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Economic analysis seeks to explain human behavior in terms of the incentives that

people’s situations provide for taking various actions. It is common to assume that

behavior responds to the objective incentives provided by the situation. However, it

is evident that people can only respond to incentives (the quality of goods on offer,

their prices, and so on) to the extent that they are correctly perceived; and it is

not realistic to assume that people (as finite beings) are capable of perfectly precise

discrimination between different objective situations. Thus people should not be

modeled as behaving differently in situations that they do not recognize as different,

even if it would be better for them if they could.1

But how should imprecision in people’s recognition of their true situations be

introduced into economic models? This review will argue that economists have much

to learn from studies of imprecision in people’s perception of sensory magnitudes.

The branch of psychology known as psychophysics has for more than 150 years sought

to carefully measure and mathematically model the relationship between objective

physical properties of a person’s environment and the way these are subjectively

perceived (as indicated by an experimental subject’s overt responses, most often, but

sometimes by physiological evidence as well). Here we review some of the key findings

from this literature, and suggest possible lessons for economic modeling.2

While the phenomenology of sensory perception is quite rich, we stress here the

power of a single modeling approach to explain many well-known findings. In this

approach, imprecision in the judgments that subjects express is attributed to impre-

cision in the way that the objective external situation is represented by a pattern

of activity within the subject’s nervous system; the responses can be modeled as

optimal, subject to the constraint that the response rule must be based on the im-

precise internal representation. We propose that this same approach might usefully

be adopted in economic modeling, and provide some examples of its application.

Section 1 reviews the classic problem (first studied by Ernst Weber in the 1830s)

of judgments about the comparative magnitude of two stimuli along some dimension,

and discusses the applicability of similar models to the problem of stochastic choice.

Section 2 then considers more complex experimental designs in which the magni-

tude of a single stimulus is estimated, choosing from among a continuum of possible

responses; this is of particular interest as an element in decisions that require advan-

tages and disadvantages to be traded off against one another. It is argued that the

1See Luce (1956) and Rubinstein (1988) for early discussions of this issue.
2For alternative discussions of possible lessons for economics, see Weber (2004) or Caplin (2012).
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estimation biases that are observed in sensory contexts provide a potential explana-

tion for patterns of choice behavior that are instead often attributed to non-standard

preferences. And finally, section 3 discusses ways in which judgments about a given

sensory magnitude can be influenced by the context in which it appears; it is proposed

that similar mechanisms can explain choice behavior that appears inconsistent with

the existence of any coherent preference ordering.

1 The Stochasticity of Comparative Judgments

A first important lesson of the psychophysics literature is that not only are people

(or other organisms) unable to make completely accurate comparisons as to which is

greater of two sensory magnitudes — which of two weights is heavier, which of two

lights is brighter, etc. — when the two magnitudes are not too different, but that the

responses given generally appear to be a random function of the objective properties

of the two stimuli that are presented. At the same time, the random responses

of experimental subjects are not “pure noise” — that is, completely uninformative

about the truth. Thus rather than it being the case that any two stimuli either can

be told apart (so that the heavier of two weights is always judged to be heavier,

whenever those two weights are presented for comparison), or cannot be (so that the

subject is equally likely to guess that either of the weights is the heavier of the two),

what one typically observes is that the probability of a given response (“the second

weight seems heavier”) increases monotonically with increases in the actual relative

magnitude of the two stimuli. Experimental procedures often focus on the estimation

of this increasing functional relationship, plotted as a “psychometric function.”3

Figure 1 provides an example of such plots (from Krueger, 1984), when the stim-

ulus feature is numerosity, the number of items in a disordered array (in this case, Xs

typed on a sheet of paper); in the experiment, a subject is asked to judge whether a

second array is more or less numerous than a first (reference) array, on the basis of

a quick impression (rather than counting). While this is not one of the most classic

examples,4 it has the advantage (for purposes of this review) of shedding light on the

3See, e.g., Gescheider (1997, chap. 3), Glimcher (2011, chap. 4), or Kingdom and Prins (2010,

chap. 4).
4In particular, for many standard examples, the stimulus feature that is compared — such as

weight, length, brightness, speed, or direction of motion — is one that takes a continuum of possible
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.01). Krueger (1982) found a slope of .20, which
would have predicted a slope of about .14, given the
use of two trials per subject in the present case (1IV2
factor). The present subjects, unlike Krueger's (1982),
saw more than one stimulus, and they were specially
recruited for the numerosity tasks, which might well
explain the smaller precue slope (.08) found here.

The intrasubject SOs (dotted vertical lines in Fig­
ure 3) did not become progressively larger, but varied
nonmonotonically with number of Xs presented. In
both the precue and postcue conditions, the intra­
subject SOs at the two stimulus extremes (i.e., lowest
and highest number of Xs presented) were signif­
icantly smaller (p < .05, Newman-Keuls tests) than
the peak SD value in the middle of the stimulus range.
Thus, variability in the magnitude estimation expo­
nent was inter- rather than intrasubject, Eisler (1963)
likewise found a nonmonotonic function for the
intrasubject SO in the magnitude estimation of length,
with a rise in SO in the main portion of the stimulus
series being followed by a downturn at the upper end
of the series (see his Figure 3).

Exponent

Figure 4. Magnitude estimation: Distribntion of exponents for
individual subjects. The dotted Hnedepicts a normal distribution.
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Figure 5. Discrimination: Proportion of comparison stimuli
Judged larger than standard stimuH (scaled as z scores on left side
and as percent scores on right side), by size of standard and size
of deviation of comparison stimulus from standard. Step· sizes
were 1, 3, and 9, respectinly, for standards of 15, 100, and 400.
Thus, the range of deviations in number of Xs was -4 to +4, -12
to +12, and -36 to +36, respectiveiy.

ponent for subjects in the lower range, but decreasing
it for those in the upper range (see Figure 4). Greater
practice alone did not reduce the variability in the
postcue condition, because variability was stable
within each condition (SOs of the exponent were .148
and .143 for the precue replications and .088 and
.090 for the postcue replications). The SOs within
each condition did not differ significantly (t < 1 in
all cases), whereas those compared between condi­
tion did (P < .001 in all cases).

Feedback did not eliminate all intersubject vari­
ability, though, because the postcue replications cor­
related moderately on both the scale factor (+ .54)
and the exponent (+.61). These correlations are nearly
as large as the corresponding ones in the precue con­
dition ( + .69 and +.79). Furthermore, the precue and
postcue conditions correlated on the scale factor
( + .49) and on the exponent ( + .50), which again in­
dicates that feedback did not eliminate all consistent
intersubject differences. (In every case, df =98 and
p < .001.)

If only intrasubject variability was present, then
the group SOs at particular stimulus sizes (solid ver:
tical lines in Figure 3) would be only 71010 (1/V2)
of the intrasubject SOs (dotted vertical lines in Fig­
ure 3). This was approximately true in the postcue
condition (65070), but not in the precue condition
(81010), in which greater intersubject variability would
be expected.

As the number of Xs present increased, the group
SOs generally increased in the precue condition (slope
of .08), but not in the postcue condition (slope of

Figure 1: Psychometric functions for comparisons of numerosity. The number of

items in the reference array is 25, 100, or 400 in panels (a), (b), and (c) respectively.

(Reproduced from Krueger, 1984.)

imprecise mental representation of numerical information — and thus of offering an

especially plausible analogy for judgments of economic value.

In each panel of the figure, the number n1 of items in the reference array is

fixed, and the fraction of trials on which subjects judge the second array to be more

numerous is plotted as a function of the true difference in numerosity n2 − n1;
5 the

value of n1 increases from 25 to 100 to 400 as one proceeds from the top panel to the

bottom. In each panel, the probability of judging n2 to be larger than n1 is steadily

increasing as a function of the true difference.

A classic approach to modeling imprecise comparisons of this kind, dating to the

work of Fechner (1860), supposes that a true stimulus magnitude x gives rise to an

internal representation r, drawn from a probability distribution p(r|x) that depends

values, so that one can meaningfully speak of response probabilities as varying continuously with

the true stimulus magnitude.
5This difference is reported in “steps.” A “one step” increase means one more X in the top panel,

three more in the middle panel, and nine more in the bottom panel.
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on the true magnitude. This representation r can be understood to refer to a pattern

of neural activation, in regions of the cortex involved in processing stimuli of that kind,

as a result of the person’s (or other organism’s) contact with a stimulus of magnitude

x; it is random because of randomness in the way that neurons fire in response to the

signals that they receive. A comparative judgment between two magnitudes x1 and

x2 is made on the basis of the corresponding internal representations r1 and r2; the

randomness of r1 and r2 makes such comparisons random, even if the rule by which

responses are generated is optimal subject to the constraint that it must be based on

the noisy internal representations.

To make this more concrete, a widely used model due to Thurstone (1927) assumes

that the internal representation can be summarized by a single real number, and that

it is drawn from a normal distribution N(m(x), ν2), where m(x) is an increasing

function of the true magnitude, and the standard deviation ν > 0 is independent of

the true magnitude.6 If for each of two stimuli x1 and x2, the internal representation ri

is an independent draw from the corresponding distribution, then an optimal decision

rule will judge that x2 seems greater than x1 if and only if r2 > r1.
7 This in turn

implies that the probability of such a judgment, conditional on the true magnitudes

x1 and x2 (known to the experimenter) is predicted to be

Prob[“x2 greater”|x1, x2] = Φ

(
m(x2)−m(x1)√

2ν

)
, (1.1)

where Φ(z) is the CDF of a standard normal distribution. Thus the probability

of correctly distinguishing the relative magnitudes of two stimuli depends on their

distance |m(x2) −m(x1)| from one another on the “Thurstone scale” established by

the mapping m(x).8

This equation predicts the shape of a psychometric function, if one plots the

response probability as a function of x2 for some fixed value of x1. If the measured

6This is Thurstone’s celebrated “Case V.”
7Here we assume a “two-alternative forced choice” experimental design, in which the subject must

select one of the two possible responses, regardless of their degree of confidence in their answer. If

the prior distribution from which true values (x1, x2) are drawn is symmetric ((x2, x1) has exactly

the same probability of being presented as (x1, x2)), then this is the response rule that maximizes

the probability of a correct choice.
8Data on the frequency with which different comparative judgments are made, such as that

plotted in Figure 1, can allow the identification of this scale up to an affine transformation.
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response probabilities are z-transformed,9 equation (1.1) implies that one should have

z(Prob) =
m(x2)−m(x1)√

2ν
≈ m′(x1)√

2ν
· (x2 − x1), (1.2)

for values of x2 sufficient close to the reference magnitude x1. Thus when the rela-

tionship is plotted as in Figure 1,10 the relationship should be approximately linear,

as shown in the figure — with a response probability of 0.5 when x2 − x1 = 0, and a

slope proportional to m′(x), evaluated at the reference magnitude.

The figure not only shows that the psychometric function in each case is roughly

of the predicted form (1.2), but allows m′(x) to be evaluated at three different points

in the range of possible stimuli. One finds that the size of the difference in number

required for a given size of effect on the response probability is not independent of the

range of numerosities being compared. Suppose that one defines the “discrimination

threshold” as the average of the increase in the number of Xs required for the proba-

bility of judging n2 to be greater than n1 to rise from 0.5 to 0.75, and the decrease in

number required for this probability to fall from 0.5 to 0.25. Then in the data shown

in Figure 1, this threshold is found to be 3.1 when n1 = 25, but 11.7 when n1 = 100,

and 32.3 when n1 = 400.

This increase in the discrimination threshold as the reference stimulus magnitude

increases is called “diminishing sensitivity,” and is an ubiquitous finding in the case

of extensive quantities such as length, area, weight, brightness, loudness, etc. This is

consistent with the Thurstone model, under the assumption that m(x) is a strictly

concave function. A famous formulation, “Weber’s Law,” asserts that the discrimi-

nation threshold should increase in proportion to the reference magnitude n1; as first

proposed by Fechner (1860), this would follow from the model in the case that one

assumes that m(x) is (some affine transformation of) the logarithm of x.11

9That is, the probabilities are replaced by z(p) ≡ Φ−1(p), the inverse of the function p = Φ(z).
10Note that in each of the panels of the figure, the vertical axis is linear in the “z score” z(p)

rather than in the probability p (marked on the right-hand side of the panel)
11Even when Weber’s Law holds approximately, it is often only for variation in the stimulus

magnitude over some range, beyond which the approximation breaks down. See, for example, the

plots of how discrimination thresholds vary with stimulus magnitude in a variety of sensory domains

in Ganguli and Simoncelli (2016). Weber’s Law has sometimes been asserted also to hold for the

perception of numerosity (e.g., Nieder and Miller, 2003; Dehaene, 2003; Cantlon and Brannon, 2006),

but the evidence is much stronger for diminishing sensitivity at a rate that is not necessarily precisely

consistent with Weber’s Law. In the estimates from Krueger (1984) cited above, the discrimination
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1.1 Encoding and Decoding as Distinct Processes

In the early psychophysics literature, the randomness of comparisons of the kind dis-

cussed above was often modeled by simply postulating that an objective stimulus

magnitude x gave rise to a perceived magnitude x̂, drawn randomly from a distribu-

tion that depended on x. The probability of an incorrect comparison then depended

on the degree of overlap between the distributions of possible perceived values asso-

ciated with different but similar true magnitudes, as in the discussion above.

Here we have instead taken a more modern point of view, in which decisions are

based on a noisy internal representation r, which is not itself a perceived value of

the magnitude x, but only an available piece of evidence on the basis of which the

brain might produce a judgment about the stimulus, or a decision of some other kind.

(Note that r need not be measured in the same units as x, or even have the same

dimension as x.) The cognitive process through which judgments are generated is

then modeled as involving (at least) two stages: encoding of the stimulus features (the

process through which the internal representation is produced), followed by decoding

of the internal representation, to draw a conclusion about the stimulus that can be

consciously experienced and reported.12

In this way of conceiving matters, perception has the structure of an inference

problem — even though the “decoding” process is understood to occur automatically,

rather than through conscious reasoning — and tools from statistical decision theory

have proven useful as a source of hypotheses. In particular, once matters are conceived

in this way, it is natural to consider (at least as a theoretical benchmark) models in

which the decoding is assumed to represent an optimal inference from the evidence

provided by the internal representation.13

Why should one wish to complicate one’s model of imprecise comparisons in this

way, rather than simply directly postulating a distribution of perceived values, about

which an experimental subject might then be interrogated? One answer is that the

development of constantly improving methods of measurement of neural activity has

made the concept of an internal representation, distinct from the observable behavior

threshold increases with the reference numerosity with an elasticity that is instead about 0.85.
12Dayan and Abbott (2001, chap. 3) provide a textbook discussion.
13Our explanation above of why it makes sense to assume that the judgment “x2 seems greater”

is produced if and only if r2 > r1 is an example of such an assumption of optimal decoding; see

footnote 7.
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that may be based on it, something more than just a latent variable that is postulated

for convenience in explaining the logical structure of one’s model of the observables;

if one wishes to use such measurements to discipline models of perception, then the

candidate models must include variables to which the neural measurements may be

taken to correspond.14

But another important answer is that such a theory allows one to understand in

a parsimonious way how changes in the context in which a stimulus is presented can

affect the perceptual judgments that are made about it. In a binary-comparison task

of the kind discussed above, the probability of a subject giving a particular response is

not a function solely of the objective characteristics of the two stimuli presented; it can

also depend, for example, on the frequency with which the second stimulus magnitude

is greater than the first, rather than the reverse,15 or on the relative incentive for a

correct response in the two possible cases. It is easy to understand how these latter

considerations can influence a subject’s judgments in the encoding/decoding model:

even if one supposes that in the encoding stage, the distribution from which the

representation r is drawn depends only on the particular stimulus feature x, and not

on any other aspects of the context,16 an optimal decoding rule should take other

aspects of the context into account. In particular, from the standpoint of Bayesian

decision theory, the optimal inference to make from any given evidence depends on

both the decision maker’s prior and on the objective (or reward) function that he/she

seeks to maximize.

Signal detection theory (Green and Swets, 1966) applies this kind of reasoning to

the analysis of perceptual judgments. Figure 2 (which reproduces Figures 4-1 and

4-2 from Green and Swets) shows a classic application of the theory. The figure plots

data from a single subject, in an experiment in which on each trial one of two auditory

stimuli (denoted s and n) are presented, and the subject’s task is to indicate which

14See Dayan and Abbott (2001, chap. 3) for examples.
15It was assumed above, in our discussion of the normative basis for a particular rule for de-

termining the perceptual judgment (footnote 7), that either stimulus was equally likely to be the

greater one, and this is true in many experiments. But it is possible for the frequencies to differ in

a particular experiment (or block of trials), and for subjects to learn this (or be told), as illustrated

below.
16This is a common simplifying assumption, but in fact context can influence encoding as well, as

discussed in section 3.
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Figure 2: Conditional response probabilities in a signal detection task. The tradeoff

is shown between the “hit rate” (vertical axis) and “false alarm rate” (horizontal

axis), as one varies the prior probability of occurrence of the two stimuli (left panel),

or the relative rewards for correct identification of the two stimuli (right panel). In

each case, the efficient frontier (“ROC curve”) is shown by the bowed solid curve.

(Reproduced from Green and Swets, 1966.)

is the case (making one of the two possible responses, S or N).17 In each of several

blocks of trials, the same two stimuli are used (the stimulus presented on each trial is

always either s or n), but the prior probability of s rather than n being presented may

vary across blocks, as may the financial incentive given the subject to avoid “Type

I” as opposed to “Type II” errors. Each of the circles in the figure plots the subject’s

conditional response probabilities for one block of trials.

The location of each circle indicates both the subject’s “hit rate” P (S|s) (the

probability of correctly detecting the signal, when it is present), on the vertical axis,

and the subject’s “false alarm rate” P (S|n) (the probability of incorrectly reporting a

signal when none is present), on the horizontal axis. The diagonal line in each figure

indicates the combinations of hit rate and false alarm rate that would be possible

under pure chance (that is, if the subject were entirely deaf); all points above the

17The stimulus s is one in which a signal (a tone) is presented, amid static, while stimulus n

consists only of the noise. The experiments developed out of work (originally with visual stimuli)

seeking to measure the accuracy of human operators of radar equipment (Creelman, 2015).
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diagonal indicate some ability to discriminate between the two stimuli, with perfect

performance corresponding to the upper left corner of the figure.

If one supposes that a subject should have a perception S or N that is drawn from

a probability distribution that varies depending on whether the stimulus presented

is s or n — but that depends only on the stimulus presented and not other aspects

of the context — then one should expect a given subject to exhibit the same hit rate

and false alarm rate in each block of trials. (Of course one could expect to see small

differences owing to random sampling error, given the finite length of each block of

trials, or perhaps drift over time in the subject’s functioning owing to factors such

as fatigue — but these differences should not be systematically related to the prior

frequencies or to incentives.)

Instead, in the figure one sees systematic effects of both aspects of the context.

In the left panel, the reward is the same for correct identification of either stimulus,

but the probability of presenting stimulus s on any given trial varies across the blocks

of trials (it is 0.1, 0.3, 0.5, 0.7 or 0.9, depending on the block); and one sees that as

the prior probability of the state being s is increased, both P (S|s) and P (S|n) are

monotonically increasing. In the right panel, both stimuli are presented with equal

probability, but the relative incentive for correct identification of the two cases is

varied; and one sees that as the relative reward for correct recognition of state s is

increased, both P (S|s) and P (S|n) are again monotonically increasing.

Both phenomena are easily explained by a model that distinguishes between the

noisy internal representation r upon which the subject’s response on any trial must

be based, and the subject’s classification of the situation (by giving response S or

N). Suppose, as in the model above, that r is a single real number,18 and that it is

drawn from a Gaussian distribution N(µi, ν
2), with a variance that is the same for

both stimuli, but a mean that differs depending on the stimulus (i = s or n). Let

us further suppose, without loss of generality, that µs > µn, so that the likelihood

ratio in favor of the stimulus being s rather than n is an increasing function of r. If

the subject’s response on any trial must be based on r alone, an efficient response

criterion — in the sense of minimizing the probability of a type I error subject to

18In this kind of task, because there are only two possible true situations (s or n), even if the

internal representation were high-dimensional, it clearly suffices to describe it using a single real

number as a sufficient statistic, namely the likelihood ratio of the two hypotheses given the noisy

evidence. See discussion in Green and Swets (1966).
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an upper bound on the probability of type II errors, or vice versa — is necessarily

a likelihood ratio test,19 which in the present case means that the subject should

respond S if and only if r exceeds some threshold c.

Varying the value of c (which corresponds to changing the relative weight placed

on avoiding the two possible types of errors) allows one to generate a one-parameter

family of efficient response rules, each of which implies a particular set of conditional

response probabilities (and hence corresponds to a point in the kind of plots shown in

Figure 2). In the case of a particular value of the ratio (µs−µn)/ν, which determines

the degree of discriminability of the two stimuli given the subject’s noisy encoding

of them, the points corresponding to this family of efficient response rules can be

plotted as a curve, known as the “receiver operating characteristic” or ROC curve.

This is shown as a concave, upward-sloping curve in each of the panels of Figure

2; here the ROC curve is plotted under the assumption that µs and µn differ by 0.85

standard deviations. We see that under this parameterization, the subject’s pattern

of responses falls close to the efficient frontier in all cases. Moreover, the change in the

subject’s response frequencies is in both cases consistent with movement along the

efficient frontier in the direction that would be desirable in response to an increased

reason to prioritize an increased hit rate even at the expense of an increase in the

false alarm rate.

Hence the subject’s response probabilities are easily interpreted as reflecting a

two-stage process, in which encoding and decoding are influenced by separate factors,

which can be experimentally manipulated independently of one another. On the one

hand, an experimenter can change aspects of the stimuli, unrelated to the feature on

the basis of which they are to be classified, that can affect the precision of encoding

(for example, varying the length of time that a subject is able to listen to auditory

stimuli before expressing a judgment); if this changes the value of ν, this should shift

the location of the ROC curve along which the subject should operate (whatever the

prior and incentives may be). And on the other hand, an experimenter can change

the prior and/or incentives, which should affect the relative priority assigned to the

two possible types of error, and hence the location on any given ROC curve where the

subject would ideally operate. The fact that encoding and decoding are determined

by distinct sets of parameters that can be independently manipulated makes it useful

19This follows from the Neyman-Pearson lemma of statistical decision theory; again see Green

and Swets (1966).
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to model the subject’s judgments as the outcome of two separate processes of encoding

and decoding.20

1.2 Implications for Economic Models

The above review of the way in which imprecise comparisons have been successfully

modeled in sensory domains suggests a number of implications for models of imprecise

economic decisions. For example, some authors propose to introduce cognitive im-

precision into economic models by assuming that agents can respond only to a coarse

classification of the current state of the world, but assume that an agent should know

with certainty to which element of some partition of the state space the current state

belongs.21 In the case of a continuous state space, such a model implies that certain

states that differ only infinitesimally should nonetheless be perfectly distinguished,

because they happen to fall on opposite sides of a category boundary; but nothing

of the sort is ever observed in the case of perceptual judgments. Instead, if one sup-

poses that the imprecision that wants to capture should be analogous to imprecision

in the way that our brains recognize physical properties of the world, then one should

model internal representations as probabilistically related to the external state, but

not necessarily as discrete.

The literature on “global games”22 models imprecise awareness of the state of the

world in a way that is more consistent with what we know about perception. In

models of this kind, the true state is assumed to be a continuous variable, but agents

are not assumed to be able to observe it precisely. This is shown to have important

consequences for the nature of equilibrium, even when the imprecision in individual

agents’ private observations of the state is infinitesimally small (but non-zero). For

example, even in models of bank runs or currency attacks that allow for multiple

equilibria when all agents observe the state with perfect precision, there can be a

unique equilibrium (and hence predictable timing of the run or attack) if decisions

must be based on slightly imprecise private observations.

Here the imprecision in private observations is modeled by assuming that each

agent has access to the value of a signal r, equal to the true value of the state x plus

a random error term which is an independent draw for each agent from some (low-

20Green and Swets (1966, chap. 4) call this the “separation of sensory and decision processes.”
21See, e.g., Gul, Pesendorfer and Strzalecki (2017).
22See, e.g., Morris and Shin (1998, 2003).
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variance) distribution; for example, r might be a draw from N(x, ν2), for some small

(but positive) value of ν, just as in a Thurstonian model of imprecise perception.

Indeed, it is important for the conclusions of the literature that the imprecision is

modeled in this way: it is the overlap in the distributions of possible values of r

associated with different nearby true states x that results in the failure of common

knowledge that implies a unique equilibrium.

However, understanding the noise in private observations of the state as reflect-

ing inevitable cognitive imprecision would change the interpretation of global games

models in some respects. Many discussions assume (in line with conventional models

of asymmetric information) that the imprecise private observations represent oppor-

tunities that different individuals have to observe different facts about the world,

owing to their different situations — but that some facts (such as government data

releases, or market prices) should be publicly visible, so that everyone should observe

them with perfect precision and this should also be common knowledge. The question

whether there should be sufficient common knowledge for it to be possible for agents

to coordinate on multiple equilibria is then argued to depend on how informative

the publicly observable signals (about which there should be common knowledge) are

about the relevant state variable; a number of authors have proposed reasons why

there should be public signals that should overturn the classic uniqueness result of the

global games analysis.23 But if one regards at least a small amount of randomness in

the internal representation of quantities observed in the world as inevitable — as both

psychophysical and neurophysiological evidence would indicate — then there should

be no truly “public signals” in the sense assumed in this literature; and since only

a small amount of idiosyncratic noise in private observations of the state is needed

to obtain the global games result, the case emphasized in the classic result of Morris

and Shin (1998) should be of more general relevance than is often appreciated.24

The stochasticity of comparative judgments in perceptual domains is perhaps most

obviously relevant as a model of randomness in observed choice behavior. While stan-

23See, e.g., Angeletos and Werning (2006), or Hellwig, Mukherji and Tsyvinski (2006).
24Goryunov and Rigos (2019) show that the global games result obtains in an experiment in

which both players are shown the same value for the state, but the value is displayed visually (by

the location of a dot). It is possible that this results only from the ambiguity of visual rather than

symbolic presentation of information. But there is good evidence for imprecise “semantic” internal

representations even of quantity information that is presented symbolically; see discussion below

and in Khaw et al. (2019).
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Figure 3: The fraction of trials in which a simple gamble was observed to be accepted,

as a function of the amount (on the horizontal axis) that could be won. The “indiffer-

ence point” identifies the terms under which it is inferred that the subject would be

equally likely to accept or reject. (Based on a figure in Mosteller and Nogee, 1951.)

dard models of rational choice imply that people’s choices should be a deterministic

function of the characteristics of the options presented to them (assuming that these

are described sufficiently completely), choices observed in laboratory experiments

typically appear random, in the sense that the same subject does not always make

the same choice, when presented on multiple occasions with the same set of options.

Figure 3, based on a similar figure in Mosteller and Nogee (1951), shows a classic

example. The figure plots data on the choices of a single subject, who was presented

on different trials during the same experiment with multiple variants of the same

kind of gamble: whether the subject would pay 5 cents in order to obtain a random

outcome, equal to an amount X with probability one-half, and otherwise zero. The

amount X differed from trial to trial; the figure shows the fraction of times that the

subject accepted the gamble, as a function of X (plotted in cents on the horizontal

axis).

The experimenters’ goal was to elicit preferences with regard to gambles that could

be compared with the predictions of expected utility theory (EUT). A problem that

they faced (and the reason for showing the figure) is that their subjects’ choices were

random; note that in the figure, for several intermediate values of X, it is neither the
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case that the subject consistently accepts the gamble nor that he consistently rejects

it. The figure illustrates how they dealt with this issue: the observed choice frequen-

cies were interpolated in order to infer the value of X for which the subject would

accept the gamble exactly half the time, and this was labeled a case of indifference.

The prediction that was required to be consistent with EUT (in the case of some

nonlinear utility function, inferred from the subject’s choices) was the fact that the

subject was exactly indifferent in this case.

A graph like Figure 3 is highly reminiscent of psychometric functions like those in

Figure 1.25 This suggests that the randomness depicted might fruitfully be modeled

in a similar way. And indeed, a common approach within economics has been to

model stochastic choice using an additive random utility model (McFadden, 1981).

It is assumed that on any given occasion of choice, each choice option i is assigned

a valuation vi = u(xi) + εi, where u(xi) is a deterministic function of the vector of

characteristics xi of that option, and εi is an independent draw from some distribution

F (ε), assumed not to depend on the characteristics of the option. The option that is

chosen on that occasion should then be the one with the highest value of vi on that

occasion. (Because the {vi} are random variables, choice will be stochastic.) If the

function u(x) is linear in its arguments, and F is either a normal distribution or an

extreme-value (Gumbel) distribution, this leads to a familiar econometric model of

either the probit or logit form.

Such a model (especially if applied to binary choice, and if the random terms are

assumed to be Gaussian) has many similarities with the Thurstone model of random

perceptual judgments. However, economists often interpret random utility models as

if the valuation vi assigned to an option represents the true value of the option to the

consumer on that occasion — that is, the model is interpreted as a model of rational

choice with random fluctuation in tastes. In the case of perceptual judgments, instead,

it is clear that the randomness of the judgments must be interpreted as random error

in recognition of the situation (since an objective truth exists as to which of two

physical magnitudes is greater); and one wonders if much of the randomness observed

25Indeed, it seems likely that Mosteller and Nogee’s experimental method — repeating the same

questions many times on randomly ordered trials and tabulating response frequencies — reflected

a familiarity with psychophysics. The method that they use to identify the “indifference point” is

one commonly used with psychometric functions to identify a “point of subjective equality” as a

measure of bias in comparative judgments. See, e.g., Kingdom and Prins (2010, p. 19).
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in choice should not be interpreted the same way. Even if it requires no change in

the mathematical form of the model of choice, the alternative interpretation matters

for assessment of people’s level of welfare under alternative possible regulations of

market transactions.

And even if one thinks of the random term εi as representing error in the process

of evaluating the subject’s degree of liking for the options, it is common to assume

that a precise valuation for each option is computed, with a random term added only

at the end of such a calculation; in this way, the relative likelihood of choice between

two options depends on the relative magnitudes of the two deterministic components

of their valuations, so that the core of the theory is still a deterministic preference

ordering.26 Yet once one admits that the cognitive process involves random error, it

is not obvious why it should be assumed to occur only at the end, adding a random

term to an otherwise correctly computed quantity — rather than introducing error

into the way that different pieces of information (the different elements of xi) are

assessed and integrated to produce an estimate of the value of the option.

It should be recalled that in many modern models of random perceptual judgment,

noise is assumed to enter at earlier stages of processing: noise in the nervous system

corrupts the evidence that must subsequently be decoded to produce a judgment,

rather than corrupting only the accuracy with which an answer that had been reached

is communicated.27 The same idea can be used to model the way in which valuations

of economic options are derived; but the predictions are different, in general, than

under a model in which the random valuation assigned to an option is assumed

to equal its true value to the agent plus an independent error term. For example,

as discussed in section 3, the likelihood of choosing one good over another can be

influenced by contextual factors that should have no effect on the true values of

26This is implicit in an approach, like that of Mosteller and Nogee, that assumes that which of

two options is more often chosen tells one which of the options is preferred, and so should allow a

deterministic preference ordering to be recovered even when choice is stochastic.
27Even in the case of purely sensory judgments, the relevant noise often occurs at later stages of

processing (though at stages earlier than that of action choice), rather than simply representing noise

in sensory receptors (Beck et al., 2012; Drugowitsch et al., 2016). Such later processing noise — noise

in the way in which quantities are stored and subsequently retrieved for use in further computations,

rather than noise in initial perceptions of the data — is almost certainly the more important factor

in situations like the experiment of Mosteller and Nogee, where the data are presented in symbolic

form. See further discussion in Khaw et al. (2019).
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either item to the decision maker.

2 Imprecision and Bias

We have thus far considered only a classic form of experiment in which a subject is

asked to compare the magnitudes of two stimuli along some dimension. Another kind

of experiment requires the subject to estimate the magnitude of a single stimulus,

allowing a (possibly continuous) range of responses. This allows one not only to

observe the randomness of the responses elicited by a given stimulus, but also to

measure whether the responses are biased, in the sense that the subject’s estimates

are not even correct on average. In fact, bias is commonplace in perceptual judgments;

and there is reason to think that both its nature and magnitude are closely connected

to the noise in the internal representations on which judgments are based.

There are a variety of ways in which subjects can be asked to estimate the mag-

nitude of a stimulus presented to them. They might be asked to choose from among

a set of possibilities the new stimulus most similar in magnitude to one previously

presented; or they might be asked to produce themselves a stimulus of equal magni-

tude to the one presented to them — for example, producing two successive taps to

indicate the length of a time interval.28 A common finding, with respect to estimates

of extensive magnitudes (such as distance, area, angular distance, or length of a time

interval) is a conservative bias in subjects’ estimates: subjects tend to over-estimate

smaller magnitudes (on average) while under-estimating larger ones.

Figure 4 illustrates this bias, in data from a classic study by Hollingworth (1909).

In this experiment, a subject is asked to reproduce a particular spatial distance (by

moving their arm), after having had the distance shown to them by the experimenter

(also through a movement of their arm); the figure plots the mean distance estimate

produced by the subject, for each of a variety of true distances presented by the

experimenter. The different symbols identify distinct experimental sessions, in which

the range of true distances (presented in random order) was different: 10-70mm in

series A of trials, 30-150mm in series B, and 70-250mm in series C. The black dots

represent three sessions in which all true distances were of exactly the same length:

28Both of these methods avoid relying on any ability of the subject to verbally describe their

subjective estimate of a sensory magnitude. Symbolic expression of estimates is instead common in

experiments testing people’s ability to estimate numerosity, discussed below.
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Figure 4: Mean of the length estimates produced by an experimental subject, plotted

as a function of the length (in mm) that had previously been demonstrated to the

subject. The different symbols indicate sessions in which different ranges of lengths

were used as stimuli. (Reproduced from Laming, 1997.)

10mm, 70mm, or 250mm.

In each of the first three sessions, the subject’s estimates exhibit a clear conserva-

tive bias: the shorter distances used in that day’s series are over-estimated on average,

while the longer distances are under-estimated on average. The figure also illustrates

another important finding: that the average estimate produced in response to a given

stimulus depends not only on the objective magnitude of that stimulus in isolation,

but on how it compares to the range of stimuli used in that particular session. The

mapping from true distance to mean estimated distance is similar in sessions A, B,

and C (in each case, an increasing function, roughly linear when presented as a log-log

plot), but the function shifts from day to day as the range of stimuli used is changed.

The same stimulus (a 70mm movement) may be under-estimated, over-estimated, or

estimated with nearly zero bias, depending whether it is unusually long, unusually

short, or about average among the stimuli used in the session. Hollingworth found

the same to be true in a number of different sensory domains, and christened this

17



����������	�
	��
��	��������	
����������	���	������
�
���������������
����	
�����
��	�

��������	���	�������	
�	�	���������
���������������������� ��	������	�

�	����!"#$%#��&&
�
�
���
'��
� ����������
������������ �	��������������	
���	� �()*)()+,-./0,1234.56������������������	����� ��	�
�����
	����'������	
7	��8��� ������
	
��	���
��9�
	�:;<=>?@:;<?:;>=<? ;%?�����<�������
����������������	�
�
�>���������
������������:A<�	����:B03B
��	��	
�������������'��
�������
������
��
� 
���,:B03B0�	C��	����������������
��	�����	��
��	
�
����	
���
����6�����������	���	���D����	�
��
��	�

�	����
���E
�
����
�������	��	�
FE������	
��� ����������������G������ :A>H<��������
�������
��� �	C��	����
��	��	����� �����������I�����	�	�
�6�����������6����I��������	�����������
���������J���
%��8�
������	�	�
�����������	�����	��
� K>
�����K	����6��������'�	�
����	����	� ���������8��L��	
������������
��� �	C��	����� �D����	�
������	�	� ��
�	� ��
��	�

��
'������������ �	���
������	� >�	�����
�������	��	�
K>�G��:3/M.B03BN:A<O>�N�	���������D����	�
���


��������
�	����������
�����
��� ���	�����
������
������	���G���9��
�����	�������	������������������������������
����
���
��������	���	�����������	���
���
��� �	C��	������
��	�
��L�����	����������
��� ���	��������	�
����>
����������	��������
��������������
��������
������	�	��
������	
�	
���������	����
��	�
�G���������
� ����������������������	�	P�
E�
�FE
������
�
����
�������	��	�
�������	���G�����	�������6���������	�
��������������	���� ���������
�����
�����	�	����B,M03�����6���������	�
����	���	�������������	
�����������
	���C��
��	�'����
������������������	������
�G���������������������������������EQR�S�
�FE�T�UVWXYZ[\Y7	��%LN]��������
������	
�̂�����
���������������
�	�
����
�	�	�
�
������������	�����
�
������	�	��
������������������̂�����_
�����������
������	
���������	
���'���C��
�	�	�
������C� ����������	������ �	
'���
��	����������������'���C��
�	�	�
�������� ������������������������	��
�
'�	
���	� �G���	
������	
������������ �����������������������'�	
���̀ ������7	��%a�����������53b,B0Mc20d014.e���������������'��
���
����
�	�
�����������
�������
������������������������������7	��%LN]
�	
C��� �����	
�	�	�'���������7������ ���̂���
��������	���	������
�
�������������	
�������'���C���
����	
���'���C��
�	'�	�
�L���'�� ����������������LfghL�
��������������������	�
	���
���	
�������������
�	�
����
�	�	�
�i�"j�!
:�����R�
���
������������
���i����j
:���8!j��
�
�	
������	�
�i���!T
:���"j��k���'���M'�����������������	

�
��������
����
�	�	�
������� �	
���'���C � ����	�
	���
�� �	�����
����� ����jjlMl��TTm��%%l:l��"&�
����	
���������	
��������������������������	
���'���C��
�	�	�
��6���������������	���
�����
��	�������
����� ��	�
���������
������
��
� �̀���%��
��������:3/nM.B03B������	�	� �������	����������	P��	�
�����
��	��	'��
� ���
�����	P����������������
��� ���������	C��	�����	���	���	�
������	
����� ��	��

�������������
����oo��
������
��
� II:B03B
��	������������
'��� ���	�����������������
����G���������������	������������ ��	�
����	��	�
������������
������	
��
������ ������	
����������
������������&Tl$%l��&!��pVqrYsZYYrtuG�	����� ������������
���������
������C�������	�	�
�������������
�
������	
�v��� 
������ ������������� w����	�
501.,B5-�x������
���
����
�	�
���������������	������� ���
�����
�����
�	
���
'�̂
��	�
���C
���̂�����
���������	��	
��� 
�
'�	
���
���������	���� ������	���	������	�
��	��g
�����
�	����
���
�������������	�������� �� ��y�������� 
������������
�	��
���������
���������'zr{VUV_��������	�
�������
����'��
��
� �������
�
'�	
�������	
���L�k�����	�	� ��
�	� ��
��	�
����50|.50c334
:B03B�
�:3/M.B03B�̀���%��
�������� �	����	���� �������������������������
����N���
������	
��7����������
������	
��
�����	��	��D����	�
�����
�������R�}�
���
������	
��	�����
�������	��	�
��T�������	
��� ��������������G���	C��	�����������D����	�

��
������������ �	���
�����<
�	�����
�������	��	�
�������K<
�����K	����6���������	�
��������8��G��������	��	������������������
��� �	C��	�����
������	������a������� 7	��%
�	������	�����	�
�����
� ��
�	
�����������L��	
���������������������
�	����&T#$%#��&!������������� �7��	
���������	�
�������	
7	��%
���������	���������������������	�
����	����	����

~)�13�05..M,5)��3b10M031�((A(��(�������� "Tj����������	�
	��
��	��������	
����������	���	������
�
���������������
����	
�����
��	�

��������	���	�������	
�	�	���������
���������������������� ��	������	�

�	����!"#$%#��&&
�
�
���
'��
� ����������
������������ �	��������������	
���	� �()*)()+,-./0,1234.56������������������	����� ��	�
�����
	����'������	
7	��8��� ������
	
��	���
��9�
	�:;<=>?@:;<?:;>=<? ;%?�����<�������
����������������	�
�
�>���������
������������:A<�	����:B03B
��	��	
�������������'��
�������
������
��
� 
���,:B03B0�	C��	����������������
��	�����	��
��	
�
����	
���
����6�����������	���	���D����	�
��
��	�

�	����
���E
�
����
�������	��	�
FE������	
��� ����������������G������ :A>H<��������
�������
��� �	C��	����
��	��	����� �����������I�����	�	�
�6�����������6����I��������	�����������
���������J���
%��8�
������	�	�
�����������	�����	��
� K>
�����K	����6��������'�	�
����	����	� ���������8��L��	
������������
��� �	C��	����� �D����	�
������	�	� ��
�	� ��
��	�

��
'������������ �	���
������	� >�	�����
�������	��	�
K>�G��:3/M.B03BN:A<O>�N�	���������D����	�
���


��������
�	����������
�����
��� ���	�����
������
������	���G���9��
�����	�������	������������������������������
����
���
��������	���	�����������	���
���
��� �	C��	������
��	�
��L�����	����������
��� ���	��������	�
����>
����������	��������
��������������
��������
������	�	��
������	
�	
���������	����
��	�
�G���������
� ����������������������	�	P�
E�
�FE
������
�
����
�������	��	�
�������	���G�����	�������6���������	�
��������������	���� ���������
�����
�����	�	����B,M03�����6���������	�
����	���	�������������	
�����������
	���C��
��	�'����
������������������	������
�G���������������������������������EQR�S�
�FE�T�UVWXYZ[\Y7	��%LN]��������
������	
�̂�����
���������������
�	�
����
�	�	�
�
������������	�����
�
������	�	��
������������������̂�����_
�����������
������	
���������	
���'���C��
�	�	�
������C� ����������	������ �	
'���
��	����������������'���C��
�	�	�
�������� ������������������������	��
�
'�	
���	� �G���	
������	
������������ �����������������������'�	
���̀ ������7	��%a�����������53b,B0Mc20d014.e���������������'��
���
����
�	�
�����������
�������
������������������������������7	��%LN]
�	
C��� �����	
�	�	�'���������7������ ���̂���
��������	���	������
�
�������������	
�������'���C���
����	
���'���C��
�	'�	�
�L���'�� ����������������LfghL�
��������������������	�
	���
���	
�������������
�	�
����
�	�	�
�i�"j�!
:�����R�
���
������������
���i����j
:���8!j��
�
�	
������	�
�i���!T
:���"j��k���'���M'�����������������	

�
��������
����
�	�	�
������� �	
���'���C � ����	�
	���
�� �	�����
����� ����jjlMl��TTm��%%l:l��"&�
����	
���������	
��������������������������	
���'���C��
�	�	�
��6���������������	���
�����
��	�������
����� ��	�
���������
������
��
� �̀���%��
��������:3/nM.B03B������	�	� �������	����������	P��	�
�����
��	��	'��
� ���
�����	P����������������
��� ���������	C��	�����	���	���	�
������	
����� ��	��

�������������
����oo��
������
��
� II:B03B
��	������������
'��� ���	�����������������
����G���������������	������������ ��	�
����	��	�
������������
������	
��
������ ������	
����������
������������&Tl$%l��&!��pVqrYsZYYrtuG�	����� ������������
���������
������C�������	�	�
�������������
�
������	
�v��� 
������ ������������� w����	�
501.,B5-�x������
���
����
�	�
���������������	������� ���
�����
�����
�	
���
'�̂
��	�
���C
���̂�����
���������	��	
��� 
�
'�	
���
���������	���� ������	���	������	�
��	��g
�����
�	����
���
�������������	�������� �� ��y�������� 
������������
�	��
���������
���������'zr{VUV_��������	�
�������
����'��
��
� �������
�
'�	
�������	
���L�k�����	�	� ��
�	� ��
��	�
����50|.50c334
:B03B�
�:3/M.B03B�̀���%��
�������� �	����	���� �������������������������
����N���
������	
��7����������
������	
��
�����	��	��D����	�
�����
�������R�}�
���
������	
��	�����
�������	��	�
��T�������	
��� ��������������G���	C��	�����������D����	�

��
������������ �	���
�����<
�	�����
�������	��	�
�������K<
�����K	����6���������	�
��������8��G��������	��	������������������
��� �	C��	�����
������	������a������� 7	��%
�	������	�����	�
�����
� ��
�	
�����������L��	
���������������������
�	����&T#$%#��&!������������� �7��	
���������	�
�������	
7	��%
���������	���������������������	�
����	����	����

~)�13�05..M,5)��3b10M031�((A(��(�������� "Tj

Figure 5: The mapping from true numerosity to the distribution of numerosity es-

timates, in two experiments that differ only in the range of true numerosities used.

(Reproduced from Anobile et al., 2012.)

regularity “the central tendency of judgment” (Hollingworth, 1910).29

Among the domains in which this kind of bias is observed is that of judgments

of numerosity, already discussed above; this is one of the several respects in which

the imprecision in judgments about numerical magnitudes resembles imprecision in

judgments about physical magnitudes like distance, leading Dehaene (2011) to speak

of the existence of a “number sense.” Conservative bias in estimates of numerosity has

been documented many times, following the classic study by Kaufman et al. (1949).

Often the relationship between true numerosity and average estimated numerosity is

found to fall on a roughly linear log-log plot, but with a slope slightly less than one,

as in Figure 4.30 However, the cross-over point, at which numerosity begins to be

under-estimated rather than over-estimated, differs considerably across experiments,

in a way that correlates with differences in the range of numerosities used as stimuli

in the different experiments.31 Figure 5 shows an example of two experiments that

differ only in the range of numerosities used (1-30 in the left panel, 1-100 in the

29See Petzschner, Glasauer and Stephan (2015) for more recent examples from a variety of sensory

domains.
30See, e.g., Krueger (1984) or Kramer, De Bono and Zorzi (2011).
31See Izard and Dehaene (2008) for discussion.
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right); note how the location off the cross-over point shifts, in a way consistent with

the central tendency of judgment.

2.1 A Bayesian Model of Estimation Bias

A number of authors have noted that estimation biases in these and other sensory

domains are consistent with a model of optimal decoding of the stimulus magnitude

implied by a noisy internal representation.32 An optimal inference from noisy evi-

dence will depend on the prior distribution from which the true state is expected to

be drawn. The observed dependence of the mapping from objective magnitudes to

average estimated magnitudes on the range of objective magnitudes used in a given

experiment can then be interpreted as a natural consequence of inference using a

prior that is appropriate to the particular context.33

As an example, suppose that a true magnitude x (say, one of the distances on

the horizontal axis in Figure 4) has an internal representation r drawn from the

distribution

r ∼ N(log x, ν2). (2.1)

(The assumption that m(x) is logarithmic is consistent with Fechner’s explanation

for Weber’s Law, a regularity that is observed in the case of distance comparisons.)

If the true distance is assumed to be drawn from a log-normal prior distribution,

log x ∼ N(µ, σ2), (2.2)

then the expected value of x, conditional on the representation r (i.e., the estimate

given by the Bayesian posterior mean),34 will equal

x̂(r) = E[x|r] = exp((1− β) log x̄ + βr), (2.3)

32See, e.g., Stocker and Simoncelli (2006), Petzschner et al. (2015), and Wei and Stocker (2015,

2017).
33Of course, the appropriate prior has to be learned; one should therefore expect the mapping

from objective magnitudes to estimates to shift over the course of an experimental session, especially

at the beginning. Such learning effects can explain the often observed difference in estimation bias

depending on the sequence in which different magnitudes are presented; see Petzschner et al. (2015)

for discussion.
34This estimate of x will be optimal in the sense of minimizing the mean squared error of the

estimate, under the prior. It is not the only possible rule that might be used in a Bayesian model

of decoding (see, e.g., Dayan and Abbott, 2001, chap. 4), but is used by authors such as Wei and

Stocker (2015).
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where β ≡ σ2/(σ2+ν2) < 1 and x̄ ≡ exp(µ+(1/2)σ2) is the prior mean. Conditional

on the true x, this implies that the estimate x̂ will be a log-normally distributed

random variable, with mean and variance

e(x) ≡ E[x̂|x] = Axβ, var[x̂|x] = Be(x)2, (2.4)

where A ≡ exp(β2ν2/2) · x̄1−β, B ≡ exp(β2ν2)− 1 > 0.

This simple model (based on Petzschner et al., 2015) implies that a plot of the

mean estimate as a function of the true magnitude should yield a linear log-log plot, as

in Figure 4, with a slope equal to β < 1; the slope less than one implies a conservative

bias. Moreover, if in different contexts, the degree of prior uncertainty is similar (in

percentage terms), so that σ remains the same across contexts, but µ is different,

then optimal Bayesian estimation (with learning about the statistics of each context)

would imply a different function e(x) in each context. The elasticity (slope of the

log-log plot) should remain the same across contexts, but the cross-over point should

increase in proportion to the prior mean x̄ in each context, in accordance with the

central tendency of judgment. The model also implies that estimates should be more

variable, the larger is x; specifically, the standard deviation of x̂ should grow in

proportion to the mean estimate e(x). This latter property of “scalar variability”

is also observed for many types of magnitude estimates,35 including estimates of

numerosity.36

Experimental results of the kind shown in Figures 4 and 5 again exhibit “dimin-

ishing sensitivity” to increases in the stimulus magnitude, but in a different sense

than the classic one discovered by Weber; in these figures, e(x) is an increasing, but

strictly concave function of x,37 but this is not equivalent to the claim that m(x) is

a concave function of x. The functions m(x) and e(x) are measured using different

experimental procedures, and in a model based on optimal Bayesian decoding, they

should not generally coincide. For example, in the model just presented, m(x) is log-

arithmic, while e(x) is a power law. Both are increasing, strictly concave functions,

but they exhibit diminishing sensitivity at different rates.38

35Again see Petzschner et al. (2015).
36See, e.g., Whalen et al. (1999), Cordes et al. (2001), Izard and Dehaene (2008), or Kramer et

al. (2011).
37Recall that Figure 4 is a log-log plot, so that a straight line corresponds to a power law of the

kind described in (2.4).
38Nor is either of these functions characterized by diminishing sensitivity in all cases. For dis-
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2.2 Biased Economic Valuations and Errors in Choice

Bayesian models of perceptual bias of the kind just illustrated provide a possible

interpretation of some otherwise puzzling features of choice behavior. If choices are

based on imprecise internal representations of the characteristics of the available

options, and subjective valuations of economic options are imprecise in a similar way

as perceptual judgments, then we should expect such valuations to be not only noisy

(subject to random variability from one occasion of choice to another, even over short

periods of time), but also biased on average.

However, it is worth noting that in such models, bias exists only to the extent

that estimates are also noisy. Hence it is essential, under this program, that choice

biases and randomness of choice be modeled together — rather than treating the

specification of biases and the specification of random errors in choice as two com-

pletely independent aspects of a statistical model of the data, controlled by different

sets of parameters, as is often the case. And when one takes this approach, one finds

that systematic behavioral tendencies that are commonly taken to reflect preferences

can sometimes instead be interpreted as biases resulting from inference from noisy

internal representations.

2.2.1 Application: Explaining Small-Stakes Risk Aversion

A common observation in laboratory experiments is apparently risk-averse behavior.

The data from Mosteller and Nogee (1951), plotted in Figure 3, provide an example:

in this case, the gamble is a fair bet when X equals 10 cents (5 cents/0.5), but the

“indifference point” appears to be around 10.7 cents. A standard interpretation of

risk aversion, of course, notes that it is implied by expected utility maximization

in the case of diminishing marginal utility of wealth. But this interpretation of the

Mosteller and Nogee data would require one to suppose that an increase in wealth of

5.7 cents raises the subject’s utility by no more than a loss of 5.0 cents would reduce

it; and while logically possible, this is actually quite an extreme degree of curvature

of the utility of wealth function, and would require extraordinary risk aversion with

respect to larger gambles (as explained by Rabin, 2000), of a kind that is seldom

cussion of how the acuity of discrimination between nearby stimuli (which depends on m′(x)) and

estimation bias (measured by e(x)−x) vary over the stimulus space in a variety of sensory domains,

see Wei and Stocker (2017).
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observed.

There is instead no puzzle if we suppose that a subject’s decision whether to

accept the gamble must be based on a noisy internal representation of the payoffs

associated with the alternative choices (Khaw et al., 2019). Consider the case of a

choice between having an amount of money C > 0 with certainty and a gamble that

promises an amount X > 0 with probability 1/2, but has probability 1/2 of paying

nothing; and suppose that on each of a series of trials of this kind, the values of C and

X vary.39 Suppose further that the amounts C and X that define the choice problem

on a given trial each have a noisy internal representation ri (for i = C,X) drawn

from a distribution (2.1), the mean of which is given by the log of the corresponding

true value in each case, and that the decision whether to accept the gamble on any

given trial must be based on r = (rC , rX).

Assuming that the amounts C and X are small enough for the subject’s marginal

utility of wealth to be essentially the same regardless of the choice made or the

outcome of the gamble, and optimal decision criterion will be one that maximizes the

mathematical expectation of the monetary payoff from the experimental trial. Thus

under the hypothesis that judgments with regard to such gambles are optimal (given

the imprecision of the internal representation of the problem), the gamble should be

accepted if and only if E[X|r] > 2E[C|r]. If these expectations are computed for a

prior under which the values of C and X are independent draws from a log-normal

distribution (2.2), then (2.3) implies that the gamble should be accepted if and only

βrX > βrC+log 2. Under the assumption that rC and rX are drawn from distributions

of the form (2.1), the probability of acceptance is predicted to be

Prob[accept] = Φ

(
log(X/C) − β−1 log 2√

2ν

)
. (2.5)

Equation (2.5) predicts that if the acceptance probability is plotted as a function

of X (for fixed C), as in Figure 3, one should obtain an increasing sigmoid function

like the one shown in the figure. Moreover, the “indifference point” identified using

the method of Mosteller and Nogee should be where X indiff/C = 21/β > 2, a point

to the right of the value corresponding to a fair bet, so that the subject should

39Note that the data plotted in Figure 3 involve only one value of C (5 cents). However, multiple

values of C were used in their experiment; the figure shows only how the value of X required for

indifference is computed for one particular value of C.
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appear to be risk-averse. Thus the theory provides a unified explanation for both

the randomness of observed choices and apparent risk aversion even when stakes are

quite small. Because the predicted ratio X indiff/C is independent of the value of C,

the model predicts non-trivial risk aversion even when stakes are arbitrarily small; at

the same time, it does so without predicting an extraordinary degree of risk aversion

in the case of large bets.

Under this explanation, the apparent risk aversion results from a bias in subjective

estimates of the values of the different monetary payoffs, which bias depends on noise

in the internal representation. One can ask whether the degree of noise needed to

explain the observed degree of risk aversion is plausible. The curve in Figure 3

represents the prediction (2.5), when the parameters σ and ν are fit to the data from

the figure of Mosteller and Nogee.40 The measure of prior uncertainty σ required to

fit the choice data is equal to 0.26.

Note that the difference between the largest and smallest values of logX in the

Mosteller-Nogee figure is 1.16; this corresponds to a range of 4.5 standard deviations

if σ = 0.26. Thus the assumed degree of prior uncertainty about the value of X on

each trial is consistent with the range of values actually used in the experiment. If we

take σ to be determined by the range of values used (known apart from the subject’s

behavior), then the curve in Figure 3 shows that the value of ν needed to account

for the subject’s degree of apparent risk aversion is approximately the same as that

indicated by the randomness of his decisions: the same value (ν = 0.07) fits both

the slope of the choice curve (measuring the degree of randomness) and its horizontal

location (measuring apparent risk aversion). The required degree of imprecision in

number representation is also relatively modest compared to that found in studies of

numerosity perception.41

There are additional reasons to think that apparent risk aversion may result from

imprecise internal representations. Khaw et al. (2019) find that when choice curves of

the kind shown in Figure 3 are fit to the data of individual subjects, there is a strong

positive correlation between subjects’ apparent degree of risk aversion (measured by

40Note that under the assumption that C and X have the same prior distribution, the value of µ

does not affect the predicted choice frequencies (2.5).
41For example, the data shown in Figure 1 imply values of ν on the order of 0.13, if the data are

fit to equation (1.1) with m(x) = log x. Note that it makes sense to expect greater noise in the case

that the number is presented visually, by an array of Xs, rather than symbolically.
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the horizontal intercept) and the degree of randomness of their responses (measured

by the slope). Garcia et al. (2018) show furthermore that both the randomness and

the apparent risk aversion in choice under risk can be predicted by the subjects degree

of randomness in an independent numerosity comparison task (like the one shown in

Figure 1).

The model also provides an explanation for the observation that the apparent risk

aversion of subjects in laboratory experiments can be increased by increasing their

“cognitive load” (e.g., Gerhardt et al., 2016), if we assume that having simultaneously

to hold other numbers in ones mind reduces the available capacity for precise internal

representation of the numbers involved in the choice under risk. Finally, Frydman and

Jin (2019) find that reducing the degree of dispersion of the distributions of values

from which X and C are drawn increases the precision of choice (i.e., makes subjects’

choice functions more steeply increasing as a function of X/C, for values of X/C

around the value required for indifference). This has a straightforward explanation if

the randomness of choice is attributed to noise in the internal representations of the

values of X and C,42 while it would have no obvious explanation if one attributes

random choice to randomness in the process of comparison of options after their

expected values have been correctly computed.

2.2.2 Other Economic Applications

The idea that gambles are valued on the basis of a noisy internal representation

of the features of the gamble can explain other aspects of experimentally observed

behavior, as well. For example, both Steiner and Stewart (2016) and Khaw et al.

(2019) show how biases in the perceived probability of different outcomes of the kind

postulated by Kahneman and Tversky (1979) can result from Bayesian decoding

of noisy internal representations of the probabilities presented to the experimental

subject. Essentially, the over-estimation of small probabilities and under-estimation

of larger ones is another example of the kind of conservative bias found in many

perceptual domains (discussed above), as first suggested by Preston and Baratta

42As Frydman and Jin discuss, a theory of efficient coding (section 3 below) implies that when

the dispersion of values occurring in the experiment is higher, less precise discriminations should

be made between values that occur relatively often in the lower-variance context. This amounts

effectively to an increase in the parameter ν in the above model, while the ratio β remains the same,

reducing the slope of the curve predicted by (2.5).
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(1948).

The discounting of future payments relative to ones that can be received sooner is

another area in which valuation biases that are commonly interpreted as indicating

an aspect of subjects’ preferences may instead be due to a perceptual bias, that

can be modeled as optimal inference from a noisy internal representation. Gabaix

and Laibson (2017) show that optimal inference from noisy mental simulations of

the future outcomes resulting from alternative choices can result in under-weighting

outcomes farther in the future, even when the objective that decisions maximize is the

expected value of the undiscounted stream of payments. This is again an example of

conservative bias, with the bias greater in the case of payments that are represented

with less precision; the authors show that this source of discounting can easily make

the apparent time discount factor a hyperbolic function of distance in time.43 This

alternative interpretation has the advantage of helping to make sense of a variety of

ways in which apparent time preference varies across contexts, and can be affected

by factors such as stress or cognitive load (e.g., Mullainathan and Shafir, 2013).

The hypothesis that people’s decisions are based on noisy internal representations

of external conditions also provides an explanation for the failure of firms’ prices to

fully respond to changing macroeconomic conditions, such as changes in monetary

policy (Woodford, 2003). This is again an example of a conservative bias, the aggre-

gate effects of which are greater in the case of strategic complementarity between the

pricing decisions of different firms.44 Such an explanation for the delayed adjustment

of prices (and hence for the effects of monetary disturbances on aggregate economic

activity) has an advantage over explanations that posit fully-informed optimizing

behavior subject to objective costs of price adjustment, in that it can more easily

explain the fact that some kinds of market developments are much more rapidly re-

flected in prices than others. This is what one should expect if price-setters pay closer

attention to some aspects of their environment than others (and hence represent them

more precisely), in accordance with a model of optimal allocation of scarce cognitive

resources (Mackowiak and Wiederholt, 2009).

43The argument is in some ways similar to the proposal of Commons, Woodford and Trudeau

(1991), in which hyperbolic discounting is attributed to the way in which the noise in memory

traces increases with the passage of time.
44On the relevance of strategic complementarity for the aggregate effects of cognitive imprecision,

see also Morris and Shin (2006), Tirole (2015), and Angeletos and Huo (2019).
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More generally, noisy internal representations can explain biases in expectations

relative to those implied by the conventional hypothesis of rational expectations.

Coibion and Gorodnichenko (2015) document biases in the average forecasts of pro-

fessional forecasters of the kind that should result if forecasts are based on a noisy

internal representation of external conditions. Azeredo da Silveira and Woodford

(2019) show that the further hypothesis of noisy memory of past cognitive states pre-

dicts a more complex pattern of biases, including the kinds of over-extrapolation from

recent observations that are often observed in the forecasts of individual forecasters

(Bordalo et al., 2018) and in the laboratory (Beshears et al., 2013; Landier, Ma, and

Thesmar, 2019).

3 Context-Dependent Valuations

One of the features of observed choice behavior that is most problematic for normative

models of rational choice is the fact that choices sometimes appear to reflect valuations

of choice options that depend on what other options are available, and not simply on

the consequences that follow from selecting the particular option. For example, an

extensive literature in marketing studies the way in which adding a “decoy” good to

the set of options available to consumers can sometimes increase purchases of one of

the goods that was already available.

A well-known example is the “asymmetric dominance effect”, in which purchases

of a target good are increased by introducing a decoy that is dominated by the

target good (worse on both price and quality dimensions), while not worse on both

dimensions than an alternative good that many consumers prefer to the target good in

the absence of the decoy (Huber, Payne and Puto, 1982; Heath and Chatterjee, 1995).

Such effects are not consistent with a random-utility model in which the distribution

of possible valuations for each good are the same regardless of what other goods are

available in the choice set.

Context-dependence is however an ubiquitous feature of perceptual judgments

(Laming, 2011). How long a line or bar appears to be, how tilted it appears to be,

how fast it appears to be moving, and so on, depend on the features of other items

that appear next to the line or bar, or that have been seen just before it. Moreover,

the context-dependence observed in choice behavior is often directly analogous to

illusions that are observed in visual perception (Trueblood et al., 2013; Summerfield
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and Tsetsos, 2015), suggesting that similar mechanisms may be responsible in both

cases. And while a variety of mechanisms have been proposed for context effects in

perceptual domains, some of these are consistent with the Bayesian view of perception

presented above (e.g., Schwartz, Hsu and Dayan, 2007).

Valuations derived from optimal Bayesian inference from noisy internal represen-

tations, as proposed in the previous section, might depend on the other items in a

choice set for either of two reasons. First, even supposing that the internal representa-

tion ri of the features of good i has a marginal distribution that is independent of the

choice set, the noise in the internal representations of different goods might be corre-

lated. As Natenzon (2019) shows, in this case the optimal value estimate x̂i = E[xi|r]

will generally depend on elements of the vector of internal representations other than

just the element ri that encodes the value of xi.

Natenzon proposes that differing degrees of noise correlation in the case of different

pairs of goods provides a way of capturing the fact that goods that are more similar to

each other are more easily compared (Tversky and Russo, 1969), making choice less

random for any degree of difference in the true values of the goods to the consumer.45

In this theory an effective decoy is a good that is easily comparable with the target

good, and inferior to it; adding a noisy representation of the value of the decoy to

the vector r can then increase the estimated value of the target good, with less of an

effect on the estimated values of other goods that are less similar to the decoy.

And second, one need not assume that the elements of the internal representation

each encode the value of some feature of only one good, considered in isolation; they

might instead encode the relative value of some attribute of a given good, compared

with one or more goods in a comparison set. This is a well-documented feature of

neural representations of sensory information: what is encoded is often information

about changes, either in space or time, as in the case of the “contrast detectors”,

“edge detectors,” “convexity detectors” and “dimming detectors” found in the frog

retina (Lettvin et al., 1959). If one supposes that the vector r that is conditioned

on includes imprecise measures of relative attribute values between different goods

in the choice set, then a Bayesian model can easily predict decoy effects of the kind

that are observed (Howes et al., 2016).

45The possibility of non-zero correlation between r1 and r2 (conditional on the true values x1, x2)

adds an additional parameter to the formula (1.1), derived above under the assumption of zero

correlation.
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This raises a question: how freely should a modeler be allowed to specify the

joint distribution of posited internal representations and the observable features of a

choice situation? One way of developing a more parsimonious theory is by looking

for similarities across domains in the structure of imprecise internal representations,

as with the analogy in the model of Khaw, Li and Woodford (2019) between the way

that monetary payoffs are assumed to be encoded and the way that other numerical

magnitudes, such as the numerosity of visual arrays, are encoded.

An alternative approach would seek to derive the form of the imprecise internal

representation in any given case from a general theory of “efficient coding” — the

proposition that internal representations have a form that maximizes the average

accuracy of classifications, given the prior probability of being in different possible

situations, and subject to a constraint on the feasible complexity of representations,

understood to follow from a limit on available cognitive resources.46 Theories of this

kind are often used to explain aspects of the neural coding of particular stimulus

features in the early stages of sensory processing (e.g., Laughlin, 1981; Simoncelli,

2003; Ganguli and Simoncelli, 2016), and have also been used to explain neural

representations of the values of individual options in decision problems (Rustichini et

al., 2017).

In the literature on perception, the encoding of changes or contrasts rather than

absolute stimulus magnitudes is often argued to be efficient because it reduces the

redundancy of the neural code, given the degree to which absolute magnitudes (such

as light intensity) are correlated in space and time (Schwartz, Hsu and Dayan, 2007).

There is a further reason for it to be efficient to encode comparisons rather than the

absolute values of the attributes of individual goods in the case of consumer choice:

the accuracy of a person’s choices depends only on having an accurate view of the

relative values of the different goods on offer, rather than their absolute values, so

that encoding absolute values would waste representational capacity on irrelevant

46The economics literature on “rational inattention” (e.g., Sims, 2003; Caplin and Dean, 2015)

has a similar goal. Even more closely related are economic models that consider the optimal use of

a finite range of possible classifications, such as those of Robson (2001), Rayo and Becker (2007),

Netzer (2009), and Steiner and Stewart (2016). The latter kind of models, which are more consistent

with evidence from psychophysics and neurophysiology, imply that “nearby” states must be difficult

to distinguish from one another; this has important implications for the analysis of coordination

games (Morris and Yang, 2019) and optimal contracting (Hébert and Woodford, 2018), among

other issues.
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information. At the same time, if limited capacity means that the information that

is encoded about relative values must be imprecise, optimal Bayesian decoding can

lead to preference reversals as shown by Howes et al. (2016).

A theory of efficient coding together with the hypothesis of Bayesian decoding

provides a parsimonious theory of how the distribution of errors in perceptual judg-

ments should depend on the statistics of a particular perceptual domain. Models of

this kind have been used to explain patterns of perceptual bias in a range of different

sensory domains (Wei and Stocker, 2015, 2017), and have been proposed as expla-

nations for biases in economic valuations as well. Among other applications, they

have been used to explain how biases in economic valuations vary with time pressure

(Polania, Woodford, and Ruff, 2019) or framing (Woodford, 2012), and how the sen-

sitivity of subjective valuations to the objective situation depends on the distribution

of values used in a given experiment (Frydman and Jin, 2019; Payzan-LeNestour and

Woodford, 2019).

Such models offer the prospect of a unified theory of a range of different types of

behavioral biases, context effects, and effects on economic decisions of factors such as

time pressure that play no role in rational choice theory. Rather than implying that

choices are “irrational,” these phenomena would be understood as consequences of

patterns of mental processing that serve people well, in the sense of maximizing their

rewards on average, subject to the constraints imposed by the finiteness of cognitive

resources. Much work remains to be done to flesh out the details of the theory and

test its empirical validity across varied contexts. But regardless of whether any of

the particular formulations offered in the current literature prove generally valid, it is

likely that study of the mechanisms responsible for biases in perceptual domains will

be an important source of insights into the nature of biases in economic valuations

as well.
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