix.

Appendix H. Production Network Construction

S&P Capital IQ collects firms’ customer and supplier relationships from various sources in-
cluding company regulatory and annual reports, and newswires such as Thomson Reuters and
Bloomberg. Each firm-customer and firm-supplier relationship can be considered as a buyer-seller
relationship. The data platform reported 954,420 buyer-seller relationships during 2010-2017.
We match each firm in a buyer-seller relationship with its ownership information to define the
ownership structure variable. Table A3 reports the ownership structure of the 954,420 buyer-seller
relationships.

Table A3: Ownership Structure in the Original Dataset

Ownership Structure Relationships Percentage
Buyer owns seller (level two) 13,167 1.38%
Buyer owns seller (level one) 3,485 0.37%
Seller owns buyer (level two) 3,714 0.39%
Seller owns buyer (level one) 16,587 1.74%
Neither 917,467 96.13%
Total 954,420 100.00%

A level-one ownership is a relationship where one firm is the other firm’s investor, limited
partner, or pending parent/investor; a level-two ownership is a relationship where one firm is
the other firm’s parent, merged entity, holding company, or ultimate parent. In cases where
there are more than one type of relationship between two firms, level-two ownership dominates
level-one ownership. There are no relationships where mutual ownership exist at the same level
between the buyer and seller.

See the online appendix for more information on the sources for collecting the buyer-seller
relationships data and the definition of the various owners.

37



Appendix I. Imputing Buyer-seller Relationships from S&P Capital IQ

Table A4: Ownership Structure in the Extended Dataset

Ownership Structure Relationships Percentage
Buyer owns seller (level two) 674,904 30.29%
Buyer owns seller (level one) 3,485 0.16%
Seller owns buyer (level two) 626,918 28.14%
Seller owns buyer (level one) 3,714 0.17%
Neither 918,858 41.24%
Total 2,227,879 100.00%

The percentage of integrated relationships (either defined at level-one or level-two) Table A3

is only 3.87. We have reasons to believe that there are integrated relationships not captured
by S&P Capital IQ’s sources. Therefore, we use the now standardized imputation method
to uncover 1,286,076 buyer-seller relationships from parent-subsidiary relationships (also from
the S&P Capital IQ data platform). 12,617 of these relationships overlap with the buyer-seller
relationships originally collected from S&P Capital IQ. Table A4 reports the ownership structure
in the extended dataset. This is the sample used to construct production network information.
Both level one and level two ownerships are considered integrated.

The imputation method is elaborated in the online appendix.
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Appendix A. Multilateral Bargaining with CES Production Function

Suppose the demand-shifter is:
ϕ = D(N ,θ)NQ,

where Q =
(

∑N
j=1 q

β
j

)1/β
is the overall quality of the firm’s product.

In a symmetric equilibrium, qj = q for all j. The product quality is

Q = (Nqβ)1/β = N1/βq.

The demand-shifter is

ϕ = D(N ,θ)N−1/βQ = D(N ,θ)N−1/βN1/βq = D(N ,θ)q.

The revenue is
R = Âϕα = ÂD(N ,θ)αnα/βqα.

Similar to the previous section, a coalition generates one of three possible values:

1. In a coalition without the firm, the value is 0.

2. In a coalition with the firm and all the suppliers, the value is revenue R = ÂD(N ,θ)αqα.

3. In a coalition with the firm, but not all the suppliers, the overall quality is[
nqβ + (N − n)(∆kq)β

]1/β
= [n+ (N − n)(∆k)β ]1/βq,

where n is the number of suppliers who are in the coalition. The demand-shifter generated
by this coalition is

D(N ,θ)N−1/βQ = D(N ,θ)[n/N + (1− n/N)(∆k)β ]1/βq.

The value of this coalition is

Â{D(N ,θ)[n/N + (1− n/N)(∆k)β ]1/βq}α = [n/N + (1− n/N)(∆k)β ]α/βR.

The firm’s Shapley value can be calculated as:

1
N + 1

N

∑
n=0
{[1− (∆k)β ]n/N + (∆k)β}α/βR ≡ γ(N ,∆k)R,

where γ(N ,∆k) is the firm’s revenue share, and

γ(N ,∆k) ≡ ∑N
n=0{[1− (∆k)β ]n/N + (∆k)β}α/β

N + 1
.

A mathematical proof for when γ(N ,∆k) is strictly decreasing in N is impossible, but simulation
shows that this holds when ∆k and β are not too big and α is not too small. The figure below
shows one scenario:
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Appendix B. Multilateral Bargaining with O-Ring Production Function

Suppose the overall quality Q is an o-ring function of the individual functions:

Q =
N

∏
j=1

qj .

The firm’s demand shifter is ϕ = D(N ,θ)Q, and its revenue is R = ÂD(N ,θ)αQα. In a symmetric
equilibrium, qj = q for all j. The firm’s quality is Q = qN , and its revenue is R = ÂD(N ,θ)αqαN .
Again, there are three values that can be generated by a coalition:

1. In a coalition without the firm, the value is 0.

2. In a coalition with the firm and all the suppliers, the value is revenue R = ÂD(N ,θ)αqαN .

3. In a coalition with the firm, but not all the suppliers, the overall quality is Q =
qn(∆kq)N−n = (∆k)N−nqN , where n is the number of suppliers who are in the coalition.
The corresponding value is ÂD(N ,θ)αQα = (∆k)α(N−n)R. Note again, case 2 is a special
case of case 3 when n = N .

The firm’s Shapley value is

1
N + 1

N

∑
n=0

(δk)N−nR = γ(N ,δk)R,

where δk ≡ (∆k)α, and γ(N ,δk) ≡ 1−(δk)N+1

(1−δk)(N+1) is increasing in δk and decreasing in N .
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Appendix C. Merging S&P Capital IQ and PATSTAT

We use n-grams matching algorithm to match 3,165,143 PATSTAT companies with 33,783,284

S&P Capital IQ companies. We match these companies based on their names and countries of
locations. The matching contains three stages: parsing, matching, and filtering.
In the parsing stage, we perform the following standard string cleaning procedures:

1. Convert company names to Unicode letters.

2. Remove the stock exchange abbreviations from the company names.

3. Convert all letters to lower cases.

4. Replace “,” by space and “..” by “.”.

5. Remove leading and trailing blanks.

6. Collapse multiple, consecutive internal blanks.

7. Randomly split all companies into chunks (10 for S&P Capital IQ and 20 for PATSTAT).

8. Use Python module called “cleanco” to remove company suffixes.

9. Drop duplicates and store to .csv files.

We then match the parsed company names using n-grams matching algorithm. Each company
name is broken into a corpus of three-letter grams.29 A dictionary is built by collecting all the
grams of all the company names across the two databases. We then use the dictionary to trans-
form each corpus into a vector of 0s and 1s. The list of company names is then transformed into
a sparse matrix where each row corresponds to a company name and each column corresponds
to a gram in the dictionary.30 Each positive entry is then multiplied by a TF-IDF weight, where
TF stands for term frequency and IDF stands for inverted dictionary frequency. Term frequency
refers to the frequency that a gram appears in a corpus. Inverted document frequency is the
inverse of the frequency that a gram appears in the entire document. TF allocates a higher weight
to a gram that appear multiple times in a company name, and IDF reduces the weight of a gram
that appears frequently in the dictionary.

Now that the company names are digitized, we use cosine similarity scores to select the
top matches across the two databases. Technically, the dictionary can be considered as a
multi-dimensional space, where each company name corresponds to vector in this space. Cosine
similarity score is the cosine of the angle between two vectors. It ranges from 0 to 1. The higher
the score, the more similar the company names.

The matching is implemented in two steps. We first match those company names for which
we have country information. For each country, we calculate the similarity score between each
and every pair of company names, and keep the top 20 matches with similarity score higher than
or equal to 0.8. We then combine all the companies that do not have a match from this round
of matching with those companies for which we do not have country information, and calculate
pairwise similarity scores. After the second round of matching is done, we end up with 1,650,624

matches. 487,160 matches from the first step and 1,163,464 matches from the second step. After
eye inspection, we decide to set the similarity score threshold for the two matched sets to be 0.95

and 0.96, respectively, which leaves us with 253,565 matches. We then keep the top match for each
S&P Capital IQ company and the top match for each PATSTAT company. The resulting database
contains 251,484 one-to-one matches. The location of these companies are summarized in Table
A2.

29For example, Panasonic is broken into the following grams: pan, ana, nas, aso, son, oni, nic.
30The ordering of these grams is ignored, meaning that we discard information on the position of a gram in a corpus.
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Table Appendix C.1: Geographic Location of the Matched Companies

Country/region Companies Percentage
United States 73,708 29%
China 31,266 12%
Japan 22,082 9%
Germany 15,131 6%
United Kingdom 12,681 5%
South Korea 9,583 4%
France 8,959 4%
Canada 5,803 2%
Italy 5,015 2%
Spain 4,085 2%
Taiwan 3,361 1%
Australia 3,340 1%
Sweden 3,073 1%
Switzerland 2,915 1%
Netherlands 2,896 1%
Russia 2,625 1%
Other 44,961 18%
Total 251,484 100%

Appendix D. Patent Classification

The 251,484 PATSTAT companies matched with S&P Capital IQ companies hold a total of
29,666,609 patent applications with English abstracts, which is 64% of all 46,470,475 English
patent applications.31 We use supervised learning to train a multi-layer perceptron (MLP) model
to classify these patent applications. For brevity, we will refer to these patent applications as
patents.

We hire two research assistants, referred to as RA1 and RA2, to manually classify 6,000

randomly selected patents based on their titles and abstracts. RA1 has a science background and
RA2 has an economics background. The patents are classified into two categories: ideas-oriented
and cost-oriented, shortened as quality and cost. Quality patents include those patents that
improve the quality of an existing function, or creates new function of an existing product, or
creates a new product. Cost patents are those patents that improves production efficiency or
reduces production costs. The research assistants’ classification results are listed in the table
below:

Table Appendix D.1: Patent Classification: 6000 Samples

Cost Quality Total
Cost 920 351 1,271
Quality 2,932 1,797 4,729
Total 3,852 2,148 6,000

RA1's 
Classification

RA2's Classification

The two RAs’ classifications are not quite consistent and we trust RA1’s classification over
RA2’s classification because of two reasons. First, we hired two additional RAs to classify 1000 of

31Over 90% of the PATSTAT patent applications have English abstracts.
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the 6000 patent sample. RA1’s classification has higher overlaps with the additional classification
results than RA2. Second, RA1’s classification achieves much higher accuracy rates than RA2’s
classifications in the training process, as shown later in this section.

We then train a neural network model based on the classified results. We use three samples
to train the model: RA1’s classifications, RA2’s classifications, and the common classifications,
which include only those patents for which the two research assistants have assigned the same
category. A multi-layer perceptron model can be considered as a feed-forward neural network
that contains a number of neurons per layer, where the first layer transforms the input data
(the sparse matrix created from patent texts) to logistic models and the last layer transforms
logistic probabilities to categories. The first layer is called the input layer and the last layer is
called the output layer. Those layers in-between are called the hidden layers. We choose three
hyperparameters to optimize model performance: number of layers, units per layer, and dropout
rate. The dropout rate is the fraction of samples that are randomly thrown out of the training
sample at each training session. It is designed to reduce the overfitting problem. The MLP models
assessed by their performance in the training set and the validation set. In each set, we observe
how training and validation accuracies improve over the training sessions (or epoch), and how
the training and validation losses decline over training sessions (or epochs). Figures Appendix
D.1 and Appendix D.2 respectively show the training results using patent abstracts and patent
titles (with the best hyperparameters). Based on the model performances, we use the common
classifications on patent abstracts as the main training sample and set the MLP model to have 4

layers with 16 neurons per layer with a dropout rate of 0.2.

Appendix E. Production Networks Construction

1. S&P Capital IQ Business Relationships and Ownership Structure

Sources of Information

The S&P Capital IQ database contains 954,420 buyer-seller relationships between 429,776

companies over the period 2010-2017, where a buyer-seller relationship features the transaction
of goods or services from the seller to the buyer. We use these buyer-seller relationships to
construct information on a firm’s production network, which is defined as all firms that engage
in transaction relationships with the focal firm (including its customers and suppliers).

Definition of Firm Boundary and Ownership

To identify the ownership structure in a buyer-seller relationship, we utilize the ownership
information in S&P Capital IQ. The main ownership types include: parent, ultimate parent,
limited partner, merged entity, investor, and pending parent/investor. We define two levels
of ownership based on the degree of control. Level one includes investor, limited partner,
and pending parent/investor; level two includes parent, merged entity, holding company, and
ultimate parent. Obviously, level two is stronger than level one. Accordingly, there are two levels
of firm boundary. Level one refers to those buyer-seller relationships where one firm is the other
firm’s investor, limited partner, or pending parent/investor; level two refers to those buyer-seller
relationships where one firm is the other firm’s parent, merged entity, holding company, or
ultimate parent. If there are two levels of ownership between two firms, for example, if company
A is both company B’s parent and investor, we consider the higher-level ownership. If a seller S
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(a) Training Accuracy and Loss for RA1’s Classification

(b) Training Accuracy and Loss for RA2’s Classification

(c) Training Accuracy and Loss for Common Classification

Figure Appendix D.1: Training Results Using Patent Abstracts
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(a) Training Accuracy and Loss for RA1’s Classification

(b) Training Accuracy and Loss for RA2’s Classification

(c) Training Accuracy and Loss for Common Classification

Figure Appendix D.2: Training Results Using Patent Titles
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invests in buyer B and buyer B is seller S’s parent, we consider the second relationship to dominate
the first one.32 There are cases where the two companies share the same parent or ultimate parent,
but are not otherwise related, i.e., there is no direct ownership relationship between these two
companies. In such cases, we consider the two companies to be integrated (thus have level two
firm boundary), but neither firm owns the other. However, these two firms will not be used to
construct production network information, as the relationship does not have a clearly-defined
“owner”.

Under the above definition, each buyer-seller relationship is characterized by five possible
ownership structures: buyer owns seller at level two, buyer owners seller at level one, seller owns
buyer at level two, seller owners buyer at level one, and neither firm owns the other. If there
a bilateral transactions between two firms, the ownership structure should be mirrored between
the two relationships. Table A3 shows the percentage of each of these relationships.

Table Appendix E.1: Ownership Structure in the Original Dataset

Ownership Structure Relationships Percentage
Buyer owns seller (level two) 13,167 1.38%
Buyer owns seller (level one) 3,485 0.37%
Seller owns buyer (level two) 3,714 0.39%
Seller owns buyer (level one) 16,587 1.74%
Neither 917,467 96.13%
Total 954,420 100.00%

2. Imputing Firm-Supplier Relationships from Parent-Subsidiary Information.

Let us refer to those buyer-seller relationships compiled from S&P Capital IQ as the original
dataset. According to Table A3, integrated relationships (including both level one and level two
ownership) are merely 3.87% of all 954,420 relationships, which indicates that the sample ignores
many within-firm transaction relationships. We therefore adopt an imputation method that has
been formalized in previous literature to uncover those within-firm transaction relationships.33

Table Appendix E.2: Ownership Structure in the Extended Dataset

Ownership Structure Relationships Percentage
Buyer owns seller (level two) 674,904 30.29%
Buyer owns seller (level one) 3,485 0.16%
Seller owns buyer (level two) 626,918 28.14%
Seller owns buyer (level one) 3,714 0.17%
Neither 918,858 41.24%
Total 2,227,879 100.00%

We use U.S. BEA 2002 Input-Ouput Table to impute buyer-seller relationships from parent-
subsidiary relationships in the S&P Capital IQ database. More specifically, denote the industries
of the parent and the subsidiary by i(p) and i(s), respectively. Denote the input-output link-
age between upstream industry i and downstream industry j by l(i,j), where linkage is the

32There is no incidence where the two firms have the same degree of control over each other.
33See for example Acemoglu et al. (2010) and Antràs and Chor (2013).
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amount of input that the downstream industry directly purchases from the upstream industry
to produce one dollar of output. A transaction relationship between p and s exists as long as
max{l(i(p),i(s)), l(i(s),i(p))} > 0.01. If the condition is satisfied, the transaction goes from the
parent to the subsidiary if l(i(p),i(s)) > l(i(s),i(p)), and from the subsidiary to the parent if
l(i(s),i(p)) > l(i(p),i(s)). If l(i(s),i(p)) = l(i(p),i(s)), we consider the transaction to be bilateral.
The direction of transaction does not matter for our exercise because in the empirical section,
we define a firm’s production network as composing of itself, its customers, and its suppliers. A
firm’s partner in its production network could refer to either its customer or its supplier. The
direction of transaction is unimportant. Therefore bilateral transaction relationships do not result
in over-counting in the firm production networks. In addition, we do not include those partners
that own the focal firm,34 so the parent will not be counted as the subsidiary’s partner.

We impute 1,286,076 buyer-seller relationships from 1,157,184 parent-subsidiary relationships
using the above methodology. 12,617 of them overlap with the original dataset. Table A4

summarizes the ownership structure in the extended dataset.

34Because the integration decision is not made by the focal firm in this case.
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