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1 Introduction

A patient arrives in the emergency room complaining of chest pain and nausea.

Should she be tested for a heart attack (technically, a new blockage in the coronary

arteries)? A missed heart attack can have catastrophic consequences, but the test of

it is costly and invasive. The choice is not easy, particularly since many benign con-

ditions (like acid reflux) share symptoms with heart attack. To make the choice, the

physician must integrate a diverse set of data to predict the risk a patient is having a

heart attack. We use machine learning to study these choices and the predictions un-

derneath them. Though we focus on heart attack, our approach applies more broadly,

as all testing decisions can be similarly cast as prediction problems (Kleinberg et al.,

2015; Kleinberg et al., 2018; Agrawal, Gans, and Goldfarb, 2019)).

Our sample spans all emergency visits over 2010–2015 at a large, top-ranked hos-

pital.1 For each of these 246,265 visits, we track tests given, resulting treatments, and

subsequent health outcomes, encompassing most (though not all) of the data available

to physicians. On a random 2
3

sample of these data, we train an ensemble machine

learning model to predict the outcome of testing, using only information available

at the time of the testing decision. We do not naively benchmark physician choices

against these algorithmic predictions, assuming that they are accurate. Instead, we

use the algorithm only to identify (in the remaining 1
3

hold-out sample) patient sub-

groups with potential inefficiency, where physicians might have made errors. We then

look at actual outcomes for these subgroups to test whether mistakes were made, or

whether physicians correctly relied on data unavailable to the algorithm.

This approach reveals two allocative inefficiencies in whom physicians choose to

test. First, many patients who predictably will not benefit from testing are never-
1We also repeat much of our analysis in a large sample of nationally representative Medicare claims.
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theless tested. We quantify the value of a test here using the treatment benefits it

produces (allowing for the fact that the test itself is imperfect), expressed in cost per

life-year saved. By this measure, 62% of tests cost more than $150,000 per life year.

Algorithmic predictions are crucial in uncovering these wasted tests. Had we instead

followed the usual approach of using overall average yields to assess efficiency, we

would have concluded that testing as whole was cost-effective, at $89,714 per life

year (Weinstein et al., 1996; Sanders et al., 2016). Machine learning is useful for

capturing large patient-level heterogeneity.

Second, at the same time, many patients who predictably would benefit from test-

ing nevertheless go untested. One sign of this problem is like Abaluck et al. (2016)’s

earlier finding that physician choices deviate from a structural risk model: here,

physicians do not test many of the patients with high predicted risk. By themselves,

though, such deviations do not establish an error as we do not know what the test

results would have been for these patients. Physicians may have valid reasons for not

testing them; and these may be unavailable in our data (and to the algorithm): how

the patient looks, what they say, the results of x-rays or electrocardiograms (ECGs).

The problem cannot be solved by imputing outcomes to the untested.2

Health outcomes in the untested, though, provide a way to empirically assess these

choices. In the thirty days after their visit, high-risk untested (and untreated) pa-

tients exhibit the well-known signs of missed heart attack: “major adverse cardiac

events” at rates well above existing clinical guideline thresholds for heart attack.3

2We illustrate using ECGs, typically missing from many medical datasets and effectively an un-
observed variable to our algorithm: we only have them for a subset of patients and so exclude them.
For that subset, incorporating these waveforms using deep learning decreases predicted risk for 97.5%
of patients, and 100% of the highest-risk untested, suggesting predictions are highly confounded for
the untested. Despite growing attention to the ‘selective labels’ problem, similar biases pervade many
machine learning applications (Kleinberg et al., 2018; Kallus and Zhou, 2018; Rambachan, 2021).

3Such decision rules (e.g., TIMI, GRACE, HEART) are commonly implemented in emergency
medicine. We do not take a stance on whether they are physiologically optimal, only that they rep-
resent current physician understanding of who should be tested. If physicians use private information
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A third of these events lead to death. These patients appear to have indeed been

high risk. Still, it is possible physicians recognize this risk but choose not to test be-

cause they deem patients unsuitable for invasive treatments. We find evidence to the

contrary. For example, a large fraction do not even receive an ECG, a very low-cost,

noninvasive test given to any patient with even a small suspicion of heart issues.

Physicians simply seem to overlook the risk for these patients.

For more direct evidence of under-testing, we rely on a natural experiment: a pa-

tient’s arrival time determines staff seen, and staff vary in their tendency to test for

heart attack. Conditioning on the visit’s hour and day, this provides plausibly ex-

ogenous shift-to-shift variation in testing rates.4 We find that higher-testing shifts

do not, on average, produce better health outcomes, indicating so-called ‘flat of the

curve’ health care: more testing yields little return (Fisher et al., 2003). But as be-

fore, averages obscure important heterogeneity. Predicted high-risk patients benefit

significantly from higher testing: in the subsequent year, heart attacks and arrhyth-

mias are reduced by 41.9% and deaths by 34.7%, making these additional tests are

highly cost-effective ($46,017).5 Under-testing is also quantitatively important. In

our preferred set of policy counterfactuals, recall that the over-tested are 62% of all

tests; the under-tested would constitute 61% of all tests.

Why do physicians both over- and under-test? Comparing physician decisions to

algorithmic predictions suggests several sources of error. We find evidence of bounded

rationality—limits in cognitive resources such as attention, memory or computation

(Simon, 1955; Gabaix, 2014; Sims, 2003; Gabaix, 2019; Mullainathan, 2002; Bordalo,

in deciding not to test apparently high-risk patients, adverse event rates should be low.
4Patients’ observable characteristics appear largely balanced across shifts. In addition, realized

yield does not meaningfully relate to shift test rates, suggesting unobservables may also be balanced.
5These direct results on health rule out an additional concern: our very definition of risk has so far

rested on the assumption that treatments following positive tests are useful. But if physicians over-
treat, some of those treatments may fail to improve health, inflating our perceptions of under-testing.
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Gennaioli, and Shleifer, 2020). The risk model that best predicts physician testing is

much simpler than the one which best predicts actual test outcome. By way of anal-

ogy, it is as if the physician ‘over-regularizes’ (Camerer, 2019). We also find evidence

that physicians over-weight salient risks (Tversky and Kahneman, 1974; Bordalo,

Gennaioli, and Shleifer, 2012), such as those due to demographics and symptoms.

Finally, they over-weight symptoms that are representative (sterotypical) of heart at-

tack (Kahneman and Tversky, 1972; Bordalo et al., 2016). For example, patients with

chest pain, a salient and representative symptom, are particularly over-tested.

Health care models have long emphasized moral hazard: paying for tests, rather

than outcomes, results in too much testing (Arrow, 1963; Pauly, 1968). Recent work

has expanded this perspective to include skill differences, comparative advantage,

and error (Abaluck et al., 2016; Chan, Gentzkow, and Yu, 2019; Chandra and Staiger,

2020).6 We extend this literature by providing evidence of large-scale under-testing

(not easily explained by incentives), methodologically showing an important role for

machine learning, and finally uncovering some potential sources of error.

Moreover, we show that a core prescription of moral hazard models—incentivize

high-testers to act like low-testers—can have perverse effects. Low-testers do test

fewer low-risk patients (less over-testing), but at the same time they also test fewer

high-risk patients (more under-testing). When physicians make systematic prediction

errors, incentives to address one inefficiency exaggerate the other. Models and policies

must account for such systematic mistakes, analogous to behavioral hazard models of

patient errors (Baicker, Mullainathan, and Schwartzstein, 2015).
6Abaluck et al. (2016) highlight how errors may produce both under- and over-testing. Chan,

Gentzkow, and Yu (2019) show how differences in skill alone, absent incentives, can produce what
appears to be over-testing. Chandra and Staiger (2020) focus on comparative advantage: because
some health systems specialize and focus on certain tests and conditions, they may appear to over-
treat those. There is also a large clinical literature on error and its behavioral sources (Ægisdóttir
et al., 2006; Dawes, Faust, and Meehl, 1989; Elstein, 1999; Redelmeier et al., 2001).
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2 Context and Framework

2.1 Medical Context

The coronary arteries provide blood flow to the heart, allowing it to pump blood. By

‘heart attack’ we mean acute coronary syndrome (ACS): a new blockage in those ar-

teries that reduces blood flow and kills a patch of heart muscle.7 Its consequences

can be immediate (e.g., arrythmia, sudden death) and longer-term (e.g., fatigue, heart

failure). Randomized control trials have shown two treatments greatly improve mor-

tality and morbidity if delivered promptly: inserting a flexible metal tube into the

blocked artery to restore flow (’stenting’), and for severe cases, bypassing the blockage

through open heart surgery.8 Timely treatment, though, requires timely diagnosis, a

challenging task in the emergency department (ED). Even life-threatening blockages

have subtle symptoms, e.g., a mild squeezing in the chest, shortness of breath, nau-

sea, or weakness—symptoms that also arise from more benign conditions such as acid

reflux, viral infections, and muscle strain. Any suspicion of blockage triggers simple,

non-invasive tests (the ECG, laboratory tests like troponin) that help estimate the

likelihood of blockage and the urgency of the problem. But no test done in the ED can

actually diagnose a blockage.

The definitive test for blockage is cardiac catheterization, an invasive procedure

carried out in a separate laboratory, distinct from the ED. A cardiologist inserts an

instrument into the coronary arteries, squirts in dye, and visualizes the presence and

location of blockages via x-ray. If a blockage is found, a stent is inserted to open

it, during the same procedure. An alternative testing pathway adds a step before
7We will use ‘blockage’ from now on to refer to ACS, and distinguish it from a broader category of

problems causing damage to the heart (which is often used interchangeably with ‘heart attack’).
8See Amsterdam et al. (2014) for a review. Of note, the emergency treatment we study is distinct

from the practice of treating patients with more stable, long-standing coronary artery disease, which
does not appear to improve either mortality or morbidity (Al-Lamee et al., 2018).
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catheterization: ‘stress testing.’ This increases patients’ heart activity (e.g., by exer-

cising on a treadmill or with a drug). If supply is limited by a blockage, this excess

demand will be detected via heart monitoring. The advantage of stress tests is that

they are less expensive and non-invasive: if negative, an invasive catheterization may

be avoidable. The disadvantage is that, if positive, the patient still needs catheteri-

zation to deliver the stent, and precious time has been wasted. The proliferation of

both tests has been part of the dramatic reductions in rates of missed blockages in

the ED. Before widespread testing, miss rates were substantial: between 2 and 11%

of blockages went undiagnosed in the ED (see for example (Pope et al., 2000)).

Both tests, though, are costly: thousands of dollars for stress tests and tens of

thousands for catheterization, plus overnight observation and monitoring before test-

ing. They also have health risks, particularly catheterization, which is invasive. In

addition to a large dose of radiation, it involves injection of dye that can cause kidney

failure, a risk of arterial damage, and stroke (Hamon et al., 2008). The decision to

test must weigh potential treatment gains against these costs.

2.2 Framework

In our model, patients are drawn from a distribution f(X,Z) where X and Z are fea-

ture vectors observed by the physician; only X is recorded in the data. Blockage B

occurs with probability b(X,Z), and a test T for blockage yields a positive outcome

with Pr(Y = 1) = p + B(q − p), where p and q are the false and true positive rate

respectively; we assume q > p. We assume patients can only receive a stent S if

Y = 1. Stenting requires knowing where to place the stent, which physically requires

catheterization.9 Moreover, medical ethics would make treatment without testing du-
9For simplicity, we use stenting, the most common method, to denote all treatments. Note that

open-heart surgery also requires prior catheterization, to identify suitability and anatomy for surgery.
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bious. (More details are in Appendix 2.) Our key Lemma below does not substantively

depend on this assumption, but it does greatly simplify exposition. B, T , Y , and S are

all binary variables, and testing and stenting cost cT and cS, respectively.

Let a patient’s health be

W = w(X,Z)−B(η − S[τ −∆K])

so that an untreated blockage reduces health by η. Stenting reduces η by τ < η,

but its effect depends on K (contraindications), a binary variable capturing known

treatment heterogeneity: some patients (e.g., the frail) may benefit less because inva-

sive treatment poses additional health risks. In the model, we assume K = k(X,Z)

and that physicians know it. Because patients would not benefit from testing if they

do not benefit from stenting, our empirical work will only focus on the K = 0 pop-

ulation to identify inefficiencies in testing.10 To do so, we initially assume that k(·)

only depends on X but weaken this assumption in Section 4.3, to allow for k(·) to

depend on unobservables. Given that the test is imperfect, it is useful to define

τ̃ = E[W |S = 1, Y = 1, K = 0] − E[W |S = 0, Y = 1, K = 0], the effect of stenting in

K = 0 patients who test positive, which includes health consequences of stenting and

futile treatments delivered to those without true blockage (unlike τ , the treatment

effect when B = 1 only). Randomized trials of stenting apply to the Y = 1 popula-

tions and thus estimate τ̃ . We assume τ̃ > 0. Finally, untreated blockage can lead

to adverse events after the visit. Denoted by binary A, they occur with probability

µ+B(ζ − φS), so that stenting reduces their occurrence.

Socially optimal testing would maximize expected health net of costs:

max
S,T

E[w(X,Z)|X,Z −B(η − [τ −∆k(X,Z)]S)− cTT − cSS|X,Z],

10We do not assume the K = 1 group benefits from stenting. Practically, K = 1 may create higher
(health) costs of testing, but we omit this for simplicity; it does not change our core results.
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where the choice to stent S can depend on X,Z (which includes K) and test result

Y .11 Given this objective, the socially optimal testing rule is

Test iff b(X,Z) >
cT + pcS

q(τ −∆k(X,Z)− cS)
.

In other words, patients should be tested if their risk of blockage is high enough to

justify the costs of testing. All patients with Y = 1 are then stented. Efficient testing

therefore involves testing only the high-risk patients: an (unachievable) ideal would

be to test only those with blockage.

Physicians may not make socially optimal choices. First, we assume they derive

additional benefit ν > 0 from testing, e.g., they are paid by the test. So they maximize:

E[w(X,Z)−B(η − τS)− cTT − (cS + δSk(X,Z))S|X,Z] + νT.

Second, their judgments may not match actual risk. Specifically, they estimate the

probability of a blockage as h(X,Z), so that deviations h(X,Z) − b(X,Z) represent

systematic over- and under-estimation of blockage risk. These preferences and beliefs

lead physicians to test according to the rule:

Test iff h(X,Z) >
cT + pcS − ν

q(τ −∆k(X,Z)− cS)

and again all positive tests lead to treatment (Y = 1 =⇒ S = 1).

To empirically test for such distortions, note that any subset of patients defined

by (X,Z) is either above or below the threshold for efficient testing. Those above the

threshold are always tested; as they are high-risk, their yield should be sufficiently

high. Those below the threshold are never tested; as their risk is low, they should

have few adverse events. To establish inefficiencies, therefore, we only need to find
11Notice that as we have set it up, testing only affects health through its effects on stenting; it has no

direct effect or other indirect value (such as through information generated for later use). We discuss
in greater detail how testing affects stenting in Appendix 1.3.
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patient pools that are either (i) tested, but have low average yield or (ii) untested, but

have high adverse event rates. The following Lemma formalizes this logic.

Lemma 1. Suppose there exists a set V of patient characteristics such that

E[T |(X,Z) ∈ V ] > 0︸ ︷︷ ︸
tested

and E[Y |(X,Z) ∈ V ] <
cT

τ̃ − cS︸ ︷︷ ︸
but low yield

,

then V is called over-tested and eliminating all testing in V increases efficiency.

Suppose instead V satisfies

E[T |(X,Z) ∈ V , K = 0] < 1︸ ︷︷ ︸
untested

and E[A|(X,Z) ∈ V , K = 0] > µ+ ζ
( cT + pcS
q(τ − cS)

)
︸ ︷︷ ︸

but high adverse events

,

Then V is called under-tested and testing all K = 0 patients in V increases efficiency.

If physician judgments are erroneous, h(X,Z) 6= b(X,Z), then there can simultane-

ously be both under-tested and over-tested patient subsets. But if accurate h(X,Z) =

b(X,Z), there can only be over-tested subsets, and this happens only if ν > 0.

Proof. Consider a set of patients V, and define Ȳ = E[Y |(X,Z) ∈ V , T = 1] and Ā =

E[A|(X,Z) ∈ V , T = 0, K = 0]. First, suppose V satisfies the conditions for being

over-tested. If we were to stop testing all patients in V who are tested, the gain is the

savings in cT for all those who would have been tested. The loss, however, is only those

who no longer get treated as a result. Since only the Y = 1 get treated, this means

that at most Ȳ of these patients get treated and create treatment benefits τ̃−cS. Thus

the condition that E[Y |(X,Z) ∈ V ] < cT
τ̃−cS

ensures that gains outweigh losses.

Now suppose that V satisfies the conditions for being under-tested, and we were

to test all K = 0 untested patients in V. Given the optimal testing rule, for the

K = 0 patients, it is optimal to test these patients if b(X,Z) > cT+pcS
τ−cS

. Given that

Ā = µ + η(b(X,Z)), it is optimal to test these patients if Ā > µ + η
(
cT+pcS
τ−cS

)
, which is

the condition for being under-tested.
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Finally, if we assume b(X,Z) = h(X,Z) the physician testing rule above becomes

Test iff b(X,Z) >
cT + pcS − ν

q(τ −∆k(X,Z)− cS)

and if ν > 0 can only produce over-testing. If h(X,Z) 6= b(X,Z), it is clear that any

kind of over- or under-testing is possible since h(X,Z) can be set to any value.

Four points are worth noting about this Lemma. First, it illustrates the role of

machine learning in our analysis: it serves only to identify candidate subsets V where

inefficiencies might be present. Second, once identified, inefficiencies are evaluated

using available outcome data: there is no imputation of outcomes. Instead, the key

calculations rely only on measured quantities: yield Y for the tested and adverse

events A for the untested. Similarly, the relevant thresholds can be calculated using

the clinical literature, as we describe in detail below.12 Third, it allows the physicians

to have access to information (Z) that the algorithm does not: it holds for subsets

V identified using only X. Finally, the Lemma links the evidence to an underlying

model of physician behavior. Moral hazard alone (bad incentives) can only produce

over-testing but not under-testing; mis-prediction, however, can produce both.

It is useful to contrast this model with two others. Chan, Gentzkow, and Yu (2019)

model radiologists who receive a noisy signal about patient risk and choose a diag-

nostic threshold.13 While superficially analogous to h(X,Z) and ν, a crucial difference

is that in their model physicians are aware their signal is noisy (and compensate for

it by testing more, to reduce their miss rate). Physicians in our model are unaware

of their errors and view their predictions as correct. Our model is closest to Abaluck

et al. (2016), who also model physician error. The key difference with them is in how
12The adverse event threshold in the Lemma cannot be easily stated in terms of model primitives

(i.e., the risk of blockage, the imperfect performance of testing, the impact of treatment on the health)
because several key parameters (i.e., p, q, µ, ζ) are unknown.

13Norris (2019) makes similar points in a model of judicial decision-making.
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we characterize under-testing: we do not assume b(X,Z) is accurate, or define under-

testing as deviations of decisions from risk. Instead, we assume measured health

outcomes reflect undiagnosed blockage and use these to characterize under-testing.

3 Data and Methods

Our primary data come from the electronic health record (EHR) of a large urban hos-

pital from January 2010 to May 2015. It is an academic medical center, consistently

ranked in the top 10 best hospitals in the country and affiliated with a top-ranked

medical school, thus widely believed to provide high-quality care. We begin with all

visits to the ED in that period, then exclude patients 80 years or older, those with

poor-prognosis like known metastatic cancer or dementia, those with hospice or nurs-

ing home care, those with a known recent blockage (or treatment of one), and those

who died in the ED before they could be sent for testing.14

We choose not to exclude those with seemingly obvious non-cardiac symptoms to

avoid potentially arbitrary judgments. While some cases are clear (e.g., an ankle

sprain), many are not: blockage can present in diverse ways. Worse, we do not ob-

serve all of a patient’s symptoms, only the one judged most important by the triage

nurse.15 Instead, we use the full sample, and include recorded symptoms in our pre-

dictor to make it an empirical question. By including cases highly unlikely to be a

blockage, the algorithmic prediction task does become harder: very high-risk cases

are comingled with (effectively) zero-risk patients. If it fails, it will appear as an

inability to separate high-risk patients from less risky ones. Our final sample has

246,265 ED visits (indexed by j), by 129,859 patients (indexed by i).
14See Shanmugam et al. (2015) and Obermeyer et al. (2017) for rationale and details.
15Appendix Table A.17 shows the presenting symptom for those ultimately found to have blockage.

Non-obvious symptoms (e.g., foot and ankle complaints, nose bleed) are rare but present.
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3.1 Definitions of Key Variables

In this sample, we define testing Tij = 1 if patient i on has procedure codes for either

stress testing or catheterization in the 10-day window (inclusive) following visit j.16

We define treatment Sij = 1 if there is a procedure code for stenting or open-heart

surgery (CABG) in the 10-day window following the visit.

To define test yield Yij, we rely on the principle that a positive test always leads

to stenting: a cardiologist should not subject a patient to the risks of emergency

catheterization unless she has already decided the patient would benefit from a stent

(if a blockage is detected). So we set Yij = Sij for the tested. As we describe further in

Appendix 1.3, physicians may over-treat conditional on test results (e.g., because of

moral hazard, or false-positive tests). One might worry this by itself could artificially

produce our results. It does not for two reasons. First, over-testing is established

through low yield. If physicians over-treat, yield will be too high, making it less likely

we find over-testing. Second, establishing under-testing does not use information on

the yield of testing—only health outcomes—and hence is unaffected.

To flag patients with contraindicationsKij = 1, we first observe whether they show

evidence of poor health prior to visit j (see above). Second, we observe whether they

have explicit evidence of damage to heart muscle (which we will use to denote the

medical concepts of infarction and ischemia), a broad category of heart problems in-

cluding blockage, at the end of visit j: physicians can note such diagnoses (which is

financially incentivized), or we can observe a positive troponin laboratory test which

is suggestive of such problems. If either are present, we assume the physician was

aware of possible blockage, but decided not to pursue it further because of a con-

traindication. This assumes all contraindications are measured in our data. In Sec-
16We collapse these two tests into one for simplicity (as is reflected in our model). Treating the two

tests separately does change our results materially. In Appendix 4, we show the results of performing
counterfactuals for each test separately, e.g., eliminating all stress tests.
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tion 4.3, we explore a broader set of contraindications unobserved in our data but

observed by the physician.

Cost effectiveness is calculated using parameters and assumptions from the liter-

ature, summarized in Mahoney et al. (2002) and described in more detail in Appendix

3. We first define ηij to be the life-years a patient would lose from a blockage, both

fatal and non-fatal (the latter using a standard discount rate for quality of life losses),

based on the patient’s age and basket of pre-visit observed chronic illnesses. Clinical

trials provide estimates of average gains from timely treatment, τ̃ . The most relevant

trials, from which we draw our estimate of a 25% reduction in mortality and morbid-

ity, randomize testing pathways, e.g., immediate vs. delayed catheterization.17 We

conduct a sensitivity analysis using a wide range of plausible estimates in Appendix

3. We then set τ̃ij = ηij τ̃ , life years saved by treatment, for patients with Kij = 0.

We will not explicitly define τ̃ij for Kij = 1. We account separately for the financial

costs of testing cT ij and treatment cSij, by type of testing and treatment received. To-

gether, this provides a cost per life-year saved by testing a given patient set. To define

over-testing, we use a cost-effectiveness threshold of $150,000 per life-year.

We form an indicator Aij = 1 if a patient i experiences a ‘major adverse cardiac

event’ after visit j within a short time window (30 days). The intuition is that block-

ages have consequences—indeed, this is why we test and treat blockages—that mani-

fest shortly after onset. We draw on clinical literature that defines these events using

the EHR, in a way that shows excellent agreement with expert judgment after chart

review (e.g., Wei et al. (2014)). These events fall into three categories: delayed diagno-

sis and treatment of blockage and diagnosed damage to heart muscle, which we con-

firm with laboratory biomarkers (positive troponin); malignant arrhythmia, which we
17Given our assumption that positive tests are always treated, this is equivalent to the definition of

τ̃ we lay out in the model.
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measure using diagnosis codes and cardiopulmonary resuscitation procedures; and

mortality, which we obtain via linkage to state Social Security data. Importantly,

apart from mortality, adverse events are only measured if the patient returns to the

same health system we study for care. So Aij may be a lower bound on true adverse

event rates, relative to widely accepted thresholds from studies that perform active

follow-up of enrolled patients. To define objective thresholds for levels of risk that

would mandate consideration of testing for blockage, we rely on widely implemented

decision rules (e.g., the HEART score of Backus et al. (2010)), supported by recom-

mendations from professional societies: 2% over the 30 days after visits. We do not

assume such thresholds are optimal; rather, we assume that physicians believe them

to be optimal, and thus would not knowingly leave high-risk patients untested. More

details are in Appendix 1.3, and we provide additional justification of this threshold

based on cost-effectiveness in Appendix 3.2.

Table 1 shows that the overall rate of testing is 3% of all visits (1.3% with im-

mediate catheterization and 2% with stress tests, of which 0.3% subsequently had

catheterization, implying a positive stress test). Table 2 shows that, among the

tested, the rate of treatment is low: 14.6% (12.9% with stents and 1.8% via open-

heart surgery). Among the untested, 27.5% and 11.1% have an ECG and troponin

performed, respectively, indicating suspicion for blockage; 1.2% and 1.9% have ex-

plicit evidence of damage to the heart, via the physician’s diagnosis ex post and a

positive troponin test, respectively. 1.1% had 30-day adverse events.

3.2 Algorithm Design

Our machine learning estimator of risk m̂(·) is an ensemble model that combines gra-

dient boosted trees and LASSO. It takes as its input vector Xij, 16,405 characteristics
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of patient i, observable at the start of visit j.18 This includes patient demograph-

ics; diagnoses, procedures, laboratory results, and quantitative vital signs, measured

over the two years prior to the visit; and the symptom recorded at the ED triage desk

at the start of the visit. We train estimator m̂(Xij) to predict the yield of testing Yij

among the tested, as a close proxy for risk of blockage at the time of an ED visit.19 To

leverage risk information contained in the much larger set of untested patients, we

also use predictions on adverse events Aij = 1 among untested patients as inputs to

the model predicting Yij. Training happens in a random 75% sample of patients, and

all results below are shown in the remaining 25% hold-out set, except where noted.

We split our dataset at the patient, not the observation, level, so that all visits from

a given patient are assigned to either the training or hold-out set. More details can

be found in Appendix 2. While we cannot share patient-level information to protect

privacy, our code repository is publicly available on GitLab [link].

We emphasize that Lemma 1 is valid even if the algorithm is inefficient (or even

inconsistent) since it applies to all subsets, however identified. Inefficient algorithms

may fail to find under- or over-tested subsets if they do exist but if they find one that

satisfies the inequalities then it will be an inefficiency, irrespective of the algorithm’s

accuracy. It should be added that even a “perfect” algorithm where m(X) = E[Y |X]

may fail to find all inefficiencies because it does not have access to Z and so may (for

example) miss physician errors involving Z.
18We carefully form these variables so that they contain only information available to the physician

at the time of the decision. Practically, this means we include no information after triage, on arrival to
the ED; we do not include physician notes (which can be completed after the visit) or any data collected
later in the course of the ED visit.

19To streamline terminology, we will refer to this quantity as ‘predicted risk.’
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4 Results

4.1 Over-testing

The top panel of Figure 1 shows how well our risk model predicts the outcome of

testing. In the hold-out set, we sort tested patients into deciles based on predicted

risk. For each decile (x-axis), we calculate the realized yield of testing (y-axis).

The numbers from this figure are also shown in Table 3. Comfortingly, realized

yield rises with predicted yield. The algorithm also produces a wide dispersion in

realized yields—from 0.01 yield in the lowest decile to 0.55 in the highest decile.

The bottom panel of Figure 1 converts these yields into cost-effectiveness. As in

the top panel, patients are sorted by predicted risk, but this time into quintiles (x-

axis).20 The y-axis now shows the implied cost-effectiveness of testing patients in

a quintile, in units of thousands of dollars per life year. The y-axis shows a com-

monly used threshold for judging cost-effectiveness, $150,000, as well as the cost-

effectiveness of selected other procedures for comparison. This figure illustrates a

great deal of inefficient testing. The bottom quintile of all tests are extremely cost-

ineffective: $1,352,466 per life year. For comparison, biologics for rare diseases (some

of the least cost-effective technologies that health systems sometimes pay for) are typ-

ically estimated at around $300,000 per quality adjusted life year.21 Even the second

quintile is very cost-ineffective at $318,603 dollars per life year.

With these data, we can calculate a precise policy counterfactual as described in

Lemma 1: dropping individual tests whose cost effectiveness predictably falls below

a threshold. For example, at a $150,000 life-year valuation, we would drop 62.4% of
20We use larger bins here because the denominator depends on the yield rate, which approaches zero

in the lowest risk patients, leading to noisy estimates in smaller bins.
21Appendix (3) shows that these estimates are not sensitive to the particular choice of parameters in

our analysis, and in particular hold over wide ranges of possible treatment effect sizes.
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the lowest-value tests, with a combined cost-effectiveness of $265,114 per life-year.

These results only deal with one kind of counterfactual: eliminating the particular

tests physicians decided to do (i.e., stress tests or catheterizations) on patients in a

given predicted risk bin. Since we have two types of tests, Appendix 4 also explores

other counterfactuals. A notable finding is that stress testing (as opposed to catheter-

ization) is so low-value that eliminating it altogether would improve welfare, as has

been previously suggested (Prasad, Cheung, and Cifu, 2012). Taken together, the re-

sults in Figure 1 and these policy counterfactuals suggest a great deal of over-testing.

4.2 Under-testing

At the same time, testing in the high-risk bins appears very cost effective: in columns

(1) and (2) of Table 3, we see the highest-risk quintile of tests cost only $46,017 per life

year, comparable to cost-effective interventions like dialysis. In Column (3), we show

the testing rates by risk bin for all patients in the hold-out set (for comparability, these

bins continue to be formed using the same quintile cutoffs we used for the tested). We

see that physicians do test higher-risk patients more. But strikingly, a large fraction

of high-risk patients go untested—only 38.3% are actually tested.

Of course, this only tells us that the physician and the model disagree, not who is

right.22 The physician has access to a host of information unavailable to the model:

how the patient looks, what they say, or crucial data such as x-rays or electrocardio-

grams (ECGs). These data elements are likely to be predictive of yield; if they are

also predictive of testing, this private information will create selection bias, causing
22To some extent, any two models of risk—even very good ones—may differ due to noise. So perhaps

any discrepancies we see between the physician and the model could simply be the consequence of com-
paring two well-fit models to each other. In Appendix Figure A.11, we compare two machine learning
models fit on separate samples of our training set, and find these correlate much more strongly than
the model and the physician do. More importantly, we perform a variety of tests below, that directly
test for error, both in the sense of welfare-enhancing counterfactuals, and specific behavioral errors.
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untested patients to have far lower yield than predicted based on observables.

Because we lack test results on the untested, we have no way to quantify the mag-

nitude of the problem. But a simple calculation suggests a large bias. The hold-out

set has 266 positive tests; taking model predictions at face value would imply ten

times as many positives (2,738) were we to test the predicted high-risk untested, im-

plausibly large. To show the role of private information more directly, Appendix 5

incorporates data from ECGs, observed by the physician but not routinely observable

in health datasets, into risk predictions.23 For patients with ECG data available, we

show that several ECG features (e.g., ST-elevation, ST-depression) predict both the

physician’s test decision and the yield of testing: physicians are using these data ef-

fectively. We then directly incorporate the ECG waveform into new risk predictions,

via a deep learning model. This decreases model-predicted risk for 97.5% of patients,

and 100% of the highest-risk untested. So the model without the ECG was signifi-

cantly over-estimating the risk of the untested patients.

So following Lemma 1, we look for evidence of untreated blockages in the form of

adverse events in the 30 days after visits. Among all eligible untested patients, the

rate of adverse events is 1.1%, well below the 2% clinical threshold, implying that

(reassuringly) testing all untested patients does not make sense.24 Figure 2 shows

these adverse event rates (y-axis) by deciles of predicted risk. For comparability,

the Figure uses bin cutoffs for deciles formed in the tested, so that the bins are of

unequal sizes in the untested: in particular, because the untested are lower-risk than

the tested, bin sizes decrease in risk. Panel (a) shows all adverse events, (b) shows

diagnosed blockage or arrythmia, and (c) shows death. Patients in the highest-risk
23Since not all patients have ECGs, even in our data it cannot be used in our main algorithm.
24In Appendix Figure A.2 we show that the 2% adverse event threshold used here in the untested

aligns (approximately) with the cost-effectiveness thresholds we used in the tested: patients whose
predicted risk gave them a cost-effectiveness of $150,000 per life year when tested have an adverse
event rate of at least 3.4% when untested.
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decile have very high 30-day adverse event rates. For example, the highest-risk bin

contains 0.15% of the untested, who go on to have an adverse event rate of 15.6%. The

second highest-risk bin contains 0.75% of the untested and has adverse event rate of

6.81%; together the top two bins have an adverse event rate of 8.26%. In fact, the

crossover point where the adverse event rate becomes statistically indistinguishable

from the 2% threshold is the 6th risk bin, which means that the top 4 bins (which

comprise 6.9% of the untested) all have high enough adverse event rates that they

would merit consideration for testing under current guidelines.

These adverse events are not simply billing codes, which might exaggerate the

incidence of actual health problems, due to incentives to over-test or treat. These

codes have been confirmed with biomarker evidence of damage to the heart muscle,

in the form of troponin laboratory results. Panel (b) shows the rate of these diagnosed,

confirmed events in the highest-risk bin: 4.9%. Panel (c) also shows 30-day mortality,

indicating that the highest-risk bin experiences death at a rate of 3.3%—over one-

third (45%) of all adverse events in this bin. These data alone suggest a great deal of

under-testing. However, there is a potential confound, which we address next.

4.3 Accounting for Differences in Treatment Benefits

These high adverse event rates establish that predicted high-risk patients who go

untested are indeed high-risk. But it does not establish that failing to test them was

a mistake. Adverse events rule out private information by physicians about risk,

but not private information about the suitability of treatment. It is possible that

physicians recognized these patients as being high-risk, but also recognized them as

having lower return to treatment, and chose not to test them for that reason. In

particular, we may have mismeasured Kij. In excluding patients Kij = 0 from our

sample (by excluding those with prior ill health, and by excluding untested patients
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in whom the physician appears to suspect heart problems), our measure Kij may have

failed to capture other elements of K that the physician observes. One fact suggests

that these unobservables are not large: the average age of the untested we flag for

testing is 58.5 (fairly close to the mean age of the tested, 57.8), while the average age

of those with observed contraindications is 68.5. At least on this crucial observable,

the high-risk untested are more like the tested than the too frail to test.

To address this problem more thoroughly, we use a clinical fact. When physicians

suspect a blockage, even if the patient is ineligible for testing or treatment, there are

still important actions they can and must take. At a minimum, everyone the physi-

cian suspects of a blockage will be given an ECG—a low-cost, non-invasive test. Even

for treatment-ineligible patients, the ECG guides medications (e.g., blood-thinners)

and decisions about intensity of monitoring (e.g., whether to admit to the ICU). Sim-

ilarly, the troponin blood test is also given as it provides critical information on the

nature and extent of any blockage. So if we remove patients with an ECG or troponin

from our calculations, we will have removed all patients the physicians had suspected

at all of a heart problems, leaving us with a pool of unsuspected patients.25 Among

the remaining unsuspected pool, we then recalculate the adverse event rate. If the

high adverse event rates in the whole population are due to physicians knowingly

leaving some high-risk patients untested, because they are unsuitable for treatment,

then this unsuspected pool should have a low adverse event rate; and specifically the

rates should be below the clinical threshold for testing.

The top two panels of Figure 3 first show the fraction of patients who did not

receive an ECG (Panel a) or troponin (Panel b) by quartile of predicted risk. As ex-

pected, higher-risk patients are on average perceived as such by physicians: they are
25Because some patients are given ECGs and troponins for other reasons, this approach produces a

lower bound on the extent of under-testing (it removes treatment ineligible patients but also others).
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less likely to lack one of these tests. Though decreasing, the fractions remain substan-

tial in the highest quartiles: 27.4% lack an ECG (vs 78.6% in the lowest-risk bin), and

59.2% lack a troponin result (vs 94.4% in the lowest-risk bin). The bottom two pan-

els show the adverse event rates in only these patients without an ECG or without

troponin. We find here that for the high-risk patients without such tests, adverse

event rates remain high. For patients in the highest-risk bin, the realized adverse

event rate is 4.3% in those without an ECG, and 6.6% in those without a troponin.

These rates are 3.2 percentage points (SE: 1.3 p.p.) and 1.2 percentage points (SE:

1.1) lower than the 7.5% rate in the full population, respectively, but they still remain

significantly above the clinical threshold for testing of 2%.26 Together, these results

suggest that physicians do have private information both about the risk of blockage

and about suitability for treatment, but that even after accounting for them, there is

still substantial under-testing.

4.4 Natural Experiment

While these data provide clear evidence of under-testing, this evidence is indirect,

based on clinical thresholds. It would be reassuring to have more direct evidence

that testing these neglected high-risk patients would impact their health. Ideally, we

would measure the impact of testing some high-risk patients at random, and see if in

fact mortality and long-term adverse event rates decrease significantly.27 While such
26Appendix 6.3 describes another sensitivity analysis, in which we eliminate patients who were

admitted to the hospital with an uncertain diagnosis (e.g., those with a symptom-based diagnosis
code like ‘chest pain,’ as opposed to a specific disease), in whom physicians may have latent concern
for blockage. When we calculate adverse event rates in the remaining patients—those in whom the
physician felt sure enough to assign an alternative diagnosis other than blockage, and those discharged
home from the ED and thus at very low risk of serious problems—we find similar results: a rate of
adverse events 8.43% in the highest-risk bin, as opposed to 8.26% in the full population.

27In the context of the framework, the natural experiment measures E[W |T = 1,m(X)] − E[W |T =
0,m(X)] but only for the marginal patient physicians test; we can then see whether these returns are
above or below what would merit testing.
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an experiment is beyond the scope of this paper, we can exploit natural variation in

our data that might serve as a (limited) proxy for it.

When a patient arrives at the ED, they are seen by a team of providers, largely

nurses, at the triage desk. As Chan and Gruber (2020) note, the triage process can

influence downstream decision making by physicians regarding testing. For example,

a nurse can notice that a patient with chest pain is sweaty, or not; she can ascribe

it to the hot and humid weather, or not; and she can share her impressions with the

physician when he brings the patient back into the room. As a result, we hypothesized

that the testing rate, while ultimately determined by the physician, could be affected

by the particular make-up of the team working the triage desk. As who is present

varies over time, this creates a ‘natural experiment’ based on the exact time a patient

showed up; and as shifts are not perfectly synchronized with the calendar, we can

control for day of week and hour of day.

Our data do not track the exact identity of the triage team, but we do know the

times at which shifts begin and end. This lets us calculate the average testing rate

of all other patients seen on a shift, T̄−j, to instrument for whether patient-visit j

is tested. For this to be a valid instrument, we assume that (i) the triage shift af-

fects long-term health outcomes only through testing, and (ii) that patients are bal-

anced on unobservables across shifts; we discuss both assumptions below. We per-

form this analysis on a slightly different sample than used so far. To maximize power,

we use the full dataset, not just the hold-out. To avoid over-fitting, we use 5-fold

cross-validation to predict risk. In addition, to address non-independence of health

outcomes across visits, we restrict the sample to each patient’s first visit. 28

Overall, there is reasonable variation in likelihood of testing across shifts: for
28Results restricted to the hold-out are very similar, just less precise as we would expect given the

sample size. We also check that results are similar if we include all visits and cluster standard errors,
but prefer this specification for its transparency.
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example, a patient in the highest-risk bin arriving on a Monday evening is 18% more

likely to be tested by the highest- (19.9%) vs. lowest-decile (16.8%) shifts. Regressing

an individual’s test (Tij) on the shift’s (leave-one-out) testing rate (T̄−j), controlling for

time fixed effects (year, week of year, day of week, and hour of day) and patient risk,

we find that a one standard-deviation increase in shift testing rate (2.3 percentage

points) increases individual testing probability by 0.19 percentage points (SE: 0.06),

or 6.7% of the base test rate (see Appendix Table A.12).29

Figure 4 shows how patient observables are balanced across shifts. The top Panel

shows the results of regressing pre-triage variables Xij on the shift testing rate. We

do find statistically significant differences in predicted risk across triage testing rates

(p=0.051), but they are very small in magnitude: a 1 SD increase in T̄−j implies 0.007

SD difference in predicted risk. We find no statistically significant difference for frac-

tion in each predicted risk bin, nor age, sex, self-reported race, income, or risk factors

for heart disease. Together, these results suggest that observables are (largely) bal-

anced across shifts. In the bottom panel, we plot for each shift, the average testing

rate for all patients who arrive in that shift (in percentile terms, x-axis) and the aver-

age predicted risk of those patients (y-axis). We see that at every level of testing rate,

there is large variability in predicted risk.

In Appendix Table A.12, as another test for balance, we regress test Tij on pre-

dicted risk and its interaction with T̄−j. If patients in high-testing shifts are riskier

on unobservables, they should have higher yield than expected based on risk, leading

the interaction term to be positive. In fact, there is no significant interaction. While

estimates are imprecise, they do argue against large imbalance on unobservables.
29In Appendix Table A.11, we also rule out that hospital capacity constraints on testing facilities

might be reducing the likelihood of testing, by showing that a visit’s likelihood of testing is not affected
by the number of tests done in the 24-72 hours before the visit.
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We then measure the overall impact of testing on health by estimating:

Aij = β0 + T̄−jβ1 + m̂(Xij)β2 + TimeControlsjβ3 + εij. (1)

That is, we regress adverse event rates on shift testing rates, controlling for time

fixed effects (year, week of year, day of week, and hour of day) and patient risk. The

top panel of Table 4 shows the results. On average, there is no effect of being seen in

a high-testing shift. Neither diagnosed adverse events from day 31–365 after visits

(Column 1) nor death, whether measured over the same period as diagnosed events

(Column 2) or over the full year after visits (Column 3) are affected.30

As before, the average effect may conceal a great deal of heterogeneity: we found

under-testing only in high-risk patients. So we re-estimate (1), but include an in-

teraction term T̄−j × m̂(Xij) to Equation 1; this allows the effect of shift to vary by

predicted risk. The results of this regression are in Table 4. We find a large and

significant negative interaction term, indicating lower rates of diagnosed events and

death in higher-risk patients. This confirms that physician private information about

treatment heterogeneity cannot account for our findings: increased testing improves

health. It also provides some reassurance regarding the exclusion restriction in our

experiment: if triage affected long-term outcomes in ways unrelated to testing for

blockage, we would expect to see broader effects, not just among the predicted high-

risk for blockage. We emphasize that this does not imply that all high-risk untested

patients would benefit from testing: we are constrained by the extent of variation in

testing rates in our quasi-experiment, and can say nothing about patients who are

never tested (i.e., even in the highest-testing shifts).

These coefficients can be used to simulate, at the margin, the benefit of testing
30We measure some outcomes over the 30–365 days after ED visits because tested patients are me-

chanically more likely to be diagnosed with heart problems than untested patients, simply by virtue of
being in the hospital for testing. By contrast, our mortality data come from linkage to Social Security
data, and so do not suffer from this difference in ascertainment.
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high-risk patients. To simulate such a counterfactual, we first use random-effects

model of testing rate by shift to parametrize the shift-to-shift variability.31 We then

bin shifts into quartiles based on their random effect, allowing us to simulate higher-

vs. lower-testing regimes in our data (from a 5.8% chance of testing in lowest quartile

to 32.3% in the highest). We then simulate moving the riskiest quintile of patients

from their observed shift quartile to the highest-testing shift quartile (those already

in the highest bin are left unchanged). We then apply the coefficients in Table 4

to estimate the effect on mortality. This policy would lead to increase tests equal

to 0.48% of the untested (or 15.6% of the current rate) and counterfactual one-year

mortality would be 2.5 p.p. lower, or 32% relative to the base rate of 7.7%.

As a group, the evidence so far reveals high-risk untested patients who ought to

have been tested. First, they have high adverse event rates of the kind that sug-

gest undiagnosed blockage. Second, physicians do not appear to have recognize the

blockage: many were not given simple tests given to everyone suspected of any heart

trouble (ECG or troponin); and these also had high adverse event rates. Finally, we

see in the natural experiment, that plausibly exogenous increases in testing improve

health and only where we would expect: in the high-risk. Each finding has its limita-

tions, but together, they make the case that testing high-risk untested patients would

increase welfare as strongly as possible without a randomized trial.

4.5 Nationally Representative Data

These results come from a single hospital. To check their generality, we replicate

them in a nationally representative 20% sample of Medicare fee-for-service patients,

from January 2009 through June 2013. These data are limited in several important
31The leave-one-out shift testing rate, while useful for identification of the effect of testing, does not

capture the full variation in observed testing rate across shifts. Appendix 7.3 contains more details on
the model, which controls for the same vector of time variables and patients’ predicted risk as above.
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ways. Because they are based on insurance claims, not EHR data, they contain very

limited patient information. For example, we do not have ECGs, lab values, or other

biological measures, nor do we have arrival time and shift timing data that would let

us recreate our natural experiment. These caveats aside, these data do let us replicate

our estimates of over- and under-testing from Sections 4.1 and 4.2. Applying similar

exclusions to those used in the single-hospital data, we arrive at a final sample of

4,425,247 Medicare visits by 1,602,501 patients, of whom 4.4% were tested. Of the

tested, 12.4% received treatments. Of the untested, 5.3% had 30-day adverse events.

In Figure A.7, we see that yield of testing and cost-effectiveness both increase in

predicted risk (as in Figure 1), with many tests being predictably cost-ineffective. We

also find many high-risk untested patients with adverse event rates exceeding clinical

thresholds. Figure A.8 shows that 3.8% of the highest-risk patients are diagnosed

with an adverse event, and an additional 1.5% die. In summary, we find both over-

testing (52.6% of all tests) and under-testing (at least 17.9% of the tested).32

5 Why do Physicians Make Testing Errors?

We have shown that physicians mis-predict, testing predictably low-risk patients and

failing to test predictably high-risk patients. In this section, we try to better under-

stand how physicians mis-predict. To do so, we examine how physician testing deci-

sions deviate from predicted risk. Our approach builds on a long tradition of research
32Lacking a credible quasi-experiment in these data, we instead rely on a conservative lower-bound

for under-testing: we assume that the realized adverse events in predictably high-risk untested pa-
tients lower-bounds the under-tested population. We consider this conservative because it assumes
that under-testing is concentrated in the smallest possible number of patients, all of whom would have
ex ante probability 1 of an event. This may be one reason for the smaller level of under-testing here.
Another may be the nature of claims data: low-risk tests may be easy to identify with claims, while
high-risk misses may require the richer EHR data. An important caveat to all these results is that we
do not observe ECG or troponin testing, so we do not have the same ability to identify countraindicated
patients on the basis of observables.
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comparing clinical judgment to statistical models as a way to gain insights into de-

cision making, often amongst physicians (Ægisdóttir et al., 2006; Dawes, Faust, and

Meehl, 1989; Elstein, 1999; Redelmeier et al., 2001), as well as the clinical litera-

ture on diagnostic error (Croskerry, 2002; Graber, Franklin, and Gordon, 2005; IOM,

2015). We view this as exploratory: a way to shed light on potential psychology at

work, rather than to structurally estimate a specific model of physician decisions.

5.1 Boundedness in Physician Judgments

One reason physicians may make errors is that the optimal risk model is quite com-

plex: our own machine learning model uses 16,405 variables. Bounded rationality

may lead them to use a simpler approximation. Such simplification is analogous to

regularization in machine learning (Camerer, 2019). To avoid over-fitting, algorithms

do not pick the model that fits best in sample. Instead they estimate a best-fit model

for each level of complexity. Then a complexity level is chosen by asking which of

these best-fit models produces best out-of-sample fit. To study physicians, we use this

set of best-fit models for each complexity. But we now ask which model complexity

best predicts physician choices, not out-of-sample risk. If physicians are boundedly

rational, the model that best predicts physician choices should be simpler than the

one that best predicts actual risk.

We implement this procedure using the LASSO model of risk, one component of

our full ensemble model, because it has straightforward measure of complexity: the

number of non-zero coefficients included in its linear model.33 For k ∈ [0, 1500] we thus

retain the set of best-fit LASSO models that has exactly k non-zero coefficients.34

In our hold-out set, we correlate each of these models with both test outcomes and
33Though this is a suitable ex-post measure, ex ante this is produced by using L1 regularization.
34We chose this range because the training set contains only 5, 188 tested visits, so we cannot esti-

mate models that use anywhere near the full set of k = 16, 405 variables.
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testing decisions. Two caveats are worth noting. First, we do not assume anything

about the model selection properties of LASSO: the particular variables the LASSO

chooses is somewhat arbitrary in the setting of correlated, noisy input variables. We

are interested only in the complexity of these models, which may be a more stable

quantity (Mullainathan and Spiess, 2017). Second, we can only focus on the variables

in our data: so we only test hypotheses related to boundedness on observables, not on

the variables physicians may use that are unobservable to us.

Figure 5 visually displays the results of this exercise. On the x-axis is k, the model

of complexity. On the y-axis is R2, a measure of goodness of fit (though our results are

not specific to this metric: Appendix Figure A.12 shows similar results with another

metric, area under the curve). The gray line shows, at each level of complexity, how

well that model predicts risk out of sample. The yellow line shows how well the

same model predicts physician testing decisions. For risk, we see that R2 increases

at first, then decreases as additional variables lead to over-fitting. For physician

decisions, we see a similar pattern: fit increasing with complexity, before starting to

reduce. Importantly, however, the two curves hit their peaks at very different levels:

for physicians, the empirical optimum is at 49 variables, while for risk it is at 224

variables. The LASSO model that best predicts actual risk is much more complex

than the one that best predicts test decisions.

This figure motivates a statistical test. We define two risk predictors: m̂simple(Xij)

which uses the 49 variables above and m̂complex(Xij) which uses the 224. We will focus

on [m̂complex(Xij)−m̂simple(Xij)], the additional risk information provided by the complex

model, which we will call “complex risk.” We then estimate:

Tij = β0 + β1m̂simple(Xij) + β2[m̂complex(Xij)− m̂simple(Xij)] + εij (2)

Yij = γ0 + γ1m̂simple(Xij) + γ2[m̂complex(Xij)− m̂simple(Xij)] + εij. (3)
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If physicians rely only on the simple model, we expect two things to be true. First,

β2 = 0: the complex risk should not predict testing decisions. Second, γ2 > 0: the

complex risk should predict yield.

The results are shown in Table 5. Columns (1) and (3) show how the simple risk

model predicts both test and yield alone. Columns (2) and (4) then add complex risk.

Column (2) shows that as expected, conditional on the simple model, complex risk is

not predictive of testing—the coefficient is both very small and statistically insignif-

icant. Column (4) shows that, in contrast, complex risk is predictive of yield and is

highly significant. These results provide suggestive evidence that physicians do in

fact rely on too simple a model of risk.35

How well do physicians use the variables that enter their simpler model? Figure 6

shows the correlation for each of the 49 variables in m̂simple(Xij) with both test outcome

(x-axis) and the test decision (y-axis).36 We see a strongly positive relationship (R2:

0.433). While far from proof of the rationality in bounded rationality, this does suggest

that physicians do (mostly) correctly weight the variables they do use.

To assess how important boundedness is in explaining under- and over-testing,

we look at how much riskier (or less risky) a patient appears if only simple risk is

accounted for, which we measure with m̂simple(Xij)−(m̂(Xij). We look at its distribution

for both low-risk tested patients (the ‘over-tested’) and high-risk untested patients

(‘the under-tested’). As shown in Appendix Figure A.13, a full 35.5% of the over-

tested come from the top quintile, meaning their simple risk is much larger than

their actual risk (compared to 14.5% in the lowest quintile). Likewise, among the

undertested, 74.2% come from the bottom quintile, meaning their simple risk is much
35Appendix Figure A.12 shows similar results with decision-tree models of risk rather than LASSO

models, as well as showing the same result in the nationally representative Medicare claims data.
36We standardize test, yield, and predictor variables, and run test and yield on predictors via uni-

variate regressions. So each regression coefficient gives us the correlation and its standard error.
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smaller than their actual risk (compared to 7.4% in the top quintile). Boundedness

thus appears to be quantitatively important as well for mis-prediction. Physicians

identify several good risk predictors that they use if not perfectly, at least modestly

well; at the same time, they neglect many other variables that, while individually

small, together provide much explanatory power.

Our evidence on boundedness deviates from the traditional perspective of Dawes,

Faust, and Meehl (1989), who suggest that people use too complex a model, and that

a statistical model would do better by being simpler. In contrast, we find physicians

use too simple a model, and a statistical model does better by being more complex.

The difference may arise because modern statistical tools better fit complex natu-

ral phenomena, echoing recent findings that sparse models fit economic phenomena

poorly—despite the appeal (to humans) of ‘betting on sparsity’ (Gabaix, 2014; Gian-

none, Lenza, and Primiceri, 2021). In both cases, the underlying reality is compli-

cated, while human judgments are simple.

5.2 Biases in Physician Judgments

Next, we investigate whether physicians over- or under-weight specific variables. One

suggestive example is already in Figure 6 where ‘Reason for visit: chest pain’ is a

clear outlier. While a complaint of chest pain does correlate with risk, it correlates

even more with testing, suggesting that those with chest pain may be tested at rates

above and beyond what is justified by their heightened risk.37

The chest pain example suggests two broader hypotheses for why an input might

be over-weighted. First, it is highly salient (Tversky and Kahneman, 1974; Bordalo,
37Conditional on predicted risk, patients with chest pain are 16 percentage points (578%) more likely

to be tested. Appendix Table A.15 shows that for the 10 most common symptoms, nine significantly
predict testing after conditioning on predicted risk, including chest pain and shortness of breath (large
and positive), and several other smaller negative predictors (e.g., abdominal pain).
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Gennaioli, and Shleifer, 2012). Second, it is highly representative of blockage: it is a

(the?) stereotypical symptom, both in textbooks and in public understanding (Bordalo

et al., 2016). This motivates our exploration of bias: we ask whether variables that

are either salient or representative are generally over-weighted.

We study each of these hypotheses in turn, using a similar empirical approach.

To assess whether physicians are biased in their use of some subset of variables W,

we first create a new risk predictor which uses only those W variables. Except for

the restriction on input variables, this estimator, m̂(Wij), is built in the training set

exactly the same as the original risk predictor. In the holdout set, we then regress

yield on full risk (the usual algorithmic measure of risk) as well as this limited risk

model m̂(Wij), analogous to Equation 2 above.38 We do this to verify that, as expected,

conditional on full risk, m̂(Wij) does not provide additional information. Finally, as

our test of whether W is misused, we regress the test decision Tij again on both full

risk m̂(Xij) as well as m̂(Wij). If physicians over-weight the variables in W then the

coefficient on m̂(Wij) should positive; if they under-weight, it should be negative.39

5.2.1 Symptom Salience

We implement this procedure first for salience. We begin by forming a risk predictor

using only symptoms: the most immediate thing the physician sees about a patient,

and often stressed in medical education and vignettes. Column (1) of Table 6 shows

the results of regressing testing on the full risk predictor; Column (2) then adds the
38All regressions control for a vector of risk bins, as well as linear risk, to account for non-linearity

of risk in predicted risk. We show the linear coefficient but omit the others for simplicity.
39In this exercise, by ‘risk’ we mean predicted risk. So a bias occurs when an observed variable

predicts physician deviations from algorithmic predictions; as the focus is on observed variables, we
are less prone to confounding. But still, given the potential for complex relationship between observed
and unobserved variables, these results must be taken as suggestive.
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new symptom-only risk predictor.40 We see here that the risk from symptoms is addi-

tionally predictive of testing, suggesting symptoms as a category are over-weighted.41

We then expand this exercise to the entire universe of inputs. We form a set of

risk predictors, one for each subset of variables, grouped into the following bins: de-

mographics; prior diagnoses; past procedures done on the patient; prior labs; and

prior vital signs. The bins are formed to reflect coherent types of inputs physicians

may treat differently. For example, because medical case reports and pedagogy use a

standard structure, stressing age, sex, and symptoms (e.g., “A 43 year old man with

chest pain,” as in the NEJM’s Case Records), we conjectured that demographics and

symptoms would be highly salient and thus over-weighted. By contrast, the com-

plex, quantitative time series contained in past laboratory studies and vital signs are

harder to process and likely less salient. Finally, while some prior diagnoses and pro-

cedures relevant to blockages may be salient (e.g., diabetes, prior blockage or stenting

procedure), these categories are far broader, including hundreds of other types of in-

formation that we also expect to be less salient.

Column (3) shows how these risk predictors correlate with the testing decision.

Even after including risk from all other variable subsets, risk from symptoms stays

positive (i.e., over-weighted), as is risk from demographic information: a patient in

the top quartile of symptom risk is 5.26 percentage points more likely to be tested,

relative to other patients, and 0.78 p.p. for demographic risk.42 This is equivalent

to a patient moving from the 50th percentile of true (full) risk to the 89th and 62nd

percentile, respectively. Prior quantitative information from laboratory studies and
40For space we have left out the yield regressions. These are in Appendix Table A.18 and verify that

the symptom-only risk predictor does not predict yield, conditional on full risk.
41Abaluck et al. (2016), while they lacked data on symptoms at the visit itself, found that patients

with past symptom-based diagnoses were over-tested, consistent with a similar bias.
42Appendix Table A.14 further investigates patient demographics, and finds small but significant

relationships of specific demographic factors with testing: older patients and women appear to be
tested more than their risk merits, while self-reported Hispanic patients are under-tested.
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vital signs, though, has a negative sign, suggesting physicians under-weight or ne-

glect this information. Finally, diagnoses are slightly over-weighted while procedures

are slightly under-weighted. Taken together, these results are generally supportive of

the salience model: clearly salient pieces of data—demographics and symptoms—are

attended to more than they should be, while more complex, less salient information—

past quantitative vital signs and labs—are neglected.

5.2.2 Representativeness

We use the same method to explore representativeness (Tversky and Kahneman,

1974), as formalized in the model of stereotyping of Bordalo et al. (2016). This pre-

dicts that in estimating the probability of blockage for a patient with symptom M ,

physicians will not use Pr(B = 1|M = 1). Instead they will estimate

Pr(B = 1|M = 1)× g

(
Pr(M = 1|B = 1)

Pr(M = 1|B = 0)

)
,

where g(·) is monotone. Symptoms more common in patients with blockage, relative

to others, will be weighted more heavily than they ought to be.

This model has a crisp empirical prediction: at the same predicted risk, patients

with more (less) representative symptoms are more (less) likely to be tested. We

investigate this by first identifying the set of symptoms that are potentially repre-

sentative of blockage. To make this list, we identify those tested patients ultimately

found to have blockages, and look back at their presenting symptom (limiting to 16

symptoms with frequency over 0.5% in this population; see Appendix Table A.16). For

each symptom M , we calculate its representativeness for blockage: Pr(M=1|B=1)
Pr(M=1|B=0)

. Nine

symptoms have a ratio over 1, which we consider representative of blockage. Some

are very common in the general population (e.g., chest pain, shortness of breath) and

others are quite rare (e.g., presenting to the ER after a referral by another physician
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who is concerned for blockage, or because they were found unresponsive or in car-

diac arrest by paramedics). The remaining seven symptoms are more common in the

general population than in those with blockage (e.g., dizziness, nausea).

This allows us to build yet another risk predictor, restricting to representative

symptoms. Column (4) of Table 6 shows the results of adding this to the regression we

described previously (Column 2) with the full symptom-based predictor. Adding the

representative symptoms makes the full symptom-based predictor small and insignif-

icant. And the coefficient on the representative symptom-based predictor in Column

(4) is nearly double the magnitude of the full symptom-based predictor in Column

(3).43 This argues that, while symptoms as a whole may be salient, a small number

of representative symptoms push physicians to test far more: they effectively cue the

physician’s mind to consider blockage. This effect is quantitatively large: the 7% in

the highest bin of representative symptom risk are 16.2 p.p. more likely to be tested,

corresponding to an increase from the 50th to the 98th percentile of true risk.

Further, as shown in Appendix Figure A.14, patients whose risk comes dispropor-

tionately from representative symptoms (i.e., large m̂represent(Xij))− (m̂(Xij)) are over-

represented in testing errors. Those in the top quintile of representativeness risk

(relative to true risk) make up 34.3% come of the low-risk tested; while the bottom

quintile makes up 99.4% of the high-risk untested.44

5.3 Implications for Incentive Policies

The simultaneous presence of over- and under-use suggests that simple views of

health care like ‘less is more’ or ‘more is more’ are insufficiently nuanced. Our re-

sults thus add to the growing body of work in health economics arguing for richer
43Appendix Table A.18 confirms this new predictor has no incremental value for predicting yield.
44An important caveat is that the representative risk is built only on nine indicator variables and

thus does not have a wide range, so we view these results as limited.
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models of physician behavior (Abaluck et al., 2016; Chan, Gentzkow, and Yu, 2019;

Chandra and Staiger, 2020; Kolstad, 2013). Policy makers have long viewed health

care through the lens of misaligned incentives that make physicians too eager to test.

Implicit in this model is that physicians estimate risk correctly, but simply set too

low a threshold. This ‘less is more’ model, which suggests that high-testing providers

are wasteful relative to low-testing ones, has a clear practical implication that drives

much of health policy in the US and internationally: create incentives to test less,

for example, via reimbursement schemes or capacity constraints. Yet, our finding of

systematic biases by physicians calls this approach into question: if physicians mis-

predict risk, incentives to cut care may do harm as well as good.

We empirically examine these potentially perverse consequences by asking, when

physicians test less, which tests do they cut? The view of traditional models—and

the hope of health policy—is that they cut the low-value tests. The top panel of Fig-

ure 7 shows this is not the case. Here we graph the probability of testing against

predicted risk separately for each of the testing quartiles. Low-testing shifts do cut

back on low-value tests: the lowest-risk patients are tested only 0.4% of the time, vs.

3.0% on the highest-testing shifts. But they also cut back on high-value tests: the

highest-risk patients are tested 5.8% of the time, vs. 32.3% on the highest-testing

shifts. In an absolute sense, high-value tests suffer the biggest decline: 26.5% fewer

in low- vs. high-testing regimes; in a relative sense low-value tests fall slightly more

than high-value tests (87% vs. 82%). In other words, less testing means less test-

ing for everyone, regardless of risk. The bottom panel replicates these results in our

nationally-representative Medicare sample, where we sort hospitals into quintiles

based on their testing rate, and again graph testing against predicted risk for each

quintile. We see the same result: hospitals that test more test everyone more.45

45This exercise is inspired by a large health policy literature that makes cross-sectional comparisons
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These data provide a reminder that reducing care leads to reductions in care that

are perceived to be low-value. But when there are prediction errors, what is perceived

to be low-value might in fact be extremely valuable. The problem is analogous to ‘be-

havioral hazard’ in patients’ decision making, where copays lead patients to cut back

on both low- and high-value care (Newhouse and Group, 1993; Chandra, Gruber, and

McKnight, 2010; Baicker, Mullainathan, and Schwartzstein, 2015; Brot-Goldberg et

al., 2017; Handel and Kolstad, 2015; Chandra, Flack, and Obermeyer, 2021). Incen-

tives to reduce care may have perverse consequences.

5.4 The Role of Physician Experience

If incentives do not reduce error, what does? A natural candidate is experience, which

provides an opportunity to learn. Though we cannot causally identify the effect of

experience, correlations can at least be suggestive. In particular, we study how the

correlation between physician decisions and patient risk varies with physician ex-

perience (as measured by years since residency). In Table 6, we regress testing on

predicted risk, a linear term for experience and an interaction term between expe-

rience and risk. Column (5) shows that more experienced physicians test less on

average: 1.68 p.p. or 0.05% for every year since residency. At the same time, experi-

enced physicians are better able to match testing decisions to risk: with every year

of experience, the lowest-risk patients are 0.04 p.p. (2.81%) less likely to be tested,

and the highest-risk 0.58 p.p. (1.06%) are more likely to be tested.46 These corre-

across hospitals. Naturally, these comparisons can be confounded. While we lack the data to replicate
the shift variation experiment, we do have an (albeit weaker) alternative, described in Appendix 8.3.
Testing typically requires an overnight stay after ED visits, but since hospital staffing is limited on
weekends, patients who come in the day before a weekend are tested less. Figure A.10 shows again
that reductions in testing reduce testing for all patients, irrespective of their actual risk.

46We do not have experience data available for all physicians, so the sample size in this regression
decreases from 61,965 to 55,777. As usual, we verify that experience does not additionally predict the
yield of testing in Appendix Table A.18.
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lations provide suggestive evidence that physicians may become more accurate with

experience.

The results on experience in this Section and the results on high- versus low-

testing regimes tell distinct stories. On the one hand, experienced physicians both

test less and are more accurate. This matches Chan, Gentzkow, and Yu (2019), who

show a negative relationship between skill and testing levels. On the other hand,

in Section 5.3, we saw that less testing was uncorrelated with accuracy: testing fell

across the risk distribution, including the high-risk. This suggest more care is needed

to understand the relationship between testing levels and accuracy. Understanding

what leads physicians to be more or less accurate—and how that relates to how much

they test—is an important and useful open question.

6 Conclusions

Many people believe machine learning will transform health care. Nearly all of these

predictions focus on it as a product. For example, algorithms trained to read x-rays

can be bought by health systems and used to substitute for radiologists’ time. Our

work suggests a very different use: machine learning can be used as a tool to under-

stand physician behavior specifically, and health care more broadly.

We believe a lasting contribution of this tool is to more precisely characterize inef-

ficiency. Current empirical approaches in health policy rely on aggregates: for exam-

ple, do tests on average yield enough positives to justify their costs (Weinstein et al.,

1996; Sanders et al., 2016)? In our data, that metric makes testing appear highly effi-

cient, at only $89,714 per life-year. The granularity of algorithmic predictions better

captures underlying inefficiencies, revealing both under- and over-use. This reframes

the discussion away from how many people get tested—too many, or too few?—to one
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about who gets tested. In our preferred policy counterfactual, total testing changes

by only 1%, but the composition changes radically: 62% of current tests would be cut;

and 61% of new tests added; and tests would go from costing $89,714 to $59,390 per

life year. The importance of composition in turn calls into question the central role

of incentives in policy. By changing the level of testing alone, they may improve one

aspect (over-use) while worsening another (under-use).

But we must be careful in comparing human decisions and algorithmic predictions.

As we saw, when physician and algorithm disagree, we could not just assume the al-

gorithm was correct: unobserved variables confound algorithmic predictions. This

selection bias pervades machine learning applications in medicine and elsewhere, ap-

pearing whenever algorithms are trained on data produced by the human decisions

they are meant to influence.47 Once acknowledged, we see they can be tackled: by de-

veloping alternative labels grounded in domain expertise, and via quasi-experimental

methods from the causal inference toolkit.

Finally, our findings suggest exploring algorithmic predictions to design interven-

tions. Most obviously, because they are built on readily available EHR data, pre-

dictions could be delivered to physicians in real time. Rather than replacing their

judgment, they can be combined them with physician private information. At the

system level, incentives and reimbursements could be tied to patient predicted risk.

Or predictions could be used an educational tool during physician training. We found

accuracy improves with experience, but algorithmic predictions might help hasten

the learning process: trial and error is a costly way to learn in medicine.
47In testing decisions, decisions dictate whom we have data for. Our results highlight the importance

of taking the ‘selective labels’ problem seriously (Kleinberg et al., 2018; Kallus and Zhou, 2018; Ram-
bachan, 2021). For treatment decisions, outcomes are treatment polluted; see (Paxton, Niculescu-Mizil,
and Saria, 2013) for a discussion.
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Figures and Tables

Table 1: Summary Statistics: Patient Characteristics

All Tested Untested

Patients (N ) 129,859 6,088 123,771
Visits (N ) 246,265 7,320 238,945
Demographics

Age (years) 42 58 42
(0.033) (0.146) (0.033)

Female 0.612 0.459 0.616
(<0.001) (0.006) (<0.001)

Black 0.262 0.216 0.264
(<0.001) (0.005) (<0.001)

Hispanic 0.237 0.145 0.24
(<0.001) (0.004) (<0.001)

White 0.436 0.588 0.431
(<0.001) (0.006) (0.001)

Heart Disease Risk
Past Heart Disease 0.122 0.393 0.114

(<0.001) (0.006) (<0.001)
Diabetes 0.142 0.294 0.137

(<0.001) (0.005) (<0.001)
Hypertension 0.253 0.517 0.245

(<0.001) (0.006) (<0.001)
Cholesterol 0.163 0.418 0.156

(<0.001) (0.006) (<0.001)
Any Risk Factor 0.361 0.626 0.352

(<0.001) (0.006) (<0.001)
Triage Shifts

Number of Shifts (N ) 3,951
Patients per Shift (N ) 62.3

Notes: Main sample descriptive statistics (mean (SE)). Numbers are fractions unless other-
wise noted. Past heart disease is the fraction with any diagnosis of heart problems (ischemia),
stroke, or peripheral vascular disease prior to the visit. Frequency of individual risk factors
(diabetes, hypertension, high cholesterol) is shown, along with the fraction with any of these
risk factors.
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Table 2: Summary Statistics: Physician Choices and Patient Outcomes

All Tested Untested

Tested 0.03 - -
(<0.001) - -

Catheterization 0.013 - -
(<0.001) - -

Stress Testing 0.02 - -
(<0.001) - -

Yield of Testing 0.004 0.146 0
(<0.001) (0.004) (<0.001)

Stenting 0.004 0.129 0
(<0.001) (0.004) (<0.001)

Open-heart Surgery 0.001 0.018 0
(<0.001) (0.002) (<0.001)

Adverse Events 0.019 0.261 0.011
(<0.001) (0.005) (<0.001)

Diagnosed Event 0.016 0.253 0.008
(<0.001) (0.005) (<0.001)

Death 0.004 0.017 0.004
(<0.001) (0.002) (<0.001)

One-Year Mortality 0.016 0.048 0.015
(<0.001) (0.002) (<0.001)

Physician Suspicion
ECG Done 0.294 1.0 0.275

(<0.001) (0.004) (<0.001)
Troponin Done 0.131 0.792 0.111

(<0.001) 0.005 (<0.001)
Diagnosed Heart Damage 0.023 0.391 0.012

(<0.001) (0.006) (<0.001)
Positive Troponin 0.025 0.221 0.019

(<0.001) (0.005) (<0.001)
Troponin Result (ng/ml) 0.278 0.72 0.124

0.003 0.005 0.002

Notes: Main sample outcomes (mean (SE)). Numbers are fractions unless otherwise noted.
Test and yield rates use a 10-day window, adverse events a 30-day window. ECG and troponin
are low-cost tests done for even a very slight suspicion of blockage. Diagnosed heart damage
reflects codes for myocardial infarction or ischemia assigned at the end of a visit. Positive
troponin is a laboratory test that indicates damage to heart muscle.
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Figure 1: Yield and Cost-Effectiveness of Testing in Tested Patients

(a) Realized Yield of Testing

(b) Cost-Effectiveness of Testing

Notes: Realized yield of testing (top) and cost-effectiveness (bottom) of tests (y-axis; sample
mean shown with an arrow) in the tested, by bin of predicted risk (x-axis). Bins are deciles of
predicted risk. The cost-effectiveness line shows our preferred specification, and the shaded
interval shows sensitivity to a range of estimated treatment effects from the literature. For
comparison, we include cost-effectiveness estimates of several other tests and treatments.
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Table 3: Realized Yield, Cost-Effectiveness, and Testing Rate

Yield Rate Cost-Effectiveness ($) Test Rate
(SE) (Lower–Upper Bound) (SE)
(1) (2) (3)

Full Sample 0.146 89,714 0.03
(0.004) (74,152-113,543) (<0.001)

By Risk Bin
1 0.011 1,352,466 0.012

(0.006) (1,034,814-1,951,515) (<0.001)

2 0.036 318,603 0.017
(0.01) (257,296-418,265) (0.001)

3 0.07 192,482 0.047
(0.014) (157,552-247,314) (0.002)

4 0.168 114,146 0.088
(0.02) (94,154-144,914) (0.004)

5 0.429 46,017 0.383
(0.026) (38,178-57,907) (0.016)

N 1,784 1,784 61,965

Notes: Yield of testing (1) and cost-effectiveness of testing (2) in the tested, and test rate
across all visits (3), by bin of predicted risk. Bins are quintiles of risk, defined in the tested
population (so bins are equally sized in Columns (1) and (2), but not in (3)).
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Figure 2: Adverse Events in Untested Patients (30 Days After Visits)

(a) Any Adverse Event

(b) Diagnosed Blockage or Arrythmia (c) Death

Notes: Rate of adverse events over the 30 days following visits (y-axis) among untested pa-
tients, by bin of predicted risk (x-axis). Risk bins are formed as deciles of predicted risk in the
tested, for comparison (so bins are not equally sized). Top panel (a) shows the total event rate.
The horizontal line shows the 2% threshold above which testing is recommended by clinical
guidelines; the highest-risk 14% (top 6 bins) have a rate significantly above 2b. The percent
in each bin is shown above the x-axis. Top of the highest 95% CI truncated. Bottom panels
disaggregate two categories of adverse events that make up the total: (b) diagnosed adverse
events (heart damage, confirmed with laboratory biomarkers; and cardiac arrest) (c) death
(via linkage to Social Security data); bins are formed as quartiles of predicted risk (because
outcomes are less frequent).
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Figure 3: Adverse Events in Untested and Unsuspected Patients (30 Days)

(a) Fraction of Untested, No ECG (b) Fraction of Untested, No Troponin

(c) Adverse Events, No ECG (d) Adverse Events, No Troponin

Notes: Top panels: fraction of untested patients in whom physicians do not appear to suspect
blockage, based on lack of two low-cost tests done in any case of suspected blockage: (a) an
electrocardiogram (ECG), and (b) a troponin test (a laboratory study). Rates are shown by
risk bins, which are formed as quartiles of predicted risk in the tested for comparison (so bins
are not equally sized). Bottom panels: rate of adverse events (diagnosed events and death
after visits (y-axis), by bin of predicted risk (x-axis), among patients lacking (c) an ECG,
and (d) a troponin. The horizontal line shows the clinical threshold above which testing is
recommended.
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Figure 4: Balance on Observables Across Triage Shfits

(a) Variation in Testing Rate and Observables, by Shift Testing Rate

(b) Variation in Average Predicted Risk, by Shift Testing Rate

Notes: Panel (a) shows results of balance checks in a ‘natural experiment,’ in which patients
arriving during different triage shifts are tested at higher or lower rates. Each row cor-
responds to a regression of a pre-triage variable on leave-one-out shift testing rate. Each
point shows the coefficient and confidence interval on leave-one-out shift testing rate. Panel
(b) plots, for each shift, the average testing rate for all patients who arrive in that shift (in
percentile terms, x-axis) and the average predicted risk of those patients (y-axis). Each point
represents one of 3,951 shifts in our dataset, and the density plot on the right shows overall
distribution of mean risk. *Age is divided by 100 for scale.
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Table 4: Marginal Effect of Increasing Testing, Using Shift Testing Variation

Diagnosed Event Death Death
(31-365) (31-365) (0-365)

(1) (2) (3)

Average Effect
Predicted Risk 0.05∗∗∗ 0.15∗∗∗ 0.25∗∗∗

(0.005) (0.01) (0.01)

Shift Test Rate 0.02 0.005 0.005
(0.01) (0.01) (0.02)

Observations 123,289 123,289 123,289

Heterogeneous Effect By Risk
Predicted Risk 0.06∗∗∗ 0.17∗∗∗ 0.27∗∗∗

(0.01) (0.01) (0.01)

Shift Test Rate 0.04∗∗ 0.04∗∗ 0.04∗
(0.02) (0.02) (0.02)

Predicted Risk −0.25∗ −0.49∗∗∗ −0.43∗∗
× Shift Test Rate (0.15) (0.17) (0.20)

Observations 123,289 123,289 123,289

Outcome Rate 0.018 0.012 0.016
Outcome Rate, Top Risk Bin 0.027 0.046 0.077

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Top panel: Regression of diagnosed adverse events (Column 1) and death over days
31–365 after visits (Column 2) on leave-one-out shift testing rate. We use 31–365 days be-
cause tested patients are mechanically more likely to be diagnosed with heart problems than
untested patients in the first 30 days. Our mortality data do not suffer from this difference
in ascertainment, so death over the full year after visits is also shown (Column 3). Bottom
panel: The same regression, but with an additional interaction term that allows the effect
of testing to vary by predicted risk. Outcome rates, overall and in the top risk quintile, are
shown below. Controls for time fixed effects (year, week of year, day of week, and hour of day)
and patient risk are included but not shown.
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Figure 5: Explanatory Power of Simple vs. Complex Models of Risk

Notes: Using a LASSO model of predicted risk (part of our full ensemble risk model), we
preserve all risk models along the regularization path for k ∈ [0, 1500]: the best fit linear
model that uses at most k non-zero coefficients. We then measure the explanatory power
of these models for physician testing decisions, and for patient risk (measured by yield of
testing). The x-axis shows k, the number of variables retained as the regularization penalty
is decreased, moving from left to right (we do not show the full path, out to k = 16, 381, for
computational reasons). The y-axis shows R2 for testing decisions (gray line), and patient risk
(yellow line). Uncertainty is shown in the shaded intervals, calculated by bootstrapping. The
vertical lines show the complexity of the model that explains the most variance in physician
decisions (k∗h) and risk (k∗r ).
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Table 5: Evidence for Physician Boundedness

Test Yield
(1) (2) (3) (4)

Predicted Risk, Simple 1.357∗∗∗ 1.358∗∗∗ 1.528∗∗∗ 1.319∗∗∗
(k = 49) (0.015) (0.016) (0.068) (0.081)

Incremental Risk, Complex −0.005 1.099∗∗∗
(k = 224) (0.033) (0.236)

Constant −0.059∗∗∗ −0.059∗∗∗ −0.076∗∗∗ −0.043∗∗∗
(0.001) (0.001) (0.012) (0.014)

Observations 61,821 61,821 1,834 1,834
R2 0.111 0.111 0.218 0.227

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Tests of the explanatory power of two versions of predicted risk, for physician testing
decisions and patient risk (yield of testing). We first identify the simple risk model of com-
plexity k∗h = 49 that explains the most variance in physician decisions (here: Predicted Risk,
Simple). We then subtract this prediction from the risk model of complexity k∗h = 224 that
explains the most variance in patient risk (here: Incremental Risk, Complex). Columns (1)
and (3) show how the simple risk model predicts both test and yield alone. Columns (2) and
(4) then add the complex model’s incremental contribution to predicted risk.
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Figure 6: Simple Risk Variables: Correlation with Testing and Predicted Risk

Notes: For the simple risk model of complexity k∗h = 49 that best predicts physicians’ testing
decisions, we show univariate correlations of each included variable with the physician’s test-
ing decision (y-axis) and patient risk (x-axis). Each point is one of the 49 included variables,
with separate shapes denoting different categories of inputs. Some outlier points of interest
are labeled.
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Table 6: Symptom Salience and Representativeness

Test
(1) (2) (3) (4) (5)

Predicted Risk, Full 0.872∗∗∗ 0.715∗∗∗ 0.756∗∗∗ 0.619∗∗∗ 0.755∗∗∗
(0.053) (0.049) (0.061) (0.045) (0.066)

Predicted Risk, Subsets
All Symptoms 0.888∗∗∗ 0.860∗∗∗ 0.273∗∗∗

(0.052) (0.057) (0.061)
Representative 1.283∗∗∗

Symptoms (0.121)
Demographics 0.139∗∗∗

(0.031)
Prior Diagnoses 0.046∗∗

(0.021)
Prior Procedures −0.053∗

(0.030)
Prior Lab Results −0.209∗∗∗

and Vital Signs (0.019)
Physician Experience

Experience (years) −0.0005∗∗
(< 0.001)

Experience × Risk 0.011∗∗∗
(0.005)

Constant −0.014∗∗∗ −0.099∗∗∗ −0.081∗∗∗ −0.171∗∗∗
(0.002) (0.005) (0.008) (0.010)

Observations 61,938 61,938 61,938 61,938 55,777
R2 0.084 0.106 0.113 0.118 0.082

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

Notes: Column (1) regresses testing on predicted risk. Column (2) adds a risk predictor formed
using only symptom inputs. Column (3) adds risk predictors to (2), formed using other input
categories. Column (4) adds another risk predictor to (2), formed from only nine representative
symptoms. Column (5) regresses testing on predicted risk and physician experience (linear
and interacted with risk). All models control for non-linear risk terms (not shown). Appendix
Table A.18 shows none of these variables besides full predicted risk predict yield of testing.
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Figure 7: Variation in Testing Rates by Predicted Risk

(a) Hospital Sample

(b) National Medicare Sample

Notes: Panel (a) shows variation in testing rates by predicted risk, in our ‘natural experiment’
where patients are tested at higher or lower rates based on the triage team working when
they arrive. Panel (b) shows variation in testing rate by predicted risk, across all hospitals in
the US. Hospitals are binned into quartiles based on the overall testing rate of the hospital
referral region in which they are located, to mirror cross-sectional analyses in the literature.
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