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1 Introduction

Often times, some individuals who apply for a treatment are non-takers. They decline to get
treated when they receive an offer, for instance because they then realize that their benefit from
treatment is lower than they thought. When a treatment is oversubscribed but some applicants
are non-takers, an appealing way of allocating the available seats is to use randomized waitlists.
First, applicants are ranked randomly. Then, if S seats are available, an initial round of offers
takes place, whereby the first .S applicants get an offer. If r of them decline it, a subsequent
round of offers takes place whereby the next r applicants get an offer. Offers stop when all the
seats have been filled. This allocation method is fair: each taker has the same probability of
being treated; it is also efficient: no seat for treatment remains unused, despite the presence
of non-takers. Therefore, oversubscribed treatments with non-takers are often allocated by
randomized waitlists. We conducted a survey, and found 43 articles studying treatments
allocated by randomized waitlists, ranging from charter schools in the USA to agricultural
trainings in Liberia. These treatments often have capacity constraints for various groups of
applicants. For instance, a charter school may have 20 seats available in 7th grade and 25

seats in 8th grade. Then, a lottery takes place in each group.

As applicants are ranked randomly, it may be possible to form two comparable groups with
different likelihoods of getting an offer. One could then compare those two groups to estimate
the effect of the treatment. In practice, researchers have used two types of comparisons. Somne
researchers have compared applicants getting and not getting an initial offer, thus giving rise
to the so-called initial-offer (IO) estimators. Other researchers have compared applicants ever
and never getting an offer, thus giving rise to the so-called ever-offer (EO) estimators. When
several lotteries were conducted, as in the charter school example above, researchers have often
included waitlist fixed effects in their specifications, to ensure they compare applicants within
and not across waitlists. In our survey, 22 articles used the EO estimator, 20 used the 10

estimator, and a handful used other estimators. Overall, practices are not standardized.

We start by showing that the expected proportion of takers is strictly greater among applicants
ever getting an offer than among applicants never getting one. Intuitively, this is because offers
continue until all seats are filled, so the last applicant getting an offer must by construction
be a taker. Moreover, when waitlist fixed effects are included in the estimation, they induce
an endogenous reweighting of waitlists that usually further increases this imbalance between

the two groups, as we explain in more detail in Section 2.

Then, we show that due to this imbalance, the EO estimator is inconsistent when the number
of waitlists goes to infinity. In our survey, the median of the number of waitlists divided by the
number of applicants per waitlist is 1.9, and 25% of the articles have more than 100 waitlists
and less than 40 applicants per waitlist. This motivates the asymptotic sequence we consider.

By contrast, if the number of applicants and takers per waitlist goes to infinity, the asymptotic



bias of the EO estimator goes to 0.

We show that dropping the last applicant getting an offer in each waitlist is sufficient to
restore the comparability between applicants getting and not getting an offer. Based on this
result, we propose a new estimator of the treatment effect. It is built out of comparisons of
applicants that get and do not get an offer in each waitlist, downweighting applicants that
accept their offer by an amount equivalent to dropping one of them. Then, our estimator
takes a weighted average of those within-waitlist comparisons, with a weighting scheme that
avoids the endogeneous reweighting induced by the waitlist fixed effects. We refer to that
estimator as the doubly-reweighted ever-offer estimator (DREO). We show that our estimator

is consistent and asymptotically normal when the number of waitlists goes to infinity.

Contrary to subsequent-round offers, initial offers are only a function of applicants’ random
ranks in the waitlist. Therefore, applicants getting and not getting an initial offer are sta-
tistically comparable, and the 1O estimator is also consistent. However, we show that the
asymptotic variance of that estimator is often much larger than that of the DREO estimator,

so using it will often result in large efficiency losses.

We use our results to revisit Blattman & Annan (2016), who studied the effects of an agricul-
tural training. The DREQ estimator is significantly different from the EO estimator computed

by the authors for some of the outcomes they considered.!

The remainder of the paper is organized as follows. Section 2 uses a simple example to give the
intuition of our results. Section 3 presents our main results. Section 4 presents our empirical
application. Appendix A presents the proofs. In our Web appendix, we present our survey of
articles that have used randomized waitlists, we show that some of the assumptions adopted

in the paper can be relaxed, we present some simulations, and we revisit another application.

2 Introducing the results through a simple example

We start with a simple example. We consider a waitlist where five applicants compete for
three seats. Four applicants are takers (7") and one is a non-taker (N7'), meaning that she
will refuse to get treated if she gets an offer. Applicants are randomly ranked, and treatment
offers are made following that ranking until all seats are filled. There are 5! possible orderings
of the applicants, that can be divided into 5 groups of 4! orderings, according to the rank of
the non-taker. Table 1 displays those five groups of orderings, hereafter referred to, slightly
abusively, as “orderings”. For each ordering, applicants getting an offer are depicted in italics,
while those not getting an offer are depicted in bold. In ordering 1 and 2, the first three
applicants are takers, so offers stop after the third offer. In orderings 3, 4, and 5, one of the
first three applicants is a non-taker, so a fourth offer is made; then the next applicant is a

taker so offers stop as the available seats have been filled.

' A Stata adofile computing the DREO estimator is available from the authors’ website.



The first issue with the EO estimator is that, on average, applicants getting an offer bear
a higher proportion of takers than applicants not getting an offer. Each ordering has a 0.20
probability of being selected. Across the five orderings, the expected share of takers among ap-
plicants getting an offer is 0.2x (1 + 1+ 3/4 4+ 3/4 4+ 3/4) = 17/20. On the other hand, the ex-
pected share of takers among applicants not getting an offer is 0.2x (1/2+1/2+1+1+1) =
4/5. Intuitively, this imbalance arises because offers stop when sufficiently many takers have
accepted an offer. This endogenous stopping rule creates a positive correlation between get-
ting an offer and being a taker. When the average potential outcomes of takers and non
takers differ,? this imbalance implies that applicants getting and not getting an offer are not

statistically comparable: those two groups have different average potential outcomes.

Table 1: Applicants getting and not getting an offer in an example

Ordering 1 | Ordering 2 | Ordering 3 | Ordering 4 | Ordering 5
T T T T NT
T T T NT T
T T NT T T
T NT T T T
NT T T T T

The second issue with the EO estimator arises from the inclusion of fixed effects when pooling
waitlists. Assume that one pools waitlists that all have four takers, one non-taker, and three
seats. In some waitlists, the realized ordering of takers and non-takers is Ordering 1 in Table
1, in other waitlists the realized ordering is Ordering 2, etc. With several waitlists, it follows
from, e.g., Equation (3.3.7) in Angrist & Pischke (2008), that the EO estimator with waitlist
fixed effects is a weighted average of the EO estimators in each waitlist, that gives more weight
to waitlists where the share of applicants getting an offer is closer to 1/2. In our example, 3/5
of applicants get an offer in waitlists with Ordering 1 or 2, while 4/5 of applicants get an offer
in waitlists with Ordering 3, 4, or 5. Accordingly, waitlists with Ordering 1 or 2 receive more
weight. But those are precisely the waitlists where the proportion of takers among applicants
getting an offer is the highest. Therefore, the reweighting of waitlists induced by the fixed

effects aggravates the over-representation of takers among applicants getting an offer.

The DREO estimator we propose addresses those two issues. Firstly, in our example dropping
the last taker getting an offer is sufficient to solve the endogenous stopping rule issue. Table
2 shows that then, the expected share of takers among applicants getting an offer is equal
t0 0.2 x (1+142/3+2/3+4+2/3) =4/5, the same as among applicants not getting an offer.
Still, dropping the last taker getting an offer is arbitrary: dropping the first or the second

2This is often the case. Abadie et al. (2002) and Crépon et al. (2015) are just a few examples of the many
papers that have found large differences between the average potential outcomes of takers and non-takers.



would have the same effect. Besides, doing so reduces the sample size and statistical precision.
Instead, one can give to the three of them a weight equal to 2/3: this reduces the expected share
of takers among applicants getting an offer by the same amount as dropping one. Secondly,
instead of using fixed effects to pool waitlists, we simply take an average of the estimators in
each waitlist, weighting waitlists proportionally to their number of applicants. These weights
are independent of how many offers one has to make to fill the available seats, which solves
the second issue of the EO estimator. Table 2 shows that this second reweighting is necessary.
Even after downweighting takers getting an offer, including waitlist fixed effects would still
lead to over-represent takers among applicants getting an offer. Indeed, doing so gives more
weight to waitlists with ordering 1 or 2, where 1/2 of applicants get an offer, while those are

the waitlists where the proportion of takers among applicants getting an offer is the highest.

Table 2: Applicants getting and not getting an offer, dropping the last

taker getting an offer

Ordering 1 | Ordering 2 | Ordering 3 | Ordering 4 | Ordering 5
T T T T NT
T T T NT T
NT T T
T NT
NT T T T T

3 Main results

3.1 Assumptions and parameter of interest
Throughout the paper, we consider the following set-up.
Assumption 1 (Set-up)

a) Applicants for a binary treatment are divided into K mutually exclusive waitlists. For every

k € {1..K}, Ny denotes the number of applicants in waitlist k. Ny, is non stochastic.

b) In each waitlist, Sy seats are available, and are allocated as follows: applicants are ranked,
and treatment offers are made following that order until Sy applicants have accepted to get

treated or all applicants have received an offer. Sy is non stochastic.
¢) Applicants that do not get an offer cannot get treated.

In Section 4 in the Web appendix, we consider various extensions of this set-up. For instance,
we show that our results remain unchanged if we allow for the possibility that some applicants

manage to get treated even if they do not receive an offer. Similarly, we allow for the possibility



that some applicants may participate in several waiting-lists, or that the treatment may not

be binary. But for now we focus on the basic set-up outlined in Assumption 1.

Then, we assume that ranks are randomly assigned to applicants. Let R;; denote the rank
assigned to applicant ¢ in waitlist k, let L denote the number of applicants getting an offer in
waitlist k, and let Z;, = 1{R;x < L} denote whether applicant i gets an offer, the so-called
ever-offer instrument. Let D;x(1) denote her potential treatment if she gets an offer, and let
Dy, denote her observed treatment. Under point ¢) of Assumption 1, D = ZjDix(1). For
every d € {0,1}, let Yi(d) denote her potential outcome if Dy, = d,® and let Yi, = Y (Dj)

denote her observed outcome. Let

Pr = ((D1x(1), Y1£(0), Y1£(1)) , s (Dnyk (1), Yok (0), Yoy, (1))

be a vector stacking the potential treatments and outcomes of the applicants in waitlist k.
For any integer j, let II; denote the set of permutations of {1..j}. Let Ry = (Rik, ..., Rnyk)

denote the ranks assigned to applicants 1 to Nj in waitlist k.

Assumption 2 (Randomly assigned ranks)
For allk € {1.K} and (r1,...,7n,) € Iy, P(Ri = (r1, ..., TN )| Pr) = 55

B!

Assumption 2 requires that the ranks assigned to applicants be independent of their potential
treatments and outcomes, and uniformly distributed on Ily,. It implies that each applicant

has the same probability of being in the first, second, ..., or last rank.

Finally, we consider a last assumption. Let applicants with D;;(1) =1 (resp. D;x(1) = 0) be
referred to as takers (resp. non-takers). For every k € {1..K}, let T}, = vaz"l Dix(1) denote

the number of takers in waitlist k.

Assumption 3 (Strictly more takers than seats)
For every k € {1..K}, 2 < S, < Tj.

Assumption 3 requires that each waitlist have at least two seats, so waitlists with less than
two seats have to be dropped from the analysis. Assumption 3 also requires that each waitlist
have strictly more takers than seats. When all the seats available in a waitlist get filled, it
must be that S < Ty, but it is still possible that S = T: all applicants not getting an offer
might be non-takers. Still, in Section 4.1 of the Web appendix we propose a statistical test of
whether S < T} for all k, or Sy = T}, for some k.

Let T'= 25:1 T}, denote the total number of takers. Our parameter of interest is

1
Ag=E(= >,  [Me@)-YaO)]],
(i,k):D;p(1)=1

the local average treatment effect of the takers.

3We implicitly assume that getting an offer does not have a direct effect on the outcome, the so-called
exclusion restriction, see Angrist et al. (1996).



3.2 The Doubly Reweighted Ever Offer estimator

Let N = Zszl N, and N = % respectively denote the total number of applicants and the
average number of applicants per waitlist. Let Z = {(i,k) € N : i € {1.Ny},k € {1..K}},
and for every (i,k) € Z, let wy, = 1 — Z“gif”“ w;g, is equal to 1 — Sik for applicants that get
and accept an offer, and to 1 for everyone else. As Sy takers receive an offer in each waitlist,
weighting applicants getting an offer by w;; decreases the share of takers among them by the

same amount as dropping one taker, as illustrated in the numerical example in Section 2.

The DREO estimator of Ay is defined as

1 K Ng 1 LV 1 :
K Zk:l N~ (Lk,—l Zi:Zik:I wiYi, — Ni—Ly, Zi:Zik:O Y; )

A =
1 ~~K N, 1 ey
7 2k=1 N L1 D iiZiy=1 Wik Dik

A can be computed through a 2SLS regression. Let L = Zszl Ly, and let

L—-K N N—-L N,
wh = wy, <Zik>< i k >

1- 2
N kL1 T A T N L

be a weighting scheme combining w;;, with propensity score reweighting. One can show that A
is equal to the coefficient of D;; in a 25LS regression of Y on D;i using Z;i as the instrument,
and weighted by wiR. Importantly, note that under Assumption 1, Si = vaz’“l ZiDit, 80
observing (Zik, Dik, Yik) (i,k)ef1.. Ny} x{1..k} is sufficient to compute A.

Our main result relies on the following lemma:

Lemma 3.1 If Assumptions 1-3 hold, then for all k € {1..K},
W) B (% 2150 3 (7 Sz winYon — w77 Lizmo Yir) ) = B (F Loz [Yir(Dix(1) = Y (0)])

b) E (% Zszl %ﬁ Ei:Zikzl wikDik) =F (% Z(i,k)eI Dik(1)>-

The intuition of point a) of the theorem goes as follows. As the numerical example in Section
2 illustrates, one can show that in each waitlist, w;i-reweighted applicants getting an offer
are statistically comparable to applicants not getting an offer. Therefore, the only difference
between these two groups is that one receives an offer and not the other one. Accordingly,
ﬁ Zi:Zikzl Wik Yk — ﬁ Zi:ZuFO Yii, the difference between the average outcome of the
two groups, is an unbiased estimator of E (Nik vaz’*l [Yik(Dir(1)) = Y; (0)]) , the intention to
treat (ITT) effect of getting an offer on applicants’ outcome in waitlist k. The numerator of A
is an average of those unbiased within-waitlist comparisons, that gives to each waitlist a weight
proportional to its number of applicants. Therefore, this numerator is an unbiased estimator
of E (% > wyer Yi(Di(1)) = Y; (())]), the intention to treat effect among all applicants.

The intuition of point b) is similar.



We now derive the asymptotic distribution of A. In our survey of articles that have used
randomized waitlists, the median number of waitlists used in the analysis is equal to 64.
Therefore, we consider a sequence where K, the number of waitlists, goes to infinity. An
alternative would be to consider a sequence where the number of applicants per waitlist goes
to infinity, but in our survey the median of waitlists divided by applicants per waitlist is
equal to 1.9, so the former asymptotic may be more appropriate in a majority of applications.
For all k € {1.K}, let RF, = 2 ﬁzizk L 0iRYik = N Yz Yar| and FS =

N
%L,}fl Zi:Z,;k:1 w;kpDik. Let also FIS = Kl_l)I_Ii_l % Zk L E(FS;) and A = l_lffooAK’ where
Assumption 4 below ensures that those limits exist. Finally, for all k let Ay = RF’“FiéFS’“

Assumption 4 (Technical assumptions to derive the asymptotic distribution of A)

a) The vectors (Py, Ri)i1<k<k are mutually independent.
b) For all (i,k) € Z, Dy (1) is non-stochastic.
c) For every k, Ny < N, for some integer N7.

d) supE (]RFk]2+5) < 400, for some strictly positive 9.
keNx

e) The following sequences have finite limits when K — +00: i) & Zszl E(RFy), i) + Zle E (FSk),
i) ¢ iy V (BE), ) e 4y V (FSk), v) & iy B (REGFSY), vi) e 35 B (|RF, — E(RE)PPY),
vii) & Sh B (|FSy — B(FSg)**0), and viii) + S5 E (|Ar — E(Ag)[?H0).

Typically, the lotteries determining applicants’ ranks are independent across waitlists, so by
design the vectors (Ry)1<k<k are independent, and (Ry)i1<k<x is independent of (Py)1<k<rk-
Then, point a) of Assumption 4 only requires that the vectors (Py)i<k<ix be independent.

This is often plausible, for instance when the waitlists correspond to different schools.

Point b) requires that whether an applicant is a taker or a non-taker be non-stochastic, a
commonly-made assumption in the randomization-inference literature with imperfect com-

pliance (see, e.g., Imbens & Rosenbaum, 2005). Under this assumption, the denominator

K
of Ak is non-stochastic, so it follows from Lemma 3.1 that Ag = %. Then,
k=1 k

the asymptotic normality of v K (3 — Ag) follows from the central limit theorem and from
the linearization of a ratio. Theorem 3.1 still holds Without point b), provided the tar-
b )LATEk), where LATE, —

T%C 2Dy (1)=1 Yik(1) — Yi(0)] is the LATE in waitlist k. Indeed, it follows from Lemma 3.1
1/K iy E(RFy)

h k 1

that Arc = e sy

crucially important for Theorem 3.1 to hold, but it simplifies the target parameter.*

get parameter Ag is replaced by Ag = (Zk s
even if point b) fails. Overall, point b) of Assumption 4 is not

Point c) requires that the number of applicants per waitlist be uniformly bounded by some

constant NT. Points d) and e) are technical conditions ensuring we can apply Liapunov’s

*Theorem 3.1 also holds (with A, the limit of A, as the target parameter) if point b) is replaced by the



central limit theorem to (RF})ken+, (F'Sk)ken+, and (Ag)gen+, and the weak law of large
numbers in Gut (1992) to (RFy)ken+, (FSk)ken+, (RF?) peny> and (FS3?) hen:
holds if the potential outcomes Y;;(0) and Y;x(1) have a bounded support.

LetaQZKliqum%Zszl V(Ar), 0 = hrfrl |:KZI<:1 ( 7 - ( Y B (A )>1’

T RFk—KFSk K 1 ,

d) for instance

Theorem 3.1 If Assumptions 1-4 hold, VK (ﬁ — AK> N (0,02) and 83_ LN a_%_ > o2,

Theorem 3.1 implies that Ais an asymptotically normal estimator of Ax when the number of
waitlists goes to infinity. As is usually the case for estimators constructed using independent
but not identically distributed random variables (see e.g. Liu & Singh, 1995), the asymptotic
variance o2 of A can only be conservatively estimated: we provide a consistent estimator of
03_, an upper bound of ¢2. That estimator can then be used to build conservative confidence
intervals for Ag.5 When all the Aj, have the same expectation, something that for instance
happens when all waitlists have the same number of applicants, the same expectation of the
proportion of takers, and the same expectations of takers’ and non takers’ potential outcomes,
0'_2,’_ = 02 so those confidence intervals are exact. Finally, in simulations shown in Section 3.4
of the Web appendix, we find that the asymptotic distribution in Theorem 3.1 approximates
the distribution of A well if 20 waitlists or more are used in the analysis. This suggests that
articles using more than 20 waitlists may rely on Theorem 3.1 for inference, while articles

using less than 20 waitlists may not.
3.3 Comparison with the Ever Offer and Initial Offer estimators

3.3.1 Comparison with the Ever Offer estimator

Let BEE be the coefficient of D;;, in a 2SLS regression of Y on D;; and waitlist fixed effects,
using Z;r as the instrument for D;p. We refer to Eff:E as the EO estimator. The derivation

of its limit relies on Assumption 6, another technical assumption, that is stated in the proofs.

s

K
Z (RF}) —
. 1
( kg (FSy) =  lim = ; E (FSk)> O

following conditions:

- 3B 0

==

These two conditions automatically hold if £ (RF})) and E (F'Sk) are the same in every waitlist. But they can
also hold with heterogeneous waitlists. For instance, they hold if the sequences (E (RFy))ren+ and E (FSk), cx-

are periodic, which corresponds to an asymptotic where the sample grows by duplicating the original sample.
®Conservative variance estimators also arise in other articles studying treatment effect estimation in ran-

domized experiments (see e.g. Neyman, 1923).



Assumption 6 ensures that the limits in the definition of w; and B below exist. Let

S (Nk—Sk Nk“)

Th+1
Wg = Ni
) S (N Sﬁﬁf)
Koo KZ N;
Sp (N, —T, ettt
. * L ( ( N n) [T% YD (v)=1 Yik(0) = mtgy Liipu(1)=0 Ym(O)D
B:

K—+00

Si (N — Sy mkt
lim sz L << . k+1)

Theorem 3.2 If Assumptions 1-4 and 6 hold,

= 1
Brp = lim ZE . 3 i) - Yi(0)] | + B. 2)

Under Assumptions 1-4 and 6, BEE converges towards the sum of two terms. The first is a
weighted average of the LATESs of takers in each waitlist. If those LATEs vary across waitlists,
this weighted average is not equal to the LATE of all takers, because it overrepresents waitlists
with a ratio of seats to takers closer to 1/2.° The second term, B, is a bias term. As explained
in Section 2, this bias arises from the endogenous stopping of offers in each waitlist, and from
the waitlist fixed effects.

We start by performing comparative statics on |B|, assuming that waitlists are homogeneous:
there exist real numbers Ny, Tp, So, and Ay (g) such that for all k, N, = No, Ty, = To, S, = So,
and E ([ Sy Yik(0) = 5t Ym0 Ym(o)D = Ay(g). Then,

1—1ty
1—sg +N0(t0 — S())

|B| = Ay o)l (3)

where tg = Ty /Ny and sg = So/Ny respectively denote the proportion of takers and the ratio of
seats to applicants in the waitlist. The right hand side of (3) is decreasing in Np,” decreasing

in to,® increasing in sg,” and increasing in }Ay(o)’.
Then, we study how waitlists’ heterogeneity affects |B|. Let (56‘,58) € {2.Ty — 1}2, let

(Tg, 1) € {3..No}?, and let Ay gy = E [T% Yip()=1 Yik(0) = 55 2ipuy (1)=0 Yik(o)]
The three following results hold:

1. If (Nk,Tk,Ay(o),k) = (NO,TO, Ay(o)) for all k, |B| is larger if a% of the waitlists have
S¢ seats and (1 — )% have S§ seats than if all of them have aS$ + (1 — a)S} seats.

SThi b from the fact that ST _ps (- s\ ops(os
is can be seen from the fact tha = =Ti7t TN )~ ez )
"This remains true if the proportion of takers and the ratio of seats to applicants vary across waitlists.

8This remains true if the number of applicants and the ratio of seats to applicants vary across waitlists.
9This remains true if the number of applicants and the proportion of takers vary across waitlists.

10



2. If (Ng, S]C,Ay(o)7k) = (No, Sg,Ay(O)) for all k, |B| is larger if a% of the waitlists have
T¢ takers and (1 — )% have Ty takers than if all of them have aT + (1 — )T takers.

3. If (17\;—’;, %’;, Ay(o%k‘.) = (to, S0, Ay(o)) for all k, | B| is larger if a% of the waitlists have N
applicants and (1—a)% have N§ applicants than if all have aN§ + (1 —a)N¢ applicants.

Overall, |B| seems to be higher when waitlists have heterogeneous numbers of applicants,
takers, and seats. The impact of waitlists’ heterogeneity on |B| can be large. For instance, if
(Nk, Sk, Ay(o)ﬁ) = (40, 20, Ay(o)), |B| is 17.1% larger if 50% of waitlists have 25 takers and
50% have 35 takers than if all have 30 takers.

3.3.2 Comparison with the Initial Offer estimator

Let Z!, = 1{R;; < S} be an indicator for applicants in the initial round of offers, the so-called

initial-offer instrument. Let S = Zszl Sy. Let wl, = Z{, x & x ]g—: +(1—Z}) x M55 x N}fv_ksk

be the propensity score weights attached to initial offers. Let B}IDS be the coefficient of D;j in

a 2SLS regression of Y, on Dy, using Z/, as the instrument, and weighted by wiIk. We call
Bj’ss the 10 estimator.

Under Assumptions 1-2 and a technical condition similar to Assumption 4, v K (B}IDS - A K)

converges towards a normal distribution. Contrary to Z;, Z!

i 1s only a function of applicants’

random numbers and of the number of seats in their waitlist. Thus, it satisfies the random
instrument assumption in Imbens & Angrist (1994). Under Assumption 1, it also satisfies the
monotonicity condition therein. Then, one can show that B}IDS is an asymptotically normal
estimator of the LATE of applicants complying with an initial offer. As those are a random
subset of the takers, this LATE is equal to Ag.

However, using B]Ivs instead of A may result in a large loss of precision, as shown in Theorem
3.3 below. For every k, let Dy = (D1x(1), ..., Dy x(1)).

Assumption 5 (Assumptions to compare the asymptotic variances of A and B\{Ds)

a) For every (i, k) # (', k') € I?, cov (Yik(0), Yirrs (0)|(Dg, Ri)1<k<i) = 0.

b) For every (i,k) € Z, V (Yix(0)|(Dr, Ri)1<h<i) = 0% (q)-

¢) For every k € {1..K}, for every i € {1.Ni}, E (Yir(0)|(Dg, Ri)1<k<k) = fk-

d) For every (i,k) € Z, Yir(1) = Y (0) = 7.

e) For every k € {1..K}, N, = Ny, Sk, = So, T, = To, for some integers Ny, So, and Ty.

f) S[)(Ng — So) — No(NO — T()) > 0.
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Point a) of Assumption 5 requires that the potential outcomes Yj;(0) be uncorrelated across
applicants, point b) requires that they be homoskedastic, and point ¢) requires that in each
waitlist, £ (Yix(0)|(Dg, Rk)1<k<k) be constant. Point d) requires that the treatment effect be
constant. Point e) requires that all waitlists have the same number of applicants, takers, and
seats. Point f) ensures that the denominator of the IO estimator differs from 0 with probability
1. The conditions in Assumption 5 help simplify the formulas of V/ (ﬁ) and V (B]Ias>a thus
ensuring that these variances can be compared analytically. Some of these conditions may not
be plausible in practice. For instance, point c) fails if the expected value of Y;(0) differs across
takers and non takers. However, in simulations shown in Section 3.2 of the Web appendix, we
find that the variance formulas derived in Theorem 3.3 still provide good approximations of
1% (ﬁ) and V (B\IIDS) when points c¢), d), and f) of Assumption 5 are violated.

Theorem 3.3

a) If Assumptions 1-4 and a)-e) of Assumption 5 hold,

~ 1 41
limsup V (\/E(A — AK)> < U%(O)%OTO_SO,
K—4o00 No

1 1
IfA ons 1- i Bl — — g2 Fo NSy
b) If Assumptions 1-5 hold, Klirﬁmv (\/E(ﬁps AK)) Ty (0) <£%:§00>2

Point a) of Theorem 3.3 gives an upper bound of the limsup of V' (/I?(ﬁ — AK)>,10 while

point b) gives the limit of V (\/K(BJIDS — AK)). In order to compare these parameters, note
1 + 1 L_,’_ 1

that 0 < JT,—% <1-— Sio < 1 is a sufficient condition to have =22=! TOT‘)*S“ < S(”Tof“gofg- This
No No—5o

condition usually holds in practice. For instance, if % = 0.75, the condition will hold as soon

as there are more than 4 seats per waitlist. Then, the upper bound in point a) is lower than
the limit of V (\/E(B]IDS — AK)). In practice, using the IO rather than the DREO estimator
can lead to large efficiency losses. For instance, if Ny = 40, Ty = 30, and Sy = 20, the
asymptotic variance of the IO estimator is 1.97 times larger than that of the DREO one.

4 Application to Blattman & Annan (2016)

After the second Liberian civil war, some ex-fighters started engaging in illegal activities, and
working abroad as mercenaries. Blattman & Annan (2016)'! study the effect of an agricultural

training on their employment and on their social networks. By improving their labor market

10Under technical conditions, for instance if one assumes that the potential outcomes have a bounded support,
it follows from Theorem 2.20 in Van der Vaart (2000) and Theorem 3.1 that VK (A — Ax) converges in L2,

so lim supV (\/K(ﬁ — AK)> is actually a simple limit, and it is equal to o2, the asymptotic variance of A.
K—+o0

"Blattman & Annan (2016) is one of the few articles in our survey in Section 1 of the Web appendix whose

data is not proprietary.
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opportunities, the program hoped to reduce their interest in illegal and mercenary activities,
and to sever their relationships with other ex-combatants. To allocate the treatment, the
authors divided applicants into 70 waitlists, according to the training site they applied for,
their former military rank, and their community. In each waitlist, they randomly ranked

applicants, and offers were made following that ranking until the seats available were filled.

Blattman & Annan (2016) estimate the training’s effect on 62 outcomes, that are either
applicants’ answers to survey questions, or indexes averaging their answers to several related
questions. To preserve space, we only consider the main outcomes. Here are the rules we
used to make our selection: we chose indexes rather than questions averaged into an index;
among questions not averaged into an index, we discarded those asking applicants to give a
subjective opinion; finally, we discarded a few measures the authors did not comment on in
the paper. We end up with four measures of employment, one measure of applicants’ interest

in working as mercenaries, and five measures of their social network.

For each outcome, Table 3 below shows the EQ estimator computed by the authors, and
the DREO estimator computed with the same controls as those used by the authors.'? An
estimate of 7, /v/K — 1 is shown next to each DREO estimator.'® In Theorem 2.1 in the
Web appendix, we derive the asymptotic distribution of the EO estimator. Accordingly, an
estimate of 8]257 +/ VK —1, defined in Section 2.1 of the Web appendix, is shown next to each
EO estimator. The table then shows the p-value of a t-test that the EO and DREO estimators
are equal, also computed following Theorem 2.1 in the Web appendix. Finally, the table shows
the estimated difference between the mean of Y;;(0) among non-takers and takers, denoted
Ay ). The EO and DREO estimators are close for all employment outcomes, but they
significantly differ for three of the other outcomes. For applicants’ interest in mercenary work,
the DREO estimator is 51.0% larger in absolute value than the EO one, and it is statistically
significant while the EO estimator is only marginally significant; for applicants’ relations with
their ex-commanders, the DREO estimator is 47.4% larger, and it is statistically significant
while the EO estimator is not; for applicants’ social network quality, the DREO estimator is
three times larger, but none of the two estimators is significant. For the first two outcomes,
the estimated difference between the mean of Yj;(0) of takers and non-takers is large (30.7%
and 25.1% of the standard deviation of these variables, respectively), which may explain why

the EO and DREO estimators differ.

12The DREO estimator with controls is defined in Section 2.4 of the Web Appendix.
13To account for the controls included in the estimation, Y;x and D;j are regressed on the controls, and then

the residuals from those two regressions are used instead of Y;; and D;x in the computation of 7.
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Table 3: Estimators of the LATE in Blattman & Annan (2016)

EO
Works in agriculture 0.155

—~

s.e.) DREO (s.e.) EO=DREO Ay g
0.037)  0.167 (0.037) 0.214 0.020

~—

Hours illegal work -3.697 (1.822) -3.188 (1.614) 0.183 -2.807
Hours farming work 4090 (1.511)  4.319 (1.472) 0.468  3.070
Income index 0.157 (0.075)  0.169 (0.069) 0400  -0.087

Interest mercenary work  -0.239

—~

0.140) -0.361 (0.155) 0.010 0.307
0.091)  0.050 (0.097) 0.388 -0.079
0.113) -0.227 (0.109) 0.011 0.251

Relations ex-combatants 0.073

—

Relations ex-commanders -0.154

—~

Social network quality 0.027 (0.068)  0.082 (0.068) 0.013 -0.041
Social support 0.188 (0.091)  0.161 (0.089) 0.166 -0.165
Relationships families 0.133 (0.075)  0.161 (0.079) 0.205 -0.059
N 1,025 1,016

Notes. Columns 2 and 3 show the EO and DREO estimators in Blattman & Annan (2016), for the outcome
variables in Column 1, and with the same controls as in Blattman & Annan (2016). The EO estimators are
computed using all the waitlists, while the DREO estimators are computed excluding two waitlists that had
less than two seats. An estimate of 5 /v/K — 1 is shown next to each DREO estimator, between parentheses.
An estimate of 53 , /vK — 1 (see Section 2.1 of the Web appendix) is shown next to each EO estimator,
between parentheses. Column 4 shows the p-value of a t-test that the EO and DREO estimators are equal,
where we follow Theorem 2.1 in the Web appendix to compute the standard error of the difference between
the two estimators. Column 5 shows the estimated difference between the mean of Y;;(0) among takers and

non-takers.

5 Conclusion

When the seats available for a treatment are allocated using randomized waitlists, we show
that applicants getting and not getting an offer are not statistically comparable. Accordingly,
a commonly used estimator of the treatment effect, the ever-offer estimator, is inconsistent
when the number of waitlists goes to infinity. We propose a new estimator, the doubly-
reweighted ever-offer (DREQ) estimator, and we show that it is consistent and asymptotically
normal. Finally, we show that the DREO estimator is often more efficient than another
consistent estimator, the initial-offer estimator. Overall, we recommend that practitioners use

the DREOQO estimator when they analyze randomized waitlists.
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A  Proofs

The next lemma shows that the expectation of the average of any function of potential treat-
ments and outcomes is the same among w;i-reweighted applicants getting an offer and those
not getting an offer. ¥(i, k) € Z, let Py, = (Dix(1), Yir(0), Yir(1)).

Lemma A.1 If Assumptions 1-3 hold, then Yk € {1..K} and for any function ¢ : R — R,

N
E Lkl—li:;kzlwim(ﬂk) P| = E Mi:%ﬁ@m Py | = ;k;mpﬂg).
Proof of Lemma A.1
We start by showing that
1 1 O
E|f— 1i:%1wik¢(ak) P | = M;¢(Rk)- (4)

First, we show that (4) holds when Py is such that Ty < Ng. Then, we have

Ny |
= F (Z Lkl_ 1 (1 - Di;il)) ¢(Pir) H{ Rit, < Ly}

”

Ny -
= > (1 D 2;2”) S(P)E ( Lkl_ R < L} m)
=1
Ny, Nyg—Typ+Sg
-y (1— Dj;f”) 6(Px) Y PlLi = 1P B({Ri < 1}] L = L, Py)
=1 =Sk
Ny N —Ti+Sk Nk l
i=1 Sk =Sy (T:) I-1
N, Ny—Tp+8 Ni—l
O _Dzk(1)> NS k(,c 1)( 5) 1 ( Ok . l—5k>
Ni—Ti+Sk ( -1 )(Nk—l )Sk—l Ny —T,+Sk ( -1 )(Nk—l)l—sk
- qub i) | Die(1) Y SRR (1= Dg(1) Y Rt
1=S}, (Tk)Nk =S, +1 (Tk) Nx
o —T+Sp—1 ( -1 )(Nk.—l—l) Nj—1—Tj+Sk ( -1 )(Nk.—l—l)
= Z¢ w) | Da(l) Y RIS L (1o Dy (1) Y ST
Ny 1=S),—1 (Tk—l) 1=5}, ( Ty )
1 k
= mqu(ﬂk)- (5)
i=1
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The first equality follows from the definitions of w;r, Z;r, and D;p. The second equality
holds because D;;(1) and ¢(Pj) are functions of Py, N and Sy are non stochastic, and the
conditional expectation is linear. The third follows from the law of iterated expectations, and
the fact that Ly is included between Sj, and N, — T} + Si under Assumptions 1 and 3.

Then, under Assumption 1, having Ly = [ is equivalent to having S —1 takers with R, < [1—1,
one with R = 1[, and T — S with R, > 1+ 1. (Slk_—l1) (T]Zk—glk)Tk!(Nk — Ty)! possible values
of Ry, satisfy these constraints. Under Assumption 2, conditional on Py each of those values

has a probability Nik, of being realized. Hence the fourth equality.
Then,

E(M{Ry <I}| Ly =1,Pr) = Du(E(I{Riy <1} Ly =1,D;(1) = 1,Px \ Dir(1))
+ (1= Du(1)E (H{Rik <1}| Ly =1, Dir(1) = 0, Py \ Dix(1)) . (6)

Conditional on Ly = I, Sy takers out of T} satisfy R;; < [, and Assumption 2 ensures that
each taker has the same probability of satisfying this condition, so
Sk

E(1{Rjx <1} Ly =1,Di(1) = 1,Px \ Dir(1)) = T,

(7)

Similarly, conditional on Ly = [ and T} < Ng, | — Sk non-takers out of Ny — T}, satisfy R <,
and Assumption 2 ensures that each has the same probability of satisfying this condition, so

[l — Sk

(8)

Plugging (7) and (8) into (6) yields the fifth equality. The sixth and seventh equalities follow

after some algebra.

Then, we prove the eighth equality. Before that, note that T < N; and Assumption 3 ensure
that 1 < Sy -1 <Tp —1< Ny—1land 1 < S, < Ty < N — 1, thus ensuring that all the
quantities that follow are well-defined. There are (]:\rf,f:%) ways of distributing T} — 1 units
over N — 1 ranks. The rank of the S, — 1th unit must be included between S, — 1 and
Ny — Ty + Sk — 1, and for every [ € {Sp — 1..Ny, — T}, + Sy, — 1}, there are (311:_12) (AIQZ:IS;Z)
ways of distributing those Tr, — 1 units while having that the S; — 1th unit is at the Ith rank.

Therefore,
N’“_%S’“_l<l—1)<Nk—1—l)_(Nk—1> )
5 Sk —2 Ty — Sk T, —1
Similarly, when distributing T} units over N — 1 ranks, the rank of the Sipth unit must lie
between Sy and Ny —1—Ty+Sg. For every | € {Sk..Np—1—T+ Sy}, there are (Slk__ll) (Ajflz:g;l)
ways of distributing those T} units while having the Sith unit at the l[th rank. Thus,

N’“*i’“”’“ I=1\(Ne—1-1\ (Ne—1 (10)
S —1 T, — St ) T, )
1=S},
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The eighth equality follows from (9) and (10). This concludes the proof of (5).
Second, we show that (4) holds when Py is such that Ty = Nj. Then, we have

Ng
Bl S was(Pu)| Py| = E(qu(ﬂk);gl{zmssk}
=1

ZZlkzl

S

- qu(Pik)iE(l{Rik < Sk} Pr)
, Sk

= LS s, (1)

The first equality follows from the definition of w;; and from the fact that if Ty, = Ng, Ly = Sk.
The second equality holds because ¢(P;) is a function of Py, Nj and Sy are non stochastic,
and the conditional expectation is linear. The third equality follows from the fact that under
Assumption 2, if T = N then conditional on Py each applicant has a probability f,—’; of
having R;; < Sk. This proves (11). (5) and (11) prove (4).

We then show that

1 1 N,
Plm—i, > 6 (Pa)| P =M;¢<Pm. (12)

Z;ik=0

First, we show that (12) holds when Py is such that T < Ni. Then, we have

")

1
H{R; L
—z, Wik > Li}

E(Nk—Lk > o (Pu)

1:Z;1=0

Ny,
i:Zldj(Pik)E ( N
Np—Tx+Sk ( )(

Ny
Z¢(Hk‘) Z

=5 (7t

S

N — l) 1
E(1{Ri > 1Y Li =1,

) w1 F (M > B L = 1, Py)

Nkl

T
Al NS (g 1 T, — S Ny, —Tp—1+S
> o(Pr) > (s, 1()N(k> )Nk.—l <Dik(1) ka b (1 - Da(1) Nk‘“_ T: ’“)
i=1 =S}, Ty ;
1 N Ny, —Ti+Sk ( -1 )(Nk l) Ni—1—Ti+Sk ( -1 )(er ) Ny =Ty —1+Ss
Fk Z(b(sz;) <le(1) Z Si—1 ( ) + (1 _ le(l)) Z Sk—1 '1(“1]‘\”6‘)5‘1}\]3\[ Tka*l >
i =S =Sy Tk k
Nk—Tk-i-Sk ( )(Nk 1— 1) Ny —1—Tx+Sk (;71 )(N,rgfl)
P(P; i ST 25 4 (1 — Dy (1)) e T >
N ¢ Z * ( 2 X 2 ()
1 k
M Z¢(Pik)- (13)
i=1

This derivation follows from arguments similar to those used when deriving (5). We only
prove the last equality. Note that Assumption 3 ensures that 1 < S < Tp — 1 < N, — 1,
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thus ensuring that all the quantities that follow are well-defined. There are (]7\%‘::11) ways of

distributing T — 1 units over N — 1 ranks. The rank of the Sipth unit must be included

between Sy and Ny — T, + Sk, and for every [ € {Sk..Ny — Ty + Sk}, there are (Sl ! )(:,{Zk 11 Slk)

ways of distributing those T} — 1 units while having that the Sipth unit is at the [th rank.

Therefore,
N’“‘i”’“ =1\ [(Ny—1-1\ (Ne—1 ”
P S, —1)\Tp, —1-5S,) \Tp—1)
=k

The last equality in the derivation of (13) follows from (10) and (14).
Second, we show that (12) holds when Py is such that Ty = Nj. Then, we have

E(Nk_Lk > o(Pw)

2 ik = =0
This derivation follows from arguments similar to those used when deriving (11). (13) and
(15) prove (12). QED.

) Z¢ ik) E(H{Ri > Sk} Pi) = Z¢ k). (15)

Proof of Lemma 3.1

We only prove point a), point b) follows from a similar argument.

K
Ny, 1
E| = — Y, Y;
KZN Lp—1 Zw““ ik Nk_Lk Z ik
k=1 lsz 1 'Lsz 0
—12K:N > winYin(Dix(1))| P —E#ZY-(O)P
- K N k_l ikLik ik k Nk_Lk ik k
k=1 ©: ;=1 :Z;1,=0
K
1 Nk
k=1

2 \

-l

The first equality follows from the linearity of the expectation, from the fact Nj and N

Z zk zk }/;k (O)]
i,k)€

are not stochastic, from point ¢) of Assumption 1 and the definitions of Yj; and Dy, from
the law of iterated expectations, and from the linearity of the conditional expectation. The
second equality follows from Lemma A.1, with ¢(Pix) = Yir(D;r(1)) for the first conditional
expectation, and ¢(P;;) = Yir(0) for the second one. The third equality follows after some
algebra. QED.

The proof of Theorem 3.1 below makes use of the following lemma, where Op(1) (resp. 0,(1))
stands for a sequence of random variables bounded in probability (resp. converging towards
0 in probability), see, e.g., Van der Vaart (2000).
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Lemma A.2 Let (Ax)gen and (Bi)ken be two sequences of real numbers such that for
every K, Bg > C for some real number C > 0, and % converges towards a finite limit. Let

(;{K)KEN and (EK)KeN be two sequences of random variables such that VK (A\K — AK) =
0,(1) and VK (EK — BK) = Op(1). Then,

A Ag 1 n Ak 5
Ve <BK - BK> = VE g (Vi) = G Bre = i) ) om0,

Proof of Lemma A.2

VE (EK - AK) = 0,(1) and VE (EK - BK> = 0,(1) imply that Ax — Ax = 0,(1) and
By —DBy = 0p(1). Therefore, with probability approaching one, max (ﬁK — Ak, By — BK) <
%. Then, Lemma S3 in de Chaisemartin & D’Haultfeeuille (2018) implies that with probability

approaching one,

VI () I (G - B )|

2 (1+5£)

max (\/E(g;( — Ag), \/E(EK - BK)> max (EK — AK,EK — BK> )

The right hand side of the inequality in the previous display is an o,(1). With probability
approaching one, the left hand side is bounded by an 0,(1), so it is itself an o0,(1). QED.

Proof of Theorem 3.1

Proof that VK (A - Ax) ~5 N (0,0%)

First, notice that

Ag = %E > Y1) = Yie(0)]
(i.k): Dag (1)=1
b (% > pyer Yie(Dir(1)) — Yz‘k(o)])
& 2iwyer Dis(1)
. b (% Zszl RFk) (16)
FE (# i Fsi)

The first equality follows from point b) of Assumption 4. The second equality follows from
some algebra, and from point a) of Assumption 1. The last equality follows from points a)
and b) of Lemma 3.1, point b) of Assumption 4, and the definitions of RF}, and F'Sk.
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Then,

(i (i)

Siey (RE — E(RF) |15y,
= — (RF},). (17)
i, V (RF) \J K ; '

Point a) of Assumption 1 and point a) of Assumption 4 ensures that the RFys are independent.

Point d) of Assumption 4 ensures that for every k, the expectation and variance of RF}, exist,
and points e.iii) and e.vi) ensures that (RF)gen+ satisfies the Liapunov condition. Then, the

Liapunov central limit theorem (see, e.g., Billingsley, 1986, Theorem 27.3) implies that
St (REy — E (RFy))

—45 N(0,1). (18)
Yy V (RFy)

Point e.iii) of Assumption 4 ensures that \/% Zszl V (RF}) has a finite limit, denoted ogp.
Therefore, combining (17), (18), and the Slutsky lemma,

K K
1 1 d 2
@(KZ (RFk—E <KZRFk>>> 5 N(0,0%5). (19)
k=1 k=1
Similarly, let ops be the limit of /& S5, V (FS). One can show that
1 & 1 & d
2
VK <KZFSk—E (KZFSk>> 5 N(0,025). (20)
k=1 k=1
Finally,
VE (B - ag)

K
Exi ra B (k TR

:\/}—? 1 K B K
kLI FSe B (&5, Fsy)

VK 1 (1 iRFk _E (1 i RFk>
( ZkKﬂ:Sk) Kia K=
(% klRFk><1K <1K ))
SN FS,—E|[=S"Fs +op(1)
(%Ek 1F5k> Kkzzl ’ K; ’ g
1 1 & 1 & 1 & K
VK ( RF—E( RF)—A( FS—E( FS>>>+0(1)

=

_ Fs f(li(zx —E(Ay) | +op(1) -5 N(0,0?)
E(%Zi(:l}?‘sk) K k k P y .
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The first equality follows from the definitions of F'Sy and RF} and from (16).

The second equality follows from the fact <% Zle RFk>, E <% Zle FSk) , % 25:1 RF,
and % Zszl F Sy, satisfy the assumptions of Lemma A.2. Indeed, point b) of Lemma 3.1, point
c) of Assumption 4, and Assumption 3 imply that F (L ZkK—l F5k> > % > 0. Moreover,

points e.i) and e.ii) of Assumption 4 imply that F <K Zk 1 RFk> /E <K el FSk) con-
verges towards a finite limit. Finally, it follows from (19), (20), and the fact that convergence

in distribution implies boundedness in probability, that
1 & 1 &
VK <K > RF,—E (K ZRFk>> = 0,(1)
k=1 k=1
1 1 =
VK <K > FS,—E <K ZFSk>> = 0p(1).
k=1 k=1
(16), points e.i) and e.ii) of Assumption 4, and (20) ensure that
K
1 A F (% 2 k=1 RFk)
E (% ZkK:1 FSk) b (% 215:1 FSk)

hence the third equality. The fourth equality follows from the definition of A;. The conver-

1 K
ﬁ(K;Fsk—E< ZFsk>)_0p( );

gence in distribution arrow follows from a reasoning similar to that used to prove (19), and
from the Slutsky lemma and the definition of F'S.

Proof that 52 BN ol > ok

By point a) of Assumption 1, points a) and d) of Assumption 4, the weak law of large numbers

in Gut (1992), and points e.i) and e.ii) of Assumption 4,

K
—ZRFk*) hm —ZE (RF},)
k=1 k=1
—ZFSk SLAN 152007213 (FSy). (21)

= k=1

Then, the fact that VK (ﬁ — AK> is asymptotically normal, Equation (16), and points e.i)
and e.ii) of Assumption 4 imply that

A5 A (22)

Then, (21), (22), and the continuous mapping theorem imply that

K
L3 (e -agrs) = m > ro0. @

= ———————
Kkzl KZk 1FSk
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Similarly, one can show that

Then, (23), (24), and the continuous mapping theorem imply that
K

K 2
1 ~ 1 ~
k=1

k=1

2
Finally, the convexity of x ~ 22 implies that %ZleE(Ak)Z > (% ZlileE(AkD , SO
03_ > o2, QED.

Theorem 3.2 relies on Assumption 6 below. Let

Ly,
F;7 = N, Y; Y;
R =t (1- 1) (4 RS Nk_Lk > vl

Ly
FSE = = Np— ( ) D
* Nk Lk i Zzl "

Assumption 6 (Technical assumptions to derive the probability limit of B\]’?E)

i)
- N. J

sup F (|RF,§|1+5) < +00 for some strictly positive §; % Zi{:l E N
keN*

K Sy ( Ny =13, L
% -1 B <( Ny - +1) [T% Zz’:Dik(l):l Yir(0) — Nk T Zi:Dik(l):O Yik(o)} , and

1 K Sk(N’v*Sk ?’if) 1 . L.
ke B\ — L7 2 y=1 Yi(1) = Yie(0)] | have finite limits when K — +oo.

Proof of Theorem 3.2

First,

—Ti+Sk ( -1 )( Ni—1 )

BiP) = 3 15wy =

=Sk Tk
TotS. (1 ( Ne+1—(+1)
_s, N +1 Zk+ i (S )(Tki1—(sk+1))
Te +1 1=5,, (%:11)
N 1
Tk +1

This derivation follows from arguments similar to those used when deriving (5).
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Then, it follows from the fact that a 2SLS coefficient with one endogenous variable and one
instrument is equal to the ratio of the reduced form and first stage coefficients, from Equation
(3.3.7) in Angrist & Pischke (2008), and from the definitions of REF and F'SE, that

K
& it REC

BEE = - (27)
& Sher FSE

For every k,

E (RFF)

Ng
> Ya(Din(1) Ry, < Ly} — JL\TZ D Yi(0)(1 = { Ry < Lk})>
- i=1

N Ny

E sz(le(l))E(l{RZk < Lk}|Lk,73k) — —Lk E sz(O)(l — E(l{Rik < Lk}|Lk,'Pk))
Ny,

=1 1=1

Ni,
—E <<1 — JLV/kc ;Yik(Dik(l)) <Dik(1)jsj; +(1- D"k(l))m

N iDip(1)=1 N T D (1)=1
(Nk—Lk)(Lk—Sk)—Lk(Nk—Tk—Lk-f—Sk) 1
Y;
’LDzk(l)—O
[ (N = Lg)Sk 1 . ,
—p (BB L ST ) - v
ZDZk(l):l
NSy — LTy 1 1
|7 > Yi(0) N7 > Ya(0)
:D;p(1)=1 :D;p(1)=0
Sk (Nk — Sk ]zvv’“ill) 1
—F k il ; _v
z 7 2 D)= Yi(0)]
Dy (1)=1
Sk (Nk =T %’:ﬁ) 1 1
+ N o 2 YaO-g—F > YaO | (28)
1:D;(1)=1 1:D;1.(1)=0

The first equality follows from the definition of RF; ,f and some algebra. The second equality
follows from the law of iterated expectations and the linearity of the conditional expectation.
The third equality follows from (7) and (8). The fourth and fifth equality follow from some
algebra. The last equality follows from the law of iterated expectations, the linearity of the

conditional expectation, and (26).
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Similarly, one can show that for every k,

s (M- si2)

N,

E(FSf)=E (29)

Equations (28) and (29) combined with Assumption 6 imply that %ZkK:lE (RF¥) and
% Zszl E (FS,?) converge towards finite limits when K — 4o0o0. Then, one can use a rea-
soning similar to that used to prove (21) to show that

. 1 K E

o e, WA (REE)
FE 1 K '

Kl_lfﬂoof Y1 B (FSF)

The result follows from plugging (28) and (29) into (30). QED.

(30)

Proof of Theorem 3.3
Proof of a)
The organization of the proof is as follows. We use the variance decomposition formula
KV <3> = FE (KV (3‘(Dk,72k)1gkg<)) + KV (E (ﬁl(DkyRk)1§k§K>> , (31)

and then compute the limsup of the first term on the right hand side, before showing that the
second term is equal to 0.

Let F'S = %ZK N Sr=l

k=1 N Lp—1°
KV <3 (Dk,Rk>1§k§K>
K

K 1 o~ Ni 1 1

- =V xR Tr—1 > wik(nk(o)‘FTDik(l))—m > Yi(0) | |(Dr, Rir<ner

L
FS k=1 i Zi=1 i Zi=0

K
K 1 i 1 1
- Vi~ 1Yi(0) — ——— Yie(0) | (D, R
—3 KZN Lk_l.z Wik zk’() Nk_Lk.z z() ( ks k)lgk;SK
k=1 1:2ik=1 #:Z;1=0
Ni
N?

B > wiV (Yik(0)|[(Dr, Ri)1<h<r)
ZZlkzl

+% >V (Yik(0)|(Dr, Ri)1<a<k)

1 > 1
El s > Wit ——
75 K 2 ((Lk 1)2 TN — Ly

k=1 ZZ,L;CZI
2 K
< To L Nef 1 L )
B ﬁQKk:1N2 Lp—1 N — L
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The first equality follows from the fact that FS is a function of (D, Ri)1<k<k, and from
point d) of Assumption 5. The second equality follows from the fact that conditional on

(Dgy Ri)1<k<K % Zf 1 ]Xf o1 > =1 wix Dix(1)7 is a constant. The third equality follows

from point a) of Assumption 5. The fourth equality follows from point b) of Assumption

5. The inequality follows from the fact that 0 < w; < 1 implies 0 < wfk < w;k, and

> iiZy—1 Wik = L — 1.

Assumption 3 and point ¢) of Assumption 4 guarantee that for all &,

N2/ o1 1 NtT\?
—= <21— ) . 33
N2<Lk_1+Nk_Lk)_ (3) ( )

Moreover, by point a) of Assumption 4 these random variables are independent, so it follows
from Gut (1992) that

1 1 1 »
- + =) + — 0.
;N (Lk—l Ny, — Ly, (Lk—l Nk—Lk>>

Using a reasoning similar to that used in the proof of Lemma A.1, one can show that

. 1 N 1 T 1 N 1 Ty 1 N 1
Lp—1 N,—Ly) N \Sp—1 Tp—S.) No\So—1 Typ—5,/’

where the second equality follows from point e) of Assumption 5. Combining the two preceding

N? 1 1 » To 1 1
— — — . 34
Kk1N2<Lk1+Nk:Lk> N0<SO].+TOSU> ( )

Similarly, one can show that

displays,

N S —1 N TO
. 35
KZNLk—l No ( )

Then, it follows from (34), (35), and the continuous mapping theorem that

2 K 1 1
7y 1 Ni ( 1 1 > P, 2 So—1 T To-S
—5 =D = BT A 7 9y (0) T : (36)
FS K —1 N Lk 1 Nk Lk V?)
Finally, Assumption 3 and point ¢) of Assumptlon 4 imply that F FS > 55— Combined with
(33), this implies that Fi“;) [1( Zk 152 (m + m) is bounded. Then, it follows from
Equation (36) and Theorem 2.20 in Van der Vaart (2000) that
2 K 1 1
. ) 1 = N? ( 1 1 > o SH-1 T T=S;
lim B 2923k + = o2 STl D=8 (g7
K—+o0 <F52 K;]\ﬂ Lp—1 N — L Y (0) ]7\;—%
Combined with Equation (32), Equation (37) implies that
~ ST
lim supE (KV (A’(Dk, R 1< K)) < 0% gy L o=, (38)
K—+o00 - V%
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The first equality follows from the fact that FS is a function of (D, Rk)1<k< K, and from point
d) of Assumption 5. The second equality follows from YK ]]V\;‘“‘ T 2zt Wik Dik(1) =

FS. The third equality follows from point ¢) of Assumption 5. The last equality follows from
i z—1 Wik = Ly — 1.

Finally, the result follows from Equations (31), (38) and (39).

Proof of b)
The proof if fairly similar to that of Point a), so we just sketch it.

— izt =1 D) So=22;.51 —4 Dir(1) )
Let FS; = % " sté S NZJfS; i ) One can show that under points

a), b), d), and e) of Assumption 5,

2 1 1
UY(O) (570 + N0750>

~ _
Vv (BPS‘ (Dy,, Rk)1gk§K> ﬁ? (40)

Then, for every k

Yo ST
E|l > Da1) =E<21{Rzk<so}Dzk ) (ZDm 0) :JOvTO'

02}, =1 i=1

The second equality follows from the law of iterated expectations, Assumption 2, and from

point e) of Assumption 5. The third follows from point e) of Assumption 5.

It follows from the previous display that for every k,

B (Zi:Zkal Dip(1)  So — Zizzgk:1 Dik(1)> Ty So — 50]% To — So

— = . (41
So No — So (41)

TN No — S0 No — So
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Combining Equations (40) and (41), one can then show that

2 1 1
Y (0) (570 + N()—S())
=
No—So
(No—=To) _ No—

Finally, FS; > 5= S N S , which is stricly positive under point f) of Assumption 5.

Together with Equation (40) and Assumption 3, this implies that KV (ﬁps‘(Dk, Rk)lgkgK)
is bounded, so Equation (42) implies that

Vv (3{35‘ (D, Rk)1§kgK) L (42)

2 1 1
Y(O) (570 + N0*50>

lim E (KV (ﬂps’(Dk;Rk)l<k<K>> 2 (43)
K—+o0 To—So
(#=%)
Then, one can follow the steps used to prove Equation (39) to show that
Vv (E (B\IIDS‘(Dkka)ngSK)) =0 (44)

Finally, the result follows from the variance decomposition formula and Equations (43) and

(44).
Proof of the sufficient condition for lim supV’ <\/K(ﬁ - AK)) < lim V (x/K(E},S — AK)>
K—+o0o K—+o0
One has 0 < ]7\;0 ‘g% < ]7\;% SO
1 1 1 1
So—1 + To—So < So—1 + To—So
Ty — To—So :
No No—>So
Then,
St s _ % T WS To—S 1 1 1 1 To — So 1
0— S070§ 0 0720 _|_ Si_i_ PN Sl_i
NO:SO (To—so) No —Sp So—1 No — So So No— 5o No — Sy So
0—50 No—5S
The result follows from the two preceding displays, and using again the fact that TO SO < ﬁ%
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