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1 Introduction

Economists and cognitive scientists have long theorized that cognitive resources are limited, and that
individuals may simplify complex decisions by deliberately using heuristic shortcuts or by processing
only a subset of available information (Caplin, 2016; Maćkowiak et al., 2018; Gabaix, 2019).1 For
example, when choosing whether or not to buy a product sold for a posted price of $17.99 and a sales
tax rate of 7%, some consumers might reduce the cognitive burden of computing the total after-tax
price by instead choosing to ignore the sales tax completely. Other consumers might approximate
the sales tax with a rough sense of how much tax they usually pay when they buy ∼$17.99 worth of
products, including instances in which not all of the products are subject to the tax. And yet other
consumers might approximate the tax to be negligibly less than 10% of $17.99, which they compute
easily by moving the decimal point one digit to the left.

In the first two of these example cases the consumers underreact to sales taxes—they behave as
if the taxes are smaller than they are. In the last case, the consumers overreact. Intuition suggests,
however, that when purchasing an expensive electronics product or an automobile, consumers may
choose to exert more cognitive effort to compute the actual price that they would end up paying,
thereby reducing their propensity to both over- and underreact.

Such deliberate, and plausibly elastic, use of cognitive shortcuts may not only play an important
role in recent findings of misreaction to sales taxes (Chetty et al., 2009; Feldman and Ruffle, 2015;
Taubinsky and Rees-Jones, 2018), but may also play a role in misreaction to shipping and handling
charges (Hossain and Morgan, 2006), energy prices (Allcott and Taubinsky, 2015), various features
of health insurance contracts (Handel and Kolstad, 2015; Bhargava et al., 2017; Abaluck and Adams,
2017), left-digit bias (Lacetera et al., 2012; Shlain, 2019), shrouded financial fees (Heidhues et al.,
2017), and add-on charges (Gabaix and Laibson, 2006).

This relatively recent but quickly growing empirical literature has provided compelling reduced-
form tests that consumers misreact to opaque prices in various settings, but the mechanisms still
remain largely unexplored. One possibility, as in the example above, is that consumers are aware of
the opaque prices, are in principle capable of correctly incorporating them into their decisions, but
choose not to do so to avoid cognitive costs. This mechanism is in line with the resource rationality
framework in the cognitive sciences (Lieder and Griffiths, 2019), which recognizes “mental effort as a
domain of decision-making” (Shenhav et al., 2017). The resource rationality framework decomposes
“the value of having applied a heuristic into the utility of the judgment, decision, or belief update that
results from it and the computational cost of its execution” (Lieder and Griffiths, 2019).

However, avoidance of attention costs is not the only plausible source of misreaction. Other pos-
sible sources of misreaction may include complete unawareness of the opaque price, incorrect beliefs
generated by systematic mislearning2 or misleading marketing, forgetting, or a systemic lack of fi-
nancial literacy that prevents consumers from reaching the right answer no matter how hard they
try.

1See also Lieder and Griffiths (2019) for a review of the work in the cognitive sciences.
2See, e.g., Schwartzstein (2014) and Hanna et al. (2014).
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This paper develops a theoretical, statistical, and experimental methodology for testing whether
costly attention is a source of misreaction to opaque prices. We begin in Section 2 by formalizing
the economic environment and several types of costly inattention models. Consumers must decide
whether or not to buy a good or service that has both a transparent posted price and an opaque price.
Consumers have a prior perception of the post-tax price that they can access costlessly, and which can
vary between consumers, as in our example. We consider several formulations of the cognitive costs of
updating: the Shannon cost function used in rational inattention models,3 and the attention weight
adjustment cost function of Gabaix (2014).

We establish that both types of cost functions have a simple reduced-form representation in our
economic setting: both models lead to consumer behavior that looks as if the consumer places some
(possibly stochastic) weight on the opaque price (e.g., Chetty et al., 2009; DellaVigna, 2009). We
call this weight the revealed valuation weight, or just valuation weight for short, because it is easily
estimated from observable price variation, as in the reduced-form regression models used to quantify
under- and overreaction in applied empirical work. In the context of sales taxes, a valuation weight of,
e.g., θ = 0.4 means that imposing a sales tax of size t decreases demand as much as increasing posted
prices by 0.4t would decrease demand.

This simplification is in the spirit of Matejka and McKay (2015) who show that rational inattention
with Shannon entropy leads to choices that follow the multinomial logit model. It is also in the spirit
of Caplin et al. (2018), who produce a reduced-form representation of rational inattention by drawing
a link between the Psychometric Weber curve and the theory of competitive supply, and show how
basic microeconomic tools can be used to quantify attention costs. We complement these papers by
showing how theories of costly attention can be linked to the reduced-form models used by empirical
economists to study opaque prices.

The underlying costly attention models discipline the reduced-form valuation weights in several
straightforward and economically meaningful ways. First, they imply that if there are individual
differences, then these should be persistent across different levels of stakes; e.g., consumers who tend to
overreact at moderate stakes should also tend to overreact at higher stakes. Second, the costly attention
models imply that the valuation weights should approach one as the stakes increase. In settings such
as those of Chetty et al. (2009), where consumers underreact to sales taxes on average, the average
underreaction must thus decrease as the stakes increase (e.g., as the sales tax rate increases). A more
demanding empirical test, however, is that the higher is the valuation weight at moderate stakes, the
smaller is the degree by which it increases when stakes increase. In particular, the valuation weights
should decrease for consumers who overreact and increase for consumers who underreact.

We test these predictions in the context of a prominent and policy-relevant domain of behavior:
consumer response to sales taxes not included in posted prices. Because the strongest tests of costly
attention models concern individual differences in how misreaction varies with the stakes, we develop

3This formulation leads to a model that is almost identical to rational inattention models, with one exception: because
we allow priors to be heterogeneous, we allow for systematically biased perceptions of the true value. This heterogeneity
is necessary to capture individual differences in the tendency to either under- or overreact to the sales tax, which we
show are very significant in our data. This clarification is meant only for readers who define rational inattention as
having systematically unbiased beliefs.
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a new experimental design in which the size of the tax rate is varied exogenously within consumers
over time. Existing empirical work, such as that of Chetty et al. (2009), Feldman and Ruffle (2015),
Feldman et al. (2018), or Taubinsky and Rees-Jones (2018) does not feature within-consumer variation
in stake size, and thus cannot be used to test these predictions.

Our experiment features 1,534 consumers who approximate the U.S. adult population on age,
gender, and income, and who are drawn from the forty-five U.S. states with positive sales taxes. The
experiment utilizes an online shopping environment with nine different non-tax-exempt household
products, such as cleaning supplies. Each consumer encounters three of the nine products in three
different type of “stores” at random posted prices. The three different types of stores feature either
1) no sales taxes, 2) standard sales taxes identical to those in the consumer’s city of residence, or
3) high sales taxes that are triple those in the consumer’s city of residence. Each consumer thus
encounters 3× 3 product by store pairs, with each associated to a set of random prices. Decisions in
the experiment are incentive compatible: study participants receive a $16 budget to potentially buy
one of the randomly chosen products in one of the randomly purchased stores, and purchased products
are shipped to their homes.

We begin our analysis in Section 4 by computing average underreaction to taxes of varying size,
exploiting both the exogenous variation in prices and the exogenous variation in tax rates. We find
striking evidence for the prediction that misreaction depends on stakes. The average valuation weight
is 0.23 for the smallest price at standard tax rates, and is 0.79 for the largest price at triple tax rates.
The average increases monotonically in the absolute size of the tax, and in a manner that is invariant
to whether the absolute size of the tax is high because the tax rate is high or because the price is
high. Direct tests of consumers’ knowledge and computational ability suggest that our findings are
more consistent with consumers knowing the tax rate and exerting effort to compute the tax-inclusive
price, rather than engaging in information acquisition about the tax rate.

In Section 5 we move to reduced-form tests of predictions about individual differences. As we
discuss in that section, a key challenge for tests of individual differences is that it is not possible to
compute estimates of valuation weights at the individual level with a reasonable degree of precision,
since individual-level valuations of the products can only be measured with substantial noise. These
challenges are not unique to our setting, and would pose problems for most within-subject experiments
seeking to quantify individual differences.4 To overcome this challenge and generate simple reduced-
form tests of our individual-level predictions, we leverage the multiple decisions feature of our design
to form “leave-out instruments” for consumers’ attention. We use one product to divide consumers
by whether their willingness to buy dropped significantly or not in response to the standard tax rate,
and we then estimate those two groups’ valuation weights using decisions in the other two products.

These instruments are powerful, which is consistent with significant individual differences. Con-
sumers in the high valuation weight group have an average valuation weight of 1.04 (95% CI 0.83-1.26)
for standard taxes, while consumers in the low valuation weight group have an average valuation weight
of 0.25 (95% CI 0.08-0.42) for standard taxes. Consistent with the prediction that individual differ-
ences are persistent across stakes, we find that in the triple tax store, consumers classified as having

4This includes many experiments in which authors choose to report individual-level estimates nonetheless.
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high valuation weights in the standard tax store have an average valuation weight of 1.20 (95% CI
1.10-1.31), while consumers classified as having low valuation weights in the standard tax store have
an average valuation weight of 0.64 (95% CI 0.57-0.72).

Using this methodology we establish two key empirical results that are consistent with the pre-
diction that valuation weights should get closer to one as stakes increase. First, when the tax rates
are tripled, consumers in the low valuation weight group exhibit a significantly larger increase in their
valuation weights than consumers in the high valuation weight group (0.39 vs. 0.16; 95% CI for differ-
ence 0.03-0.43). Second, when we construct analogous instruments that divide consumers into groups
based on how much they adjust their valuation weight as stakes increase, we find that consumers in
the low adjustment group have significantly higher valuation weights in both the standard tax regime
(0.85 vs. 0.34; 95% CI for difference 0.28-0.75) and in the triple tax regime (0.86 vs. 0.76; 95% CI for
difference -0.01-0.20). This second result is consistent with the prediction that the smallest valuation
weight changes should occur for consumers with the highest prior perceptions, which translate to high
valuation weights in both the standard and high stakes environments.

Having established significant and persistent individual differences in valuation weights, as well as
heterogeneous attention responses to higher stakes that are consistent with costly attention models,
we ask three additional questions in Section 6. First, are the individual differences large enough that
some consumers overreact to standard taxes? If so, can we show that some consumers decrease their
valuation weights when the stakes increase? And finally, how large is the variance of the valuation
weights, which Taubinsky and Rees-Jones (2018) show is a key input in efficiency cost calculations?

To answer these questions, we develop new econometric techniques for bounding individual differ-
ences. First, we develop a new approach that produces a lower bound on the variance of the valuation
weights. The approach is in the spirit of instrumental variable corrections that leverage double obser-
vations of mis-measured right-hand-side variables in regressions (e.g., Hausman, 2001; Gillen et al.,
forthcoming). Second, we develop a concentration inequality approach that uses our point estimates
of means and our estimates of variance bounds to form non-parametric bounds on several properties
of the distribution of valuation weights.

We find that at standard taxes, the variance of individual differences is at least 0.83 (5% confidence
bound of 0.52), and that the maximum of the valuation weights must be at least 2.21 (5% confidence
bound of 1.55). This implies that at least some consumers overreact to taxes significantly. To our
knowledge, our finding of overreaction by some consumers is new to the literature, and runs counter
to researchers’ priors.5 And consistent with the presence of overreaction in costly attention models,
we also estimate that some consumers reduce their valuation weight by at least 0.94 (5% confidence
bound of 0.16) when shopping in the triple tax stores instead of the standard tax store.

Our paper contributes to several literatures. First, our paper contributes to a recent literature that
experimentally tests models of costly inattention (Gabaix et al., 2006; Bartos et al., 2016; Martin, 2016;
Dean and Neligh, 2018; Ambuehl et al., 2018; Caplin et al., 2018). With the exception of Bartos et al.

5Taubinsky and Rees-Jones (2018) use observable covariates to estimate a lower bound on heterogeneity, but the
results in our paper show that their methodology produces a lower bound that is about an order of magnitude off, and
cannot be used to establish that some consumers overreact.
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(2016), these papers utilize abstract information acquisition and problem solving tasks to provide
comprehensive tests of core assumptions of the models. Our paper complements this literature by
focusing on a concrete and policy relevant domain of behavior, and asking whether the “mistakes”
identified by reduced-form empirical work in that domain fit the patterns of costly attention models.
In that sense, our paper is most similar in spirit to Bartos et al. (2016), who conduct experiments
testing whether discrimination in the job market and rental housing market conforms to patterns
predicted by a costly attention model.6

By focusing on the concrete setting of opaque sales taxes, and opaque prices more broadly, our
paper also deepens the empirical work in those settings. To our knowledge, empirical work in these
settings has not tested predictions about individual differences in attentional responses to stakes.
Taubinsky and Rees-Jones (2018) provide partial evidence that average underreaction decreases with
stakes, but they are underpowered to quantify how average underreaction varies by posted price,
particularly in the standard tax regime. Consequently, they cannot rule out that their results are
driven by other possibilities such as consumers over-reacting to a surprising change that violates their
shopping “norms” (Bordalo et al., 2017). More importantly, the lack of within-consumer variation in
tax rates in the Taubinsky and Rees-Jones (2018) data makes testing core predictions about individual
differences in how attention responds to stakes infeasible.

Finally, our paper contributes econometric techniques for studying individual differences in the
presence of measurement error. While there is a large literature on techniques for addressing mea-
surement error in regression analysis (e.g., Hausman, 2001; Gillen et al., forthcoming), we introduce
techniques for bounding the variance of a noisily measured variable. We then develop concentra-
tion inequality approaches to translate bounds on the variance to bounds on several properties of
the distribution. Extensions of our approach could be used to provide formal statistical evidence
for other questions about individual differences, such as whether some individuals are risk-loving or
future-biased.

As we discuss in Section 7, a better understanding of the mechanisms of misreaction to opaque in-
centives informs policy implications and improves predictions about market structure. In that section,
we also discuss limitations and future directions.

2 Theoretical framework for hypothesis development

In this section, we provide several formal examples of costly attention models based on two prominent
modeling approaches in the literature, which we use to motivate our hypotheses. The several variations
we provide are far from exhaustive of the full set of costly attention models. Our goal is to show that
our hypotheses can be derived from tractable and generally applicable models, and to give some
indication of the robustness of our predictions by showing that they are not tied to a single modeling
framework. A fully exhaustive characterization of all possible costly attention models is beyond the
scope of this paper.

6See also Hoopes et al. (2015) and Coibion and Gorodnichenko (2015) for tests of costly information acquisition in
observational data.
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2.1 Setup

Consumers have unit demand for a good x and spend their remaining money on an untaxed composite
good y (the numeraire). We assume quasilinear preferences: the utility of purchasing good x is given
by vx− p, where x ∈ {0, 1}, v is the utility from the product, and p is its total price.

The total price consists of a salient component ps and an opaque component po, with p = ps + po.
In our empirical application, ps represents the displayed price of the product while po represents the
sales tax.

Consumers costlessly incorporate ps into their decision, but may have trouble properly processing
po. We endow po with the structure po = σqo, where σ is a parameter that is known to the consumers
and represents the “stakes” involved, while qo is the part that may be mis-processed. For example,
a salient announcement that sales taxes will be tripled is likely to be fully noted by consumers, and
corresponds to an increase in σ. As another example, consider po = psqo, where qo corresponds to the
sales tax rate and po is the tax owed on an item sold for a posted price of ps.

As a simple and illustrative baseline, which we generalize in the appendix, we assume that when
consumers do not exert mental effort their baseline representation of qo is given by prior beliefs that
place probability r on its true value t and probability 1 − r on some other value t̂. This generates a
heuristic, “rule-of-thumb” estimate of the opaque price p̂o = σrt+ σ(1− r)t̂.

Consumers must pay cognitive costs to better take the opaque price into account. Their choice of
whether or not to pay this cost depends on their prior. This is in contrast to “ex-post” attentional rules
such as those in Chetty et al. (2007), according to which the consumer knows the ex-post benefit of
paying attention before exerting any cognitive effort.7 For example, consumers who are very confident
in their assessment will not bother to exert mental costs. We detail the link between mental effort
and improvements to the prior perception in the subsections that follow.

As an example of the prior perceptions that could be captured by our formalism, consider indi-
viduals who have a sense of how much tax they usually pay on average over all items they buy, both
those subject to a tax and those that are not. A prior perception based on this loose recollection
could be modeled by setting t̂ = 0, with r corresponding to the frequency of purchase occasions of
taxable products. Cognitive costs could be expended to either improve recollection (Ratcliff, 1978)
or to perform the computation directly without relying on memory samples. Alternatively, the model
with t̂ = 0 could correspond to individuals not being sure if the good is subject to the standard tax
or not.

As another example, t̂ > t could capture individuals who without thinking would guess the sales
tax to be somewhat lower than 10% of the posted price. Costly thinking could involve a series of steps
to improve the approximation. For example, to compute a 7% tax, first compute 5% of the sales price
as half of the 10% estimate, and then find a point that is approximately between the 5% and 10%
estimates.

There are several ways to interpret our model. One is that consumers literally do not know
7Unlike Chetty et al. (2007), we also allow arbitrary heterogeneity in prior beliefs, including overestimation. As we

will show, our data strongly reject a model in which consumers either pay full attention to the tax or ignore it completely.
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po, and must search for information about it. Another, as in some of the examples above, is that
consumers know what the value of po is, but have trouble integrating it into their decision-making.
Our experimental data will allow us to differentiate between incorrect beliefs and computation costs
as mechanisms for imperfect processing of po, providing more support for the latter.

We view the static costly attention models we work with to be “as if” models of this effortful
thinking. Processed-based models, such as sequential sampling (e.g., Fudenberg et al., 2018; Busemeyer
et al. 2019), could provide more complete accounts of how the allocation of costly attention to a
decision improves accuracy.

2.2 Simple example with binary attention strategies

We begin with a simple example of a costly attention model, and show how it motivates the empirical
tests we perform using our experiment. After using this example to draw out the main intuitions,
we present two richer and more commonly used models of attention choice—the Shannon model used
in rational inattention models (Sims, 2003; Matejka and McKay, 2015; Caplin et al., forthcoming)
and Gabaix’s (2014) attention weight adjustment model—and show that they deliver similar sets of
testable implications. The simple model in this section is a special case of Gabaix (2014).

In this simple example, we suppose that computing the opaque price correctly is a binary decision:
consumers can rely on their initial perceptions or they can pay a cost λ to fully learn whether qo = t

or qo = t̂. If the consumer does not pay the cognitive cost, then he buys if and only if v − ps ≥ p̂o =

rσt+ (1− r)σt̂. If v− ps > σmax(t, t̂) then the consumer definitely buys, since there is no possibility
that the total price exceeds the product value v. And if v − ps < σmin(t, t̂) then the consumer does
not buy since there is no possibility that the total price is smaller than the product value v. Hence,
we focus on the interesting case in which σmin(t, t̂) < v − ps < σmax(t, t̂).

Suppose, first, that t̂ < t. If v−ps < p̂o then the consumer does not buy the product if he does not
pay an attention cost. If the consumer does pay an attention cost, then he learns that po = σt > p̂o,
and thus does not buy the product. Thus, if v− ps < p̂o then the consumer does not buy the product.

If v − ps ≥ p̂o then the consumer buys if he does not pay an attention cost. The value of figuring
out po is the value of averting a purchase if the opaque price is high: r(σt+ps−v). Thus, the consumer
pays the attention cost if λ < r(σt + ps − v), or equivalently v − ps < σt − λ/r. Upon paying the
attention cost, the consumer buys only if v − ps > σt, which cannot occur since the consumer only
pays the attention cost when v − ps < σt− λ/r. Consequently, the consumer only buys in this case if
he does not pay the attention cost.

Summing up, the consumer buys if and only if both v − ps ≥ p̂o and v − ps ≥ σt− λ/r hold. This
behavior is equivalent to the behavior of a consumer who perceives po to be p̃o = θpo, and thus buys
only if v − ps ≥ θσt, where

θ =
1

σt
max (p̂o, σt− λ/r)

= max

(
1− λ

σtr
, r + (1− r) t̂

t

)
< 1 (1)
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Conversely, if t̂ > t, analogous reasoning implies that this behavior is equivalent to the behavior
of a consumer who perceives po to be p̃o = θpo, for

θ = min

(
1 +

λ

σt(1− r)
, r + (1− r) t̂

t

)
> 1. (2)

Notably, although the attention strategy depends on the transparent price ps, we can still represent
the consumer’s behavior as if he weights po by some weight θ that is independent of the price ps.
We call θ the revealed valuation weight, as it is easily estimable from data. Concretely, consider a
population of consumers who derive different utilities v from the product, but have the same valuation
weight θ. Let ∆p be the decrease in the salient price ps that generates the same change in demand as
the removal of the opaque price po. Then by definition, ps + θpo −∆p = ps, and thus θ = ∆p/po. We
refer to θ > 1 as overreaction and θ < 1 as underreaction.

Importantly, the underlying model of costly attention puts structure on the relative degree of
misreaction, and on its distribution in the population. First, any individual differences in θ—generated
by individual differences in priors (t̂ and r) and in the cost of attention λ—must be persistent across
stakes σ. In particular, θ is increasing in t̂, and |1− θ| is decreasing in r and increasing in λ.

Second, θ is increasing in σ when t̂ < t, and is decreasing in σ when t̂ > t, with limσ→∞ θ = 1.
That is, as stakes increase, the relative degree of misreaction decreases, and becomes arbitrarily small
for sufficiently large stakes. Although intuitive, this comparative static holds only for the relative
degree of misreaction |1 − θ|. The absolute degree of misreaction, |po − θpo|, is weakly increasing in
σ.8

The fact that |1− θ| → 0 as σ →∞ has several consequences. First, it implies that if E[θ] < 1 in
the population, then increasing stakes should increase the average valuation weight. Second, it implies
that if some individuals tend to overreact, then they should do so less when the stakes increase; that
is, θ falls with σ for individuals who overreact. More generally, this implies that the extent to which θ
increases with stakes σ is decreasing with the baseline level of θ. Finally, if some individuals overreact,
the individuals whose θ fall the most as σ increases from σ1 to σ2 > σ1 should on average have the
highest θ at both σ1 to σ2.

Although mathematically straightforward, this last prediction is particularly demanding. In essence,
it is saying that if the distribution of θ at two stakes levels σ1 and σ2 > σ1 is given by the random
variables X1 and X2, then E[X1|X1 − X2 = ∆] and E[X2|X1 − X2 = ∆] are both increasing in ∆.
This implies a special structure on the joint distribution of X1 and X2, as typically X1 −X2 is “big”
when X1 is “big” and X2 is “small” rather than “big.”

8For t̂ < t, for example,

po − θpo = σt−max

(
σt− λ

r
, σtr + (1− r)σt̂

)
= min(λ/r, σ(1− r)(t− t̂)).
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2.3 Shannon model with heterogeneous priors

In contrast to our simple example above, the Shannon model allows for a range of cognitive effort. In
our setting, the Shannon model posits that consumers pay some cost to adjust their initial weight r
closer to the truth. Higher attention costs move perceptions closer to the truth in expectation, but
this link is stochastic.

Formally, the Shannon model is as follows in our setting:

1. Consumers choose a joint distribution π over signals and qo. Without loss of generality, we
associate each signal with a posterior belief ρ of the probability that qo = t. The revision
ρ − r can be thought of as the extent to which the consumer adjusts his estimate closer to
t after thinking more. The distribution π must satisfy the Bayesian consistency requirement
ρ = rπ(ρ|t)

rπ(ρ|t)+(1−r)π(ρ|t̂) .

2. The cost of the information structure π is c(π) = λ (H(r)− Eπ[H(ρ)]), where H(x) = −x log x−
(1− x) log(1− x) is the entropy of a probability distribution that places probability x on qo = t

and probability 1− x on qo = t̂.

3. Consumers choose to buy at a posterior ρ iff v−ps−σ(ρt+(1−ρ)t̂) > 0. We will use b(ρ) ∈ {0, 1}
to note whether it is optimal for a consumer to buy given ρ.

4. Consumers thus choose π to maximize E[(v − ps − σqo)b(ρ)]− c(π).

As with the binary attention model, we show that the Shannon model has a simple reduced-form
representation. We derive this result using the necessary and sufficient conditions of the posterior-
based approach provided in Caplin et al. (forthcoming).

Proposition 1. For each triplet Ξ = (λ, r, t̂) and stakes σ in the Shannon model, there exists a
distribution FΞ,σ such that the behavior of all consumers with parameters Ξ can be represented by a
revealed valuation weight model in which consumers choose to buy if and only if v ≥ ps + θpo, where
θ ∼ FΞ,σ. The weights satisfy:

1. limσ→∞ FΞ,σ
d−→ 1. That is, relative misreaction converges (in distribution) to zero as the stakes

become large.
2. The mean valuation weight θ̄Ξ,σ =

∫
θdFΞ,σ(θ) is increasing in t̂ , with θ̄Ξ,σ = 1 when t̂ = t.

The relative average misreaction, |1− θ̄Ξ,σ|, is decreasing in r.

Proposition 1 shows that behavior in the Shannon model can be represented using a reduced-form
similar to the one we derived in the binary attention strategy example. This reduced-form follows
the same comparative statics. The main difference is that because the consequences from exerting
mental effort are stochastic in the Shannon model, a consumer’s valuation weight is represented by
θ = θ̄+ ν, where ν is a mean-zero error term that varies from decision to decision, and θ̄ is the stable
component across decisions. Our experiment, which focuses on stable individual differences, will focus
on characterizing the distribution of θ̄, but will not be informative about the idiosyncratic component
ν. When we study individual differences in consumers’ valuation weights in the empirical analysis in
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Sections 5 and 6, what we mean with respect to the Shannon model is differences in θ̄, not θ̄ + ν (a
slight abuse of terminology).

Intuitively, the representation continues to hold because like the reduced-form revealed valuation
weight model, the Shannon model also predicts that the probability of choosing to buy the item should
depend only on the transparent surplus v−ps, and not on v and ps separately. Although this property
holds for many costly attention models, it does not hold for all models that generate misreaction. For
example, salience and focusing models such as those of Bordalo et al. (2013) and Koszegi and Szeidl
(2013) do not always have this property.

Proposition 1 shows that when stakes are large, the stable components θ̄ converge to 1 and the
stochasticity vanishes (i.e., ν converges to 0 in distribution). The last part of Proposition 1 also shows
that there will be stable individual differences in θ that are shaped by consumers’ initial perceptions
of qo. For example, consumers who initially overestimate qo have θ > 1, while consumers who initially
underestimate qo have θ < 1. Consequently, in the presence of both over- and under-estimation, the
Shannon model predicts that a large increase in stakes lowers θ for some consumers and increases θ
for other consumers, in line with our binary attention example.

2.4 The Gabaix (2014) model

A second model that allows for a continuous range of cognitive effort is the Gabaix (2014) model.
We utilize the binary action extension of the model.9 In this model, the consumer chooses a weight
m ∈ [0, 1] to form an estimate q̂o(m) = mqo + (1 − m)q̄o, where q̄o = rt + (1 − r)t̂ is the default
perception. The cost of choosing m > 0 is given by λmα, for α ≥ 0.

The consumer approximates the benefits of choosing m > 0 as follows. First, the consumer com-
putes the benefits of choosing the full attention strategy m = 1, which we denote by B. As we have
shown in Section 2.2, the benefit of acquiring information is given byB = min ((1− r)(v − ps − t), r(ps + t− v)).
Consumers then approximate the benefit of choosing m ∈ [0, 1) by the quadratic approximation
B − (1−m)2B.

The special case α = 0 corresponds to our binary attention example in Section 2.2. However, for
α > 0 this model allows for partial attention, like the Shannon model. For example, when α = 1, the
consumer chooses m∗ = max(1− λ/(2B), 0). When α = 2 the consumer chooses m∗ = B

λ+B .

Proposition 2. For each triplet Ξ = (λ, r, t̂) and stakes σ in the Gabaix (2014) model, there exists
a θΞ,σ ∈ R such that consumers with parameters Ξ can be represented by a revealed valuation weight
model in which consumers choose to buy if and only if v ≥ ps + θΞ,σpo The valuation weights satisfy:

1. |1 − θΞ,σ| is decreasing in σ and converges to zero as σ → ∞. That is, relative misreaction is
decreasing in stakes and converges to zero.

2. The valuation weight θΞ,σ is increasing in t̂ , with θΞ,σ = 1 when t̂ = t. Moreover, |1− θΞ,σ| is
decreasing in r.

9This model is developed in Appendix XV.F of Gabaix (2014). We thank Xavier Gabaix for kindly distilling this
model for us in personal communication, and writing out the special case that is applicable to our economic environment.
Our formulation follows the sketch provided to us by Xavier Gabaix.
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Like Proposition 1, Proposition 2 shows that the Gabaix (2014) model has a simple revealed
valuation weight representation that features all of the properties of the binary attention example. As
with the binary attention example, it is possible to obtain closed-form solutions for θ in terms of the
model primitives when closed form solutions exist for the choice m∗, as in the simple examples for
α = 1, 2 that we summarized above.

Unlike the Shannon model, the revealed valuation weights in this model are deterministic rather
than stochastic. Whether within-person stochasticity of attention is an empirically large phenomenon
remains an open question; our experiment will focus only on stable individual differences.

2.5 Extensions

While we have restricted our analysis to binary priors to simplify exposition and amplify intuition,
the results hold more generally. In the appendix we consider priors given by t̂ + ε, where E[ε] = 0

and t̂ varies. When t̂ is equal to the true value t, consumers behave as if θ = 1. However, t̂ < t

generates underreaction and t̂ > t generates overreaction. As before, increasing stakes decreases
relative misreaction.

2.6 Empirical tests of costly attention theories

Our theoretical results motivate five empirical tests, following the intuition provided in the special case
described in Section 2.2. For concreteness, we focus on the case in which E[θ] < 1, as our empirical
application studies sales taxes, for which previous work has established underreaction. Consistent
with our experiment, we consider a “standard stakes regime” (“standard” value of σ) and a “high
stakes regime” (higher value of σ). All of the empirical tests are grounded in the core idea that
individual differences persist across stakes, and that the revealed valuation weights must approach 1
as stakes increase. The tests below correspond to different cuts of the data that can provide evidence
for this idea.

Prediction 1. The average revealed valuation weight, E[θ], is higher in the high stakes regime.

Prediction 2. There are stable individual differences that are persistent across stakes. Consumers
with higher values of θ in the standard stakes regime will also have higher values of θ in the high stakes
regime.

Prediction 3. Consumers with the highest values of θ in the standard stakes regime will increase their
θ by the smallest amount when put in the high stakes regime.

Prediction 4. Consumers whose θ increases the least in response to the high stakes regime have the
highest values of θ in both the standard and high stakes regimes.

Prediction 5. If some consumers have θ > 1 in the standard stakes regime then some consumers will
adjust their θ downward when put in the high stakes regime.
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Attention models in which attention is exogenous to stakes but responds to non-pecuniary stimuli,
such as those summarized in DellaVigna (2009), are ambiguous about Prediction 2, and are not
consistent with the other four predictions.

Attention models in which consumers either pay full attention to the opaque price or ignore it
completely (e.g., Gabaix and Laibson, 2006; Chetty et al., 2007; Heidhues et al., 2017), as well as
frameworks with homogeneous prior perceptions, could not be simultaneously consistent with Pre-
diction 1 and the possibility of overreaction in Prediction 5. In such models, all consumers either
systematically underreact or overreact, and all consumers either have a systematic tendency to in-
crease their sensitivity as stakes increase or to decrease their sensitivity as stakes increase.10

3 Experimental design

3.1 Overview

The experiment had three parts: (1) instructions and comprehension questions, (2) nine shopping
decisions, and (3) end-of-study survey questions. Decisions were incentivized: study participants had
a chance to receive a $16 shopping budget to actually enact their purchasing decisions, and they
received any products purchased. Participants retained any unspent portion of the budget.

Each consumer was randomly assigned three of nine household products and made purchase de-
cisions for these three products in three different stores (nine total decision screens). Each store
corresponded to a different sales tax rate. In store A, consumers made shopping decisions with a zero
sales tax rate (no-tax store). In store B, consumers made shopping decisions with a standard tax rate
identical to their city of residence (standard tax environment). In store C, consumers made shopping
decisions with a sales tax rate equal to triple their standard tax rate (triple tax environment). The
order of these nine shopping decisions was randomized within subject.

3.2 Recruitment

The experiment was implemented in September 2016 through ClearVoice Research, a market research
firm that maintains a large and demographically diverse panel of participants over the age of 18. This

10A related class of models in which the salience weight on an attribute depends on choice sets (Bordalo et al., 2013;
Koszegi and Szeidl, 2013; Bushong et al., 2015) could in principle play some role in our setting as well, although these
models do not give special status to the “opaqueness” of an attribute. Differential reaction to po versus ps in these models
would only result from the fact that these two price are of different magnitudes. Under the assumption that differences
in reaction to po and ps depend only on differences in magnitude, these models are for the most part either ambiguous
on or inconsistent with our predictions. The homogeneity of degree zero assumption in Bordalo et al. (2013) implies that
simply scaling up the importance of the attribute cannot change its salience. The Koszegi and Szeidl (2013) model would
predict that all consumers are less sensitive to po than to ps when po is of smaller magnitude, and that scaling up po
would decrease the relative underreaction to po for all consumers. This is inconsistent with the heterogeneous response
to stakes in Prediction 5. Moreover, in the context of sales taxes, the Koszegi and Szeidl (2013) model would predict
that changes in relative underreaction depend on whether the amount of tax owed is increased through an increase in
sales tax rates or through an increase in posted prices, since the latter also increases the salience of posted prices—this
is inconsistent with our findings. The Bushong et al. (2015) model is inconsistent with the predictions and our findings
for essentially the same reasons that the Koszegi and Szeidl (2013) model is, since in our setting the model operates just
like the Koszegi and Szeidl (2013) model except with the opposite sign.
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platform is frequently used by firms that ship products to consumers to elicit product ratings, but
is additionally available to researchers for academic use.11 Two key features of this platform made
it appropriate for our experimental design. First, ClearVoice provided samples that match the U.S.
population on basic demographic characteristics. Second, ClearVoice maintained an infrastructure
for easily shipping products to consumers, which facilitates an incentive-compatible online shopping
experiment.

Our experimental design used language referring to the sales tax rate that study participants pay
in their city of residence. To avoid confusion, we asked ClearVoice to only recruit panel members
from states with a positive sales tax. This excluded panel members from Alaska, Montana, Delaware,
New Hampshire, and Oregon. The remaining forty-five states are all represented in our final sample.
Prior to learning the details of the experiment, consumers were asked to report their state, county,
and city of residence.12 To correctly determine the money spent in the experiment, this information
was matched to a data set of tax rates in all cities in the U.S.13

3.3 Shopping Decisions

Each purchase decision appeared on a separate screen. Figure 1 provides an example of decisions
screens participants would see for each purchase decision. Consumers first saw an image telling them
which store they were entering and for which product they were shopping. Consumers were then
shown a picture and a product description drawn from Amazon.com, along with a price list containing
ten prices. These ten prices were chosen such that the minimum for all products was $4.00, and
then increased by a multiplicative factor of 15% up to $14.07.14 Consumers were asked to select the
prices at which they would be willing to purchase the product. It was explained that the price shown
excluded any applicable sales taxes. At any point, participants were able to click the “back” button
to see the store in which they were shopping, and an “instructions” button to view the instructions.
If a study participant selected yes (or no) for all available prices, he was directed to an additional
screen where he was asked to report the highest (lowest) price at which he would be willing to buy
the product—the statement on this last screen was not incentivized. Additionally, if a participant’s
within-store decisions violated monotonicity, he was shown the following message:

Your answers on the previous page are inconsistent. If you indicate that you are not willing
to buy the product at a lower price, you cannot indicate that you are willing to buy the
product at a higher price. For example, it’s inconsistent for a survey-respondent to say
that he or she is willing to buy the product for $5.29 at a particular store, but is not willing
to buy the product for $4.60 at that same store. Click the "back" button to adjust your

11For other economic research using ClearVoice Research, see Benjamin et al. (2014), Taubinsky and Rees-Jones
(2018), and Rees-Jones and Taubinsky (forthcoming).

12If participants selected Alaska, Montana, Delaware, New Hampshire, or Oregon, the survey ended and participants
were told they were ineligible. We drop nine participants who completed the survey and matched to a city with a zero
sales tax rate.

13Local tax rate data is drawn from the September 2016 update of the “zip2tax” tax calculator.
14For store C only nine prices were included, and the maximum posted price was $12.24. This was to ensure all

consumers would stay within the $16.00 budget, even after sales taxes were added.
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answers.

The three different stores were described to consumers as follows:

When you purchase an item in Store A, you will pay no sales tax in addition to the price.
Store A is like one of your local stores, with the taxes already included in the prices that
you see on the tags of the items. When you purchase an item in Store B, you will have to
pay an additional sales tax, just like you typically do at the register at your local stores
(on non-tax-exempt items). The sales tax rate in Store B is the standard sales tax rate
that applies in your city of residence, [participant’s city], [participant’s state]. When you
purchase an item in Store C, the sales tax that you have to pay in addition to the price
is much higher than what you would have to pay at your local stores. The sales tax
rate in Store C is triple the standard sales tax rate that applies in your city of residence,
[participant’s city], [participant’s state].

The nine household products were selected from the products previously used in Taubinsky and Rees-
Jones (2018). None of the items were tax exempt in any of the 45 states in which our participants
reside. Appendix J lists the nine products, their Amazon.com prices, and their Amazon.com product
descriptions.

3.4 Incentive Compatibility

Decisions in the experiment were incentive compatible. All study participants who passed the necessary
comprehension questions (described below) had a 1/3 chance of being selected to receive a $16 budget.
Participants were informed of this incentive structure prior to making any decisions, but they did not
know if they received the budget until they completed the experiment. If they did not receive the
budget, they simply received a compensation of $3.00 and no products from the study. Consumers who
were selected to receive the $16 budget had one tax environment and one product randomly chosen.
Outcomes were determined by randomly selecting one of the prices on the price list. If consumers
indicated they would like to purchase at the randomly generated price, then the product was sold to
the consumer at that salient price ps. Consumers additionally received 16 − ps(1 + τ) dollars, where
τ is the experimentally induced tax rate. The product was shipped to the consumer by ClearVoice,
and the remainder of the budget was included in experimental compensation. Participants received a
full explanation of the payout scheme, including that each question, product, and price was equally
likely to be chosen. Additionally, we explicitly informed participants that “it is in your best interest
to answer each question honestly.”

3.5 Comprehension Questions

To ensure that study participants understood the environment and experimental tax rate, we had them
answer six multiple choice questions after showing them the instructions. Three of these questions
concerned the payout, asking participants to identify their shopping budget, how many decisions will
be randomly chosen to implement, and the prices at which they would be asked about purchasing the
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product.15 The final three questions asked participants to identify the sales tax rate they would face
for an item purchased in store A, store B, and store C—with the possible answers being “no sales tax,”
“standard sales tax in city of residence,” and “triple the sales tax in city of residence.” If participants
answered a question incorrectly or left it blank, they were prompted to select the correct answer before
they could begin. When answering these questions, participants could access the instructions which
described the tax environments, provided a visual of the price list, and explained the payout structure.

After making the purchase decisions, participants were again asked to identify the sales tax rate
they faced in store A, store B, and store C. Participants were given one attempt to select the correct
answer, and were informed that they needed to answer all three correctly to be eligible for the $16
budget and the consequences of their shopping decisions. Participants were not given access to study
instructions in this second round. 86% of participants correctly answered all three questions at the
end of the experiment. In our main results we exclude those who fail the comprehension checks, so as
not to confound comprehension of study rules with actual attention costs.

3.6 Survey Questions

After completing the purchase decisions and additional comprehension checks, participants received a
short set of questions eliciting demographic information including household income, marital status,
and political beliefs.

Participants were also asked to identify the sales tax rate in their city of residence. We additionally
asked them to identify how much sales tax they would owe on an $8.00 item. The first question allows
us to test if participants have incorrect beliefs about their sales tax rate, and the second question
allows us to test if participants are able to perform the computations necessary to determine the tax
on a particular posted price.

3.7 Sample

1,846 consumers completed the experiment. For our primary analyses, we exclude 256 respondents who
incorrectly answered one or more of the comprehension questions and an additional 47 respondents
who had monotonicity violations within a price list. Our main results in Section 4 hold when including
participants with these monotonicity violations, but our analyses in Sections 5 and 6 require monotonic
preferences to identify a willingness to pay for each product. In Appendix F we replicate our analysis
including those who failed our comprehension checks. We exclude nine additional participants with
missing or zero sales tax rates in their city of residence. Our final sample includes 1,534 respondents.

Experimental recruitment was targeted to generate a final sample approximating the income, age,
and gender distribution of the U.S. adult population. Our sample has a median income of $49,000,
an average income of $60,838, and an interquartile range of $32,000-$59,000. Our sample also has a
median and mean age of 46 and an interquartile range of 32-59; all participants in the final sample
are over the age of 18, and all but 56 participants are over the age of 21. 50% of our sample is female.

15Subjects had to identify each answer from a list of three choices. The correct answers are $16, one purchase decision,
and “the prices vary” respectively. Figure J.3 contains a screenshot of these questions.
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8.2% of participants are high school graduates and 35.3% are college graduates. 55.1% of participants
are married or in a domestic partnership, and 80.8% live with at least one other individual. The mean
sales tax rate charged in participants’ city of residence is 7.24% (median 7.00%), with a standard
deviation of 1.26%.

The distribution of these basic demographics is broadly similar to the U.S. population, although
selection on other unmeasured characteristics cannot be ruled out.

4 The average impact of stakes on inattention

4.1 Summary of behavior

Figure 2 provides a summary of the demand curves as a function of the posted prices. To construct
the figure, we start by constructing demand curves Djk(p) where j indexes products and k indexes
the store type, A, B, or C. These correspond to the fraction of consumers willing to buy product j at
each price on the price list.

Because there are nine products in the study in total, we summarize the data by plotting the
average demand curves Davg,k(p) := 1

9

∑
j Djk(p) as a function of the transparent price p for each

tax-environment (we omit the subscript s for to ease notation). Panel (a) shows that consumers do
react to sales taxes, as their willingness to buy at a given posted price is decreasing in the size of the
sales tax.

However, panels (b) and (c) show that consumers on average under-react to taxes. In these
panels, we construct the demand curves that would be expected if consumers reacted to the taxes
fully. Since we only observe purchase decisions at finitely many prices, we construct the counter-
factual demand through linear interpolation. Formally, let pn denote the nth lowest price on the
price list. Recall that we constructed the price list such that p1 = 4 and pn = 1.15 · pn−1 for
n > 1. We thus estimate the counterfactual demand D̃jB(pn) for store B at price pn as D̃jB(pn) :=∑

i

[
τi

0.15DijA(pn) + 0.15−τi
0.15 DijA(pn+1)

]
, where τiB is the tax rate faced by the person in store B, and

DijA(p) ∈ {0, 1} is an indicator for whether the consumer bought the product at price p in store A.16

For store C, if τiC < 0.15 we use the same interpolation as in the store B counterfactual demand; if
τiC > 0.15, we calculate D̃jC(pn) := 3τi−0.15

0.15 DjA(pn+1) + 0.30−3τi
0.15 DjA(pn+2). To construct D̃jC(p9),

we use the self-reported maximum willingness to pay to see if individuals willing to purchase at price
p10 would be willing to purchase at price 1.15p10.

Panel (b) reports the results for the standard tax environment, and panel (c) for the triple tax
environment. Comparing the counterfactual demand to the observed demand in the same store, we
see evidence of under-reaction. The under-reaction is particularly noticeable at low posted prices.

4.2 Estimating average revealed valuation weights

Recall that the definition of the revealed valuation weight θijk for consumer i considering product j
in store k ∈ {A,B,C} is that the consumer is θijk as responsive to a change in the tax as he is to

16All sales tax rates in our sample are less than 15%.
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a change in the salient posted price. That is, the consumer behaves as if his perceived price of the
product, given a salient posted price p, is p+θijkpτik = p(1+θijkτik). Note that the size of the opaque
price po is given by po = p · τik here. The consumer thus chooses to buy if his product valuation vij
is such that ln vij ≥ ln p+ ln(1 + θijkτik). To ease empirical estimation, we simplify this condition to
be linear in logs by noting that ln(1 + θijkτik) ≈ θijk ln(1 + τik) up to negligible higher order terms.
Under this approximation, the consumer buys if

ln vij ≥ ln p+ θijk ln(1 + τik) (3)

We then utilize condition (3) to estimate the average revealed valuation weights by estimating the
following heteroskedastic probit model:

1− Pr(buyijk|p) = Φ

(
αj + β ln(p) + θ̄Bβ ln(1 + τik) · I(k = B) + θ̄Cβ ln(1 + τik) · I(k = C)

σj

)
(4)

where Φ is the standard normal CDF. By allowing both αj and σj to vary by product, we allow the
demand curves for the different products to differ both in the price sensitivity and in the aggregate
valuation for the products. We also allow for separate coefficients on the single tax and triple tax
terms by separately measuring βB and βC .

Because we estimate a nonlinear probability model, the estimated coefficients θ̄B and θ̄C approxi-
mate the respective means E[θijk|k = B] and E[θijk|k = C] with some error when the distribution of
θ is heterogeneous within each store. In Appendix C we verify that this approximation error is negli-
gible, and that it works against the results that follow about how the valuation weights are increasing
in the posted price and the tax rate.

4.3 Average revealed valuation weights increase as stakes increase

In our experiment, we observe consumer choice both across different salient posted prices p (within
store) and across different tax rates τ (across stores). Both lead to an increase in the size of the tax,
which is given by po = pτ . In the language of our theoretical framework, we consider both increases
in salient posted prices and increases in tax rates to be salient changes in stakes σ, and our models
predict that the revealed valuation weights should increase in σ.

Figure 3 plots E[θ|p ≤ p†] against a price cutoff p†, such that all prices less than or equal to the
cutoff value are included in calculating that average valuation weight. We estimate E[θ] at different
posted prices using the empirical model in equation (4), dropping observations with p above the cutoff.
The leftmost point of each series includes just the posted prices less than or equal to $4.60; i.e., $4.00
or $4.60. The rightmost point on each series corresponds to including all the posted prices. The point
estimates and confidence intervals corresponding to figure 3 are reported in Appendix D.

The figure establishes three important facts. First, on average consumers underreact to the size
of the tax, both at standard-sized taxes and at tripled taxes. When pooling over all of the prices,
the average valuation weight θ in the standard tax store is 0.48 (95% CI 0.32-0.63), and the average
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valuation weight θ in the triple tax store is 0.79 (95% CI 0.72-0.86).
Second, the average valuation weight is increasing in the tax rate τ . As is immediately evident

from figure 3, the average valuation weight is significantly higher in the triple tax condition than in
the standard tax at each cutoff. At the $4.60 cutoff, the difference in E[θ] between the triple tax and
single tax environments is 0.18 (95% CI 0.09-0.27). This difference peaks at 0.38 (95% CI 0.26-0.51)
at a price cutoff of $8.05. When pooling over all prices, this difference is 0.31 (95% CI 0.20-0.42).
These results are consistent with Prediction 1.

Third, the average valuation weights are increasing in the salient posted price p. In the standard
tax environment, E[θ] more than doubles as we move from a cutoff of $4.60 to pooling all prices: it
increases from 0.23 to 0.48 (95% CI for difference 0.14-0.37). Similarly, in the triple tax environment,
E[θ] approximately doubles as well, increasing from 0.40 to 0.79 (95% CI for difference 0.32-0.45) when
moving from a price cutoff of $4.60 to pooling over all prices. These results provide further evidence
consistent with Prediction 1.

One potential concern in examining how the valuation weights vary by price is that the set of
consumers on the margin at each price are mechanically different: the higher is the price, the higher is
the product valuation of these marginal consumers. If valuation for the product is somehow correlated
with attention, this would confound our results about how average valuation weights covary with price.
Although there is no clear reason for this to be the case, in principle this could occur. The tax rate
assignment is exogenous to these differences and is not subject to the same concern.

On the other hand, a concern with examining how valuation weights change in response to an
increase in tax rates is that consumers see the triple tax store as a highly unusual environment,
which affects their purchase decision beyond the pecuniary channel. Consumers might be significantly
more responsive to higher tax rates simply because the increase triggers tax aversion, or because the
surprising and unusual environment simply draws more attention to itself (Bordalo et al., 2017).

Although our results on individual differences in reaction to the tripling of the tax rate generate a
number of additional tests of costly attention, we present one more test on aggregate behavior here.
We address both concerns by examining how average valuation weights depend on the total size of
the tax, and whether it seems to matter whether increases in the tax come from increases in prices
or increases in taxes. If our results are consistent across these two different ways of increasing tax
owed, then that lends more credibility to our hypothesis of consumers exerting more mental effort in
response to higher stakes. For example, if behavior responds to a tripling of the tax rate because it
triggers tax aversion, or because it draws attention to an unusual environment, then we would expect
to see that a tripling of the tax rate generates much larger changes in behavior than does an increase
in price.

To do this, we divide the ten different prices in each store into five pairs of prices, for a total of
5× 2 = 10 pairs. For each pair, we estimate the average valuation weight using an extension of model
(4) with a separate θ̄ parameter for each pair.17 We plot this against the average tax owed in each pair:
for two adjacent prices pl and pl+1, we compute the average tax owed in stores B and C, respectively,
as E

[
pl+pl+1

2 τik|k = B
]
and E

[
pl+pl+1

2 τik|k = C
]
.

17Specifically, we partition the prices into pairs Pn, n = 1, . . . , 5 and estimate
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Figure 4 presents the results (see Appendix D for exact point estimates and confidence intervals).
We see no trend break between the two series. If anything, the deviation in the leftmost point in the
store C series has the opposite sign predicted by concerns of tax aversion or unusual environments
triggering a spike in attention. Figure 4 thus provides additional evidence for a costly attention model
in which attention is a function of the salient stakes, regardless of where those increases come from.

4.4 Robustness

4.4.1 Order effects

A potential concern with our experimental design is that purchase decisions could be influenced by
the order in which the nine purchase decisions are presented to consumers. In Appendix G we test
for four potential order effects. First, we examine whether the tax environment (i.e., no tax, standard
tax, or triple tax) first shown to consumers impacts their buy probability. Second, we test whether the
tax environment first shown to a consumer for product j impacts the likelihood of purchasing product
j. Third, we test whether the tax environment last shown to a consumer for product j impacts the
likelihood of purchasing product j. Finally, we test whether the specific store ordering for product j
impacts the buy probability for product j.

We test the impact of the potential order effects by adding indicators for the orderings to the
regression specified in equation (4). We run four regressions, detailed in Appendix G, corresponding
to four different order effects concerns outlined above. The resulting coefficients and standard errors
provide strong evidence that the order in which consumers see the tax environments does not affect
their decisions.

4.4.2 Re-including confused participants

Recall that we excluded 16% of our respondents because they were not able to correctly answer the
comprehension questions about the tax rates charged in stores A, B and C. Because misunderstanding
study instructions is unlikely to be an externally valid mechanism for misreacting to sales taxes, we
exclude them from our primary analysis. At the same time, because these consumers may have the
highest attention cost, we can view estimates that include these consumers as an upper bound on
misreaction. As shown in Appendix F, re-inclusion of these participants increases the estimate of
average underreaction, but does not change any of the comparative statics.

1−Pr(buyijk|p) = Φ

(
αj +

∑5
n=1

[
βn ln(p) + θ̄B,nβn ln(1 + τik) · I(k = B) + θ̄C,nβn ln(1 + τik) · I(k = C)

]
I(p ∈ Pn)

σj

)
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4.5 Mechanisms for underreaction

4.5.1 Incorrect beliefs

Do participants know their true sales tax rate, and if not, are incorrect beliefs a mechanism driving
the results? To understand the role of incorrect beliefs, we asked participants to report their sales tax
rate in their current city of residence. We find that participants generally have correct beliefs: 50.8%
of our sample know their tax rate exactly, 70.3% within 0.5 percentage points, and 82.0% within one
percentage point.18 In addition to finding high knowledge among most participants, we also do not
find any evidence of systematic underestimation of tax rates. The mean of participants’ estimates of
their sales tax rates is 7.43%, which is negligibly higher than the actual mean of 7.24%.

We refer to the 70.3% who know their tax within 0.5 percentage points as the “nearly-accurate
beliefs” sample. Figure E.1 in Appendix E repeats figure 3 using the nearly-accurate beliefs subsample
defined above. We again find strong evidence for Prediction 1. The average revealed valuation weights
increase monotonically in the absolute size of the tax. The estimates are also of similar magnitude
to the full sample results. Using all prices we estimate an average revealed valuation weight of 0.55
(95% CI 0.38-0.73) for the standard tax environment in the restricted sample compared to the 0.48
(95% CI 0.32-0.63) in the main sample. Similarly, we estimate an average revealed valuation weight of
0.87 (95% CI 0.78-0.95) for the triple tax environment in the restricted sample, which is only slightly
higher than the estimate in the main sample (0.79, 95% CI 0.72-0.86).

4.5.2 Computational ability

Another potential mechanism driving the results is the inability of participants to compute the sales
tax they would need to pay for an item. We test for this mechanism by asking participants to report
how much sales tax they would owe for an $8.00 item purchased in their city of residence. 44.7% of
participants are able to calculate their tax burden within $0.01, and 62.9% are able to compute their
tax burden within $0.05.19

Figure E.2 in Appendix E repeats figure 3, restricting to the 62.9% of participants who are able
to compute their true tax burden within $0.05. We again find strong evidence for Prediction 1. The
estimates are also of similar magnitude to the full sample results. Using all prices we estimate an
average revealed valuation weight of 0.52 (95% CI 0.36-0.68) for the standard tax environment in the
restricted sample compared to the 0.48 (95% CI 0.32-0.63) in the main sample. Similarly, we estimate
an average revealed valuation weight of 0.82 (95% CI 0.75-0.89) for the triple tax environment in the
restricted sample, which is only slightly higher than the estimate in the main sample (0.79, 95% CI

18We asked participants to enter their answer as a percent rather than a decimal, and gave them the following example:
“For example, if you think that the tax rate is 1 percent, please enter 1, rather than 0.01.” 159 participants still entered
a number less than 0.15. We attribute these low estimates to misunderstanding the instructions, and multiply these
estimates by 100 when analyzing their beliefs.

19We did not explicitly remind participants to exclude the $8.00 they would have to pay for the item from their
answer. In our sample, there are 258 participants who entered an answer between 8 and 12. We attribute these high
estimates to misunderstanding the instructions, and subtract 8 from these estimates in the analysis. We also observe 69
participants who entered an answer over 20. We attribute this to confusion as to whether answers should be entered as
dollars (as we specified) or as cents. We divide these estimates by 100.
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0.72-0.86).
The fact that complete inability to compute taxes does not seem to be driving our results is

consistent with a key premise of our theoretical framework: that consumers are capable of correctly
incorporating taxes into their decision. The fact that incorrect beliefs about the tax rates do not seem
to be a major factor is consistent with the interpretation of our theoretical framework as capturing
an internal process of forming tax rate perceptions. That is, consumers are not literally using costly
mental effort to acquire information about the tax rates; rather, they are using mental effort to go
through the computation of figuring out the post-tax price.

4.5.3 Other correlates

Appendix H shows that we do not find variation in the average underreaction by income, education, or
political party affiliation, although these correlations are not well-powered. The appendix also shows
that we are underpowered for detecting meaningful differences in how average underreaction covaries
with differences in local tax rates. This is not surprising, as the standard deviation of the tax rates
applied to consumers’ city of residence is only 1.26 percentage points—variation that is over an order
of magnitude smaller than our exogenously induced experimental variation in tax rates. Although
this correlation may be interesting to explore in better-powered designs, we note that it is likely a
confounded test of costly attention models because local tax variation is likely related to a number of
differences in geography, including consumers’ views and preferences about tax rates.

5 Reduced-form results on individual differences

In Section 4 we showed that the average revealed valuation weights in the population are increasing
in stakes, supporting Prediction 1 of costly attention models. In this section, we begin to examine
predictions about individual differences using simple reduced-form tests. Our approach is to create
individual-level proxies for consumers’ revealed valuation weights θ, use these proxies to divide con-
sumers into high and low valuation weight groups, and then use these groups to test comparative
static predictions about individual differences in θ. We use this methodology to provide evidence for
Predictions 2-4.

5.1 Methodology for testing predictions 2 and 3

A key feature of our design is that consumers make purchase decisions for the same product in different
tax environments. We can thus construct individual-level estimates θ̂ijk for θijk for each consumer
i, product j, and store k combination via a two step process. First, we approximate the maximum
pre-tax price p∗ijk at which consumer i is willing to buy product j in store k ∈ {A,B,C}. Since we
only observe purchase decisions at ten pre-tax prices, we approximate willingness to pay using the
midpoint of each price interval. Formally, ln p∗ijk = 0.5

(
ln p0

ijk + ln p1
ijk

)
, where p0

ijk is the highest
price at which consumer i buys product j in store k and p1

ijk is the lowest price at which consumer i
declines to purchase product j in store k.
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For consumers who were willing to buy at all prices (or no prices), recall that we utilized a non-
incentivized question that solicited the maximum price at which they would be willing to buy the
product. Given the free-response and unincentivized nature of this question, some of these responses
are very high. To reduce the impact of outliers, we therefore compute the median self-reported
maximum pre-tax price by product and store among those censored, and assign this value to p∗ijk.
Using the buying condition in equation (3), we construct the estimate θ̂ijk for k ∈ {B,C} as

θ̂ijk =
ln(p∗ijk)− ln(p∗ijA)

ln(1 + τik)
(5)

However, we cannot directly use the θ̂ijk estimate to compute properties of the actual distribution
of θ without making the unrealistically strong assumption that all within-person differences in choices
between stores load on the θijk parameter. A mechanical reason these assumptions are too strong is
that the set of prices in the experiment is finite and thus valuation weights at the individual level are not
point-identified.20 A perhaps more important reason is that changes in consumers’ willingness to buy
at certain prices may not only reflect their responses to the tax regime, but also changing perceptions
of the product value or simply “experimental noise” such as consumers accidentally clicking on the
wrong response. Consequently, differences in individual-level estimates do not imply actual individual
differences; i.e., all of these considerations would generate differences in individual-level estimates even
if consumers were perfectly homogeneous in their priors and attention strategies.

As a concrete example of patterns of behavior that are likely “measurement error” in θ̂ijk, 33.8%
of consumers are willing to buy at a higher pre-tax price for at least one product in the standard tax
environment than in the no tax environment, 24.6% are willing to buy at a higher pre-tax price for
at least one product in the triple tax environment than in the no tax environment, and 19.6% are
willing to buy at a higher pre-tax price for at least one product in the triple tax environment than
in the single tax environment. Attributing such patterns of behavior to consumers’ valuation weights
θ would imply substantially negative θ for some consumers—i.e., that some consumers perceive the
taxes to be subsidies. Instead, these patterns likely reflect other factors like changing perceptions of
product value or “noise.”

Our finding of likely “measurement error” in individual-level point estimates is not unusual—as
summarized by Gillen et al. (forthcoming), it is prevalent in just about all experimental analysis of
individual differences. Our finding is also in line with a long intellectual history of measuring and
modeling noise in individual’s decisions, starting from Block and Marschak (1960), continuing with
Quantal Response Equilibrium (McKelvey and Palfrey, 1995), and recently gaining prominence in
explicit modeling of mistakes (e.g., Woodford, 2012; Khaw et al., 2017; Natenzon, 2019).21

We instead use the θ̂ijk estimates to create proxies for high versus low valuation weight consumers.
20Using a Becker-DeGroot-Marshak (BDM) mechanism would not resolve this problem; Taubinsky and Rees-Jones

(2018) find that almost half of participants round their maximum willingness to pay to round numbers. Consequently,
the BDM poses the same problems as a discrete set of prices, and comes at the additional cost of being more confusing.

21While the change in perceptions of product value may have deep cognitive foundations that can be modeled, this
behavioral tendency is orthogonal to the estimation of the revealed valuation weights θ, and neither confounds our
analysis nor reinforces it.
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We use one product to divide consumers into two groups. The low group consists of those with low
values of θ̂ijk and the high group consists of those with high values of θ̂ijk. We then use our empirical
model in (4) on the other two products to estimate average valuation weights for the low and high
groups. Figure 5 illustrates the idea of this procedure. Using this system of dividing consumers into
high and low valuation weight groups according to store B behavior, we test Predictions 2 and 3 by
examining the valuation weights of the consumers in those groups in both stores B and C.

Concretely, the procedure is as follows. We index each of the three products for each person by
j ∈ {1, 2, 3}. First, we start with j = 1 and we split the sample into two groups: those with θ̂i1B in
the top 25% of the population and those with θ̂i1B in the bottom 75% of the population. We define
x75
i1 = I

[
F (θ̂i1B) > 0.75

]
to be an indicator for the high group. We then use decisions in the other

two products to estimate the average valuation weights E[θijk|k = K,x75
i1 , j 6= 1] using equation (4),

where K ∈ {B,C}. We repeat the procedure twice using products 2 and 3 to generate x75
i2 and x75

i3 ,
and estimate E[θijk|k = K,x75

i2 , j 6= 2] and E[θijk|k = K,x75
i3 , j 6= 3]. Finally, we average the estimates

from each of these three iterations to get an an overall average estimate of θijk for those in the high
and low groups:

E[θijk|k = K,x75
i ] =

1

3

∑
j

(E[θijk|k = K,x75
i1 , j 6= 1]+E[θijk|k = K,x75

i2 , j 6= 2]+E[θijk|k = K,x75
i3 , j 6= 3])

We compute compute confidence intervals using percentile bootstrap, clustering by subject.
The key statistical assumption that ensures consistency of our estimates is that the errors in θ̂ijk

and θ̂ij′k′ are orthogonal conditional on the true underlying value:

Assumption.
(
θ̂ijk ⊥ θ̂ij′k′

)
|θijk when j′ 6= j, for k, k′ ∈ {B,C}

This assumption is weaker than the assumption that the measurement errors are mean zero
(strongly classical measurement error), or even that they are orthogonal to the true underlying θijk
(weakly classical measurement error.) These stronger assumptions are hard to justify when the under-
lying model of choice is a nonlinear probability model and the price observations are interval-valued,
and when some of the identification comes from unincentivized self-reports. Moreover, stronger as-
sumptions about the nature of measurement error are not required for our procedure. In fact, the
procedure does not even require that consumers’ unincentivized reports about maximum buying prices
approximate the truth in a meaningful way, since we use the self-reported data only to construct proxies
and perform our actual estimation of E[θijk] using only incentivized decisions.

5.2 Methodology for testing prediction 4

We also use the procedure in Section 5.1 to analyze heterogeneity in how the valuation weights respond
to stakes. This provides a test of Prediction 4. Specifically, we divide consumers according to how
much they adjust their valuation weight when the tax rate increases, rather than by how attentive
they are to the tax.

Formally, we define ∆ij = θijC − θijB as the degree of adjustment in the revealed valuation
weight when moving from the standard tax environment to the triple tax environment. We then
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classify consumers into high and low adjustment groups using ∆̂ij := θ̂ijC − θ̂ijB. We define d25
ij =

I
[
F (∆̂ij) ≤ 0.25

]
to be an indicator of being in a low adjustment group, where d25

ij = 0 indicates low
adjustment and d25

ij = 1 indicates higher adjustment. We then estimate E[∆ij |d25
ij′ , j 6= j′] for each

j′ ∈ {1, 2, 3} and for each store k ∈ {B,C}. We then average to estimate E[∆ij |d25
i ] separately for

the high and low adjustment groups.

5.3 Results: Predictions 2 and 3

Table 1 presents the E[θijk] estimates using the instruments defined in Section 5.1. Rows (1) and (2)
present estimates of E[θijk] for the high and low valuation weight groups respectively, and row (3)
presents estimates of the difference. Columns (1) and (2) correspond to the different tax environments,
and column (3) to differences between the environments.

Consumers in the high valuation weight group have an average revealed valuation weight of 1.04
(95% CI 0.83-1.26) for standard taxes, while consumers in the low valuation weight group have an
average revealed valuation weight of 0.25 (95% CI 0.08-0.42) for standard taxes. Consistent with
Prediction 2, these individual differences are persistent across stakes. In the triple tax store, consumers
classified as having high valuation weights in the standard tax store have an average valuation weight
of 1.20 (95% CI 1.10-1.31), while consumers classified as having low valuation weights in the standard
tax store have an average valuation weight of 0.64 (95% CI 0.57- 0.72). The predictive power of
the instruments implies strong individual differences in the standard tax environment, and hence
heterogeneous revealed valuation weights.

We next examine individual differences in adjustment. Consistent with Prediction 3, the low
valuation weight group exhibits a significantly larger increase in the valuation weights than the high
valuation weight group when tax rates are tripled (0.39 vs. 0.16; 95% CI for difference 0.03-0.43).

5.4 Results: Prediction 4

Using the methodology described in Section 5.2, we compare E[θijk] estimates from the high ad-
justment group and the low adjustment group. Table 2 reports the results. We find that there are
significant individual differences: consumers in the low adjustment group increase their valuation
weights by an average of 0.01 (95% CI -0.15-0.17), and consumers in the high adjustment group in-
crease their valuation weights by an average of 0.43 (95% CI 0.30-0.55). The results imply substantial
underlying heterogeneity in ∆ij .

Consistent with Prediction 4, we find that consumers in the low adjustment group have higher
valuation weights in both the standard tax regime (0.85 vs. 0.34; 95% CI for difference 0.28-0.75) and
in the triple tax regime (0.86 vs. 0.76; 95% CI for difference -0.01-0.20). The result for the triple tax
regime is significant at the 10% level (p-value = 0.067).

As we discussed in Section 2.2, Prediction 4 is a particularly demanding test. If, for example, the
distribution of θijB and θijC took the form θijC = a0 + θijB + εij for some constant a0 and some
random variable εij independent of θijB, then E[θijC |θijC − θijB = ∆] would be increasing in ∆, not
decreasing. Intuitively, small values of ∆ would imply a small indiosyncratic component, and thus a
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smaller value of θijC . In general, any stochasticity in θijC − θijB that is independent of the value of
θijB would push against our empirical result. Our result is thus consistent with the special structure
that costly attention models impose on revealed valuation weights.

5.5 Robustness

In Appendix E, we replicate tables 1 and 2 on the subsample of participants with nearly accurate
beliefs about their sales tax rate and with strong computational ability. These results also conform
with Predictions 2-4. In Appendix F we confirm that the results hold for the full sample of participants,
including those failing comprehension checks.

In Appendix I, we verify our results still support these theoretical predictions when using alterna-
tive constructions of the proxies (tables I.1, I.2, I.3, I.4).

6 Overreaction and heterogeneous attentional responses to stakes

While the evidence in Section 5 is consistent with at least moderate individual differences, it leaves
open three key questions. First, are the individual differences large enough that some consumers
overreact to standard taxes? Second, if we detect overreaction, can we show that some consumers
decrease their valuation weights when the stakes are increased? Third, how big is the variance of
the valuation weights, which Taubinsky and Rees-Jones (2018) show is a key input in efficiency cost
calculations?

In this section we develop novel econometric techniques for computing lower bounds on individual
heterogeneity, which enable us to answer the three questions above.

6.1 Intuition - strength of the instruments

A key moment that we have not exploited in the analysis in the previous section is how well correlated
the binary instruments are with each other. In the subsections that follow, we will show how this
moment, combined with the results in Section 5, helps generate a lower bound on the variance of
θ. The lower bound on the variance of θ then provides a lower bound on the extent to which some
individuals must overreact, in a manner that we describe in more detail in Section 6.2 below.

To obtain intuition about the importance of the correlation between the instruments, consider
a linear regression of a variable Y on a binary proxy X. The regression coefficient is given by

β = Cov[Y,X]/V ar[X], which can be rewritten as Corr[Y,X] ·
√
V ar[Y ]√
V ar[X]

. The coefficient β here is

essentially equivalent to our reduced-form results above about how the average θ varies with our bi-
nary instruments. Now holding β and V ar[X] constant, note that the smaller is Corr[Y,X], the
larger must be V ar[Y ]. Intuitively, the regression coefficient β can be increased either by scaling up
the dependent variable Y , which increases its dispersion, or it can be increased by increasing the cor-
relation between Y and X. Consequently, learning about the regression coefficient and the correlation
is informative of the dispersion in Y .
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If we regard Y as θ and X as our binary instruments from Section 5, then one indication of the
correlation between Y and X is the correlation between our binary instruments. If our instruments
are not well correlated with each other, then they also cannot be well correlated with Y .

We now compute the average correlation of the binary instruments utilized in the last section:
1
3

∑
j 6=j′ Corr

[
x75
ij , x

75
ij′

]
. The resulting estimate of 0.18 (s.e. 0.02) implies these instruments are

weakly correlated with each other. We similarly compute the average correlation for the adjustment
instruments, 1

3

∑
j 6=j′ Corr

[
d25
ij , d

25
ij′

]
. We estimate an average correlation of 0.14 (s.e. 0.02), indicating

that the adjustment instruments are also weakly correlated with each other. The fact that these
instruments predict large differences in the average θ as shown in Section 5, but are not well correlated
with each other implies large underlying dispersion in θ, as we show below.

6.2 Methodology: Inequalities for dispersion of random variables

We begin with a general result, and then adapt it to our setting.

Proposition 3. Let Y have support [Y , Ȳ ], and let X1 and X2 be binary variables that are indepen-
dently and identically distributed conditional on each realization of Y . Then

V ar[Y ] ≥ Cov[Y,X1] · Cov[Y,X2]

Cov[X1, X2]
(6)

and

(Ȳ − E[Y ])(E[Y ]− Y ) ≥ V ar[Y ]. (7)

Both bounds are tight, and are obtained when Y is Bernoulli.

Result (6) formalizes the intuition in 6.1: the less well-correlated the proxies are with each other,
the higher must be variance, given an estimate of the covariance between Y and Xi. We prove this
result through an application of the Cauchy-Schwarz inequality.

The result in line (7) is the Bhatia and Davis (2000) inequality. The intuition for this result is that
the variance of a random variable Y with a given mean E[Y ] and bounded support cannot be higher
than the variance of a Bernoulli random variable with mean E[Y ] and all mass on the two endpoints
of the support.

Proposition 3 enables us to use the types of binary instruments utilized in Section 5 to compute
bounds on the variance and support of θij . Define xqijk = I

[
F
(
θ̂ij > 0.01q

)]
as an indicator for θ̂ijk

being in the qth percentile or higher in store k. This is analogous to Section 5, where we set q = 75

for store k = B.

Corollary 1. Assume the distribution of θijk is supported on [0, θ̄], where θijk is the revealed valuation
weight for product j of individual i in store k. Then given instruments xqij′k and xqij′′k computed for
products j′ and j′′ (with no two of j, j′, and j′′ equal), the variance of θijk in store K is

V ar[θijk|k = K] ≥
Cov[θijk, x

q
ij′k|k = K] · Cov[θijk, x

q
ij′′k|k = K]

Cov[xqij′k, x
q
ij′′k]

(8)
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and

θ̄ ≥ E[θijk|k = K] +
Cov[θijk, x

q
ij′k|k = K] · Cov[θijk, x

q
ij′′k|k = K]

E[θij′k|k = K] · Cov[xqij′k, x
q
ij′′k|k = K]

(9)

The assumption that θijk ≥ 0 is natural, as it is equivalent to assuming that no consumers perceive
the tax to be a subsidy. As in Section 5, we continue to examine how an instrument xij′k computed
from product j′ covaries with the average valuation weights for some other product j 6= j′. We never
examine how an instrument computed for product j covaries with the average valuation weights for
that same product j—doing so would bias our results because of correlated measurement error.

We can also use Proposition 3 to derive bounds on adjustment ∆ij = θijC − θijB. We define
dqij = I

[
F
(

∆̂ij < 0.01q
)]

as a binary indicator for ∆̂ij being in qth decile or lower. This is analogous
to Section 5, where we used q = 25.

Corollary 2. Assume the distribution of ∆ij is supported on [∆, 1], where ∆ij = θijC − θijB . Then
given instruments dqij′ and d

q
ij′′ computed for products j′ and j′′ (with no two of j, j′ and j′′ equal):

V ar[∆ij ] ≥
Cov[∆ij , d

q
ij′ ] · Cov[∆i, d

q
ij′′ ]

Cov[dqij′ , d
q
ij′′ ]

(10)

and

∆ ≤ E[∆ij ] +
Cov[∆ij , d

q
ij′ ] · Cov[∆ij , d

q
ij′ ]

(E[∆ij ]− 1) · Cov[dqij , d
q
ij′ ]

(11)

The assumption that ∆i ≤ 1 is equivalent to assuming that when stakes increase, no consumers switch
from being systematic under-reactors to systematic over-reactors (or that no overreacting consumers
substantially increase their overreaction). This is consistent with the core of any costly attention
model that could microfound consumer behavior in our experiment.

While these results generate bounds on the supremum of the support, they do not quantify how
many consumers overreact. We next derive a bound for the fraction of over-reactors, Pr(θij > 1),
and for the fraction of consumers who adjust their valuation weight downwards, Pr(∆ij < 0). These
results follow from a more general result proven in Appendix B.4, which can be seen as a converse of
sorts to Chebyshev’s inequality.

Proposition 4. Assume θi has support [0, θ̄], where θ̄ > 1 is the supremum of the support and can
vary by store. Additionally, assume that the distribution of ∆i is supported on [∆, 1].Then

Pr(θi > 1) ≥ V ar[θi] + E[θi]
2 − E[θi]

(θ̄ − 1)θ̄
(12)

and

Pr(∆i < 0) ≥ V ar[∆i] + E[∆i]
2 − E[∆i]

(∆)(∆− 1)
(13)

27



Both bounds are tight.

The intuition for this result is that the distribution that minimizes Pr(θi > 1) subject to a variance
constraint and supremum constraint is one that puts all mass on θi ∈ {0, 1, θ̄}.

6.3 Bounds on the variance and the support: Estimation and results

Estimation: In our empirical implementation of the bounds, we construct instruments xqijk using
different values of q. This allows us to construct multiple estimates of each bound, and since the true
value must be higher than all these bounds, we take the maximum over them.

Formally, an immediate extension of (8) is that

V ar[θijk|k = K] ≥ max
q

{
Cov[θijk, x

q
ij′k|k = K] · Cov[θijk, x

q
ij′′k|k = K]

Cov[xqij′k, x
q
ij′′k]

}
. (14)

An analogous extension follows for ∆ in (11). In the empirical implementation, we take the maximum
over q ∈ {10, 15, ..., 90}. To estimate Cov[θijk, x

q
ijk′ ], for each q, we use the expansion

Cov[θijk, x
q
ijk′ ] = E[xqij′k′ ] · (1− E[xqij′k′ ]) · (E[θijk|xqijk′ = 1]− E[θijk|xqij′k′ = 0])

with the conditional means E[θij |xqij′ = 0] estimated as in Section 5.
We analogously generate the bounds for V ar[∆ij ] and ∆ by taking the maximum over q ∈

{10, 15, ..., 90}.
We calculate bootstrapped percentile-based confidence intervals from 1000 replications, clustered

at the subject level, and report the 5% confidence bound.22

Results: Table 3 presents our estimates. We estimate a lower bound of 0.83 (5% confidence
bound of 0.52) for V ar[θijB] and of 0.71 (5% confidence bound of 0.59) for V ar[θijC ]. We estimate a
lower bound for V ar[∆ij ] of 0.86 (5% confidence bound of 0.31). These results provide evidence for
significant dispersion in revealed valuation weights in both tax environments, as well as for adjustment
when switching tax environments.

Table 3 also presents the supremum lower bound estimates. We estimate a lower bound of θ̄B to be
2.21 (5% confidence bound of 1.55) and for θ̄C to be 1.69 (5% confidence bound of 1.54). Both of these
bounds are significantly above 1, indicating there are over-reactors in the experimental population.
Row (2) presents the estimate as a lower bound on −∆. We estimate an upper bound on ∆ to be
-0.94 (95% confidence bound of -0.16). This result is consistent with Prediction 5 of our theoretical
results.

To our knowledge, our finding of overreaction is new to the literature. While Taubinsky and Rees-
Jones (2018) use observable covariates to measure individual differences, their methods are able to
achieve a lower bound on the variance of approximately only 0.1, and therefore cannot be used to

22Note that since we are calculating lower bounds there is no concept of a 95% confidence bound. In other words, it
does not make sense to provide a statistical upper bound on a lower bound.
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establish overreaction. The methods in this section show that the alternative approach in Taubinsky
and Rees-Jones (2018) generates a lower bound that is almost an order of magnitude off.

6.4 Bounds for the fraction of over-reactors and participants with negative ad-
justment: Results

By substituting the lower bound for V ar[θijk] from equation (14) into the lower bound from equation
(12), we derive a bound for the fraction of over-reactors as a function of θ̄.

Figure 6 plots Pr(θijk > 1|k = K) as a function of θ̄, both for K = B and for K = C, along
with 5% confidence bounds computed by bootstrap clustered at the subject level. When θ̄ = 2.25, we
estimate that at least 20.5% (5% confidence bound of 9.5%) of the population is overreacting in store
B, and at least 19.3% (5% confidence bound of 14.5%) is overreacting in store C. Both these bounds
are decreasing in θ̄: for θ̄ = 4.25, we bound the fraction of over-reactors at 4.2% (5% confidence bound
of 2.0%) of the population in the standard tax environment and at 3.9% (5% confidence bound of
3.0%) in the triple tax environment.

Using equation (13), we derive an analogous bound for the fraction of consumers who adjust their
valuation weight downward in response to higher stakes. Figure 7 plots Pr(∆ij < 0) as a function of
∆. For ∆ = −0.94, the bound computed in table 3, we estimate that at least 35.5% (5% confidence
bound of 6.1%) of consumers negatively adjust their revealed valuation weights when switching from
the standard tax regime to the triple tax regime. This lower bound is decreasing in the magnitude
of ∆, and at ∆ = -4.25 we estimate a lower bound on the fraction of participants with negative
adjustment to be 4.1% (5% confidence bound of 0.7%).

6.5 Robustness

In Appendix E, we verify that the results hold on the subsample of participants with nearly accurate
beliefs about their sales tax rate and with strong computational ability. In Appendix F we confirm
that the results hold for the full sample of participants, including those failing comprehension checks.

6.6 Discussion of our methods and alternative approaches

A key advantage of our approach to documenting heterogeneity is that it makes minimal assumptions
about measurement error at the individual level, and provides non-parametric bounds once the con-
ditional means E[θijk|xq] are given. The key assumption underlying this approach, stated in Section
5.1, is that

(
θ̂ijk ⊥ θ̂ij′k′

)
|θijk when j′ 6= j. Although relatively weak, the validity of this assumption

does rely on an important design feature: that all decisions are presented in random order. In the
absence of this design feature, “order effects” that, for instance, lead to declining valuations over time
as in Taubinsky and Rees-Jones (2018), would lead to correlated measurement error and violate our
assumption. Consequently, our approach is not applicable to experimental datasets such as those in
Taubinsky and Rees-Jones (2018) or Feldman et al. (2018).

Another key feature of our approach is that it enables formal hypothesis tests about the support
of valuation weights (e.g., whether some consumers overreact). Alternative approaches that rely on
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shrinkage estimators or deconvolution methods to estimate the distribution of a variable measured
with error do not permit formal hypothesis tests of this kind.

7 Concluding remarks

In this paper, we provide some of the first tests of costly attention models in a concrete and policy-
relevant setting. By focusing on the concrete setting of opaque sales taxes, and opaque prices more
broadly, our paper also contributes to the empirical work in those settings. A better understanding of
the mechanisms in these concrete settings can better inform both positive and normative analysis.

Evidence of costly attention implies that shrouding taxes can generate deadweight loss by imposing
cognitive costs on consumers. Evidence of significant heterogeneity in attention, generating both
under- and overreaction to opaque prices, implies that there may be significant deadweight loss from
misallocation of products to consumers (Taubinsky and Rees-Jones, 2018).

Both the heterogeneity and the elasticity with respect to stakes can also have important impli-
cations for how firms design “shrouded prices” in their contracts. For example, Gabaix and Laibson
(2006), Heidhues et al. (2017), and others derive a number of interesting implications about market
structure under the assumption that consumers either perceive shrouded fees correctly or ignore them
completely. Our results on sales taxes suggest that consumer attention to other shrouded prices might
be significantly more nuanced than what is assumed in these models. Working out the behavioral IO
implications of the richer models of inattention that our data supports could be an interesting avenue
for further research.

Of course, the fact that we find evidence for costly attention models does not preclude the possibility
that other mechanisms could be at play. For example, some consumers might simply forget about sales
taxes when shopping at a store. While this possibility seems less plausible in our specific setting, since
consumers are reminded what store they are entering right before they make their decisions (see figure
1), it could be a more important factor in other shopping environments. Similarly, while we do not
find that systematically incorrect beliefs explain underreaction in our experiment, they may play a
more important role in other settings, such as the applications discussed in the shrouded prices models
of Gabaix and Laibson (2006) and Heidhues et al. (2017).

There may also be important interactions between costly attention models and other mechanisms.
One might expect the costly attention models to look better in our environment than in ones where
misspecified models of the world are likely to play a more important role. While we find that the
majority of consumers are capable of computing post-tax prices, in other domains consumers may
reach systematically wrong answers regardless of effort. When considering other domains of behavior,
simple tests of knowledge and computational skills, such as ours, could help indicate the extent to
which mechanisms other than costly attention are a key force.

Despite the possibility of other important sources of mistakes, our study points to attention costs
as a plausible and important source of misreaction to opaque prices. The theoretical and empirical
framework that we have developed could be fruitfully extended to quantify of the importance of costly
attention mechanisms in a variety of other economically important settings.
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Figures and Tables

Figure 1: Screenshots of a purchase decision

(a) Introduction

(b) Purchase decision

Figure 1 shows an example of the two screenshots participants see for each of their nine purchase decisions. Subjects
first saw a screen indicating the product for which they will be shopping and the relevant sales tax environment. Store A
corresponds to a tax-free environment, store B to a standard sales tax environment, and store C to a triple-the-standard
sales tax environment. On the second screen, participants saw an image and product description from Amazon.com,
and were asked a series of questions about whether they would buy the product at various prices. The order of the
prices was randomized. When filling out the price list, participants were able to click on a “back” button to revisit the
first screen with the store information and an “instructions” button to reread the experiment instructions.
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Figure 2: Demand curves

(a) Observed demand curves
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(b) Observed vs. counterfactual demand: standard taxes
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(c) Observed vs. counterfactual demand: triple taxes
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Figure 2 presents demand curves, averaging across all nine products. We start by constructing demand curves Djk(p)
where j indexes products and k indexes the store type, A (no tax), B (standard tax), or C (triple tax). These correspond
to the fraction of consumers willing to buy product j at each price on the price list. For stores A and B, choices at ten
prices from $4.00 to $14.07 were observed, and for store C choices at nine prices from $4.00 to $12.24 were observed.
Panel (a) presents the average demand curvesDavg,k(p) := 1

9

∑
j Djk(p) for each tax-environment using observed choices.

For panel (b), we construct the demand curves that would be expected in store B if consumers reacted to the taxes fully.
We then compare this to the observed demand in stores A and B. For panel (c), we construct the demand curves that
would be expected in store C if consumers reacted to the taxes fully. We then compare this to the observed demand in
stores A and C. We construct the counterfactual demand through linear interpolation, as described in Section 4.1.
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Figure 3: Average revealed valuation weight for posted prices at or below a cutoff
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Figure 3 presents estimates of store-specific estimates E[θ] for prices less than or equal to the cutoff specified on the
x-axis. θ is defined as the revealed valuation weight that consumers place on the sales tax, with θ = 0 corresponding
to complete neglect of the tax and θ = 1 corresponding to putting the same weight on the tax as on the salient posted
price. Each value on the x-axis corresponds to a different posted price on the price list presented to consumers. The
results are estimated using equation (4) for prices below the cutoff. Standard errors are clustered at the subject level.
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Figure 4: Average revealed valuation weight by average tax owed
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Figure 4 presents store-specific estimates E[θ] by the average tax owed within each bin. θ is defined as the revealed
valuation weight that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and
θ = 1 corresponding to putting the same weight on the tax as on the salient posted price. For each tax environment—
store B and store C—each bin is constructed by dividing the 10 prices in the experiment into 5 ordered pairs. The
average tax owed is constructed by taking the average of the two prices in each bin, and multiplying it by the average
tax rate in stores B and C, respectively. The estimating equation is an extension of equation (4), described in footnote
17. Standard errors are clustered at the subject level.

37



Figure 5: Illustration of the estimation procedure for individual differences

Figure 5 illustrates the estimation procedure for computing E[θ] for high and low valuation weight groups, as described in
Section 5.1. θ is defined as the revealed valuation weight that consumers place on the sales tax, with θ = 0 corresponding
to complete neglect of the tax and θ = 1 corresponding to putting the same weight on the tax as on the salient posted
price.
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Figure 6: Lower bound on the fraction of individuals who over-react to the sales tax
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This figure presents store-specific estimates for the lower bound on the fraction of consumers with θ > 1, as a function
of the supremum of the support of θ. θ is defined as the revealed valuation weight that consumers place on the sales tax,
with θ = 0 corresponding to complete neglect of the tax and θ = 1 corresponding to putting the same weight on the tax
as on the salient posted price. The lower bound on Pr(θik) > 1, k ∈ B,C is estimated from equation (12). The dashed
lines present the 5% lower bound computed from a percentiled-based bootstrap procedure (1000 replications, clustered
at the subject level).
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Figure 7: Lower bound on the fraction of individuals whose valuation weight θ decreases in response
to higher stakes
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Figure 7 presents estimates for the lower bound on Pr(θiC − θiB) < 0 as a function of the infimum of the support. θ is
defined as the revealed valuation weight that consumers place on the sales tax, with θ = 0 corresponding to complete
neglect of the tax and θ = 1 corresponding to putting the same weight on the tax as on the salient posted price. The
dashed lines present the 5% lower bound from bootstrapped percentile-based confidence intervals (1000 replications,
clustered at the subject level).

Table 1: Average revealed valuation weights by group

Standard Triple Triple − Standard
(1): High valuation wgt. 1.04 1.20 0.16

[0.83, 1.26] [1.10, 1.31] [-0.02, 0.33]
(2): Low valuation wgt. 0.25 0.64 0.39

[0.08, 0.42] [0.57, 0.72] [0.26, 0.52]
(3): (1) − (2) 0.79 0.56 -0.23

[0.52, 1.06] [0.44, 0.68] [-0.43, -0.03]

Rows (1) and (2) of table 1 present estimates for the high and low valuation weight groups, whose construction is
described in Section 5.1. Row (3) presents the difference of the estimates in rows (1) and (2), for each column. The
“Standard” column contains estimates of store B valuation weights in each of the two groups, as well as the differences
between these groups. The “Triple” column contains estimates of store C valuation weights in each of the two groups,
as well as the differences between these groups. The “Triple-Standard” column presents estimates of E[θijC ] − E[θijB ]
for each of the two groups in rows (1) and (2), and contains the differences in differences in row (3). Bootstrapped
confidence intervals from 1000 replications, clustered at the subject level, are reported in brackets.
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Table 2: Average revealed valuation weights by adjustment group

Standard Triple Triple − Standard
(1): Low Adj. 0.85 0.86 0.01

[0.64, 1.07] [0.77, 0.96] [-0.15, 0.17]
(2): High Adj. 0.34 0.76 0.43

[0.17, 0.51] [0.68, 0.84] [0.30, 0.55]
(3): (1) − (2) 0.52 0.10 -0.42

[0.28, 0.75] [-0.01, 0.20] [-0.60, -0.24]

Rows (1) and (2) of table 2 present estimates for the low and high adjustment groups, whose construction is described
in Section 5.2. Row (3) presents the difference of the estimates in rows (1) and (2), for each column. The “Standard”
column contains estimates of store B valuation weights in each of the two groups, as well as the differences between
these groups. The “Triple” column contains estimates of store C valuation weights in each of the two groups, as well
as the differences between these groups. The “Triple-Standard” column presents estimates of E[θijC ]−E[θijB ] for each
of the two groups in rows (1) and (2), and contains the differences in differences in row (3). Bootstrapped confidence
intervals from 1000 replications, clustered at the subject level, are reported in brackets.

Table 3: Bounds on the dispersion of revealed valuation weights

Standard (θB) Triple (θC) θB − θC
Variance (Lower Bound) 0.83 0.71 0.86

[0.52] [0.59] [0.31]
Supremum (Lower Bound) 2.21 1.69 0.94

[1.55] [1.54] [0.16]

Columns (1) and (2) of table 3 present store-specific estimates of the lower bound on V ar[θijB ] and V ar[θijC ],and on
the supremum θ̄. Column (3) presents estimates of the lower bound of V ar[θijB−θijC ] and the supremum of θijB−θijC .
The methodology is described in Section 6.2 and the estimating equations are described in Section 6.3. Fifth percentile
results from 1000 bootstrap replications, clustered by subject, are reported in brackets.
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Online Appendices (Not for Publication)

A General results about costly attention models and preliminary
lemmas

A.1 Lemma for revealed valuation weight representation

We begin by establishing the following set of results, which we will use repeatedly throughout the
proofs.

Lemma A1. Suppose that the probability that consumer i chooses to buy the product given a valuation
v, salient price ps, and opaque price po is given by G(v−ps, po), with G increasing in the first argument.
Then the consumer’s decision process can be represented as if the consumer chooses to buy if and only
if v − ps − θpo ≥ 0, where θ is a random variable whose distribution is independent of v and ps.
Moreover:

1. If G ∈ {0, 1} for all v, ps, po, then the distribution of θ is degenerate (i.e., it is a scalar).
2. If G2(u, po) ≥ G1(u, po) for all u, then the distribution of θ corresponding to G2 first order

stochastically dominates the distribution of θ corresponding to G1.
3. If G(po− δ, po) = 1−G(po + δ, po) for all δ, then the distribution of θ is symmetric about 1 and

satisfies E[θ] = 1.

Proof. Fix po, and let F (θ|po) be the distribution of θ in the reduced-form representation given by
F (θ|po) = G(poθ, po). In the reduced-form model, the probability that a consumer buys is given by
Pr
(
θ ≤ v−ps

po

)
= F

(
v−ps
po
|po
)

= G(v − ps, po).
If G ∈ {0, 1}, as in condition (1), then there exists a value u† = v − ps such that the consumer

buys if and only if v − ps ≥ u†. Equivalently, the consumer buys if v − ps ≥ θpo, where θ = u†/po.
To prove condition (2), note that the assumption implies that F2(θ|po) = G2(poθ, po) ≥ G1(poθ, po) =

F1(θ|po).
To prove (3), note that the assumptions imply that F (θ|po) = G(poθ, po) = G(po(1 − θ), po) =

F (1− θ, po). This implies that the density function corresponding to F is symmetric around a mode
of 1. Therefore, E[θ] = 1.

Lemma A1 implies that any attention model that predicts that consumers are more likely to buy
when the transparent surplus v − ps is higher can be represented using the reduced-form attention
weight model. The additional statements in the Lemma help provide further structure on the attention
weights. For example, when the buying decision is not stochastic, as in the Gabaix (2014) model, the
reduced-form valuation weight will not be stochastic either.

A.2 Models in the spirit of rational inattention

We consider a model in which po = σω, where σ are the salient stakes, and ω ∈ Ω is the initially
unknown state. The set Ω includes the true value qo. A consumer has a prior µ about ω. The
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consumer selects a probability distribution over signals, with each signal identified with a posterior
γ ∈ Γ = ∆(Ω). Formally, the consumer selects a mapping π : Ω→ ∆(Γ). The posterior γ must satisfy

γ(ω) = Pr(ω|γ) =
µ(ω)π(γ|ω)∫

ω′ µ(ω′)π(γ|ω′)dω′

where π(γ|ω) is the probability of signal γ given state ω. The cost of selecting π is K(π) ∈ R+, where
R+ denotes the non-negative reals. Given a posterior γ, the consumer chooses to buy if and only if
v − ps − σ

∫
ωγ(ω)dω ≥ 0.

The net utility of choosing π is given by V (π) = Q(π)(v−p0)−R(π), whereQ(π) =
∫
γ(ω)π(γ)dωdγ

is the expected probability of buying, and

R(π) = −
∫
ωγ(ω)π(γ)dωdγ −K(π)

is the next expected cost, inclusive of both the attention cost and expected size of the opaque price.

Lemma A2. Let π be the information structure chosen for u = v − ps and let π′ be the information
structure chosen for u′ = v′ − p′s, with u′ < u. Then Q(π) ≥ Q(π′)

Proof. Suppose the contrary: Q(π) < Q(π′). Then uQ(π) − R(π) ≥ uQ(π′) − R(π′), which implies
u(Q(π)−Q(π′)) ≥ R(π)−R(π′). Similarly, if π is optimal at u′, then u′(Q(π′)−Q(π)) ≥ R(π′)−R(π),
or u′(Q(π)−Q(π′)) ≤ R(π)−R(π′). This implies that u(Q(π)−Q(π′)) ≥ u′(Q(π)−Q(π′)), which is
impossible if u > u′.

Lemma A2 implies that the ex-ante expected likelihood of buying is increasing in u = v − ps.
However, it does not by itself imply that the ex-ante expected likelihood of buying is increasing in
every state, and ω = qo in particular. If as u increases, the relative likelihood of buying in ω = qo

decreases sufficiently quickly, then the likelihood of buying in that state would not decrease. Although
we have not confirmed this exhaustively, this seems like an unlikely result. Below, we confirm that
the likelihood of buying in state ω = qo is increasing in u when attention costs are proportional to
(Shannon) entropy reduction.

Lemma A3. Let the cost function be given by λ(H(µ) − E[H(γ)]), where H denotes entropy. Then
the probability of buying in the particular state ω = qo is increasing in u = v−ps, and does not depend
on v and ps separately.

Proof. If the probability of buying is in the interior (0, 1), then Theorem 1 in Matejka and McKay
(2015) implies that

Pr(buy|ω = qo) =
Qe

u−σqo
λ

(1−Q) +Qe
u−σqo
λ

(15)

Since the right-hand side of (15) is increasing in both Q and u, Lemma A2 implies that Pr(buy|ω = qo)

is increasing in u.
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The last result immediately leads to the following:

Proposition A1. If attention costs are proportional to entropy reduction, then the consumer’s behav-
ior can be represented by the reduced-form valuation weight model.

Proof. Lemma A3 implies that the probability that the consumer buys the product can be written as
G(v − ps, po), where G is increasing in the first argument. Lemma A1 leads to the result.

A key general comparative static is that systematic misreaction (E[θ] 6= 1) cannot occur if the
consumer has an unbiased prior. Thus, systematic misreaction can only come about from biased
initial perceptions.

Proposition A2. Suppose that the prior µ is symmetric around qo; i.e., µ(ω) = µ(ω′) if |w − qo| =
|w′ − qo|. If attention costs are proportional to entropy reduction, then the consumer’s behavior is
represented with a reduced-form valuation weight model in which E[θ] = 1.

Proof. For u = σqo + δ, let αδ(ω) be the probability of choosing to buy in state ω at the optimal
attention strategy. Now when u = σqo − δ, the relative gains from not buying at ω′ = qo − (ω − qo)
are equal to the relative gains from buying at ω when u = σqo + δ. By symmetry, this implies that
at the optimal attention strategy, the probability of buying when u = σqo − δ, denoted α−δ(ω), must
satisfy 1 − α−δ(2qo − ω) = αδ(ω). In particular, this implies that αδ(qo) + α−δ(qo) = 1. Point 3 of
Lemma A1 then implies the result.

Generalization to other cost functions: In general, Proposition A2 will hold whenever i) there
exists a reduced-form valuation weight representation and ii) the attention cost function satisfies a
basic “anonymity” assumption such that the “labels” of the states do not matter, only the probabilities
of the states and their contingent payoffs.

Finally, we establish a general result about stakes and attention costs.

Proposition A3. Let the cost function be given by λ(H(µ) − E[H(γ)]), where H denotes entropy.
As λ→ 0 or as σ →∞, the distribution of θ approaches, in probability, a distribution that places unit
mass on 1.

Proof. We first show that as λ→ 0, Pr(buy|v−ps−po ≥ 0)→ 1 and Pr(buy|v−ps−po < 0)→ 0. Let
Q denote the ex-ante expected probability of buying. By Proposition 1 of Caplin et al. (forthcoming),
Q must satisfy

∑
ω

exp
(v−ps−σω

λ

)
µ(ω)

Qexp
(v−ps−σω

λ

)
+ (1−Q)

≤ 1,
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with equality if Q > 0. Now

lim
λ→0

∑
ω

exp
(v−ps−σω

λ

)
µ(ω)

Qexp
(v−ps−σω

λ

)
+ (1−Q)

= lim
λ→0

∑
ω≤v−ps

exp
(v−ps−σω

λ

)
µ(ω)

Qexp
(v−ps−σω

λ

)
+ (1−Q)

=
∑

ω≤v−ps

µ(ω)

limλ→0Q

=
Pr(ω ≤ v − ps)

limλ→0Q

Thus Q0 := limλ→0Q ≥ Pr(ω ≤ v − ps). If Pr(ω ≤ v − ps) = 1 then we are done since in that case
the consumer buys with probability 1, just like the fully attentive consumer (recall the assumption
that qo ∈ Ω). If Pr(ω ≤ v − ps) = 0 then Q0 = 0 by rational expectations, so we are again done.

Consider now the case in which Pr(ω ≤ v−ps) ∈ (0, 1), which implies that Q0 = Pr(ω ≤ v−ps) ∈
(0, 1). In this case, Theorem 1 of Matejka and McKay (2015) implies that

lim
λ→0

Pr(buy|ω = qo) = lim
λ→0

∑
ω≤v−ps

Qexp
(v−ps−σqo

λ

)
(1−Q) +Qexp

(v−ps−σqo
λ

)
=

0 if v − ps − σqo < 0

1 if v − ps − σqo > 0

Consider now the impact of increasing σ. It is sufficient to show that as l→∞, Pr(buy|lv, lps, lpo)→
0 if v − ps − po < 0 and Pr(buy|lv, lps, lpo) → 1 if v − ps − po > 0. This is because Pr(θ >

x) = Pr(buy|v − ps = xpo). Thus if x > 1 and Pr(buy|lv, lps, lpo) → 0 if v − ps − po < 0, then
Pr(buy|v − ps = xpo) → 0 as σ → ∞. Conversely, Pr(θ < x) = 1 − Pr(buy|v − ps = xpo). Thus if
x < 1 and Pr(buy|lv, lps, lpo)→ 1 if v − ps − po > 0, then Pr(buy|v − ps = xpo)→ 1 as σ →∞.

To that end, note that the impact on attention strategies of scaling up payoffs by l is equivalent to
scaling down the attention costs to λ/l. But since behavior approaches the full attentive benchmark
when λ→ 0, the conclusion follows.

Generalization to other cost functions: The result about stakes follows more generally. If
attention costs are given K = λKo, then scaling up stakes by k has the same impact on attention
strategies as scaling down attention costs to λ/k. Then the reasoning in the proof of Proposition A3
implies that any cost function that generates behavior that is continuous in λ at 0 will also generate
the prediction that the distribution of θ approaches 1.

A.3 Gabaix (2014) model of attention adjustment

Again, we consider a model in which po = σω, where σ are the salient stakes, and ω ∈ Ω is the initially
unknown state. The set Ω includes the true value qo. The consumer has a prior µ about ω. We set
q̄o =

∫
ωµ(ω).
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Consumers form an estimate of qo given by q∗o(m) = mqo+(1−m)q̄o. The case m = 0 corresponds
to no adjustment and the case m = 1 corresponds to full adjustment. The attention cost of choosing
m ≥ 0 is λmα, where α ≥ 0. Consumers approximate the perceived benefit of choosing m ≥ 0 with
the quadratic approximation B − (1−m)2B, where B is the benefit of full information. Formally,

B =

∫
σω≤v−ps

(v − ps − ω)µ(ω) if v − ps − σq̄o < 0

B =

∫
σω≥v−ps

(ps + ω − v)µ(ω) if v − ps − σq̄o ≥ 0

Lemma A4. The consumer’s propensity to buy is monotonically increasing in u = v − ps.

Proof. To establish monotonicity in u = v − ps, we need to show that as u increases, the consumer
cannot go from buying to not buying. Suppose first that u− σq̄o < 0, so that the consumer does not
buy when m = 0. If the consumer buys at the optimal m at that u, then u−σ(mqo+(1−m)q̄o) ≥ 0 by
definition, which is possible only if u−σqo > 0. Now since B(u) =

∫
σω≤u(u−σω)µ(ω) for u−σq̄o < 0,

B is an increasing function of u when u − σq̄o < 0. And since m is increasing in B, this means that
m is increasing in u when u < σqo.

Let m′ be the chosen attention weight for some u′ ∈ (u, σqo). Since m′ > m, and u′ > u > σqo,
it follows that u′ − σ(m′qo + (1 −m′)q̄o) ≥ 0 if u − σ(mqo + (1 −m)q̄o) ≥ 0, and thus the consumer
buys when v − ps = u′. Finally, note that if u′ ≥ σq̄o and u′ > σqo, then the consumer buys when
v − ps = u′. Thus, if u − σq̄o < 0 but the consumer buys when v − ps = u, then the consumer buys
for all other v, ps such that v − ps > u.

Second, suppose that u−σq̄o ≥ 0 and the consumer buys for this value of v−ps = u. Then for the
optimal m at that u, u−σ(mqo + (1−m)q̄o) ≥ 0. Now if u ≥ σqo, then plainly the consumer buys for
any u′ > u. Suppose instead that u < σqo. The value of full information is B =

∫
σω≥u(σω − u)µ(ω),

which is decreasing in u. Consequently, m is decreasing in u for u ≥ σq̄o. This means that the optimal
attention weight m′ at u′ is m′ ≤ m. Then since m′ ≤ m, it holds that u′ − σ(m′qo + (1−m′)q̄o) ≥ 0

if u− σ(mqo + (1−m)q̄o) ≥ 0.

Since the propensity to buy is deterministic and is increasing in u = v − ps, Lemma A1 then
implies:

Proposition A4. Consumer behavior in the Gabaix (2014) model of attention adjustment can be
represented by a revealed valuation weight model in which the consumer chooses to buy if and only if
v − ps − θpo ≥ 0 for θ ∈ R.

We next consider comparative statics on λ and σ.

Proposition A5. In the revealed valuation weight representation, θ = 1 if q̄o = qo. The relative
misreaction |1−θ| is increasing in λ and is decreasing in σ, with limλ→0 |1−θ| = 0 and limσ→∞ |1−θ| =
0.

46



Proof. The case q̄o = qo is immediate, since in this case q∗o = qo for all m.
Let m(u) be the optimal m chosen when v − ps = u. Note that since B is continuous in u, m(u)

is continuous in u as well. Define u† to be the smallest u such that u ≥ m(u)σqo + (1 −m(u))σq̄o.
Continuity implies that u† must satisfy

u† = m(u†)σqo + (1−m(u†))σq̄o (16)

Recall that Lemma A4 implies that there is a unique u† satisfying this equation.
Then

θ =
σqo
u†

=
qo

m(u†)qo + (1−m(u†))q̄o
(17)

Note that θ is a function of m and u† only, and does not directly depend on stakes. The combination
of (16) and (17) imply that m(u) is decreasing in λ and increasing in σ for all u.

Consider first the case in which q̄o < qo. The case q̄o > qo follows analogously. Sincem is decreasing
in λ for all u, the assumption qo > q̄o implies that q∗ = mqo+(1−m)q̄o is decreasing in λ for all values
of u. Consequently, the solution u† to equation (16) decreases in λ, and thus θ must be increasing in
λ as well. Finally, since m→ 1 as λ→ 0, it follows that limλ→0 θ = 1.

Next, consider the impact of increasing stakes from σ to σ′ > σ. Let B(σ, u) denote the value of
acquiring full information at stakes σ and transparent surplus v − ps = u. Now for u′ = (σ′/σ)u, and
u > σq̄o

B(σ′, u′) =

∫
ω≥u′/σ′

(σ′ω − u′)µ(ω) =
σ′

σ

∫
ω
(σω − u)µ(ω) =

σ′

σ
B(σ, u) (18)

Since the perceived benefit of increasing m is linear in B, equation (18) above implies that increasing
stakes to σ′ has the same impact on m as decreasing attention costs from λmα to σ

σ′λm
α. Thus, since

m is decreasing in λ, it must be increasing in stakes σ.

Finally, we work out a simple comparative static on prior beliefs that complements the comparative
static in the body of the paper about how prior perceptions affect the revealed valuation weights θ.
We show that for a family of distributions of prior beliefs indexed by the mean and the variance, the
revealed valuation weight θ will be increasing in the mean and in the variance.

Proposition A6. Suppose that prior beliefs are given by the random variable d + lε, where ε is a
mean-zero random variable. Then the revealed valuation weight θ is decreasing in d, and the relative
misreaction |1− θ| is decreasing in l.

Proof. Note that q̄o is constant in l, and thus increasing l cannot change behavior when m = 0.
Consequently, B is proportional to l, and thus m is increasing in l as well. By the reasoning in the
proof of Proposition A5, this implies that |1− θ| is decreasing in l.

Next, we show that if a consumer with prior (d, l) buys when v − ps = u, then a consumer with
prior (d− δ, l) will also buy when v − ps = u. This will establish that θ(d− δ, l) ≥ θ(d, l) by Lemma
A1.
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Consider first the case in which u− σq̄o(d, l) < 0, so that the consumer does not buy when m = 0,
but buys at the optimal m because u > σqo. Now for δ such that u− σq̄o(d, l) + δ < 0, the consumer
with prior (d− δ, l) will also not buy when m = 0. But because B(u, d+ δ, l) > B(u, d, l) by the same
reasoning as in the proof of Lemma A4, the consumer with prior (d−δ, l) will choose a higher m. Now
since σqo < u < σq̄o(d, l), it follows that qo < q̄o(d, l) and thus

m(d, l)qo + (1−m(δ, l))q̄o(d, l) ≥ m(d− δ, l)qo + (1−m(d− δ, l))q̄o(d, l)

> m(d− δ, l)qo + (1−m(d− δ, l))q̄o(d− δ, l)

Consequently, the consumer with prior (d− δ, l) also buys.
Next, consider the case in which u−σq̄o(d, l) > 0 and the consumer buys for this value of v−ps = u.

Then for the optimal m at that u, u − σ(m(d, l)qo + (1 −m(d, l))q̄o(d, l)) ≥ 0. Now if u ≥ qo, then
plainly the consumer buys at prior (d − δ, l) since q̄o(d − δ, l) = q̄o(d, l) − δ. Suppose instead that
u < σqo, which also implies that qo > q̄o . Then B(u, d+ δ, l) > B(u, d, l) by the same reasoning as in
the proof of Lemma A4. Consequently, m(d− δ, l) ≤ m(d, l). Thus

m(d, l)qo + (1−m(δ, l))q̄o(d, l) ≥ m(d− δ, l)qo + (1−m(d− δ, l))q̄o(d, l)

> m(d− δ, l)qo + (1−m(d− δ, l))q̄o(d− δ, l)

which implies that the consumer with prior (d− δ, l) also buys.

B Proofs of propositions in the body of the paper

B.1 Proof of Proposition 1

Proposition A1 establishes that the model has a revealed valuation weight representation. Proposition
A3 establishes that limλ→0 |1 − θ| = 0 and limσ→∞ |1 − θ| = 0. This proves the first part of the
proposition.

We now move on to the second statement. Set u = v − ps. To characterize the model, begin
by noting that Lemma 1 of Matejka and McKay (2015) implies that it is optimal for consumers to
only choose at most two different posteriors, ρ0 and ρ1, such that b(ρ0) = 0 and b(ρ1) = 1. Now
Proposition 2 of Caplin et al. (forthcoming) implies that the distribution π is optimal if and only if
(i) Qρ1 + (1−Q)ρ0 = r, where Q is the ex-ante expected probability of buying, and (ii)

ρ1

ρ0
≤ e

u−t
λ

1− ρ1

1− ρ0
≤ e

u−t̂
λ

with equality in both equations when buying and not buying are ex-ante expected with positive
probability. The constraint Qρ1 + (1−Q)ρ0 = r implies the constraints ρ1 ≤ r and ρ0 ≥ r.
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When the equalities hold, we have a system of two equations and two unknowns given by

ρ1 = ρ0e
u−t
λ

1− ρ1 = (1− ρ0)e
u−t̂
λ

Plugging the first into the second gives (1− ρ0e
u−t
λ ) = (1− ρ0)e

u−t̂
λ , or ρ0

(
e
u−t̂
λ − e

u−t
λ

)
= e

u−t̂
λ − 1,

from which it follows that

ρ0 =
e
u−t̂
λ − 1

e
u−t̂
λ − e

u−t
λ

(19)

We then have

Q =
ρ0 − r
ρ0 − ρ1

=
ρ0 − r

ρ0(1− e
u−t
λ )

=
1

1− e
u−t
λ

− r

ρ0(1− e
u−t
λ )

=
1

1− e
u−t
λ

(1− r/ρ0)

Now the ex-post probability of buying, by Bayes’ rule, is

Pr(buy|q = t) =
Pr(q|ρ = ρ1)Pr(buy)

Pr(q)

=
ρ1Q

r

=
ρ0

r

e
u−t
λ

1− e
u−t
λ

− e
u−t
λ

1− e
u−t
λ

=
1

e
t−u
λ − 1

(ρ0

r
− 1
)

To consider comparative statics, first consider comparative statics on ρ0. An alternative formulation
is

ρ0 =
1− e

t̂−u
λ

1− e
t̂−t
λ

(20)

Now clearly ρ0 is increasing in u; in general, the numerator goes from 0 for u = t̂ to 1 for u = ∞.
Since the denominator is constant in u, ρ0 is increasing in u. Next, we see that ρ0 is decreasing in t̂
from the formulation in equation (19), since e

u−t
λ < 1 and e

u−t̂
λ > 1 but is decreasing in t̂.23 Finally,

ρ is constant in r.
Now for comparative statics on Pr(buy|q = t), note that 1

e
t−s
λ
−1
> 0 is increasing in u, and thus the

23For a function f(x) = x−1
x−a for a < 1, the derivative in x is f ′(x) = (x−a)−(x−1)

(x−a)2 > 0. Thus ρ0 is monotone in e
u−t̂
λ .
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probability is increasing in u. Next, since ρ0 is constant in r, the probability of buying is decreasing
in r. And since ρ0 is decreasing in t̂, we also see that the ex-post probability of buying is decreasing
in t̂.

The boundary conditions must be such that in general Q = min

(
max

(
ρ0−r

ρ0(1−e
u−t
λ )

, 0

)
, 1

)
, with

ρ0 = ρ1 if Q is not interior. It can be shown that there exist u and ū such that Q = 0 if u < u

and Q = 1 if u > ū. We can show that the same comparative statics for r and t̂ apply to u and ū .
Intuitively, the higher are r and t̂, the higher are u and ū, since buying the good becomes only less
advantageous. Formally, this is because Q is increasing in u but is decreasing in r and t̂. Thus if r
and t̂ get bigger, and Q is fixed at either 0 or 1, then the values of u have to be bigger to compensate.

B.2 Proof of Proposition 2

Proof. Proposition A4 establishes that the model has a revealed valuation weight representation.
Proposition A5 establishes that the relative misreaction |1− θ| is increasing in λ and is decreasing in
σ, with limλ→0 |1− θ| = 0 and limσ→∞ |1− θ| = 0.

We now need to show decreasing q̄o through changes in r or t̂ cannot lead a consumer to go from
buying to not buying. That is, the likelihood of buying is decreasing in q̂o. Combined with Lemma
A1, and the fact that the revealed valuation weight representation has θ = 1 when t̂ = t, this will
imply the remaining statement of the proposition.

Case 1: t < u < t̂ and u − σq̄o > 0. In this case u − σ(mt + (1 −m)q̄o) ≥ 0 for all m ∈ [0, 1].
Decreasing q̂o by either decreasing r or t̂ does not change that inequality.

Case 2: t < u < t̂ and u− σq̄o < 0. The value of full information in this case is B = r(u− σt). If
the consumer buys at the optimal m at these parameters, then u−σ(mt+(1−m)q̄o) ≥ 0 by definition,
which is possible only if u−σt > 0. In this case, increasing r increases B and consequently the chosen
m, and it decreases q̄o. Thus the propensity to buy increases in r when t < u < t̂. Moreover, since B
is not a function of t̂ when u − σq̄o < 0, increasing t̂ has no impact on the consumer’s propensity to
buy in this region.

Case 3: t̂ < u < t and u− σq̄o < 0. In this case u− σ(mt+ (1−m)q̄o) < 0 for all m ∈ [0, 1]. The
consumer does not buy for all parameters r and t̂ satisfying these conditions.

Case 4: t̂ < u < t and u − σq̄o > 0. In this case, B = r(σt − u). If the consumer buys at the
optimal m at these parameters, then u − σ(mt + (1 − m)q̄o) ≥ 0 by definition. Decreasing q̄o by
decreasing r decreases B and thus decreases the optimal m. Since t > q̄o, decreasing r thus decreases
mt + (1 − m)q̄o, and thus increases the propensity to buy. And since B is constant in t̂, it is then
mechanical that decreasing t̂ decreases mt+ (1−m)q̄o, and thus increases the propensity to buy.
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B.3 Proof of Proposition 3

Proof. Let E[Xi|Y ] = α(Y ). By the law of iterated expectations, and the conditional independence
assumption that E[X1X2|Y ] = E[X1|Y ]E[X2|Y ],

Cov[X1, X2] = E[X1X2]− E[X1]E[X2]

= E[E[X1X2|Y ]]− E[E[X1|Y ]]E[E[X2|Y ]]

= E[α(Y )2]− E[α(Y )]2

= V ar[α(Y )]

Again by the law of iterated expectations,

Cov[Y,Xi] = E[Y Xi]− E[Y ]E[Xi]

= E[E[Y Xi|Y ]]− E[Y ]E[E[Xi|Y ]]

= E[Y α(Y )]− E[Y ]E[α(Y )]

= Cov[Y, α(Y )]

The first statement of the proposition is therefore equivalent to

V ar[Y ]V ar[α(Y )] ≥ Cov[Y, α(Y )]2,

which holds by the Cauchy-Schwarz inequality. More generally, if E[X1X2|Y ] ≥ E[X1|Y ]E[X2|Y ],
meaning that the two proxies are correlated conditional on Y , then Cov[X1, X2] ≥ V ar[α(Y )] and the
statement of the proposition still holds.

The second statement follows by the Bhatia-Davis inequality: (Ȳ − E[Y ])(E[Y ]− Y ) ≥ V ar[Y ].
To show that both inequalities are tight, suppose that Y takes on the values Y and Ȳ only, with

a = Pr(Y = Ȳ ). Since α(Y ) must trivially be a linear function of Y when Y has binary support,
and since the Cauchy-Schwarz inequality reduces to an equality when one random variable is a linear
transformation of the other, this implies V ar[Y ]V ar[α(Y )] = Cov[Y, α(Y )]2. Moreover,

V ar[Y ] = a(Ȳ − aȲ − (1− a)Y )2 + (1− a)(Y − aȲ − (1− a)Y )2

= a(1− a)2(Ȳ − Y )2 + (1− a)a2(Ȳ − Y )2

= a(1− a)(Ȳ − Y )2

At the same time,

(Ȳ − E[Y ])(E[Y ]− Y ) = (Ȳ − aȲ − (1− a)Y )(aȲ + (1− a)Y − Y )

= (1− a)(Ȳ − Y )a(Ȳ − Y ),
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which shows that (Ȳ − E[Y ])(E[Y ]− Y ) = V ar[Y ] for a distribution with binary support.

B.4 Proof of Proposition 4

We start with the more general statement.

Proposition B1. Let Y be a random variable supported on [Y , Ȳ ]. Then

Pr(Y > y) ≥ E[(Y − Y )2]− (y − Y )E[Y − Y ]

(Ȳ − y)(Ȳ − Y )
(21)

Pr(Y < y) ≥ E[(Ȳ − Y )2]− (Ȳ − y)E[Ȳ − Y ]

(y − Y )(Ȳ − Y )
(22)

and both bounds are tight.

Proof. For shorthand, set α = Pr(Y > y). Suppose first that Y = 0. Now for y ∈ [Y , Ȳ ]:

E[(Y − Y )2] = (1− α)E[(Y − Y )2|Y ≤ y] + αE[(Y − Y )2|Y > y]

≤ (1− α)(y − Y )E[Y − Y |Y ≤ y] + α(Ȳ − Y )E[Y − Y |Y > y]

= (1− α)(y − Y )E[Y − Y |Y ≤ y] + α(y − Y )E[Y − Y |Y > y] + α(Ȳ − y)E[Y − Y |Y > y]

= (y − Y )E[Y − Y ] + α(Ȳ − y)E[Y − Y |Y > y]

≤ (y − Y )E[Y − Y ] + α(Ȳ − y)(Ȳ − Y )

Consequently,

α ≥ E[(Y − Y )2]− (y − Y )E[Y − Y ]

(Ȳ − y)(Ȳ − Y )

Similarly, for shorthand, set β = Pr(Y < y), then for y > Y ,

E[(Ȳ − Y )2] = (1− β)E[(Ȳ − Y )2|Y ≥ y] + βE[(Ȳ − Y )2|Y < y]

≤ (1− β)(Ȳ − y)E[(Ȳ − Y )|Y ≥ y] + β(Ȳ − Y )E[(Ȳ − Y )|Y < y]

= (1− β)(Ȳ − y)E[(Ȳ − Y )|Y ≥ y] + β(Ȳ − y)E[(Ȳ − Y )|Y < y] + β(y − Y )E[(Ȳ − Y )|Y < y]

= (Ȳ − y)E[Ȳ − Y ] + β(y − Y )E[(Ȳ − Y )|Y < y]

≤ (Ȳ − y)E[Ȳ − Y ] + β(y − Y )(Ȳ − Y )

Consequently,

β ≥ E[(Ȳ − Y )2]− (Ȳ − y)E[Ȳ − Y ]

(y − Y )(Ȳ − Y )

Both bounds are tight. For the first one, consider a random variable that puts weight α on Y = Ȳ ,
weight β on Y = y, and weight 1− α− β on Y = Y . Then
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E[(Y − Y )2]− (y − Y )E[Y − Y ] = α(Ȳ − Y )2 + β(y − Y )2

− (y − Y )
[
α(Ȳ − Y ) + β(y − Y )

]
= α(Ȳ − Y )2 − α(y − Y )(Ȳ − Y )

= α(Ȳ − Y )(Ȳ − Y − y + Y )

= α(Ȳ − Y )(Ȳ − y)

and thus
E[(Y − Y )2]− (y − Y )E[Y − Y ]

(y − Y )(Ȳ − Y )
= α.

Similarly, for a distribution that places weight β on Y = Y , weight α on Y = y, and weight 1−α− β
on Y = Ȳ ,

E[(Ȳ − Y )2]− (Ȳ − y)E[Ȳ − Y ] = β(Ȳ − Y )2 + α(Ȳ − y)2

− (Ȳ − y)
[
β(Ȳ − Y ) + α(Ȳ − y)

]
= β(Ȳ − Y )2 − β(Ȳ − y)(Ȳ − Y )

= β(Ȳ − Y )(Ȳ − Y − Ȳ + y)

= β(Ȳ − Y )(y − Y )

from which the conclusion follows.

We obtain Proposition 4 as a corollary. When Y = 0 and y = 1, equation (21) translates to

Pr(Y > 1) ≥ E[Y 2]− E[Y ]

Ȳ (Ȳ − 1)
.

When Ȳ = 1 and y = 0, equation (22) translates to

Pr(Y < 0) ≥ E[(1− Y )2]− E[1− Y ]

(−Y )(1− Y )

=
E[Y 2]− 2E[Y ] + 1− (1− E[Y ])

−Y (1− Y )

=
E[Y 2]− E[Y ]

Y (Y − 1)

C Interpreting coefficients in the probit regression

We have that person i chooses to buy product j in store k, with probability F
(
µj−log p−θi log(1+τik)

σj

)
,

where F is the standard normal CDF. Let f denote the standard normal density function. Here we
formally verify that
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EiF

(
µj − log p− θi log(1 + τ)

σj

)
≈ F

(
µj − log p− E[θi] log(1 + τ)

σj

)
with negligible error terms. For shorthand, we set α := log(1 + τ). A first-order Taylor expansion
around y :=

µj−log p
σj

− E[θi]α
σj

yields

E

[
F

(
µj − log p− θiα

σj

)]
= F (y) + E[θi − E[θi]]f

(
xj −

E[θi]α

σj

)
+O(α2)

= F (y) +O(α2)

Thus, the estimated population θ in our probit model corresponds to the average θ up to terms
of order α2. These are certainly negligible in store B. To more carefully assess the impact of second
order-terms, we now compute a second-order Taylor expansion, around y :=

µj−log p
σj

− E[θi]α
σj

, using
the fact that for a normal distribution, f ′(x) = −xf(x):

E

[
F

(
µj − log p− θiα

σj

)]
= F (y) + E[θi − E[θi]]f (y)

+
1

2
E[

(
θiα− E[θi]α

σj

)2

]f ′ (y) +O(α3)

= F (y)− 1

2
yα2V ar[θi]

σj2
f(y) +O(α3)

= F

(
y − 1

2
yα2V ar[θi]

σj2

)
+O(α3)

= F

(
µj − log p

σj
−

(
µj − log p

2σ3
j

αV ar[θi] +
E[θi]

σk

)
α

)
+O(α3)

If we instead assume that the probability is given by F
(
µj−log p

σj
− E[θi|α]

σj
α
)
, how much bias do we

get from this model specification? The answer depends on the average value of xk, which determine
the extent to which introducing taxes leads to a lower probability of buying. Note that we can
estimate 1/σj and µj/σj from the probit regression in which there are no taxes, which on average are
given by 2.073 and 3.897, respectively. Using those estimates, we can find that the average value of
µj−log p

σj
is given by −0.24. This means that our representative population estimates produce slight

underestimates of the actual population average, and that the degree of underestimation is greater
for triple taxes than for standard taxes. Under the conservative upper bound on V ar[θ|α] of 1, this
implies that the margin of error is about −0.24 · (1/2) ·2.0732 ·E[α] = −0.52E[α]. For standard taxes,
this gives a margin of error of about −.036 and for triple taxes this gives a margin of error of about
−0.101. When studying how a particular covariate affects E[θ], the margin of error is even smaller,
since the difference in variances should be smaller than 1. If the covariate does not affect variances,
then the margin of error vanishes to be of order three or higher.

One way of assessing whether our model produces estimates close to the average is to consider
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estimates θ̂pop|X for a binary proxy X ∈ {0, 1}. If the probit model produces estimates close to the
average, then we should have θ̂pop = (1−Pr(X = 1))θ̂pop|X=0+Pr(X = 1)θ̂pop|X=1. To the extent that
we underestimate taxes significantly due to the variance, notice that because the average of variances
of two distributions is lower than the variance of their mixture,24 the average of the θ estimates from
two samples should be lower than our estimate of the overall average. We do not find this to be a large
effect. For our binary proxies, we compare the estimates in tables 2 and 3 for the triple tax. Recall
that the estimate of E[θ] for the triple tax from the baseline regression is 0.79. When we average the
two values in table 1 we get 0.25× 1.20 + 0.75× 0.25 = 0.78. When we average the two values in table
2 we get 0.25× .86 + 0.75× 0.76 = 0.785. These results suggest that there is not a significant bias.

Finally, note that the bias induced by the approximation works against our results on how θ

changes with the price. This is because µj−log p

2σ3
j

is decreasing in p, which dampens our findings about

how E[θ] varies with price.

D Point estimates and confidence intervals for Figures 3 and 4

Table D.1: Average revealed valuation weights in Figure 3

Price cutoff Avg. revealed val.
wgt.: standard tax

95% CI Avg. revealed val.
wgt.: triple tax

95% CI

4.60 0.23 [0.10, 0.35] 0.40 [0.34, 0.47]
5.29 0.27 [0.12, 0.42] 0.55 [0.48, 0.63]
6.08 0.27 [0.11, 0.44] 0.64 [0.56, 0.71]
7.00 0.34 [0.17, 0.51] 0.72 [0.65, 0.80]
8.05 0.39 [0.22, 0.56] 0.77 [0.69, 0.85]
9.25 0.43 [0.26, 0.59] 0.80 [0.72, 0.87]
10.64 0.46 [0.30, 0.62] 0.81 [0.74, 0.88]
12.24 0.47 [0.31, 0.62] 0.80 [0.73, 0.87]
14.07 0.48 [0.32, 0.63] 0.79 [0.72, 0.86]

Table D.1 presents the estimates for E[θ] and average tax owed displayed in figure 3. θ is defined as the revealed
valuation weight that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and
θ = 1 corresponding to putting the same weight on the tax as on the salient posted price. Each price cutoff corresponds
to a different posted price on the price list presented to consumers. The results are estimated using equation (4) for
prices below the cutoff. Standard errors are clustered at the subject level.

24The variance of a mixture X of random variables Xi with weights wi is given by

E[(X − µ)2] = σ2 =

n∑
i=1

wi(µ
2
i + σ2

i )− µ2.
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Table D.2: Average revealed valuation weights in figure 4

Bin Avg. price Avg. tax rate Avg. tax owed Avg. revealed val. wgt. 95% CI
1 4.30 7.24% 0.31 0.23 [0.11, 0.36]
2 5.69 7.24% 0.41 0.28 [0.05, 0.50]
3 7.52 7.24% 0.54 0.52 [0.32, 0.71]
4 9.95 7.24% 0.72 0.65 [0.44. 0.87]
5 13.15 7.24% 0.95 0.72 [0.40, 1.05]
6 4.30 21.72% 0.93 0.41 [0.35, 0.47]
7 5.69 21.72% 1.24 0.80 [0.69, 0.90]
8 7.52 21.72% 1.63 0.87 [0.77, 0.97]
9 9.95 21.72% 2.16 0.87 [0.75, 0.99]
10 13.15 21.72% 2.66 0.91 [0.73, 1.08]

Table D.2 presents store-specific estimates of E[θ] by the average tax owed within each bin. θ is defined as the revealed
valuation weight that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and
θ = 1 corresponding to putting the same weight on the tax as on the salient posted price. For each tax environment—
store B and store C—each bin is constructed by dividing the 10 prices in the experiment into 5 ordered pairs. The
average tax owed is constructed by taking the average of the two prices in each bin, and multiplying it by the average
tax rate in stores B and C, respectively. The estimating equation is an extension of equation (4), described in footnote
17. Standard errors are clustered at the subject level.

E Replication of results restricting to participants with nearly-accurate
beliefs and high computational ability

At the end of our experiment we asked participants (1) to report their sales tax rate in their current
city of residence, and (2) to estimate the sales tax they would owe on an $8.00 (non-tax exempt) item
purchased in their city of residence. We restricted the sample to the 60.0% of participants who (1)
know their tax rate within 0.5 percentage points and (2) are able to calculate their tax burden within
$0.05.

We first separately examine the effects of the two possible mechanisms, by estimating average
revealed valuation weights restricting to (1) the 70.3% who know their sales tax rate within 0.5
percentage points, and (2) the 62.9% who can estimate the sales tax burden on an $8.00 item purchased
in their city of residence within $0.05. Figures E.1 and E.2 present the results.

We next repeat our individual differences analysis, restricting to the “nearly-accurate beliefs and
computation” sample. Tables E.1-E.3 recreate tables 1-3 restricting to this sample. Consistent our
main results, the low valuation weight group exhibits a larger increase in the revealed valuation weights
than the high valuation weight group when tax rates are tripled (0.40 vs. 0.20; 95% CI for difference
-0.06-0.44). The adjustments and their difference are similar in magnitude to our main sample results
(0.39 vs. 0.16; 95% CI for difference -0.43 to -0.03).

When dividing consumers by adjustment group, we still find that there are significant individual
differences: consumers in the low adjustment group increase their valuation weights by an average of
0.04 (95% CI -0.16-0.24), and those in the high adjustment group increase their revealed valuation
weights by an average of 0.43 (95% CI 0.28-0.58). Consistent with our main prediction, and the
possibility that some consumers might be over-reacting, we find that consumers in the low adjustment
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group have higher valuation weights in both the standard tax regime (0.91 vs. 0.43; 95% CI for
difference 0.20-0.76) and in the triple tax regime (0.95 vs. 0.86; 95% CI for difference -0.04-0.21). The
average valuation weight estimates are all slightly higher in this sample than in our main sample, but
the differences all have a magnitude within 0.05 of our main results for both the standard tax regime
(0.52, 95% CI 0.28-0.75) and the triple tax regime (0.10, 95% CI -0.01-0.20).

As with our main sample, the bounds on the variance of individual differences (0.84, 5% confidence
bound of 0.24) imply at least some consumers overreact to taxes significantly. Consistent with the
presence of overreaction in costly inattention models, we also estimate that some consumers reduce
their valuation weights by at least 0.93 (5% confidence bound of 0.05) when shopping in the triple
tax stores instead of the standard tax store. This estimate is very similar to the bound of 0.94 (5%
confidence bound of 0.16) estimated from our main sample.

Figure E.1: Average revealed valuation weight for posted prices at or below a cutoff: nearly-accurate
beliefs subsample
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Figure E.1 recreates figure 3, restricting to the 70.3% of the main sample who could identify their local sales tax rate
within 0.5 percentage points.
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Figure E.2: Average revealed valuation weight for posted prices at or below a cutoff: restricting to
participants with nearly-accurate beliefs and strong computational ability
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Figure E.2 recreates figure 3, restricting to the 62.9% of the main sample who could identify their tax burden within
$0.05 on an $8.00 item purchased in their city of residence.

Table E.1: Average revealed valuation weights by group: restricting to participants with nearly-
accurate beliefs and strong computational ability

Standard Triple Triple − Standard
(1): High valuation wgt. 1.11 1.32 0.20

[0.85, 1.37] [1.18, 1.45] [-0.01, 0.42]
(2): Low valuation wgt. 0.34 0.73 0.40

[0.13, 0.55] [0.64, 0.83] [0.24, 0.55]
(3): (1) − (2) 0.77 0.58 -0.19

[0.47, 1.08] [0.44, 0.73] [-0.44, 0.06]

Table E.1 repeats table 1, restricting to the 60.0% of the main sample who could identify their local sales tax rate within
0.5 percentage points and compute the sales tax they would owe for an $8.00 item purchased in their city of residence
within $0.05.
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Table E.2: Average revealed valuation weights by adjustment group: restricting to participants with
nearly-accurate beliefs and strong computational ability

Standard Triple Triple − Standard
(1): Low Adj. 0.91 0.95 0.04

[0.64, 1.17] [0.82, 1.07] [-0.16, 0.24]
(2): High Adj. 0.43 0.86 0.43

[0.23, 0.63] [0.76, 0.96] [0.28, 0.58]
(3): (1) − (2) 0.48 0.08 -0.39

[0.20, 0.76] [-0.04, 0.21] [-0.62, -0.17]

Table E.2 repeats table 2, restricting to the 60.0% of the main sample who could identify their local sales tax rate within
0.5 percentage points and compute the sales tax they would owe for an $8.00 item purchased in their city of residence
within $0.05.

Table E.3: Bounds on the dispersion of revealed valuation weights: restricting to participants with
nearly-accurate beliefs and strong computational ability

Standard Triple Standard-Triple
Variance (Lower Bound) 0.71 0.75 0.84

[0.41] [0.60] [0.24]
Supremum (Lower Bound) 1.84 1.74 0.93

[1.31] [1.56] [0.05]

Table E.3 repeats table 3, restricting to the 60.0% of the main sample who could identify their local sales tax rate within
0.5 percentage points and compute the sales tax they would owe for an $8.00 item purchased in their city of residence
within $0.05.

F Replication of main results without excluding study participants
failing comprehension questions or violating monotonicity

In our primary analyses we exclude 256 respondents who incorrectly answered one or more of the
comprehension questions and an additional 47 respondents who had monotonicity violations within
a price list. Figure F.1 repeats figure 3 including these 292 participants.25 We again find strong
evidence for Prediction 1, indicating that poor computational ability was not the sole mechanism
driving consistency with the prediction. The estimates are of smaller magnitude than the full sample
results, but are consistent with the theory which predicts average valuation weights are increasing in
the absolute size of the tax. Using all prices we estimate an average revealed valuation weight of 0.36
(95% CI 0.22-0.51) for the standard tax environment in the restricted sample compared to 0.48 (95%
CI 0.32-0.63) in the main sample. Similarly, we estimate an average revealed valuation weight of 0.67
(95% CI 0.60-0.74) for the triple tax environment in the restricted sample, which is only slightly higher
than the estimate in the main sample (0.79, 95% CI 0.72-0.86).

Tables F.1-F.3 replicate tables 1-3 including the respondents who failed the comprehension checks.
We still exclude participants with monotonicity violations, as our estimation procedure in Section 5.1
assumes monotonic preferences in estimating a willingness-to-pay.

25We continue to exclude one of these participants who reported being under age 18.
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As with our main results, the low valuation weight group exhibits a larger increase in the revealed
valuation weights than the high valuation weight group when tax rates are tripled (0.39 vs. 0.13; 95%
CI for difference -0.42 to -0.08). The adjustments and their difference are similar in magnitude to our
main sample results (0.39 vs. 0.16; 95% CI for difference -0.43 to -0.03).

When dividing consumers by adjustment group, the estimates are also very similar in magnitude:
consumers in the low adjustment group increase their valuation weights by an average of -0.00 (95%
CI -0.15-0.15) compared to 0.01 (95% CI -0.15-0.17) in our main sample. Similarly, those in the high
adjustment group increase their revealed valuation weights by an average of 0.42 (95% CI 0.30-0.54)
compared to 0.43 (95% CI 0.30-0.55) in our main sample. Consistent with our main results, we find
that consumers in the low adjustment group have higher valuation weights in both the standard tax
regime (0.77 vs. 0.24; 95% CI for difference 0.32-0.74) and in the triple tax regime (0.77 vs. 0.66;
95% CI for difference 0.01-0.20). The average valuation weight estimates are all slightly lower in this
sample than in our main sample, but the differences all have a magnitude within 0.01 of our main
results for both the standard tax regime (0.52, 95% CI 0.28-0.75) and the triple tax regime (0.10, 95%
CI -0.01-0.20).

Including participants who failed comprehension checks leads to a lower variance bound on adjust-
ment (0.32, 5% confidence bound of 0.18) than the bound of 0.86 (5% confidence bound of 0.31) in our
main sample. Additionally, we estimate an upper bound on ∆ to be -0.16 (95% confidence bound of
0.06), which is smaller than the bound from our main sample (-0.94, 95% confidence bound of -0.16)
and not statistically significantly below 0.
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Figure F.1: Average revealed valuation weight for posted prices at or below a cutoff: including partic-
ipants who fail comprehension checks
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Figure F.1 recreates figure 3, including the 292 participants who failed comprehension checks or had monotonicity
violations in purchase decisions.

Table F.1: Average revealed valuation weights by group: including participants who fail comprehension
checks

Standard Triple Triple − Standard
(1): High valuation wgt. 0.96 1.09 0.13

[0.76, 1.16] [0.99, 1.19] [-0.02, 0.29]
(2): Low valuation wgt. 0.16 0.54 0.39

[0.00, 0.32] [0.48, 0.61] [0.27, 0.50]
(3): (1) − (2) 0.80 0.55 -0.25

[0.57, 1.03] [0.44, 0.65] [-0.42, -0.08]

Table F.1 repeats table 1 including 223 participants who were excluded from our main sample solely for failing our
comprehension check.
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Table F.2: Average revealed valuation weights by adjustment group: including participants who fail
comprehension checks

Standard Triple Triple − Standard
(1): Low Adj. 0.77 0.77 -0.00

[0.57, 0.97] [0.68, 0.86] [-0.15, 0.15]
(2): High Adj. 0.24 0.66 0.42

[0.09, 0.40] [0.59, 0.74] [0.30, 0.54]
(3): (1) − (2) 0.53 0.11 -0.42

[0.32, 0.74] [0.01, 0.20] [-0.59, -0.26]

Table F.2 repeats table 2 including 223 participants who were excluded from our main sample solely for failing our
comprehension check.

Table F.3: Bounds on the dispersion of revealed valuation weights: including participants who fail
comprehension checks

Standard Triple Standard-Triple
Variance (Lower Bound) 0.73 0.71 0.32

[0.51] [0.59] [0.18]
Supremum (Lower Bound) 2.29 1.73 0.16

[1.70] [1.55] [-0.06]

Table F.3 repeats table 3 including 223 participants who were excluded from our main sample solely for failing our
comprehension check.

G Order Effects

One potential concern with our experiment design is that purchase decisions could be influenced by
the order in which the nine purchase decisions are presented to consumers. In this appendix we test
four potential order effects, and report the results in table G.1. First we examine whether the tax
environment first shown to consumers impacts their buy probability. We test for this effect via the
following model:

1− Pr(buyijk|p) = Φ

(
α ln(p) + βB ln(1 + τi) · I(τik = τi) + βC ln(1 + 3τi) · I(τik = 3τi)− µj

σj

+
γBFirstBi + γCFirstCi

σj

)
(23)

This model modifies equation (4) by adding the terms FirstBi and FirstCi . First
k
i is an indicator

variable which equals one if the consumer’s first purchase decision occurred in store k and equals zero
otherwise. We compute the Wald statistic for γB = γC = 0, which has a corresponding p-value of
0.95.

In our next three tests, we examine product-specific order effects, or whether a consumer’s buy
probability for product j is affected by the store order in which the consumer shops for product j.

62



For our second test, we construct indicator variables Firstkij which equal one if the consumer’s first
purchase decision for product j occurred in store k and equals zero otherwise. We then repeat equation
(23), using Firstkij instead of Firstki :

1− Pr(buyijk|p) = Φ

(
α ln(p) + βB ln(1 + τi) · I(τik = τi) + βC ln(1 + 3τi) · I(τik = 3τi)− µj

σj

+
γBFirstBij + γCFirstCij

σj

)

We compute the Wald statistic for γB = γC = 0, which has a corresponding p-value of 0.70.
For our third test, we examine whether the last store shown to consumers for a product affects

their purchase decision. We construct indicator variables Lastkij which equal one if the consumer’s
last purchase decision for product j occurred in store k and equals zero otherwise. We then repeat
equation (23), using Lastkij instead of Firstki :

1− Pr(buyijk|p) = Φ

(
α ln(p) + βB ln(1 + τi) · I(τik = τi) + βC ln(1 + 3τi) · I(τik = 3τi)− µj

σj

+
γBLastBij + γCLastCij

σj

)

We compute the Wald statistic for γB = γC = 0, which has a corresponding p-value of 0.28.
For our last test, we construct indicator variables for each possible combination stores A, B, and

C were presented to consumer i for product j. We then estimate the following model for κ1, κ2, κ3 =

{A,B,C}:26

1− Pr(buyijk|p) = Φ

(
α ln(p) + βB ln(1 + τi) · I(τik = τi) + βC ln(1 + 3τi) · I(τik = 3τi)− µj

σj

+

∑
κ2 6=κ1;κ3 6=κ2,κ1 γ

κ1κ2κ3I(Firstij = κ1, Secondij = κ2, Thirdij = κ3)

σj

)

We compute the Wald statistic for γACB = γBCA = ... = 0, which has a corresponding p-value of
0.28.

Together, these tests provide evidence that the ordering in which questions are presented to con-
sumers does not significantly impact purchase decisions.

26We omit the store ordering A, B, C due to collinearity.
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Table G.1: Tests for the impact of order effects on buy probability

Order effect tested p-value
Tax env. of first purchase decision 0.95
Tax env. of first purchase decision (by product) 0.70
Tax env. of last purchase decision (by product) 0.28
Ordering of tax env. (by product) 0.17

Table G.1 presents p-values of Wald statistics for the impact of order effects on buy probabilities. The Wald statistics
and p-values are calculated by adding indicators for the different orderings tested to equation (4). For the first row,
we add two indicators for whether the tax environment of the first purchase decision shown to consumers was standard
tax or triple tax. For the second (third) row, we add two indicators for whether the tax environment of the first (last)
purchase decision for product j was standard tax or triple tax. For the fourth row, we add five indicators for each of the
possible orders in which store A, B, and C were presented to the consumer for product j (order A, B, C was omitted
due to collinearity).

H Covariates of attention

H.1 Local tax rate variation

We first divide the sample into those whose local tax rate is above 7.00%, the median in our sample
(“high tax group”), and those below 7.00% (“low tax group”). We then run the regression in equation
(4) separately for the above-median and below-median tax groups to create figures analogous to figure
3.

Figure H.1 presents the results. Panel (a) uses the main sample and is identical to figure 3. Panel
(b) restricts to participants with a local sales tax rate above 7.00%, the median of the sample. Panel
(c) restricts to participants with a local sales tax rate at or below 7.00%. The results provide evidence
that participants in high sales tax locations have lower revealed valuation weights than those from low
sales tax locations.

Table H.1 presents estimates of average θ by tax group using all prices. These estimates match
the rightmost points of the series in figure H.1. The third column presents the difference, which is
statistically significant for store C.
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Figure H.1: Average revealed valuation weight for posted prices at or below a cutoff

(a) Main sample
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(b) Local sales tax rate above 7.00%
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(c) Local sales tax rate at or below 7.00%
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Panels (b) and (c) of figure H.1 recreate figure 3, restricting to participants above and below the median local sales tax
rate respectively.
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Table H.1: Average revealed valuation weights by tax group

Standard Triple
High tax group 0.41 0.70

[0.26, 0.56] [0.61, 0.79]
Low tax group 0.54 0.87

[0.38, 0.70] [0.79, 0.96]
Difference -0.13 -0.17

[-0.35, 0.09] [-0.29, -0.05]

Table H.1 presents estimates of store-specific estimates E[θ] by tax group. θ is defined as the revealed valuation weight
that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and θ = 1 corresponding
to the equal weight of the tax and salient price. Individuals with a local sales tax rate above 7.00% are classified as high
tax, and individuals with a local sales tax rate at or below 7.00% are classified as low tax. The results are estimated
using equation (4), interacting the covariate with price and tax. Standard errors are clustered at the subject level.

H.2 Demographics

In this section we analyze how revealed valuation weights vary according to observed demographics.
We separately analyze the effects of political party, education, income, and age.

Political party: Table H.2 presents average θ estimates for self-identified Republicans (28.5%
of our sample), Democrats (32.1% of our sample), and individuals with independent or other polit-
ical beliefs (39.6% of our sample).27 Republicans and Democrats have an average θB of 0.52 and
0.51 respectively (95% CI for difference: -0.39-0.39). Republicans have a slightly larger θC than do
Democrats in our sample (0.86 vs. 0.74), but the difference is not statistically significant (95% CI for
difference: -0.06-0.30).

Education: Table H.2 compares the average θ estimates between college graduates (35.3% of our
sample) and participants with no or some college experiences (64.7% of our sample; includes associate’s
degree recipients). College graduates have a slightly higher θB (0.51 vs. 0.46), but the difference is
not statistically significant (95% CI for difference -0.27-0.38). Both education groups have the same
estimate for θC (0.79, 95% CI for difference -0.14-0.15).

Income: Table H.4 presents average θ estimates for each income quartile. Individuals in the top
income quartile have self-reported annual income above $80,000, in the second quartile from $49,000-
$80,000, in the third quartile from $25,000-$49,000, and in the bottom quartile below $25,000.

All quartiles have average θC point estimates in the 0.77-0.84 range. Individuals in the top 3
quartiles have average θB estimates in the 0.50-0.52 range, while individuals in the bottom quartile
have average an average θB of 0.39 (95% CI: 0.07-0.71). A test of equivalence between the θ estimates
in all quartiles yields χ2 = 0.44, (p = 0.93) for store B and χ2 = 0.51, (p = 0.92) for store C.

2730.6% of participants self-identify as independent and 8.9% of participants self-identify as other.
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Table H.2: Average revealed valuation weights by political party

Standard Triple
(1): Republicans 0.52 0.86

[0.25, 0.78] [0.74, 0.99]
(2): Democrats 0.51 0.74

[0.23, 0.80] [0.62, 0.86]
(3): Independent/Other 0.42 0.77

[0.18, 0.67] [0.66, 0.89]
(4): (1) - (2) 0.00 0.12

[-0.39, 0.39] [-0.06, 0.29]

Table H.2 presents store-specific estimates of E[θ] by political party affiliation. θ is defined as the revealed valuation
weight that consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and θ = 1
corresponding to the equal weight of the tax and salient price. Individuals were asked to select which of independent,
Republican, Democrat, or other best described their political party affiliation. The results are estimated using equation
(4), interacting the covariate with price and tax. Standard errors are clustered at the subject level.

Table H.3: Average revealed valuation weights by education: college graduates versus not college
graduates

Standard Triple
College graduate 0.51 0.79

[0.26, 0.77] [0.68, 0.90]
Not college graduate 0.46 0.79

[0.27, 0.65] [0.70, 0.88]
Difference 0.06 0.00

[-0.27, 0.38] [-0.14, 0.15]

Table H.3 presents store-specific estimates of E[θ] by education level. θ is defined as the revealed valuation weight that
consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and θ = 1 corresponding
to the equal weight of the tax and salient price. Not college graduate includes participants with associate’s degrees or
with some years in college. The results are estimated using equation (4), interacting the covariate with price and tax.
Standard errors are clustered at the subject level.

Table H.4: Average revealed valuation weights by income quartile

Standard Triple
Top quartile 0.52 0.77

[0.22, 0.81] [0.64, 0.90]
Second quartile 0.52 0.79

[0.25, 0.79] [0.67, 0.91]
Third quartile 0.50 0.84

[0.16, 0.84] [0.68, 1.00]
Bottom quartile 0.39 0.77

[0.07, 0.71] [0.62, 0.93]

Table H.4 presents store-specific estimates of E[θ] by income quartile. θ is defined as the revealed valuation weight that
consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and θ = 1 corresponding to
the equal weight of the tax and salient price. The median income in our sample is $49,000 and the interquartile range
is $25,000-$80,000. The results are estimated using equation (4), interacting the covariate with price and tax. Standard
errors are clustered at the subject level.

67



I Alternative construction of proxies for valuation weights

Figure I.1: Average revealed valuation weight by posted price
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Figure I.1 presents store-specific estimates E[θ] by the posted price. θ is defined as the revealed valuation weight that
consumers place on the sales tax, with θ = 0 corresponding to complete neglect of the tax and θ = 1 corresponding to
the equal weight of the tax and salient price. Each point is estimated using equation (4) for the specified posted prices.
Standard errors are clustered at the subject level.

Table I.1: Average revealed valuation weights by valuation weight group: instrumenting with an 80th
percentile cutoff

Standard Triple Triple − Standard
(1): High valuation wgt 1.24 1.32 0.08

[0.99, 1.48] [1.19, 1.45] [-0.11, 0.27]
(2): Low valuation wgt 0.29 0.67 0.38

[0.12, 0.45] [0.60, 0.74] [0.26, 0.50]
(3): (1) − (2) 0.95 0.65 -0.30

[0.67, 1.23] [0.52, 0.79] [-0.51, -0.08]

Table I.1 repeats table 1 with an alternative instrument for valuation weight groups. In this table high valuation weight
individuals are those with F (θ̂ijB) > 0.80 and low valuation weight individuals are those with F (θ̂ijB) ≤ 0.80.
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Table I.2: Average revealed valuation weights by valuation weight group: instrumenting with an 85th
percentile cutoff

Standard Triple Triple − Standard
(1): High valuation wgt 1.23 1.31 0.08

[0.90, 1.55] [1.17, 1.45] [-0.17, 0.34]
(2): Low valuation wgt 0.35 0.70 0.35

[0.22, 0.50] [0.63, 0.77] [0.25, 0.46]
(3): (1) − (2) 0.88 0.61 -0.27

[0.55, 1.22] [0.47, 0.75] [-0.53, -0.00]

Table I.2 repeats table 1 with an alternative instrument for high and low valuation weight groups. In this table
high valuation weight individuals are those with F (θ̂ijB) > 0.85 and low valuation weight individuals are those with
F (θ̂ijB) ≤ 0.85.

Table I.3: Average revealed valuation weights by adjustment group: instrumenting with an 20th
percentile cutoff

Standard Triple Triple − Standard
(1): Low Adj. 0.85 0.85 0.01

[0.62, 1.08] [0.74, 0.97] [-0.16, 0.17]
(2): High Adj. 0.38 0.77 0.39

[0.23, 0.53] [0.71, 0.84] [0.27, 0.52]
(3): (1) − (2) 0.47 0.08 -0.39

[0.24, 0.69] [-0.03, 0.19] [-0.57, -0.21]

Table I.3 repeats table 2 with an alternative instrument for high adjustment groups and low adjustment groups. For
this table high adjustment individuals are those with F (θ̂i1C − θ̂i1B) > 0.20 and low adjustment individuals are those
with F (θ̂i1C − θ̂i1B) ≤ 0.20.

Table I.4: Average revealed valuation weights by adjustment group: instrumenting with an 15th
percentile cutoff

Standard Triple Triple − Standard
(1): Low Adj. 0.93 0.87 -0.06

[0.66, 1.21] [0.74, 1.01] [-0.27, 0.14]
(2): High Adj. 0.39 0.77 0.38

[0.24, 0.55] [0.70, 0.85] [0.26, 0.50]
(3): (1) − (2) 0.55 0.10 -0.45

[0.25, 0.84] [-0.05, 0.24] [-0.66, -0.23]

Table I.4 repeats table 2 with an alternative instrument for high adjustment groups and low adjustment groups. For
this table high adjustment individuals are those with F (θ̂i1C − θ̂i1B) > 0.15 and low adjustment individuals are those
with F (θ̂i1C − θ̂i1B) ≤ 0.15.

J Additional details of the experiment

Additional Screenshots
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Figure J.1: Introduction Screen
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Figure J.2: Instructions (top of screen)

Note: The rest of the instructions screen displayed the multiple price list seen in figure 1. Subjects did not shop for the
Oversize Golf Umbrella in the experiment.
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Figure J.3: Pre-purchase Comprehension Questions

(a) Question 1

(b) Question 2

(c) Question 3

Note: Subjects answered these questions before making purchase decisions, and were given unlimited tries to correctly
answer all three questions. The correct answers are $16, one purchase decision, and “the prices vary” respectively.
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Items used in the study

Product Amazon.com

price

Amazon.com product description

Energizer AA

Batteries max

Alkaline 20-Pack

$11.15 Energizer AA max alkaline batteries 20 pack super fresh, Expiration Date:

2024 or better. Packed in original Energizer small box 4 batteries per box x 5

boxes total 20 batteries.

Glad OdorShield Tall

Kitchen Drawstring

Trash Bags, Fresh

Clean, 13 Gallon, 80

Count

$12.79 Glad OdorShield Tall Kitchen Drawstring Trash Bags backed by the power of

Febreze are tough, reliable trash bags that neutralize strong and offensive odors

for lasting freshness. These durable bags are great for use in the kitchen, home

office, garage, and laundry room.

Rubbermaid Lunch

Blox medium durable

bag - Black Etch

$10.47 The Rubbermaid 1813501 Lunch Blox medium durable bag - Black Etch is an

insulated lunch bag designed to work with the Rubbermaid Lunch Blox food

storage container system. The bag is insulated to achieve the maximum benefit

of Blue Ice blocks and keep your food cold. The bag features a bottle holder,

side pocket, comfort-grip handle and removable shoulder strap. The lunch Blox

bag is durable and looks good for both the professional bringing their lunch to

work or the kid taking their lunch to school.

Scotch-Brite Heavy

Duty Scrub Sponge

426, 6-Count

$7.73 O-Cel-O™ sponges and Scotch Brite scrubbers are truly a

fashion-meets-function success story. The highly absorbent and durable

sponges come in different sizes and scrub levels for the various surfaces around

the home. Their assorted colors and patterns follow the current fashion trends

to create the perfect accent in any room.

Microban

Antimicrobial Cutting

Board Lime Green -

11.5x8 inch

$8.99 The Microban cutting board from Uniware is the perfect cutting board for the

health conscious. The cutting board has a soft grip with handle and is

dishwasher safe. The cutting board can be reversible, used on both sides, and is

non-porous, non-absorbent. The rubber grips prevents slipping on countertop.

Doesn’t dull knives, juice-collecting groove. Microban is the most trusted

antimicrobial product protection in the world. Built-In defense that inhibits

the growth of stain and odor causing bacteria, mold, and mildew. Always

works to keep the cutting board cleaner between cleanings. Lasts throughout

the lifetime of the cutting board. Size: 11.5"x8" Color: Lime Green.

Nordic Ware Natural

Aluminum

Commercial Baker’s

Half Sheet

$11.63 Nordic Ware’s line of Natural Commercial Bakeware is designed for commercial

use, and exceeds expectations in the home. The durable, natural aluminum

construction bakes evenly and browns uniformly, while the light color prevents

over-browning. The oversized edge also makes getting these pans in and out of

the oven a cinch. Proudly made in the USA by Nordic Ware.
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Product Amazon.com

price

Amazon.com product description

Libbey 14-Ounce

Classic White Wine

Glass, Clear, 4-Piece

$12.99 Great for any party, this set includes four 14-ounce clear classic white wine

glasses which match perfectly with the classic collection by libbey. The glasses

are dishwasher safe and made in the USA.

Envision Home

Microfiber Bath Mat

with Memory Foam,

16 by 24-Inch,

Espresso

$10.82 Enjoy spa luxury at home with the Envision Home Microfiber Bath Mat,

featuring memory foam! Designed to absorb water like a sponge and help

protect floors from damaging puddles of water, your feet will love stepping on

to this soft cushion of memory foam encased in super-absorbent microfiber.

The Microfiber Bath Mat starts with fibers that are split down to microscopic

level, resulting in tiny threads that love to absorb every drop of water. Because

of this increased surface area, this microfiber mat can collect more water than

an ordinary bath mat. Plus, it dries unbelievably fast. The soft memory foam

interior provides a comfortable and warm place to stand, or when kneeling to

bathe a child or pet, preventing aches and pains. The seams across the mat

allow for it to be easily folded for storage, or simply hang it from the

convenient drying loop. It is available in three colors to compliment your

personal décor and style – Cream, Celestial and Espresso. Caring for your

Microfiber Bath Mat is easy; simply toss it in the washing machine with cold

water and a liquid detergent and then place in the dryer on a low heat setting.

The Microfiber Bath Mat is just one of the many impressive items offered in

the Envision Home Collection.

Carnation Home

Fashions Hotel

Collection 8-Gauge

Vinyl Shower Curtain

Liner with Metal

Grommets, Monaco

Blue

$8.99 Protect your favorite shower curtain with our top-of-the-line Hotel Collection

Vinyl Shower Curtain Liner. This standard-sized (72” x 72”) liner is made with

an extra heavy (8 gauge), water repellant vinyl that easily wipes clean. With

metal grommets along top of the liner to prevent tearing. Here in Monaco

Blue, this liner is available in a variety of fashionable colors. With its

wonderful features and fashionable colors, this liner could also make a great

shower curtain.

Note: Prices are from February 2015, as documented in Taubinsky and Rees-Jones (2018). They may
vary over time or by geographic region.
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