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I. Introduction

The predictably counter-cyclical nature of the equity risk premium continues to be a ma-

jor challenge in asset pricing. Researchers have proposed rational expectations models that

generate time-variation in the equity premium by introducing modifications into the repre-

sentative agent’s utility (Campbell and Cochrane 1999; Barberis, Huang, and Santos 2001)

or by introducing persistence and stochastic volatility into the endowment growth process

(Bansal and Yaron 2004). A key feature of these rational expectations models is that the

representative agent knows the objective probability distribution she faces in equilibrium:

subjective and objective expectations are the same. Therefore, the agent is fully aware of the

counter-cyclical nature of the equity premium and knows the values of the parameters driving

this process. This is a troubling feature of these models on two levels—conceptual and em-

pirical. Conceptually, it is not clear how an agent could come to possess so much knowledge

about parameters when econometricians struggle to estimate such parameters with much

precision even from very long time-series samples (Hansen 2007). Empirically, surveys of

investor return expectations from a number of sources fail to find evidence that investors’

return expectations are counter-cyclical. If anything, the survey data indicate pro-cyclicality

(Vissing-Jorgensen 2003; Amromin and Sharpe 2013; Greenwood and Shleifer 2014).

Learning about the parameters of the asset payoff process offers a potential solution to

both parts of this conundrum. Learning allows for subjective parameter uncertainty and a

wedge between the subjective expectations of agents within the model and the objective ex-

pectations that an econometrician outside of the model could estimate from a large sample of

data generated by the economy ex post. In such a learning model, the dynamics of subjective

beliefs and asset prices depend crucially on the specification of agents’ memory. The model-

ing of memory determines how experienced historical data feeds into beliefs, decisions, and

prices. A standard assumption would be that agents retain full memory of all observations

experienced in the past. But full memory is, in an application, neither well defined—does it
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start at the start of today’s electronic records of stock prices and dividends? when the first

stock market opened? some other time?—nor necessarily empirically plausible.

In this paper, we study asset prices when the representative agent learns with gradually

fading memory. Our approach is grounded in micro-evidence from household portfolio choice

and survey expectations data showing that individuals learn from experience—that is, their

expectations are shaped by data realized during their lifetimes, and most strongly by recently

experienced data (Malmendier and Nagel 2011; Malmendier and Nagel 2016).1 Malmendier

and Nagel (2016) further show that when individuals learn from life-time experiences, the

dynamics of their average expectation can be approximated very closely by a constant-gain

learning scheme in which a data point’s influence on beliefs gradually fades over time as it

recedes into the past. Abstracting from generational heterogeneity, we use this insight and

consider a representative agent who learns with constant gain. This allows us to obtain a

highly tractable model that nevertheless captures what may be, for the purposes of asset

pricing, the essential aspect of learning from experience: the gradual loss of memory.

The decaying memory of observations in the past is the only modification to an otherwise

standard Bayesian parameter learning model. As a consequence of the memory decay, learning

is perpetual and there is a persistent time-varying wedge between the agent’s subjective beliefs

and the objective beliefs implied by the true parameters of the process generating the asset

payoffs. Importantly, however, by retaining everything else from the standard Bayesian set

up, we are able to analyze the asset pricing effects of posterior subjective uncertainty under

constant-gain learning. Based on this approach, the dynamics of asset prices and survey

expectations can be reconciled within a simple setting with IID endowment growth, recursive

utility with constant risk aversion, and a representative agent who learns with fading memory

about the mean endowment growth rate.

We start the analysis by documenting several new facts about equity market returns

1. A growing body of evidence also suggests that extrapolation from experience helps understand the
expectations and behavior of professionals. See, e.g., Greenwood and Nagel (2009) for mutual fund managers,
Andonov and Rauh (2017) for pension fund return expectations, and Malmendier, Nagel, and Zhen (2018) for
inflation expectations of members of the Federal Reserve’s Open Market Committee.
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and subjective stock return expectations. We look at the data through the lens of a simple

reduced-form framework that combines a present-value identity with constant-gain learning

about the growth rate of dividends. Constant-gain learning implies that investors’ subjective

expectation of long-run dividend growth is equal to an exponentially weighted average of past

dividend growth rates, which we label experienced payout growth. For the purpose of this ini-

tial analysis, we exogenously fix the subjective risk premium demanded by investors and the

risk-free rate to be constant. Under objective expectations, then, the resulting equity pre-

mium is counter-cyclical. For example, after a string of positive growth innovations, investors

are subjectively optimistic about the mean growth rate, the equity price is high, and subse-

quent returns are low because the investors’ optimistic expectations are likely disappointed

ex post.

How quickly memory of past realized growth rate observations decays is determined by a

gain parameter in the belief-updating rule. This parameter plays a key role in our analysis

as it determines the volatility and persistence of the price-dividend ratio and the strength of

return predictability. We do not tweak this parameter to fit asset prices. Instead, we rely on

the estimates in Malmendier and Nagel (2011, 2016) from survey data to pin down the value

of this parameter at 0.018 for quarterly data. This means that the agent’s posterior mean

growth rate in the current quarter puts a weight of 0.018 on the most recent quarterly growth

rate surprise and 1−0.018 on the posterior mean from the prior quarter. Experienced payout

growth is therefore a slow-moving variable. We construct it empirically with dividend data

going back to the 19th century.

We use the experienced payout growth series to uncover three novel empirical facts that

are consistent with the predictions of this constant-gain learning model. First, experienced

payout growth is strongly negatively related to subsequent stock returns in excess of the

risk-free rate. Remarkably, unlike most existing equity return predictors in the literature,

this one does not use information on price levels, just information from the past history of

asset payouts. Second, using data on individuals’ subjective expectations of stock market
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excess returns, we find that they are basically unrelated to experienced payout growth. As

a consequence, there is a wedge between subjective and objective expectations of excess

returns that generates subjective expectations errors that are predictable by experienced

payout growth. Third, subjective expectations of growth in fundamentals, proxied by long-

term earnings forecasts of stock market analysts, are strongly positively related to experienced

payout growth.

We then construct a structural asset-pricing model that matches these empirical regulari-

ties as well as other standard stylized asset pricing facts. A representative agent with recursive

utility and constant risk aversion learns with fading memory about the mean of IID endow-

ment growth. We keep the gain parameter fixed at the same value as in our reduced-form

analysis. Equity is a levered claim to the endowment. Because of fading memory, learning is

perpetual, the economy is stationary, and the agent’s subjective uncertainty about long-run

growth is high, which generates a high equity premium. The real risk-free rate varies slowly

over time, but its volatility is low, consistent with empirical data.

The dynamics of risk premia in the model are in line with our empirical findings. Ob-

jectively, excess returns are predictable by experienced payout growth or the price-dividend

ratio—without the subtle persistent components in the endowment process (and the agent’s

knowledge of these) in Bansal and Yaron (2004) (BY) or time-varying risk aversion built into

the agent’s preferences as in Campbell and Cochrane (1999) (CC). From the agent’s subjec-

tive viewpoint, the world looks different. Subjective expected excess returns are virtually

unrelated to experienced payout growth, consistent with the survey data. This wedge be-

tween subjective and objective expectations generates a strong negative relationship between

subjective expectations errors and experienced payout growth. Thus, our model reconciles

the evidence from returns data and surveys of investor return expectations.

Our model also addresses the Sharpe Ratio variability puzzle highlighted in Lettau and

Ludvigson (2010). The leading rational expectations models by CC and BY imply that

the conditional equity premium and conditional market return variance are almost perfectly
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positively correlated. In CC, this happens because at times when risk aversion is high, it

is also very volatile. In BY, the reason is that stochastic volatility in endowment growth is

the driver of the time-varying equity premium. As a consequence, variation in conditional

market return variance dampens the variability of the Sharpe Ratio relative to the variability

of the conditional equity premium. Empirically, however, the first and second moments of

market excess returns conditioned on the price-dividend ratio or experienced payout growth

are basically uncorrelated. Our model is consistent with this empirical observation: subjective

belief dynamics generate predictable variation in the objective equity premium, but without

simultaneous variation in the volatility of equity returns, which generates a volatile Sharpe

Ratio.

The model also matches the lack of out-of-sample predictability found empirically in

Welch and Goyal (2008). In our model simulations, standard out-of-sample tests show no

out-of-sample stock return predictability for empirically realistic sample sizes, even though

returns are truly predictable under the objective distribution. While an econometrician can

find predictable returns in sample by studying data ex post, it would be difficult, even with

full memory, for the econometrician to construct a viable trading strategy in real time that

takes advantage of the fading-memory agent.

To understand the economic mechanism generating investor belief and asset price dynam-

ics in the model, it is useful to contrast it with a model in which constant-gain learning is

an optimal Bayesian approach for tracking a random-walk component of growth rates. For

appropriately chosen volatility of the random-walk increments, this alternative model would

produce the same dynamics of investor beliefs about long-run growth. Thus, one can think of

investors in our model as forming beliefs under the perception that endowment growth has a

random-walk component. However, for the model’s predictions about predictability of stock

returns and subjective forecast errors it is crucial that the actual endowment growth rate

is IID. The resulting wedge between subjective and objective expectations is key and makes

the model predictions very different from models in which constant-gain learning is optimal
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based on the actual law of motion.

This highlights an important difference relative to the large literature on constant-gain

learning in macroeconomics (see Evans and Honkapohja (2001) for an overview). The typical

motivation for constant-gain learning in this literature is structural change that renders long-

distant historical data irrelevant, but it has been difficult to relate the gains that best explain

survey forecasts of macroeconomic data to the gains that would be optimal given the degree

of structural change in the forecasted time series (Branch and Evans 2006; Berardi and

Galimberti 2017). In our case, fading memory reflects the fact that individuals rely on their

life-time experiences when forming expectations, which is why we tie our gain parameter to

earlier estimates from survey expectations microdata, not to the degree of structural change

in the underlying time series. Our paper shares this focus on memory formation with a recent

emerging literature on the topic in economics (e.g., Azeredo da Silveira and Woodford 2019;

Bordalo, Gennaioli, and Shleifer 2019; and Wachter and Kahana 2019).

Our model builds on earlier work that has used different approaches to investigate the asset

pricing implications of learning from experience. Collin-Dufresne, Johannes, and Lochstoer

(2017), Ehling, Graniero, and Heyerdahl-Larsen (2018), Malmendier, Pouzo, and Vanasco

(2017), Schraeder (2015), and Nakov and Nuño (2015) use an overlapping generations (OLG)

approach to study learning-from-experience effects in asset pricing. The advantage of the

OLG approach is that it maps very closely to the empirical work in Malmendier and Nagel

(2011, 2016) that studied between-cohort heterogeneity in experiences, expectations, and

choices. Moreover, these models produce interesting implications for cross-sectional het-

erogeneity in portfolio choices and wealth. The downside is that model solution requires

simplifications that make a quantitative mapping to empirical data difficult.2 By abstracting

from cross-cohort heterogeneity, we also employ a simplified approach, but one that delivers

2. For example, Collin-Dufresne, Johannes, and Lochstoer (2017) use two overlapping cohorts and objective
and subjective risk premia jump every 20 years when there is a generational shift; Ehling, Graniero, and
Heyerdahl-Larsen (2018) assume log utility, Schraeder (2015) and Malmendier, Pouzo, and Vanasco (2017)
work with CARA preferences in partial equilibrium with an exogenous risk-free rate, and the model in Nakov
and Nuño (2015) has risk-neutral agents.
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quantitatively realistic asset-pricing predictions. Our model is highly tractable and should

therefore be well suited for further extensions such as, for example, to study production and

real investment.

Our model shares many elements with full-memory Bayesian parameter learning models,

especially the IID-normal model in Collin-Dufresne, Johannes, and Lochstoer (2016), but

the fading memory feature avoids the arguably unrealistic implication of these models that

learning effects disappear and risk premia decrease deterministically over time as the agent

acquires more data (see, also, Timmermann (1993) and Lewellen and Shanken (2002) for

partial equilibrium models with full memory). The fading memory model also avoids the

problem of having to take a stand on what “year zero” is in an empirical implementation of

a full-memory Bayesian learning model. And the gain parameter that determines memory

can be pinned down based on microdata estimates.

Our model is also related to, but also in important ways different from recent models with

extrapolative expectations. In Barberis, Greenwood, Jin, and Shleifer (2015) some investors

extrapolate from stock price changes in recent years, which helps match the evidence in

Greenwood and Shleifer (2014) that lagged stock market returns from the past few years are

positively related to subjective expected returns. Jin and Sui (2018) build a representative

agent model with return extrapolation. While these models can match the strong correlation

of survey measures of subjective expected returns with lagged one-year stock market returns,

they produce the counterfactual prediction that stock market excess returns are predictable

by lagged one-year returns and that the price-dividend ratio quickly mean-reverts. The expe-

rienced growth measures in our setting put much greater weight on more distant observations

in the past. As a consequence, the price-dividend ratio and objective expected returns in our

model vary at a lower frequency, much close to the high persistence of the price-dividend

ratio observed in the data. But our model cannot produce the correlation of one-year past

returns with subjective expected returns. In Hirshleifer, Li, and Yu (2015) and Choi and

Mertens (2013), extrapolation occurs at low frequency, like in our model. A key difference is
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that in our model the agent perceives and prices subjective long-run growth rate uncertainty

which allows us to generate a high equity premium in an IID economy. In Adam, Marcet, and

Beutel (2017), agents know the expected growth rate of dividends, but they don’t know the

pricing function that maps expected fundamentals into prices, and they use an exponentially-

weighted average of past price growth to forecast future prices. Matching the empirical equity

risk premium in their model requires that subjective volatility of one-period ahead consump-

tion growth far exceeds the actual volatility in the data. In our model, perceived short-run

consumption volatility is very close to the objective volatility. The riskiness of equity in our

model instead arises from subjective long-run growth rate uncertainty.

II. Facts about Subjective and Objective Expectations of

Returns and Payoffs

Before looking at asset pricing with learning from experience within a structural asset-pricing

framework, we start by laying out some empirical facts about stock market returns and

investor return expectations from survey data that we want our asset-pricing model to match.

We consider a setting in which investors are learning about the mean growth rate µd of

log real stock market payouts, d,

∆dt = µd + εt, (1)

where ε is an IID shock. The microdata evidence in Malmendier and Nagel (2011, 2016)

suggests that individuals form expectations from data they observe throughout their lifetimes

and, within their life-time data set, with more weight on relatively recent data. In our

analysis, we focus on the dynamics of the average individual’s expectation in such a learning-

from-experience setting. Malmendier and Nagel (2016) show that if individuals in different

birth cohorts learn from their life-time experience, their average belief is described very well

by a constant-gain learning rule. Applied in our setting here, this means that the perceived
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growth rate µ̃d evolves as

µ̃d,t+1 = µ̃d,t + ν(∆dt+1 − µ̃d,t), (2)

and where ν is the (constant) gain parameter (see, e.g., Evans and Honkapohja (2001)).

As this expression shows, µ̃d is updated every period based on the observed surprise

∆dt+1 − µ̃d,t. How much this surprise shifts the growth rate expectation depends on ν. Mal-

mendier and Nagel (2016) show that ν = 0.018 for quarterly data fits the dynamics of the

average belief in inflation expectations microdata (and this value is also within the range of es-

timates obtained from microdata on household investment decisions in Malmendier and Nagel

(2011)). Iterating on (2) one can see that µ̃d,t is an exponentially-weighted average of past ∆d

observations. In this way, the constant-gain updating scheme (2) captures the memory-loss

implied by learning from experience and generational turnover. The more observations re-

cede into the past, the lower the weight on these observations. In contrast, with full-memory

Bayesian learning, the posterior mean would be formed by taking an equal-weighted average

of all observed growth-rate realizations.

As a preliminary step, we explore some basic asset pricing implications when investors

form expectations as in (2). At time t, they price stocks based on their growth rate expec-

tation µ̃d,t. For now, we further assume that they price in a constant risk premium θ and

a constant real risk-free rate rf under their subjective beliefs. As we will show later, these

assumptions are very close to the subjective belief dynamics that we obtain for a represen-

tative agent in a fully specified asset-pricing model with constant-gain learning and priced

subjective uncertainty about long-run growth.

Now apply a Campbell and Shiller (1988) approximate present-value identity, used as

in Campbell (1991) to decompose return innovations into changes in expectations about

future growth rates and changes in return expectations. Under the investors’ subjective
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expectations, denoted Ẽ[.], the innovation in stock returns is

rt+1 − Ẽtrt+1 = (Ẽt+1 − Ẽt)
∞∑
j=0

ρj∆dt+1+j (3)

=
ρ

1− ρ
(µ̃d,t+1 − µ̃d,t) + ∆dt+1 − µ̃d,t (4)

=

(
1 +

ρν

1− ρ

)
(∆dt+1 − µ̃d,t). (5)

Under the investors’ subjective beliefs there is no term for the revision of return expectations

because subjective return expectations stay fixed at θ+rf . Under these subjective beliefs, all

variance of unexpected returns is due to revisions in forecasts of future cash flows. Adding

investors’ subjectively expected return we obtain total realized returns

rt+1 =

(
1 +

ρν

1− ρ

)
(∆dt+1 − µ̃d,t) + θ + rf . (6)

Now consider an econometrician who knows (from a large sample of data) the true growth

rate µd. Taking expectations of (6) under these objective beliefs yields

Etrt+1 − rf = θ +

(
1 +

ρν

1− ρ

)
(µd − µ̃d,t), (7)

where the term in parentheses times µd− µ̃d,t represents the subjective growth-rate expecta-

tions revision that the econometrician anticipates, on average, in the next period, given her

knowledge of µd. This expression shows that the econometrician should find returns to be

predictable. Specifically, µ̃d,t should predict future excess returns negatively.

Moreover, while subjective excess return expectations are constant, the expectations error

Etrt+1 − Ẽtrt+1 should be predictable by µ̃d,t. We can see this by subtracting the subjective

equity premium Ẽtrt+1 − rf = θ from (7). We obtain

Etrt+1 − Ẽtrt+1 =

(
1 +

ρν

1− ρ

)
(µd − µ̃d,t). (8)
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In summary, this reduced-form analysis suggests three empirical relationships that we now

investigate before moving on to explaining these within a structural asset-pricing framework:

(i) excess returns should be predictable by µ̃d,t; (ii) subjective expectations errors should be

predictable by µ̃d,t; and, most basically, (iii) subjective cash-flow growth expectations should

be positively related to µ̃d,t.

II.A. Measurement of experienced growth

To estimate the relationship between a slow-moving predictor like µ̃d,t and future returns in

(7), we want to use the full history of returns back to the start of the CRSP database in

1926. And to implement the constant-gain learning scheme in (2), we need a long history of

past observations on stock market fundamentals. For example, to compute µ̃d,t in 1926, we

then need data on stock market payout growth, ∆d, stretching back at least an additional

50 years, up to the point where the weights become close to negligible.

From 1926 onwards, we obtain quarterly observations of aggregate ∆d on the CRSP value-

weighted index. We use a payout series, constructed as in Bansal, Dittmar, and Lundblad

(2005), that includes repurchases in addition to dividends. Shifts from dividends to stock

repurchases (e.g., motivated by tax changes) in the last few decades of the sample could

otherwise distort the link between our payout measure and the stock market fundamentals

that we want to proxy for. In the early decades in the sample, the role of repurchases is

negligible. Prior to 1926, we use data on household dividend receipts from tax data in Piketty,

Saez, and Zucman (2018) for the period 1913 to 1926, and data on aggregate corporate non-

farm non-financial dividends from Wright (2004) for the period 1900 to 1913. We deflate

payout growth with CPI inflation rates and calculate per-capita real growth rates. For the

period from 1871 to 1900 we use per-capita real GDP growth rates from Barro and Ursua

(2008) as proxy for ∆d. Appendix A.1 provides more details on the construction of the ∆d

times series. We then use this series to calculate experienced payout growth based on the

recursion in (2) and we label it µ̃d,t.
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The experienced growth measure based on corporate payouts is likely imperfect. While the

inclusion of repurchases may help alleviate distortions in the time-series properties caused by

shifts in payout policies, some distortions likely remain. Moreover, the pre-1926 payout data

is of lower quality than the CRSP data. For these reasons, we also construct an alternative

measure, experienced real returns, µ̃r,t, that represents a weighted average of past log real

stock market index returns. From the point it becomes available in 1926, we use quarterly

returns on the CRSP value-weighted stock market index. Before that, we use data from

Shiller (2005) back to 1871 to construct quarterly returns on the S&P Composite index up

to 1926. We deflate returns with the CPI inflation series from Shiller (2005). For averages

taken over long periods, real payout growth and real returns should be highly correlated and

hence µ̃r,t should capture similar information as µ̃d,t.
3 While experienced returns have some

advantages as a measure of experienced fundamentals growth, there are also some potential

shortcomings because asset price movements unrelated to fundamentals could contaminate µ̃r.

For example, sentiment shocks that are orthogonal to fundamentals could cause movements

in asset prices (that we accumulate in µ̃r) and future objective expected returns (a dependent

variable in our regressions below). For this reason, we use both measures, µ̃d and µ̃r, in our

tests.

II.B. Return Predictability

Table I presents predictive regressions along the lines suggested by (7). In Panel A, we use

µ̃d as a predictor, in Panel B we use µ̃r. Both predictors are constructed with data up to the

end of quarter t. The dependent variable is the quarterly return on the CRSP value-weighted

index in quarter t+ 1 in excess of the three-month T-bill yield at the end of quarter t. Based

on eq. (7), the present-value model in (7) would predict an OLS slope coefficient of -2.78

3. To check this, we simulated dividend growth and returns from eqs. (1) and (5) in 1,000 samples of 360
quarters plus 400 quarters as a burn-in period to compute µ̃d and µ̃r at the start of the estimation sample.
How well µ̃r,t tracks µ̃t depends on the gain parameter ν. For the value ν = 0.018 that we work with here,
the correlation is a very high 0.82. Other parameters like µd, the variance of ε, θ, rf , or ρ do not influence
this correlation. Thus, the approach of using µ̃r to capture the time-series dynamics of µ̃d should work well.
We confirm this again below when we study µ̃r in data simulated from our asset-pricing model.
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(with ν = 0.018 and ρ = 0.99, which is the quarterly value implied by the value of ρ = 0.964

for annual data reported in Campbell (2000)).

As Panel A shows, our estimates in the full 1927-2016 period are roughly in line with

this predicted value. To account for small-sample biases in predictive regressions, we run

bootstrap simulations as in Kothari and Shanken (1997) to compute a bias adjustment and

a bootstrap p-value. Appendix B provides details on these bootstrap simulations. With µ̃d

as the only predictor, we get an OLS coefficient estimate of −5.79. Bias-adjustment shrinks

the coefficient only slightly to −5.71, which is bigger in magnitude than the predicted value

of −2.78. Based on the bootstrapped p-value of < 0.01, we can reject the no-predictability

null at high levels of confidence.

One potential issue with these regressions is that the experienced real growth variables

could be distorted by recent unexpected inflation. If companies are sluggish to adjust nominal

payout growth one-for-one with inflation, a burst of recently high inflation would temporarily

depress the real experienced payout growth that we measure with our simple exponentially-

weighted average, but not necessarily the real fundamentals growth that investors truly ex-

perience. For this reason, column (2) therefore adds the average log CPI inflation rate during

quarters t− 3 to t to the regression. The coefficient for experienced real payout growth gets

somewhat more negative, but not by much.

Column (3) adds the log price-dividend ratio to the regression. As a test of the economic

story that we propose here, adding the price-dividend ratio, or other fundamentals-price

ratios, to the regression is not really meaningful. The price-dividend ratio should—following

the usual present-value identity logic—pick up essentially any variation in objective expected

returns, and so it should also absorb predictability associated with µ̃d. However, as a purely

descriptive empirical matter, it is useful to know whether experienced dividend growth adds

any forecasting power over and above the log price-dividend ratio, p−d. Column (3) suggests

that it does. In fact, in the presence of experienced payout growth and inflation in the

regression, p − d is not a significant predictor and does not raise the R2 compared with
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TABLE I
Predicting Returns with Experienced Real Growth

Dependent variable is the log return of the CRSP value-weighted index in quarter t+1 in excess of the return
on a 3-month T-bill. In Panel A, experienced payout growth denotes a long-run exponentially weighted average
of overlapping quarterly observations of four-quarter per-capita repurchase-adjusted real dividend growth rates
leading up to and including quarter t, constructed with weights implied by constant gain learning with quarterly
gain ν = 0.018. In Panel B, experienced returns are constructed analogously as an exponentially weighted
average of quarterly log stock market index returns (S&P Composite before 1926; then CRSP value-weighted
index). Inflation is measured as the average log CPI inflation rate during the four quarters t − 3 to t; p − d
refers to the log price-dividend ratio of the CRSP value-weighted index at the end of quarter t. The table
shows slope coefficient estimates, with bootstrap bias-adjusted coefficient estimates in brackets. Intercepts
are not shown. Bootstrap p-values are shown in parentheses. The reported R2 are based on bias-adjusted
estimates.

(1) (2) (3) (4) (5)
1927-2016 1927-2016 1927-2016 1946-2016 1946-2016

Panel A: Predicting returns with experienced real payout growth

Experienced real payout growth -5.79 -6.25 -5.82 -2.99 -1.29
[bias-adj. coeff.] [-5.71] [-6.14] [-5.40] [-2.82] [-1.14]
(p-value) (0.00) (0.00) (0.00) (0.04) (0.29)

Inflation -0.73 -0.71 -1.60 -2.13
[bias-adj. coeff.] [-0.75] [-0.73] [-1.68] [-2.14]
(p-value) (0.10) (0.13) (0.01) (0.00)

p− d -0.01 -0.04
[bias-adj. coeff.] [0.01] [-0.02]
(p-value) (0.56) (0.04)

Observations 360 360 360 284 284
R2 0.033 0.037 0.034 0.027 0.044

Panel B: Predicting returns with experienced returns

Experienced real returns -2.36 -2.58 -2.22 -3.17 -2.38
[bias-adj. coeff.] [-1.74] [-1.79] [-2.06] [-2.21] [-2.26]
(p-value) (0.02) (0.02) (0.05) (0.01) (0.03)

Inflation -0.60 -0.57 -2.47 -2.78
[bias-adj. coeff.] [-0.57] [-0.50] [-2.42] [-2.76]
(p-value) (0.19) (0.21) (0.00) (0.00)

p− d -0.01 -0.03
[bias-adj. coeff.] [0.00] [-0.01]
(p-value) (0.44) (0.04)

Observations 360 360 360 284 284
R2 0.015 0.017 0.016 0.045 0.061
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column (2).

Column (4) re-runs the regressions of column (2) for the post-World War II sample to

address a potential concern that the results could be driven by the Great Depression period.

The estimated slope coefficient of −2.99 is now very close to the predicted value of −2.78.

Adding p− d in column (5) takes away a substantial part of the predictability in this shorter

sample. Of course, as we have noted above, µ̃d or p − d should capture the same informa-

tion and the learning-from-experience theory does not imply that µ̃d should necessarily have

incremental predictive power over and above p− d.

Panel B uses experienced real returns, µ̃r, as a proxy for experienced stock market funda-

mentals growth. For the full sample in column (1), we obtain a bias-adjusted point estimate

of -1.74 that is highly statistically significant. The remaining columns show that adding

inflation and p− d and focusing on the post-1945 sample slightly strengthens the predictive

relationship between experienced real stock returns and future excess stock returns.

Figure I shows that experienced real payout growth and future excess returns are also

strongly correlated at much longer prediction horizons. In this figure, we plot the predicted

5-year excess log return based on the bias-adjusted fitted values from column (1) in Panel A

of Table I, and iterating on it using the AR(1) dynamics of the experienced growth updating

rule (2) with AR coefficient 1 − ν = 0.982. For comparison, we then plot the actual future

5-year cumulative excess log returns in quarters t+1 to t+20. As the figure shows, there is a

strong positive correlation. Time periods in which predicted returns were low also tend to be

periods when subsequent five-year excess returns were poor. For example, low experienced

payout growth correctly forecasted high excess returns following the last three recessions in

the early 90s, early 2000s, and in the financial crisis. That the cycles in expected excess

returns line up so well with cycles in experienced growth is remarkable because we did not

pick the ν parameter value—and hence the degree of smoothing implied by the weights—

to match asset prices, but we fixed it at a value obtained from earlier microdata evidence.

Moreover, unlike most return predictors in the literature, µ̃d does not include price level
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Figure I
Predicted five-year excess returns and subsequent actual cumulative five-year excess returns

Predicted returns are calculated based on bootstrap bias-adjusted coefficients from the pre-
dictive regression of log excess returns on experienced real payout growth shown in column
(1) of Table I, Panel A, applied to experienced payout growth in quarter t, and iterating using
an AR(1) with AR coefficient 1−ν = 0.982 to obtain 5-year forecasts. The actual cumulative
five-year excess returns refers to the sum of excess log returns on the CRSP value-weighted
index in quarters t+ 1 to t+ 20.

information and hence it does not automatically pick up expected return shocks that affect

prices.

Overall, the evidence indicates that experienced growth of stock market fundamentals—

whether proxied for by experienced real payout growth or experienced real returns—is strongly

predictive of stock market excess returns, consistent with a model in which investors use ex-

perienced growth to forecast future growth in fundamentals.
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II.C. Subjective Expectation Error Predictability

Subjective belief dynamics are a key feature of the economic effects we explore in this paper.

For this reason, we want to confront our model with data on individual investor return

expectations from surveys. We need a relatively long time series of survey expectations

because the experienced growth variables that we focus on to explain dynamics change only

slowly over time. For this reason, we put together survey data from several sources that spans

the period 1972 to 1977 and 1987 to 2016. We focus on surveys that target a representative

sample of the U.S. population, supplemented with two surveys of brokerage and investment

firm customers.

Several of the surveys in our data elicit respondents’ expected stock market returns,

in percent, over a one-year horizon (UBS/Gallup survey, 1998-2007, monthly; Vanguard

Research Initiative survey of Vanguard customers in Ameriks, Kézdi, Lee, and Shapiro (2016),

one survey in 2014; surveys of Lease, Lewellen, and Schlarbaum (1974) and Lewellen, Lease,

and Schlarbaum (1977), annual, 1972 and 1973). To extend these series, we bring in data from

three additional surveys that don’t elicit the percentage expected return but ask respondents

to provide the probability of a rise in the stock market over a one-year horizon (Michigan

Survey of Consumers, monthly 2002-2016) or the categorial opinion whether they expect

stock prices to rise, or stay about where they are, or decline over the next year (Conference

Board Survey, monthly 1987-2016;4 Roper Center Surveys, annual, 1974-1977). We impute

a time-series of implied percentage expected return from these alternative series. Roughly,

the approach involves projecting the average expected returns each period from the first set

of surveys on the coarser expectations measures in the second set of surveys, using periods

of overlapping coverage to estimate the projection. Appendix A.2 provides more detail.5 We

4. The data was kindly provided by The Conference Board.
5. Greenwood and Shleifer (2014) use two different data sources to cover time periods prior to the 1990s.

From the mid-1980s onwards, they use the American Association of Individual Investors Investor (AAII)
Sentiment Survey. The AAII survey is conducted among members of the AAII and it records responses of
members that self-select into participation. Respondents state whether they are “bullish” or “bearish” about
the stock market. We prefer the Conference Board survey for this time period as it is based on a representative
sample of the U.S. population. For the early part of their sample starting in the 1960s, Greenwood and Shleifer
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average the expectations within calendar quarters to obtain a quarterly series.

We start the analysis by looking at the time-series relationship between experienced

growth and subjective expected excess returns. In the present-value model we have sketched

above, the level of asset prices is affected by the experience-driven optimism or pessimism

of investors. But the subjective expected excess return on the stock market, Ẽtrt+1 − rf , is

constant. At each point in time, assets are priced such that subjective expected returns equal

the (constant) equity premium required by investors. This will also be approximately true in

our full model below, though not exactly.

As Panel A of Table II shows, subjective expected excess returns also seem to be ap-

proximately constant empirically at the frequencies that are relevant for our theory. In this

table, we show the results of regressions of one-year excess return expectations in quarter t

on experienced real payout growth or experienced real returns up to the end of quarter t− 1.

We calculate subjective expected excess returns by subtracting the average one-year Trea-

sury yields measured at the beginning of the survey months within each quarter. As Panel A

shows there is only a weak, and statistically not significant, positive relationship between µ̃d

and subjectively expected excess returns. Column (4) repeats this analysis with experienced

real returns as the key explanatory variable. The results are very similar to those in column

(1).

Looking at past returns over a much shorter time window, Greenwood and Shleifer (2014)

find that survey return expectations are positively related to returns. As column (2) shows,

we also find this in our data (which partly overlaps with Greenwood and Shleifer’s) when

we introduce the past 12-month return on the CRSP value-weighted index as an explanatory

variable. The estimated coefficient on this lagged return is about three standard errors

bigger than zero and the R2 is substantially higher than in column (1). Column (3) and

(5) show that when experienced growth variables and lagged returns are used jointly, the

use the Investors’ Intelligence newsletter sentiment. For consistency over time, we prefer to stick to individual
investor surveys in all time periods. The Roper and Lewellen et al. surveys give us at least partial coverage
of the 1970s.
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experienced growth effect remains very weak. The important take-away is that in terms of

the lower frequency movements that are captured by the experienced growth variables and

that we focus on in our analysis, the subjective equity premium in the survey data is close

to acyclical. That there are short-run fluctuations in subjective return expectations with

one-year lagged returns is also interesting, but this is not a fact that we try to explain in this

paper.

We now turn to the prediction, based on equation (7), that µ̃d and µ̃r should predict

expectation errors. We calculate the expectation error rt+1 − Ẽtrt+1 on the left-hand side of

(7) by subtracting the one-year survey expected return from the realized one-year return from

the beginning of quarter t+ 1 to the end of quarter t+ 4. The fact that survey expectations

in Panel A are unrelated to experienced growth combined with the fact in Table I that future

returns are negatively related to experienced growth implies that the expectations error should

be negatively related to experienced growth. However, since the survey data is restricted to

the 1970s and 1987-2016, the samples in Table I and II cover very different periods. For this

reason, it is still useful to check whether there is actually a negative relationship in the part

of the sample in which survey data is available.

Panel B of Table II shows that this is the case. There is a strong negative relationship

between µ̃d or µ̃r and the expectations error. When experienced growth is high, return

expectations are predictably too optimistic. Since the prediction horizon is one year rather

than the one-quarter horizon in the return prediction regressions in Table I, the coefficient

that we would expect, if these relations are stable across samples, is about four times the

coefficient in Table I. The results in Panel B show that this is approximately true.

II.D. Subjective Long-Run Growth Expectations

In the last part of our empirical analysis, we look at proxies for subjective payout growth

expectations. The surveys that provide subjective return expectations unfortunately do not

elicit respondents’ views about future cash-flow growth. For this reason, we follow Sharpe
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TABLE II
Survey Return Expectations and Experienced Real Growth

In Panel A, the dependent variable is the average subjective expected stock return of survey respondents
in quarter t minus the one-year treasury yield at the end of quarter t − 1, which we regress on experienced
real payout growth or experienced real returns leading up to and including quarter t − 1. Lagged one-year
return refers to the return of the CRSP value-weighted index over the four quarters t − 4 to t − 1. In Panel
B, the dependent variable is the expectation error, i.e., the realized return on the CRSP value-weighted index
during quarters t+ 1 to t+ 4 minus the subjective expected return of survey respondents in quarter t. We use
expectations data up to and including quarter 2016:4. Newey-West standard errors are reported in parentheses
(12 lags in Panel A; 6 lags in Panel B).

(1) (2) (3) (4) (5)

Panel A: Subjective expected excess returns

Experienced real payout growth 0.31 0.37
(0.97) (0.91)

Experienced real returns 0.86 0.38
(0.63) (0.76)

Lagged one-year return 0.03 0.03 0.03
(0.01) (0.01) (0.01)

Constant 0.05 0.05 0.05 0.04 0.05
(0.01) (0.00) (0.01) (0.01) (0.01)

Observations 125 125 125 125 125
Adj. R2 -0.004 0.075 0.073 0.031 0.073

Panel B: Expectation error: Realized - subj. expected

Experienced real payout growth -12.34 -12.59
(6.75) (6.80)

Experienced real returns -14.27 -15.47
(6.48) (7.08)

Lagged one-year return -0.10 -0.12 0.07
(0.14) (0.15) (0.13)

Constant 0.12 0.03 0.14 0.25 0.27
(0.06) (0.03) (0.06) (0.09) (0.10)

Observations 125 125 125 125 125
Adj. R2 0.055 0.002 0.060 0.106 0.102
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(2002) and use financial analysts’ long-term earnings growth forecasts aggregated at the

market level as a proxy for investors’ subjective payout growth expectations.6 We start with

analysts’ monthly median forecasts of long-run earnings per-share (EPS) growth. According

to I/B/E/S, they represent forecasts over a horizon of between three to five years.

We aggregate across stocks by forming a value-weighted average each month, using

current-year forecasted total earnings for each stock as weights. We then average the monthly

aggregated growth rate forecasts within each quarter, which yields a time series from quarter

1984:3 to 2016:4. We construct expected long-term real EPS growth, expressed in terms

of per-quarter growth rates, by subtracting CPI inflation expectations from the Survey of

Professional Forecasters issued in the quarter prior to the issuance of the analyst forecast.7

Appendix A.3 provides more detail on the procedure to construct these measures.

According to the constant-gain updating scheme in (2), subjective long-term growth ex-

pectations should be positively related to experienced payout growth. This is what we find.

Figure II provides a visual impression of the positive co-movement of the two series. Column

(1) in Table III shows the results of regressions of analysts’ long-term expectations in quarter

t on experienced payout growth constructed from realized growth rates up to quarter t − 1.

We find that there is a positive relationship with a coefficient of 0.30 that is statistically

significant at conventional levels (s.e. 0.15).

While the results in column (1) are qualitatively consistent with constant-gain learn-

ing from payout growth, the coefficient estimate is lower than predicted. According to the

constant-gain updating scheme in (2), subjective long-term growth rate expectations should

be equal to experienced payout growth and hence the coefficient should be unity. As we

will show below, in our full asset-pricing model, where dividends have some tendency to

mean-revert, we actually expect a coefficient slightly lower than unity (about 0.89 with µ̃d as

6. La Porta (1996) and Bordalo, Gennaioli, La Porta, and Shleifer (2017) also use analyst long-term
earnings growth expectations to measure investor expectations of future stock fundamentals, but they focus
on a cross-sectional analysis while here we analyze time-series relationships at the aggregate level.

7. We use the SPF forecast from the prior quarter to make sure analysts have access to this information.
Stock analysts are presumably not experts in inflation forecasting and rely on other forecasters for macro
forecast inputs.
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TABLE III
Long-Run Growth Expectations and Experienced Real Growth

The dependent variable is an aggregate of I/B/E/S analysts long-term earnings-per-share (EPS) growth
forecast, deflated using CPI inflation expectations from the Survey of Professional forecasters from the quarter
prior to the EPS forecast date. Each month, we collect the median forecasts for each individual stock, form a
value-weighted average across stocks using each stock’s monthly median forecasts of current fiscal year earnings
as the weight, with the sample restricted to stocks with positive current year forecasted earnings. We then
average the resulting monthly time-series observations within calendar quarters 1984:3 to 2016:4. We regress
the dependent variable measured in quarter t, and expressed as a per-quarter growth rate, on experienced real
payout growth or experienced real returns leading up to and including quarter t−1. The one-year EPS forecast
is the expected growth rate from current fiscal year to next fiscal year earnings, averaged across stocks in the
same way as the long-term forecast. Lagged one-year return refers to the return of the CRSP value-weighted
index over the four quarters t− 4 to t− 1. Newey-West standard errors are reported in parentheses (24 lags).

(1) (2) (3) (4) (5) (6)

Experienced real payout growth 0.30 0.61 0.62
(0.15) (0.18) (0.20)

Experienced real returns 0.55 0.52 0.64
(0.14) (0.13) (0.16)

One-year EPS growth forecast 0.28 0.29 0.05 0.08
(0.09) (0.11) (0.05) (0.05)

Lagged one-year return -0.00 -0.01
(0.00) (0.00)

Constant 0.02 0.02 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.00) (0.00)

Observations 130 130 130 130 130 130
Adjusted R2 0.077 0.308 0.312 0.355 0.362 0.452
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Figure II
Experienced real payout growth and analysts’ long-run earnings growth expectations

The figure shows the value-weighted I/B/E/S long-term earnings-per-share growth forecast,
value-weighted across stocks based on forecasted current year total earnings.

predictor and 0.68 with µ̃r), but still substantially higher than the point estimate in column

(1). There is one complication, however, in mapping the constant-gain learning scheme to

the data. The setup in (1) and (2) is based on growth rates that are perceived as IID. In con-

trast, empirically, aggregate earnings changes have a sizable transitory component at short

horizons of one to four quarters that is predictable by past earnings (Kothari, Lewellen, and

Warner 2006) and by stock returns in recent quarters (Sadka and Sadka 2009). Analysts’

aggregate short-term earnings forecasts vary over time to capture such short-horizon earn-

ings growth predictability (Choi, Kalay, and Sadka 2016). If analysts’ long-term forecasts,

gLTt , are also influenced to some extent by such short-run predictability that is absent from

our constant-gain learning framework, this could distort our estimates.8 To be more precise,

8. Whether long-term forecasts are influenced by these short-term components is an open question. Ac-
cording to I/B/E/S, analysts should report long-term forecasts that represent expected growth “over the
company’s next full business cycle” (Thomson Reuters 2009), but it is not clear to what extent analysts are
actually implementing this guidance.
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suppose

gLTt = (1− β)g∞t + βgSTt , (9)

where g∞t is the unobserved long-run forecast undistorted by short-run expectations, which

receives weight 1−β, and gSTt is the short-run forecast, which receives weight β. Our constant-

gain learning framework suggests g∞t = µ̃d,t, but if gSTt is correlated with µ̃d,t, a regression

of gLTt on µ̃d,t will yield biased estimates.

For this reason, column (2) in Table III adds the aggregate one-year forecast as a control

variable to the regression. The one-year forecast represents the expected real growth rate from

current fiscal year to next fiscal year EPS, aggregated in the same way as we described for

long-term growth expectations, and similarly expressed in terms of per-quarter growth rates.

By controlling for the one-year forecast, we ask whether experienced payout growth explains

long-term growth expectations holding fixed the potentially distorting short-term forecast

components. In this specification, we obtain a much higher coefficient of 0.61 (s.e. 0.18) for

the experienced payout growth variable and the one-year forecast obtains a coefficient of 0.28

(s.e. 0.09) which suggests that the long-term forecast puts a plausible weight of around one

quarter on the short-term forecast. The implied coefficient in a regression of g∞t on µ̃d,t is

0.61/(1 − 0.28) = 0.85, which suggests that the results are very close to the predictions of

the constant-gain learning model once one controls for the distorting effect of short-horizon

predictability.

Column (3) adds the most recent one-year lagged return to the regression, which has

little effect. Columns (4) to (6) repeat the analysis with experienced real returns in place

of experienced payout growth and the results are very similar. In column (5), we obtain

an implied coefficient in a regression of g∞t on µ̃r,t of 0.52/(1 − 0.05) = 0.64. Overall, the

evidence on subjective expectations of growth in stock market fundamentals is broadly in

line with the predictions of the constant-gain learning scheme.
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III. Asset Pricing Model

We now develop these ideas more fully in a representative-agent endowment economy.

III.A. Learning with Fading Memory

Endowment growth follows an IID law of motion

∆ct+1 = µ+ σεt+1, (10)

where {εt} is a series of IID standard normal shocks. The agent knows that ∆ct+1 is IID,

and she also knows σ, but not µ. The agent relies on the history of past endowment growth

realizations, Ht ≡ {∆ct,∆ct−1, . . . }, to form an estimate of µ.

We assume that the agent learns with constant gain and hence fading memory. Unlike in

standard constant-gain learning models, however, we retain the modeling of the full posterior

distribution—and hence the agent’s subjective uncertainty—of the Bayesian approach. To

do so, we use a weighted likelihood that has been used in the theoretical biology literature to

model memory decay in organisms (Mangel 1990). An agent who has seen an infinite history

of observations on ∆c, but with fading memory, forms a posterior

p(µ|Ht) ∝ p(µ)
∞∏
j=0

[
exp

(
−(∆ct−j − µ)2

2σ2

)](1−ν)j

, (11)

where 1 − ν is a positive number close to one (ν = 0 is the standard full memory Bayesian

case where observations are equally weighted). Thus, (1−ν)j represents a (geometric) weight

on each observation. This weighting scheme assigns smaller weights the more the observation

recedes into the past. With a prior

µ ∼ N (µ0, σ
2
0) (12)
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held before seeing any data we then obtain the posterior

µ|Ht ∼ N

(
σ2

0

νσ2 + σ2
0

µ̃t +
νσ2

νσ2 + σ2
0

µ0,

(
1

σ2
0

+
1

νσ2

)−1
)
, (13)

where

µ̃t = ν
∞∑
j=0

(1− ν)j∆ct−j . (14)

The variance of the posterior is the same as if the agent had observed, and retained fully

in memory with equal weights, S ≡ 1/ν realized growth rate observations. In our case, the

actual number of observed realizations is infinite, but the loss of memory implies that the

effective sample size is finite and equal to S.

Due to the limited effective sample size, the prior beliefs retain influence on the posterior.

For now, however, we work with an uninformative prior (σ0 →∞) and hence the posterior

µ|Ht ∼ N (µ̃t, νσ
2). (15)

We will return to the informative prior case when we consider versions of the model that

generalize our baseline assumption about the elasticity of intertemporal substitution. With

this uninformative prior, the posterior mean is updated recursively as

µ̃t = µ̃t−1 + ν(∆ct − µ̃t−1). (16)

Thus, the µ̃t resulting from this weighted-likelihood approach with an uninformative prior is

identical to the perceived µ that one obtains from the constant-gain updating scheme (2) with

gain ν. However, in contrast to standard constant-gain learning specifications in macroeco-

nomics that focus purely on the first moment, we obtain a full posterior distribution. For the

purpose of asset pricing, the subjective uncertainty implied by the posterior distribution can

be crucial.
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We further get the predictive distribution

∆ct+j |Ht ∼ N
(
µ̃t, (1 + ν)σ2

)
, j = 1, 2, ..., (17)

where the variance of the predictive distribution reflects not only the uncertainty due to future

εt+j shocks, but also the uncertainty about µ. We denote expectations under the predictive

distribution with Ẽt[·]. To understand better how the stochastic nature of the endowment

process looks like from the agent’s subjective viewpoint, we can rewrite (16) as

µ̃t+1 = µ̃t + νσ
√

1 + νε̃t+1, where ε̃t+1 =
∆ct+1 − µ̃t
σ
√

1 + ν
, (18)

and ε̃t+1 is N (0, 1) distributed and hence unpredictable under the agent’s time-t predictive

distribution.

Under Bayesian learning with full memory, the agent’s information would be represented

by a filtration and posterior beliefs would follow a martingale under this filtration. With

fading memory, however, the posterior in periods t+j > t will be formed based on information

that is different, but not more informative about µ than the information available to the

agent at time t. Hence, the information structure is not a filtration. For this reason, the

time-t agent anticipates that µ̃t+j in the future may vary from period to period, but she

knows that this variation will be stationary and there is no convergence to µ in the long run.

Consistent with stationarity, the time-t agent perceives future increments ε̃t+j , j = 1, 2, ... in

(18) as negatively serially correlated (see Appendix C for more details) and not as martingale

differences.9 When we calculate asset prices in this model, we therefore cannot directly rely on

certain laws like the law of iterated expectations (LIE) that require a filtration or results that

presume martingale posteriors. This requires special care in evaluating valuation equations.

9. At time t, the agent however cannot make use of this serial correlation by using ε̃t to forecast ε̃t+1,
because ε̃t is not observable to the agent. To figure it out, the agent would need full memory to compare µ̃t
with µ̃t−1, but under constant-gain learning this is not possible. As a consequence, Ẽt[µ̃t+1] = µ̃t remains the
agent’s posterior mean.
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III.B. Valuation

The valuation approach we use throughout the paper is a “resale” valuation approach. To

illustrate, consider the valuation at date t of a claim to consumption at date t + 2. Under

resale valuation, the agent at t prices the asset under the time-t predictive distribution of the

stochastically discounted t+ 1 asset value,

PR,t = Ẽt
[
Mt+1|tẼt+1

[
Mt+2|t+1Ct+2

]]
, (19)

where we use Mt+j|t to denote the one-period stochastic discount factor (SDF) from t+ j− 1

to t+ j that applies given the agent’s predictive distribution at t.

An alternative way of valuing this claim would be a “buy-and-hold” valuation, where

the agent values the asset based on the stochastically discounted payoff under the time-t

predictive distribution

PH,t = Ẽt[Mt+1|tMt+2|tCt+2], (20)

In a full-memory Bayesian setting, the LIE would apply in the valuation equation of PR,t

with the result that PR,t = PH,t, but with fading memory the information structure is not a

filtration and the LIE typically fails to hold.10 As a consequence PR,t 6= PH,t.

The valuation discrepancy between the two valuation approaches arises because the agent

at t and at t+1 sees the statistical properties of the shock ε̃t+2 differently. The buy-and-hold

valuation incorporates the negative serial correlation of ε̃t+1 and ε̃t+2. In contrast, the resale

valuation at t is based on the anticipation that the value of the asset at date t + 1 will be

determined by an agent—or a future self of the agent—who perceives ε̃t+2 as unpredictable.

Thus, the resale valuation is based on a chain of valuations that each views the one-period

ahead ε̃ shock as unpredictable.

We work with the resale valuation approach below, for two reasons. First, the resale

10. For subjective expectations of linear functions of ∆c, we still get an LIE, e.g., ẼtẼt+1∆ct+2 = Ẽt∆ct+2,
but the LIE does not hold for nonlinear functions of ∆c, e.g., ẼtẼt+1[exp(a+ b∆ct+2)] 6= Ẽt[exp(a+ b∆ct+2)].
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valuation is time-consistent. In contrast, if the asset was priced at time t at the buy-and-

hold valuation and the anticipation of a predictable ε̃t+2, and time moves on to t + 1, the

agent would, after memory loss, suddenly find ε̃t+2 unpredictable. Thus, the agent would

then agree with a valuation based on an unpredictable ε̃t+2, but this is not consistent with

the buy-and-hold valuation at t. Second, the resale valuation also fits with the underlying

motivation of our model as an approximation for experience-based learning in an overlapping

generations model in which actual resale would occur when generations turn over.

III.C. Kalman Filtering Interpretation

The updating scheme in (16) is reminiscent of optimal filtering in the case of a latent stochastic

trend. Indeed, if the agent perceived µ to follow a random walk—i.e., as µt = µt−1 +ζt, where

ζ is an IID-normal shock—rather than a constant as in (10), application of the steady-state

Kalman filter yields exactly the same posterior distribution as in (15). With appropriate

choice of the volatility of the ζ shocks, and as long as the actual law of motion is still

(10) with constant µ, the dynamics of the posterior beliefs would be the same as in our

fading memory model (see Appendix D for more details). The predictive distribution of one-

period ahead endowment growth, and, as a consequence, asset prices under resale valuation

would be the same as well.11 This is useful for technical purposes because it allows us

to map our framework into one in which the information structure is a filtration and it is

Markovian. Through this mapping, we can use results from Hansen and Scheinkman (2012)

to determine parameter restrictions that are sufficient for existence of equilibrium. While

this reinterpretation is convenient for technical reasons, optimal Kalman filtering does not

explain the micro-evidence on learning from experience that motivates our fading memory

approach. For this reason, we stick to the fading memory interpretation in the discussion of

our model.

11. However, for the asset-pricing predictions to remain the same, it is crucial that (10), with constant µ,
remains the actual law of motion. As we will show below, the time-varying wedge µ̃t − µ between subjective
and objective beliefs plays an important role in generating volatile asset prices and predictable excess returns.
Without this wedge, there would be no return predictability.
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III.D. Stochastic Discount Factor

We assume that the representative agent evaluates payoffs under recursive utility as in Epstein

and Zin (1989), with value function

Vt =

[
(1− δ)C

1− 1
ψ

t + δẼt[V 1−γ
t+1 ]

1− 1
ψ

1−γ

] 1

1− 1
ψ

, (21)

where δ denotes the time discount factor, γ relative risk aversion for static gambles and ψ the

elasticity of intertemporal substitution (EIS). Note that the agent evaluates the continuation

value under her subjective expectations Ẽt[.]. We apply the same resale valuation approach

that we use for asset pricing to this continuation value as well.

In our baseline model, we set ψ = 1. Iterating on the value function as in Hansen, Heaton,

and Li (2008), but here under the agent’s predictive distribution, we then obtain the log SDF

that prices assets under the agent’s subjective beliefs,

mt+1|t = µ̃m − µ̃t − ξσε̃t+1, (22)

with

µ̃m = log δ − 1

2
(1− γ)2(νUv + 1)2(1 + ν)σ2, (23)

ξ = [1− (1− γ)(νUv + 1)]
√

1 + ν, (24)

Uv =
δ

1− δ
. (25)

Details are in Appendix E.1. This SDF implies the risk-free rate

rf,t = −µ̃m + µ̃t −
1

2
ξ2σ2. (26)
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III.E. Pricing the Consumption Claim

We can now solve for the consumption-wealth ratio, ζ ≡ Wt/Ct, and the subjective risk

premium for the consumption claim. Using (18), we can express the log of the return on the

consumption claim as

rw,t+1 = µ̃t +
√

1 + νσε̃t+1 + log

(
ζ

ζ − 1

)
. (27)

Applying the subjective pricing equation Ẽt[Mt+1|tRW,t+1] = 1, we can solve for the wealth-

consumption ratio

ζ =
1

1− δ
. (28)

Thus, as in the rational expectations case, ψ = 1 implies a constant and finite consumption-

wealth ratio. In the posterior distribution in (15), extremely large values of µ have greater

than zero probability. The agent therefore also assigns some probability mass to extremely

large future µ̃t+j . However, since ψ = 1 implies that rf,t+j moves one-for-one with µ̃t+j , the

effect of high subjectively expected growth rates on the value of the consumption claim is

exactly offset by a high future risk-free rate. As a consequence, the wealth-consumption ratio

is constant and finite.

Evaluating the subjective pricing equation for RW,t+1 again, now using the fact that ζ is

constant, we can solve for the subjective risk premium of the consumption claim

log Ẽt[Rw,t+1]− rf,t = ξ
√

1 + νσ2, (29)

which is constant over time. In contrast, the objective risk premium under the econometri-

cian’s measure, generated by data sampled from this economy, is time-varying: taking the

objective and subjective expectations and variance of (27), we can calculate the wedge be-

tween subjective and objective expectations, and combining with (29), we obtain the objective
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risk premium

logEt[Rw,t+1]− rf,t = ξ
√

1 + νσ2 − 1

2
νσ2 + µ− µ̃t, (30)

where the time-varying wedge µ − µ̃t reflects the disagreement between the econometrician

and the agent about the conditional expectation of rw,t+1. The wedge is observable to the

econometrician who knows µ, but since Ẽt[µ] = µ̃t the wedge is zero from the viewpoint of

the agent at time t.

III.F. Pricing the Dividend Claim

We now turn to pricing the dividend claim, which is the main focus of our analysis. Dividends

in our model are a levered claim to the endowment. We assume that dividends and endowment

are cointegrated. Specifically, we assume

∆dt+1 = λ∆ct+1 − α(dt − ct − µdc) + σdηt+1, α > 0, (31)

similar to Bansal, Gallant, and Tauchen (2007). We assume that µdc, λ, and α are known to

the agent. The agent’s learning problem is focused on the unknown µ.

Cointegration is economically realistic, and it is of particular importance in a model like

ours with subjective growth rate uncertainty. Since the price of a dividend claim is convex

in dividend growth rates, the subjective growth rate uncertainty in this model could cause

the price to be infinite. For the consumption claim this issue was resolved by setting ψ = 1.

However, leverage magnifies the convexity effect and without sufficiently strong cointegration,

the price of the equity claim explodes even if the consumption claim has a finite price. In

our quantitative implementation, we will assume that α is very small and so dividends and

consumption can drift away from each other quite far, but we keep α sufficiently big to yield

a finite price-dividend ratio with empirically reasonable moments. Appendix E.3 provides

more detail.
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The price of the n-period dividend strip is

Pnt ≡ Ẽt[Mt+1|tẼt+1[· · · Ẽt+n−1[Mt+n|t+n−1Dt+n]]]. (32)

As we discussed earlier, when we evaluate these expectations, we do so by iterating backwards

from the payoff at t+n, evaluating one conditional expectation at a time without relying on

the LIE. Taking logs and evaluating (32), we obtain

pnt − dt = [1− (1− α)n] (ct − dt + µdc +
λ− 1

α
µ̃t) + nµ̃m +

1

2
(Anσ

2 +Bnσ
2
d), (33)

where, for very large n, approximately

An ≈ n
[√

1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

, (34)

and Bn, which does not grow with n, becomes very small relative to An (see Appendix E.3).

The analytical solution for dividend strip prices is useful for understanding the behavior

of subjective and objective risk premia in this model. Consider the one-period return on the

“infinite-horizon” dividend strip

R∞t+1 ≡ lim
n→∞

Pn−1
t+1 /P

n
t . (35)

As we show in Appendix E.3, we can use equation (33) to find the one-period subjective risk

premium for this claim

log Ẽt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2. (36)

For γ ≥ 1, ξ is a positive constant. We observe from the above that lowering α raises

the subjective risk premium because it enhances the persistence of the leverage effect by

weakening the forces of cointegration. The subjective risk premium is positively related to ν
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because higher ν implies a smaller effective sample size used to estimate µ and hence higher

subjective uncertainty about µ.

While the subjective risk premium is constant, the objective risk premium is

logEt[R∞t+1]−rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2−1

2
ν

(
1 + ν

λ− 1

α

)2

σ2+

(
1 + ν

λ− 1

α

)
(µ−µ̃t),

(37)

and hence time-varying with the wedge µ̃t − µ: the more optimistic the agent relative to

the econometrician, the lower the objective expected excess return. Thus, learning induces

return predictability. And unlike Bayesian learning with full memory as in Collin-Dufresne,

Johannes, and Lochstoer (2016) where return predictability dies out in the long-run, learning

with constant gain means that the learning effects (and hence return predictability) are

perpetual.

As equation (37) shows, leverage λ > 1 magnifies the time-variation in the objective

risk premium. With λ = 1, or for a consumption strip, all variation would come purely

from excess variation in the risk-free rate: objective expected returns on the consumption

strip are constant because the ratio of its price to consumption is constant and the objective

expected growth rate of ∆c is constant, while the risk-free rate rises with µ̃t. With leverage,

however, the price of a dividend claim rises with µ̃t, which produces additional variation in

the objective risk premium.

Like the long-horizon claim, shorter-horizon claims also have a constant subjective risk

premium. For example, a one-period claim with return R1
t+1 ≡ Dt+1/P

1
t , has the constant

subjective risk premium

log Ẽt[R1
t+1]− rf,t = λξ

√
1 + νσ2. (38)

The ex-dividend price of the equity claim, i.e., the claim to the entire stream of dividends,

is simply the sum of prices of dividend strips

Pt =
∞∑
n=1

Pnt . (39)
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We compute the sum in (39) numerically using the analytical solution for dividend strips.

Details are in Appendix E.4.

Our result that the subjective risk premium is constant for short and long-maturity divi-

dend strips does not imply that the subjective risk premium for the whole stream of dividends

is constant. We solve for the subjective risk premium of the equity claim numerically using

methods from Pohl, Schmedders, and Wilms (2018) (see Appendix E.4). As we report below,

we find a slightly positive relationship between µ̃t and the subjective equity risk premium.

This arises from the fact that the contribution of long-horizon claims to the overall value of

the portfolio of strips gets bigger when µ̃t is higher: due to exponentiating, the effect of a

rise of µ̃t on long-horizon equity is bigger than on short-horizon equity. As a consequence,

the claim on the whole stream behaves more like long-horizon equity when µ̃t is high and is

subjectively priced more like long-horizon equity, i.e., with a higher risk premium if α < ν.

III.G. Solving the Model with ψ > 1 and an Informative Prior

When ψ 6= 1, and the prior is diffuse, the consumption-wealth ratio is no longer finite. For

example, if ψ > 1, the effect of high subjectively expected growth rates on the value of the

consumption claim is no longer fully offset by a high future risk-free rate, which causes the

consumption-wealth to explode. Earlier work has resolved this through truncation of the

state space (Collin-Dufresne, Johannes, and Lochstoer 2017) or limiting the time horizon

over which growth is uncertain (Pástor and Veronesi 2003; Pástor and Veronesi 2006). We

take a different approach by endowing the agent with an informative prior. In our fading

memory model, this approach is effective in preventing the explosion of the consumption-

wealth ratio because future agents never gain more precise information about µ than the

current agent has. As a consequence, the weight on the prior does not decay and the current

agent anticipates that the posterior means of the agents pricing the asset at times in the

future will always have a similarly strong tilt towards the prior mean.

Our approach is similar in spirit to the state-space truncation approach—both methods
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effectively pull the perceived distribution of future posterior means towards economically

plausible growth rates—but it is far more tractable in our setting. We center the prior

distribution at the true mean µ, but this is not essential. Since we work with high prior

variance, the prior will remain almost uninformative. Therefore, setting the prior mean to

any value in an economically plausible neighborhood around µ would deliver similar results.

Given the prior in (12) with µ0 = µ, we obtain the posterior

µ|Ht ∼ N

(
φµ̃t + (1− φ)µ,

(
1

σ2
0

+
1

νσ2

)−1
)
, where φ ≡ σ2

0

νσ2 + σ2
0

. (40)

The perceived consumption growth can be represented as

∆ct+1 = φµ̃t + (1− φ)µ+
√

1 + φνσε̃t+1, (41)

where ε̃t+1 is N (0, 1) distributed under the agent’s time-t predictive distribution. With

an informative prior we have φ < 1 and so the volatility of the subjectively unexpected

endowment growth is lower than in the diffuse prior case where φ = 1. We solve this version

of the model with log-linearization. Details, including parameter restrictions sufficient for

existence of equilibrium, are provided in Appendix F.

IV. Calibration and Evaluation

Table IV summarizes the parameter values we use in our baseline quantitative analysis. We fix

the gain parameter ν at the value that Malmendier and Nagel (2016) estimated from survey

data on inflation expectations. For the endowment process and preferences, we set most

parameters to the same values as in Bansal, Kiku, and Yaron (2012) and Collin-Dufresne,

Johannes, and Lochstoer (2017).

We set σd to a relatively low value of 1% quarterly. At this value, dividend volatility in

the model will be smaller than in the data. However, it will allow us to roughly match the
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volatility of µ̃d in the data, which is more important for our purposes. We cannot match both

at the same time because in our model ∆d is IID whereas in the data ∆d has substantial

negative autocorrelation, which implies that a lot of this dividend growth volatility cancels

out when we form the long-run weighted average µ̃d. For this reason, it makes more sense to

calibrate our IID dividend process to the volatility of µ̃d, which reflects permanent shocks,

rather than the volatility of ∆d in the data, which is influenced by a substantial transitory

component.

In our baseline specification, we set ψ = 1, but we also report some results for the ψ = 1.5

case. We choose the remaining parameters γ and α to get a realistic equity premium and

equity volatility. We work with a relatively low risk aversion of γ = 4. The value α = 0.001

satisfies the condition required for a finite price of the dividend claim in Appendix E.3 and it

implies dividends can wander quite far away from consumption (but not as far as in models

without cointegration such as Bansal, Kiku, and Yaron (2012)).

IV.A. Unconditional moments

We simulate the model at a quarterly frequency. Table V reports the annualized population

moments estimated from an extremely long sample simulated from the model. We also show

empirical moments for the 1927 to 2016 period for comparison.

As we anticipated, the volatility of ∆d in the model is lower than in the data, but the

volatility of µ̃d is close to the data, and actually even a bit higher. This reinforces our earlier

point that much of the volatility of ∆d in the data is due to transitory components.

In terms of unconditional asset pricing moments, the model produces a high equity pre-

mium (7.16%) and Sharpe Ratio (0.54) that are quite close to the empirical estimates in the

first column. Return volatility and the volatility of the log price-dividend ratio are lower

than in the data. The version of the model with ψ = 1.5 in the third column gets somewhat

closer to the empirical values.
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TABLE IV
Baseline Model Parameters

This table reports the parameters values we use in the baseline calibration of our model at a quarterly
frequency. The gain parameter ν is fixed at the value that Malmendier and Nagel (2016) estimated from
survey data on inflation expectations. For endowment process parameters and preferences, we set most at the
same values as in Bansal, Kiku, and Yaron (2012) and Collin-Dufresne, Johannes, and Lochstoer (2017).

Parameter Symbol Value Source

Belief updating

Gain ν 0.018 MN (2016) (survey data)

Endowment process

Leverage ratio λ 3 CJL (2017)
Dividend cointegration parameter α 0.001
Mean consumption growth µ 0.45% CJL (2017)
Consumption growth volatility σ 1.35% CJL (2017)
Dividend growth volatility σd 1%

Preferences

Risk aversion γ 4
EIS ψ 1
Time discount factor δ 0.9967 BKY (2012)
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TABLE V
Unconditional moments

The second column in this table presents the model population moments obtained as average across 1,000
simulations of the model for 50,000 periods plus a 2,000-period burn-in period to compute µ̃, µ̃d and µ̃r at the
start of each sample, using a diffuse prior (φ = 1) and ψ = 1. The third column shows results for the model
with ψ = 1.5 and an informative prior with φ = 0.99. The first column shows the corresponding empirical
moments from the data for the 1927 to 2016 period. For the empirical versions of µ̃d and µ̃r, we use data
from 1871 to 1926 as pre-sample information to calculate their values at the start of the sample in 1927.
Consumption growth is calculated from quarterly real per-capita consumption expenditure on nondurables
and services in chained 2012 dollars from NIPA for 1947-2016, annual NIPA data on nondurables and services
expenditure from 1929 to 1947, and annual real per-capita consumption expenditure from Barro and Ursua
(2008) for 1926 to 1929. In both columns, returns are annualized as follows: The means of risky returns are
multiplied by four and standard deviation multiplied by two. For the risk-free rate, µ̃, and µ̃d we multiply
quarterly means and standard deviations by four. We estimate the empirical moments of ∆c from four-quarter
changes of quarterly log nondurables and services consumption and those of ∆d from four-quarter changes
in the log of repurchase-adjusted dividends on the CRSP value-weighted index. The simulated statistics for
p− d use a four-quarter trailing sum of dividends in the calculation of p− d, just like in the empirical version
of p− d.

Data Model Model
1927-2016 ψ = 1, φ = 1 ψ = 1.5, φ = 0.99

E(∆c) 1.84 1.80 1.80
σ(∆c) 2.72 2.70 2.70
E(∆d) 2.38 1.80 1.80
σ(∆d) 13.31 8.35 8.35

σ(µ̃) - 0.51 0.51
ρ(µ̃) - 0.98 0.98
σ(µ̃d) 1.32 1.55 1.55
ρ(µ̃d) 0.97 0.98 0.98

corr(µ̃, µ̃d) - 0.96 0.96
corr(µ̃, µ̃r) - 0.85 0.77

E(Rm −Rf ) 8.11 7.16 7.75
σ(Rm −Rf ) 22.41 13.31 16.35
SR(Rm −Rf ) 0.36 0.54 0.47

E(p− d) 3.40 2.81 2.98
σ(p− d) 0.44 0.14 0.22
ρ(p− d) 0.97 0.91 0.94

E(rf ) 0.67 1.64 0.61
σ(rf ) 2.47 0.51 0.34
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The model also produces a low subjective real risk-free rate with low volatility.12 The

volatility of rf in the data (2.47%) is higher than in the model (0.51%), but one should

keep in mind that the inflation expectations are estimated with error and this measurement

error contributes at least some of the empirically observed volatility in rf . The low volatility

of rf is a virtue of the model (which is why Campbell and Cochrane (1999), for example,

specifically reverse-engineer their model to produce a constant risk-free rate).

Overall, the model provides a reasonably good fit to standard unconditional asset pricing

moments. However, the most interesting predictions of the model concern time-variation in

objective and subjective conditional moments, which we turn to next.

IV.B. Predictability of Excess Returns

We now evaluate time-variation in the objective equity premium. In our model, this time-

variation is induced by subjective belief dynamics rather than time-varying risk aversion or

time-varying objective risk that generate time-varying risk premia in rational expectations

models and this mechanism leads us to construct new return predictors µ̃d and µ̃r.

Table VI presents the results from predictive regressions of log excess returns on the equity

claim in data simulated from the model. The estimates in this table are the model-implied

counterpart to the empirical predictive regression results in Table I. The first block of rows

presents mean coefficients and adj. R2 from regressions with µ̃d as predictor variable. In

column (1), the prediction horizon is one quarter, as in Table I. We find coefficients on

µ̃d that are about half as big as those we found in the empirical data including the Great

Depression, but quite close to the estimate from the post-WWII sample. Since the volatility

of µ̃d is somewhat higher in the calibrated model than in the full empirical sample, this means

that the variation in the objective risk premium in our model is at least roughly similar to

12. For the purpose of this moments comparison, we calculate the subjective real risk-free rate in the data
using expected inflation expectation an AR(1) constant-gain learning inflation forecast with gain ν = 0.018.
Malmendier and Nagel (2016) show that this AR(1) constant-gain learning forecast fits household inflation
expectations from the Michigan Survey of Consumers well (and we can construct it in the decades before
survey data becomes available).
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TABLE VI
Predictive Regressions in Simulated Data

This table reports the mean return predictability regression coefficients and adj. R2 across 10,000 simulations
of the model for 360 quarters plus a 400-quarter burn-in period to compute µ̃d and µ̃r at the start of each
simulated sample. The dependent variable is the log excess return on the equity claim. The predictors µ̃d
and µ̃r are constructed as the exponentially-weighted average of experienced payout growth and experienced
log returns, respectively, with gain parameter ν = 0.018. Each block of rows represents regressions with a
different (single) predictor variable. Columns (1) to (3) show results using a diffuse prior (φ = 1) and ψ = 1.
Columns (4) to (6) show the corresponding results for ψ = 1.5 and an informative prior with φ = 0.99.

ψ = 1, φ = 1 ψ = 1.5, φ = 0.99
1Q 1Y 5Y 1Q 1Y 5Y
(1) (2) (3) (4) (5) (6)

µ̃d -2.40 -9.24 -38.37 -3.07 -11.78 -48.84
R2
adj 0.01 0.05 0.21 0.01 0.05 0.22

µ̃r -1.51 -5.79 -23.77 -1.48 -5.64 -23.12
R2
adj 0.01 0.03 0.15 0.01 0.03 0.14

p− d -0.06 -0.22 -0.93 -0.05 -0.20 -0.82
R2
adj 0.01 0.04 0.18 0.01 0.05 0.21

the variation in the data. Similar comments apply to the estimates with µ̃r as predictor

presented in the second block of rows.

Columns (2) and (3) show the regression coefficients when returns are measured over

longer horizons of one and five years, respectively. These estimate the persistence in the

expected returns in the model. For example, the coefficients in column (3) where the pre-

diction horizon is 20 times longer than in column (1) are only slightly smaller than 20 times

the coefficients in column (1). On this dimension, the model also fits well with the empirical

data. We didn’t explicitly report the empirical predictive regressions for horizons beyond one

quarter, but Figure I earlier showed how predicted 5-year returns line up well with realized

5-year returns.

The bottom block of rows shows regressions with p − d as predictor. The regression

coefficients of around −0.06 are somewhat larger than in the empirical data, but certainly of

the right order of magnitude.

Columns (4) to (6) repeat this analysis with ψ = 1.5 and an informative prior with
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TABLE VII
Dynamics of Subjective Expectations of Excess Returns in Simulated Data

This table reports the mean estimates from regressing subjective expected excess returns and expectation
errors on µ̃d, µ̃r, and 1-year lagged log returns from 10,000 simulations of 360 quarters with a 400-quarter
burn-in period, using the model with a diffuse prior (φ = 1) and ψ = 1. In Panel A, the dependent variable
is (Ẽt[Rm,t+1])4 − (Rf,t)

4, which we regress on experienced real returns leading up to and including quarter
t, and/or lagged one-year log returns over the four quarters t− 3 to t. In Panel B, the dependent variable is
the expectation error, defined as

∏4
i=1Rm,t+i − (Ẽt[Rm,t+1])4.

(1) (2) (3) (4) (5)

Panel A: Subjective expected excess returns

µ̃d 0.83 0.83
µ̃r 0.60 0.62
rt−3,t 0.01 0.00 0.00

R2
adj 0.93 0.08 0.93 0.83 0.83

Panel B: Expectation error: Realized - subj. expected

µ̃d -10.75 -11.05
µ̃r -6.80 -7.24
rt−3,t -0.06 0.02 0.03

R2
adj 0.05 0.01 0.06 0.04 0.04

φ = 0.99. Return predictability with µ̃d gets somewhat stronger and closer to the empirical

magnitudes that we found in the full sample in Table I. But overall, the effects of changing

the EIS are quite small.

IV.C. Predictability of Subjective Expectations Errors

To replicate the subjective expectations error regressions that we ran on the empirical data,

we use the model-implied subjective equity premium as dependent variable, calculated as

explained in Section III.F. Table VII is the simulated counterpart to the empirical results

in Table II. Panel A shows that the model-generated data yields a relationship between

subjective expected excess returns and experienced returns that is weakly positive and quan-

titatively similar to the empirical estimates. The empirical point estimate in column (1)

of Table II, with µ̃d as predictor, is 0.31, while the regression on model-generated data in
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column (1) of Table VII yields a mean coefficient of 0.83. With µ̃r as predictor in column

(4), the simulated data yields a mean coefficient of 0.60, close to the empirical estimate of

0.86 in Table II, column (4). But it is also useful to keep in mind that the volatility of

subjective expected returns in the simulated data is tiny relative to the volatility of objective

expected returns. Therefore, the take-away from this analysis is that subjective expected

excess returns both in the data and the model are nearly constant.13

In Panel B, with subjective expectations errors as dependent variable, the mean coefficient

on µ̃d in column (1) is very similar to its empirical counterpart of −12.34 in Table II. With

µ̃r as a predictor in column (4), the model-implied coefficients are about half as big as the

empirical ones, so the empirical experienced real returns variable may capture some additional

expectations errors beyond those implied by our model.

Summing up, the dynamics of subjective and objective expected returns in the model

are broadly consistent with the empirical data. Objectively, excess returns are strongly

predictable by µ̃d and µ̃r, while subjective expected excess returns are largely acyclical.

IV.D. Subjective Long-run Growth Expectations

As the final piece of our comparison of the model with our earlier empirical estimates from the

reduced-form framework, we look at the dynamics of subjective dividend growth expectations.

By iterating on eqs. (16) and (31) we can construct, at every point in time in our

simulations, the representative agent’s subjective expectation of average log dividend growth

over the next 20 quarters (1,000 simulations of the model for 50,000 periods). The 20-quarter

forecast horizon corresponds roughly to the analyst forecast horizon in our analysis in Table

III. In each simulation run, we regress this subjective dividend growth expectation at time t

on µ̃d,t or µ̃r,t. We obtain coefficients of 0.899 and 0.683. These values are extremely close

to the implied coefficients of 0.85 and 0.64 that we obtained in Table III after adjusting

13. A comparison of the predictive regression coefficients in Tables VI and VII shows that objective expected
returns at a one-year horizon have a volatility that is more than 10 times as high (absolute regression coefficient
of 9.24 times volatility of quarterly µ̃d of 0.39% ≈ 3.60%) as the volatility of subjective expected returns
(regression coefficient of 0.83 times volatility of quarterly µ̃d ≈ 0.32%).
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for the distortionary effects of transitory predictable components in earnings on the analyst

forecasts. Thus, our model quantitatively matches the dynamics of long-term forecasts of

growth in stock market fundamentals by stock market analysts.

V. Relationship between first and second moments of

equity returns

Another interesting implication of our model that we have not discussed so far is that its

predictions about the relationship between conditional first and second moments of equity

market returns are sharply different from those of the leading rational expectations asset

pricing models by CC and BY. In CC and BY, the conditional equity premium is approx-

imately linearly and positively related to conditional equity return variance. In CC, this

happens because at times when risk aversion is high, it is also very volatile. In BY, the rea-

son is that stochastic volatility in endowment growth is the driver of the time-varying equity

premium.14 Therefore, variables like p − d that predict excess returns should also predict

equity market return variance with the same sign—but empirical data does not support this

prediction. This gives rise to what Lettau and Ludvigson (2010) have termed the Sharpe

Ratio variability puzzle: These models make the empirically counterfactual prediction that

positive co-movement of conditional first and second moments should dampen the variability

of the Sharpe Ratio compared with the variability in expected excess returns.

Table VIII shows a similar empirical result when we use experienced payout growth, µ̃d, as

a predictor variable. The dependent variable in these regressions is the sum of squared daily

log returns of the CRSP value-weighted index in quarter t+ 1, i.e., an estimate of quarterly

realized variance. Recall that µ̃d predicts returns with a negative sign. However, as column

(1) and (4) show, there is a weakly positive, but not statistically significant relationship

between µ̃d and next-quarter variance both in the full sample and the post-WW II sample.

14. For the BY model, compare equations (A13) and (A14) in the appendix of BY. For the CC model one
can infer the positive and close to linear relationship by comparing Figures 4 and 5 in CC.
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The magnitude of the point estimate is small: a one standard deviation increase in µ̃d is

associated with an increase of 0.15 percentage points in conditional quarterly return variance,

which is about 10% of the sample standard deviation of the return variance. Using p− d as

a predictor in columns (2) and (5), the picture is mixed. In the full sample, p − d predicts

volatility negatively, but the coefficient estimate is not statistically significant. In the post-

WW II period, the estimate is statistically significant, but it is positive, which is inconsistent

with the CC and BY models. Columns (3) and (6) control for the risk-free rate because

p − d and the real risk-free rate together should span the state variables in the BY model,

but this has little effect on the coefficient of the p − d ratio. Overall, there is no support

for the prediction of the CC and BY models that the conditional equity premium has strong

positive correlation with conditional market return variance. At low frequencies captured

by the slow-moving predictors µ̃d and p − d, there is not any co-movement between equity

premium and volatility.

In contrast to CC and BY, our model is consistent with this empirical result. Learning

with fading memory generates predictable variation in the objective equity premium, but

without simultaneous variation in equity market return variance.15 The decoupling objective

and subjective beliefs allows the model to also decouple conditional equity return volatility

and the objective conditional equity premium.

VI. Lack of Out-of-Sample Return Predictability

Welch and Goyal (2008) show that the simple trailing sample mean of past returns often

beats an out-of-sample predictive regression forecast as a predictor of future returns. Since

the representative agent in our model discards historical information at a relatively high rate

(the half-life in terms of the observation’s weight in the log likelihood is about 10 years), one

15. Our model actually produces a positive relationship between µ̃d and conditional variance of the equity
claim return, but the effect is very weak, somewhat similar to the weak empirical relationship in Table VIII.
Subjective and objective conditional variance of dividend strip returns are constant over time. However,
higher subjectively expected growth implies higher weight of riskier longer-horizon dividend strips in the
equity claim’s value and hence higher variance of the return on the equity claim.
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TABLE VIII
Predicting Market Return Variance

Dependent variable is the sum of squared daily log returns of the CRSP value-weighted index in quarter
t + 1. Experienced real payout growth denotes a long-run exponentially weighted average of overlapping
quarterly observations of four-quarter per-capita repurchase-adjusted real dividend growth rates leading up
to and including quarter t, constructed with weights implied by constant gain learning with quarterly gain
ν = 0.018; p− d refers to the log price-dividend ratio of the CRSP value-weighted index at the end of quarter
t. For readability of the estimates, we use (p−d)/100 as predictor variable. Newey-West standard errors with
six lags are shown in parentheses.

(1) (2) (3) (4) (5) (6)
1927-2016 1927-2016 1927-2016 1946-2016 1946-2016 1946-2016

Experienced real payout growth 0.47 0.41
(0.41) (0.35)

(p− d)/100 -0.30 -0.30 0.41 0.40
(0.42) (0.40) (0.12) (0.12)

Real risk-free rate 0.21 -0.17
(0.26) (0.14)

Constant 0.00 0.02 0.02 0.00 -0.01 -0.01
(0.00) (0.02) (0.01) (0.00) (0.00) (0.00)

Observations 360 360 360 284 284 284
Adjusted R2 0.012 0.008 0.016 0.015 0.033 0.044

might suspect that a predictive regression run in real time, but with full memory of past

data, should be able to identify the agent’s errors and hence predict returns out-of-sample

better than the sample mean. However, as we show now, this is not the case.

We apply the Goyal and Welch analysis to simulated data from our model. We run 10,000

simulations of a 360-quarter sample period with a 400-quarter burn-in period to compute µ̃d

at the start of each sample. Within each 360-quarter sample, we then examine the in-

sample explanatory power of the predictive regression by plotting the cumulative squared

demeaned excess returns minus the cumulative squared full-sample regression residual from

the beginning to the end of the sample. The predictive regression is run at quarterly frequency

with the sum of four-quarter log excess returns from t+ 1 to t+ 4 as dependent variable and

p − d or µ̃d as predictor. The blue line in the upper half of each plot in Figure III shows

the average path across all simulations of this in-sample cumulative squared errors difference.
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The upward slope of this line and the fact that it ends up, on the right-hand side, above

zero, both with p− d as a predictor (top) and µ̃d (bottom), indicates that the in-sample R2

is greater than zero.

To assess the out-of-sample performance with each 360-quarter sample, we use a recur-

sively expanding window, starting out at 80 quarters, to estimate the sample mean and the

predictive regression. We calculate the next period out-of-sample squared prediction error

of the trailing sample mean as a forecaster minus the squared prediction error of the fitted

predictive regression. We cumulate these squared error differences forward and we average

the resulting paths across all simulations. The red lines in the lower half of each plot in

Figure III show that this path is, on average, in negative territory, which means that the

predictive regression forecast underperforms the trailing sample mean as a forecaster. That

the slope is still negative on average towards the end of the sample period shows that even

after having observed almost 90 years of data, the trailing sample mean is typically still a

better forecaster.

Thus, even though there is true return predictability in this model under the econome-

trician’s objective probability measure, this predictability is not exploitable in real-time for

typical sample sizes. The data generated by the model is therefore consistent with the lack

of out-of-sample predictability found empirically by Welch and Goyal (2008).

The out-of-sample exercise also demonstrates that it would not be easy for the agent

within the model to recognize that the loss of memory and the resulting reliance on rela-

tively recent experiences in estimating endowment growth rates is detrimental to forecast

performance. In this sense, one can interpret our model as a near-rational model.

VII. Conclusion

We have shown that learning with fading memory can reconcile asset prices and survey ex-

pectations in a highly tractable framework. In our model, asset prices are volatile because

subjective growth expectations are time-varying. Risk premia are high because subjective
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Figure III
Out-of-sample predictive performance

In-sample and out-of-sample performance of predictors p−d and µ̃d from 10,000 simulations of
360 quarters with a 400-quarter burn-in period to compute µ̃d at the start of each sample. The
IS line plots the cumulative squared demeaned excess returns minus the cumulative squared
full-sample regression residual. The OOS line plots the cumulative squared prediction errors
of conditional mean minus the cumulative squared prediction errors of predictors. Both lines
are the average path across simulations.
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long-run growth rate uncertainty is high. The model produces realistic asset price behavior

in a simple setting with IID endowment growth and constant risk aversion. While objective

expected excess returns are strongly counter-cyclical, subjective beliefs about stock market

excess returns are slightly pro-cyclical. As a consequence, subjective expectations errors are

predictable, as they are in the survey data. As predicted by the model, long-run weighted

averages of past real per-capita payout growth or past real stock index returns are a good

empirical predictor of excess returns and subjective expectations errors. Unlike in leading ra-

tional expectations explanations of return predictability, and consistent with the data, move-

ments in objective expected excess returns in our model are not associated with movements

in conditional market return volatility.

Because memory of past data fades away, subjective beliefs about long-run growth fluc-

tuate perpetually in our model. That these belief fluctuations persist is plausible because

it would be difficult for an agent to detect that the loss of memory is detrimental to her

investment decisions. While returns generated by our model economy are predictable to an

econometrician examining a sample ex post, standard out-of-sample tests show that they

are not predictable in real time in typical sample sizes, consistent with the empirical lack of

out-of-sample predictability. Overall, these results suggest that subjective belief dynamics

could be central to asset pricing and that learning with fading memory can provide a unifying

account of many asset pricing phenomena and the evidence on subjective beliefs about stock

returns in investor surveys.
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Appendix (for online publication)

A. Data

A.1. Financial market data

Population. We obtain quarterly data on the population of the United States from 1947
onwards from the FRED database at the Federal Reserve Bank of St. Louis. For 1871
to 1946, we obtain annual population numbers from the Historical Statistics of the United
States, available at https://hsus.cambridge.org/.

Stock index returns. We calculate quarterly stock index returns from 1871 to 1925 using
data from Shiller (2005) back to 1871. From 1926 onwards, we use quarterly returns on the
value-weighted CRSP index.

Inflation. We use the Consumer Price Index (CPI) series (and the pre-cursors of the
official CPI) in Shiller’s data set to deflate returns and the payout growth series that we
describe next.

Payouts. From 1926 onwards, we calculate quarterly aggregate dividends using the lagged
total market value of the CRSP value-weighted index and the difference between quarterly
returns with and without dividends. Furthermore, working with the monthly CRSP indi-
vidual stock files and following Bansal, Dittmar, and Lundblad (2005), we use reductions
in the shares outstanding (after adjusting for stock splits, stock dividends, etc. using the
CRSP share adjustment factors) as reported by CRSP to calculate stock repurchases. To
eliminate the effect of data errors (there are instances where the shares outstanding drop
by a huge amount and jump back up a few months later), we drop observations where the
shares outstanding fall by more than 10 percent within one month. Repurchases account for
an economically significant share of payouts only from the 1980s onwards. We aggregate the
sum of dividends and repurchases across firm within each month and then at the aggregate
level within each quarter. Dividing by the size population at each point in time, we obtain
per-capita payouts. To avoid seasonality effects, we compute growth rates as the four-quarter
change in log per-capita aggregate payouts, divided by four.

Prior to 1926, we use annual data on aggregate household dividend receipts from tax
data in Piketty, Saez, and Zucman (2018) for the period 1913 to 1926. While this data
source covers only the portion of dividends received by households, its advantage is that it is
based on high-quality administrative data. As long as the share of total aggregate dividends
received by households does not change much from year to year, the growth rates calculated
from this data set should approximate well the growth rates in total aggregate dividends.
Figure A.1 suggests that this is the case: in years when the Piketty-Saez data overlaps with
CRSP, the per-capita growth rates obtained from the two data sets are closely aligned.

For the period from 1900 to 1913, we use a series of annual aggregate corporate non-farm
non-financial dividends from Wright (2004). Figure A.1 shows that the per-capita growth
rates calculated from the Wright data are, with a few exceptions, very close to those from
the Piketty-Saez data. For the period from 1871 to 1900, we use real per-capita GDP growth
rates from Barro and Ursua (2008) (which are in turn based on Balke and Gordon (1989))
as proxy for ∆d from 1871 to 1900.
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Figure A.1
Dividend growth from three data sources

Bond and bill yields. To calculate subjectively expected excess return from survey expec-
tations, we use the one-year constant maturity Treasury yield, obtained from FRED database
at the Federal Reserve Bank of St. Louis. To calculate quarterly stock market index excess
returns back to 1926, we use the three-month T-Bill yield series from Nagel (2016), extended
until the end of 2016 with 3-month T-bill yields from the FRED database (where we convert
the reported discount yields into effective annual yields).

A.2. Survey data on return expectations

Three surveys provide us with direct measures of percentage expected stock market returns
over a one-year horizon: UBS/Gallup (1998-2007, monthly); Vanguard Research Initiative
(VRI) survey of Ameriks, Kézdi, Lee, and Shapiro (2016) (2014, one survey); and Surveys
of Lease, Lewellen, and Schlarbaum (1974) and Lewellen, Lease, and Schlarbaum (1977)
(one survey per year in 1972 and 1973). In part of the sample, the UBS/Gallup survey
respondents report only the return they expect on their own portfolio. We impute market
return expectations by regressing expected market returns on own portfolio expectations
using the part of the sample where both are available and using the fitted value from this
regression when the market return expectation is not reported. The VRI survey asks about
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expected growth in the Dow Jones Industrial Average (DJIA). Since the DJIA is a price index,
we add to the price growth expectation the dividend yield of the CRSP value-weighted index
at the time of the survey. Figure A.2 shows the time series of expectations from these surveys.

In the next step, we use the data from the Michigan Survey of Consumers (MSC). The
MSC elicits the perceived probability that an investment in a diversified stock fund would
increase in value over a one-year horizon. For comparability with the other surveys above,
which are all based on surveys of people that hold stocks, we restrict the sample to respondents
that report to hold stocks (as the MSC does for the aggregate stock market beliefs series that
they publish on their website). To impute percentage expectations, we regress the percentage
expectations from the UBS/Gallup and VRI surveys on the MSC probability. The red line in
Figure A.2 shows the resulting fitted value. In the periods when the series overlaps with the
UBS/Gallup and VRI samples, the fit is very good, indicating that the simple imputation
procedure delivers reasonable results. In time periods when the UBS/Gallup and VRI surveys
are not available, we use this fitted value.

Finally, we bring in data from the Conference Board (1986-2016, monthly) and Roper
surveys (1974-1997, one survey per year). These surveys elicit respondents simple categorical
beliefs about whether the “stock prices” will likely increase, decrease, or stay the same (or
whether they are undecided, which we include in the “same” category). We construct the
ratio of the proportion of those who respond with “increase” to the sum of the proportions of
“decrease” and “same.” We then regress the expected return series that we obtained from the
surveys above on this ratio. More precisely, since the Conference Board and Roper surveys
ask about stock price increases, we subtract the current dividend yield of the CRSP value
weighted index from the dependent variable in this regression and we add it back to the
fitted value. The green line in Figure A.2 shows the fitted value from this regression for the
Conference Board series and the four squares show the fitted value for the Roper surveys.
Except for a relatively short period around the year 2000, the fitted series tracks the expected
returns from UBS/Gallup, MSC, and VRI very well. In time periods when the UBS/Gallup,
MSC and VRI surveys are not available, we use this fitted value.

A.3. Analysts long-term earnings expectations

We collect the median of analysts’ stock-level long-term median earnings-per-share (EPS)
growth forecasts from the I/B/E/S Unadjusted US Summary Statistics database, focusing
on U.S. firms with earnings forecasts in U.S. dollars. The data is available at a monthly
frequency starting in December 1981, but shares outstanding information that we need to
aggregate across stocks becomes available only in September 1984 for all but 10% of stocks
covered by I/B/E/S. We therefore start the sample in September 1984. We also collect the
median forecasts of current fiscal year EPS. We use those to calculate forecasted current year
total earnings by multiplying forecasted EPS with shares outstanding. We aggregate across
stocks by forming a value-weighted average each quarter using total forecasted current fiscal
year earnings as the weight. Stocks with negative values of this weight variable are excluded.
We then aggregate the monthly long-term EPS growth forecasts across months within each
calendar quarter.

We also collect the median forecasts for next fiscal year EPS. We calculate the growth
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Figure A.2
Expected return imputation

.

rate from current year to next-year earnings. We then aggregate the data, across stocks, then
within quarter, in the same way as described above for the long-term forecasts.

We convert these nominal expected growth rates to real expected growth rates by deflating
with inflation forecasts from the Survey of Professional Forecasters (SPF), which we obtain
from the Federal Reserve Bank of Philadelphia.16 We use the one-year and ten-year CPI
median inflation forecasts in the quarter prior to the quarter in which the analyst forecast
is made. The 10-year forecast is available in the SPF only starting in quarter 1991:4. Prior
to this date we use the extended series constructed by the Philadelphia Fed from the Blue
Chip Economic Indicators and the Livingston survey that is available on the same website.
In quarters when the extended series has missing values, we substitute the value from the
previous quarter.

Long-term earnings growth rates in the I/B/E/S data are meant to represent an expected
growth rate over the next three to five years, or a “full business cycle” (see, e.g., Sharpe
(2002)). To deflate with an expected inflation rate that approximates this forecast horizon,
we subtract the average of the one-year and ten-year inflation forecast from the long-term
earnings forecast. We subtract the one-year inflation forecast from the one-year earnings

16. Available at https://www.philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/historical-data/inflation-forecasts
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growth forecast. As a last step, we convert the real expected earnings growth series to
quarterly frequency by dividing the annualized numbers by four.

B. Bootstrap Simulations for Predictive Regressions

Our bootstrap simulations closely follow those in Kothari and Shanken (1997), but extended
to multiple predictor variables. We start by estimating AR(1) processes for the predictor
variables and we add 1/T to the slope coefficient to perform first-order bias-adjustment (and
we adjust the intercept accordingly). We also estimate the predictive regression for returns
by OLS and record the residuals.

Using these bias-adjusted coefficients from the estimated AR(1) for the predictors, we
then simulate a VAR(1) with a diagonal coefficient matrix, where the innovations are the
bootstrapped residuals from the estimated AR(1). As in Kothari and Shanken (1997), we
condition on the first observation of the predictor time series. We preserve contemporaneous
correlations of the innovations by drawing vectors of residuals for the different predictors.

Based on the simulated predictor series, we then also simulate two return series by com-
bining the predictor time-series with bootstrapped residuals from the predictive regression.
For the first return series, we set the predictive regression slope coefficients equal to the
OLS predictive regression estimate, i.e., we simulate under the alternative. For the second
series, we set the predictive regression slope coefficients equal to zero, i.e., in this case we are
simulating under the null hypothesis of no predictability.

We use the described approach to simulate 10,000 bootstrap samples of predictors and
the two returns series. We then run the predictive regressions on the bootstrap samples and
record the regression coefficients and t-statistics. We obtain the predictive regression bias-
adjustment by comparing the mean slope coefficients from the bootstrap samples with the
first return series (alternative) to the OLS estimate. We obtain the p-values by comparing the
sample predictive regression t-statistic to the quantiles of the distribution of the t-statistic in
the bootstrap regressions with the second return series (null).

C. Properties of the predictive distribution

We describe now the properties of ε̃t+j , j = 1, 2, ... under the time-t predictive distribution.
We first show that the subjective conditional variance of ε̃t+j is decreasing in the forecast

horizon. First note the perceived consumption growth process has the following autocovari-
ance structure

˜covt(∆ct+i,∆ct+j) = νσ2, j > i ≥ 1, (A.1)
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which arises from the agent’s uncertainty about µ. From the definition of ε̃, we obtain

ε̃t+i =
∆ct+i − µ̃t+i−1√

1 + νσ
.

=
∆ct+i − ν∆ct+i−1 − (1− ν)µ̃t+i−2√

1 + νσ
.

=
∆ct+i − ν

∑i−1
j=1(1− ν)j−1∆ct+i−j − (1− ν)i−1µ̃t√

1 + νσ
. (A.2)

Because of the constant autocovariance structure of perceived consumption growth,

ṽart(ε̃t+i−1) = ṽart

(
∆ct+i−1 − ν

∑i−2
j=1(1− ν)j−1∆ct+i−1−j√

1 + νσ

)

= ṽart

(
∆ct+i − ν

∑i−2
j=1(1− ν)j−1∆ct+i−j√

1 + νσ

)
, (A.3)

and

ṽart(ε̃t+i) = ṽart(ε̃t+i−1) + ν2(1− ν)2i−4 − 2ν2

1 + ν
(1− ν)2i−4

= ṽart(ε̃t+i−1)− 1− ν
1 + ν

ν2(1− ν)2i−4, i ≥ 2. (A.4)

This leads to

ṽart(ε̃t+i) = 1− 1− ν
1 + ν

ν2 1− (1− ν)2i−2

1− (1− ν)2
, (A.5)

which decreases over time and converges to 1− 1−ν
1+ν

ν
2−ν .

Using these results, we can calculate the time-t perception of the autocovariance of future
ε̃t+i,

˜covt(ε̃t+i, ε̃t+i+1) = ˜covt

(
∆ct+i − ν

∑i−1
j=1(1− ν)j−1∆ct+i−j√

1 + νσ
,
∆ct+i+1 − ν

∑i−1
j=1(1− ν)j−1∆ct+i+1−j√

1 + νσ

)

= ˜covt(
∆ct+i − ν

∑i−2
j=1(1− ν)j−1∆ct+i−j√

1 + νσ
,
∆ct+i+1 −∆ct+i√

1 + νσ
+ (1− ν)

∆ct+i − ν
∑i−2

j=1(1− ν)j−1∆ct+i−j√
1 + νσ

)

=− 1

1 + ν
+ (1− ν)ṽart(ε̃t+i)

=− ν2

1 + ν
− (1− ν)2

1 + ν
ν2 1− (1− ν)2i−2

1− (1− ν)2
< 0. (A.6)

i.e., it is negative, as we claimed in the main text.
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D. Kalman filtering interpretation

Here we show that our model can be mapped into a full memory model that is equivalent in
terms of the relevant subjective belief dynamics and asset prices. In this equivalent version
of the model, the agent perceives a latent AR(1) trend growth rate and she uses the Kalman
filter to optimally track this latent trend, while objectively the trend growth rate is constant.
The agent uses full memory and the information structure is a filtration and it is Markovian.
In the agent’s subjective view, past data gradually loses relevance for forecasting not because
of fading memory but because it is perceived as irrelevant given the perceived stochastic drift
over time in the trend growth rate.

D.1. Diffuse prior

Suppose the agent at time t perceives the law of motion

∆ct = µt + ξt, ξt ∼ N (0, σ2
ξ ), (A.7)

µt+1 = µt + ζt+1, ζt+1 ∼ N (0, σ2
ζ ), (A.8)

where the agent knows σ2
ξ and σ2

ζ , but not µt. With diffuse prior and an infinite history, Ht,
of observed data on ∆c, the predictive distribution can be obtained from the steady-state
Kalman filter (see, e.g., Hamilton (1994)) as

µt+1|Ht ∼ N (µ̂t+1|t, ω
2 + σ2

ζ ), (A.9)

where the optimal forecast µ̂t+1|t ≡ Ê(µt+1|Ht) evolves as

µ̂t+1|t = µ̂t|t−1 +K(∆ct − µ̂t|t−1), (A.10)

with

K =
ω2 + σ2

ζ

ω2 + σ2
ζ + σ2

ξ

, (A.11)

and
ω2 = Kσ2

ξ . (A.12)

Thus the predictive distribution of ∆ct+1 at time t is

∆ct+1 ∼ N (µ̂t+1|t, ω
2 + σ2

ζ + σ2
ξ ). (A.13)

To map into our fading memory setup, we choose

K = ν, σ2
ξ = (1− ν2)σ2, σ2

ζ = ν2(1 + ν)σ2. (A.14)

The time-t predictive distribution of ∆ct+1 then is exactly the same as in our fading memory
setting. The time-t predictive distribution of ∆ct+j for j > 1 is different from the fading
memory setting, though, because here the agent perceives µ̃t as a martingale and the predic-
tive distribution inherits these martingale dynamics, while in our fading memory setting the
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predictive distribution converges to a stationary one at long horizons. For pricing, however,
this difference in the perceived distribution for j > 1 does not matter, because under resale
valuation, pricing is based on a chain of valuations of one-period ahead payoffs from selling
the asset. Thus, pricing in this perceived stochastic trend setting here is the same as in our
fading memory setting.

D.2. Informative prior

Suppose the agent at time t perceives the law of motion

∆ct = µt + ξt, ξt ∼ N (0, σ2
ξ ), (A.15)

µt+1 = (1− h)µ+ hµt + ζt+1, ζt+1 ∼ N (0, σ2
ζ ), (A.16)

where 0 ≤ h < 1 and the value of h is known to the agent. Steady-state Kalman filter
updating yields optimal forecasts of the state as

µ̂t+1|t = (1− h)µ+ hµ̂t|t−1 +K(∆ct − µ̂t|t−1), (A.17)

with

K = h
σ2
ζ + h2ω2

σ2
ζ + σ2

ξ + h2ω2
, (A.18)

ω2 = Kσ2
ξ/h. (A.19)

Iterating yields

µ̂t+1|t =
1− h

1− h+K
µ+K

∞∑
j=0

(h−K)j∆ct−j . (A.20)

The predictive distributions are

µt+1|Ht ∼ N (µ̂t+1|t, h
2ω2 + σ2

ζ ), (A.21)

and
∆ct+1|Ht ∼ N (µ̂t+1|t, h

2ω2 + σ2
ζ + σ2

ξ ). (A.22)

We can map this into our fading memory setup with informative prior by choosing

K = φν, h = 1− ν + φν, σ2
ξ =

1− ν
1− ν + φν

(1 + φν)σ2 (A.23)

to obtain equivalence in terms of the relevant subjective belief dynamics and asset prices.
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E. Model solution for ψ = 1

E.1. SDF

Following Hansen, Heaton, and Li (2008), we start with value function iteration

vt =
δ

1− γ
log Ẽt[e(1−γ)(vt+1+∆ct+1)], (A.24)

where vt = log(Vt/Ct) and Vt is the continuation value. We conjecture the solution to be
linear in the state variable, i.e.

vt = µv + Uvµ̃t. (A.25)

Plugging in the conjectured solution we get

Uv =
δ

1− δ
, (A.26)

and

µv =
1

2
(1− γ)Uv(νUv + 1)2(1 + ν)σ2. (A.27)

We obtain the log SDF

mt+1|t = log

(
δ
Ct
Ct+1

(Vt+1)1−γ

Ẽt[(Vt+1)1−γ ]

)
= log δ −∆ct+1 + (1− γ) log(Vt+1)− log Ẽt[(Vt+1)1−γ ]

= log δ −∆ct+1 + (1− γ)(vt+1 + ct+1)− log Ẽt(e(1−γ)(vt+1+ct+1))

= µ̃m − µ̃t − ξσε̃t+1, (A.28)

where

µ̃m = log δ − 1

2
(1− γ)2(νUv + 1)2(1 + ν)σ2, (A.29)

ξ = [1− (1− γ)(νUv + 1)]
√

1 + ν. (A.30)

E.2. Consumption claim valuation

Let ζ ≡Wt/Ct. The return on the consumption claim is

RW,t+1 ≡
Wt+1

Wt − Ct
=
Ct+1

Ct

ζ

ζ − 1
, (A.31)

and in logs,

rw,t+1 = ∆ct+1 + log(ζ/(ζ − 1))

= µ̃t +
√

1 + νσε̃t+1 + log(ζ/(ζ − 1)). (A.32)
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Plugging the return on the consumption claim into the Euler equation and taking logs,

log(ζ/(ζ − 1)) = −µ̃m + ξ
√

1 + νσ2 − 1

2
(1 + ν)σ2 − 1

2
σ2ξ2

= − log δ, (A.33)

which we can solve for the wealth-consumption ratio

ζ =
1

1− δ
. (A.34)

That the consumption-wealth ratio is constant can also be seen by valuing consumption
strips. Denoting with w1

t the log of the component of time-t wealth that derives from the
one-period ahead endowment flow, we have

w1
t − ct = log Ẽt

[
Mt+1|t

Ct+1

Ct

]
= log Ẽt

[
exp(µ̃m + (

√
1 + ν − ξ)σε̃t+1

]
= µ̃m +

1

2
(
√

1 + ν − ξ)2σ2, (A.35)

i.e., w1
t−ct is constant. It does not vary with µ̃t because, going from the first to the second line,

−µ̃t in mt+1|t cancels with µ̃t in ∆ct+1. Working through the valuation equation backwards
in time, we obtain the price of an n-period consumption strip

wnt − ct = nµ̃m +
n

2
(
√

1 + ν − ξ)2σ2. (A.36)

Plugging in the solutions for µ̃m and ξ from the previous subsection, we get

wnt − ct = n log δ. (A.37)

Summing the value of consumption strips at all horizons strips yields the consumption-wealth
ratio in (A.34).

E.3. Dividend strip valuation

By analyzing dividend strips that are claims to single dividends in the future, we can trans-
parently analyze the conditions needed for a finite price. The price of the n-period dividend
strip is

Pnt ≡ Ẽt[Mt+1|tẼt+1[· · · Ẽt+n−1[Mt+n|t+n−1Dt+n]]]. (A.38)

As we discussed earlier, when we evaluate these expectations, we do so by iterating backwards
from the payoff at t+n, evaluating one conditional expectation at a time without relying on
the Law of Iterated Expectations (LIE).
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Taking logs and evaluating (A.38), we obtain

pnt − dt = [1− (1− α)n] (ct − dt + µdc +
λ− 1

α
µ̃t) + nµ̃m +

1

2
(Anσ

2 +Bnσ
2
d), (A.39)

where

An =

n−1∑
k=0

{√
1 + ν

[
ν(λ− 1)

1− (1− α)k

α
+ (λ− 1)(1− α)k + 1

]
− ξ
}2

, (A.40)

and

Bn =
1− (1− α)2n

1− (1− α)2
. (A.41)

For very large n, approximately,

An ≈ n
[√

1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

, (A.42)

and Bn, which does not grow with n, becomes very small relative to An. Thus for the price
to be well-defined, we need the terms that grow with n in (A.39) to be (weakly) negative.
Using (34), we see that this requires

µ̃m +
1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2 ≤ 0. (A.43)

In our calibration, we will work with a value for α that satisfies this condition.
As equation (33) shows, the dividend strip log price-dividend ratio is increasing in µ̃t if

λ > 1, i.e., if the dividend claim is levered. With λ = 1 the effect of a higher expected growth
rate of dividends would be offset by a higher risk-free rate, just like it is for the consumption
claim. With leverage, the effect of higher expected dividend growth is stronger than the
risk-free rate effect. Since dividends and consumption are co-integrated and hence have the
same growth rate in the long-run, the reason why the agent can expect the dividend and
consumption growth rates to differ for a substantial period of time may not be immediately
obvious. When the agent revises upward her posterior mean µ̃t, then her expectation of the
dividend growth rate in the next period gets revised upward by λ − 1 times the revision in
µ̃t. She expects that over the near future dividend growth will exceed consumption growth,
leading to a rise in d − c. Eventually, the higher log dividend-consumption ratio will—
through the cointegration relationship in (31)—generate enough negative offset to bring the
dividend growth rate back down to µ̃t. Thus, she expects the process to settle down with
similar mean growth rates, but at a higher d − c.17 Is it economically plausible that the
agent perceives higher unconditional mean economic growth to be associated with a higher
dividend-consumption ratio? It is impossible to answer this question within a model with

17. A similar mechanism is at work in Collin-Dufresne, Johannes, and Lochstoer (2017), but there dividends
and consumption are not cointegrated, and so d − c can grow without bound, but the unconditional mean
growth rate of consumption (and hence dividends) is truncated.
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exogenous endowment flow. In Appendix G we present calculations based on a Ramsey-Cass-
Koopmans model with endogenous investment and production that suggests that a positive
relationship between growth and the capital income to consumption ratio is indeed plausible.

To get the expected returns of dividend strips, we start with (33) to compute returns.
For the one-period claim, we get

r1
t+1 = λ∆ct+1 − (λ− 1)µ̃t − µ̃m −

1

2

(√
1 + νλ− ξ

)2
σ2. (A.44)

Subtracting rf,t = −µ̃m + µ̃t − 1
2ξ

2σ2 yields

r1
t+1 − rf,t = λ(∆ct+1 − µ̃t)−

1

2

(√
1 + νλ− ξ

)2
σ2 +

1

2
ξσ2. (A.45)

The subjective conditional variance of r1
t+1 is (1 + ν)λ2σ2, and so, after taking subjective

expectations of (A.45), we obtain

log Ẽt[R1
t+1]− rf,t = λξ

√
1 + νσ2. (A.46)

The objective conditional variance of r1
t+1 is only λ2σ2, and so taking objective expectations

of (A.45) yields,

logEt[R1
t+1]− rf,t = λξ

√
1 + νσ2 − 1

2
νλ2σ2 + λ(µ− µ̃t). (A.47)

For the infinite-horizon claim, again starting from (33), we get

r∞t+1 = ∆ct+1 +
λ− 1

α
(µ̃t+1 − µ̃t)− µ̃m −

1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2, (A.48)

and, after subtracting the risk-free rate,

r∞t+1 − rf,t = ∆ct+1 +
λ− 1

α
(µ̃t+1 − µ̃t)− µ̃t −

1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2 +
1

2
ξ2σ2.

(A.49)

The subjective conditional variance of r1
t+1 is (1+ν)

(
1 + ν λ−1

α

)2
σ2 and therefore, after taking

subjective expectations of (A.49), we obtain

log Ẽt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2. (A.50)

The objective conditional variance of r∞t+1 is only
(
1 + ν λ−1

α

)2
σ2, and so taking objective

expectations of (A.49) yields

logEt[R∞t+1]−rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2−1

2
ν

(
1 + ν

λ− 1

α

)2

σ2+

(
1 + ν

λ− 1

α

)
(µ−µ̃t).

(A.51)

65



E.4. Numerical solution

We use the analytical solutions for dividend strip prices to numerically compute the price,
Pt, of the equity claim to the whole stream of dividends. For n > J and some big enough J ,
equation (33) implies that

Pnt ≈ Cte
µdc+

1
2

1
1−(1−α)2

σ2
d+λ−1

α
µ̃t exp(nµ̃m +

1

2
Anσ

2), n > J, (A.52)

where we approximate

An ≈ AJ + (n− J)[
√

1 + ν(ν
λ− 1

α
+ 1)− ξ]2, n > J. (A.53)

We can show that

Pt ≈

(
J∑
n=1

Pnt

)
+ CtVJ exp

(
µdc +

1

2

1

1− (1− α)2
σ2
d +

λ− 1

α
µ̃t

)
, (A.54)

with

VJ =
exp

(
(J + 1)µ̃m + 1

2AJσ
2 + 1

2 [
√

1 + ν(ν λ−1
α + 1)− ξ]2σ2

)
1− exp

(
µ̃m + 1

2 [
√

1 + ν(ν λ−1
α + 1)− ξ]2σ2

) . (A.55)

We implement this by choosing a J big enough so that the value of Pt we obtain is not
sensitive anymore to further changes in J . In our calibration, this requires J ≈ 7, 000.

We further use numerical methods to solve for the subjective equity premium in the ψ = 1
case. We follow the approach of Pohl, Schmedders, and Wilms (2018). When ψ = 1, the
wealth-consumption ratio is a constant

log
Wt − Ct
Ct

= log
δ

1− δ
, (A.56)

and we only need to solve for the log price-dividend ratio. The log P/D ratio should be a
function of both µ̃ and dt − ct, i.e.

log
Pt
Dt

= H(µ̃t, dt − ct). (A.57)

In this case, because there are two state variables, the basis functions are now

ψij(µ̃, dt − ct) ≡ Λi(µ̃)Λj(dt − ct), (A.58)

where Λi denotes the Chebyshev polynomials. We will approximate the log P/D ratio as

Ĥ(µ̃, dt − ct;βm) =

n1−1∑
i=0

n2−1∑
j=0

βm,ijψij(µ̃, dt − ct). (A.59)
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Rewrite the subjective Euler equation

Ẽt[Mt+1Rm,t+1] = 1 (A.60)

as

0 = I(µ̃t, dt − ct)

≡ Ẽt[eµ̃m−µ̃t−ξσεt+1+∆dt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]− 1

= eµ̃m+(λ−1)µ̃t−α(dt−ct−µdc)Ẽt[e(λ
√

1+ν−ξ)σε̃t+1+σdηt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]− 1. (A.61)

We evaluate the function I(µ̃t, dt − ct) on the two-dimensional grid of µ̃t and dt − ct
and use the two-dimensional Gaussian quadrature approach to calculate the expectation part
as an integral. Following Pohl, Schmedders, and Wilms (2018), the numerical solution is
implemented by the “fmincon” solver with the SQP algorithm in Matlab. We minimize a
constant subject to the nonlinear constraints implied by Equation (A.61). We choose the
degree of approximation, i.e., n1 and n2, such that the log P/D ratio computed using the
projection method is closest to the analytically computed log P/D ratio as in Equation (A.54)
in terms of the RMSE,

RMSEpd =

√√√√1

t

t∑
j=1

(pdAnalyticalj − pdProjectionj )2, (A.62)

where pdAnalyticalt is calculated from dividend strip prices as in (A.54). We explore different
combinations of n1 and n2 up to a maximal degree of 8 and we choose the combination
that minimizes RMSEpd. Table A.I summarizes the parameter choices for this numerical
procedure.

After we obtain the coefficients for H(µ̃t, dt − ct), we can calculate the subjective equity
return as

Ẽt[Rm,t+1] = Ẽt[e∆dt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]

= eλµ̃t−α(dt−ct−µdc)Ẽt[eλ
√

1+νσε̃t+1+σdηt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]. (A.63)

F. Model solution for ψ 6= 1

F.1. Existence

Hansen and Scheinkman (2012) provide sufficient conditions for existence of equilibrium in
a Markovian setting with Epstein-Zin preferences. As we show in Appendix D, our fading
memory model can be mapped into an equivalent full memory model in which the informa-
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TABLE A.I
Parameter values for projection method with ψ = 1

Parameter Symbol Value

Grid for µ̃t [µ− 4σ(µ̃), µ+ 4σ(µ̃)] [0.00 , 0.01]
Grid for dt − ct [E(dc)− 4σ(dc), E(dc) + 4σ(dc)] [-5.5 , -3.9]
# of points for Gaussian-Quad sampling v 200
Degrees of approximation for µ̃t n1 3
Degrees of approximation for dt − ct n2 3

RMSEpd across simulations
Mean 0.008

Median 0.008
Max 0.038

tion structure is a filtration and Markovian. This allows us to use the results in Hansen and
Scheinkman (2012) to derive parameter restrictions sufficient to ensure existence of equilib-
rium.

In our equivalent “Kalman filtering” economy, we only have one state variable, which
is {µ̂t+1|t} as in Equation (A.17). This equation also shows that ∆ct+1 can be written
as a function of µ̂t+2|t+1 and µ̂t+1|t. In addition, given the Markov property of {µ̂t+1|t},
Assumption 1 in Hansen and Scheinkman (2012) is satisfied.

To distinguish the perceived time-t predictive distribution for ∆ct+j in this “Kalman fil-
tering” economy here from the fading memory economy, we denote the subjective expectation
here as Ẽ∗. The Perron-Frobenius eigenvalue equation of interest is

T v(x) = exp(η)v(x), v(·) > 0, (A.64)

where
T f(x) = Ẽ∗

[
f(µ̂t+2|t+1) exp [(1− γ)∆ct+1] |µ̂t+1|t = x

]
. (A.65)

Another random variable of interest is

Nt+1 =
e(1−γ)∆ct+1v(µ̂t+2|t+1)

exp(η)v(µ̂t+1|t)
. (A.66)

Hansen and Scheinkman (2012) show that solutions exist for our model if the following
additional assumptions are met:

Assumption 1.

log δ +
η

θ
< 0. (A.67)

Assumption 2.
lim
t→∞

Ẽ∗[Nt+1v(µ̂t+2|t+1)−1/θ|µ̂1|0 = x] <∞. (A.68)
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Assumption 3.
lim
t→∞

Ẽ∗[Nt+1v(µ̂t+2|t+1)−1|µ̂1|0 = x] <∞. (A.69)

To derive the explicit expressions of constraints in our model, we first calculate the Perron-
Frobenius eigenvalue function v. We can show that (one of) the solution is

v(x) = exp

(
1− γ
ν − φν

x

)
, (A.70)

η = (1− γ)µ+
1

2

(
1− γ
1− φ

)2

(1 + φν)σ2. (A.71)

With some algebra, both Assumption 2 and Assumption 3 can be reduced to the form

lim
t→∞

Ẽ∗
[

exp
(
k1∆ct+1 + k2µ̂t+1|t

)∣∣∣µ̂1|0 = x
]
<∞, (A.72)

for some corresponding pairs of constants (k1, k2).
With the Wold representation, we have

µ̂t+1|t = [1− (h−K)L]−1K∆ct, (A.73)

∆ct+1 = [1− (h−K)L]−1K∆ct + τt+1, (A.74)

∆ct =
[
1 + (1− hL)−1KL

]
τt, (A.75)

where {τt−j} are uncorrelated with variance (1 + φν)σ2. It suffices to show that

lim
t→∞

Ẽ∗
[

exp
(
k [1− (h−K)L]−1K

[
1 + (1− hL)−1KL

]
τt
)]
<∞, (A.76)

or
lim
t→∞

Ẽ∗
[

exp
(
kK(1− hL)−1τt

)]
<∞. (A.77)

As long as h < 1, we have

lim
t→∞

Ẽ∗
[

exp
(
kK(1− hL)−1τt

)]
(A.78)

= lim
t→∞

Ẽ∗
[

exp
(
kK

∞∑
j=0

hjLjτt
)]

(A.79)

= exp

1

2
k2K2

∞∑
j=0

h2j(1 + φν)σ2

 <∞. (A.80)

Finally, Assumption 1 translates to

log δ +

(
1− 1

ψ

)[
µ+

1

2

1− γ
(1− φ)2

(1 + φν)σ2

]
< 0, (A.81)

and this is the only parameter constraint we apply to our model to ensure existence of
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equilibrium.

F.2. Log-linearized solution

We solve the model for ψ 6= 1 using log-linearization along similar lines as, e.g., in Beeler and
Campbell (2012). We can write the Epstein-Zin log SDF as

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rw,t+1, (A.82)

with θ = 1−γ
1−1/ψ .

We log-linearize the return on wealth and the return on the equity claim as

rw,t+1 = k0 + k1zt+1 − zt + ∆ct+1, (A.83)

rm,t+1 = kd,0 + kd,1zd,t+1 − zd,t + ∆dt+1, (A.84)

where zt ≡ log((Wt−Ct)/Ct) and zd,t ≡ log(Pt/Dt). We then conjecture zt and zd,t are linear
in the state variables

zt = A0 +A1φµ̃t, (A.85)

zd,t = Ad,0 +Ad,1φµ̃t +Ad,2(dt − ct). (A.86)

By applying the subjective pricing equation to both rw,t+1 and rm,t+1, we can show that

A0 =
log δ + k0 + (1− φ)(1− k1 + νk1)µA1 + 1

2(1− 1/ψ + φνk1A1)2θ(1 + φν)σ2

1− k1
, (A.87)

A1 =
1− 1/ψ

1− (1− ν + φν)k1
, (A.88)

and

Ad,0 =
θ log δ + (θ − 1)k0 + (θ − 1)(k1 − 1)A0 + kd,0 + (1− φ)(1− kd,1 + νkd,1)µAd,1

1− kd,1
(A.89)

+
(θ − 1)k1ν(1− φ)µA1 + (kd,1Ad,2 + 1)αµdc + 1

2(kd,1Ad,2 + 1)2σ2
d

1− kd,1
(A.90)

+
1
2 [θ − 1− θ/ψ + λ+ (λ− 1)kd,1Ad,2 + φν(kd,1Ad,1 + (θ − 1)k1A1)]2(1 + φν)σ2

1− kd,1
,

(A.91)

Ad,1 =
λ− 1/ψ + (λ− 1)kd,1Ad,2

1− (1− ν + φν)kd,1
, (A.92)

Ad,2 =
α

(1− α)kd,1 − 1
. (A.93)
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Applying the subjective pricing equation to the risk-free payoff, we obtain

rf,t =− log δ +
1

ψ
[φµ̃t + (1− φ)µ] (A.94)

+
1

2
(1− γ)

(
1

ψ
− γ
)(

1 +
k1φν

1− (1− ν + φν)k1

)2

(1 + φν)σ2 (A.95)

− 1

2

[(
1

ψ
− γ
)(

1 +
k1φν

1− (1− ν + φν)k1

)
− 1

ψ

]2

(1 + φν)σ2. (A.96)

We solve for the log-linearization coefficients by iterating on

z̄ = A0 +A1φµ, (A.97)

k1 =
exp(z̄)

1 + exp(z̄)
, (A.98)

k0 = log(1 + ez̄)− z̄k1, (A.99)

and

z̄d = Ad,0 +Ad,1φµ+Ad,2E[dt − ct], (A.100)

kd,1 =
exp(z̄d)

1 + exp(z̄d)
, (A.101)

kd,0 = log(1 + ez̄d)− z̄dkd,1, (A.102)

until we reach fixed points of k0, k1, kd,0, and kd,1, determined by a difference of less than
10−6.

We then simulate the model and construct µ̃t. To calculate the objective risk premium,
we directly use the return on equity claim as in (A.84) and the risk-free rate as in (A.96). To
calculate subjective expected return, we take the subjective expectation of Equation (A.84)
to yield

Ẽt[rm,t+1] =
φ

ψ
µ̃t + Ãd,0, (A.103)

where

Ãd,0 = (kd,1 − 1)Ad,0 + kd,0 + (kd,1Ad,2 + 1)αµdc (A.104)

+ (1− φ)µ [kd,1Ad,1φν + (λ− 1)kd,1Ad,2 + λ] . (A.105)

As a result, with log-linearization, the model implies a constant subjective premium.

G. Capital income to consumption ratio in

Ramsey-Cass-Koopmans model

To illustrate plausible properties of the dividend-consumption ratio in a model in which in-
vestment and production is endogenous, this section presents a calculation of the capital
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income to consumption ratio in the Ramsey-Cass-Koopmans model with Cobb-Douglas tech-
nology based on Barro and Sala-i-Martin (2004), Chapter 2. For ease of comparison, we use
their notations here: IES 1/θ, interest rate r, capital and consumption in efficiency units k̂
and ĉ, productivity growth rate x, population growth rate n, time discount rate ρ, capital
share α and depreciation rate δ. Consistent with our baseline calibration, we set 1/θ = 1.

Solving their equations (2.24) and (2.25) for ĉ and k̂ with the left-hand side equal to zero in
the steady state, and using the property of Cobb-Douglas technology that f ′(k̂)/α = f(k̂)/k̂,
we use this solution to calculate the ratio of capital income to consumption as

rk̂ = (x+ ρk̂)/ĉ. (A.106)

Taking the derivative with respect to the productivity growth rate x, we obtain a positive
derivative if

n− ρ <
(

1

α
− 1

)
δ. (A.107)

With an annual population growth rate of n = 0.01, and ρ slightly bigger than 1% as in
our calibration, the left-hand side is negative and so (since 0 ≤ α ≤ 1 and δ > 0) this
inequality always holds. With typical values of δ = 0.05 and α = 0.4, the inequality holds
unless population growth rates are implausibly high (more than 8% for ρ = 0.01) or the time
discount rate implausibly low.
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