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1 Introduction

We show that over the last 15 years, the typical household has dedicated an increasing share of its

expenditures to a few preferred products. At the same time, households are increasingly buying

different products from each other. Thus, aggregate spending concentration has declined even as

household spending concentration has risen. We develop a novel model of heterogeneous household

demand to interpret these new facts and explore their implications. In the model, as new products

are introduced, households can choose consumption bundles better suited to their particular tastes,

resulting in welfare gains from better selection. We fit our model to the data for more than one

hundred separate product categories and conclude that rapid growth in product availability has led to

sizeable welfare gains that cannot be identified with standard representative agent macro models.

We begin our analysis by using the Nielsen Homescan dataset that covers a large fraction of spend-

ing on groceries and other household nondurables to study the shopping behavior of thousands of

households from 2004-2016. We measure household-specific product spending shares within narrow

categories like “Coffee” and “Cosmetics” and demonstrate that these shares have steadily become

more concentrated over time. This fact on its own might point toward an increasing importance of

“superstar” products, but a similar analysis of aggregate spending paints a different picture. Pool-

ing households together, we see that total spending on these same products over the same period

has in fact become more evenly distributed. These diverging household and aggregate concentration

trends imply that even though each household increasingly focuses spending on its own preferred

products, households also increasingly differ in which products they consume. We refer to this greater

fragmentation of the product space as a rise in “niche” consumption.

The rise in niche consumption is robust to a variety of specification and measurement choices as

well as to the inclusion of a variety of controls for observables. Interestingly, the divergence between

household and aggregate concentration is not driven by a widening gap between rich and poor house-

holds, between consumers in one region and another, or by differences between households grouped

according to various other demographic characteristics. Rather, we find that household consumption

bundles are becoming more differentiated even when measured within cities, within store chains,

and within demographic groups defined by income, race, education, age, and household size. Niche

consumption also grows in almost all product categories.

What then drives these divergent trends, and should we care about them? Many standard models

cannot be used to answer these questions since they rule out the differential trends in household

and aggregate concentration by assumption. For instance, any representative household model will

exhibit identical household and aggregate concentration. Standard discrete choice models imply that

household spending within categories is completely concentrated on a single product.1 Instead, we

1Dynamic discrete choice models with temporal aggregation could likely also speak to our primary empirical facts,
which focus on annual household spending. However, even when looking at individual shopping trips made by one-

1



build a model of consumers that have a love-of-variety and whose preference orderings for particular

products differ from each other.

Our model of an individual household follows Li (2019) and features constant elasticity of substi-

tution (CES) preferences, product-specific taste shocks, and a utility cost borne per variety consumed.

Under these assumptions, the household chooses to consume only a subset of the total available prod-

ucts. When tastes for products, adjusted for prices, are distributed Pareto, we obtain a closed-form

expression relating the Household Herfindahl index – the concentration measure we use in our empir-

ical analyses – to structural parameters of the model.

In Li (2019), however, households all have identical tastes and agree on the ranking of products, so

there is no capacity for the divergent household and aggregate trends that we find in our empirical

results. Our main modeling contribution is thus the introduction of analytically tractable household

heterogeneity into the framework of Li (2019). We introduce a continuum of households with corre-

lated but heterogeneous preferences for different products in a way that yields closed-form solutions

for both household and aggregate spending concentration. In particular, we assume that all house-

holds have tastes that decline identically from their favorite product to their second favorite, and so

on, so that all households have identical taste distributions. However, the actual identities of these first-

and second-favorite products are allowed to differ from one household to the next.

We introduce a “rank” function, which maps each product to a relative position in each household’s

tastes. A household’s rank for a given product is a weighted average of that product’s aggregate

component, which is common across all households, and a random household-specific component.

If the aggregate component receives all the weight, the environment collapses to a representative

household economy with all households consuming the same products and with equal household and

aggregate spending concentration. Conversely, if the household-specific component receives all the

weight, there will be uniform aggregate spending across products and low aggregate concentration,

even if individual household spending is highly concentrated. We analyze an empirically-disciplined

intermediate case and obtain another closed-form expression relating the Aggregate Herfindahl to

structural parameters in the model.

Interestingly, we next show that in this intermediate case, different products in the economy face

different elasticities of demand even though household preferences are CES. This is because when a

product’s price is reduced, sales to existing customers expand with a constant elasticity, but the product

also attracts new customers who previously did not purchase the product at all. The relative strength

of these forces varies with products’ market shares, which generates variable elasticities of demand

and implied markups. Our model assumptions allow us to characterize analytically the distribution of

elasticities as well as the implied aggregate markup in the economy.

Our closed-form analytical solutions for various aggregates rely on particular parametric assump-

person households, it is common for multiple products to be simultaneously purchased in a single category, as we shown in
Appendix A.3.
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tions, but we show that, nonetheless, the model matches product-level spending distributions both

for individual households and for the economy as a whole quite well. It is important in our setting

to have analytical expressions for observed empirical moments because key structural parameters in-

cluding the elasticity of substitution, the utility costs of variety, and the shape of the taste distribution

are all either unobserved or are challenging to estimate directly in the data. Even the total number

of available products, a key input into our model, cannot be confidently counted in the Nielsen data.

As we demonstrate in Appendix A.3, the level and trend growth in the total number of products are

highly sensitive to the choice to include or exclude products accounting for tiny amounts of aggregate

spending. Therefore, we use the model’s analytical expressions, together with key moments from the

data, to compute changes in the value of structural parameters and assess the implications of these

changes for welfare.

We find that even when we allow for simultaneous movements in all structural parameters, match-

ing the observed divergence between household and aggregate concentration can only be achieved

with sizable growth in the number of varieties, a rate of roughly 4.5 percent per year. This increase

in available varieties leads households to endogenously consume more products and enjoy welfare

“gains from variety”, as is standard in CES environments. In our model, an increase in the total num-

ber of varieties available also allows households to select a subset of products better matched to their

particular tastes and thus to enjoy what we call “gains from selection”.

The strength of these two effects depends on the elasticity of substitution and the shape parameter

governing the asymmetry of tastes, which can be identified given data on aggregate markups. For

plausible targets for the aggregate markup, we find that the increase in product availability necessary

to hit the divergence between household and aggregate concentration leads to large welfare gains,

which are mostly driven by the gains from selection. For example, if we hold all other parameters

fixed in our preferred calibration and introduce 4.5 percent annual growth in the number of available

products into our model, we calculate that consumption-equivalent welfare grows by 0.56 percent per

year for expenditures in the categories covered by our data, and that 93 percent of this growth comes

from gains from selection. Since these gains from selection need not be captured by typical matched-

model price indices used by national statistical agencies, our model reveals how expanding product

availability in an environment with heterogeneous tastes may generate significant unmeasured gains

in standards of living.

While an increase in variety availability is necessary to generate the divergence between household

and aggregate concentration, the model implies that this increase is not sufficient to match all the

empirical trends we document. In particular, an increase in variety availability, on its own, will actually

cause household concentration to fall mildly, even though aggregate concentration will fall by much

more. We therefore use the model to infer additional changes in the fixed cost per variety, the elasticity

of substitution, and the shape of the taste distribution to exactly match both the observed trends in
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Household and Aggregate Herfindahls, as well as the relationship between the Household Herfindahl

and the number of varieties consumed by individual households.

We emphasize that, unlike the increase in the number of available varieties, changes in these other

structural parameters are not fully identified and multiple configurations are consistent with the data.2

However, we consider various combinations of parameter changes in addition to the increase in avail-

able varieties necessary to exactly match empirical trends, and the model consistently delivers sub-

stantial unmeasured welfare gains that arise primarily from households choosing product bundles

that better suit their unique preferences. Thus, we conclude that while the increase in product avail-

ability on its own is not sufficient to fully fit the empirical trends, this increase drives almost all of the

welfare effects associated with these trends. The model thus implies a crucial role for product entry in

driving the rise of niche consumption, and we provide several additional pieces of empirical evidence

that support this relationship.3

This conclusion that there has been an important welfare relevant increase in product availability

arises from fitting trends to a notion of the “average category" in the data. However, we also apply

our model separately to each of the roughly 100 product groups in the data to infer category specific

changes in welfare and product availability. We find that the conclusions we arrive at from redoing

the analysis category-by-category are broadly similar to those reached when matching average trends.

However, there is some interesting heterogeneity across product groups, with the largest gains from

selection arising for coffee, disposable diapers, and snacks, and with losses for eggs, cottage cheese,

and photographic supplies. Nevertheless, our model implies that the large majority of sectors experi-

enced significant increases in product variety and resulting welfare gains from selection, while changes

in other structural parameters have more limited effects on welfare.

In the final part of the paper, we explore the implications of the rise of niche consumption for

aggregate market power. Concentration is often used as a proxy for market power, and as described

above, markups in our model are endogenous and vary across products so that market power has the

potential to move with concentration. So what then happens to aggregate market power in response

to the same inferred changes in structural parameters that drove the rise of niche consumption? Sur-

prisingly, not much. In particular, as we demonstrate analytically, increases in product availability

do not on their own change the aggregate markup because they have two offsetting effects arising

from competition and selection. New products constitute new competition for the incumbents, which

causes them to charge lower markups. However, since the new consumed products on average are

better tailored to the tastes of households that choose to consume them, they have higher markups

2For example, the model makes clear that changes in the elasticity of substitution and in the shape parameter governing
the taste distribution cannot be separately identified using our data on spending. We focus, therefore, on scenarios where
only one of these two parameters changes.

3For example, restricting to a balanced panel of products substantially attenuates the rise of niche consumption. And
while we again emphasize that measuring variety availability in the data is at best challenging, we find that there is a strong
correlation at the category level between empirical measures of observed variety growth and that implied by the model.
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than the products they replace. In the aggregate, these two opposing forces exactly offset each other.

By contrast, changes in the elasticity of substitution and in the shape of the taste distribution have

the scope to affect aggregate market power, but the changes suggested by our model are not large

enough quantitatively to meaningfully alter the picture. Our model demonstrates that the significant

trends in household and aggregate product concentration need not indicate any changes in aggregate

market power.4 Even more broadly, our model demonstrates how any given trend in concentration can

be associated with an increase or a decrease in aggregate market power depending on the underlying

structural forces driving the trend.

We proceed as follows. Section 2 discusses the related literature, Section 3 demonstrates the em-

pirical divergence between household and aggregate spending concentration, Section 4 develops a

theoretical heterogeneous household model to interpret this empirical evidence, and Section 5 con-

cludes.

2 Related Literature

Our work touches on and draws connections between a number of important themes in recent research.

Our model in which individual households have CES preferences, heterogeneous Pareto-distributed

tastes for different varieties and consume an endogenous subset of these varieties follows Li (2019)

and Arkolakis et al. (2008). Our theoretical contribution is to maintain analytical tractability even when

extending this setup much further to an environment with heterogeneity in which households have

different but potentially correlated tastes across products. This allows us to speak to the increasing di-

vergence between household and aggregate concentration. Our basic approach follows in the tradition

of the macro and trade literature that uses a CES structure to study the implications of expanded prod-

uct availability.5 The heterogeneous and asymmetric preferences in our model imply that expanding

the set of available products benefits consumers through a selection effect that is above-and-beyond

the standard love-of-variety gains in symmetric representative agent models.6

Our analysis also relates to a large literature in industrial organization (IO) quantifying the welfare

gains from new varieties.7 Within this literature, our result that information on the decomposition

of aggregate demand across households can help pin down gains from product availability has close

parallels with Quan and Williams (2018). Our approach requires household level spending data but

4Similar conclusions also obtain when we compute aggregate market power trends separately for each of the product
groups, although there are a few exceptions such as photographic supplies.

5For example, Handbury and Weinstein (2014) emphasizes the need to account for differences in variety availability when
comparing the price level across U.S. cities. Redding and Weinstein (2016) demonstrates how welfare measures can be biased
if they do not account for heterogeneity in consumer tastes across products. Atkin et al. (2018) uses similar scanner data on
grocery purchases to calculate the welfare gains associated with entry of global retail chains into the Mexican market.

6While representative agent CES models can be rationalized through an underlying discrete choice representation with
heterogeneity (Anderson et al. (1987)), this requires idiosyncratic tastes to be drawn from an i.i.d. Gumbell distribution and
aggregates to an environment with symmetry.

7See, for example, Hausman (1996), Petrin (2002), and Brynjolfsson et al. (2003).
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requires no information on product characteristics, and it delivers simple analytical solutions. This

means that unlike the typical IO approach, our methodology scales tractably, and we can apply it to

a variety of different sectors and markets. Of course, this tractability comes at the cost of additional

parametric structure. While our approach is more flexible than typical symmetric representative agent

models and is able to fit spending patterns for most sectors in the data, we view it as a complement

rather than a substitute to detailed IO studies of particular markets.

On the empirical side, a recent macro literature has explored the importance of product availability

and concentration trends for various empirical phenomenon. In concurrent work, Michelacci et al.

(2019) document cyclical fluctuations in household variety adoption and model this phenomenon using

a discrete choice model. Their empirical focus is on higher frequency business cycle effects, and

their theoretical framework is very different from ours, but they reach similar conclusions about the

important role of product selection for welfare. Argente et al. (2018a,b) shows that product introduction

plays a key role in understanding patterns of firm growth. Jaravel (2019) argues that innovation and

product entry plays an important role in inflation differences across groups. Several important papers

document changes in top sales shares and industrial structure, including Autor et al. (2017) and Furman

and Orszag (2015). Our finding that household and aggregate concentration trends move in opposite

directions is reminiscent of Rossi-Hansberg et al. (2018), which demonstrates that concentration trends

also diverge when comparing measures done at the zip-code and national levels.

Given heterogeneity across households, our structure generates heterogeneous markups because

some producers adjust sales by selling more to existing customers while others adjust by selling non-

zero amounts to more customers. To our knowledge, Levin and Yun (2008) is the only other paper in

the recent literature that emphasizes this mechanism, though it also relates to Hottman et al. (2016),

who emphasize heterogeneity in the degree to which price declines for one product cannibalize sales

for others in multiproduct firms. Our emphasis on differences across firms in the importance of the

intensive versus extensive margin contrasts with the more commonly used frameworks for generating

variable markups, such as the nested-CES setup in Atkeson and Burstein (2008), linear demand in

Melitz and Ottaviano (2008), translog preferences in Feenstra and Weinstein (2017), and Kimball (1995)

kinked-demand curves as incorporated in Gopinath and Itskhoki (2010).

Our framework delivers analytical expressions for the full distribution of markups, a topic of in-

creasing focus, such as in the work of De Loecker and Eeckhout (2017), Edmond et al. (2018), Stroebel

and Vavra (2019), Anderson et al. (2018), and Burstein et al. (2019). We note, however, that our model

can easily deliver large trends in aggregate and household concentration without requiring any change

in aggregate market power. Our work is therefore consistent with the skepticism expressed in Syver-

son (2018) and Berry et al. (2019) of the simple linkage often made between concentration trends and

market power.

Finally, although the underlying causes are potentially different, the rise in niche consumption
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of retail goods parallels the increasing segmentation or polarization witnessed in culture and digital

content (Aguado et al. (2015); Alwin and Tufis (2015)), in political idiology (Pew Research Center

(2014); Gentzkow et al. (2017)), in jobs and income (Autor et al. (2006); Piketty et al. (2016)), and in the

geography of where households consume (Davis et al. (2017)).8 Our findings indicate that, along with

these other manifestations of fragmentation in modern life, even our grocery purchases increasingly

differ from the national average.

3 Diverging Household and Aggregate Concentration

We start this section with a discussion of the aspects of the data that are particularly salient for our

analysis, relegating a more detailed description to Appendix A.1. We then present our key finding that

the concentration of household spending across products increased while, at the same time, aggregate

concentration among the same goods decreased. Finally, we provide evidence that these trends are

associated with product churning.

3.1 AC Nielsen Homescan Data

We use Homescan data from AC Nielsen to measure household-level shopping behavior.9 The data set

contains a weekly household-level panel for the period 2004-2016. The panel has large coverage, with

roughly 170,000 households in over 22,000 zip codes recording prices for almost 700 million unique

transactions covering a large fraction of non-service retail spending.

Products are allocated by Nielsen into three levels of category aggregation: roughly 1304 product

modules, 118 product groups, and 11 department codes. For example, "vegetables - peas - frozen"

are a typical product module within the "vegetables - frozen" product group within the "frozen foods"

department. Our baseline analysis focuses on annual spending by all households in the Nielsen sam-

ple and computes household spending shares across products within product groups, but all results

are qualitatively robust to instead calculating household product spending shares within the more

disaggregated product modules or within the more aggregated department codes. We focus on the

full sample of households for a number of reasons discussed in Appendix A.2, but this is relatively

conservative since the magnitudes of our trends increase when we restrict to a balanced panel of

households.10

8The fact that our results are not driven by a widening gap between the goods purchased by rich and poor households
or between consumers in one region and another is also consistent with the finding in Bertrand and Kamenica (2018) that
cultural distance between rich and poor has not grown over time.

9These data are available for academic research through a partnership with the Kilts Center at the University of Chicago,
Booth School of Business. See http://research.chicagobooth.edu/nielsen for more details on the data.

10All results weight each household using sampling weights provided by Nielsen, which are designed to make the Nielsen
panel demographically representative of the broader U.S. population. Appendix Figure A2 shows that aggregate spending
growth in our sample tracks government data on aggregate spending growth in comparable categories. In the appendix we
also discuss the relevance for our results of additional measurement-related issues, such as the (unimportant) role of online
shopping.
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In our baseline analysis, we define a product as a Universal Product Code (UPC). Appendix Figure

A9 demonstrates, however, that the key trends we identify are robust to instead defining a product

as a "brand". Nielsen assignes UPCs to brands, which are more aggregated than UPCs but are still

fairly disaggregated. "Pepsi", for example, is a brand and includes many different flavors and package

sizes of the Pepsi drinks. "Caffeine Free - Pepsi", however, is considered a distinct brand. The UPC

is our preferred notion of a product in part because UPCs are directly assigned by the manufacturer,

whereas the brand variable is constructed by Kilts/Nielsen in a way that involves judgment and may

differ across categories and over time. Further, although each generic has a unique UPC, all generics are

assigned the same brand in order to preserve the anonymity of the stores in the Nielsen sample.11 Sales

of generics are large and growing, so their inclusion, by construction, distorts concentration measures

that define products as brands.12 Finally, some of our analyses decompose expenditure changes into

price and quantity effects, which is straightforward for the case of UPCs but not for brands.

We restrict our analysis to the set of product modules in the data for all years during 2004-2016.

We exclude modules that enter or exit since this reflects changes in Nielsen’s measurement – not actual

household behavior – and could therefore lead to spurious changes in measured concentration. We

also exclude fresh produce and other items without barcodes (these are labeled as "magnet" items in

the data).

3.2 Household Spending Concentration

We begin our analysis by exploring how the concentration of household spending across products has

changed over time. For each household i, UPC j, and product group c we calculate total expenditure

Ei,j,c,t in year t and associated expenditure share:

si,j,c,t =

(
Ei,j,c,t

∑j Ei,j,c,t

)
. (1)

Our primary measure of household product concentration for a product category c at time t is the

Herfindahl and equals the sum of the square of these expenditure shares:13

HHH
i,c,t = ∑

j

(
si,c,j,t

)2 . (2)

11Since we do observe UPC codes just not brand labels for generic products, a generic product at one retailer will count as
distinct from a similar generic product at a different retailer in the typical situation in which they have different UPCs.

12See, for example, Dube et al. (2018). Our robustness checks using the brand definition of product exclude generics.
13All results in the paper hold for alternative concentration measures such as the share of spending accounted for by the

top 1 or the top 2 products. We use the Herfindahl as our primary concentration measure as it can be more easily interpreted
through the lens of the structural model described in Section 4.
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Next, we take the weighted average across households to generate the Household Herfindahl for

product category c:

HHH
c,t = ∑

i
sharei,c,tHHH

i,c,t , (3)

where we use weights capturing household i’s share of aggregate spending in category c:

sharei,c,t =
∑j
(
ωi,tEi,j,c,t

)
∑i ∑j

(
ωi,tEi,j,c,t

) , (4)

and where ωi,t is a household’s sampling weight provided to make the Nielsen sample representative

of aggregate consumption. Finally, we calculate the overall Household Herfindahl by averaging the

category-specific Household Herfindahl in equation (3) across all categories:

HHH
t = ∑

c
sharecHHH

c,t , (5)

where sharec is the average share of category c in total spending across our entire sample.

Unlike the weights used in equation (3), we use fixed category spending shares over time in equa-

tion (5) to focus on concentration changes occurring within categories, rather than those emerging

from shifts in spending across categories with different average levels of concentration. We do this

to better interact with recent interest in changing market power and technological disruption, typi-

cally perceived to be occurring within sectors. However, our results are robust to instead allowing

compositional shifts across categories to influence our concentration measures.

Figure 1a plots HHH
t and reveals a nearly monotonic increase in household spending concentration

from 2004-2016. In Appendix A.3, we show that this increase in concentration is also associated with

a decline in the average number of products consumed per household within a product category. We

delay interpreting the quantitative magnitude of these changes until we develop our model in Section 4

but note now that fitting this series with a linear trend yields a precise and highly significant estimate.

3.3 Aggregate Spending Concentration

What underlies this increase in the concentration of household expenditures? One possible explanation

is that there has been an increase in the importance of "super-star products", along the lines of the rise

of "super-star firms" documented in Autor et al. (2017). This explanation, natural though it may be,

finds no support in our data: we demonstrate in this subsection that at the same time the typical

household’s expenditures have grown more concentrated across products, aggregate spending has in

fact become more evenly distributed across these same products.

We sum spending on product j in category c across all households in our data and define the
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Figure 1: Household Product Concentration
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aggregate market share of j in c as:

sj,c,t =
∑i
(
ωi,tEi,j,c,t

)
∑i ∑j

(
ωi,tEi,j,c,t

) , (6)

and the Aggregate Herfindahl in category c as:

HAgg
c,t = ∑

j

(
sj,c,t

)2 . (7)

Just as with the Household Herfindahl, we average these category Herfindahls using fixed category

expenditure weights over time to generate the Aggregate Herfindahl of overall spending:

HAgg
t = ∑

c
sharecHAgg

c,t . (8)

Figure 1b plots this Aggregate Herfindahl and shows that the trend in product spending at the ag-

gregate level is the reverse of what we see at the household level: aggregate spending concentration

is declining, not rising. How can it be that aggregate concentration is declining if households are

individually concentrating their spending on a smaller number of products? These divergent trends

imply that households are concentrating more and more spending on their top products over time,

but that these top products increasingly differ across households. We view these divergent trends and

resulting fragmentation of the product space as characterizing a rise in niche consumption.

The decline in aggregate concentration might, at first, seem at odds with the rise in sales concen-

tration measured in Census data by papers including Autor et al. (2017). Our aggregate concentration

measure, however, captures expenditures at the product level whereas Census-based estimates ag-
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gregate products up to the producer level.14 The resulting trends may therefore differ significantly,

particularly in the face of changes in the number of goods each manufacturer produces.

Appendix A.4 relates our findings to this recent literature on rising market concentration in the

U.S. census data. We first show that production concentration measures from the Census for the

relevant NAICS categories – “Food Manufacturing” (code 311) and “Beverage and Tobacco Product

Manufacturing” (312) – are in fact flat or declining during the years covered in our sample. Next,

we use a mapping of UPCs to manufacturers to generate a comparable producer-level concentration

measure based on the sales in our Nielsen data. We offer a number of important caveats, including

that the UPC-to-manufacturer mapping is highly imperfect for this purpose, but nonetheless find

similar trends in manufacturer concentration in Nielsen and Census data. We therefore conclude that

our results are broadly consistent with the Census-based literature. Whether producer or product

concentration is of greater interest depends, of course, on the question at hand. Our theory below

will treat each good as produced and marketed independently such that it maps most naturally to our

product-based concentration measure.

Finally, it is important to note that while the decline in the number of products consumed by the

typical household contributed to the rising Household Herfindahl measure, it is much more difficult to

measure the equivalent notion for the aggregate economy. As we show in Appendix A.3, the existence

of thousands of products with tiny amounts of overall sales and incomplete coverage of households

and stores in the data render a simple product count highly volatile, dependent on assumptions,

and sensitive to measurement error. In contrast, household and aggregate concentration as well as

household-level variety statistics are much less sensitive to this issue. We therefore treat the total

number of products available for purchase as unobservable, and in Section 4 we show that our model

can be used to infer product availability using these other more robust empirical statistics.

3.4 Robustness to Measurement and Composition

The rise in niche consumption – the increase in the Household Herfindahl and decrease in the Aggre-

gate Herfindahl – is highly robust and is not driven by either measurement choices or by obvious com-

position effects. Appendix Figures A7-A13 show that these divergent concentration trends continue

to hold if we exclude generics, compute concentration using more disaggregated categories (modules

instead of groups), define products as brands instead of UPCs, use time-varying category weights, use

alternative concentration measures instead of the Herfindahl, focus on a balanced panel of households

over time, or condition on household size.

Is the rise of niche consumption driven by shifts in the importance of different groups, such as

old and young or rich and poor? While there are differences in the level of concentration across

14The categories within which we calculate concentration are also far less aggregated and cover a smaller set of economic
activity than what is done in most Census-based studies. Further, our data begin in 2002, far later than the 1970s or 1980s
start date commonly found in that literature.
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different groups, the trends are primarily driven by within group variation. To show this, we re-

calculate annual Household and Aggregate Herfindahls using only expenditures by households with

particular demographic characteristics such as income bracket, race, education, and age. Figures 2a

and 2b show that rising household and declining aggregate concentration occurs within demographic

groups. The rising Household and falling Aggregate Herfindahls do not simply owe to changes in

composition across groups with different levels of concentration. Appendix Figure A12 further shows

that we also see a rise in niche consumption when restricting to a balanced sample, so changes in the

composition of the household sample over time do not drive our results.15 Our results are also similar

if we foresake Nielsen weights and instead weight households equally.

Figure 2: Trends within demographic group
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(b): Aggregate Concentration
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As a simple summary statistic for the prominence of niche consumption, we consider the ratio of

the Household Herfindahl to the Aggregate Herfindahl. A higher value for this “niche ratio” means

that household consumption is more segmented into different niches. Figure 3 shows that the rise of

niche consumption is pervasive across product categories, with three-quarters of product categories

exhibiting increases inHHH
c,t , 80 percent of product categories exhibiting decreases inHAgg

c,t , and growth

in the niche ratio in over 90 percent of the categories.16

In Appendix Figure A14, we also show that the rise of niche consumption is occurring in the vast

majority of locations, implying that shifts in the relative economic importance of cities and regions

or differences across regions are not behind our findings. The niche ratio is highest in cities like

Chicago, Washington DC, Tampa, Los Angeles, and Boston and lowest in Des Moines, Little Rock,

15Trends are actually stronger in the balanced panel specification. See Appendix A.2 for discussion and interpretation.
16To improve visual exposition, Figures 3 and 4a drop 5 outlier categories whose variety counts more than double or

decrease by more than 50 percent from 2004-2016: "Frozen Juices", "Yeast", "Canning Supplies", "Greeting Cards" and "Pho-
tographic Supplies". This does not affect any conclusions.
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Las Vegas, and West Texas, but it is increasing in most locations. Appendix Figure A15 shows that

the rise in niche consumption is found within roughly two-thirds of the individual retailers in our

data, so the aggregate patterns we observe are not simply driven by shifts in where households shop.

Appendix Figure A16 shows the patterns hold even within retailers so that patterns are not driven by

compositional changes in which retailers households shop at.

Figure 3: 2004-2016 Concentration Growth Within Category

(a): Household Concentration
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(b): Aggregate Concentration
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The level of the niche ratio is highest in “Cosmetics" and “Fragrances-Women" and is lowest for

“Charcoal" and “Dough Products". The rise in niche consumption is pervasive, but it is also clear

from Figure 3 that there is substantial heterogeneity across categories in the extent of its ascent. The

niche ratio has grown most rapidly for "Coffee", "Hardware, Tools", "Fresheners and Deodorizers", and

"Disposable Diapers". It has declined by most for "Cottage Cheese", "Eggs", "Milk", and "Bread and

Baked Goods".

3.5 The Role of Product Churn

Interestingly, there is a common observable linking together the categories with the most rapid in-

creases in niche ratios: they are also the categories that appear to have the fastest growth in the

number of available products. We emphasize this relationship as it will be central to the mechanism in

our model in Section 4 and its implications for welfare. As we noted above and elaborate in Appendix

A.3, inference about the growth of aggregate product varieties in these data are highly sensitive to

the treatment of products receiving trivial amounts of sales. In Figure 4a, however, we include prod-

ucts consumed by at least two households with total sales of at least $50 and plot the growth in each

product group’s niche ratio against the growth in that group’s number of varieties. Categories with 50

percentage points more growth in the total number of products sold had, on average, 40 percentage

points more growth in their niche ratios, with the relationship statistically significant at the 1 percent
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level. Figure 4b shows that a similar relationship also holds when comparing across retailers: retailers

with 50 percentage points more growth in the number of products sold exhibited roughly 20 percent-

age points more growth in their niche ratios, with the relationship again significant at the 1 percent

level.17 The relationship between variety growth and the niche ratio becomes even steeper if we weight

retailers by size.

Figure 4: Growth in Number of Products vs. Growth in Niche Ratio

(a): Product Groups
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We now provide additional evidence that product churn plays a key role in the rise of niche con-

sumption by comparing concentration trends measured only among “continuing" products that are

purchased by a household in two consecutive years with those measured using all spending by that

household. For each household i that is observed in both t and t + 1, we measure concentration of

“continuing products” by using only those that are purchased by that household in both t and t + 1.

These continuing products account for about 30 percent of transactions and 40 percent of spending.

We also calculate Herfindahls for those same households using all their spending. We form an index

by chaining together changes in these Herfindahls from t and t + 1 and pin down the level using the

values in the initial period. Figure 5a shows the upward trend in household concentration is much

stronger when using all UPCs than when restricting to continuing products, growing by 29 percent

compared to 5 percent. This implies a large role for product entry and exit in generating household

concentration increases. Figure 5b shows that when focusing only on continuing products, aggregate

concentration actually rises instead of declines.

Together these results all imply that whatever forces are driving the rise in niche consumption,

they are pervasive across demographics, geographies, retail chains, and product categories.

17To reduce the influence of outliers, we exclude retailers with absolute log variety changes above 2, which drops 6 out
of 334 retailers. Results are similar for alternative thresholds. The panel of retailers is unbalanced, and growth rates for the
remaining 328 retailers are calculated from their first to their last observation in the sample. Results are very similar if we
instead calculate growth rates from 2004-2016 for the 179 retailers which are in the sample continuously.
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Figure 5: 2004-2016 Concentration growth for continuing vs. all products
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(b): Aggregate Herfindahl
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4 Modeling the Rise of Niche Consumption

In this section, we develop a model that is able to match the rise of niche consumption documented

in Section 3. We use the model to identify the key driving forces of this trend and to evaluate the

resulting implications for welfare and markups.

Following Li (2019), we assume that households must pay a fixed cost per consumed product,

which implies they only consume a subset of available products despite their CES preferences that

embed a love-of-variety. As in Arkolakis et al. (2008), we assume each household’s tastes for prod-

ucts, adjusted for price, are distributed Pareto, which allows us to write the Household Herfindahl

analytically. These frameworks, however, assume that households have the same tastes and, therefore,

household and aggregate dynamics evolve in parallel. Our key theoretical contribution is to introduce

a rank function that allows the preference ordering of products to differ across households while still

allowing us to derive closed-form analytical expressions for aggregate spending patterns including

the Aggregate Herfindahl. Using these analytical expressions, we confront the model with empiri-

cal trends from 2004-2016 and demonstrate that an increase in the number of available products is

required to quantitatively match the rise of niche consumption. In the model, this increase leads to

significant welfare gains as it implies that consumers can choose a consumption bundle better tailored

to their tastes without raising their fixed cost expenditures.

Here, we offer simplified expressions for the key objects in the model. Interested readers can find

detailed derivations of all analytical results in Appendix B.1.
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4.1 Household Problem

We assume that a continuum of households i ∈ [0, 1] spend E on a continuum of varieties k ∈ [0, N] to

maximize:

Ui =

(∫
k∈Ωi

(γi,kCi,k)
σ−1

σ dk
) σ

σ−1

− F× (|Ωi|)ε , (9)

where Ωi is the set of products consumed by i (with |Ωi| ≤ N), γi,k is a household-specific taste

for product k, and the term multiplied by F captures a fixed cost that increases exponentially in the

measure of varieties consumed.18

We write the price of product k as pk, so γ̃i,k = γi,k/pk captures the price-adjusted taste of household

i for k. We assume price-adjusted tastes are distributed Pareto:

Pr (γ̃i,k < y) = G (y) = 1− (y/b)−θ ,

where y ≥ b > 0 and where we assume θ > 2 (σ− 1). Since larger θ means a flatter distribution of

tastes, the latter condition simply ensures that tastes are not “too concentrated” relative to σ and that

the model delivers a finite Household Herfindahl. We also assume ε > 1/(σ− 1)− 1/θ, which implies

that higher fixed costs F lead to less purchased products |Ωi|. Household i will consume the set of

goods with γ̃i,k ∈ [γ̃∗, ∞) for some γ̃∗ ≥ b.

The ideal price index in this environment will be equal for all households and is defined as:

Pi = P =

(∫
k∈Ωi

(γ̃i,k)
σ−1 dk

) 1
1−σ

=

(
1 +

1− σ

θ

) 1
σ−1

b−1︸ ︷︷ ︸
Average Price

× (|Ωi|)
1

1−σ︸ ︷︷ ︸
Variety Effects

×
(
|Ωi|
N

) 1
θ

︸ ︷︷ ︸
Selection Effects

. (10)

The price index has three terms, each with an intuitive interpretation. We refer to the first term as the

average price since it summarizes the full distribution of price-adjusted tastes for available products,

as if there were a single purchase price for one unit of the full bundle. It varies with the shape θ and

scale b of the Pareto distribution as well as with the elasticity of substitution σ. The second term is the

standard love-of-variety term in CES models, which decreases with the measure of consumed products

and increases with the elasticity of substitution (given |Ωi| > 1). Finally, the third term represents a

selection effect from the fact that when households only consume a subset Ωi of the full measure N of

products, they choose the subset they like best. This term increases in the share of available products

that are consumed and decreases in the extent to which households prefer some products to others.

18To ease notation, we do not include a household subscript i for each k, but importantly note that k is an arbitrary
household-specific index of products, and so the same k may represent a different actual product for each different house-
hold. This is unimportant for the analysis of individual households, but will be crucial when we move to the aggregate
analysis.
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The price index (10) reduces to more standard expressions in special cases. For example, consider

θ → ∞, which implies that households value all products identically at b, i.e. γ̃i,k = b for all k. In such

a case, the expression reduces to b−1|Ωi|1/(1−σ), which is the standard price index for symmetric CES

preferences. Alternatively, imagine some products are preferred to others, θ < ∞, but all products are

nonetheless purchased, so Ωi = N. In this case, the last term reduces to 1 as there are no selection

effects and the average price term fully captures the impact of heterogeneity in the desirability of

products.

The properties of the CES price index imply we can re-write equation (9) as:

Ui =
E
P
− F× (|Ωi|)ε .

Consumers choose |Ωi| to maximize utility. The first order condition implies that the optimal number

of products is:

|Ωi| = |Ω| =

( 1
σ−1 −

1
θ

) (
1 + 1−σ

θ

) 1
1−σ N

1
θ

F̃ε

(ε+ 1
1−σ+

1
θ )
−1

, (11)

where F̃ = F/(bE) is a parameter that shifts with spending, aggregate prices, and variety costs.19

Importantly, the optimal choice of varieties yields a “cutoff” taste γ̃∗ that satisfies:20

G (γ̃∗) = 1− |Ω|
N

, (12)

and the share of household i′s expenditure on variety k is then given by:

si,k =

(Pγ̃i,k)
σ−1 , γ̃i,k > γ̃∗

0, γ̃i,k ≤ γ̃∗,
(13)

with
∫

si,kdk = 1.

4.2 Household Herfindahls

Given equation (13), it follows that the Household Herfindahl HHH will be equal for all i and can be

written as:

HHH
i = HHH =

∫
k∈Ωi

(si,k)
2 dk = N

∫ ∞

γ̃∗i

(Piγ̃i,k)
2(σ−1) dG (y) =

(η + 1)2

4η

1
|Ω| , (14)

19When N = 1, this expression is the same as that in Li (2019) after substituting in his special case for b.
20The fact that households only consume a subset of the varieties in our environment follows directly from our specification

of the fixed cost. This same feature arises in Michelacci et al. (2019), though it is generated less mechanically in their setup.
In their environment, consumers pay a cost to try a product and there is uncertainty as to whether they will like it.
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where we introduce the variable η = 1− 2(σ− 1)/θ. The above parameter restrictions imply η ∈ (0, 1).

For fixed θ and σ, which implies fixed η, household concentration declines monotonically with the

number of consumed varieties. And for fixed |Ω|, concentration declines monotonically with η. All

else equal, flatter taste distributions (higher θ) or less substitutability across products in preferences

(lower σ) reduce Household Herfindahls.

4.3 Testing the Model at the Household Level

How well does this model fit household spending data? If we condition on the number of products |Ωi|
purchased by household i, equation (13) yields a testable relationship between i’s spending shares on

particular products k and i’s ranking of those particular products from [0, N]. For analytical tractability,

our model assumes a continuum of products but in Appendix B.1.7 we provide formulas which convert

the continuous relationship in equation (13) to a discretized version which we then use to test against

the data. Specifically, we interpret the spending share on discrete product K as the total spending

share by that household on all products k in the span of [(K− 1) /|Ωi|, K/|Ωi|] and obtain:

s|Ωi |
i,K = (|Ωi|)−

η+1
2

[
K

η+1
2 − (K− 1)

η+1
2

]
, (15)

where we note that the spending share on the Kth discrete product is a function of both |Ωi| and η.

The share spent on the most preferred good (i.e. K = 1) simplifies to: s|Ωi |
i,1 = (|Ωi|)−

η+1
2 .

Panel (a) of Figure 6 plots the average spending shares in both the model and data on a household’s

top, second, and fifth ranked goods as a function of the total number of goods consumed by that

household. The solid lines measure the average of these shares in our data, taken across all households

and weighted by their total spending, whereas the dashed lines simply plot the theoretical relationship

implied by our model as shown in equation (15). For example, the solid and dashed lines in blue and

red at the top of Figure 6 both equal 1 when |Ω| = 1 at the far left of the plot, which must be true

by construction. After all, if a household only buys one good, then that top good must by definition

account for 100 percent of the spending. The far right side of the plot shows that for households who

buy 20 products (|Ω| = 20), the top product they purchase accounts for approximately 20 percent

of their total spending in both the data and the model. The fact that the solid blue and dashed red

lines nearly perfectly coincide for all values of |Ω| implies that our model of household spending

does a great job capturing the degree to which households concentrate spending on their single most

preferred product.

Next, the yellow solid and green dashed lines plot household spending shares on their second-

ranked goods. This share is undefined when households only consume a single good, but ranges from

about 0.3 to 0.1 as |Ω| ranges from 2 to 20. Households in the data spend a bit more on their second

ranked good compared to what is predicted by the model, but the shares never deviate by more than

a few percentage points. The solid brown and dashed orange lines show that the share spent on the
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Figure 6: Model Fit to Distribution of Spending by Product Rank for Households with Different Ω
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(b): Category Spending on Different Ranked Items
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fifth-ranked good, in both the data and the model, hovers quite close to 10 percent for all plotted values

of |Ω|.
Figure 6b repeats this exercise for the individual categories of cereal, yogurt, canned seafood, and

pet food.21 Although the model fits more closely for cereal and yogurt, the dashed lines are fairly

21We calibrate η for each category using equation (14) given the values of HHH and Ω. The lowest implied η in the plotted
categories is 0.053 for pet food and the highest is 0.189 for seafood-canned. The η used for aggregate spending is 0.0672.
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close to their solid counterparts in all cases. Thus, even though our model makes strong parametric

assumptions in order to deliver analytical tractability, Figure 6 provides strong evidence that our model

captures the key patterns of individual household spending we focus on in the data.22

4.4 Aggregation

In order to account for divergent trends in household and aggregate concentration measures, we must

specify how tastes for particular products differ across households. We index all products in the

economy by j ∈ [0, N], and assume each household i assigns each product j a “rank” ri,j, where lower

ranks indicate higher price-adjusted tastes.23 Households will consume all goods with ri,j ≤ |Ω|.
We introduce the following rank function for each household i:

ri,j = (1− α)j + αxi,j, (16)

where j identifies a common aggregate rank for a product, xi,j is an i.i.d. draw from the uniform

distribution with support [0, N] representing a household-specific taste component, and α ∈ (0, 1). If

α is close to zero, the model approximates a representative agent model where all households rank

products in the same order. If α approaches 1, tastes are purely idiosyncratic and resulting aggregate

spending will be evenly distributed over all consumed products even if individual household tastes

are very concentrated. Thus, even though all households have identical distributions of taste-adjusted

prices, this rank function allows for different households to have different ranks for the exact same

product j.

To compute the aggregate spending share on product j, we need to know the cumulative distribu-

tion function (CDF) of product ranks R(r), integrating over all households and products. Without loss

of generality, we assume α < 1/2 and write:24

R(r) =



1
2

( r
N

)2 1
α (1− α)

, 0 ≤ r < αN

r
N

1
1− α

− 1
2

α

1− α
, αN ≤ r < (1− α) N

−1
2

( r
N

)2 1
α (1− α)

+
r
N

1
α (1− α)

− 1
2

(
α

1− α
+

1− α

α

)
, (1− α) N ≤ r ≤ N.

(17)

Note that this CDF satisfies the properties that R(0) = 0, R(N) = 1, R(r) is continuous at r = αN and

r = (1− α) N, and R(r) is monotonically increasing. Household i will consume good j if and only if

22Appendix A.5 derives additional testable implications of the household model and further corroborates its close fit to
the data.

23Note that in contrast to the arbitrary household-specific product index k above, the product index j is common to all
households.

24Replacing α with 1− α in all instances in equation (17) yields the corresponding R(r) for the alternative case of α > 1/2.
Furthermore, this leaves the rank function unchanged for the first of the three regions of R(r), which will be the focus of our
analysis.
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R(ri,j) ≤ |Ω|/N.

There are three distinct regions in R(r) with different functional forms. If households only consume

goods with ranks in the first region, this implies that there is no single product in the economy that

is purchased by all households. If households consume so many varieties that some have ranks in

the second region, this implies that at least one product is purchased by everyone. Finally, if even the

worst possible product in the economy is purchased by at least one household, then the ranks of some

consumed goods will fall into the third region.25 As long as 0 ≤ |Ω|
N < α

2(1−α)
< 1

2 , it can be shown that

all consumed products in the economy will have an r value confined to the first region of R(r). This

is the empirically relevant region of the parameter space, since the number of varieties purchased by

an individual household is orders of magnitude less than the aggregate number of varieties, and there

are no varieties in the data that are consumed by all households. To simplify the analytical expressions

that follow, we thus impose this parameter restriction for the remainder of the analysis.

Noting that γ̃i,j = G−1 (1− R
(
ri,j
))

, the spending share of household i that is dedicated to product

j can be written as a function of j’s rank:

si,j = Pσ−1γ̃σ−1
i,j = (Pb)σ−1 (R (ri,j

))− σ−1
θ =

η + 1
2

N
η−1

2 |Ω|−
η+1

2
(

R
(
ri,j
)) η−1

2 , (18)

if R
(
ri,j
)
≤ |Ω|/N, and zero otherwise. To determine the products for which the share si,j in equation

(18) jumps from positive to zero, we solve for the rank of the marginal, or least-preferred, variety that

is consumed in positive quantities by household i. Note that this good’s identity will differ across

households, but its rank r∗ will be the same and satisfies R(r∗) = |Ω|/N. Substituting into equation

(17) under the assumption that 0 ≤ |Ω|
N < α

2(1−α)
, we get:

r∗ = (2α (1− α) |Ω|N)
1
2 . (19)

Under our parameter restrictions, individual households each consume only a fraction of the total

products available N, but the exact products consumed will differ across households. However, even

when aggregating across all households, there are some products which are not consumed by any

household. This means that for the economy as a whole, there is a difference between the measure

of available goods N and the measure of goods that are actually consumed, which we denote with

j∗. This marginal consumed good for the economy as a whole, j∗, is that j for which the best possible

idiosyncratic taste draw (a draw of xi,j = 0) yields rank r∗ for the household with that zero draw.

25More specifically, the product with the best aggregate taste shock is j = 0. The worst possible idiosyncratic rank for this
product occurs when xi,j = N, in which case r = αN, so if we are in the first region of the parameter space, even the best
product is not purchased by some households. Conversely, the product with the worst aggregate taste shock is j = N. The
best possible idiosyncratic rank for this product occurs when xi,j = 0, in which case r = (1− αN). This means that if we are
in the third region of the CDF, this worst product will still be consumed by some household.
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Solving for this cutoff, j∗ = r∗/ (1− α), we get:

j∗ =
(

2α|Ω|N
1− α

) 1
2

. (20)

Importantly, since ri,j is strictly increasing in j, all goods with j ≤ j∗ will have positive aggregate

sales and all goods with j > j∗ will have zero aggregate sales. Finally, substituting in the definition of

the rank function from equation (16) into the expression (19), and using the definition of j∗ in equation

(20), we can write the highest value or cutoff random draw x∗j that yields positive consumption of j as:

x∗j =
1− α

α
(j∗ − j) . (21)

4.5 The Aggregate Herfindahl

We now use equations (18) and (21) to integrate spending shares across households i to get the aggre-

gate spending share on good j:

sj =
1∫

i Edi

∫
i
Esi,jdi =

η + 1
2

N
η−1

2 |Ω|−
η+1

2

∫ x∗j

0
(R ((1− α) j + αx))

η−1
2

dx
N

=
η + 1
η j∗

(
1−

(
j
j∗

)η)
. (22)

Using equations (20) and (22), we immediately obtain the Aggregate Herfindahl:

HAgg =
∫ j∗

j=0
s2

j dj =
(

η + 1
η j∗

)2 ∫ j∗

j=0

(
1−

(
j
j∗

)η)2

dj

=
2 (η + 1)

2η + 1

(
1

2Ñ|Ω|

) 1
2

, (23)

where we define Ñ = Nα/(1− α). Aggregate concentration declines monotonically with Ñ. For fixed

θ and σ, aggregate concentration declines monotonically with the number of consumed products. And

for fixed |Ω|, concentration declines monotonically with η. Importantly, changes in |Ω| and η move

the Household Herfindahl and Aggregate Herfindahl in the same direction. As we discuss in the next

subsection, this imposes strong restrictions on the set of possible forces which can explain the opposite

empirical trends for HHH and HAgg and implies an important role for increases in Ñ.

How well do these model-based relationships fit aggregate sales distributions in the data? To

assess this, we start by measuring |Ωc| in the data as the average number of products consumed per

household within a category c using the same weights as were used in equations (3)-(5). We then solve

for the two remaining free parameters, ηc and Ñc, to match HHH
c and HAgg

c in equations (14) and (23).

Figure 7 then plots the market share distribution across products implied by our model in equation

(22) (the red dashed line) against the actual market share distribution in the data (the solid blue line)
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Figure 7: Model Fit on Aggregate Category Data

(a): Aggregate Market Shares: 2004
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(b): Sectoral Market Shares: 2004
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in 2004.26 We weight across categories and do this for total spending in Figure 7a as well as separately

for a number of product categories in Figure 7b. In several categories such as cereal and yogurt,

the model fits extremely well, while it is notably less successful in others such as canned seafood.

Overall, however, we consider these good fits as validating our use of the model, particularly given the

distributions are fully determined by only three parameters and reflect parametric assumptions and

functional forms chosen largely for analytical convenience.27

4.6 Elasticities of Demand, Markups, and Aggregate Profits

The previous sections develop analytical expressions for our key empirical objects: HHH, HAgg, and

|Ω|. We will show that these expressions can be used to draw important conclusions about the forces

driving the rise of niche consumption, but we defer this analysis until Section 4.7. First, in this subsec-

tion, we additionally develop an expression for the ratio of aggregate revenues to costs, what we refer

to as the “aggregate markup”. The aggregate markup is useful on its own as a gauge of market power,

but further, we will use this expression to calibrate our model and quantify the welfare implications of

the rise in niche consumption.

In typical CES environments, the elasticity of demand and markups are fully determined by the

exogenous elasticity of substitution σ. By contrast, the elasticity of demand in our model depends both

26We concentrate on a single year since our model is static. Results are similar if we instead use data from 2016 or pool all
years.

27Appendix Section B.3 offers a version of our model that builds from a linear demand system as in Melitz and Ottaviano
(2008), rather than the CES demand system assumed above. In this case, we also obtain analytical expressions for key
statistics such as Household and Aggregate Herfindahls. Most of the qualitative inferences from confronting the model with
the data are the same across both model specifications. The CES model is our benchmark in large part because the match
between its predictions and the data, as explored in Figure 7, strike us as more compelling.
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on this standard “intensive margin” force as well as on an endogenous “extensive margin” force that

arises from the possibility for products to gain new customers (or lose existing ones). Since these forces

are of different importance for products with different aggregate market shares, the model generates

heterogeneity in demand elasticities across products and in their resulting markups. This also implies

that existing estimates of the elasticity of substitution, such as those offered in Broda and Weinstein

(2004), cannot be applied in our context.

To solve for the price elasticity of aggregate demand for product j, we start by expressing its total

sales as the integral of each household’s spending on j, taken over all households:

sj =
1
N

∫ x∗j

0
six ,jdx, (24)

where we use the notation six ,j to denote the spending share of a household with taste draw on product

j equal to x. Since j will only be purchased by those households with a sufficiently high idiosyncratic

taste for it, we need only integrate from households drawing xi,j = 0 to the marginal household that

draws xi,j = x∗j .

We take the partial derivative of sj in equation (24) with respect to pj to get:

∂sj

∂pj
=

1
N

(∫ x∗j

0

∂six ,j

∂pj
dx + six∗j

,j
∂x∗j
∂pj

)
, (25)

where the right hand side of equation (25) follows from Leibniz’s rule. The first term can be solved

using equation (18) as:
∂six ,j

∂pj
= (1− σ)

six ,j

pj
, (26)

where we take the aggregate price index P as fixed. Moving on to the second term, we can evaluate

equation (18) at the marginal household with taste x∗j to get:

six∗j
,j

∂x∗j
∂pj

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2 (R (r∗))

η−1
2

∂x∗j
∂pj

. (27)

Substituting equations (26) and (27) back into equation (25), we get:

∂sj

∂pj
= (1− σ)

1
pj

1
N

∫ x∗j

0
six ,jdx +

1
N

six∗j
,j

∂x∗j
∂pj

= (1− σ)
sj

pj
+

η + 1
2N|Ω|

∂x∗j
∂pj

. (28)

Our analytical expressions thus far rely on the assumption that the full distribution of price-

adjusted tastes in our model is given exogenously as Pareto. However, since we have a continuum

of products, we assume that the influence of an infinitesimal price change on the overall distribution

of demand is marginal and so our analytical expressions continue to hold.28 To compute ∂x∗j /∂pj, we

28In Appendix B.2 we use numerical simulations which do not require any distributional assumption on tastes to verify
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start with the relationship:

R
(
(1− α) j + αxi,j

)
= 1− G

(
γi,j

pj

)
= bθγ−θ

i,j pθ
j , (29)

and totally differential the left- and right-hand sides for each product j. Evaluating the resulting

expression at xi,j = x∗j , ri,j = r∗, and γ̃i,j = γ̃∗ yields:

dx∗j
dpj

= − θ

j∗
|Ω|N 1

pj
. (30)

Inserting this into equation (28), we have:

∂sj

∂pj
= (1− σ)

sj

pj
− ηθ

2
(

1−
(

j
j∗

)η) sj

pj
. (31)

Equation (31) implies that product j’s price elasticity of demand ε j can be written as:

ε j = 1−
∂sj

∂pj

pj

sj
= σ︸︷︷︸

Intensive Margin

+

(
1−

(
j
j∗

)η)−1

[θ/2− (σ− 1)]︸ ︷︷ ︸
Extensive Margin

> σ. (32)

In addition to the standard intensive margin term σ, there is a strictly positive contribution from the

extensive margin, since lowering the price of a product can induce new households to start consuming

the product. Low j or “mass-market” products are consumed by many households, so the intensive

margin is relatively more important for them. High j or “niche” products are consumed by few

households, so the extensive margin is relatively more important for those goods. As a result, the

elasticity of demand increases as market share falls.29

Figure 8 plots aggregate product market shares sj, the elasticity of demand ε j, and the elasticity

of substitution σ as a function of the product rank j, using a version of the model economy that we

calibrate as described below. Elasticities of demand rise as the product rank grows from the low values

associated with large market shares to the high values associated with niche products. We note that

despite the CES structure, the elasticity of demand generically differs from the elasticity of substitution

σ. As j→ j∗ and a product approaches the point where it is dropped from the aggregate consumption

bundle, the elasticity approaches infinity, i.e. ε → ∞. The markup µj then be written (in gross terms)

that the approximation that follows is highly accurate.
29Interestingly, for good j = 0, which has the largest aggregate demand, the positive impact of σ on the elasticity coming

through the intensive margin exactly cancels with the negative impact of σ coming from the extensive margin, leaving a
total elasticity of (θ/2 + 1). This result echos a closely related point in Chaney (2008), where the impact of the equivalent
parameter for the elasticity of trade flows to trade costs also fully cancels when combining the intensive and extensive margin
effects.
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Figure 8: Elasticity of Demand for Good j
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as:

µj =
ε j

ε j − 1
=

σ + θ(η+1)
2j∗sj

σ + θ(η+1)
2j∗sj

− 1
, (33)

and ranges from a high of (1 + 2/θ) for the largest market share good j = 0 to a low of 1 for j = j∗.

The aggregate markup µAgg is equal to the ratio of aggregate sales to aggregate costs. Using

equations (22) and (32), it can be written as:

µAgg =

∫ j∗

0 sjdj∫ j∗
0 sj

ε j−1
ε j

dj
=

[
θ + (σ− 1)2

σ2 − 1
2

ηθ2

σ2

(
η + 1
2 + θ

)
× 2F1

(
1,

1
η

; 1 +
1
η

;
2σ

2 + θ

)]−1

, (34)

where 2F1 (·) is the hypergeometric function.30 Importantly, while this aggregate profit share is a

relatively complicated function of σ and θ, it is not a function of Ñ, F, or ε.31

30The hypergeometric function is defined as follows: 2F1 (a, b; c; z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n! . (x)n is the Pochhammer symbol,

which equals (x+n−1)!
(x−1)! for all n > 0 and equals 1 for n = 0.

31We note that if each consumer’s taste for each good remains fixed, and markups change for any reason, this would result
in a change in the price-adjusted taste distribution and would affect the expressions above that were derived assuming that
price-adjusted tastes were distributed a la Pareto. We explore this in more detail in Appendix B.2, but here note that in
order to preserve the Pareto distribution of price-adjusted tastes in the face of increases in N and endogenous markups, the
changes in tastes that we additionally require are relatively minor.
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4.7 Understanding the Empirical Trends

We now confront our model with concentration measures and other moments from the data to infer

which structural forces led to the rise in niche consumption. Collecting previous results, our model

implies that:

HHH =
(η + 1)2

4η

1
|Ω| (35)

HAgg =
2 (η + 1)
(2η + 1)

(
1

2Ñ|Ω|

) 1
2

. (36)

Since HHH, HAgg, and |Ω| are directly observable in the data, this produces a system of two

equations – (35) and (36) – that can be solved to determine η and Ñ for each year. Figure 9 shows the

time-series for Ñ and η necessary to hit these observables in each year. Through the lens of the model,

given the observed path for |Ω|, matching the concentration trends requires nearly constant values for

η and a strong upward trend in Ñ. From 2004-2016, η falls by 2 percent while Ñ rises by 70 percent.

Figure 9: Implied Drivers of the Aggregate Rise of Niche Consumption
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As above, we can interpret our model as applying at each individual sector and apply equations

(35) and (36) to data on concentration trends and varieties consumed sector-by-sector. Rather than
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generating a single time series for η and a single time series for Ñ for the aggregate economy, as

plotted in Figure 9, this allows us to generate time series for these parameters for each sector. Figure

10a plots the distribution of implied growth (in percent terms) from 2004-2016 of η for each sector, and

Figure 10b plots the same for the implied growth of Ñ.

Figure 10: Implied Drivers of the Sector-Level Rise of Niche Consumption

(a): Sectoral Distribution of Growth in η
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(b): Sectoral Distribution of Growth in Ñ

0 20 40 60 80 100
-100

0

100

200

300

400

500

600

700

800

900

P
er

ce
nt

 G
ro

w
th

It turns out that our aggregate results represent well the sectoral results. Growth in Ñ is essential

for explaining the rise in niche consumption even at the sector level, while η typically has not changed.

Whereas η declined by 2 percent during 2004-2014 for the aggregate economy, the 25th to 75th per-

centile of sector-level growth in η over that period ranges from a decline of 7 percent to a rise of 2

percent. Our inferred aggregate Ñ grew by 70 percent, whereas the 25th to 75th percentiles for growth

in the sectoral values ranges from 35 percent to 138 percent.

Increases in Ñ can arise from increases in the importance of idiosyncratic taste shocks α or in

the number of available varieties N. Changes in α are straightforward to interpret, since α is simply

an exogenous parameter governing preference heterogeneity. Our empirical results, however, show

that the rise of niche consumption occurs pervasively across all of our narrowly-defined demographic

groups. The within-group trends are far more important than across-group trends in generating our

aggregate results. While this does not rule out increases in α as a driving force, it seems unlikely that

fundamental preferences within narrow groups have become dramatically more heterogeneous over a

twelve-year period. Based on this logic, we hold α fixed and interpret increases in Ñ as increases in N

in most of our model results.32

How do these implied growth rates for the number of available varieties in each sector compare to

32N impacts the extent of selection effects while α does not, so if one considers that growth in Ñ is driven in part by growth
in α, the welfare gains discussed in the next section will be proportionately smaller.
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estimates from the data? As we have emphasized, measuring the total number of varieties purchased

in the data can only be done with substantial noise (see Appendix A.3). However, Figure 11 plots

the growth in sectoral varieties with at least $100 in annual spending in the data against the model-

implied growth in varieties for each sector j∗, the values shown in Figure 10b. The values are broadly

consistent and clustered around the 45 degree line, which provides some direct confirmation of the

model’s inference.

Figure 11: Consumed Variety (j∗) Growth: Model vs. Data
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Finally, we note that while increases in N are necessary to fit the empirical patterns we emphasize,

they are not sufficient. The implied increase in N matches the divergence between Household and

Aggregate Herfindahls given the empirical decline in |Ω|, but as shown in equation (11), increases in

N on their own would counterfactually lead to increases in |Ω|. This means that additional forces are

required in order to fully fit the empirical trends.

Equation (11) shows that if N increases, declines in |Ω| must reflect declines in measured real

expenditures
(

E (1 + (1− σ) /θ)
1

1−σ b
)

, increases in effective costs per number of products consumed

(F or ε), or declines in an “effective curvature” of utility term
( 1

1−σ −
1
θ

)
. Expenditures, however,

increase in the data, and while changes in either σ or θ could change the curvature term, they would

have to change in a very particular way so as to match the decline in |Ω| without leading to changes

in η. We therefore find it most plausible that the decline in |Ω| reflected an increase in F or ε.33 The

exact change required to hit the data depends on the particular calibration, but as we show in the next

section, this increase in fixed costs has only a modest effect on our welfare conclusions. Rather, our

33While some technological advances such as the rise of the internet or better advertising technology might be expected to
lower variety costs, it is also likely that increases in the number of available varieties N make it more costly to sort through
and identify the particular products a household wants to purchase. An increase in F or ε can be interpreted as a simple
proxy for these latter forces when it is accompanied by the increase in N.
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quantitative results are largely driven by the change in N.

4.8 Implications of Rising Niche Consumption

What are the implications of the rise in niche consumption for welfare and market power? In order

to assess this, we set all parameter values of the model to match key empirical moments in 2004, and

then look at combinations of changes in N, σ, θ, and the fixed costs of variety that fit the rise in niche

consumption. One difficulty is that while we can identify η = 1− 2(σ − 1)/θ, we cannot separately

identify σ and θ and, as shown above, our model implies we cannot simply use existing estimates

of the elasticity of demand as a proxy for σ. To get around this problem, we assume the aggregate

markup equals 1.15 in 2004, or µAgg. We then use equation (34), together with our implied value for

η, to calculate the implied values σ = 4.7 and θ = 7.9.34 Below, we consider robustness to this chosen

target for µAgg.

Having calibrated the key parameter values, we use the model to explore the welfare implications

of several different counterfactuals. We begin by evaluating the implications of an increase in N

equal to what we plotted in Figure 9, holding all other parameters fixed at their initial 2004 values.

We then calculate the resulting change in household welfare, expressed as the percentage change in

expenditures on the initial set of goods that would bring the same change in household utility as that

delivered by the increase in N. Row (i) of Table 1 shows the resulting change in welfare, expressed as

an annual growth rate. We find that a 70 percent increase from N2004 to N2016 generates total welfare

gains of approximately 7.0 percent, or 0.56 percent per year. That is:

U2016 =
E

PN2016

− F× (|ΩN2016 |)
ε = 1.070× E

PN2004

− F× (|ΩN2004 |)
ε , (37)

where we change N and calculate the endogenous change in P and |Ω|, but hold fixed all other

parameters. Next, we perform similar counterfactuals but include changes in ε or F to also match

the change in |Ω|. As shown in rows (ii) and (iii) of Table 1, implied welfare growth remains large

at 0.46-0.47 percent, so that the effect of increasing fixed costs is quantitatively small relative to the

increase in N. Finally, we add changes in either σ or in θ to match the small implied decline in η,

plotted in Figure 9. As shown in rows (iv) and (v), these additional changes have almost no effect on

the results.

Table 1 also decomposes the welfare gains into four sources (that needn’t sum exactly due to

non-linearities). First, there are “Gains from Selection”, which come from the third term in the ideal

price index in equation (10) and emerge when |Ω|/N decreases, implying that households consume

products better suited to their particular tastes. These gains are the most important quantitatively. For

34This value for the aggregate markup is the preferred value in Edmond et al. (2018) and is close to other papers that employ
a variety of methodologies. Other parameters are not important for our quantitative conclusions, but we set α = 0.36, ε = 2,
E = 35, b = 1, and F = 0.055. E is set to match average household category expenditures. Given b and ε, we choose F to
match |Ω|.
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example, in row (i), 0.52 of the 0.56 percent total annual welfare gains come from the “Gains from

Selection” term. Second, changes in |Ω| show up as standard love-of-variety effects on welfare, even if

selection effects |Ω|/N are held constant. Whether these “Gains from Variety” are positive, as in row

(i) which does not match the observed decline in the number of varieties consumed by each household

|Ω|, or negative, as in the others which do match this decline in |Ω|, gains or losses from variety

are much smaller in magnitude than those from selection. Third, there are relatively minor welfare

implications of changes in fixed costs brought about by changes in |Ω|, F, or ε. Finally, in specifications

where we change σ or θ, there is a trivially small impact from changes in the “Average Price”, which

captures the changing price of purchasing a bundle of all available varieties. Overall, the conclusions

from Table 1 are simple: the rise of niche consumption is associated with substantial welfare gains,

and these arise almost entirely from greater selection as N increases.

If data were available at the household level to calculate a spending-weighted variety correction as

in Feenstra (1994), one could properly recover welfare growth, as we show in Appendix Section B.1.8.

However, the data necessary to confidently construct such measures at the individual household-level

is seldom available. For instance, variety churn for the typical household in our data is incredibly

large and variable and so such an exercise would produce a huge range of potential conclusions. Our

approach instead is to use a model that points us to easily observable and relatively stable values from

the data and specifies how to combine those values to assess changes in welfare. The approach has the

additional merit of decomposing welfare gains into the terms emphasized in Table 1 and allowing us

to run counterfactuals.

If, instead, one simply viewed our data through the lens of a representative household model with

CES preferences, one could calculate a variety correction on aggregate spending following Feenstra

(1994). But, as is shown in Appendix Section B.1.8, the calculated welfare gains in this case would not

coincide with the true household welfare gains. The Feenstra correction is derived in the context of

a CES framework. Our model assumes that households individually have CES preferences, but the

heterogeneity across households means that the aggregate economy in our model does not admit a

representative household representation with CES preferences.

Heterogeneity in product consumption across households is crucial for capturing the divergent

concentration trends in our data. Representative agent models abstract from this heterogeneity, and

our results show that this can potentially lead to misleading conclusions about the welfare effects

arising from changes in the number of products households consume.

The welfare effects of increased product selection do depend importantly on θ, which as noted

above, we pin down by targeting an aggregate markup of 1.15 together with the initial η value in

Figure 9. Figure 12 shows how implied welfare growth changes under alternative calibrations for the

initial aggregate markup. The vertical dashed red line corresponds to our baseline calibration and the

“Total” numbers in the first column of Table 1. For example, the yellow line intersects the red dashed
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Table 1: Annualized Welfare Growth (Compensating Expenditures)

Total Average Price
Gains from Gains from

Fixed Costs
Variety Selection

d ln E
( 1+θ−σ

θ

) 1
σ−1 (|Ω|)

1
1−σ (|Ω|/N)

1
θ −F× (|Ω|)ε

(i) ↑ N 0.56% 0% 0.08% 0.52% -0.05%

(ii) ↑ N, ↑ ε 0.47% 0% -0.13% 0.62% -0.02%

(iii) ↑ N, ↑ F 0.46% 0% -0.13% 0.62% -0.04%

(iv) ↑ N, ↑ F, ↑ σ 0.45% -0.001% -0.14% 0.62% -0.03%

(v) ↑ N, ↑ F, ↓ θ 0.47% -0.003% -0.13% 0.63% -0.04%

line at 0.45 and corresponds to the counterfactual in row (iv) which fits the data by changing N, F, and

σ. The purple line intersects at 0.56 and corresponds to the experiment where we only increase N, as

in row (1) of the table. Figure 12 shows that welfare effects remain large for a wide range of markup

calibration choices.

Figure 12: Robustness of Welfare Calculations to Calibration of θ and σ
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What are the sectoral implications of the rise in niche consumption? As above, we do this identical

calibration and counterfactual exercise at the sector level and report these results in Table 2.35 Cate-

35We maintain E = 35 in all categories but this is a normalization without loss of generality since we recalibrate F for each
category to target that category’s |Ω|. More substantively, we assume each sector’s aggregate markup also equals 1.15. If
we instead impose a common σ and only use heterogeneity in θc to match sectoral variation in ηc, we find similar welfare
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gories such as coffee, snacks, and soup all rank in the top 10 for welfare gains from the increase in the

number of products. Not all sectors exhibit such gains, though. For example, the number of imputed

product varieties declines, and leads to welfare losses, in eggs, cottage cheese, and frozen vegetables.

Table 2: Sectoral Welfare Growth Associated with Rise in Niche Consumption, 2004-2016

Annual %∆U with: Annual %∆U with:
∆N ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F ∆N ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F

(1) Coffee 2.37 3.31 2.65 (33) Frozen Meats and Seafood 0.62 0.56 0.56
(2) Disposable Diapers 1.66 1.13 1.28 (34) Tea 0.61 1.11 0.76
(3) Snacks 1.40 1.47 1.37 (35) Canned Vegetables 0.59 0.44 0.34
(4) Prepared Deli Foods 1.39 1.44 1.33 (36) Vitamins 0.58 0.68 0.59
(5) Pet Food 1.37 0.99 1.02 (37) Beer 0.57 0.97 0.72
(6) Skin Care Preparations 1.36 1.26 1.21 (38) Pet Care 0.52 0.68 0.55
(7) Soup 1.33 1.07 1.04 (39) Hair Care 0.51 0.32 0.32
(8) Detergents 1.30 0.89 1.09 (40) Nuts 0.49 0.42 0.36
(9) Breakfast Food 1.21 0.96 1.01 (41) Crackers 0.42 0.42 0.30
(10) Pizza 1.15 0.78 0.94 (42) Cosmetics 0.41 0.92 0.50
(11) Carbonated Beverages 1.08 0.9 0.88 (43) Ice Cream 0.38 0.25 0.18
(12) Oral Hygiene 1.03 1.01 0.80 (44) Ready-to-Serve Foods 0.38 0.07 0.12
(13) Canned and Bottled Juice Drinks 1.01 0.71 0.74 (45) Household Cleaners 0.35 0.37 0.08
(14) Light Bulbs and Electric Goods 1.00 -0.62 0.50 (46) Wine 0.35 0.43 0.35
(15) Household Supplies 0.94 0.39 0.56 (47) Packaged Deli Meats 0.33 0.21 0.22
(16) Housewares and Appliances 0.94 0.01 0.57 (48) Desserts, Gelatins, and Syrup 0.32 0.15 0.09
(17) Personal Soap And Bath Additives 0.88 1.40 0.86 (49) Prepared Foods (dry mixes) 0.31 0.25 0.15
(18) Cookies 0.85 0.82 0.73 (50) Baking Supplies 0.31 0.31 0.15
(19) Condiments and Gravies 0.84 0.84 0.74 (51) Stationary and School Supplies 0.29 -0.32 -0.19
(20) Butter and Margarine 0.82 0.35 0.60 (52) Cough and Cold Remedies 0.14 0.21 0.11
(21) Cereal 0.81 0.54 0.57 (53) Spices, Seasonings, and Extracts 0.09 0.35 0.16
(22) Liquor 0.81 0.73 0.75 (54) Tobacco 0.01 -0.17 -0.11
(23) Jams and Jellies 0.78 0.82 0.65 (55) Packaged Milk -0.01 0.27 0.08
(24) Medications 0.77 0.85 0.64 (56) Records and Tapes -0.03 -1.43 -0.49
(25) Yogurt 0.76 0.97 0.72 (57) Salad Dressings and Mayonnaise -0.09 -0.22 -0.30
(26) Laundry Supplies 0.74 0.58 0.42 (58) Frozen Vegetables -0.14 -0.02 -0.19
(27) Cheese 0.74 0.95 0.82 (59) Non-Carbonated Soft Drinks -0.17 -0.05 -0.15
(28) Batteries and Flashlights 0.71 0.08 0.22 (60) Paper Products -0.68 -0.82 -0.71
(29) Candy 0.66 0.63 0.44 (61) Bread and Baked Goods -0.75 -0.83 -0.79
(30) Prepared Frozen Foods 0.63 0.44 0.46 (62) Eggs -0.91 -0.73 -0.79
(31) Milk (non-packaged) 0.63 0.69 0.59 (63) Cottage Cheese and Sour Cream -1.22 -1.23 -1.14
(32) Wrapping Materials And Bags 0.62 0.30 0.29 (64) Photographic Supplies -1.83 -6.48 -3.07

4.9 Implications for Markups and Aggregate Profits

How large are changes in aggregate market power arising from the rise of niche consumption? It turns

out they are very small. Aggregate market power does not vary at all with changes in N, F, or ε.

These parameters have implications for the distribution of markups across products in the economy,

since they impact j∗ in equation (33), but changing them leaves the aggregate markup exactly constant,

since j∗ drops out of equation (34). More intuitively, this result arises from two opposing forces which

exactly cancel when j∗ changes. On the one hand, the jth good in an economy with a low j∗ is closer

to being the marginal consumed good and will therefore have a lower markup then the jth good in an

economy with a high j∗. This can be seen in equation (32), which shows that the elasticity of demand

is strictly increasing in the ratio of j to j∗. All else equal, this selection force raises aggregate markups.

conclusions. To save space, and to minimize the influence of measurement error, we exclude small categories which account
for less than 0.5 percent of all spending.
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On the other hand, in an economy with greater product choice, the high-markup products account for

a smaller share of aggregate spending. This competitive force from increasing N reduces aggregate

markups. Equation (34) shows that in the aggregate, these opposing forces exactly cancel and the ratio

of total revenues to total costs, or the aggregate markup, remains unchanged. In specifications where

we also change σ or θ, aggregate markups are no longer exactly fixed but resulting changes are tiny,

rising by 0.02 percentage points if we vary θ to hit the change in η and falling by 0.003 percentage

points if we instead vary σ to hit the change in η.

Thus, even though markups are endogenous in our model and there are large diverging concen-

tration trends, the rise of niche consumption in our model is associated with essentially no change in

aggregate market power. Our model therefore shows how the economy can exhibit large changes in ag-

gregate and household concentration without any change in aggregate market power. More generally,

echoing the arguments in Syverson (2018) and Berry et al. (2019), our environment demonstrates that

depending on what forces drive changes in concentration, it is possible for aggregate market power to

concurrently increase or to decrease.

Finally, Table 3 shows the corresponding changes in market power at the individual sector level

when we again re-estimate our model sector by sector. We compute this by assuming that sector level

changes in η are driven either entirely by changes in θ (Column 1) or by changes in σ (Column 2).

Overall, the conclusions mirror that from the aggregate analysis. The typical sector has essentially no

change in aggregate markups, however there are a few sectors with non-trivial changes. Concentrating

on the larger changes induced by θ variation in Column 1, there are modest declines in markups in

photographic supplies, records and tapes, and lightbulbs. There are small increases in markups for

coffee, soaps, tea, and cosmetics.

5 Conclusions

This paper empirically documents a rise in what we call "niche" consumption. Households are in-

creasingly concentrating their spending. This pattern, however, does not appear to be driven by the

emergence of superstar products. Rather, households are increasingly buying different goods from one

another. The increase in segmentation seen in many other walks of modern life also applies to con-

sumption: our grocery baskets look less and less similar. As a result, aggregate spending has become

less concentrated.

We develop a new model of product demand in order to explore the drivers and implications of the

rise in niche consumption. In our model, households choose how many products to consume, spend

different amounts on each good, and differ from other households in their choice of which products

to buy. The model delivers simple analytical expressions for household and aggregate concentration

indices, and these closed form solutions allow us to match the model to data and infer the drivers of our

empirical findings. Increases in product availability played a critical role in the divergent concentration
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Table 3: Markup Changes Associated with Rise in Niche Consumption, 2004-2016

Percentage Point ∆µAgg with: Percentage Point ∆µAgg with:
∆N, ∆θ, ∆F ∆N, ∆σ, ∆F ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F

(1) Photographic Supplies -4.68 0.47 (33) Eggs 0.05 -0.01
(2) Records and Tapes -0.89 0.09 (34) Wine 0.05 -0.01
(3) Light Bulbs and Electric Goods -0.79 0.10 (35) Vitamins 0.06 -0.01
(4) Housewares and Appliances -0.38 0.05 (36) Snacks 0.06 -0.01
(5) Butter and Margarine -0.22 0.03 (37) Milk (non-packaged) 0.06 -0.01
(6) Detergents -0.14 0.02 (38) Cookies 0.06 -0.01
(7) Household Supplies -0.13 0.02 (39) Canned Vegetables 0.07 -0.01
(8) Batteries and Flashlights -0.12 0.01 (40) Condiments and Gravies 0.07 -0.01
(9) Pizza -0.12 0.01 (41) Cough and Cold Remedies 0.07 -0.01
(10) Disposable Diapers -0.11 0.01 (42) Prepared Deli Foods 0.07 -0.01
(11) Paper Products -0.09 0.01 (43) Salad Dressings and Mayonnaise 0.07 -0.01
(12) Stationary and School Supplies -0.08 0.01 (44) Prepared Foods (dry mixes) 0.08 -0.01
(13) Cottage Cheese and Sour Cream -0.08 0.01 (45) Non-Carbonated Soft Drinks 0.08 -0.01
(14) Tobacco -0.05 0.01 (46) Cheese 0.09 -0.01
(15) Ready-to-Serve Foods -0.03 0.00 (47) Pet Care 0.09 -0.01
(16) Breakfast Food -0.03 0.00 (48) Crackers 0.10 -0.01
(17) Pet Food -0.03 0.00 (49) Candy 0.12 -0.02
(18) Bread and Baked Goods -0.03 0.00 (50) Laundry Supplies 0.12 -0.01
(19) Canned and Bottled Juice Drinks -0.02 0.00 (51) Frozen Vegetables 0.12 -0.02
(20) Cereal -0.02 0.00 (52) Baking Supplies 0.12 -0.02
(21) Liquor -0.02 0.00 (53) Spices, Seasonings, and Extracts 0.13 -0.02
(22) Prepared Frozen Foods -0.01 0.00 (54) Jams and Jellies 0.13 -0.02
(23) Packaged Deli Meats -0.01 0.00 (55) Medications 0.14 -0.02
(24) Hair Care 0.00 0.00 (56) Oral Hygiene 0.15 -0.02
(25) Frozen Meats and Seafood 0.00 0.00 (57) Packaged Milk 0.16 -0.02
(26) Wrapping Materials And Bags 0.01 0.00 (58) Yogurt 0.18 -0.02
(27) Carbonated Beverages 0.02 0.00 (59) Beer 0.20 -0.03
(28) Soup 0.02 0.00 (60) Household Cleaners 0.22 -0.03
(29) Skin Care Preparations 0.03 0.00 (61) Cosmetics 0.25 -0.03
(30) Desserts, Gelatins, and Syrup 0.05 -0.01 (62) Tea 0.25 -0.03
(31) Ice Cream 0.05 -0.01 (63) Personal Soap And Bath Additives 0.37 -0.05
(32) Nuts 0.05 -0.01 (64) Coffee 0.46 -0.06

trends, and led to welfare gains from households being able to consume a subset of products that better

satisfied their tastes. This welfare effect is not found in standard statistics such as the price indices

produced by national statistical agencies. Finally, our model delivers endogenous and heterogeneous

markups. Matching the trends in household and aggregate concentration carries implications for the

distribution of markups, but does not imply changes in aggregate market power.

Our model highlights the importance of greater product choice but treats the set of available prod-

ucts as an exogenous parameter. We suspect the nature of product introduction and development,

however, reflects recent progress in supply chain integration, big-data marketing research, targeted

advertising, and the growing importance of online sales. Unpacking the product innovation process

and relating it to these important trends is a fruitful avenue for future research on consumption be-

havior and the measurement of consumer welfare.

35



References

Aguado, J. M., Feijoo, C. and Martinez, I. (2015). Emerging Perspectives on the Mobile Content Evolution.
IGI Global.

Alwin, D. and Tufis, P. (2015). The changing dynamics of class and culture in american politics: a test
of the polarization hypothesis. The Annals of the American Academy of Political and Social Science, 663.

Anderson, E., Rebelo, S. and Wong, A. (2018). Markups Across Space and Time. Working Paper 24434,
National Bureau of Economic Research.

Anderson, S., de Palma, A. and Thisse, J. (1987). The ces is a discrete choice model? Economics Letters,
24 (2), 139–140.

Argente, D., Lee, M. and Moreira, S. (2018a). How do firms grow? the life cycle of products matters.

—, — and — (2018b). Innovation and product reallocation in the great recession. Journal of Monetary
Economics, 93, 1–20.

Arkolakis, C., Demidova, S., Klenow, P. J. and Rodriguez-Clare, A. (2008). Endogenous variety and
the gains from trade. American Economic Review, 98 (2), 444–50.

Atkeson, A. and Burstein, A. (2008). Pricing-to-market, trade costs, and international relative prices.
American Economic Review, 98 (5), 1998–2031.

Atkin, D., Faber, B. and Gonzalez-Navarro, M. (2018). Retail globalization and household welfare:
Evidence from mexico. Journal of Political Economy, 126 (1), 1–73.

Autor, D., Dorn, D., Katz, L. F., Patterson, C. and Reenen, J. V. (2017). The Fall of the Labor Share and
the rise of Superstar Firms. Working Paper 23396, National Bureau of Economic Research.

Autor, D. H., Katz, L. F. and Kearney, M. S. (2006). The polarization of the u.s. labor market. The
American Economic Review, 96 (2).

Berger, D. and Vavra, J. (2015). Consumption dynamics during recessions. Econometrica, 83 (1).

— and — (2019). Shocks vs. responsiveness: What drives time-varying dispersion? Journal of Political
Economy.

Berry, S. T., Gaynor, M. and Morton, F. S. (2019). Do Increasing Markups Matter? Lessons from Empirical
Industrial Organization. Working Paper 26007, National Bureau of Economic Research.

Bertrand, M. and Kamenica, E. (2018). Coming apart? Lives of the Rich and the Poor Over Time. Tech.
rep.

Broda, C. and Weinstein, D. W. (2004). Variety growth and world welfare. American Economic Review,
94 (2), 139–144.

Brynjolfsson, E., Hu, Y. and Smith, M. D. (2003). Consumer surplus in the digital economy: Es-
timating the value of increased product variety at online booksellers. Management Science, 49 (11),
1580–1596.

Burstein, A., Grassi, B., Carvalho, V. et al. (2019). Bottom-up markup fluctuations. In 2019 Meeting
Papers, 505, Society for Economic Dynamics.

Chaney, T. (2008). Distorted gravity: the intensive and extensive margins of international trade. Amer-
ican Economic Review, 98 (4), 1707–21.

36



Davis, D. R., Dingel, J. I., Monras, J. and Morales, E. (2017). How segregated is urban consumption?

De Loecker, J. and Eeckhout, J. (2017). The Rise of Market Power and the Macroeconomic Implications.
Working Paper 23687, National Bureau of Economic Research.

Dube, J.-P., Hitsch, G. and Rossi, P. (2018). Income and wealth effects on private-label demand: Evi-
dence from the great recession. Marketing Science.

Edmond, C., Midrigan, V. and Xu, D. Y. (2018). How costly are markups? Tech. rep., National Bureau of
Economic Research.

Feenstra, R. C. (1994). New product varieties and the measurement of international prices. The Amer-
ican Economic Review, pp. 157–177.

— and Weinstein, D. E. (2017). Globalization, markups, and us welfare. Journal of Political Economy,
125 (4), 1040–1074.

Furman, J. and Orszag, P. (2015). A firm-level perspective on the role of rents in the rise in inequality.
Presentation at “A Just Society” Centennial Event in Honor of Joseph Stiglitz Columbia University, 16.

Gentzkow, M., Shapiro, J. M. and Taddy, M. (2017). Measuring Polarization in High-Dimensional Data:
Method and Application to Congressional Speech. Working Paper 22423, National Bureau of Economic
Research.

Gopinath, G. and Itskhoki, O. (2010). Frequency of price adjustment and pass-through. The Quarterly
Journal of Economics, 125 (2), 675–727.

Handbury, J. and Weinstein, D. E. (2014). Goods prices and availability in cities. The Review of Economic
Studies, 82 (1), 258–296.

Hausman, J. A. (1996). Valuation of New Goods under Perfect and Imperfect Competition, University of
Chicago Press, pp. 207–248.

Hottman, C. J., Redding, S. J. and Weinstein, D. E. (2016). Quantifying the sources of firm hetero-
geneity. The Quarterly Journal of Economics, 131 (3), 1291–1364.

Jaravel, X. (2019). The unequal gains from product innovations: Evidence from the us retail sector.
Quarterly Journal of Economics, 134 (2).

Kimball, M. S. (1995). The quantitative analytics of the basic neomonetarist model. Journal of Money,
Credit and Banking, 27 (4), 1241–1277.

Levin, A. and Yun, T. (2008). Reconsidering the microeconomic foundations of price-setting behavior.
Unpublished Manuscript, Board of Governors of the Federal Re serve System.

Li, N. (2019). An engel curve for variety. Review of Economics and Statistics, pp. 1–45.

Melitz, M. J. and Ottaviano, G. I. (2008). Market size, trade, and productivity. The review of economic
studies, 75 (1), 295–316.

Michelacci, C., Paciello, L. and Pozzi, A. (2019). The extensive margin of aggregate consumption
demand. Mimeo.

Neiman, B. and Vavra, J. (2018). The rise of household spending concentration. Mimeo.

Petrin, A. (2002). Quantifying the benefits of new products: The case of the minivan. Journal of political
Economy, 110 (4), 705–729.

37



Pew Research Center (2014). Political Polarization in the American Public. Tech. rep.

Piketty, T., Saez, E. and Zucman, G. (2016). Distributional National Accounts: Methods and Estimates for
the United States. Working Paper 22945, National Bureau of Economic Research.

Quan, T. W. and Williams, K. R. (2018). Product variety, across-market demand heterogeneity, and
the value of online retail. The RAND Journal of Economics, 49 (4), 877–913.

Redding, S. J. and Weinstein, D. E. (2016). Measuring aggregate price indexes with demand shocks: Theory
and evidence for CES Preferences. Tech. rep., National Bureau of Economic Research.

Rossi-Hansberg, E., Sarte, P.-D. and Trachter, N. (2018). Diverging trends in national and local concen-
tration. Tech. rep., National Bureau of Economic Research.

Stroebel, J. and Vavra, J. (2019). House prices, local demand and retail prices. Journal of Political
Economy, 127 (3).

Syverson, C. (2018). Remarks at ‘changing market structure and implications for monetary policy’.
Remarks, 2018 Jackson Hole Symposium.

38


