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1 Introduction

Advances in computing power have made it increasingly practicable to exploit large and often un-

structured data sources such as text, audio, and video for scientific analysis. In the social sciences,

textual data is the fastest growing data form in academic research. The numerical representation

of text as data for statistical analysis is, in principle, ultra-high dimensional. Empirical research

seeking to exploit its potential richness must also confront its dimensionality challenge. Machine

learning offers a toolkit for tackling the high-dimensional statistical problem of extracting meaning

from text for explanatory and predictive analysis.

While the natural language processing and machine learning literature is growing increasingly

sophisticated in its ability to model the subtle and complex nature of verbal communication, usage

of textual analysis in empirical finance is in its infancy. Text is most commonly used in finance

to study the “sentiment” of a given document, and this sentiment is most frequently measured by

weighting terms based on a pre-specified sentiment dictionary (e.g., the Harvard-IV psychosocial

dictionary) and summing these weights into document-level sentiment scores. Document sentiment

scores are then used in a secondary statistical model for investigating phenomena such as information

transmission in financial markets (Tetlock, 2014).

Highly influential studies in this area include Tetlock (2007) and Loughran and McDonald (2011).

These papers manage the dimensionality challenge by restricting their analysis to words in pre-

existing sentiment dictionaries and using ad hoc word-weighting schemes. This approach has the

great advantage that it allows researchers to make progress on understanding certain aspects of the

data without taking on the (often onerous) task of estimating a model for a new text corpus from

scratch. But it is akin to using model estimates from a past study to construct fitted values in a new

collection of documents being analyzed.

In this paper we present a new machine learning technique for understanding the sentimental

structure of a text corpus without relying on pre-existing dictionaries. The method we suggest

has three main virtues. The first is simplicity—it requires only standard econometric techniques

like correlation analysis and maximum likelihood estimation. Unlike commercial platforms or deep

learning approaches which amount to black boxes for their users, the supervised learning approach

we propose is entirely “white box.” Second, our method requires minimal computing power—it can

be run with a laptop computer in a matter of minutes for text corpora with millions of documents.

Third, and most importantly, it allows the researcher to construct a sentiment scoring model that is

specifically adapted to the context of the data set at hand. This frees the researcher from relying on a

pre-existing sentiment dictionary that was originally designed for different purposes. A central hurdle

to testing theories of information economics is the difficulty of quantifying information. Our estimator

is a sophisticated yet easy-to-use tool for measuring the information content of text documents that

opens new lines of research into empirical information economics.

Our empirical analysis revisits perhaps the most commonly studied text-based research question

in finance, the extent to which business news explains and predicts observed asset price variation.

We analyze the machine text feed and archive database of the Dow Jones Newswires, which is widely
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subscribed and closely monitored by market participants. It is available over a 38-year time span.

Its articles are time-stamped and tagged with identifiers of firms to which an article pertains. Using

these identifiers, we match articles with stock data from CRSP in order to model return behavior as

a function of a Newswire content. The key feature of our approach is that we learn the sentiment

scoring model from the joint behavior of article text and stock returns, rather than taking sentiment

scores off the shelf.

We demonstrate the predictive capacity of our model through a simple trading strategy that buys

assets with positive recent news sentiment and sells assets with negative sentiment. The portfolio

based on our model delivers excellent risk-adjusted out-of-sample returns, and outperforms a similar

strategy based on scores from RavenPack (the industry-leading commercial vendor of financial news

sentiment scores). It does so by isolating an interpretable and intuitive ranking of positive and

negative sentiment values for words in our corpus.

We compare the price impact of “fresh” versus “stale” news by devising a measure of article

novelty. Stale articles are defined as those bearing close similarity to articles about the same stock

over the preceding week. While the sentiment of stale news has a weakly significant positive asso-

ciation with future price changes, the effect is 70% larger for fresh news. And while the effects of

stale news are fully reflected in prices within two days of arrival, it takes four days for fresh news

to be completely assimilated. Likewise, we study how differences in news assimilation associate with

a variety of stock attributes. We find that price responses to news are roughly four times as large

for smaller stocks (below NYSE median) and more volatile stocks (above median), and that it takes

roughly twice as long for news about small and volatile stocks to be fully reflected in prices.

We abbreviate our procedure as SESTM (pronounced “system,” for Sentiment Extraction via

Screening and Topic Modeling). The model consists of three parts, and machine learning methods

play a central role in each. The first step isolates the most relevant features from a very large vocab-

ulary of terms. The vocabulary is derived from the bag-of-words representation of each document

as a vector of term counts. We take a variable selection approach to extract a comparatively small

number of terms that are likely to be informative for asset returns. In this estimation step, variable

selection via correlation screening is the necessary machine learning ingredient for fast and simple

estimation of our reduced-dimension sentiment term list. The idea behind screening is to find in-

dividual terms—positive or negative—that most frequently coincide with returns of the same sign.

It is a natural alternative to regression and other common dimension reduction techniques (such as

principal components analysis) which behave poorly when confronted with the high dimensionality

and sparsity of text data.

The second step is to assign term-specific sentiment weights based on their individual relevance

for the prediction task. Text data is typically well approximated by Zipf’s law, which predicts

a small number of very high-frequency terms and a very large number of low-frequency terms.

While existing finance literature recognizes the importance of accounting for vast differences in term

frequencies when assigning sentiment weights, the ultimate choice of weights has typically been ad

hoc (e.g., weighting by “tf-idf,” or term frequency-inverse document frequency). We instead use a

likelihood-based, or “generative,” model to account for the extreme skewness in term frequencies.
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The specific machine learning tool we apply in this component is a supervised topic model. For the

sake of simplicity and computational ease, and because it is well adapted to our purposes, we opt for

a model with only two topics—one that describes the frequency distribution of positive sentiment

terms, and one for negative sentiment terms.

The third step uses the estimated topic model to assign an article-level sentiment score. When

aggregating to an article score, we use the internally consistent likelihood structure of the model to

account for the severe heterogeneity in both the frequency of words as well as their sentiment weights.

To robustify the model, we design a penalized maximum likelihood estimator with a single unknown

sentiment parameter for each article. A Bayesian interpretation of the penalization is to impose

a Beta-distributed prior on the sentiment parameter that centers at 1/2. That is, our estimation

begins from the prior that an article is sentiment neutral.

Finally, we establish the theoretical properties of the SESTM algorithm. In particular, we shed

light on its biases and statistical efficiency, and characterize how these properties depend on the

length of the dictionary, the number of news articles, and the average number of words per article.

This paper contributes to a nascent literature using textual analysis via machine learning for

financial research. Most prior work using text as data for finance and accounting research does little

direct statistical analysis of text. In perhaps the earliest work on text mining for return prediction,

Cowles (1933) manually reads and classifies editorials of The Wall Street Journal as bullish, bearish,

or neutral. He finds that a trading strategy that follows editor recommendations underperforms the

Dow Jones index by 3.5% per year in the 1902-1929 sample. More recent research relies largely on

sentiment dictionaries (see Loughran and Mcdonald, 2016, for a review). These studies generally find

that dictionary-based news sentiment scores are statistically significant predictors for future returns,

though the economic magnitudes tend to be small. The seminal example is Tetlock (2007), who

applies the Harvard-IV psychosocial dictionary to a subset of articles from The Wall Street Journal,

and finds that a one standard deviation increase in pessimism predicts an 8.1 basis point decline in

the Dow Jones Industrial Average on the following day (this is in-sample).1 Loughran and McDonald

(2011) create a new sentiment dictionary specifically designed for the context of finance. They analyze

10-K filings and find that sentiment scores from their dictionary have a higher correlation with filing

returns than scores based on Harvard-IV. They do not, however, explore predictive performance or

portfolio choice. In contrast with this literature, we develop a machine learning method to build

context-specific sentiment scores. We construct and evaluate the performance of trading strategies

that exploit our sentiment estimates, and find large economic gains, particularly out-of-sample.

Finally, our analysis of the speed of news assimilation in asset prices contributes to the literature on

information transmission in finance, as surveyed by Tetlock (2014).

A few exceptions in the finance literature use machine learning to analyze text, and are surveyed

in Gentzkow et al. (forthcoming). Using a Näıve Bayes approach, Antweiler and Frank (2005) find

that internet stock messages posted on Yahoo Finance and Raging Bull for about 45 companies help

predict market volatility, and the effect on stock returns is statistically significant but economically

1Using the same dictionary, Tetlock et al. (2008) predicts individual firms’ accounting earnings and returns using
the relative frequency of negative words in news stories.
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small. Manela and Moreira (2017) use support vector regression to relate frontpage text of The Wall

Street Journal to the VIX volatility index. Other related work includes Li (2010), Jegadeesh and

Wu (2013), and Huang et al. (2014). As Loughran and Mcdonald (2016) note, Näıve Bayes involves

thousands of unpublished rules and filters to measure the context of documents, and hence is opaque

and difficult to replicate. Lack of transparency is a research limitation of machine learning methods

more generally. In contrast, our model is generative, transparent, tractable, and accompanied by

theoretical guarantees. Our method is closer to modern text mining algorithms in computer science

and machine learning, such as latent Dirichlet allocation (LDA, Blei et al., 2003) and its descendants,

and vector representations of text such as word2vec (Mikolov et al., 2013). The key distinction

between our model and many such machine learning approaches is that our method is supervised

and thus customizable to specific prediction tasks. In this vein, our model is similar in spirit to

Gentzkow et al. (2019), who develop a supervised machine learning approach to study partisanship

in congressional speech.

Finally, our research relates more broadly to a burgeoning strand of literature that applies machine

learning techniques to asset pricing problems. In particular, Gu et al. (2018) review a suite of

machine learning tools for return prediction using well established numerical features from the finance

literature.2 They find that some of the best performing numerical predictors are technical indicators,

such as momentum and reversal patterns in stock prices. Our paper uses alternative data—news

text—whose dimensionality vastly exceeds that used for return prediction in past work. And, unlike

technical indicators that are difficult to interpret, the features in our analysis are counts of words,

and are thus interpretable.

The rest of the paper is organized as follows. In Section 2, we set up the model and present our

methodology. Section 3 conducts the empirical analysis. Section 4 concludes. The appendix contains

the statistical theory, mathematical proofs, and Monte Carlo simulations.

2 Methodology

To establish notation, consider a collection of n news articles and a dictionary of m words. We record

the word (or phrase) counts of the ith article in a vector di ∈ Rm+ , so that di,j is the number of times

word j occurs in article i. In matrix form, this is an n×m document-term matrix, D = [d1, ..., dn]′.

We occasionally work with a subset of columns from D, where the indices of columns included in the

subset are listed in the set S. We denote the corresponding submatrix as D·,[S]. We then use di,[S]

to denote the row vector corresponding to the ith row of D·,[S].

Articles are tagged with the identifiers of stocks mentioned in the articles. For simplicity, we

study articles that correspond to a single stock,3 and we label article i with the associated stock

return (or its idiosyncratic component), yi, on the publication date of the article.

2Other examples include Freyberger et al. (2017), Kozak et al. (2017), Kelly et al. (2017), and Feng et al. (2017).
3While this assumption is a limitation of our approach, the large majority of articles in our sample are tagged to a

single firm. In general, however, it would be an advantage to handle articles about multiple firms. For instance, Apple
and Samsung are competitors in the cellphone market, and there are news articles that draw a comparison between
them. In this case, the sentiment model requires more complexity, and we leave such extensions for future work.
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2.1 Model Setup

We assume each article possesses a sentiment score pi ∈ [0, 1]; when pi = 1, the article sentiment

is maximally positive, and when pi = 0, it is maximally negative. Furthermore, we assume that pi

serves as a sufficient statistic for the influence of the article on the stock return. That is,

di and yi are independent given pi. (1)

Along with the conditional independence assumption, we need two additional components to

fully specify the data generating process. One governs the distribution of the stock return yi given

pi, and the other governs the article word count vector di given pi.

For the conditional return distribution, we assume

P
(
sgn(yi) = 1

)
= g(pi), for a monotone increasing function g(·), (2)

where sgn(x) is the sign function that returns 1 if x > 0 and 0 otherwise. Intuitively, this assumption

states that the higher the sentiment score, the higher the probability of realizing a positive return.

Note that this modeling assumption is rather weak—we do not need to specify the full distribution

of yi or the particular form of g(·) to establish our theoretical guarantees below.

We now turn to the conditional distribution of word counts in an article. We assume the dictionary

has a partition:

{1, 2, . . . ,m} = S ∪N, (3)

where S is the index set of sentiment-charged words, N is the index set of sentiment-neutral words,

and {1, . . . ,m} is the set of indices for all words in the dictionary (S and N have dimensions |S| and

m− |S|, respectively). Likewise, di,[S] and di,[N ] are the corresponding subvectors of di and contain

counts of sentiment-charged and sentiment-neutral words, respectively.

We assume that di,[S] and di,[N ] are independent of each other. The distribution of sentiment-

neutral counts, di,[N ], is essentially a nuisance, and due to its independence from the vector of interest,

di,[S], it suffices for our purposes to leave di,[N ] unmodeled.4

We assume that sentiment-charged word counts, di,[S], are generated by a mixture multinomial

distribution of the form

di,[S] ∼ Multinomial
(
si, piO+ + (1− pi)O−

)
, (4)

where si is the total count of sentiment-charged words in article i and therefore determines the scale of

the multinomial. Next, we model the probabilities of individual word counts with a two-topic mixture

model. O+ is a probability distribution over words—it is an |S|-vector of non-negative entries with

unit `1-norm. O+ is a “positive sentiment topic,” and describes expected word frequencies in a

maximally positive sentiment article (one for which pi = 1). Likewise, O− is a “negative sentiment

4We may further model sentiment-neutral counts, di,[N ], using a standard K-topic model (Hofmann, 1999; Blei
et al., 2003). This is, however, unnecessary in our setting due to our focus on sentiment extraction.
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Figure 1: Model Diagram

Realized article di Realized return yi

Distribution
Return | Sentiment

Prob(yi > 0|pi) = g(pi)

Distribution
Text | Sentiment

Prob(di|pi) =
MN(piO+ + [1− pi]O−)

Positive
Sentiment
Topic: O+

Negative
Sentiment
Topic: O−

Underlying Sentiment
pi

Mixture
Model

p̂i

Note: Illustration of model structure.

topic” that describes the distribution of word frequencies in maximally negative articles (those for

which pi = 0). At intermediate values of sentiment 0 < pi < 1, word frequencies are a convex

combination of those from the positive and negative sentiment topics. A word j is a “positive word”

if the jth entry of (O+−O−) is positive; i.e., if the word has a larger weight in the positive sentiment

topic than in the negative sentiment topic. Similarly, a word j is a “negative word” if the jth entry

of (O+ −O−) is negative.

Figure 1 provides a visualization of the model’s structure. The data available to infer sentiment

are in the box at the top of the diagram, and include not only the realized document text, but

also the realized event return. The important feature of this model is that, for a given event i, the

distribution of sentiment-charged word counts and the distribution of returns are linked through the

common parameter, pi. Returns supervise the estimation and help identify which words are assigned

to the positive versus negative topic. A higher pi maps monotonically into a higher likelihood of

positive returns, and thus words that co-occur with positive returns are assigned high values in O+

and low values in O−.

Our objective is to learn the model parameters, O+, O−, and pi. In what follows, we detail three

steps of the SESTM procedure: 1) isolating the set of sentiment-charged words, S, 2) estimating the

topic parameters O+ and O−, and 3) predicting the article-level sentiment score pi for a new article.
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2.2 Screening for Sentiment-Charged Words

Sentiment-neutral words act as noise in our model, yet they are likely to dominate the data both

in number of terms and in total counts. Estimating a topic model for the entire dictionary that

accounts for the full joint distribution of sentiment-charged versus sentiment-neutral terms is at best

a very challenging statistical problem, and at worst may suffer from severe inefficiency and high

computational costs. Instead, our strategy is to isolate the subset of sentiment-charged words, and

then estimate a topic model to this subset alone (leaving the neutral words unmodeled).

To accomplish this, we need an effective feature selection procedure to tease out words that carry

sentiment information. We take a supervised approach that leverages the information in realized

stock returns to screen for sentiment-charged words. Intuitively, if a word frequently co-occurs in

articles that are accompanied by positive returns, that word is likely to convey positive sentiment.

Our screening procedure first calculates the frequency with which word j co-occurs with a positive

return. This is measured as

fj =
# articles including word j AND having sgn(y) = 1

# articles including word j
(5)

for each j = 1, ...,m. Equivalently, fj is the slope coefficient of a cross-article regression of sgn(y) on

a dummy variable for whether word j appears in the article. This approach is known as marginal

screening in the statistical literature (Fan and Lv, 2008). In comparison with the more complicated

multivariate regression with sparse regularization, marginal screening is not only simple to use but

also has a theoretical advantage when the signal to noise ratio is weak (Genovese et al., 2012; Ji and

Jin, 2012).

Next, we set an upper threshold, α+, and define all words having fj > 1/2 + α+ as positive

sentiment terms. Likewise, any word satisfying fj < 1/2−α− for some lower threshold α− is deemed

a negative sentiment term. Finally, we select a third threshold, κ, on the count of articles including

word j (i.e., the denominator of fj , which we denote as kj). Some sentiment words may appear

infrequently in the data sample, in which case we have very noisy information about their relevance

to sentiment. By restricting our analysis to words for which kj > κ, we ensure minimal statistical

accuracy of the frequency estimate, fj . The thresholds (α+, α−, κ) are hyper-parameters that can

be tuned via cross-validation.5

Given (α+, α−, κ), we construct the list of sentiment-charged words that appropriately exceed

these thresholds, which constitutes our estimate of the set S:6

5The definition in (5) is based on the number of articles, instead of the total number of word counts. In theory,
one could threshold based on word count rather than article count, and this would have the same consistency property
as our proposed method.

6In principle, we can combine our vocabulary with words identified in pre-existing sentiment dictionaries like
Harvard-IV. To do this, one would expand Ŝ to S̃ according to:

S̃ = Ŝ ∪
{

1 ≤ j ≤ m : max{`j , 1− `j} ≥ β
}
, (6)

where ` ∈ [0, 1]m is a vector describing sentiment weights in the pre-existing dictionary, and β is a tunable threshold.
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Ŝ =
{
j : fj ≥ 1/2 + α+, or fj ≤ 1/2− α−

}
∩ {j : kj ≥ κ}. (7)

Algorithm 1 in Appendix A summarizes our screening procedure. Theorem C.2 of Appendix C

establishes the procedure’s “sure-screening” property, by which P(Ŝ = S) approaches one as the

number of articles, n, and the number of words, m, jointly go to infinity (see, e.g. Fan and Lv, 2008).

2.3 Learning Sentiment Topics

Once we have identified the relevant wordlist S, we arrive at the (now simplified) problem of fitting

a two-topic model to the sentiment-charged counts. We can gather the two topic vectors in a matrix

O = [O+, O−], which determines the data generating process of the counts of sentiment-charged

words in each article.

O captures information on both the frequency of words as well as their sentiment. It is helpful,

in fact, to reorganize the topic vectors into a vector of frequency, F , and a vector of tone, T :

F =
1

2
(O+ +O−), T =

1

2
(O+ −O−). (8)

If a word has a larger value in F , it appears more frequently overall. If a word has a larger value in

T , its sentiment is more positive.

Classical topic models (Hofmann, 1999; Blei et al., 2003) amount to unsupervised reductions of

the text, as these models do not assume availability of training labels for documents. Our setting

differs from the classical setting because each Newswire is associated with a stock return. The returns

contain information about the sentiment of articles, and hence returns serve as training labels. In a

low signal-to-noise ratio environment, there are often large efficiency gains from exploiting document

labels via supervised learning. We therefore take a supervised learning approach to estimate O (or,

equivalently, to estimate F and T ).

In our model, the parameter pi is the article’s sentiment score, as it describes how heavily the

article tilts in favor of the positive word topic. Suppose, for now, that we observe these sentiment

scores for all articles in our sample. Let d̃i,[S] = di,[S]/si denote the vector of word frequencies. Model

(4) implies that

Ed̃i,[S] = E
di,[S]

si
= piO+ + (1− pi)O−,

or, in matrix form,

ED̃′ = OW, where W =

[
p1 · · · pn

1− p1 · · · 1− pn

]
, and D̃ = [d̃1, d̃2, . . . , d̃n]′.

Based on this fact, we propose a simple approach to estimate O via a regression of D̃ on W . Note

that we do not directly observe D̃ (because S is unobserved) or W . We estimate D̃ by plugging in Ŝ

from Algorithm 1. To estimate W , we use the standardized ranks of returns as sentiment scores for

all articles in the training sample. More precisely, for each article i in the training sample i = 1, ..., n,
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we set

p̂i =
rank of yi in {yl}nl=1

n
, (9)

and use these estimates to populate the matrix Ŵ . Intuitively, this estimator leverages the fact

that the return yi is a noisy signal for the sentiment of news in article i. This estimator, while

obviously coarse, has a number of attractive features. First, it is simple to use and sufficient to

achieve statistical guarantees for our algorithm under weak assumptions. Second, it is robust to

outliers that riddle the return data.

Algorithm 2 in Appendix A summarizes our procedure for estimating O, and Theorem C.3

in Appendix C precisely characterizes the statistical accuracy of the algorithm. The algorithm

consistently recovers the sentiment word frequency distribution, F . Its accuracy depends on the

quality of the wordlist Ŝ obtained from screening and the approximation quality of {p̂i}ni=1 for

{pi}ni=1. The estimate of the tone vector, T , suffers a small bias that depends on the correlation

between the true sentiment and the estimated sentiment, which takes the form

ρ =
12

n

n∑
i=1

(
pi −

1

2

)(
p̂i −

1

2

)
. (10)

Specifically, Theorem C.3 shows that the estimator T̂ converges to ρT . Therefore, when the estima-

tion quality of p̂ is high, the bias is small. However, this scale bias has no impact on practical usage

of the estimator. In practice, we are interested in the relative sentiment of words, not their absolute

sentiment. The scalar multiple ρ washes out entirely when considering relative sentiment.

Given n articles realized from our topic model, with a vocabulary of size |S| (i.e., the number of

words in S), and an average article length (denoted s̄), we show the convergence rate of the estimation

errors of F and ρT are bounded by
√
|S|/(ns̄), up to a logarithmic factor. In our empirical study,

the identified sentiment dictionary contains approximately 100 to 200 words, yet their total count in

one article is typically below 20. So we are primarily interested in the “short article” case, that is,

s̄/|S| ≤ C for some constant C, as opposed to the “long article” case, in which s̄/|S| → ∞. As shown

in Ke and Wang (2017), the classical unsupervised approach converges at a slower rate than ours in

the case of short articles. The statistical efficiency gain of supervised learning in the short article

setting is the central consideration behind our choice of a supervised topic modeling approach.

2.4 Scoring New Articles

The preceding steps construct estimators Ŝ and Ô. We now discuss how to estimate the sentiment

pi for a new article i that is not included from the training sample. Given our model (4),

di,[S] ∼ Multinomial
(
si, piO+ + (1− pi)O−

)
,

where di is the article’s count vector and si is its total count of sentiment-charged words. Given esti-

mates Ŝ and Ô, we can estimate pi using maximum likelihood estimation (MLE). While alternative

estimators, such as linear regression, are also consistent, we use MLE for its statistical efficiency.
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We add a penalty term, λ log(pi(1−pi)), in the likelihood function, which is described explicitly in

(A.3) of Algorithm 3. The role of the penalty is to help cope with the limited number of observations

and the low signal-to-noise ratio inherent to return prediction. Imposing the penalty shrinks the

estimate toward a neutral sentiment score of 1/2, where the amount of shrinkage depends on the

magnitude of λ.7 This penalized likelihood approach is equivalent to imposing a Beta distribution

prior on the sentiment score. Most articles have neutral sentiment, and the beta prior ensures that

this is reflected in the model estimates.

Theorem C.4 in Appendix C provides a statistical guarantee for our scoring procedure. Not

surprisingly given our earlier discussion, the estimator is inconsistent with respect to pi, and instead

converges to 1
2 + 1

ρ

(
pi − 1

2

)
. The inflation factor of 1/ρ arises from the bias in estimating T . Our

penalization is expressly intended to help deflate these estimates. As we show in Theorem C.5, our

method consistently ranks the relative sentiment scores of new articles. This implies that the bias in

p̂i has no impact on our portfolio choice application. In terms of the convergence rate, besides the

estimation error accumulated from the previous two steps, an additional error of magnitude 1/
√
s

appears. Intuitively, if the article contains very few sentiment words, its sentiment score will not be

accurately recovered. And again, in such circumstances, penalization serves to improve efficiency.

3 Empirical Analysis

In this section, we apply our text-mining framework to the problem of return prediction for in-

vestment portfolio construction. This application serves two purposes. First, it offers an empirical

demonstration of the predictive power of text that can be captured with our sentiment model. Sec-

ond, it translates the extent of predictability from statistical terms such as predictive R2 into more

meaningful economic terms, such as the growth rate in an investor’s savings attributable to harnessing

text-based information.

To develop hypotheses, it is useful to consider the potential economic sources of time series

return predictability. A natural null hypothesis for any return prediction analysis is the efficient

markets hypothesis (Fama, 1970). Market efficiency predicts that the expected return is dominated by

unforecastable news, as this news is rapidly (in its starkest form, immediately) and fully incorporated

in prices. The maintained alternative hypothesis of our research is that information in news text is not

fully absorbed by market prices instantaneously, for reasons such as limits-to-arbitrage and rationally

limited attention. As a result, information contained in news text is predictive of future asset price

paths, at least over short horizons. While this alternative hypothesis is by now uncontroversial, it

is hard to overstate its importance, as we have much to learn about the mechanisms through which

information enters prices and the frictions that impede these mechanisms. Our prediction analysis

adds new evidence to the empirical literature investigating the alternative hypothesis. In particular,

we bring to bear information from a rich news text data set. Our methodological contribution is

a new toolkit that makes it feasible to conduct a coherent statistical analysis of such complex and

7The single penalty parameter λ is common across articles. This implies that the relative ranks of article sentiment
are not influenced by penalization, which is the key information input into the trading strategy in our empirical analysis.
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Table 1: Summary Statistics

Filter Remaining Sample Size Observations Removed

Total Number of Dow Jones Newswire Articles 31, 492, 473

Combine chained articles 22, 471, 222 9, 021, 251

Remove articles with no stocks tagged 14, 044, 812 8, 426, 410

Remove articles with more than one stocks tagged 10, 364, 189 3, 680, 623

Number of articles whose tagged stocks have
three consecutive daily returns from CRSP 6,540,036
between Jan 1989 and Dec 2012

Number of articles whose tagged stocks have 6,790,592
open-to-open returns from CRSP since Feb 2004

Number of articles whose tagged stocks have 6,708,077
high-frequency returns from TAQ since Feb 2004

Note: In this table, we report the impact of each filter we apply on the number of articles in our sample. The sample
period ranges from January 1, 1989 to July 31, 2017. The CRSP three-day returns are only used in training and
validation steps, so we apply the CRSP filter only for articles dated from January 1, 1989 to December 31, 2012. The
open-to-open returns and intraday returns are used in out-of-sample periods from February 1, 2004 to July 31, 2017.

unstructured data. An ideal (and hopefully realizable) outcome of future research using our model

is to better understand how news influences investor belief formation and in turn enters prices.

3.1 Data and Pre-processing

Our text data set is the Dow Jones Newswires Machine Text Feed and Archive database. It contains

real-time news feeds from January 1, 1989 to July 31, 2017, amounting to 22,471,222 unique articles

(after combining “chained” articles). Approximately 62.5% news articles are assigned one or more

firm tags describing the primary firms to which the article pertains. To most closely align the data

with our model structure, we remove articles with more than one firm tag, or 16.4% articles, arriving

at a sample of 10,364,189 articles. We track the date, exact timestamp, tagged firm ticker, headline,

and body text of each article.

Using ticker tags, we match each article with tagged firm’s market capitalization and adjusted

daily close-to-close returns from CRSP. We do not know, a priori, the timing by which potential

new information in a Newswire article gets impounded in prices. If prices adjust slowly, then it

makes sense to align articles not only with contemporaneous returns but also with future returns.

Newswires are a highly visible information source for market participants, so presumably any delay

in price response would be short-lived. Or, it could be the case that Newswires are a restatement of

recently revealed information, in which case news is best aligned with prior returns.

Without better guidance on timing choice, we train the model by matching articles published on

day t (more specifically, between 4pm of day t−1 and 4pm of day t) with the tagged firm’s three-day

12



Figure 2: Average Article Counts
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Note: The top figure plots the average numbers of articles per half an hour (24 hour EST time) from January 1, 1989
to July 31, 2017. The bottom figure plots the average numbers of articles per calendar day. Averages are taken over
the full sample from January 1, 1987 to July 31, 2017.

return from t− 1 to t+ 1 (more specifically, from market close on day t− 2 to close on day t+ 1).8

Note that this timing is for sentiment training purposes only so as to achieve accurate parameter

estimates. In order to devise a trading strategy, for example, it is critical to align sentiment estimates

for an article only with future realized returns (we discuss this further below).

For some of our analyses we study the association between news text and intradaily returns. For

this purpose, we merge articles with transaction prices from the NYSE Trade and Quote (TAQ)

8For news that occur on holidays or weekends, we use the next available trading day as the current day t and the
last trading day before the news as day t− 1.
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Figure 3: Annual Time Series of the Total Number of Articles
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Note: This figure plots the annual time series of the total number of articles from January 1987 to July 2017. We only
provide an estimate for 2017 (highlighted in red), by annualizing the total number of articles of the few months we
observe, since we do not have a whole year’s data for this year.

database. Open-to-open and intraday returns are only used in our out-of-sample analysis from

February 2004 to July 2017. We start the out-of-sample testing period from February 2004 because,

starting in January 17, 2004, the Newswire data is streamlined and comes exclusively from one data

source. Prior to that, Newswires data are derived from multiple news sources, which among other

things can lead to redundant coverage of the same event. Although it does not affect in-sample

training and validation, this could have an adverse impact on our out-of-sample analysis that is best

suited for “fresh” news. In summary, Table 1 lists step-by-step details for our sample filters.

The top panel of Figure 2 plots the average number of articles in each half-hour interval through-

out the day. News articles arrive more frequently prior to the market open and close. The bottom

panel plots the average number of articles per day over a year. It shows leap-year and holiday effects,

as well as quarterly earnings season effects corresponding to a rise in article counts around February,

May, August, and November. Figure 3 plots the total number of news articles per year in our sample.

There is a steady increase in the number of articles until around 2007. Some news volume patterns

reflect structural changes in news data sources and some reflect variation in the number of listed

stocks. According to the Dow Jones Newswires user guide, there were three historical merges of news

sources which occurred on October 31, 1996, November 5, 2001, and January 16, 2004, respectively.

The first step is to remove proper nouns.9 Next, we follow common steps from the natural

language processing literature to clean and structure news articles.10 The first step is normalization,

including 1) changing all words in the article to lower case letters; 2) expanding contractions such as

“haven’t” to “have not”; and 3) deleting numbers, punctuations, special symbols, and non-English

9We thank Timothy Loughran for this suggestion.
10We use the natural language toolkit (NLTK) in Python to preprocess the data.
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Figure 4: News Timeline

Note: This figure describes the news timeline and our trading activities. We exclude news from 9:00 am to 9:30 am EST
from trading (our testing exercise), although these news are still used for training and validation purposes. For news
that occur on day 0, we build positions at the market opening on day 1, and rebalance at the next market opening,
holding the positions of the portfolio within the day. We call this portfolio day+1 portfolio. Similarly, we can define
day 0 and day−1, day±2, . . . , day±10 portfolios.

words.11 The second step is stemming and lemmatizing, which group together the different forms

of a word to analyze them as a single root word, e.g., “disappointment” to “disappoint,” “likes” to

“like,” and so forth.12 The third step is tokenization, which splits each article into a list of words.

The fourth step removes common stop words such as “and”, “the”, “is”, and “are.”13 Finally, we

translate each article into a vector of word counts, which constitute its so-called “bag of words”

representation.

We also obtain a list of 2,337 negative words (Fin-Neg) and 353 positive words (Fin-Pos) from

the Loughran-McDonald (LM) Sentiment Word Lists for comparison purposes.14 LM show that the

Harvard-IV misclassifies words when gauging tone in financial applications, and propose their own

dictionary for use in business and financial contexts.

3.2 Return Predictions

We train the model using rolling window estimation. The rolling window consists of a fifteen year

interval, the first ten years of which are used for training and the last five years are used for valida-

tion/tuning. We then use the subsequent one-year window for out-of-sample testing. At the end of

the testing year, we roll the entire analysis forward by a year and re-train. We iterate this procedure

until we exhaust the full sample, which amounts to estimating and validating the model 14 times.

In each training sample, we estimate a collection of SESTM models corresponding to a grid

11The list of English words is available from item 61 on http://www.nltk.org/nltk_data/.
12The lemmatization procedure uses WordNet as a reference database: https://wordnet.princeton.edu/. The

stemming procedure uses the package “porter2stemmer” on https://pypi.org/project/porter2stemmer/. Fre-
quently, the stem of an English word is not itself an English word; for example, the stem of “accretive” and “ac-
cretion” is “accret.” In such cases, we replace the root with the most frequent variant of that stem in our sample (e.g.,
“accretion”) among all words sharing the same stem, which aids interpretability of estimation output.

13We use the list of stopwords available from item 70 on http://www.nltk.org/nltk_data/.
14The Loughran-McDonald word lists also include 285 words in Fin-Unc, 731 words in Fin-Lit, 19 strong modal

words and 27 weak words. We only present results based on Fin-Neg and Fin-Pos. Other dictionaries are less relevant
to sentiment.
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Figure 5: One-day-ahead Performance Comparison of SESTM
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Note: This figure compares the out-of-sample cumulative log returns of portfolios sorted on sentiment scores. The
black, blue, and red colors represent the long-short (L-S), long (L), and short (S) portfolios, respectively. The solid
and dashed lines represent equal-weighted (EW) and value-weighted (VW) portfolios, respectively. The yellow solid
line is the S&P 500 return (SPY).

of tuning parameters.15 We use all estimated models to score each news article in the validation

sample, and select the constellation of tuning parameter values that minimizes a loss function in

the validation sample. Our loss function is the `1-norm of the differences between estimated article

sentiment scores and the corresponding standardized return ranks for all events in the validation

sample.

3.3 Daily Predictions

Figure 5 reports the cumulative one-day trading strategy returns (calculated from open-to-open)

based on out-of-sample SESTM sentiment forecasts. We report the long (denoted “L”) and short

(“S”) sides separately, as well as the overall long-short (“L-S”) strategy performance. We also

contrast performance of equal-weighted (“EW”) and value-weighted (“VW”) versions of the strategy.

Table 2 reports the corresponding summary statistics of these portfolios in detail.

In the out-of-sample test period, we estimate the sentiment scores of articles using the optimally

tuned model determined from the validation sample. In the case a stock is mentioned in multiple

news articles on the same day, we forecast the next-day return using the average sentiment score

over the coincident articles.

To evaluate out-of-sample predictive performance in economic terms, we design a trading strategy

15There are four tuning parameters in our model, including (α+, α−, κ, λ). We consider three choices for α+ and
α−, which are always set such that the number of words in each group (positive and negative) is either 25, 50, or 100.
We consider five choices of κ (86%, 88%, 90%, 92%, and 94% quantiles of the count distribution each year), and three
choices of λ (1, 5, and 10).
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Table 2: Performance of Daily News Sentiment Portfolios

Sharpe Average FF3 FF5 FF5+MOM

Formation Ratio Turnover Return α R2 α R2 α R2

EW L-S 4.29 94.6% 33 33 1.8% 32 3.0% 32 4.3%

EW L 2.12 95.8% 19 16 40.0% 16 40.3% 17 41.1%

EW S 1.21 93.4% 14 17 33.2% 16 34.2% 16 36.3%

VW L-S 1.33 91.4% 10 10 7.9% 10 9.3% 10 10.0%

VW L 1.06 93.2% 9 7 30.7% 7 30.8% 7 30.8%

VW S 0.04 89.7% 1 4 31.8% 3 32.4% 3 32.9%

Note: The table reports the performance of equal-weighted (EW) and value-weighted (VW) long-short (L-S) portfolios
and their long (L) and short (S) legs. The performance measures include (annualized) annual Sharpe ratio, annualized
expected returns, risk-adjusted alphas, and R2s with respect to the Fama-French three-factor model (“FF3”), the
Fama-French five-factor model (“FF5’), and the Fama-French five-factor model augmented to include the momentum
factor (“FF5+MOM”). We also report the strategy’s daily turnover, defined as 1

2T

∑T
t=1

(∑
i |wi,t+1 − wi,t(1 + yi,t+1)|

)
,

where wi,t is the weight of stock i in the portfolio at time t.

that leverages sentiment estimates for prediction. Our trading strategy is very simple. It is a zero-

net-investment portfolio that each day buys the 50 stocks with the most positive sentiment scores

and shorts the 50 stocks with the most negative sentiment scores.16

We consider both equal-weighted and value-weighted schemes when forming the long and short

sides of the strategy. Equal weighting is a simple and robust means of assessing predictive power of

sentiment throughout the firm size spectrum, and is anecdotally closer to the way that hedge funds

use news text for portfolio construction. Value weighting heavily overweights large stocks, which

may be justifiable for economic reasons (assigning more weight to more productive firms) and for

practical trade implementation reasons (such as limiting transaction costs).

We form portfolios every day, and hold them for anywhere from a few hours up to ten days. We

are careful to form portfolios only at the market open each day for two reasons. First, overnight

news can be challenging to act on prior to the morning open as this is the earliest time most traders

can access the market. Second, with the exception of funds that specialize in high-frequency trading,

funds are unlikely to change their positions continuously in response to intraday news because of

their investment styles and investment process constraints. Finally, following a similar choice of

Tetlock et al. (2008), we exclude articles published between 9:00am and 9:30am EST. By imposing

that trade occurs at the market open and with at least a half-hour delay, we hope to better match

realistic considerations like allowing funds time to calculate their positions in response to news and

allowing them to trade when liquidity tends to be highest. Figure 4 summarizes the news and trading

timing of our approach.

Three basic facts emerge from the one-day forecast evaluation. First, equal-weighted portfo-

lios substantially outperform their value-weighted counterparts. The long-short strategy with equal

weights earns an annualized Sharpe ratio of 4.29, versus 1.33 in the value-weighted case. This in-

dicates that news article sentiment is a stronger predictor of future returns to small stocks, all else

16In the early part of the sample, there are a handful of days for which fewer than 50 firms have non-neutral scores,
in which case we trade fewer than 100 stocks but otherwise maintain the zero-cost nature of the portfolio.
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equal. There are a number of potential economic explanations for this fact. It may arise, for example,

due to the fact that i) small stocks receive less investor attention and thus respond more slowly to

news, ii) the underlying fundamentals of small stocks are more uncertain and opaque and thus it

require more effort to process news into actionable price assessments, or iii) small stocks are less

liquid and thereby require a longer time for trading to occur to incorporate information into prices.

Second, the long side of the trade outperforms the short side, with a Sharpe ratio 2.12 versus

1.21 (in the equal-weighted case). This fact is in part due to the fact that the long side naturally

earns the market equity risk premium while the short side pays it. A further potential explanation

is that investors face short sales constraints.

Third, SESTM sentiment trading strategies have little exposure to standard aggregate risk factors.

The individual long and short legs of the trade have at most a 41% daily R2 when regressed on Fama-

French factors, while the long-short spread portfolio R2 is at most 10%. In all cases, the average

return of the strategy is almost entirely alpha. Note that, by construction, the daily turnover of the

portfolio is large. If we completely liquidated the portfolio at the end of each day, we would have a

turnover of 100% per day. Actual turnover is slightly lower, on the order of 94% for equal-weighted

implementation and 90% for value-weighted, indicating a small amount of persistence in positions.

In the value-weighted case, for example, roughly one in ten stock trades is kept on for two days—

these are instances in which news of the same sentiment for the same firm arrives in successive days.

Finally, Figure 5 shows that the long-short strategy avoids major drawdowns, and indeed appreciates

during the financial crisis while SPY sells off.

3.4 Most Impactful Words

Figure 6 reports the list of sentiment-charged words estimated from our model. These are the words

that most strongly correlate with realized price fluctuations and thus surpass the correlation screening

threshold. Because we re-estimate the model in each of our 14 training samples, the sentiment word

lists can change throughout our analysis. To illustrate the most impactful sentiment words in our

analysis, the word cloud font is drawn proportional to the words’ average sentiment tone (O+−O−)

over all 14 training samples. Table A.2 in Appendix F provides additional detail on selected words,

reporting the top 50 positive and negative sentiment words throughout our training samples.

The estimated wordlists are remarkably stable over time. Of the top 50 positive sentiment words

over all periods, 25 are selected into the positively charged set in at least 9 of the 14 training

samples. For the 50 most negative sentiment words, 25 are selected in at least 7 out of 14 samples.

The following nine negative words are selected in every training sample:

shortfall, downgrade, disappointing, tumble, blame, hurt, auditor, plunge, slowdown,

and the following words are selected into the positive word in ten or more training samples:

repurchase, surpass, upgrade, undervalue, surge, customary, jump, declare, rally, discretion, beat.

There are interesting distinctions vis-a-vis extant sentiment dictionaries. For example, in comparison

to our estimated list of the eleven most impactful positive words listed above, only one (surpass)
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Figure 6: Sentiment-charged Words

Negative Words Positive Words

Note: This figure reports the list of words in the sentiment-charged set S. Font size of a word is proportional to the
its average sentiment tone over all 14 training samples.

appears in the LM positive dictionary, and only four (surpass, upgrade, surge, discretion) appear in

Harvard-IV. Likewise, four of our nine most impactful negative terms (tumble, blame, auditor, plunge)

do not appear in the LM negative dictionary and six are absent from Harvard-IV. Thus, in addition

to the fact that our word lists are accompanied by term specific sentiment weights (contrasting with

the implicit equal weights in extant dictionaries), many of the words that we estimate to be most

important for understanding realized returns are entirely omitted from pre-existing dictionaries.

3.5 Speed of Information Assimilation

The analysis in Figure 5 and Table 2 focuses on relating news sentiment on day t to returns on day

t + 1. In the next two subsections, we investigate the timing of price responses to news sentiment

with finer resolution.

3.5.1 Lead-lag Relationship Among News and Prices

In our training sample, we estimate SESTM from the three-day return beginning the day before an

article is published and ending the day after. In Figure 7, we separately investigate the subsequent

out-of-sample association between news sentiment on day t and returns on day t−1 (from open t−1

to open t), day t, and day t+1. We report this association in the economic terms of trading strategy

performance. The association between sentiment and the t + 1 return is identical to that in Figure
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Figure 7: Price Response On Days −1, 0, and +1
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Note: This figure compares the out-of-sample cumulative log returns of long-short portfolios sorted on sentiment scores.
The Day −1 strategy (dashed black line) shows the association between news and returns one day prior to the news;
the Day 0 strategy (dashed red line) shows the association between news and returns on the same day; and the Day
+1 strategy (solid black line) shows the association between news and returns one day later. The Day −1 and Day
0 strategy performance is out-of-sample in that the model is trained on a sample that entirely precedes portfolio
formation, but these are not implementable strategies because the timing of the news article would not necessarily
allow a trader to take such positions in real time. They are instead interpreted as out-of-sample correlations between
article sentiment and realized returns in economic return units. The Day +1 strategy corresponds to the implementable
trading strategy shown in Figure 5. All strategies are equal-weighted.

5, and is rightly interpreted as performance of an implementable (out-of-sample) trading strategy.

For the association with returns on days t − 1 and t, the interpretation is different. These are not

implementable strategies because the timing of the news article would not generally allow a trader

to take a position and exploit the return at time t (and certainly not at t − 1). They are instead

interpreted as out-of-sample correlations between article sentiment and realized returns, converted

into economic return units. They are out-of-sample because the fitted article sentiment score, p̂i, is

based on a model estimated from an entirely distinct data set (that pre-dates the arrival of article i

and returns yi,t−1, yi,t, and yi,t+1). Table 3 reports summary statistics for these portfolios, including

their annualized Sharpe ratios, average returns, alphas, and turnover. For this analysis, we specialize

to equally weighted portfolios.

The Day −1 strategy (dashed black line) shows the association between news article sentiment

and the stock return one day prior to the news. This strategy thus quantifies the extent to which

our sentiment score picks up on stale news. On average, prices move ahead of news in our sample, as

indicated by the infeasible annualized Sharpe ratio of 5.88. Thus we see that much of the daily news

flow echoes previously reported news or is a new report of information already known to market

participants.

The Day 0 strategy (dashed red line) shows the association between news and returns on the
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Table 3: Price Response On Days −1, 0, and +1

Sharpe Average FF3 FF5 FF5+MOM

Formation Ratio Turnover Return α R2 α R2 α R2

Day −1

L-S 5.88 94.5% 45 45 0.1% 44 0.5% 44 0.6%

L 2.30 95.9% 20 20 0.8% 21 1.1% 21 1.1%

S 2.08 93.2% 25 24 0.5% 24 1.2% 24 1.2%

Day 0

L-S 10.78 94.6% 93 93 0.4% 93 0.5% 92 0.8%

L 5.34 96.0% 50 48 7.0% 49 7.8% 49 8.1%

S 3.56 93.3% 43 45 6.0% 44 7.0% 43 7.5%

Day +1

L-S 4.29 94.6% 33 33 1.8% 32 3.0% 32 4.3%

L 2.12 95.8% 19 16 40.0% 16 40.3% 17 41.1%

S 1.21 93.4% 14 17 33.2% 16 34.2% 16 36.3%

Day −1 to +1

L-S 12.38 94.6% 170 170 1.0% 169 2.3% 169 2.8%

L 5.67 95.9% 89 86 22.3% 86 23.2% 87 24.1%

S 3.83 93.3% 81 85 16.7% 82 18.7% 82 20.1%

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7,
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are in basis points
per day.

same day. This strategy assesses the extent to which our sentiment score captures fresh news that has

not previously been incorporated into prices. The Day 0 strategy provides the clearest out-of-sample

validation that our sentiment score accurately summarizes fresh, value-relevant information in news

text. In particular, price responses are most concentrated on the same day that the news arrives, as

reflected by the same-day infeasible annualized Sharpe ratio of 10.78.

The Day +1 strategy (solid black line) shows the association between news on day t and returns

on the subsequent day. It thus quantifies the extent to which information in our sentiment score is

impounded into prices with a delay. This corresponds exactly to the implementable trading strategy

shown in Figure 5. The excess performance of this strategy, summarized in terms of an annualized

Sharpe ratio of 4.29 (and shown to be all alpha in Table 2), supports the maintained alternative

hypothesis.

We next analyze trading strategies that trade in response to news sentiment with various time

delays. We consider very rapid price responses via intra-day high frequency trading that takes a

position either 15 or 30 minutes after the article’s time stamp, and holds positions until the next

day’s open. We also study one-day open-to-open returns initiated anywhere from one to 10 days

following the announcement.

Figure 8 reports average returns in basis points per day with shaded 95% confidence intervals.

It shows the long-short portfolio as well as the long and short legs separately. For the long-short

strategy, sentiment information is essentially fully incorporated into prices by the start of Day +3.
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Figure 8: Speed of News Assimilation

Note: This figure compares average one-day holding period returns to the news sentiment trading strategy as a function
of when the trade is initiated. We consider intra-day high frequency trading that takes place either 15 or 30 minutes
after the article’s time stamp and is held for one day (denoted +15min and +30min, respectively), and daily open-to-
open returns initiated from one to 10 days following the announcement. We report equal-weighted portfolio average
returns (in basis points per day) in excess of an equal-weighted version of the S&P 500 index, with 95% confidence
intervals given by the shaded regions. We consider the long-short (L-S) portfolio as well as the long (L) and short (S)
legs separately.

For the individual sides of the trade, the long leg appears to achieve full price incorporation within

two days, while the short leg takes one extra day.

3.5.2 Fresh News and Stale News

The evidence in Section 3.5.1 indicates that a substantial fraction of news is “old news” and already

impounded in prices by the time an article is published. The assimilation analysis of Figure 8 thus

pools together both fresh and stale news. In order to investigate the difference in price response to

fresh versus stale news, we conduct separate analyses for articles grouped by the novelty of their

content.

We construct a measure of article novelty as follows. For each article for firm i on day t, we

calculate its cosine similarity with all articles about firm i on the five trading days prior to t (denoted

by the set χi,t). Novelty of recent news is judged based on its most similar preceding article, thus

we define article novelty as

Noveltyi,t = 1− max
j∈χi,t

(
di,t · dj
‖di,t‖ ‖dj‖

)
.
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Figure 9: Speed of News Assimilation (Fresh Versus Stale News)

Note: See Figure 8. This figure divides stock-level news events based on maximum cosine similarity with the stock’s
prior news.

Figure 9 splits out our news assimilation analysis by article novelty. We partition news into two

groups. The “fresh” news group contains articles novelty score of 0.75 or more, while “stale” news

has novelty below 0.75.17 It shows that the one-day price response (from fifteen minutes after news

arrival to the open the following day) of the long-short portfolio formed on fresh news (solid blue

line) is 39 basis points, nearly doubling the 23 basis point response to stale news (solid red line).

Furthermore, it takes four days for fresh news to be fully incorporated in prices (i.e., the day five

average return is statistically indistinguishable from zero), or twice as long as the two days it takes

for prices to complete their response to stale news.

3.6 Stock Heterogeneity Analysis: Size and Volatility

Figure 9 investigates differential price responses to different types of news. In this section, we

investigate differences in price assimilation with respect to heterogeneity among stocks.

The first dimension of stock heterogeneity that we analyze is market capitalization. Larger

stocks represent a larger share of the representative investor’s wealth and command a larger fraction

of investors’ attention or information acquisition effort (e.g., Wilson, 1975; Veldkamp, 2006). In

Figure 10, we analyze the differences in price adjustment based on firm size by sorting stocks into

big and small groups (based on NYSE median market capitalization each period). Prices of large

17The average article novelty in our sample is approximately 0.75. The conclusions from Figure 9 are generally
insensitive the choice of cutoff.
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Figure 10: Speed of News Assimilation (Big Versus Small Stocks)

Note: See Figure 8. This figure divides stock-level news events based on stocks’ market capitalization. The big/small
breakpoint is defined as the NYSE median market capitalization each period.

stocks respond by 11 basis points in the first day after news arrival, and their price response is

complete after one day (the day two effect is insignificantly different from zero). The price response

of small stocks is 52 basis points in the first fifteen minutes, nearly five times larger, and it take three

days for their news to be fully incorporated into prices.

The second dimension of heterogeneity that we investigate is stock volatility. It is a limit to

arbitrage, as higher volatility dissuades traders from taking a position based on their information,

all else equal. At the same time, higher stock volatility represents more uncertainty about asset

outcomes. With more uncertainty, there are potentially larger profits to be earned by investors with

superior information, which incentivizes informed investors to allocate more attention to volatile

stocks all else equal. But higher uncertainty may also reflect that news about the stock is more

difficult to interpret, manifesting in slower incorporation into prices. The direction of this effect on

price assimilation is ambiguous.

Figure 11 shows the comparative price response of high versus low volatility firms.18 The price

response to SESTM sentiment in the first 15 minutes following news arrival is 12 basis points for

low volatility firms, but 59 basis points for high volatility firms. And while news about low volatility

firms is fully impounded in prices after one day of trading, it takes three days for news to be fully

18Specifically, we calculate idiosyncratic volatility from residuals of a market model using the preceding 250 daily
return observations. We then estimate the conditional idiosyncratic volatility via exponential smoothing according to
the formula σt =

∑∞
i=0(1− δ)δiu2

t−1−i where u is the market model residual and δ is chosen so that the exponentially-
weighted moving average has a center of mass (δ/(1− δ)) of 60 days .
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Figure 11: Speed of News Assimilation (High Versus Low Volatility Stocks)

Note: See Figure 8. This figure divides stock-level news events based on stocks’ idiosyncratic volatility. The high/low
volatility breakpoint is defined as the cross-sectional median volatility each period.

reflected in the price of a high volatility stock.

3.7 Comparison Versus Dictionary Methods and RavenPack

Our last set of analyses compare SESTM to alternative sentiment scoring methods in terms of return

prediction accuracy.

The first alternative for comparison is dictionary-based sentiment scoring. We construct the

LM sentiment score of an article by aggregating counts of words listed in their positive sentiment

dictionary (weighted by tf-idf, as recommended by Loughran and McDonald, 2011) and subtracting

off weighted counts of words in their negative dictionary. As with SESTM, we average scores from

multiple articles for the same firm in the same day. This produces a stock-day signal, p̂LMi , which

we use to construct trading strategies in the same manner as the SESTM-based signal, p̂SESTMi , in

preceding analyses.

The second alternative for comparison are news sentiment scores from RavenPack News Analytics

4 (RPNA4). As stated on its website,19

RavenPack is the leading big data analytics provider for financial services. Financial professionals

rely on RavenPack for its speed and accuracy in analyzing large amounts of unstructured content.

The company’s products allow clients to enhance returns, reduce risk and increase efficiency

by systematically incorporating the effects of public information in their models or workflows.

19https://www.ravenpack.com/about/.
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Figure 12: SESTM Versus LM and RavenPack
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Note: For top panel notes, see Figure 8. In addition to SESTM, the top panel reports trading strategy performance
for sentiment measures based on RavenPack and LM. The bottom panel compares the daily cumulative returns of
long-short portfolios constructed from SESTM, RavenPack, and LM sentiment scores, separated into equal-weighted
(EW, solid lines) and value-weighted (VW, dashed lines) portfolios, respectively. The yellow solid line is the S&P 500
return (SPY).

RavenPack’s clients include the most successful hedge funds, banks, and asset managers in the

world.

We use data from the RPNA4 DJ Edition Equities, which constructs news sentiment scores from

company-level news content sourced from the same Dow Jones sources that we use to build SESTM

(Dow Jones Newswires, Wall Street Journal, Barron’s and MarketWatch), thus the collection of news
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Table 4: SESTM Versus LM and RavenPack

Sharpe Average FF6+SESTM FF6+LM FF6+RP

EW/VW Ratio Turnover Return α t(α) R2 α t(α) R2 α t(α) R2

SESTM

EW 4.29 94.7% 33 29 14.96 7.8% 29 14.91 4.7%

VW 1.33 91.6% 10 9 4.92 10.2% 9 4.85 10.7%

RavenPack

EW 3.24 95.3% 18 15 10.87 3.0% 16 11.73 3.3%

VW 1.14 94.8% 8 7 4.22 4.3% 8 4.45 4.1%

LM

EW 1.71 94.5% 12 5 3.43 7.7% 9 5.38 4.9%

VW 0.73 93.9% 5 3 2.12 2.9% 4 2.67 3.2%

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7,
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are reported in basis
points per day.

articles that we have access to is presumably identical to that underlying RavenPack. However, the

observation count that we see in RavenPack is somewhat larger than the number of observations we

can construct from the underlying Dow Jones news. We discuss this point, along with additional

details of the RavenPack data, in Appendix E. Following the same procedure used for p̂SESTMi and

p̂LMi , we construct RavenPack daily stock-level sentiment scores (p̂RPi ) by averaging all reported

article sentiment scores pertaining to a given firm in a given day.20

We build trading strategies using each of the three sentiment scores, p̂SESTMi , p̂LMi , and p̂RPi .

Our portfolio formation procedure is identical to that in previous sections, buying the 50 stocks with

the most positive sentiment each day and shorting the 50 with the most negative sentiment. We

consider equal-weighted and value-weighted strategies.

The top panel of Figure 12 assesses the extent and timing of price responses for each sentiment

measure. It reports the average daily equally weighted trading strategy return to buying stocks

with positive news sentiment and selling those with negative news sentiment. The first and most

important conclusion from this figure is that SESTM is significantly more effective than alternatives

in identifying price-relevant content of news articles. Beginning fifteen minutes after news arrival,

the one-day long-short return based on SESTM is on average 33 basis points, versus 18 basis points

for RavenPack and 12 for LM. The plot also shows differences in the horizons over which prices

respond to each measure. The RavenPack and LM signals are fully incorporated into prices within

two days (the effect of RavenPack is borderline insignificant at three days). The SESTM signal, on

the other hand, requires four days to be fully incorporated in prices. This suggests that SESTM is

able to identify more complex information content in news articles that investors cannot fully act on

within the first day or two of trading.

The bottom panel of Figure 12 focuses on the one-day trading strategy and separately analyzes

20We use RavenPack’s flagship measure, the composite sentiment score, or CSS.
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equal and value weight strategies. It reports out-of-sample cumulative daily returns to compare

average strategy slopes and drawdowns. This figure illustrates an interesting differentiating feature

of SESTM versus RavenPack. Following 2008, and especially in mid 2014, the slope of the RavenPack

strategy noticeably flattens. While we do not have data on their subscriber base, anecdotes from the

asset management industry suggest that subscriptions to RavenPack by financial institutions grew

rapidly over this time period. In contrast, the slope of SESTM is generally stable during our test

sample.

Another important overall conclusion from our comparative analysis is that all sentiment strate-

gies show significant positive out-of-sample performance. Table 4 reports a variety of additional

statistics for each sentiment trading strategy including annualized Sharpe ratios of the daily strate-

gies shown in Figure 12, as well as their daily turnover. The SESTM strategy dominates not only in

terms of average returns, but also in terms of Sharpe ratio, and with slightly less turnover than the

alternatives. In equal-weighted terms, SESTM earns an annualized Sharpe ratio of 4.3, versus 3.2

and 1.7 for RavenPack and LM, respectively. The outperformance of SESTM is also evident when

comparing value-weighted Sharpe ratios. In this case, SESTM achieves a Sharpe ratio of 1.3 versus

1.1 for RavenPack and 0.7 for LM.

To more carefully assess the differences in performance across methods, Table 4 reports a series

of portfolio spanning tests. For each sentiment-based trading strategy, we regress its returns on

the returns of each of the competing strategies, while also controlling for daily returns to the five

Fama-French factors plus the UMD momentum factor (denoted FF6 in the table). We evaluate both

the R2 and the regression intercept (α). If a trading strategy has a significant α after controlling

for an alternative, it indicates that the underlying sentiment measure isolates predictive information

that is not fully subsumed by the alternative. Likewise, the R2 measures the extent to which trading

strategies duplicate each other.

An interesting result of the spanning tests is the overall low correlation among strategies as well as

with the Fama-French factors. The highest R2 we find is 10.7% for SESTM regressed on FF6 and the

RavenPack strategy. The SESTM α’s are in each case almost as large as its raw return. At most, 15%

of the SESTM strategy performance is explained by the controls (i.e., an equal-weighted α of 29 basis

points versus the raw average return of 33 basis points). We also see significant positive alphas for the

alternative strategies after controlling for SESTM, indicating not only that they achieve significant

positive returns, but also that a component of those excess returns are uncorrelated with SESTM

and FF6. In short, SESTM, RavenPack, and LM capture different varieties of information content

in news articles, which suggests potential mean-variance gains from combining the three strategies.

Indeed, a portfolio that places one-third weight on each of the equal-weight sentiment strategies

earns an annualized out-of-sample Sharpe ratio of 4.9, significantly exceeding the 4.3 Sharpe ratio of

SESTM on its own.
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3.8 Transaction Costs

Our trading strategy performance analysis thus far ignores transaction costs. This is because the

portfolios above are used primarily to give economic context and a sense of economic magnitude to

the strength of the predictive content of each sentiment measure. The profitability of the trading

strategy net of costs is neither here nor there for assessing sentiment predictability. Furthermore,

the comparative analysis of SESTM, LM, and RavenPack is apples-to-apples in the sense that all

three strategies face the same trading cost environment.

That said, evaluating the usefulness of news article sentiment for practical portfolio choice is a

separate question and is interesting in its own right. However, the practical viability of our sentiment

strategies is difficult to ascertain from preceding tables due to their large turnover. In this section, to

better understand the relevance of SESTM’s predictability gains for practical asset management, we

investigate the performance of sentiment-based trading strategies while taking into account trading

costs.

To approximate the net performance of a strategy, we assume that each portfolio incurs a daily

transaction cost of 2×turnover×10bps. That is, each unit of turnover incurs a total cost of 20bps, paid

as 10bps upon entry and another 10bps upon exit of a position. The choice of 10bps approximates

the average trading cost experienced by large asset managers, as reported in Frazzini et al. (2018).

We propose a novel trading strategy that directly reduces portfolio turnover and hence trading

costs. Specifically, we design a strategy that i) turns over (at most) a fixed proportion of the existing

portfolio every period and ii) assigns weights to stocks that decay exponentially with the time since

the stock was in the news. These augmentations effectively extend the stock holding period from one

day to multiple days. We refer to this approach as an exponentially-weighted calendar time (EWCT)

portfolio.

On the first day of trading, we form an equal-weighted portfolio that is long the top N stocks

in terms of news sentiment that day and short N stocks with the most negative news sentiment.

A single parameter (γ) determines the severity of the turnover constraint. Each subsequent day t,

we liquidate a fixed proportion γ of all existing positions, and reallocate that γ proportion to an

equal-weighted long-short portfolio based on day t news. For a stock i experiencing large positive

sentiment news on day t, its weight changes according to wi,t = γ
N + (1− γ)wi,t−1. For a stock i in

the long-side of the portfolio at day t− 1 but with no news on date t, its portfolio weight decays to

wi,t = (1− γ)wi,t−1. The analogous weight transitions apply to the short leg of the strategy.

To see this more clearly, consider an example with three stocks, A, B, and C, in a broader cross

section of stocks. Suppose at time t that A has a weight of zero (wA,t = 0) while B and C had their

first and only positive news five and ten days prior, respectively (that is, wB,t = (1 − γ)4γ/N and

wC,t = (1− γ)9γ/N). Now suppose that, at time t+ 1, positive news articles about stocks A and C

propel them into the long side of the sentiment strategy, and neither A, B, nor C experiences news

coverage thereafter. The weight progression of A, B, and C is the following:
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The portfolio weights for A and C spike upon news arrival and gradually revert to zero. The turnover

parameter simultaneously governs both the size of the weight spike at news arrival (the amount of

portfolio reallocation) as well as the exponential decay rate for existing weights. This is illustrated

in Figure 13. For high values of γ, new information is immediately assigned a large weight in the

portfolio and old information is quickly discarded, generating large portfolio turnover. In contrast,

low values of γ reduce turnover both by limiting the amount of wealth reallocated to the most recent

news and by holding onto past positions for longer, which in turn increases the effective holding

period of the strategy. Finally, note that the EWCT strategy guarantees daily turnover is never

larger than γ. When a stock is already in a portfolio and a new article arrives with the same sign as

recent past news (as in the example of stock C) the actual turnover will be less than γ.

Table 5 reports the performance of EWCT portfolios as we vary turnover limits from mild (γ =

0.9) to heavily restricted (γ = 0.1). Moving down the rows we see that a more severe turnover

restriction drags down the gross Sharpe ratio of the trading strategy, indicating a loss in predictive

information due to signal smoothing. This drag is offset by a reduction in trading costs. As a result,

the net Sharpe ratio peaks at 2.3 when γ = 0.5. That is, with a moderate amount of turnover control

(and concomitant signal smoothing), the gain from reducing transaction costs outweighs the loss in

predictive power. In sum, Table 5 demonstrates the attractive risk-return tradeoff to investing based

on news sentiment even after accounting for transactions costs.

Figure 13: EWCT Weight Decay

Note: Illustration of portfolio weight decay in the turnover-constrained EWCT trading strategy.
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Table 5: Performance of SESTM Long-Short Portfolios Net of Transaction Costs

Gross Net

γ Turnover Return Sharpe Ratio Return Sharpe Ratio

0.1 0.08 5.18 1.77 3.58 1.17

0.2 0.17 9.74 2.93 6.31 1.84

0.3 0.27 13.71 3.61 8.37 2.16

0.4 0.36 17.24 4.03 9.98 2.28

0.5 0.46 20.43 4.26 11.23 2.30

0.6 0.56 23.32 4.38 12.17 2.25

0.7 0.66 25.97 4.43 12.88 2.15

0.8 0.75 28.43 4.42 13.39 2.04

0.9 0.85 30.74 4.37 13.74 1.92

Note: The table reports the performance of equally-weighted long-short EWCT portfolios based on SESTM scores.
The EWCT parameter is γ. Average returns are reported in basis points per day and Sharpe ratios are annualized.
Portfolio average daily turnover is calculated as 1

2T

∑T
t=1

(∑
i |wi,t+1 − wi,t(1 + yi,t+1)|

)
.

4 Conclusion

We propose and analyze a new text-mining methodology, SESTM, for extraction of sentiment infor-

mation from text documents through supervised learning. In contrast to common sentiment scoring

approach in the finance literature, such as dictionary methods and commercial vendor platforms like

RavenPack, our framework delivers customized sentiment scores for individual research applications.

This includes isolating a list of application-specific sentiment terms, assigning sentiment weights to

these words via topic modeling, and finally aggregating terms into document-level sentiment scores.

Our methodology has the advantage of being entirely “white box” and thus clearly interpretable,

and we derive theoretical guarantees on the statistical performance of SESTM under minimal as-

sumptions. It is easy to use, requiring only basic statistical tools such as penalized regression, and

its low computational cost makes it ideally suited for analyzing big data.

To demonstrate the usefulness of our method, we analyze the information content of Dow Jones

Newswires in the practical problem of portfolio construction. In this setting, our model selects

intuitive lists of positive and negative words that gauge document sentiment. The resulting news

sentiment scores are powerful predictors of price responses to new information. To quantify the

economic magnitude of their predictive content, we construct simple trading strategies that hand-

ily outperform sentiment metrics from a commercial vendor widely-used in the asset management

industry. We also demonstrate how our approach can be used to investigate the process of price

formation in response to news.

While our empirical application targets information in business news articles for the purpose of

portfolio choice, the method is entirely general. It may be adapted to any setting in which a final

explanatory or forecasting objective supervises the extraction of conditioning information from a

text data set.
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Appendix

A Algorithms

Algorithm 1.

S1. For each word 1 ≤ j ≤ m, let

fj =
# articles including word j AND having sgn(y) = 1

# articles including word j
.

S2. For a proper threshold α+ > 0, α− > 0, and κ > 0 to be determined, construct

Ŝ =
{
j : fj ≥ 1/2 + α+

}
∪
{
j : fj ≤ 1/2− α−

}
∩ {j : kj ≥ κ},

where kj is the total count of articles in which word j appears.

Algorithm 2.

S1. Sort the returns {yi}ni=1 in ascending order. For each 1 ≤ i ≤ n, let

p̂i =
rank of yi in all returns

n
. (A.1)

S2. For 1 ≤ i ≤ n, let ŝi be the total counts of words from Ŝ in article i, and let d̂i = ŝ−1
i d

i,[Ŝ]
.

Write D̂ = [d̂1, d̂2, . . . , d̂n]. Construct

Ô = D̂Ŵ ′(ŴŴ ′)−1, where Ŵ =

[
p̂1 p̂2 · · · p̂n

1− p̂1 1− p̂2 · · · 1− p̂n

]
. (A.2)

Set negative entries of Ô to zero and re-normalize each column to have a unit `1-norm. We use

the same notation Ô for the resulting matrix. We also use Ô± to denote the two columns of

Ô = [Ô+, Ô−].

Algorithm 3.

S1. Let ŝ be the total count of words from Ŝ in the new article. Obtain p̂ by

p̂ = arg max
p∈[0,1]

{
ŝ−1

ŝ∑
j=1

dj log
(
pÔ+,j + (1− p)Ô−,j

)
+ λ log (p(1− p))

}
, (A.3)

where dj , Ô+,j , and Ô−,j are the jth entries of the corresponding vectors, and λ > 0 is a tuning

parameter.
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B Monte Carlo Simulations

In this section, we provide Monte Carlo evidence to illustrate the finite sample performance of the

estimators we propose in the algorithms above.

We assume the data generating process of the positive, negative, and neutral words in each article

follows:

di,[S] ∼ Multinomial
(
si, piO+ + (1− pi)O−

)
, di,[N ] ∼ Multinomial

(
ni, O0

)
, (B.4)

where pi ∼ Unif(0, 1), si ∼ Unif(0, 2s̄), ni ∼ Unif(0, 2n̄), and for j = 1, 2, . . . , |S|,

O+,j =
2

|S|

(
1− j

|S|

)2

+
2

3|S|
× 1{

j<
|S|
2

}, O−,j =
2

|S|

(
j

|S|

)2

+
2

3|S|
× 1{

j≥ |S|
2

},
and O0,j is drawn from 1

m−|S|Unif(0, 2), for j = |S|+1, . . . ,m, then renormalized such that
∑

j O0,j =

1. As a result, the first |S|/2 words are positive, the next |S|/2 words are negative, and the remaining

ones are neutral with frequencies randomly drawn from a uniform distribution. Apparently, if j is

close to |S|/2, word j is also fairly neutral.

Next, the sign of returns follows a logistic regression model: P(yi > 0) = pi, and its magnitude

|yi| follows a standard Student t-distribution with the degree of freedom parameter set at 4. The

standard deviation of the t-distribution has negligible effects on our simulations, since only the ranks

of returns matter.

We fix the number of Monte Carlo repetitions Mc = 200 and the number of articles in the testing

sample is 1, 000. In the benchmark case, we set |S| = 100, m = 500, n = 10, 000, s̄ = 10, and

n̄ = 100.

We first conduct an evaluation of the screening step. Instead of tuning those threshold parameters,

we select a fixed amount of words |S| which achieve large values in terms of |fj−0.5|1{kj>κ}, where κ

is set at the 10% quantiles of all kjs. We report in Figure A.1 the frequencies of each word selected in

the screening step across all Monte Carlo repetitions. There is less than 0.4% probability of selecting

any word outside the set S. Not surprisingly, the words in S that are occasionally missed are those

with corresponding entires of T around 0. Such words are closer to those neutral words in the set N .

Next, Figure A.2 illustrates the accuracy of the estimation step, taking into account the potential

errors in the screening step. The true values of T and F are shown in black. The scaling constant

ρ ≈ 0.5 in our current setting. As shown from this plot, the estimators F̂ and T̂ are fairly close to

their targets F and ρT across all words, as predicted by our theory. The largest finite sample errors

in F̂ occur to those words in F that are occasionally missed from the screening step.

Finally, we examine the accuracy of the scoring step, with errors accumulated from the previous

steps. Data from the testing sample are never used in the previous two steps. Table A.1 reports

Spearman’s rank correlation coefficients between the predicted p̂ and the true p for 1,000 articles in

the testing sample in a variety of cases. We report the rank correlation because what matters is the

rank of all articles instead of their actual scores, which are difficult to consistently estimate, because
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Figure A.1: Screening Results in Simulations
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Note: This figure reports the frequencies of each word in the set S selected in the screening step across all Monte Carlo
repetitions. The red bars correspond to those words with frequencies less than 100%. The red bar on the right reports
the aggregate frequency of a selected word outside the set S.

Figure A.2: Estimation Results in Simulations
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Note: This figure compares the averages of F̂ (blue, solid) and T̂ (red, solid) across Monte Carlo repetitions with F
(black, dotted), T (thin, black, dashed), and ρT (thick, black, dashed), respectively, using the benchmark parameters.
The blue and red dotted lines plot the 2.5% and 97.5% quantiles of the Monte Carlo estimates.
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of the biases in the previous steps. Also, the penalization term (λ = 0.5) in our likelihood biases the

estimated scores towards 0.5, although it barely has any impact on their ranks. In the benchmark

setting, the average correlation across all Monte Carlo repetitions is 0.85 with a standard deviation

0.0014. If we decrease s̄ from 10 to 5, the quality of the estimates becomes worse due to having

fewer observations from words in S. Similarly, when decrease n to 5,000, the estimates become less

accurate, since the sample size is smaller. If the size of the dictionary, m, or the size of the dictionary

of the sentiment words, |S|, drop by half, the estimates improve, despite that the improvement is

marginal. Overall, these observations match what the statistical theory predicts.

Table A.1: Spearman’s Correlation Estimates

benchmark s̄ ↓ n ↓ m ↓ |S| ↓
Avg S-Corr 0.850 0.776 0.834 0.857 0.852
Std Dev 0.0014 0.0043 0.0024 0.0025 0.0009

Note: In this table, we report the mean and standard deviation of Spearman’s correlation estimates across Monte Carlo
repetitions for a variety of cases. The parameters in the benchmark case are set as: |S| = 100, m = 500, n = 10, 000,
and s̄ = 10. In each of the remaining columns, the corresponding parameter is decreased by half, whereas the rest
three parameters are fixed the same as the benchmark case.

C Statistical Theory

We quantify the statistical accuracy of our method in an asymptotic framework where the number

of training articles, n, and the dictionary size, m, both go to infinity. Our framework allows the

average length of training articles to be finite or go to infinity, so the theory applies to both “short”

and “long” articles in the training sample. Without loss of generality, we consider a slightly different

screening procedure:

Ŝ =
{
j : |fj − 1/2| ≥ α±

}
, (C.5)

where

fj =
count of word j in articles with sgn(y) = +1

count of word j in all articles
.

It has rather similar theoretical properties as the screening procedure in Section 2, but the conditions

and conclusions are more elegant and transparent, so we choose to present theory using this approach.

The approach in the main text has a better empirical performance partially because it allows for

more tuning parameters.

C.1 Regularity Conditions

Let smax, smin, and s̄ be the maximum, minimum, and average of {si}ni=1, respectively. In our

model, sentiment-neutral word counts di,[N ] follow a multinomial distribution. Define Ωi = Edi,[N ].
21

For each j ∈ N , let Ωmin,j , Ωmax,j , and Ω̄·,j be the maximum, minimum, and average of {Ωi,j}ni=1,

21If we write di,[N ] ∼ Multinomial(ni, qi), where ni is the total count of words from N in document i and qi ∈ R|N|+

is a distribution on the space of N , then Ωi = niqi.
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respectively. We assume

smax

s̄
≤ C, max

j∈N

Ωmax,j

Ω̄·,j
≤ C, min

j∈S

ns̄(O+,j +O−,j)

log(m)
→∞, min

j∈N

nΩ̄·,j
log(m)

→∞. (C.6)

The last two inequalities in (C.6) require the expected count of any word in all of n training articles

to be much larger than log(m). Since n is large in real data, this condition is mild. For a constant

c0 ∈ (0, 1), we assume

min
j∈S

∑n
i=1 si

[
piO+,j + (1− pi)O−,j

]∑n
i=1 si(O+,j +O−,j)

≥ c0. (C.7)

This condition (which is for technical convenience) says that the expected count of a word j ∈ S in

all training articles cannot be much smaller than ns̄Fj , where Fj is the vector of frequency defined

in (8). We also assume

1

n

n∑
i=1

pi =
1

2
,

∑n
i=1 si E[sgn(yi)]∑n

i=1 si
= 0, (C.8)

This condition essentially requires that we have approximately equal number of articles with positive

and negative tone. Note that we can always keep the same number of articles associated with positive

and negative returns in the training stage, so this condition is mild. We also assume∑n
i=1 Ωi,j E[sgn(yi)]∑n

i=1 Ωi,j
= 0, for all j ∈ N. (C.9)

This condition ensures that the count of any sentiment-neutral word has no correlation with the sign

of the stock returns (so they are indeed “sentiment-neutral”). All equalities in (C.8)-(C.9) do not

need to hold exactly. We impose exact equalities so that the conclusions are more elegant.

C.2 Accuracy of the Estimators in Algorithms 1 and 2

First, we consider the screening step. We define a quantity to capture the sensitivity of stock returns

to article sentiment:

θ ≡
∑n

i=1 si
(
pi − 1

2

)[
g(pi)− 1

2 ]∑n
i=1 si

, (C.10)

where g(·) is the monotone increasing function defined in (2). When g(1
2) = 1

2 , this quantity is lower

bounded by [minx∈[0,1] g
′(x)][ 1

ns̄

∑n
i=1 si(pi −

1
2)2]. Roughly speaking, θ measures the steepness of g

and the extremeness of training articles’ polarities.

Theorem C.1. Consider the model (1)-(4), where (C.6)-(C.9) hold. As n,m→∞, with probability

1− o(1),

|fj − 1/2|


≥ 2θ

|O+,j−O−,j |
O+,j+O−,j

+
C
√

log(m)√
nmin{1, s̄(O+,j+O−,j)}

, for j ∈ S,

≤ C
√

log(m)√
nmin{1, Ω̄·,j}

, for j ∈ N.

The set of retrained words, Ŝ, is obtained by thresholding |fj−1/2| at α±. Theorem C.1 suggests

that |fj − 1/2| is large for sentiment-charged words and small for sentiment-neutral words, justifying
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that the screening step is meaningful. We say that the screening step has the sure-screening property

(Fan and Lv, 2008) if P(Ŝ = S) = 1− o(1).

Theorem C.2 (Sure Screening). Consider the model (1)-(4), where (C.6)-(C.9) hold. We assume

nθ2 min
j∈S

(O+,j −O−,j)2

(O+,j +O−,j)2
≥ log2(m)

min
{

1, s̄minj∈S(O+,j +O−,j), minj∈N Ω̄·,j
} . (C.11)

In the screening step (C.5), we set α± =

√
log(m) log(log(m))√

nmin{1, s̄minj∈S(O+,j+O−,j),minj∈N Ω̄·,j}
. Then, as n,m→∞,

P(Ŝ = S) = 1− o(1).

The desired number of training articles for sure screening is determined by three factors. First, θ.

The sensitivity of stock returns to article sentiment, defined in (C.10). Second, minj∈S
|O+,j−O−,j |
O+,j+O−,j

. It

represents the word’s frequency-adjusted sentiment. Third, min{1, s̄minj∈S(O+,j+O−,j),minj∈N Ω̄·,j}.
Note that the last two terms in the minimum are related to the per-article count of individual words.

For “long articles” where the per-article count of each word is bounded below by a constant, this

factor equals 1. For “short articles”, the per-article count of a word may tend to zero, so we need to

have more training articles.

Next, we consider the estimation step of Algorithm 2. We quantify the estimation errors on F

and T . The results can be directly translated to estimation errors on O+ and O−.

Theorem C.3 (Estimation Error of Sentiment Vectors). Consider the model (1)-(4), where (C.6)-

(C.9) and (C.11) hold. As n,m→∞, with probability 1− o(1),

‖F̂ − F‖1 ≤ C
√
|S| log(m)

ns̄
, ‖T̂ − ρT‖1 ≤ C

√
|S| log(m)

ns̄
.

We now compare the rate with the theoretical results of topic estimation in unsupervised settings.

It was shown in Ke and Wang (2017) that, given n articles, written on a size-|S| dictionary, with

an average length of s̄, the minimax convergence rate of the `1-norm distance between true and

estimated topic vectors is √
|S|
ns̄
, up to a logarithmic factor.

Our model imposes a 2-topic topic model on sentiment-charged words, so the intrinsic discionary

size is |S|. Therefore, our method has achieved the best possible error rate of unsupervised methods.

However, for unsupervised methods to achieve this rate, they typically require the average document

length to be much larger than the dictionary size (Ke and Wang, 2017). Translated to our setting,

it means the total count of sentiment-charged words in one article needs to be much larger than

the size of the dictionary of sentiment-charged words. This is not satisfied in our empirical study,

where the identified sentiment dictionary has 100 ∼ 200 words, yet their total count in one article

is typically below 20. In this case, our supervised approach has a much smaller error rate than the

unsupervised methods.
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However, the supervised approach comes with a price: Our method is estimating (F, ρT ), instead

of (F, T ). Fortunately, since ρ > 0 always holds (by our assumption (2)), T and ρT give exactly the

same ranks on words. It means, regardless of the errors of estimating pi by p̂i, our method always

preserves the order of the tone of words. This property is very important, as it guarantees that in

the scoring step our method always correctly identifies whether a new article has positive or negative

sentiment, regardless of the errors in p̂i.

When p̂i = pi, the factor ρ = 1. So, our method precisely estimates T . When p̂i 6= pi, this factor

is smaller than 1, so our method “discounts” the vector of tone. Once the exact distribution of yi

given pi is specified, this factor can be computed explicitly.

C.3 Accuracy of the Estimator in Algorithm 3

Given a new article with sentiment p, define the rescaled sentiment as

p∗ =
1

2
+ ρ−1

(
p− 1

2

)
.22 (C.12)

It maps p ∈ [0, 1] to p∗ ∈ [1−ρ−1

2 , 1+ρ−1

2 ], while preserving the order of (p− 1
2). Our scoring step gives

a consistent estimator of p∗.

Theorem C.4 (Scoring Error on New Article). Consider the model (1)-(4), where (C.6)-(C.9) hold.

Define O(ρ) = [O
(ρ)
+ , O

(ρ)
− ], with O

(ρ)
± = F ± ρT . Suppose (C.11) is satisfied with O replaced by O(ρ).

Let d ∈ Rm+ be the word count vector of a new article with sentiment p. For a constant c1 ∈ (0, 1
2),

we assume that pO+,j + (1 − p)O−,j ≥ c1(O+,j + O−,j), for all j ∈ S, and that c1 ≤ p∗ ≤ 1 − c1,

where p∗ is the rescaled sentiment. Write

errn =
1

ρ
√

Θ

(√
|S| log(m)

ρ
√
ns̄Θ

+
1√
s

)
, where Θ =

∑
j∈S

(O+,j −O−,j)2

O+,j +O−,j
.

We assume the length of the new article satisfies sΘ → ∞. Let p̂ be the estimator in (A.3) with a

tuning parameter λ > 0. For any ε > 0, with probability 1− ε,

|p̂− p∗| ≤ C min
{

1,
ρ2Θ

λ

}
errn + C min

{
1,

λ

ρ2Θ

}
|p∗ − 1

2
|.

Therefore, the optimal choice of tuning parameter is λ = ρ2Θ

|p∗− 1
2
|errn, and the associated scoring error

is |p̂− p∗| ≤ C min{errn, |p∗ − 1
2 |}.

The choice of λ yields a bias-variance trade-off. In the error bound for |p̂ − p∗|, the first term

min
{

1, ρ
2Θ
λ

}
errn is the “variance” term, decreasing with λ; the second term min

{
1, λ

ρ2Θ

}
|p∗ − 1

2 | is

the “bias” term, increasing with λ. In reality, it is a common belief that the majority of articles have

a neutral tone, so the bias is negligible. At the same time, text data are very noisy, so adding the

22In this subsection, we condition on the returns {yi}ni=1 in training, hence, ρ is treated as a non-random number.
At the same time, by assumption (1), the conditional probability law is the same as the unconditional probability law.
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penalty can significantly reduce the variance. Our estimator shares the same spirit as the James-Stein

estimator (James and Stein, 1961) by shrinking the MLE of p towards 1
2 . Interestingly, given that

the true sentiment p is closer to 1
2 than p∗, the shrinkage effect here helps reduce the scaling effect

in (C.12), which means in some scenarios our estimator does a better job estimating the original p.

The error rate errn has two terms, corresponding to the noise level in the training phase and the

scoring phase, respectively. Since n is large, the latter always dominates. The factor Θ captures the

‘similarity’ between two columns of O and is typically at the constant order. To guarantee errn → 0,

we need that the length of the new article goes to infinity asymptotically. Nonetheless, the length of

training articles can be finite.

Our estimator has a bias on estimating the original sentiment p. When the estimation quality in

p̂i’s is good, ρ ≈ 1 and the bias (p∗− p) is small. More importantly, even with a large bias, it has no

impact on practical usage, as the estimator preserves the relative rank of sentiments when applied

to score multiple articles.

Theorem C.5 (Rank Correlation with True Sentiment). Under conditions of Theorem C.4, suppose

we are given N new articles whose sentiments p1, . . . , pN are iid sampled from a continuous distribu-

tion on P(c1) ≡ {p ∈ [0, 1] : pO+,j + (1− p)O−,j ≥ c1(O+,j +O−,j), for all j ∈ S; c1 ≤ p∗ ≤ 1− c1},
where c1 ∈ (0, 1

2) is a constant. We assume the length of each new article i satisfies C−1s ≤ si ≤ Cs,
where sΘ/

√
log(N) → ∞. We apply the estimator (A.3) with λ ∈ [ρ2Θ errn,

ρ2Θ

|p∗− 1
2
|errn] to score

all new articles. Let SR(p̂, p) be the Spearman’s rank correlation between {p̂}Ni=1 and {pi}Ni=1. As

n,m,N →∞,

E[SR(p̂, p)]→ 1.

D Mathematical Proofs

D.1 Proofs of Theorem C.1 and Theorem C.2

Proof. First, we prove Theorem C.1. For each word 1 ≤ j ≤ m, let L+
j and L−j be the total counts

of word j in articles with positive and negative returns, respectively. Write for short ti = sgn(yi) ∈
{±1}, for 1 ≤ i ≤ n. Then, L±j =

∑n
i=1

1±ti
2 · di,j . It follows that

fj =
1

2
+

1

2

L+
j − L

−
j

L+
j + L−j

=
1

2
+

∑n
i=1 ti · di,j∑n
i=1 di,j

. (D.13)

Below, we study fj for j ∈ S and j ∈ N , separately.

Consider j ∈ S. As in (8), we let F = 1
2(O+ +O−) and T = 1

2(O+ −O−). We also introduce the

notations ηi = 2pi−1 and ηi(g) = 2g(pi)−1. By our model, di ∼ Multinomial
(
si, piO++(1−pi)O−

)
,

where piO+ + (1− pi)O− = 1+ηi
2 O+ + 1−ηi

2 O− = F + ηiT . It follows that

di,j ∼ Binomial
(
si, Fj + ηiTj

)
. (D.14)

Let {bi,j,`}si`=1 be a collection of iid Bernoulli variables with a success probability (Fj + ηiTj). Then,
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di,j
(d)
=
∑si

`=1 bi,j,`, where
(d)
= means two variables have the same distribution. It follows that

fj
(d)
=

1

2
+

∑n
i=1

∑si
`=1 ti · bi,j,`∑n

i=1

∑si
`=1 bi,j,`

, where bi,j,`
iid∼ Bernoulli(Fj + ηiTj). (D.15)

The variables {bi,j,`} are mutually independent, with |bi,j,`| ≤ 1, Ebi,j,` = Fj + ηiTj and var(bi,j,`) ≤
Fj + ηiTj ≤ 2Fj . Using the Bernstein’s inequality (Shorack and Wellner, 2009), we obtain that, with

probability 1−O(m−2),

∣∣∣ n∑
i=1

si∑
`=1

bi,j,` −
n∑
i=1

si(Fj + ηiTj)
∣∣∣ ≤ C

√√√√ n∑
i=1

2siFj log(m) + log(m)

≤ C
√
ns̄Fj log(m) + log(m)

≤ C
√
ns̄Fj log(m),

where the last inequality is due to (C.6) which says ns̄Fj � log(m). Similarly, we apply Bernstein’s

inequality to study
∑n

i=1

∑si
`=1 ti ·qi,j,`. By our model (1), {ti}ni=1 and {di,j}1≤i≤n,1≤j≤m are mutually

independent. We thereby condition on {ti}ni=1. It follows that, with probability 1−O(m−2),

∣∣∣ n∑
i=1

si∑
`=1

ti · bi,j,` −
n∑
i=1

ti · si(Fj + ηiTj)
∣∣∣ ≤ C√ns̄Fj log(m).

We plug the above inequalities into (D.15). It gives

fj =
1

2
+

∑n
i=1 tisi(Fj + ηiTj) +O

(√
ns̄Fj log(m)

)∑n
i=1 si(Fj + ηiTj) +O

(√
ns̄Fj log(m)

)
=

1

2
+
Fj
∑n

i=1 tisi + Tj
∑n

i=1 tiηisi +O
(√

ns̄Fj log(m)
)

Fj
∑n

i=1 si + Tj
∑n

i=1 ηisi +O
(√

ns̄Fj log(m)
) . (D.16)

In the denominator, the sum of the first two terms can be rewritten as
∑n

i=1 si[piO+,j +(1−pi)O−,j ].
It is upper bounded by 2ns̄Fj , and by (C.7), it is also lower bounded by 2c0ns̄Fj . Furthermore, since

ns̄Fj � log(m), the last term is negligible compared to the first two terms. Hence, the denominator

in (D.16) is between c0ns̄Fj and 4ns̄Fj . It follows that

|fj − 1/2| ≥
|Tj
∑n

i=1 tiηisi|
4ns̄Fj

−
|Fj
∑n

i=1 tisi|
c0ns̄Fj

+
O
(√

ns̄Fj log(m)
)

c0ns̄Fj
(D.17)

We now deal with the randomness of {ti}ni=1. They are independent variables such that |ti| ≤ 1 and

Eti = ηi(g). It follows that
∑n

i=1 ηisiE[ti] =
∑n

i=1 siηiηi(g) = 4ns̄θ and
∑n

i=1 |ηisiti|2 ≤ 4
∑n

i=1 s
2
i ≤

4nsmaxs̄ ≤ Cns̄2. Plugging them into the Hoeffding’s inequality (Shorack and Wellner, 2009) gives:
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with probability 1−O(m−2),

∣∣∣ n∑
i=1

ηisiti − 4ns̄θ
∣∣∣ ≤ Cs̄√n log(m).

In particular, we know that |
∑n

i=1 ηisiti| ≥ 2ns̄θ. Similarly, with probability 1−O(m−2), |
∑n

i=1 siti−∑n
i=1 siEti| ≤ Cs̄

√
n log(m). Note that

∑n
i=1 siEti = 0, due to the second equality in (C.8). So, we

have |
∑n

i=1 siti| ≤ Cs̄
√
n log(m). We plug these results into (D.17) and find out that

|fj − 1/2| ≥ |Tj |2ns̄θ
4ns̄Fj

−
Fj · Cs̄

√
n log(m)

c0ns̄Fj
+
O
(√

ns̄Fj log(m)
)

c0ns̄Fj

≥ θ|Tj |
2Fj

+O
(√

log(m)
n

)
+O

(√
log(m)
ns̄Fj

)
. (D.18)

This gives the first claim of Theorem C.1.

Consider j ∈ N . We model that di,[N ] follows a multinomial distribution with Edi,[N ] = Ωi.

Equivalently, di,[N ] ∼ Multinomial(ki, qi), where ki is the count of all words from N in article i and

qi ≡ k−1
i Ωi. Same as before, we view di,j as the sum of ki iid Bernoulli variables, each with a success

probability of qi,j . Using the Bernstein’s inequality, we can prove that, with probability 1−O(m−2),

|
∑n

i=1 di,j −
∑n

i=1 kiqi,j | ≤ C
√∑n

i=1 kiqi,j log(m) + log(m). Here,
∑n

i=1 kiqi,j =
∑n

i=1 Ωi,j = nΩ̄·,j ,

where by (C.6), nΩ̄·,j � log(m). Therefore, we have

∣∣∣ n∑
i=1

di,j −
n∑
i=1

Ωi,j

∣∣∣ ≤ C√nΩ̄·,j log(m).

Similarly, conditioning on {ti}ni=1, with probability 1−O(m−2),

∣∣∣ n∑
i=1

tidi,j −
n∑
i=1

tiΩi,j

∣∣∣ ≤ C√nΩ̄·,j log(m).

Plugging them into (D.13) gives

fj =
1

2
+

∑n
i=1 tiΩi,j +O

(
[nΩ̄·,j log(m)]

1
2

)∑n
i=1 Ωi,j +O

(
[nΩ̄·,j log(m)]

1
2

)
=

1

2
+

∑n
i=1 tiΩi,j +O

(
[nΩ̄·,j log(m)]

1
2

)
nΩ̄·,j +O

(
[nΩ̄·,j log(m)]

1
2

) . (D.19)

We then deal with the randomness of {ti}ni=1. By Hoeffding’s inequality, with probability 1−O(m−2),

|
∑n

i=1 Ωi,j(ti−Eti)| ≤ C
√∑n

i=1 Ω2
i,j log(m) ≤ CΩ̄·,j

√
n log(m), where the last inequality is from the

condition Ωmax,j ≤ CΩ̄·,j . Moreover, by our condition (C.8),
∑n

i=1 Ωi,jEti = 0. The above imply

∣∣∣ n∑
i=1

tiΩi,j

∣∣∣ ≤ CΩ̄·,j
√
n log(m).
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We plug it into (D.19) and note that the denominator of (D.19) is & nΩ̄·,j , since nΩ̄·,j � log(m). It

follows that

|fj − 1/2| ≤
CΩ̄·,j

√
n log(m) +O

(
[nΩ̄·,j log(m)]

1
2

)
nΩ̄·,j

≤ O
(√

log(m)
n

)
+O

(√
log(m)
nΩ̄·,j

)
. (D.20)

This gives the second claim of Theorem C.1.

Next, we prove Theorem C.2. By (D.18) and (D.20), with probability 1−O(m−1), simultaneously

for all 1 ≤ j ≤ m,

|fj − 1/2|

≥
θ|Tj |
2Fj

+O(en), j ∈ S,

≤ O(en), j ∈ N,

where e2
n = (min{1, s̄minj∈S Fj , minj∈N Ω̄·,j)

−1 log(m)
n . The assumption (C.11) ensures that

θ|Tj |
2Fj
�

en
√

log(m). By setting the threshold at en
√

log(log(m)), all words in S will retain and all words in

N will be screened out.

D.2 Proof of Theorem C.3

Proof. By Theorem C.2, P(Ŝ = S) = 1−o(1). Hence, we assume Ŝ = S without loss of generality. In

Algorithm 2, Ô is obtained by modifying and renormalizing Õ = D̂Ŵ ′(ŴŴ ′)−1. Since ED̂ = OW ,

we define a counterpart of Ô by

O∗ = OWŴ (ŴŴ ′)−1.

Let F ∗ = 1
2(O∗+ +O∗−) and T ∗ = 1

2(O∗+ −O∗−). In the first part of our proof, we show that

‖F ∗ − F‖1 = O(n−1), ‖T ∗ − ρT‖1 = O(n−1) (D.21)

In the second part of our proof, we show that

‖Ô± −O∗±‖1 ≤ C
√
|S| log(m)/(ns̄). (D.22)

The claim follows by combining (D.21)-(D.22).

First, we show (D.21). By definition,

[F ∗, T ∗] = O∗

[
1
2

1
2

1
2 −1

2

]
= O(WŴ )(ŴŴ ′)−1

[
1
2

1
2

1
2 −1

2

]

= [F, T ]

[
1 1

1 −1

]
(WŴ )(ŴŴ ′)−1

[
1
2

1
2

1
2 −1

2

]
︸ ︷︷ ︸

≡M

. (D.23)

We now calculate the 2× 2 matrix M . With the returns sorted in the ascending order, y(1) < y(2) <
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. . . < y(n), Algorithm 2 sets p̂(i) = i/n, for 1 ≤ i ≤ n. It follows that

ŴŴ ′ =

[ ∑n
i=1 p̂

2
i

∑n
i=1(1− p̂i)p̂i∑n

i=1(1− p̂i)p̂i
∑n

i=1(1− p̂i)2

]
=

[ ∑n
i=1 p̂

2
(i)

∑n
i=1(1− p̂(i))p̂(i)∑n

i=1(1− p̂(i))p̂(i)

∑n
i=1(1− p̂(i))

2

]
.

It is known that
∑n

i=1 i = n(n+1)
2 and

∑n
i=1 i

2 = n(n+1)(2n+1)
6 . We thereby calculate each entry of

ŴŴ ′: First,
∑n

i=1 p̂
2
(i) = 1

n2

∑n
i=1 i

2 = n
3 [1+O(n−1)]. Second,

∑n
i=1(1−p̂(i))p̂(i) = 1

n2

∑n
i=1 i(n−i) =

1
n

∑n
i=1 i −

1
n2

∑n
i=1 i

2 = n
6 [1 + O(n−1)]. Third,

∑n
i=1(1 − p̂(i))

2 = 1
n2

∑n
i=1(n − i)2 = 1

n2

∑n−1
i=0 i

2 =
n
3 [1 +O(n−1)]. Combining them gives

n−1(ŴŴ ′) =

[
1
3

1
6

1
6

1
3

]
+O(n−1) =⇒ n(ŴŴ ′)−1 =

[
4 −2

−2 4

]
+O(n−1). (D.24)

Additionally, by direct calculations,

n−1(WŴ ′) =

[
1
n

∑
i pip̂i

1
n

∑
i pi(1− p̂i)

1
n

∑
i(1− pi)p̂i

1
n

∑
i(1− pi)(1− p̂i)

]
. (D.25)

We now plug (D.24)-(D.25) into (D.23). It gives

M =

[
1 1

1 −1

][
1
n

∑
i pip̂i

1
n

∑
i pi(1− p̂i)

1
n

∑
i(1− pi)p̂i

1
n

∑
i(1− pi)(1− p̂i)

][
4 −2

−2 4

][
1
2

1
2

1
2 −1

2

]

=

[
1 6

n

∑
i(p̂i −

1
2)

2
n

∑
i(pi −

1
2) 12

n

∑
i(pi −

1
2)(p̂i − 1

2)

]
.

The condition (C.8) yields M21 = 0. The way we construct {p̂i}ni=1 ensures M12 = O(n−1). Combined

with the definition of ρ in (10), the above imply

M =

[
1 0

0 ρ

]
+O(n−1). (D.26)

Then, (D.21) follows from plugging in (D.26) into (D.23).

Second, we show (D.22). Let O = [O+, O−] be the matrix obtained from setting negative entries

of Õ to zero. Algorithm 2 outputs Ô± = (1/‖O±‖1)O±. It follows that, for j ∈ S,

|Ô±,j −O∗±,j | ≤ |O±,j −O∗±,j |+ |O±,j | ·
∣∣∣ 1

‖O±‖1
− 1
∣∣∣.

Since ‖O∗±‖1 = 1, we have |‖O±‖−1
1 − 1| = ‖O±‖−1

1 |‖O±‖1 − ‖O∗±‖1| ≤ ‖O±‖
−1
1 ‖O± −O∗±‖1. Hence,

|Ô±,j −O∗±,j | ≤ |O±,j −O∗±,j |+
|O±,j |
‖O±‖1

‖O± −O∗±‖1. (D.27)

Summing over j on both sides gives ‖Ô±−O∗±‖1 ≤ 2‖O±−O∗±‖1. Moreover, since O∗± are nonnegative
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vectors, truncating out negative entries in O± always makes it closer to O∗±. It implies ‖Õ±−O∗±‖1 ≤
‖O± −O∗±‖1. Combining the above gives

‖Ô± −O∗±‖1 ≤ 2‖Õ± −O∗±‖1. (D.28)

Therefore, to show (D.22), it suffices to bound ‖Õ± −O∗±‖1.

Let W be the matrix whose i-th column is (pi, 1−pi)′. Since we have assumed Ŝ = S, it holds that

d̂i = d̃i = s−1
i di. By model (4), sid̂i ∼ Multinomial(si, piO+ + (1− pi)O−). It leads to Ed̂i = (OW )i.

Write Z = D̂ − ED̂. Then, D̂ = OW + Z and

Õ = (OW + Z)Ŵ ′(ŴŴ ′)−1 = O∗ + ZŴ ′(ŴŴ ′)−1.

Let zi be the i-th column of Z, 1 ≤ i ≤ n. Plugging in the form of Ŵ , we have

ZŴ ′(ŴŴ ′)−1 =
[∑n

i=1 p̂izi
∑n

i=1(1− p̂i)zi
]

(ŴŴ ′)−1.

It follows that

‖Õ±,j −O∗±,j‖1 ≤ max

{∣∣∣ 1
n

n∑
i=1

p̂iZi,j

∣∣∣, ∣∣∣ 1
n

n∑
i=1

(1− p̂i)Zi,j
∣∣∣}∥∥n(ŴŴ ′)−1

∥∥
1

≤ C max

{∣∣∣ 1
n

n∑
i=1

p̂iZi,j

∣∣∣, ∣∣∣ 1
n

n∑
i=1

(1− p̂i)Zi,j
∣∣∣}, (D.29)

where in the last line we have used (D.25). We now bound | 1n
∑n

i=1 p̂iZi,j |. The bound for | 1n
∑n

i=1(1−
p̂i)Zi,j | can be obtained similarly, so the proof is omitted. Since {p̂i}ni=1 are constructed from {yi}ni=1,

they are independent of {Zi,j}ni=1 by our assumption (1). We thus condition on {p̂i}ni=1. Let {bi,j,`}si`=1

be a collection of iid Bernoulli variables with a success probability [piO+,j + (1−pi)O−,j ]. Then, di,j

has the same distribution as
∑si

`=1 bi,j,`. It follows that Zi,j
(d)
=
∑si

`=1 s
−1
i (bi,j,` − Ebi,j,`). Hence,

n∑
i=1

p̂iZi,j =

n∑
i=1

si∑
`=1

p̂is
−1
i (bi,j,` − Ebi,j,`).

Conditioning on {p̂i}ni=1, the variables p̂is
−1
i (bi,j,`−Ebi,j,`) are mutually independent, upper bounded

by 2s−1
min ≤ Cs̄−1, each with mean 0 and variance ≤ s̄−2(O+,j +O+,j) = 2s̄−2Fj . By the Bernstein’s

inequality, with probability 1−O(m−2),

∣∣∣ n∑
i=1

p̂iZi,j

∣∣∣ ≤ C√ns̄−1Fj log(m) + Cs̄−1 log(m) ≤ C
√
ns̄−1Fj log(m), (D.30)

where the last line is due to ns̄Fj/ log(m)→∞. The bound for |
∑n

i=1(1−p̂i)Zi,j | is similar. Plugging

them into (D.29) gives

‖Õ±,j −O∗±,j‖1 ≤ C
√
Fj log(m)
√
ns̄

. (D.31)
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It follows from Cauchy-Schwarz inequality that

‖Õ± −O∗±‖1 ≤ C
√

log(m)

ns̄

∑
j∈S

√
Fj ≤ C

√
log(m)

ns̄
· |S|

1
2

(∑
j∈S

Fj

) 1
2 ≤ C

√
|S| log(m)

ns̄
.

This proves (D.22). The proof is now complete.

D.3 Proof of Theorem C.4

Proof. By Theorem C.2, P(Ŝ = S) = 1− o(1). Hence, we assume Ŝ = S without loss of generality.

We need some preparation. First, by our assumption, Fj +ηTj = pO+,j +(1−p)O−,j ≥ c1(O+,j +

O−,j) = 2c1Fj . Second, by (D.31) in the proof of Theorem C.3, |F̂j − Fj | ≤ C
√
Fj log(m)/(ns̄) and

|T̂j − ρTj | ≤ C
√
Fj log(m)/(ns̄). Since ns̄Fj � log(m), we immediately obtain |F̂j − Fj | = o(Fj).

Third, the condition (C.11) guarantees nθ2 ρ
2T 2
j

F 2
j
≥ log2(m)

s̄Fj
. In other words, ρ|Tj | �

√
Fj log(m)/(ns̄).

So, |T̂j − ρTj | � ρ|Tj |. We summarize these results as follows: for any j ∈ S,

|Fj + ηTj |
Fj

≥ 2c1,
max{|F̂j − Fj |, |T̂j − ρTj |}

Fj
≤ C

√
log(m)

ns̄Fj
,

|T̂j − ρTj |
ρ|Tj |

= o(1). (D.32)

We now proceed to the proof. Let η = 2p− 1 and η̂ = 2p̂− 1. Then,

|p̂− p∗| = 1

2
|η̂ − ρ−1η|. (D.33)

It suffices to bound |η̂ − ρ−1η|. We first show that the claim holds on the event |η̂ − ρ−1η| ≤ c1. We

then show that this event holds with probability 1− o(1).

Suppose |η̂−ρ−1η| ≤ c1. Let F̂ = 1
2(Ô+ + Ô−) and T̂ = 1

2(Ô+− Ô−). Since p(1−p) = (1−η2)/4

and pÔ+,j + (1− p)Ô−,j = F̂ + ηT̂j , the penalized MLE (A.3) has an equivalent form:

η̂ = argmaxη∈[−1,1]`λ(η), where `λ(η) ≡ s−1
∑
j∈S

dj log(F̂j + ηT̂j) + λ log(1− η) + λ log(1 + η).

It follows that `λ(η̂) ≥ `λ(ρ−1η). Rearranging the terms gives

s−1
∑
j∈S

dj log

(
1 +

(η̂ − ρ−1η)T̂j

F̂j + ρ−1ηT̂j

)
+ λ log

(
1 +

η̂ − ρ−1η

1 + ρ−1η

)
+ λ log

(
1− η̂ − ρ−1η

1− ρ−1η

)
≥ 0. (D.34)

Note that 1 + ρ−1η = 2p∗ ≥ 2c1. So, on the event |η̂ − ρ−1η| ≤ c1,
∣∣ η̂−ρ−1η

1+ρ−1η

∣∣ ≤ 1
2 . Following a similar

argument, we have
∣∣ η̂−ρ−1η

1−ρ−1η

∣∣ ≤ 1
2 . Note that log(1± x) ≤ ±x− x2

4 for x ∈ [−1
2 ,

1
2 ]. It follows that

log
(

1 +
η̂ − ρ−1η

1 + ρ−1η

)
+ log

(
1− η̂ − ρ−1η

1− ρ−1η

)
≤ η̂ − ρ−1η

1 + ρ−1η
− (η̂ − ρ−1η)2

4(1 + ρ−1η)2
− η̂ − ρ−1η

1− ρ−1η
− (η̂ − ρ−1η)2

4(1− ρ−1η)2
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= − (η̂ − ρ−1η)
2ρ−1η

1− ρ−2η2
− (η̂ − ρ−1η)2 1 + ρ−2η2

2(1− ρ−2η2)2
. (D.35)

Also, by (D.32), F̂j+ρ
−1ηT̂j ∼ Fj+ηTj ≥ 2c1Fj and |T̂j | ∼ ρ|Tj |. Hence,

∣∣ (η̂−ρ−1η)T̂j

F̂j+ρ−1ηT̂j

∣∣ ≤ |η̂−ρ−1η|· ρ2c1 ,

which is bounded by 1
2 on the event |η̂ − ρ−1η| ≤ c1. Note that log(1 + x) ≤ x− x2

4 for x ∈ [−1
2 ,

1
2 ].

We thus have

s−1
∑
j∈S

dj log

(
1 +

(η̂ − ρ−1η)T̂j

F̂j + ρ−1ηT̂j

)

≤ (η̂ − ρ−1η)
∑
j∈S

s−1dj T̂j

F̂j + ρ−1ηT̂j
− (η̂ − ρ−1η)2

∑
j∈S

s−1dj T̂
2
j

4(F̂j + ρ−1ηT̂j)2
. (D.36)

We plug (D.35)-(D.36) into (D.34). It gives

(η̂ − ρ−1η)X1 − (η̂ − ρ−1η)2X2 ≥ 0, =⇒ |η̂ − ρ−1η| ≤ |X1|
X2

, (D.37)

where

X1 =
∑
j∈S

s−1dj T̂j

F̂j + ρ−1ηT̂j
− 2λρ−1η

1− ρ−2η2
, X2 =

∑
j∈S

s−1dj T̂
2
j

4(F̂j + ρ−1ηT̂j)2
+
λ(1 + ρ−2η2)

2(1− ρ−2η2)2
.

Below, we give an upper bound for |X1| and a lower bound for X2.

Consider X1. Since (F̂ , T̂ ) are obtained from the training data, they are independent of d. We

thus condition on (F̂ , T̂ ). Using (D.32), we can get∣∣∣∣∑
j∈S

T̂js
−1Edj

F̂j + ρ−1ηT̂j

∣∣∣∣
≤
∣∣∣∣∑
j∈S

ρTjs
−1Edj

Fj + ηTj

∣∣∣∣+

∣∣∣∣∑
j∈S

(T̂j − ρTj)s−1Edj
F̂j + ρ−1ηT̂j

∣∣∣∣+

∣∣∣∣∑
j∈S

ρTjs
−1Edj

(
1

F̂j + ρ−1ηT̂j
− 1

Fj + ηTj

)∣∣∣∣
≤
∣∣∣∣∑
j∈S

ρTjs
−1Edj

Fj + ηTj

∣∣∣∣+
∑
j∈S

|T̂j − ρTj |s−1Edj
2(Fj + ηTj)

+
∑
j∈S

ρ|Tj |s−1Edj
|F̂j − Fj |+ ρ−1η|T̂j − ρTj |

2(Fj + ηTj)

=

∣∣∣∣ρ∑
j∈S

Tj

∣∣∣∣+
1

2

∑
j∈S
|T̂j − ρTj |+

1

2

∑
j∈S

ρ|Tj |
(
|F̂j − Fj |+ ρ−1η|T̂j − ρTj |

)
≤0 + C‖F̂ − F‖1 + C‖T̂ − ρT‖1

≤C
√
|S| log(m)

ns̄
,

where the second last line is due to
∑

j∈S O+,j =
∑

j∈S O−,j = 1 and the last line is by Theorem C.3.

Moreover, since the covariance matrix of dj is s·diag(F+ηT )−s(F+ηT )(F+ηT )′ � s·diag(F+ηT ),
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we have

Var

(∑
j∈S

T̂js
−1dj

F̂j + ρ−1ηT̂j

)
≤
∑
j∈S

T̂ 2
j s
−2 · s(Fj + ηTj)

(F̂j + ρ−1ηT̂j)2

≤ Cs−1
∑
j∈S

ρ2T 2
j

Fj
+ Cs−1

∑
j∈S

(T̂j − ρTj)2

Fj

≤ Cs−1ρ2Θ + Cs−1 |S| log(m)

ns̄
,

where we have used (D.32). Let {b`}s`=1 be iid variables, where b` ∼ Multinomial(1, F + ηT ). Then,

d has the same distribution as
∑s

`=1 b`. It follows that

∑
j∈S

T̂js
−1dj

F̂j + ρ−1ηT̂j

(d)
=

s∑
`=1

ξ`, with ξ` ≡
∑
j∈S

b`,j T̂j

F̂j + ρ−1ηT̂j
.

Conditioning on (F̂ , T̂ ), {ξ`}s`=1 are iid variables, with |ξ`| ≤ ρ(2sc1)−1
∑

j∈S |b`,j | ≤ ρ(2sc1)−1. Also,

in the above, we have derived the bound for |
∑s

`=1 Eξ`| and Var(
∑s

`=1 ξ`). We apply the Bernstein’s

inequality and find out that, for any ε ∈ (0, 1), with probability 1− ε,∣∣∣∣∑
j∈S

T̂js
−1dj

F̂j + ρ−1ηT̂j

∣∣∣∣ ≤ C
√
|S| log(m)

ns̄
+ Cρ

√
Θ log(ε−1)

s
+
ρ log(ε−1)

2c1s

≤ C
√
|S| log(m)

ns̄
+ Cρ

√
Θ log(ε−1)

s
, (D.38)

where the last line is because sΘ→∞. We plug (D.38) into the expression of X1. Additionally, we

notice that 1− ρ−2η−2 = (1 + ρ−1η)(1− ρ−1η) = 4p∗(1− p∗) ≥ 4c2
1. Hence, with probability 1− ε,

|X1| ≤
λ

2c2
1

|ρ−1η|+ C

√
|S| log(m)

ns̄
+ Cρ

√
Θ log(ε−1)

s
. (D.39)

Consider X2. It is seen that, conditioning on (F̂ , T̂ ),

∑
j∈S

T̂ 2
j s
−1Edj

4(F̂j + ρ−1ηT̂j)2
=
∑
j∈S

T̂ 2
j s
−1[s(Fj + ηTj)]

4(F̂j + ρ−1ηT̂j)2
≥ C−1

∑
j∈S

ρ2T 2
j

Fj
≥ C−1ρ2Θ.

At the same time,

Var

(∑
j∈S

T̂ 2
j s
−1dj

4(F̂j + ρ−1ηT̂j)2

)
≤
∑
j∈S

T̂ 4
j s
−2[s(Fj + ηTj)]

16(F̂j + ρ−1ηT̂j)4
≤ Cs−1

∑
j∈S

ρ4T 4
j

F 3
j

≤ Cs−1ρ4Θ.

Similarly as proving (D.38), we then introduce variables {b`}s`=1 and apply the Bernstein’s inequality.

Note that the above variance is much smaller than the square of the mean, due to sΘ→∞. It follows
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that, with probability 1− ε, ∑
j∈S

T̂ 2
j s
−1dj

4(F̂j + ρ−1ηT̂j)2
≥ C−1ρ2Θ. (D.40)

We plug (D.40) into the expression of X2 and note that 1− ρ−2η2 = 4p∗(1− p∗) ≤ 1. It yields that

X2 ≥
λ

2
+ C−1ρ2Θ. (D.41)

We now plug (D.39) and (D.41) into (D.37). It follows that

|η̂ − ρ−1η| ≤ C
λ|ρ−1η|+

√
|S| log(m)

ns̄ + ρ

√
Θ log(ε−1)

s

λ+ ρ2Θ

By separating two cases, λ ≤ ρ2Θ and λ > ρ2Θ, we immediately obtain

|η̂ − ρ−1η| ≤ C


λ
ρ2Θ
|ρ−1η|+

(√
|S| log(m)

ρ2Θ
√
ns̄

+

√
log(ε−1)

ρ
√

Θs

)
, if λ ≤ ρ2Θ,

|ρ−1η|+ ρ2Θ
λ

(√
|S| log(m)

ρ2Θ
√
ns̄

+

√
log(ε−1)

ρ
√

Θs

)
, if λ > ρ2Θ.

Combining it with (D.33) and noting that ρ−1η = 2(p∗ − 1
2), we have the desired claim.

What remains is to show that the event |η̂ − ρ−1η| ≤ c1 holds with probability 1− o(1). For the

function `λ(·), by direct calculations,

`′λ(η) =
∑
j∈S

dj T̂j

F̂j + ηT̂j
− 2λη

1− η2
, `′′λ(η) = −

∑
j∈S

dj T̂
2
j

2(F̂j + ηT̂j)2
− λ(1 + η2)

2(1− η2)2
.

As η → +1, `′λ(η)→ −∞; as η → −1, `′λ(η)→ +∞. Hence, the maximum is attained in the interior

of (−1, 1). Since the true p∗ ∈ [c1, 1 − c1], it follows that |ρ−1η| ≤ |1 − 2c1|. We now evaluate `′λ(·)
at 1− 1.9c1. Following the same argument as proving (D.38), we can show that

`′λ(1− 2c1) =
∑
j∈S

ρTj(Fj + ηTj)

Fj + (1− 1.9c1)ρTj
− 2λ(1− 1.9c1)

[1− (1− 1.9c1)2]2
+O

(√
|S| log(m)

ns̄

)
+O

(
ρ

√
Θ log(ε−1)

s

)
= −

∑
j∈S

ρ2[(1− 1.9c1)− ρ−1η]T 2
j

[Fj + (1− 1.9c1)ρTj ]
− 2λ(1− 1.9c1)

[1− (1− 1.9c1)2]2
+ o(λ+ ρ2Θ)

≥ −0.1c1ρ
2Θ− 2λ(1− 1.9c1)

[1− (1− 1.9c1)2]2
+O

(√
|S| log(m)

ns̄

)
+ o(λ+ ρ2Θ).

So, it is strictly negative. As a result, the maximum cannot be attained at [1− 1.9c1, 1). Similarly,

we can prove that the maximum cannot be attained at (−1,−1+1.9c1]. Now, we have restricted our

attention to a compact interval that is bounded away from ±1 by at least 1.9c1. For any η0 in this

interval, Fj + η0Tj ≥ cFj for a constant c > 0. This allows us to mimic the proof of (D.40)-(D.41)

to get

−`′′λ(η0) ≥ C−1(λ+ ρ2Θ), for η0 in this compact interval.
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By Taylor expansion, there exists η0, whose value is between ρ−1η and η̂, such that

0 = `′λ(η̂) = `′λ(ρ−1η) + `′′λ(η0)(η̂ − ρ−1η).

If |η̂ − ρ−1η| > c1, then the above implies |`′λ(ρ−1η)| ≥ c1|`′′λ(η0)| ≥ C−1(λ + ρ2Θ). On the other

hand, we notice that X1 = `′λ(ρ−1η), where we have proved in (D.39) that |X1| = o(λ+ ρ2Θ). This

yields a contradiction. The proof is now complete.

D.4 Proof of Theorem C.5

Proof. Since {pi}Ni=1 are drawn from a continuous density, with probability 1, their values are distinct

from each other. The Spearman correlation coefficient has an equivalent form:

SR(p̂, p) = 1− 1

N(N2 − 1)

N∑
i=1

(r̂i − ri)2, (D.42)

where ri is the rank of pi among {pi}Ni=1, which also equals to the rank of p∗i among {p∗i }Ni=1, and r̂i

is the rank of p̂i among {p̂i}Ni=1. By definition,

ri =
N∑
j=1

sgn(p∗i − p∗j ) +N + 1, r̂i =
N∑
j=1

sgn(p̂i − p̂j) +N + 1,

where the sign function takes values in {0,±1}. In the proof of Theorem C.4, letting ε = N−2, we

get the following result: Conditioning on {pi}Ni=1, with probability 1−N−2,

max
1≤i≤N

|p̂i − p∗i | ≤ δ, where δ =
C

ρ
√

Θ

(√
|S| log(m)

ρ
√
ns̄Θ

+

√
log(N)√
s

)
. (D.43)

We note that the quantity ρ on the right hand side depends on the training labels while the probability

law is with respect to the randomness of the training and testing articles. By the assumption (1), we

can always condition on the training labels and treat ρ as a constant. Let D be the event that (D.43)

holds simultaneously for all 1 ≤ i ≤ N . Using the probability union bound, we have P(D) = 1−N−1.

For each 1 ≤ i ≤ N , define the index set

Bi(3δ) = {1 ≤ j ≤ N : j 6= i, |p∗j − p∗i | ≤ 3δ}.

On the event D, for j /∈ Bi(3δ), |p∗i − p∗j | > 3δ, while |p̂i − p∗i | ≤ δ and |p̂j − p∗j | ≤ δ; hence, (p̂i − p̂j)
must have the same sign as (p∗i − p∗j ). It follows that

|ri − rj | ≤
∑

j∈Bi(3δ)

(
|sgn(p∗i − p∗j )|+ |sgn(p̂i − p̂j)|

)
≤ 2|Bi(3δ)|.
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We plug it into (D.42) and note that |r̂i − ri|2 ≤ N |r̂i − ri|. It yields

1− SR(p̂, p) ≤ 1

N2 − 1

N∑
i=1

|r̂i − ri| ≤
2N

N2 − 1
max

1≤i≤N
|Bi(3δ)|. (D.44)

In other words, conditioning on {p∗i }Ni=1, (D.44) holds with probability 1−N−1.

We now bound |Bi(3δ)|, taking into consideration the randomness of {p∗i }Ni=1. Each p∗i is a

non-random, linear, monotonically increasing function of pi (note: ρ is treated as non-random; see

explanations above). Therefore, the distribution assumption on {pi}Ni=1 yields that {p∗i }Ni=1 are iid

drawn from a continuous distribution on [c1, 1−c1]. The probability density of this distribution must

be Lipschitz. Fix 1 ≤ i ≤ N and write

|Bi(3δ)| =
∑
j 6=i

1
{
p∗j ∈ [p∗i − 3δ, p∗i + 3δ] ∩ [c1, 1− c1]

}
.

Conditioning on p∗i , the other p∗j ’s are iid drawn from a Lipschitz probability density. As a result,

each other p∗j has a probability of O(δ) to fall within a distance of 3δ to p∗i , i.e., |Bi(3δ)| is the sum

of (N − 1) iid Bernoulli variables with a success probability of O(δ). By the Bernstein’s inequality,

with probability 1−N−2,

|Bi(3δ)| ≤ CNδ + C
√
Nδ log(N) + C log(N).

Combining it with the probability union bound, with probability 1−N−1, the above inequality holds

simultaneously for all 1 ≤ i ≤ N . We then plug it into (D.44) and get

1− SR(p̂, p) ≤ Cδ + C

√
δ log(N)

N
+
C log(N)

N
≤ C max

{
δ,

log(N)

N

}
. (D.45)

Under our assumption, the right hand side of (D.45) is o(1). The claim follows immediately.

E RavenPack

The data we use are composite sentiment scores from RavenPack News Analytics 4 (RPNA4) DJ

Edition Equities. The underlying news data for this version of RavenPack should be identical to the

collection of Dow Jones articles that we use to build SESTM. However, the observation count that

we see in RavenPack is somewhat larger than the number of observations we can construct from

the underlying Dow Jones news. The discrepancy arises from the black-box transformations that

RavenPack applies during its analytics process. Ultimately, what we observe in RavenPack is their

collection of article-level scores that is indexed by stock ticker and time, and it is not possible to

accurately map RavenPack observations back to the original news. As a result, we cannot pin down

the precise source of the difference in observation counts between our two data sets. The most likely

explanation is that RavenPack uses a proprietary algorithm to assign ticker tags to articles, while
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Figure A.3: Dow Jones Newswire and RavenPack Observation Counts

we rely on the tags assigned directly by Dow Jones.

Figure A.3 shows the differences in observation counts in our data set (the complete set of Dow

Jones Newswires from 1984 through mid-2017) versus RavenPack. We restrict all counts to those

having a uniquely matched stock identifier in CRSP. We see that early in the sample the article

counts for Newswires and RavenPack are similar, but this difference grows over time. When we map

Newswires to CRSP, we use articles’ stock identifier tags, which are provided by Dow Jones. Our

interpretation of the figure is that, over time, RavenPack has become more active in assigning their

own stock assignments to previously untagged articles.

F Additional Exhibits
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Table A.2: List of Top 50 Positive/Negative Sentiment Words

Positive Negative
Word Score Samples Word Score Samples

undervalue 0.596 13 shortfall 0.323 14
repurchase 0.573 14 downgrade 0.382 14
surpass 0.554 14 disappointing 0.392 14
upgrade 0.551 14 tumble 0.402 14
rally 0.548 10 blame 0.414 14
surge 0.547 13 hurt 0.414 14
treasury 0.543 9 plummet 0.423 13
customary 0.539 11 auditor 0.424 14
imbalance 0.538 8 plunge 0.429 14
jump 0.538 11 waiver 0.429 12
declare 0.535 11 miss 0.43 13
unsolicited 0.535 9 slowdown 0.433 14
up 0.534 7 halt 0.435 11
discretion 0.531 10 sluggish 0.439 12
buy 0.531 9 lower 0.441 11
climb 0.528 9 downward 0.443 12
bullish 0.527 7 warn 0.444 12
beat 0.527 10 fall 0.446 11
tender 0.526 9 covenant 0.451 9
top 0.525 9 woe 0.452 9
visible 0.524 6 slash 0.453 10
soar 0.524 7 resign 0.454 11
horizon 0.523 4 delay 0.454 9
tanker 0.523 7 subpoena 0.454 9
deepwater 0.522 7 lackluster 0.455 10
reconnaissance 0.522 7 soften 0.456 11
tag 0.521 5 default 0.46 9
deter 0.521 3 soft 0.46 9
valve 0.519 6 widen 0.46 9
foray 0.519 3 postpone 0.46 10
clip 0.519 4 unfortunately 0.46 10
fastener 0.519 7 insufficient 0.462 8
bracket 0.519 7 unlawful 0.462 10
potent 0.519 4 issuable 0.462 9
unanimously 0.519 6 unfavorable 0.462 8
buoy 0.518 3 regain 0.462 9
bake 0.518 3 deficit 0.462 9
get 0.518 3 irregularity 0.463 9
fragment 0.518 4 erosion 0.464 8
activist 0.518 3 bondholder 0.464 9
cardiology 0.518 3 weak 0.465 9
oversold 0.517 2 hamper 0.465 9
bidder 0.517 6 overrun 0.467 3
cheer 0.517 3 inefficiency 0.467 7
exceed 0.517 7 persistent 0.468 7
terrain 0.517 6 notify 0.468 9
terrific 0.516 3 allotment 0.469 8
upbeat 0.516 3 worse 0.469 7
gratify 0.515 6 setback 0.471 7
armor 0.515 6 grace 0.472 5

Note: The table reports the average sentiment scores for the 50 most positive and negative sentiment words in our
sample. We sort lists based on average sentiment tone (O+ −O−) over all 14 training samples and report the average
sentiment score for each word as well as the number of training samples for which it is included in the sentiment-charged
list.

54


	Introduction
	Methodology
	Model Setup
	Screening for Sentiment-Charged Words
	Learning Sentiment Topics
	Scoring New Articles

	Empirical Analysis
	Data and Pre-processing
	Return Predictions
	Daily Predictions
	Most Impactful Words
	Speed of Information Assimilation
	Lead-lag Relationship Among News and Prices
	Fresh News and Stale News

	Stock Heterogeneity Analysis: Size and Volatility
	Comparison Versus Dictionary Methods and RavenPack
	Transaction Costs
	Conclusion 
	Algorithms
	Monte Carlo Simulations
	Statistical Theory
	Regularity Conditions
	Accuracy of the Estimators in Algorithms 1 and 2
	Accuracy of the Estimator in Algorithm 3
	Mathematical Proofs
	Proofs of Theorem C.1 and Theorem C.2
	Proof of Theorem C.3
	Proof of Theorem C.4
	Proof of Theorem C.5

	RavenPack
	Additional Exhibits







