
NBER WORKING PAPER SERIES

THE RISE OF NICHE CONSUMPTION

Brent Neiman
Joseph S. Vavra

Working Paper 26134
http://www.nber.org/papers/w26134

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2019, Revised December 2019

We thank David Argente, Anhua Chen, Levi Crews, and Agustin Gutierrez for providing 
exceptional research assistance, and we thank our discussants Jorge Miranda-Pinto and Mingzhi 
Xu. We also thank Rodrigo Adao, Jonathan Dingel, J.P. Dubé, Austan Goolsbee, Pete Klenow, 
Thomas Mertens, Esteban Rossi-Hansberg, and Tom Wollmann for helpful comments and 
suggestions. Our analyses are calculated or derived based in part on data from The Nielsen 
Company (US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts 
Center for Marketing Data Center at The University of Chicago Booth School of Business. The 
conclusions drawn from these Nielsen data are those of the researchers and do not reflect the 
views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in analyzing 
and preparing the results reported herein. This paper supplants a previous draft circulated as “The 
Rise of Household Spending Concentration.” The views expressed herein are those of the authors 
and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by Brent Neiman and Joseph S. Vavra. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



The Rise of Niche Consumption 
Brent Neiman and Joseph S. Vavra 
NBER Working Paper No. 26134 
August 2019, Revised December 2019
JEL No. D12,D4,E21,E31

ABSTRACT

Over the last 15 years, the typical household has increasingly concentrated its spending on a few 
preferred products. However, this is not driven by “superstar” products capturing larger market 
shares. Instead, households increasingly purchase different products from each other. As a result, 
aggregate spending concentration has decreased. We develop a model of heterogeneous 
household demand and use it to conclude that increasing product variety drives these divergent 
trends. When more products are available, households select products better matched to their 
tastes. This delivers welfare gains from selection equal to about half a percent per year in the 
categories covered by our data. Our model features heterogeneous markups because producers of 
popular products care more about their existing customers while producers of less popular niche 
products care more about generating new customers. Surprisingly, our model matches the 
observed trends in household and aggregate concentration without any change in aggregate 
market power.

Brent Neiman
University of Chicago
Booth School of Business
5807 South Woodlawn Avenue
Chicago, IL 60637
and NBER
brent.neiman@chicagobooth.edu

Joseph S. Vavra
Booth School of Business
University of Chicago
5807 South Woodlawn Avenue
Chicago, IL 60637
and NBER
joseph.vavra@chicagobooth.edu



1 Introduction

We show that over the last 15 years, the typical household has dedicated an increasing share of its

expenditures to a few preferred products. At the same time, households are increasingly buying

different products from each other. Thus, aggregate spending concentration has declined even as

household spending concentration has risen. We develop a novel model of heterogeneous household

demand to interpret these new facts and explore their implications. In the model, as new products

are introduced, households can choose consumption bundles better suited to their particular tastes,

resulting in welfare gains from better selection. We fit our model to the data for more than one

hundred separate product categories and conclude that rapid growth in product availability has led to

sizeable welfare gains that cannot be identified with standard representative agent macro models.

We begin our analysis by using the Nielsen Homescan dataset that covers a large fraction of spend-

ing on groceries and other household nondurables to study the shopping behavior of thousands of

households from 2004-2016. We measure household-specific product spending shares within narrow

categories like “Coffee” and “Cosmetics” and demonstrate that these shares have steadily become

more concentrated over time. This fact on its own might point toward an increasing importance of

“superstar” products, but a similar analysis of aggregate spending paints a different picture. Pool-

ing households together, we see that total spending on these same products over the same period

has in fact become more evenly distributed. These diverging household and aggregate concentration

trends imply that even though each household increasingly focuses spending on its own preferred

products, households also increasingly differ in which products they consume. We refer to this greater

fragmentation of the product space as a rise in “niche” consumption.

The rise in niche consumption is robust to a variety of specification and measurement choices as

well as to the inclusion of a variety of controls for observables. Interestingly, the divergence between

household and aggregate concentration is not driven by a widening gap between rich and poor house-

holds, between consumers in one region and another, or by differences between households grouped

according to various other demographic characteristics. Rather, we find that household consumption

bundles are becoming more differentiated even when measured within cities, within store chains,

and within demographic groups defined by income, race, education, age, and household size. Niche

consumption also grows in almost all product categories.

What then drives these divergent trends, and should we care about them? Many standard models

cannot be used to answer these questions since they rule out the differential trends in household

and aggregate concentration by assumption. For instance, any representative household model will

exhibit identical household and aggregate concentration. Standard discrete choice models imply that

household spending within categories is completely concentrated on a single product.1 Instead, we

1Dynamic discrete choice models with temporal aggregation could likely also speak to our primary empirical facts,
which focus on annual household spending. However, even when looking at individual shopping trips made by one-
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build a model of consumers that have a love-of-variety and whose preference orderings for particular

products differ from each other.

Our model of an individual household follows Li (2018) and features constant elasticity of substi-

tution (CES) preferences, product-specific taste shocks, and a utility cost borne per variety consumed.

Under these assumptions, the household chooses to consume only a subset of the total available prod-

ucts. When tastes for products, adjusted for prices, are distributed Pareto, we obtain a closed-form

expression relating the Household Herfindahl index – the concentration measure we use in our empir-

ical analyses – to structural parameters of the model.

To move from an analysis of an individual household to an analysis of aggregate spending, we

introduce a continuum of households that are identical except for the ordering of their preferences

across products. We assume that all households have tastes that decline identically from their favorite

product to their second favorite, and so on, so all households have identical taste distributions. However,

the actual identities of these first- and second-favorite products differ from one household to the next.

We introduce a “rank” function, which maps each product to a relative position in each household’s

tastes. A household’s rank for a given product is a weighted average of that product’s aggregate

component, which is common across all households, and a random household-specific component.

If the aggregate component receives all the weight, the environment collapses to a representative

household economy with all households consuming the same products and with equal household and

aggregate spending concentration. Conversely, if the household-specific component receives all the

weight, there will be uniform aggregate spending across products and low aggregate concentration,

even if individual household spending is highly concentrated. We analyze an empirically-disciplined

intermediate case and obtain another closed-form expression relating the Aggregate Herfindahl to

structural parameters in the model.

Interestingly, we next show that in this intermediate case, different products in the economy face

different elasticities of demand even though household preferences are CES. This is because when a

product reduces its price, it expands sales to existing customers with a constant elasticity, but it also

attracts new customers who previously did not purchase the product at all. The relative strength of

these forces varies with products’ market shares, which generates variable elasticities of demand and

implied markups. Our model assumptions allow us to characterize analytically the distribution of

elasticities as well as the implied aggregate markup in the economy.

The closed-form analytical solutions for various aggregates that arise from our particular paramet-

ric assumptions in turn deliver precise conclusions about identification. This is important because

key structural parameters including the elasticity of substitution, the utility costs of variety, and the

shape of the taste distribution are all either unobserved or are challenging to estimate directly in the

data. Even the total number of available products, a key input into our model, cannot be confidently

person households, it is common for multiple products to be simultaneously purchased in a single category, as we shown in
Appendix A.3.
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counted in the Nielsen data. As we demonstrate in Appendix A.3, the level and trend growth in the

total number of products are highly sensitive to the choice to include or exclude products accounting

for tiny amounts of aggregate spending. Therefore, we use the model’s analytical expressions, together

with key moments from the data, to compute changes in the value of structural parameters and assess

the implications of these changes for welfare.

We find that even when we allow for simultaneous movements in all structural parameters, match-

ing the observed divergence between household and aggregate concentration can only be achieved

with sizable growth in the number of varieties, a rate of roughly 4.5 percent per year. This increase

in available varieties leads households to endogenously consume more products and enjoy welfare

“gains from variety”, as is standard in CES environments. In our model, an increase in the total num-

ber of varieties available also allows households to select a subset of products better matched to their

particular tastes and thus to enjoy what we call “gains from selection”.

The strength of these two effects depends on the elasticity of substitution and the shape parameter

governing the asymmetry of tastes, which can be identified given data on aggregate markups. For

plausible targets for the aggregate markup, we find that the increase in product availability necessary

to hit the divergence between household and aggregate concentration leads to large welfare gains,

which are mostly driven by the gains from selection. For example, if we hold all other parameters

fixed in our preferred calibration and introduce 4.5 percent annual growth in the number of available

products into our model, we calculate that consumption-equivalent welfare grows by 0.56 percent per

year for expenditures in the categories covered by our data, and that 93 percent of this growth comes

from gains from selection. Since these gains from selection need not be captured by typical matched-

model price indices used by national statistical agencies, our model reveals how expanding product

availability in an environment with heterogeneous tastes may generate significant unmeasured gains

in standards of living.

While an increase in variety availability is necessary to generate the divergence between household

and aggregate concentration, the model implies that this increase is not sufficient to match all the

empirical trends we document. In particular, an increase in variety availability, on its own, will actually

cause household concentration to fall mildly, even though aggregate concentration will fall by much

more. We therefore use the model to infer additional changes in the fixed cost per variety, the elasticity

of substitution, and the shape of the taste distribution to exactly match both the observed trends in

Household and Aggregate Herfindahls, as well as the relationship between the Household Herfindahl

and the number of varieties consumed by individual households.

We emphasize that, unlike the increase in the number of available varieties, changes in these other

structural parameters are not fully identified and various configurations are consistent with the data.2

2For example, the model makes clear that changes in the elasticity of substitution and in the shape parameter governing
the taste distribution cannot be separately identified using our data on spending. We focus, therefore, on scenarios where
only one of these two parameters changes.
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However, we consider various combinations of parameter changes in addition to the increase in avail-

able varieties necessary to exactly match empirical trends, and the model consistently delivers sub-

stantial unmeasured welfare gains that arise primarily from households choosing product bundles

that better suit their unique preferences. Thus, we conclude that while the increase in product avail-

ability on its own is not sufficient to fully fit the empirical trends, this increase drives almost all of the

welfare effects associated with these trends. The model thus implies a crucial role for product entry in

driving the rise of niche consumption, and we provide several additional pieces of empirical evidence

that support this relationship.3

This conclusion that there has been an important welfare relevant increase in product availability

arises from fitting trends to a notion of the “average category" in the data. However, we also apply

our model separately to each of the roughly 100 product groups in the data to infer category specific

changes in welfare and product availability. We find that the conclusions we arrive at from redoing

the analysis category-by-category are broadly similar to those reached when matching average trends.

However, there is some interesting heterogeneity across product groups, with the largest gains from

selection arising for coffee, disposable diapers, and snacks, and with losses for eggs, cottage cheese,

and photographic supplies. Nevertheless, our model implies that the large majority of sectors experi-

enced significant increases in product variety and resulting welfare gains from selection, while changes

in other structural parameters have more limited effects on welfare.

In the final part of the paper, we explore the implications of the rise of niche consumption for

aggregate market power. Concentration is often used as a proxy for market power, and as described

above, markups in our model are endogenous and vary across products so that market power has the

potential to move with concentration. So what then happens to aggregate market power in response

to the same inferred changes in structural parameters that drove the rise of niche consumption? Sur-

prisingly, not much. In particular, as we demonstrate analytically, increases in product availability

do not on their own change the aggregate markup because they have two offsetting effects arising

from competition and selection. New products constitute new competition for the incumbents, which

causes them to charge lower markups. However, since the new consumed products on average are

better tailored to the tastes of households that choose to consume them, they have higher markups

than the products they replace. In the aggregate, these two opposing forces exactly offset each other.

By contrast, changes in the elasticity of substitution and in the shape of the taste distribution have

the scope to affect aggregate market power, but the changes suggested by our model are not large

enough quantitatively to meaningfully alter the picture. Our model demonstrates that the significant

trends in household and aggregate product concentration need not indicate any changes in aggregate

market power.4 Even more broadly, our model demonstrates how any given trend in concentration can
3For example, restricting to a balanced panel of products substantially attenuates the rise of niche consumption. And

while we again emphasize that measuring variety availability in the data is at best challenging, we find that there is a strong
correlation at the category level between empirical measures of observed variety growth and that implied by the model.

4Similar conclusions also obtain when we compute aggregate market power trends separately for each of the product

4



be associated with an increase or a decrease in aggregate market power depending on the underlying

structural forces driving the trend.5

We proceed as follows. Section 2 discusses the related literature, Section 3 demonstrates the em-

pirical divergence between household and aggregate spending concentration, Section 4 develops a

theoretical heterogeneous household model to interpret this empirical evidence, and Section 5 con-

cludes.

2 Related Literature

Our work touches on and draws connections between a number of important themes in recent research.

Our model in which individual households have CES preferences, heterogeneous Pareto-distributed

tastes for different varieties and consume an endogenous subset of these varieties follows Li (2018)

and Arkolakis, Demidova, Klenow, and Rodriguez-Clare (2008). We extend this to an environment

with heterogeneity in which different households have heterogeneous but potentially correlated tastes

for different products. This allows us to speak to the increasing divergence between household and

aggregate concentration. Our basic approach follows in the tradition of the macro and trade literature

that uses a CES structure to study the implications of expanded product availability.6 Unlike most

of that tradition, however, the heterogeneous and asymmetric preferences in our model imply that

expanding the set of available products benefits consumers through a selection effect that is above-

and-beyond the standard love-of-variety gains in symmetric representative agent models like Feenstra

(1994) or Broda and Weinstein (2004, 2006).7

Our analysis also relates to a large literature in industrial organization (IO) quantifying the welfare

gains from new varieties.8 Within this literature, our result that information on the decomposition

of aggregate demand across households can help pin down gains from product availability has close

parallels with Quan and Williams (2018). The typical IO approach allows for substantial flexibility

in household demand but also typically requires rich data on product characteristics and is compu-

tationally intensive to estimate. Our approach requires household level spending data but requires

no information on product characteristics, and it delivers simple analytical solutions. This means that

unlike the typical IO approach, our methodology scales tractably, and we can apply it to a variety of

groups, although there are a few exceptions such as photographic supplies.
5Interestingly, this means our framework can accommodate comovement between concentration and aggregate markups

from changes in preferences alone, unlike a representative CES setup.
6For example, Handbury and Weinstein (2014) emphasize the need to account for differences in variety availability when

comparing the price level across U.S. cities. Redding and Weinstein (2016) demonstrate how welfare measures can be biased
if they do not account for heterogeneity in consumer tastes across products. Atkin, Faber, and Gonzalez-Navarro (2018) use
similar scanner data on grocery purchases to calculate the welfare gains associated with entry of global retail chains into the
Mexican market.

7While representative agent CES models can be rationalized through an underlying discrete choice representation with
heterogeneity (Anderson, de Palma, and Thisse (1987)), this requires idiosyncratic tastes to be drawn from an i.i.d. Gumbell
distribution and aggregates to an environment with symmetry.

8See, for example, Hausman (1996), Petrin (2002), and Brynjolfsson, Hu, and Smith (2003).
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different sectors and markets. Of course, this tractability comes at the cost of additional parametric

structure. While our approach is more flexible than typical symmetric representative agent models

and is able to fit spending patterns for most sectors in the data, we view it as a complement rather

than a substitute to detailed IO studies of particular markets.

On the empirical side, a recent macro literature has explored the importance of product availability

and concentration trends for various empirical phenomenon. In concurrent work, Michelacci, Paciello,

and Pozzi (2019) document cyclical fluctuations in household variety adoption and model this phe-

nomenon using a discrete choice model. Their empirical focus is on higher frequency business cycle

effects, and their theoretical framework is very different from ours, but they reach similar conclusions

about the important role of product selection for welfare. Argente, Lee, and Moreira (2018a,b) show

that product introduction plays a key role in understanding patterns of firm growth. Jaravel (2019) ar-

gues that innovation and product entry plays an important role in inflation differences across groups.

Several important papers document changes in top sales shares and industrial structure, including

Autor, Dorn, Katz, Patterson, and Reenen (2017) and Furman and Orszag (2015). Our finding that

household and aggregate concentration trends move in opposite directions is reminiscent of Rossi-

Hansberg, Sarte, and Trachter (2018), who demonstrate that concentration trends also diverge when

comparing measures done at the zip-code and national levels.

Given heterogeneity across households, our structure generates heterogeneous markups because

some producers adjust sales by selling more to existing customers while others adjust by selling non-

zero amounts to more customers. To our knowledge, Levin and Yun (2008) is the only other paper

in the recent literature that emphasizes this mechanism, though it also relates to Hottman, Redding,

and Weinstein (2016), who emphasize heterogeneity in the degree to which price declines for one

product cannibalize sales for others in multiproduct firms. Our emphasis on differences across firms

in the importance of the intensive versus extensive margin contrasts with the more commonly used

frameworks for generating variable markups, such as the nested-CES setup in Atkeson and Burstein

(2008), linear demand in Melitz and Ottaviano (2008), translog preferences in Feenstra and Weinstein

(2017), and Kimball (1995) kinked-demand curves as incorporated in Gopinath and Itskhoki (2010).

Our framework delivers analytical expressions for the full distribution of markups, a topic of in-

creasing focus, such as in the work of De Loecker and Eeckhout (2017), Edmond, Midrigan, and Xu

(2018), Stroebel and Vavra (2019), Anderson, Rebelo, and Wong (2018), and Burstein, Grassi, Carvalho,

et al. (2019). We note, however, that our model can easily deliver large trends in aggregate and house-

hold concentration without requiring any change in aggregate market power. Our work is therefore

consistent with the skepticism expressed in Syverson (2018) and Berry, Gaynor, and Morton (2019) of

the simple linkage often made between concentration trends and market power.

Finally, although the underlying causes are potentially different, the rise in niche consumption

of retail goods parallels the increasing segmentation or polarization witnessed in culture and digital
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content (Aguado, Feijoo, and Martinez (2015); Alwin and Tufis (2015)), in political idiology (Pew

Research Center (2014); Gentzkow, Shapiro, and Taddy (2017)), in jobs and income (Autor, Katz, and

Kearney (2006); Piketty, Saez, and Zucman (2016)), and in the geography of where households consume

(Davis, Dingel, Monras, and Morales (2017)).9 Our findings indicate that, along with these other

manifestations of fragmentation in modern life, even our grocery purchases increasingly differ from

the national average.

3 Diverging Household and Aggregate Concentration

We start this section with a discussion of the aspects of the data that are particularly salient for our

analysis, relegating a more detailed description to Appendix A.1. We then present our key finding that

the concentration of household spending across products increased while, at the same time, aggregate

concentration among the same goods decreased. Finally, we provide evidence that these trends are

associated with product churning.

3.1 AC Nielsen Homescan Data

We use Homescan data from AC Nielsen to measure household-level shopping behavior.10 The data set

contains a weekly household-level panel for the period 2004-2016. The panel has large coverage, with

roughly 170,000 households in over 22,000 zip codes recording prices for almost 700 million unique

transactions covering a large fraction of non-service retail spending.

Products are allocated by Nielsen into three levels of category aggregation: roughly 1304 product

modules, 118 product groups, and 11 department codes. For example, "vegetables - peas - frozen"

are a typical product module within the "vegetables - frozen" product group within the "frozen foods"

department. Our baseline analysis focuses on annual spending by all households in the Nielsen sam-

ple and computes household spending shares across products within product groups, but all results

are qualitatively robust to instead calculating household product spending shares within the more

disaggregated product modules or within the more aggregated department codes. We focus on the

full sample of households for a number of reasons discussed in Appendix A.2, but this is relatively

conservative since the magnitudes of our trends increase when we restrict to a balanced panel of

households.11

9The fact that our results are not driven by a widening gap between the goods purchased by rich and poor households
or between consumers in one region and another is also consistent with the finding in Bertrand and Kamenica (2018) that
cultural distance between rich and poor has not grown over time.

10These data are available for academic research through a partnership with the Kilts Center at the University of Chicago,
Booth School of Business. See http://research.chicagobooth.edu/nielsen for more details on the data.

11All results weight each household using sampling weights provided by Nielsen, which are designed to make the Nielsen
panel demographically representative of the broader U.S. population. Appendix Figure A2 shows that aggregate spending
growth in our sample tracks government data on aggregate spending growth in comparable categories. In the appendix we
also discuss the relevance for our results of additional measurement-related issues, such as the (unimportant) role of online
shopping.
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In our baseline analysis, we define a product as a Universal Product Code (UPC). Appendix Figure

A8 demonstrates, however, that the key trends we identify are robust to instead defining a product

as a "brand". Nielsen assignes UPCs to brands, which are more aggregated than UPCs but are still

fairly disaggregated. "Pepsi", for example, is a brand and includes many different flavors and package

sizes of the Pepsi drinks. "Caffeine Free - Pepsi", however, is considered a distinct brand. The UPC

is our preferred notion of a product in part because UPCs are directly assigned by the manufacturer,

whereas the brand variable is constructed by Kilts/Nielsen in a way that involves judgment and may

differ across categories and over time. Further, although each generic has a unique UPC, all generics are

assigned the same brand in order to preserve the anonymity of the stores in the Nielsen sample. Sales

of generics are large and growing, so their inclusion, by construction, distorts concentration measures

that define products as brands.12 Finally, some of our analyses decompose expenditure changes into

price and quantity effects, which is straightforward for the case of UPCs but not for brands.

We restrict our analysis to the set of product modules in the data for all years during 2004-2016.

We exclude modules that enter or exit since this reflects changes in Nielsen’s measurement – not actual

household behavior – and could therefore lead to spurious changes in measured concentration. We

also exclude fresh produce and other items without barcodes (these are labeled as "magnet" items in

the data).

3.2 Household Spending Concentration

We begin our analysis by exploring how the concentration of household spending across products has

changed over time. For each household i, UPC j, and product group c we calculate total expenditure

Ei,j,c,t in year t and associated expenditure share:

si,j,c,t =

(
Ei,j,c,t

∑j Ei,j,c,t

)
. (1)

Our primary measure of household product concentration for a product category c at time t is the

Herfindahl and equals the sum of the square of these expenditure shares:13

HHH
i,c,t = ∑

j

(
si,c,j,t

)2 . (2)

12See, for example, Dube, Hitsch, and Rossi (2018). Our robustness checks using the brand definition of product exclude
generics. Results using UPCs also remain qualitatively robust if we exclude generics.

13All results in the paper hold for alternative concentration measures such as the share of spending accounted for by the
top 1 or the top 2 products. We use the Herfindahl as our primary concentration measure as it can be more easily interpreted
through the lens of the structural model described in Section 4.
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Next, we take the weighted average across households to generate the Household Herfindahl for

product category c:

HHH
c,t = ∑

i
sharei,c,tHHH

i,c,t , (3)

where we use weights capturing household i’s share of aggregate spending in category c:

sharei,c,t =
∑j
(
ωi,tEi,j,c,t

)
∑i ∑j

(
ωi,tEi,j,c,t

) , (4)

and where ωi,t is a household’s sampling weight provided to make the Nielsen sample representative

of aggregate consumption. Finally, we calculate the overall Household Herfindahl by averaging the

category-specific Household Herfindahl in equation (3) across all categories:

HHH
t = ∑

c
sharecHHH

c,t , (5)

where sharec is the average share of category c in total spending across our entire sample.

Unlike the weights used in equation (3), we use fixed category spending shares over time in equa-

tion (5) to focus on concentration changes occurring within categories, rather than those emerging

from shifts in spending across categories with different average levels of concentration. We do this

to better interact with recent interest in changing market power and technological disruption, typi-

cally perceived to be occurring within sectors. However, our results are robust to instead allowing

compositional shifts across categories to influence our concentration measures.

Figure 1a plots HHH
t and reveals a nearly monotonic increase in household concentration from

2004-2016. In Appendix A.3, we show that this increase in concentration is also associated with a

decline in the average number of products consumed per household within a product category. We

delay interpreting the quantitative magnitude of these changes until we develop our model in Section 4

but note now that fitting this series with a linear trend yields a precise and highly significant estimate.

3.3 Aggregate Spending Concentration

What underlies this increase in the concentration of household expenditures? One possible explanation

is that there has been an increase in the importance of "super-star products", along the lines of the rise

of "super-star firms" documented in Autor, Dorn, Katz, Patterson, and Reenen (2017). This explanation,

natural though it may be, finds no support in our data: we demonstrate in this subsection that at

the same time the typical household’s expenditures have grown more concentrated across products,

aggregate spending has in fact become more evenly distributed across these same products.

We sum spending on product j in category c across all households in our data and define the

9



Figure 1: Household Product Concentration
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aggregate market share of j in c as:

sj,c,t =
∑i
(
ωi,tEi,j,c,t

)
∑i ∑j

(
ωi,tEi,j,c,t

) , (6)

and the Aggregate Herfindahl in category c as:

HAgg
c,t = ∑

j

(
sj,c,t

)2 . (7)

Just as with the Household Herfindahl, we average these category Herfindahls using fixed category

expenditure weights over time to generate the Aggregate Herfindahl of overall spending:

HAgg
t = ∑

c
sharecHAgg

c,t . (8)

Figure 1b plots this Aggregate Herfindahl and shows that the trend in product spending at the ag-

gregate level is the reverse of what we see at the household level: aggregate spending concentration

is declining, not rising. How can it be that aggregate concentration is declining if households are

individually concentrating their spending on a smaller number of products? These divergent trends

imply that households are concentrating more and more spending on their top products over time,

but that these top products increasingly differ across households. We view these divergent trends and

resulting fragmentation of the product space as characterizing a rise in niche consumption.

The decline in aggregate concentration might, at first, seem at odds with the rise in sales con-

centration measured in Census data by papers including Autor, Dorn, Katz, Patterson, and Reenen

(2017). Our aggregate concentration measure, however, captures expenditures at the product level
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whereas Census-based estimates aggregate products up to the producer level.14 The resulting trends

may therefore differ significantly, particularly in the face of changes in the number of goods each

manufacturer produces.

In Appendix A.4, we first show that production concentration measures from the Census for the

relevant NAICS categories – “Food Manufacturing” (code 311) and “Beverage and Tobacco Product

Manufacturing” (312) – are in fact flat or declining during the years covered in our sample. Next,

we use a mapping of UPCs to manufacturers to generate a comparable producer-level concentration

measure based on the sales in our Nielsen data. We offer a number of important caveats, including

that the UPC-to-manufacturer mapping is highly imperfect for this purpose, but nonetheless find

similar trends in manufacturer concentration in Nielsen and Census data. We therefore conclude that

our results are broadly consistent with the Census-based literature. Whether producer or product

concentration is of greater interest depends, of course, on the question at hand. Our theory below

will treat each good as produced and marketed independently such that it maps most naturally to our

product-based concentration measure.

Finally, it is important to note that while the decline in the number of products consumed by the

typical household contributed to the rising Household Herfindahl measure, it is much more difficult to

measure the equivalent notion for the aggregate economy. As we show in Appendix A.3, the existence

of thousands of products with tiny amounts of overall sales and incomplete coverage of households

and stores in the data render a simple product count highly volatile, dependent on assumptions,

and sensitive to measurement error. In contrast, household and aggregate concentration as well as

household-level variety statistics are much less sensitive to this issue. We therefore treat the total

number of products available for purchase as unobservable, and in Section 4 we show that our model

can be used to infer product availability using these other more robust empirical statistics.

3.4 The Pervasive Rise of Niche Consumption

This rise in niche consumption – the increase in the Household Herfindahl and decrease in the Ag-

gregate Herfindahl – is highly robust to various measurement related choices. For example, Appendix

Figures A6-A12 show that these divergent concentration trends continue to hold if we exclude gener-

ics, compute concentration using more disaggregated categories (modules instead of groups), define

products as brands instead of UPCs, use time-varying category weights, use alternative concentration

measures instead of the Herfindahl, focus on a balanced panel of households over time, or condition

on household size.

Is the rise of niche consumption driven by shifts in the importance of different groups, such as old

and young or rich and poor? While there are differences in the level of concentration across different

14The categories within which we calculate concentration are also far less aggregated and cover a smaller set of economic
activity than what is done in most Census-based studies. Further, our data begin in 2002, far later than the 1970s or 1980s
start date commonly found in that literature.
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groups, the trends are primarily driven by within group variation.15 To show this, we re-calculate

annual Household and Aggregate Herfindahls using only expenditures by households with particular

demographic characteristics such as income bracket, race, education, and age. Figures 2a and 2b show

that rising household and declining aggregate concentration occurs within demographic groups. The

rising Household and falling Aggregate Herfindahls do not simply owe to changes in composition

across groups with different levels of concentration.

Figure 2: Trends within demographic group
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(b): Aggregate Concentration
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As a simple summary statistic for the prominence of niche consumption, we consider the ratio of

the Household Herfindahl to the Aggregate Herfindahl. A higher value for this “niche ratio” means

that household consumption is more segmented into different niches. Figure 3 shows that the rise of

niche consumption is pervasive across product categories, with three-quarters of product categories

exhibiting increases inHHH
c,t , 80 percent of product categories exhibiting decreases inHAgg

c,t , and growth

in the niche ratio in over 90 percent of the categories.16

In Appendix Figure A13, we also show that the rise of niche consumption is occurring in the vast

majority of locations, implying that shifts in the relative economic importance of cities and regions or

differences across regions are not behind our findings. The niche ratio is highest in cities like Chicago,

Washington DC, Tampa, Los Angeles, and Boston and lowest in Des Moines, Little Rock, Las Vegas,

and "West Texas", but it is increasing in most locations. Finally, Appendix Figure A14 shows that the

rise in niche consumption is found within roughly two-thirds of the individual retailers in our data,

15While we primarily emphasize trends, the level differences in household concentration are similar to those documented
in Hansen and Singh (2015). For example, older households, households with less members and poorer households have
more concentrated spending. See also Bornstein (2018) for an analysis of age-specific results.

16To improve visual exposition, Figures 3 and 4a drop 5 outlier categories whose variety counts more than double or
decrease by more than 50 percent from 2004-2016: "Frozen Juices", "Yeast", "Canning Supplies", "Greeting Cards" and "Pho-
tographic Supplies". This does not affect any conclusions.
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so the aggregate patterns we observe are not simply driven by shifts in where households shop.17

Figure 3: 2004-2016 Concentration Growth Within Category

(a): Household Concentration
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(b): Aggregate Concentration
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The level of the niche ratio is highest in “Cosmetics" and “Fragrances-Women" and is lowest for

“Charcoal" and “Dough Products". The rise in niche consumption is pervasive, but it is also clear

from Figure 3 that there is substantial heterogeneity across categories in the extent of its ascent. The

niche ratio has grown most rapidly for "Coffee", "Hardware, Tools", "Fresheners and Deodorizers", and

"Disposable Diapers". It has declined by most for "Cottage Cheese", "Eggs", "Milk", and "Bread and

Baked Goods".

3.5 The Role of Product Churn

Interestingly, there is a common observable linking together the categories with the most rapid in-

creases in niche ratios: they are also the categories that appear to have the fastest growth in the

number of available products. We emphasize this relationship as it will be central to the mechanism in

our model in Section 4 and its implications for welfare. As we noted above and elaborate in Appendix

A.3, inference about the growth of aggregate product varieties in these data are highly sensitive to

the treatment of products receiving trivial amounts of sales. In Figure 4a, however, we include prod-

ucts consumed by at least two households with total sales of at least $50 and plot the growth in each

product group’s niche ratio against the growth in that group’s number of varieties. Categories with 50

percentage points more growth in the total number of products sold had, on average, 40 percentage

points more growth in their niche ratios, with the relationship statistically significant at the 1 percent

level. Figure 4b shows that a similar relationship also holds when comparing across retailers: retailers

with 50 percentage points more growth in the number of products sold exhibited roughly 20 percent-

17We have also explored the importance of changes in the frequency of shopping and bulk purchasing emphasized in
Coibion, Gorodnichenko, and Koustas (2017) and found they were unimportant for these trends.
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age points more growth in their niche ratios, with the relationship again significant at the 1 percent

level.18 The relationship between variety growth and the niche ratio becomes even steeper if we weight

retailers by size.

Figure 4: Growth in Number of Products vs. Growth in Niche Ratio

(a): Product Groups
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We now provide additional evidence that product churn plays a key role in the rise of niche con-

sumption by comparing concentration trends measured only among “continuing" products that are

purchased by a household in two consecutive years with those measured using all spending by that

household. For each household i that is observed in both t and t + 1, we measure concentration of

“continuing products” by using only those that are purchased by that household in both t and t + 1.

These continuing products account for about 30 percent of transactions and 40 percent of spending.

We also calculate Herfindahls for those same households using all their spending. We form an index

by chaining together changes in these Herfindahls from t and t + 1 and pin down the level using the

values in the initial period. Figure 5a shows the upward trend in household concentration is much

stronger when using all UPCs than when restricting to continuing products, growing by 29 percent

compared to 5 percent. This implies a large role for product entry and exit in generating household

concentration increases. Figure 5b shows that when focusing only on continuing products, aggregate

concentration actually rises instead of declines.19

Together these results all imply that whatever forces are driving the rise in niche consumption,

they are pervasive across demographics, geographies, retail chains, and product categories.

18To reduce the influence of outliers, we exclude retailers with absolute log variety changes above 2, which drops 6 out
of 334 retailers. Results are similar for alternative thresholds. The panel of retailers is unbalanced, and growth rates for the
remaining 328 retailers are calculated from their first to their last observation in the sample. Results are very similar if we
instead calculate growth rates from 2004-2016 for the 179 retailers which are in the sample continuously.

19We can further decompose intensive margin concentration trends into price versus quantity effects. Appendix Figure
A15 shows that changes in quantity rather than price are more important.
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Figure 5: 2004-2016 Concentration growth for continuing vs. all products

(a): Household Herfindahl
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4 Modeling the Rise of Niche Consumption

In this section, we develop a model that is able to match the rise of niche consumption documented

in Section 3. We use the model to identify the key driving forces of this trend and to evaluate the

resulting implications for welfare and markups.

Following Li (2018), we assume that households must pay a fixed cost per consumed product,

which implies they only consume a subset of available products despite their CES preferences that

embed a love-of-variety. As in Arkolakis, Demidova, Klenow, and Rodriguez-Clare (2008), we assume

each household’s tastes for products, adjusted for price, are distributed Pareto, which allows us to write

the Household Herfindahl analytically. Further, we assume a particular function form for the rank

function that specifies how the preference ordering of products differs across households, which allows

us to write the Aggregate Herfindahl analytically. Using these analytical expressions, we confront

the model with empirical trends from 2004-2016 and demonstrate that an increase in the number of

available products is required to quantitatively match the rise of niche consumption. In the model,

this increase leads to significant welfare gains as it implies that consumers can choose a consumption

bundle better tailored to their tastes without raising their fixed cost expenditures.

Here, we offer simplified expressions for the key objects in the model. Interested readers can find

detailed derivations of all analytical results in Appendix B.1.

4.1 Household Problem

We assume that a continuum of households i ∈ [0, 1] spend E on a continuum of varieties k ∈ [0, N] to

maximize:

Ui =

(∫
k∈Ωi

(γi,kCi,k)
σ−1

σ dk
) σ

σ−1

− F× (|Ωi|)ε , (9)
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where Ωi is the set of products consumed by i (with |Ωi| ≤ N), γi,k is a household-specific taste

for product k, and the term multiplied by F captures a fixed cost that increases exponentially in the

measure of varieties consumed.20

We write the price of product k as pk, so γ̃i,k = γi,k/pk captures the price-adjusted taste of household

i for k. We assume price-adjusted tastes are distributed Pareto:

Pr (γ̃i,k < y) = G (y) = 1− (y/b)−θ ,

where y ≥ b > 0 and where we assume θ > 2 (σ− 1). Since larger θ means a flatter distribution of

tastes, the latter condition simply ensures that tastes are not “too concentrated” relative to σ and that

the model delivers a finite Household Herfindahl. We also assume ε > 1/(σ− 1)− 1/θ, which implies

that higher fixed costs F lead to less purchased products |Ω|. Household i will consume the set of

goods with γ̃i,k ∈ [γ̃∗, ∞) for some γ̃∗ ≥ b.

The ideal price index in this environment will be equal for all households and is defined as:

Pi = P =

(∫
k∈Ωi

(γ̃i,k)
σ−1 dk

) 1
1−σ

=

(
1 +

1− σ

θ

) 1
σ−1

b−1︸ ︷︷ ︸
Average Price

× (|Ωi|)
1

1−σ︸ ︷︷ ︸
Variety Effects

×
(
|Ωi|
N

) 1
θ

︸ ︷︷ ︸
Selection Effects

. (10)

The price index has three terms, each with an intuitive interpretation. We refer to the first term as the

average price since it summarizes the full distribution of price-adjusted tastes for available products,

as if there were a single purchase price for one unit of the full bundle. It varies with the shape θ and

scale b of the Pareto distribution as well as with the elasticity of substitution σ. The second term is the

standard love-of-variety term in CES models, which decreases with the measure of consumed products

and increases with the elasticity of substitution (given |Ωi| > 1). Finally, the third term represents a

selection effect from the fact that when households only consume a subset Ωi of the full measure N of

products, they choose the subset they like best. This term increases in the share of available products

that are consumed and decreases in the extent to which households prefer some products to others.

The price index (10) reduces to more standard expressions in special cases. For example, consider

θ → ∞, which implies that households value all products identically at b, i.e. γ̃i,k = b for all k. In such

a case, the expression reduces to b−1|Ωi|1/(1−σ), which is the standard price index for symmetric CES

preferences. Alternatively, imagine some products are preferred to others, θ < ∞, but all products are

nonetheless purchased, so Ωi = N. In this case, the last term reduces to 1 as there are no selection

20To ease notation, we do not include a household subscript i for each k, but importantly note that k is an arbitrary
household-specific index of products, and so the same k may represent a different actual product for each different house-
hold. This is unimportant for the analysis of individual households, but will be crucial when we move to the aggregate
analysis.
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effects and the average price term fully captures the impact of heterogeneity in the desirability of

products.

The properties of the CES price index imply we can re-write equation (9) as:

Ui =
E
P
− F× (|Ωi|)ε .

Consumers choose |Ωi| to maximize utility. The first order condition implies that the optimal number

of products is:

|Ωi| = |Ω| =

( 1
σ−1 −

1
θ

) (
1 + 1−σ

θ

) 1
1−σ N

1
θ

F̃ε

(ε− 1
1−σ+

1
θ )
−1

, (11)

where F̃ = F/(bE) is a parameter that shifts with spending, aggregate prices, and variety costs.21

Importantly, the optimal choice of varieties yields a “cutoff” taste γ̃∗ that satisfies:

G (γ̃∗) = 1− |Ω|
N

, (12)

and the share of household i′s expenditure on variety k is then given by:

si,k =

(Pγ̃i,k)
σ−1 , γ̃i,k > γ̃∗

0, γ̃i,k ≤ γ̃∗,
(13)

with
∫

si,kdk = 1.

4.2 Household Herfindahls

Given equation (13), it follows that the Household Herfindahl HHH will be equal for all i and can be

written as:

HHH = HHH
i =

∫
k∈Ωi

(si,k)
2 dk = N

∫ ∞

γ̃∗i

(Piγ̃i,k)
2(σ−1) dG (y) =

(η + 1)2

4η

1
|Ω| , (14)

where we introduce the variable η = 1− 2(σ− 1)/θ. The above parameter restrictions imply η ∈ (0, 1).

For fixed θ and σ, which implies fixed η, household concentration declines monotonically with the

number of consumed varieties. And for fixed |Ω|, concentration declines monotonically with η. All

else equal, flatter taste distributions (higher θ) or less substitutability across products in preferences

(lower σ) reduce Household Herfindahls.

How well does this model fit household spending data? Interpreting our model as applying to each

household’s spending decisions for a given product category c in a given year, we have the testable

prediction from equation (14) that HHH
i,c is proportional to 1/|Ωi,c|. Indeed, when we pool categories,

21When N = 1, this expression is the same as that in Li (2018) after substituting in his special case for b.
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Figure 6: Model Fit on Household-Category Data
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years, and households and regress ln |Ωi,c| on − lnHHH
i,c (with category-year fixed effects), we get a

coefficient of 0.89, which is close to the model-consistent value of 1, and a large R2 of 0.82. The upper

left panel of Figure 6 shows a binscatter (with category-year fixed effects) of the 54 million observations

underlying this regression to demonstrate that linearity with a coefficient of 1 is a close approximation

to the raw data.22 In the upper right panel, we estimate these regressions separately for each category

in 2016 and plot a histogram of the estimated slopes. The values are largely clustered around the

model-consistent value of 1.

Next, rather than estimating the slope, we constrain it to equal 1 and back out the ηc values implied

for each category. The model imposes the restriction that 0 < ηc < 1 and the bottom left panel of Figure

6 shows that this restriction is satisfied in every category. The values of ηc range from lows of 0.08

(Baby Food) and 0.10 (Carbonated Beverages) to highs of 0.69 (Greeting Cards) and 0.97 (Yeast).23

22This specification has large explanatory power even though it only allows η to vary across category-years and not across
households. With arbitrary heterogeneity in η across households within category-years, there would be as many parameters
as observations so it would be trivial to perfectly fit the data.

23The value of 0.08 for baby food implies that the typical household in this category has spending which is almost 4 times
more concentrated than if that household spent evenly on all the baby food products they consumed, while the value of 0.97
for yeast implies that household spending in that category is essentially evenly divided across products. With homogeneous
tastes across products (i.e. θ → ∞) – the setup in many standard models – we cannot capture this large extent of sectoral
heterogeneity in concentration.
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Finally the lower right panel shows that the R2’s from these restricted regressions are generally high.

Overall, we conclude that the empirical relationship between household-level concentration measures

and the number of consumed products is consistent with the relationships implied in our model.

4.3 Aggregation

In order to account for divergent trends in household and aggregate concentration measures, we must

specify how tastes for particular products differ across households. We index all products in the

economy by j ∈ [0, N], and assume each household i assigns each product j a “rank” ri,j, where lower

ranks indicate higher price-adjusted tastes.24 Households will consume all goods with ri,j ≤ |Ω|.
We introduce the following rank function for each household i:

ri,j = (1− α)j + αxi,j, (15)

where j identifies a common aggregate rank for a product, xi,j is an i.i.d. draw from the uniform

distribution with support [0, N] representing a household-specific taste component, and α ∈ (0, 1). If

α is close to zero, the model approximates a representative agent model where all households rank

products in the same order. If α approaches 1, tastes are purely idiosyncratic and resulting aggregate

spending will be evenly distributed over all consumed products even if individual household tastes

are very concentrated. Thus, even though all households have identical distributions of taste-adjusted

prices, this rank function allows for different households to have different ranks for the exact same

product j.

To compute the aggregate spending share on product j, we need to know the cumulative distribu-

tion function (CDF) of product ranks R(r), integrating over all households and products. Without loss

of generality, we assume α < 1/2 and write:25

R(r) =



1
2

( r
N

)2 1
α (1− α)

, 0 ≤ r < αN

r
N

1
1− α

− 1
2

α

1− α
, αN ≤ r < (1− α) N

−1
2

( r
N

)2 1
α (1− α)

+
r
N

1
α (1− α)

− 1
2

(
α

1− α
+

1− α

α

)
, (1− α) N ≤ r ≤ N.

(16)

Note that this CDF satisfies the properties that R(0) = 0, R(N) = 1, R(r) is continuous at r = αN and

r = (1− α) N, and R(r) is monotonically increasing. Household i will consume good j if and only if

R(ri,j) ≤ |Ω|/N.

24Note that in contrast to the arbitrary household-specific product index k above, the product index j is common to all
households.

25Replacing α with 1− α in all instances in equation (16) yields the corresponding R(r) for the alternative case of α > 1/2.
Furthermore, this leaves the rank function unchanged for the first of the three regions of R(r), which will be the focus of our
analysis.
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There are three distinct regions in R(r) with different functional forms. If households only consume

goods with ranks in the first region, this implies that there is no single product in the economy that

is purchased by all households. If households consume so many varieties that some have ranks in

the second region, this implies that at least one product is purchased by everyone. Finally, if even the

worst possible product in the economy is purchased by at least one household, then the ranks of some

consumed goods will fall into the third region.26 As long as 0 ≤ |Ω|
N < α

2(1−α)
< 1

2 , it can be shown that

all consumed products in the economy will have an r value confined to the first region of R(r). This

is the empirically relevant region of the parameter space, since the number of varieties purchased by

an individual household is orders of magnitude less than the aggregate number of varieties, and there

are no varieties in the data that are consumed by all households. To simplify the analytical expressions

that follow, we thus impose this parameter restriction for the remainder of the analysis.

Noting that γ̃i,j = G−1 (1− R
(
ri,j
))

, the spending share of household i that is dedicated to product

j can be written as a function of j’s rank:

si,j = Pσ−1γ̃σ−1
i,j = (Pb)σ−1 (R (ri,j

))− σ−1
θ =

η + 1
2

N
η−1

2 |Ω|−
η+1

2
(

R
(
ri,j
)) η−1

2 , (17)

if R
(
ri,j
)
≤ |Ω|/N, and zero otherwise. To determine the products for which the share si,j in equation

(17) jump from positive to zero, we solve for the rank of the marginal, or least-preferred, variety that

is consumed in positive quantities by household i. Note that this good’s identity will differ across

households, but its rank r∗ will be the same and satisfies R(r∗) = |Ω|/N. Substituting into equation

(16) under the assumption that 0 ≤ |Ω|
N < α

2(1−α)
, we get:

r∗ = (2α (1− α) |Ω|N)
1
2 . (18)

Under our parameter restrictions, individual households each consume only a fraction of the total

products available N, but the exact products consumed will differ across households. However, even

when aggregating across all households, there are some products which are not consumed by any

household. This means that for the economy as a whole, there is a difference between the measure

of available goods N and the measure of goods that are actually consumed, which we denote with

j∗. This marginal consumed good for the economy as a whole, j∗, is that j for which the best possible

idiosyncratic taste draw (a draw of xi,j = 0) yields rank r∗ for the household with that zero draw.

26More specifically, the product with the best aggregate taste shock is j = 0. The worst possible idiosyncratic rank for this
product occurs when xi,j = N, in which case r = αN, so if we are in the first region of the parameter space, even the best
product is not purchased by some households. Conversely, the product with the worst aggregate taste shock is j = N. The
best possible idiosyncratic rank for this product occurs when xi,j = 0, in which case r = (1− αN). This means that if we are
in the third region of the CDF, this worst product will still be consumed by some household.

20



Solving for this cutoff, j∗ = r∗/ (1− α), we get:

j∗ =
(

2α|Ω|N
1− α

) 1
2

. (19)

Importantly, since ri,j is strictly increasing in j, all goods with j ≤ j∗ will have positive aggregate

sales and all goods with j > j∗ will have zero aggregate sales. Finally, substituting in the definition of

the rank function from equation (15) into the expression (18), and using the definition of j∗ in equation

(19), we can write the highest value or cutoff random draw x∗j that yields positive consumption of j as:

x∗j =
1− α

α
(j∗ − j) . (20)

4.4 The Aggregate Herfindahl

We now use equations (17) and (20) to integrate spending shares across households i to get the aggre-

gate spending share on good j:

sj =
1∫

i Edi

∫
i
Esi,jdi =

η + 1
2

N
η−1

2 |Ω|−
η+1

2

∫ x∗j

0
(R ((1− α) j + αx))

η−1
2

dx
N

=
η + 1
η j∗

(
1−

(
j
j∗

)η)
. (21)

Using equations (19) and (21), we immediately obtain the Aggregate Herfindahl:

HAgg =
∫ j∗

j=0
s2

j dj =
(

η + 1
η j∗

)2 ∫ j∗

j=0

(
1−

(
j
j∗

)η)2

dj

=
2 (η + 1)

2η + 1

(
1

2Ñ|Ω|

) 1
2

, (22)

where we define Ñ = Nα/(1− α). Aggregate concentration declines monotonically with Ñ. For fixed

θ and σ, aggregate concentration declines monotonically with the number of consumed products. And

for fixed |Ω|, concentration declines monotonically with η. Importantly, changes in |Ω| and η move

the Household Herfindahl and Aggregate Herfindahl in the same direction. As we discuss in the next

subsection, this imposes strong restrictions on the set of possible forces which can explain the opposite

empirical trends for HHH and HAgg and implies an important role for increases in Ñ.

How well do these model-based relationships fit aggregate sales distributions in the data? To

assess this, we start by measuring |Ωc| in the data as the average number of products consumed per

household within a category using the same weights as were used in equations (3)-(5). We then solve

for the two remaining free parameters, ηc and Ñc, to match HHH
c and HAgg

c in equations (14) and (22).

Figure 7 then plots the market share distribution across products implied by our model in equation (21)

(the red dashed line) against the actual market share distribution in the data (the solid blue line). We
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Figure 7: Model Fit on Aggregate Category Data
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(b): Sectoral Market Shares
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weight across categories and do this for total spending in Figure 7a as well as separately for a number

of product categories in Figure 7b. In several categories such as cereal and yogurt, the model fits

extremely well, while it is notably less successful in others such as greeting cards or canned seafood.

Overall, however, we consider these good fits as validating our use of the model, particularly given the

distributions are fully determined by only three parameters and reflect parametric assumptions and

functional forms chosen largely for analytical convenience.27

4.5 Elasticities of Demand, Markups, and Aggregate Profits

The previous sections develop analytical expressions for our key empirical objects: HHH, HAgg, and

|Ω|. We will show that these expressions can be used to draw important conclusions about the forces

driving the rise of niche consumption, but we defer this analysis until Section 4.6. First, in this subsec-

tion, we additionally develop an expression for the ratio of aggregate revenues to costs, what we refer

to as the “aggregate markup”. The aggregate markup is useful on its own as a gauge of market power,

but further, we will use this expression to calibrate our model and quantify the welfare implications of

the rise in niche consumption.

In typical CES environments, the elasticity of demand and markups are fully determined by the

exogenous elasticity of substitution σ. By contrast, the elasticity of demand in our model depends both

on this standard “intensive margin” force as well as on an endogenous “extensive margin” force that

27Appendix Section B.3 offers a version of our model that builds from a linear demand system as in Melitz and Ottaviano
(2008), rather than the CES demand system assumed above. In this case, we also obtain analytical expressions for key
statistics such as Household and Aggregate Herfindahls. Most of the qualitative inferences from confronting the model with
the data are the same across both model specifications. The CES model is our benchmark in large part because the match
between its predictions and the data, as explored in Figure 7, strike us as more compelling.
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arises from the possibility for products to gain new customers (or lose existing ones). Since these forces

are of different importance for products with different aggregate market shares, the model generates

heterogeneity in demand elasticities across products and in their resulting markups. This also implies

that existing estimates of the elasticity of substitution, such as those offered in Broda and Weinstein

(2004), cannot be applied in our context.

To solve for the price elasticity of aggregate demand for product j, we start by expressing its total

sales as the integral of each household’s spending on j, taken over all households:

sj =
1
N

∫ x∗j

0
six ,jdx, (23)

where we use the notation six ,j to denote the spending share of a household with taste draw on product

j equal to x. Since j will only be purchased by those households with a sufficiently high idiosyncratic

taste for it, we need only integrate from households drawing xi,j = 0 to the marginal household that

draws xi,j = x∗j .

We take the partial derivative of sj in equation (23) with respect to pj to get:

∂sj

∂pj
=

1
N

(∫ x∗j

0

∂six ,j

∂pj
dx + six∗j

,j
∂x∗j
∂pj

)
, (24)

where the right hand side of equation (24) follows from Leibniz’s rule. The first term can be solved

using equation (17) as:
∂six ,j

∂pj
= (1− σ)

six ,j

pj
, (25)

where we take the aggregate price index P as fixed. Moving on to the second term, we can evaluate

equation (17) at the marginal household with taste x∗j to get:

six∗j
,j

∂x∗j
∂pj

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2 (R (r∗))

η−1
2

∂x∗j
∂pj

. (26)

Substituting equations (25) and (26) back into equation (24), we get:

∂sj

∂pj
= (1− σ)

1
pj

1
N

∫ x∗j

0
six ,jdx +

1
N

six∗j
,j

∂x∗j
∂pj

= (1− σ)
sj

pj
+

η + 1
2N|Ω|

∂x∗j
∂pj

. (27)

Our analytical expressions thus far rely on the assumption that the full distribution of price-

adjusted tastes in our model is given exogenously as Pareto. However, since we have a continuum

of products, we assume that the influence of an infinitesimal price change on the overall distribution

of demand is marginal and so our analytical expressions continue to hold.28 To compute ∂x∗j /∂pj, we

28In Appendix B.2 we use numerical simulations which do not require any distributional assumption on tastes to verify
that the approximation that follows is highly accurate.
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start with the relationship:

R
(
(1− α) j + αxi,j

)
= 1− G

(
γi,j

pj

)
= bθγ−θ

i,j pθ
j , (28)

and totally differential the left- and right-hand sides for each product j. Evaluating the resulting

expression at xi,j = x∗j , ri,j = r∗, and γ̃i,j = γ̃∗ yields:

dx∗j
dpj

= − θ

j∗
|Ω|N 1

pj
. (29)

Inserting this into equation (27), we have:

∂sj

∂pj
= (1− σ)

sj

pj
− ηθ

2
(

1−
(

j
j∗

)η) sj

pj
. (30)

Equation (30) implies that product j’s price elasticity of demand ε j can be written as:

ε j = 1−
∂sj

∂pj

pj

sj
= σ︸︷︷︸

Intensive Margin

+

(
1−

(
j
j∗

)η)−1

[θ/2− (σ− 1)]︸ ︷︷ ︸
Extensive Margin

> σ. (31)

In addition to the standard intensive margin term σ, there is a strictly positive contribution from the

extensive margin, since lowering the price of a product can induce new households to start consuming

the product. Low j or “mass-market” products are consumed by many households, so the intensive

margin is relatively more important for them. High j or “niche” products are consumed by few

households, so the extensive margin is relatively more important for those goods. As a result, the

elasticity of demand increases as market share falls.29

Figure 8 plots aggregate product market shares sj, the elasticity of demand ε j, and the elasticity

of substitution σ as a function of the product rank j, using a version of the model economy that we

calibrate as described below. Elasticities of demand rise as the product rank grows from the low values

associated with large market shares to the high values associated with niche products. We note that

despite the CES structure, the elasticity of demand generically differs from the elasticity of substitution

σ. As j→ j∗ and a product approaches the point where it is dropped from the aggregate consumption

bundle, the elasticity approaches infinity, i.e. ε → ∞. The markup µj then be written (in gross terms)

29Interestingly, for good j = 0, which has the largest aggregate demand, the positive impact of σ on the elasticity coming
through the intensive margin exactly cancels with the negative impact of σ coming from the extensive margin, leaving a
total elasticity of (θ/2 + 1). This result echos a closely related point in Chaney (2008), where the impact of the equivalent
parameter for the elasticity of trade flows to trade costs also fully cancels when combining the intensive and extensive margin
effects.
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Figure 8: Elasticity of Demand for Good j
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as:

µj =
ε j

ε j − 1
=

σ + θ(η+1)
2j∗sj

σ + θ(η+1)
2j∗sj

− 1
, (32)

and ranges from a high of (1 + 2/θ) for the largest market share good j = 0 to a low of 1 for j = j∗.

The aggregate markup µAgg is equal to the ratio of aggregate sales to aggregate costs. Using

equations (21) and (31), it can be written as:

µAgg =

∫ j∗

0 sjdj∫ j∗
0 sj

ε j−1
ε j

dj
=

[
θ + (σ− 1)2

σ2 − 1
2

ηθ2

σ2

(
η + 1
2 + θ

)
× 2F1

(
1,

1
η

; 1 +
1
η

;
2σ

2 + θ

)]−1

, (33)

where 2F1 (·) is the hypergeometric function.30 Importantly, while this aggregate profit share is a

relatively complicated function of σ and θ, it is not a function of Ñ, F, or ε.31

30The hypergeometric function is defined as follows: 2F1 (a, b; c; z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n! . (x)n is the Pochhammer symbol,

which equals (x+n−1)!
(x−1)! for all n > 0 and equals 1 for n = 0.

31We note that if each consumer’s taste for each good remains fixed, and markups change for any reason, this would result
in a change in the price-adjusted taste distribution and would affect the expressions above that were derived assuming that
price-adjusted tastes were distributed a la Pareto. We explore this in more detail in Appendix B.2, but here note that in
order to preserve the Pareto distribution of price-adjusted tastes in the face of increases in N and endogenous markups, the
changes in tastes that we additionally require are relatively minor.
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4.6 Understanding the Empirical Trends

We now confront our model with concentration measures and other moments from the data to infer

which structural forces led to the rise in niche consumption. Collecting previous results, our model

implies that:

HHH =
(η + 1)2

4η

1
|Ω| (34)

HAgg =
2 (η + 1)
(2η + 1)

(
1

2Ñ|Ω|

) 1
2

. (35)

Since HHH, HAgg, and |Ω| are directly observable in the data, this produces a system of two

equations – (34) and (35) – that can be solved to determine η and Ñ for each year. Figure 9 shows the

time-series for Ñ and η necessary to hit these observables in each year. Through the lens of the model,

given the observed path for |Ω|, matching the concentration trends requires nearly constant values for

η and a strong upward trend in Ñ. From 2004-2016, η falls by 2 percent while Ñ rises by 70 percent.

Figure 9: Implied Drivers of the Aggregate Rise of Niche Consumption
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As above, we can interpret our model as applying at each individual sector and apply equations

(34) and (35) to data on concentration trends and varieties consumed sector-by-sector. Rather than
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generating a single time series for η and a single time series for Ñ for the aggregate economy, as

plotted in Figure 9, this allows us to generate time series for these parameters for each sector. Figure

10a plots the distribution of implied growth (in percent terms) from 2004-2016 of η for each sector, and

Figure 10b plots the same for the implied growth of Ñ.

Figure 10: Implied Drivers of the Sector-Level Rise of Niche Consumption

(a): Sectoral Distribution of Growth in η
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(b): Sectoral Distribution of Growth in Ñ
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It turns out that our aggregate results represent well the sectoral results. Growth in Ñ is essential

for explaining the rise in niche consumption even at the sector level, while η typically has not changed.

Whereas η declined by 2 percent during 2004-2014 for the aggregate economy, the 25th to 75th per-

centile of sector-level growth in η over that period ranges from a decline of 7 percent to a rise of 2

percent. Our inferred aggregate Ñ grew by 70 percent, whereas the 25th to 75th percentiles for growth

in the sectoral values ranges from 35 percent to 138 percent.

Increases in Ñ can arise from increases in the importance of idiosyncratic taste shocks α or in

the number of available varieties N. Changes in α are straightforward to interpret, since α is simply

an exogenous parameter governing preference heterogeneity. Our empirical results, however, show

that the rise of niche consumption occurs pervasively across all of our narrowly-defined demographic

groups. The within-group trends are far more important than across-group trends in generating our

aggregate results. While this does not rule out increases in α as a driving force, it seems unlikely that

fundamental preferences within narrow groups have become dramatically more heterogeneous over a

twelve-year period. Based on this logic, we hold α fixed and interpret increases in Ñ as increases in N

in most of our model results.32

How do these implied growth rates for the number of available varieties in each sector compare to

32N impacts the extent of selection effects while α does not, so if one considers that growth in Ñ is driven in part by growth
in α, the welfare gains discussed in the next section will be proportionately smaller.
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estimates from the data? As we have emphasized, measuring the total number of varieties purchased

in the data can only be done with substantial noise (see Appendix A.3). However, Figure 11 plots

the growth in sectoral varieties with at least $100 in annual spending in the data against the model-

implied growth in varieties for each sector j∗, the values shown in Figure 10b. The values are broadly

consistent and clustered around the 45 degree line, which provides some direct confirmation of the

model’s inference.

Figure 11: Consumed Variety (j∗) Growth: Model vs. Data
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Finally, we note that while increases in N are necessary to fit the empirical patterns we emphasize,

they are not sufficient. The implied increase in N matches the divergence between Household and

Aggregate Herfindahls given the empirical decline in |Ω|, but as shown in equation (11), increases in

N on their own would counterfactually lead to increases in |Ω|. This means that additional forces are

required in order to fully fit the empirical trends.

Equation (11) shows that if N increases, declines in |Ω| must reflect declines in measured real

expenditures
(

E (1 + (1− σ) /θ)
1

1−σ b
)

, increases in effective costs per number of products consumed

(F or ε), or declines in an “effective curvature” of utility term
( 1

1−σ −
1
θ

)
.33 Expenditures, however,

increase in the data, and while changes in either σ or θ could change the curvature term, they would

have to change in a very particular way so as to match the decline in |Ω| without leading to changes

in η. We therefore find it most plausible that the decline in |Ω| reflected an increase in F or ε.34 The

exact change required to hit the data depends on the particular calibration, but as we show in the next

33Real measured expenditures equal E divided by the expression labeled “Average Price” in equation (10).
34While some technological advances such as the rise of the internet or better advertising technology might be expected to

lower variety costs, it is also likely that increases in the number of available varieties N make it more costly to sort through
and identify the particular products a household wants to purchase. An increase in F or ε can be interpreted as a simple
proxy for these latter forces when it is accompanied by the increase in N.
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section, this increase in fixed costs has only a modest effect on our welfare conclusions. Rather, our

quantitative results are largely driven by the change in N.

4.7 Implications of Rising Niche Consumption

What are the implications of the rise in niche consumption for welfare and market power? In order

to assess this, we set all parameter values of the model to match key empirical moments in 2004, and

then look at combinations of changes in N, σ, θ, and the fixed costs of variety that fit the rise in niche

consumption. One difficulty is that while we can identify η = 1− 2(σ − 1)/θ, we cannot separately

identify σ and θ and, as shown above, our model implies we cannot simply use existing estimates

of the elasticity of demand as a proxy for σ. To get around this problem, we assume the aggregate

markup equals 1.15 in 2004, or µAgg. We then use equation (33), together with our implied value for

η, to calculate the implied values σ = 4.7 and θ = 7.9.35 Below, we consider robustness to this chosen

target for µAgg.

Having calibrated the key parameter values, we use the model to explore the welfare implications

of several different counterfactguals. We begin by evaluating the implications of an increase in N

equal to what we plotted in Figure 9, holding all other parameters fixed at their initial 2004 values.

We then calculate the resulting change in household welfare, expressed as the percentage change in

expenditures on the initial set of goods that would bring the same change in household utility as that

delivered by the increase in N. Row (i) of Table 1 shows the resulting change in welfare, expressed as

an annual growth rate. We find that a 70 percent increase from N2004 to N2016 generates total welfare

gains of approximately 7.0 percent, or 0.56 percent per year. That is:

U2016 =
E

PN2016

− F× (|ΩN2016 |)
ε = 1.070× E

PN2004

− F× (|ΩN2004 |)
ε , (36)

where we change N and calculate the endogenous change in P and |Ω|, but hold fixed all other

parameters. Next, we perform similar counterfactuals but include changes in ε or F to also match

the change in |Ω|. As shown in rows (ii) and (iii) of Table 1, implied welfare growth remains large

at 0.46-0.47 percent, so that the effect of increasing fixed costs is quantitatively small relative to the

increase in N. Finally, we add changes in either σ or in θ to match the small implied decline in η,

plotted in Figure 9. As shown in rows (iv) and (v), these additional changes have almost no effect on

the results.

Table 1 also decomposes the welfare gains into four sources (that needn’t sum exactly due to

non-linearities). First, there are “Gains from Selection”, which come from the third term in the ideal

price index in equation (10) and emerge when |Ω|/N decreases, implying that households consume

35This value for the aggregate markup is the preferred value in Edmond, Midrigan, and Xu (2018) and is close to other
papers that employ a variety of methodologies. Other parameters are not important for our quantitative conclusions, but we
set α = 0.36, ε = 2, E = 35, b = 1, and F = 0.055. E is set to match average household category expenditures. Given b and ε,
we choose F to match |Ω|.
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products better suited to their particular tastes. These gains are the most important quantitatively. For

example, in row (i), 0.52 of the 0.56 percent total annual welfare gains come from the “Gains from

Selection” term. Second, changes in |Ω| show up as standard love-of-variety effects on welfare, even if

selection effects |Ω|/N are held constant. Whether these “Gains from Variety” are positive, as in row

(i) which does not match the observed decline in the number of varieties consumed by each household

|Ω|, or negative, as in the others which do match this decline in |Ω|, gains or losses from variety

are much smaller in magnitude than those from selection. Third, there are relatively minor welfare

implications of changes in fixed costs brought about by changes in |Ω|, F, or ε. Finally, in specifications

where we change σ or θ, there is a trivially small impact from changes in the “Average Price”, which

captures the changing price of purchasing a bundle of all available varieties. Overall, the conclusions

from Table 1 are simple: the rise of niche consumption is associated with substantial welfare gains,

and these arise almost entirely from greater selection as N increases.

If one simply viewed our data through the lens of a representative household model with CES

preferences, it might be natural to only consider the love-of-variety losses in column 3 of Table 1

and misleadingly conclude that welfare declined from 2004-2016, since the typical household consumes

fewer varieties in 2016 than in 2004. Heterogeneity in product consumption across households is

crucial for capturing the divergent concentration trends in our data. Representative agent models

abstract from this heterogeneity, and our results show that this can potentially lead to misleading

conclusions about the welfare effects arising from changes in the number of products households

consume. Alternatively, one could calibrate a representative agent model purely to aggregate variety

counts. However, as we emphasize in Appendix A.3, aggregate variety growth cannot be measured

with much precision so this exercise produces a huge range of potential conclusions.

Table 1: Annualized Welfare Growth (Compensating Expenditures)

Total Average Price
Gains from Gains from

Fixed Costs
Variety Selection

d ln E
( 1+θ−σ

θ

) 1
σ−1 (|Ω|)

1
1−σ (|Ω|/N)

1
θ −F× (|Ω|)ε

(i) ↑ N 0.56% 0% 0.08% 0.52% -0.05%

(ii) ↑ N, ↑ ε 0.47% 0% -0.13% 0.62% -0.02%

(iii) ↑ N, ↑ F 0.46% 0% -0.13% 0.62% -0.04%

(iv) ↑ N, ↑ F, ↑ σ 0.45% -0.001% -0.14% 0.62% -0.03%

(v) ↑ N, ↑ F, ↓ θ 0.47% -0.003% -0.13% 0.63% -0.04%

The welfare effects of increased product selection do depend importantly on θ, which as noted
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above, we pin down by targeting an aggregate markup of 1.15 together with the initial η value in

Figure 9. Figure 12 shows how implied welfare growth changes under alternative calibrations for the

initial aggregate markup. The vertical dashed red line corresponds to our baseline calibration and the

“Total” numbers in the first column of Table 1. For example, the yellow line intersects the red dashed

line at 0.45 and corresponds to the counterfactual in row (iv) which fits the data by changing N, F, and

σ. The purple line intersects at 0.56 and corresponds to the experiment where we only increase N, as

in row (1) of the table. Figure 12 shows that welfare effects remain large for a wide range of markup

calibration choices.

Figure 12: Robustness of Welfare Calculations to Calibration of θ and σ
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What are the sectoral implications of the rise in niche consumption? As above, we do this identical

calibration and counterfactual exercise at the sector level and report these results in Table 2.36 Cate-

gories such as coffee, snacks, and soup all rank in the top 10 for welfare gains from the increase in the

number of products. Not all sectors exhibit such gains, though. For example, the number of imputed

product varieties declines, and leads to welfare losses, in eggs, cottage cheese, and frozen vegetables.

4.8 Implications for Markups and Aggregate Profits

How large are changes in aggregate market power arising from the rise of niche consumption? It turns

out they are extremely small. Aggregate market power does not vary at all with changes in N, F, or ε.

These parameters have implications for the distribution of markups across products in the economy,

since they impact j∗ in equation (32), but changing them leaves the aggregate markup exactly constant,

36In doing so, we assume each sector’s aggregate markup also equals 1.15. If we instead impose a common σ and only use
heterogeneity in θc to match sectoral variation in ηc, we find similar welfare conclusions. To save space, and to minimize the
influence of measurement error, we exclude small categories which account for less than 0.5 percent of all spending.
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Table 2: Sectoral Welfare Growth Associated with Rise in Niche Consumption, 2004-2016

Annual %∆U with: Annual %∆U with:
∆N ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F ∆N ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F

(1) Coffee 2.37 3.31 2.65 (33) Frozen Meats and Seafood 0.62 0.56 0.56
(2) Disposable Diapers 1.66 1.13 1.28 (34) Tea 0.61 1.11 0.76
(3) Snacks 1.40 1.47 1.37 (35) Canned Vegetables 0.59 0.44 0.34
(4) Prepared Deli Foods 1.39 1.44 1.33 (36) Vitamins 0.58 0.68 0.59
(5) Pet Food 1.37 0.99 1.02 (37) Beer 0.57 0.97 0.72
(6) Skin Care Preparations 1.36 1.26 1.21 (38) Pet Care 0.52 0.68 0.55
(7) Soup 1.33 1.07 1.04 (39) Hair Care 0.51 0.32 0.32
(8) Detergents 1.30 0.89 1.09 (40) Nuts 0.49 0.42 0.36
(9) Breakfast Food 1.21 0.96 1.01 (41) Crackers 0.42 0.42 0.30
(10) Pizza 1.15 0.78 0.94 (42) Cosmetics 0.41 0.92 0.50
(11) Carbonated Beverages 1.08 0.9 0.88 (43) Ice Cream 0.38 0.25 0.18
(12) Oral Hygiene 1.03 1.01 0.80 (44) Ready-to-Serve Foods 0.38 0.07 0.12
(13) Canned and Bottled Juice Drinks 1.01 0.71 0.74 (45) Household Cleaners 0.35 0.37 0.08
(14) Light Bulbs and Electric Goods 1.00 -0.62 0.50 (46) Wine 0.35 0.43 0.35
(15) Household Supplies 0.94 0.39 0.56 (47) Packaged Deli Meats 0.33 0.21 0.22
(16) Housewares and Appliances 0.94 0.01 0.57 (48) Desserts, Gelatins, and Syrup 0.32 0.15 0.09
(17) Personal Soap And Bath Additives 0.88 1.40 0.86 (49) Prepared Foods (dry mixes) 0.31 0.25 0.15
(18) Cookies 0.85 0.82 0.73 (50) Baking Supplies 0.31 0.31 0.15
(19) Condiments and Gravies 0.84 0.84 0.74 (51) Stationary and School Supplies 0.29 -0.32 -0.19
(20) Butter and Margarine 0.82 0.35 0.60 (52) Cough and Cold Remedies 0.14 0.21 0.11
(21) Cereal 0.81 0.54 0.57 (53) Spices, Seasonings, and Extracts 0.09 0.35 0.16
(22) Liquor 0.81 0.73 0.75 (54) Tobacco 0.01 -0.17 -0.11
(23) Jams and Jellies 0.78 0.82 0.65 (55) Packaged Milk -0.01 0.27 0.08
(24) Medications 0.77 0.85 0.64 (56) Records and Tapes -0.03 -1.43 -0.49
(25) Yogurt 0.76 0.97 0.72 (57) Salad Dressings and Mayonnaise -0.09 -0.22 -0.30
(26) Laundry Supplies 0.74 0.58 0.42 (58) Frozen Vegetables -0.14 -0.02 -0.19
(27) Cheese 0.74 0.95 0.82 (59) Non-Carbonated Soft Drinks -0.17 -0.05 -0.15
(28) Batteries and Flashlights 0.71 0.08 0.22 (60) Paper Products -0.68 -0.82 -0.71
(29) Candy 0.66 0.63 0.44 (61) Bread and Baked Goods -0.75 -0.83 -0.79
(30) Prepared Frozen Foods 0.63 0.44 0.46 (62) Eggs -0.91 -0.73 -0.79
(31) Milk (non-packaged) 0.63 0.69 0.59 (63) Cottage Cheese and Sour Cream -1.22 -1.23 -1.14
(32) Wrapping Materials And Bags 0.62 0.30 0.29 (64) Photographic Supplies -1.83 -6.48 -3.07

since j∗ drops out of equation (33). More intuitively, this result arises from two opposing forces which

exactly cancel when j∗ changes. On the one hand, the jth good in an economy with a low j∗ is closer

to being the marginal consumed good and will therefore have a lower markup then the jth good in an

economy with a high j∗. This can be seen in equation (31), which shows that the elasticity of demand

is strictly increasing in the ratio of j to j∗. All else equal, this selection force raises aggregate markups.

On the other hand, in an economy with greater product choice, the high-markup products account for

a smaller share of aggregate spending. This competitive force from increasing N reduces aggregate

markups. Equation (33) shows that in the aggregate, these opposing forces exactly cancel and the ratio

of total revenues to total costs, or the aggregate markup, remains unchanged. In specifications where

we also change σ or θ, aggregate markups are no longer exactly fixed but resulting changes are tiny,

rising by 0.02 percentage points if we vary θ to hit the change in η and falling by 0.003 percentage

points if we instead vary σ to hit the change in η.

Thus, even though markups are endogenous in our model and there are large diverging concen-

tration trends, the rise of niche consumption in our model is associated with essentially no change in

aggregate market power. Our model therefore shows how the economy can exhibit large changes in

aggregate and household concentration without any change in aggregate market power. More gener-
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ally, echoing the arguments in Syverson (2018) and Berry, Gaynor, and Morton (2019), our environment

demonstrates that depending on what forces drive changes in concentration, it is possible for aggregate

market power to concurrently increase or to decrease.

Finally, Table 3 shows the corresponding changes in market power at the individual sector level

when we again re-estimate our model sector by sector. We compute this by assuming that sector level

changes in η are driven either entirely by changes in θ (Column 1) or by changes in σ (Column 2).

Overall, the conclusions mirror that from the aggregate analysis. The typical sector has essentially no

change in aggregate markups, however there are a few sectors with non-trivial changes. Concentrating

on the larger changes induced by θ variation in Column 1, there are modest declines in markups in

photographic supplies, records and tapes, and lightbulbs. There are small increases in markups for

coffee, soaps, tea, and cosmetics.

Table 3: Markup Changes Associated with Rise in Niche Consumption, 2004-2016

Percentage Point ∆µAgg with: Percentage Point ∆µAgg with:
∆N, ∆θ, ∆F ∆N, ∆σ, ∆F ∆N, ∆θ, ∆F ∆N, ∆σ, ∆F

(1) Photographic Supplies -4.68 0.47 (33) Eggs 0.05 -0.01
(2) Records and Tapes -0.89 0.09 (34) Wine 0.05 -0.01
(3) Light Bulbs and Electric Goods -0.79 0.10 (35) Vitamins 0.06 -0.01
(4) Housewares and Appliances -0.38 0.05 (36) Snacks 0.06 -0.01
(5) Butter and Margarine -0.22 0.03 (37) Milk (non-packaged) 0.06 -0.01
(6) Detergents -0.14 0.02 (38) Cookies 0.06 -0.01
(7) Household Supplies -0.13 0.02 (39) Canned Vegetables 0.07 -0.01
(8) Batteries and Flashlights -0.12 0.01 (40) Condiments and Gravies 0.07 -0.01
(9) Pizza -0.12 0.01 (41) Cough and Cold Remedies 0.07 -0.01
(10) Disposable Diapers -0.11 0.01 (42) Prepared Deli Foods 0.07 -0.01
(11) Paper Products -0.09 0.01 (43) Salad Dressings and Mayonnaise 0.07 -0.01
(12) Stationary and School Supplies -0.08 0.01 (44) Prepared Foods (dry mixes) 0.08 -0.01
(13) Cottage Cheese and Sour Cream -0.08 0.01 (45) Non-Carbonated Soft Drinks 0.08 -0.01
(14) Tobacco -0.05 0.01 (46) Cheese 0.09 -0.01
(15) Ready-to-Serve Foods -0.03 0.00 (47) Pet Care 0.09 -0.01
(16) Breakfast Food -0.03 0.00 (48) Crackers 0.10 -0.01
(17) Pet Food -0.03 0.00 (49) Candy 0.12 -0.02
(18) Bread and Baked Goods -0.03 0.00 (50) Laundry Supplies 0.12 -0.01
(19) Canned and Bottled Juice Drinks -0.02 0.00 (51) Frozen Vegetables 0.12 -0.02
(20) Cereal -0.02 0.00 (52) Baking Supplies 0.12 -0.02
(21) Liquor -0.02 0.00 (53) Spices, Seasonings, and Extracts 0.13 -0.02
(22) Prepared Frozen Foods -0.01 0.00 (54) Jams and Jellies 0.13 -0.02
(23) Packaged Deli Meats -0.01 0.00 (55) Medications 0.14 -0.02
(24) Hair Care 0.00 0.00 (56) Oral Hygiene 0.15 -0.02
(25) Frozen Meats and Seafood 0.00 0.00 (57) Packaged Milk 0.16 -0.02
(26) Wrapping Materials And Bags 0.01 0.00 (58) Yogurt 0.18 -0.02
(27) Carbonated Beverages 0.02 0.00 (59) Beer 0.20 -0.03
(28) Soup 0.02 0.00 (60) Household Cleaners 0.22 -0.03
(29) Skin Care Preparations 0.03 0.00 (61) Cosmetics 0.25 -0.03
(30) Desserts, Gelatins, and Syrup 0.05 -0.01 (62) Tea 0.25 -0.03
(31) Ice Cream 0.05 -0.01 (63) Personal Soap And Bath Additives 0.37 -0.05
(32) Nuts 0.05 -0.01 (64) Coffee 0.46 -0.06

5 Conclusions

This paper empirically documents a rise in what we call "niche" consumption. Households are in-

creasingly concentrating their spending. This pattern, however, does not appear to be driven by the
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emergence of superstar products. Rather, households are increasingly buying different goods from one

another. The increase in segmentation seen in many other walks of modern life also applies to con-

sumption: our grocery baskets look less and less similar. As a result, aggregate spending has become

less concentrated.

We develop a new model of product demand in order to explore the drivers and implications of the

rise in niche consumption. In our model, households choose how many products to consume, spend

different amounts on each good, and differ from other households in their choice of which products

to buy. The model delivers simple analytical expressions for household and aggregate concentration

indices, and these closed form solutions allow us to match the model to data and infer the drivers

of our empirical findings. Increases in product availability played a critical role in the divergent

concentration trends, and led to welfare gains from households being able to consume a subset of

products that better satisfied their tastes. This welfare effect would be difficult to find using standard

statistics such as measured price indices. Finally, our model delivers endogenous and heterogeneous

markups. Matching the trends in household and aggregate concentration carries implications for the

distribution of markups, but does not imply changes in aggregate market power.

Our model highlights the importance of greater product choice but treats the set of available prod-

ucts as an exogenous parameter. We suspect the nature of product introduction and development,

however, reflects recent progress in supply chain integration, big-data marketing research, targeted

advertising, and the growing importance of online sales. Unpacking the product innovation process

and relating it to these important trends is a fruitful avenue for future research on consumption be-

havior and the measurement of consumer welfare.

34



References

Aguado, J. M., C. Feijoo, and I. Martinez (2015): Emerging Perspectives on the Mobile Content Evolution.
IGI Global.

Alwin, D., and P. Tufis (2015): “The Changing Dynamics of Class and Culture in American Politics: a
Test of the Polarization Hypothesis,” The Annals of the American Academy of Political and Social Science,
663.

Anderson, E., S. Rebelo, and A. Wong (2018): “Markups Across Space and Time,” Working Paper
24434, National Bureau of Economic Research.

Anderson, S., A. de Palma, and J. Thisse (1987): “The CES is a discrete choice model?,” Economics
Letters, 24(2), 139–140.

Argente, D., M. Lee, and S. Moreira (2018a): “How do firms grow? The life cycle of products
matters,” .

(2018b): “Innovation and product reallocation in the great recession,” Journal of Monetary
Economics, 93, 1–20.

Arkolakis, C., S. Demidova, P. J. Klenow, and A. Rodriguez-Clare (2008): “Endogenous variety and
the gains from trade,” American Economic Review, 98(2), 444–50.

Atkeson, A., and A. Burstein (2008): “Pricing-to-market, trade costs, and international relative
prices,” American Economic Review, 98(5), 1998–2031.

Atkin, D., B. Faber, and M. Gonzalez-Navarro (2018): “Retail globalization and household welfare:
Evidence from mexico,” Journal of Political Economy, 126(1), 1–73.

Autor, D., D. Dorn, L. F. Katz, C. Patterson, and J. V. Reenen (2017): “The Fall of the Labor Share
and the rise of Superstar Firms,” Working Paper 23396, National Bureau of Economic Research.

Autor, D. H., L. F. Katz, and M. S. Kearney (2006): “The Polarization of the U.S. Labor Market,” The
American Economic Review, 96(2).

Berger, D., and J. Vavra (2015): “Consumption Dynamics During Recessions,” Econometrica, 83(1).

Berger, D., and J. Vavra (2019): “Shocks vs. Responsiveness: What Drives Time-Varying Dispersion?,”
Journal of Political Economy.

Berry, S. T., M. Gaynor, and F. S. Morton (2019): “Do Increasing Markups Matter? Lessons from
Empirical Industrial Organization,” Working Paper 26007, National Bureau of Economic Research.

Bertrand, M., and E. Kamenica (2018): “Coming apart? Lives of the Rich and the Poor Over Time,”
Discussion paper.

Bornstein, G. (2018): “Entry and Profits in an Aging Economy: The Role of Consumer Inertia,” .

Broda, C., and D. E. Weinstein (2006): “Globalization and the Gains from Variety,” The Quarterly
journal of economics, 121(2), 541–585.

Broda, C., and D. W. Weinstein (2004): “Variety growth and world welfare,” American Economic
Review, 94(2), 139–144.

Brynjolfsson, E., Y. Hu, and M. D. Smith (2003): “Consumer surplus in the digital economy: Es-
timating the value of increased product variety at online booksellers,” Management Science, 49(11),
1580–1596.

35



Burstein, A., B. Grassi, V. Carvalho, et al. (2019): “Bottom-up markup fluctuations,” in 2019 Meeting
Papers, no. 505. Society for Economic Dynamics.

Chaney, T. (2008): “Distorted gravity: the intensive and extensive margins of international trade,”
American Economic Review, 98(4), 1707–21.

Coibion, O., Y. Gorodnichenko, and D. Koustas (2017): “Consumption Inequality and the Frequency
of Purchases,” Discussion paper.

Davis, D. R., J. I. Dingel, J. Monras, and E. Morales (2017): “How Segregated is Urban Consump-
tion?,” .

De Loecker, J., and J. Eeckhout (2017): “The Rise of Market Power and the Macroeconomic Implica-
tions,” Working Paper 23687, National Bureau of Economic Research.

Dube, J.-P., G. Hitsch, and P. Rossi (2018): “Income and Wealth Effects on Private-Label Demand:
Evidence from the Great Recession,” Marketing Science.

Edmond, C., V. Midrigan, and D. Y. Xu (2018): “How costly are markups?,” Discussion paper, Na-
tional Bureau of Economic Research.

Feenstra, R. C. (1994): “New product varieties and the measurement of international prices,” The
American Economic Review, pp. 157–177.

Feenstra, R. C., and D. E. Weinstein (2017): “Globalization, markups, and US welfare,” Journal of
Political Economy, 125(4), 1040–1074.

Furman, J., and P. Orszag (2015): “A firm-level perspective on the role of rents in the rise in in-
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Section A of this appendix is focused on our data and empirical results while Section B elaborates

on our model and theoretical results.

Appendix A. Data Appendix

We start this section of the appendix with Subsection A.1, which offers a detailed description of the

Nielsen Homescan dataset, and Subsection A.2 compares the spending growth in these data to that in

other datasets. Subsection A.3 then discusses the difficulty of measuring the number of aggregate vari-

eties in these data and demonstrates the sensitivity of such measures to the treatment of products with

small spending shares, while Subsection A.4 corroborates that our results on aggregate concentration

are not inconsistent with concentration measures calculated using census data. Finally, we conclude

with Subsection A.5, which collects a number of additional empirical results.

A.1 Detailed Data Description

Our primary data set is the AC Nielsen Homescan data, which we use to measure household-level

shopping behavior.1 As discussed in the text, our panel contains weekly household-level product

spending for the period 2004-2016. The panel has large coverage, with roughly 170,000 households

in over 22,000 zip codes recording prices for almost 700 million unique transactions covering a large

fraction of non-service retail spending. Roughly half of expenditures are in grocery stores, a third of

expenditures are in discount/warehouse club stores, and the remaining expenditures are split among

smaller categories such as pet stores, liquor stores, and electronics stores.

While panelists are not paid, Nielsen provides incentives such as sweepstakes to elicit accurate

reporting and reduce panel attrition. Projection weights are provided to make the sample represen-

tative of the overall U.S. population.2 A broad set of demographic information is collected, including

1These data are available for academic research through a partnership with the Kilts Center at the University of Chicago,
Booth School of Business. See http://research.chicagobooth.edu/nielsen for more details on the data.

2We use these projection weights in all reported results, but our results are similar when weighting households equally.
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age, education, employment, marital status, and type of residence. Nielsen maintains a purchasing

threshold that must be met over a 12-month period in order to eliminate households that report only

a small fraction of their expenditures. The annual attrition rate of panelists is roughly 20 percent, and

new households are regularly added to the sample to replace exiting households.

Households report detailed information about their shopping trips using a barcode scanning device

provided by Nielsen. After a shopping trip, households enter information including the date and

store location and scan the barcodes of all purchased items. Products are allocated by Nielsen into

three levels of category aggregation: roughly 1304 "product modules", 118 "product groups", and 11

"department codes". For example, "vegetables - peas - frozen" are a typical product module within

the "vegetables - frozen" product group within the "frozen foods" department, and "fabric softeners-

liquid" is a typical product module within the "laundry supplies" product group within the "non-food

grocery" department.

In our baseline analysis, we define a product as a UPC. UPCs are directly assigned by the manu-

facturer and will typically change any time there is any change in product characteristics. However,

we also compute results instead defining a product as a "brand". Information on brands is constructed

by Kilts/Nielsen and is more aggregated than UPCs but still very disaggregated: for example, "Pepsi"

and "Caffeine Free - Pepsi" are two different brands, as are "Pepsi" and "Mountain Dew", despite the

latter being produced by the same parent company. However, different flavors of Pepsi are typically

all listed under the same Pepsi brand. We focus on UPCs as our baseline product definition for several

reasons: 1) Most importantly, UPCs are directly assigned by the manufacturer, while the brand vari-

able is constructed by Kilts/Nielsen. Which UPCs are grouped into more aggregate brands involves

some subjective judgment, and this aggregation is not necessarily consistent across categories or time.

2) UPCs are the most fine-grained definition available and will capture relevant product changes like

the introduction of new flavors which will typically not be captured with the brand-definition. 3) In

order to preserve anonymity of the stores in the Nielsen sample, all generic UPCs are assigned the

same brand code. This means that analysis of brand-level spending can only be done on the subset

of name-brand products and must exclude the large and growing share of generic products from the

sample. (see e.g. Dube, Hitsch, and Rossi (2018)).

However, there is legitimate concern that UPCs may be too fine a notion of product when consider-

ing the concentration of household purchases, since households may view certain UPCs (for example

minor differences in size or packaging for otherwise equivalent UPCs) as identical products.3 For this

reason, we show robustness to instead defining a product as a brand rather than a UPC.

Our baseline analysis focuses on annual spending and computes household market shares across

products within product groups, but all results are robust to calculating household product market
3It is not clear that we want to classify a switch from spending $10 on Brand-X 64 oz laundry detergent and $10 Brand-X

60 oz laundry detergent to instead spending $20 on Brand-X 64 oz laundry detergent as a large increase in concentration.
If UPCs become more homogeneous across time, using UPCs as our notion of product may lead to spurious changes in
concentration with no substantive change in household behavior.
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shares in more disaggregated product modules or more aggregated department codes. There is sub-

stantial heterogeneity across product modules in the degree of household concentration, so our anal-

ysis focuses on a set of balanced product modules. This eliminates spurious changes in concentration

which might otherwise arise from changes in the set of goods sampled by Nielsen (which do not rep-

resent real changes in household’s actual consumption and instead merely changes in the categories of

consumption reported in Nielsen). This focus on balanced product modules reduces our sample from

118 to 107 product groups. Our analysis excludes fresh produce and other "magnet" items without

barcodes since products in these categories cannot be uniquely identified and products with identical

product codes in these categories can potentially differ substantially in quality. Our baseline sample

includes all households and weights each household using sampling weights provided by Nielsen

which are designed to make the Nielsen demographically representative of the broader U.S. popula-

tion. Appendix Figure A2 shows that aggregate spending growth in our sample tracks government

data on aggregate spending growth in comparable categories. Our conclusions are even stronger when

instead using a balanced panel of households to eliminate household composition changes.

While our baseline sample includes all UPCs, we also show that our results hold when excluding

generic/private-label products. In order to preserve anonymity of the stores in the Nielsen sample, the

exact identity of generic brands in the Nielsen data is masked. There has been an increase in the private

label share of all purchases over the last decade (see e.g. Dube, Hitsch, and Rossi (2018)) so including

generic spending which cannot be properly allocated to constituent UPCs might lead to spurious

concentration trends. However, we show that excluding generics and calculating concentration trends

for branded products produces nearly identical results.

Finally, it is also useful to discuss the potential role of online shopping for our measurement.

Households in the Nielsen Homescan sample are supposed to scan barcoded purchases of purchases

from online retailers in addition to the items they scan from brick-and-mortar retailers. Indeed the

Nielsen panel shows a growing share of online spending across time (Figure A1). However, for the

categories covered in Nielsen data, online spending is relatively unimportant, so even by the end of

the sample these spending shares remain low.4 Breaking results out further for particular categories

where online spending is likely to be more and less relevant delivers no obvious interaction with

concentration trends. For these reasons, we conclude that online shopping is unlikely to be of direct

importance for understanding the diverging concentration trends that we document.
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Figure A1: Online Spending Shares
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A.2 External Spending Data

Figure A2 shows that aggregate Nielsen spending lines up well with spending growth measures from

the Consumer Expenditure Survey and BEA national accounts for similar categories.5

However within-household spending growth is substantially less strong than overall household

spending. This is likely driven by two forces: 1) The panel dimension of Nielsen is not represen-

tative of all households. The continuing households in the sample are substantially older than the

overall Nielsen sample and the overall population, and we know from other research that households

around retirement have declining food spending. While Nielsen provides sampling weights to make

the overall sample representative of the U.S., they do not provide weights to make the panel dimen-

sion representative of the overall U.S., and the requisite demographic variables in the data to construct

them ourselves do not exist. 2) There is likely attrition bias and households probably report a declining

share of spending across time. This attrition bias may be particularly strong in the final year in which a

household is in the sample, which could potentially explain the difference between the fully balanced

and within-household spending growth patterns. If reduced reporting tends to proceed exit, then one

would expect attrition bias to be less severe for households who remain in the sample for the full 12

years. Consistent with this, the balanced sample exhibits stronger spending growth than the within

household sample.

For these reasons, our baseline results use the entire Nielsen homescan panel rather than focusing

on a balanced panel of households. However, it is useful to compare our basic trends in the full sample

to those computed using within-household variation. Figure A11 thus redoes Figure 1 using a fully

balanced panel and with a specification using only the within-household changes specification.

Clearly trends are even stronger than our baseline results when using the fully balanced panel or

when identifying off of within-household variation, so in this sense our baseline is conservative. We

now describe several forces that might spuriously increase the within-household trend as well as some

alternative forces which might spuriously flatten the full sample trend. This makes it difficult to know

whether our baseline sample is likely to be understated or whether it is instead the balanced panel

specification that is overstated. However, in either case, the trend is robustly positive, and our baseline

sample is the one which generates more conservative results.

More specifically, the full sample trend could potentially be biased downwards because the Nielsen

sampling technology changes across time, and these changes are implemented when households enter

the sample. These changes in technology could obscure underlying trends in the data, but would be

4Online vs. brick-and-mortar spending is classified at the level of the retail chain. This means that our measure captures
spending at online only retailers such as Amazon but does not classify as online spending the shopping with traditional
retailers that happens to occur through their websites, such as spending at Walmart.com.

5It is well-known that the consumer expenditure captures a lower level of spending than the BEA and this "missing spend-
ing" has a positive trend. However this growth in missing spending mostly occurs prior to our sample period. Throughout
our sample period, the CEX captures a relatively constant share of aggregate spending. This means CEX spending growth is
slightly lower but broadly similar to aggregate spending growth from the BEA.
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stripped out when using within-household variation. More generally, households have very different

concentration levels, as shown above, so that random household entry and exit in the sample could

make it more difficult to pick up underlying trends. These are both forces that might lead our baseline

full sample to understate the true increase in concentration across time.

Conversely, we have shown above both that increases in spending are strongly negatively correlated

with increases in concentration and that the within-household sample has spending growth much

lower than in the consumer expenditure survey. To the extent that the within-household sample

has spurious declining spending due to sample attrition, there is then a concern that using within

household variation might lead to an upward biased trend. However, if we redo all our regression

results using within household variation controlling for within household changes in spending, we

continue to find upward trends which are stronger than in the full sample. This suggests that the

stronger upward trend in the within-household results is not driven solely by the lower reported

spending growth in this sample. In addition, we can also recompute results using only households in

the first year in the sample. By construction, attrition bias in spending across time cannot drive any

trend, since this sample has no within-household time-series variation but it still delivers an upward

trend. Finally, attrition bias is less likely to be a concern for the fully balanced sample: The upward

trend in the fully balanced panel is roughly linear across time, so if this upward trend was explained by

attrition bias and progressive under reporting, this under reporting would need to grow at a constant

rate, which seems unlikely, especially because Nielsen tries to drop households from the sample who

are not reporting accurately. It seems much more likely that the biggest under reporting would occur

in the first year or two in the panel as households are likely to be most enthusiastic about scanning

purchases initially and then reduce scanning as it becomes more tedious across time. It would be quite

surprising if enthusiasm waned at a constant linear rate across time but that households continued to

participate in the homescan panel.

Together, we think that these results suggest the stronger upward trends using the balanced sam-

ples and the within-sample variation are not driven by spurious attrition bias. Nevertheless, we cannot

fully rule out this concern. Furthermore, as discussed above the panel element of the sample is not

representative since households who remain in the sample for progressive years are demographically

different and not representative of the population leading total spending for this population to line up

less well with aggregate spending inferred from the consumer expenditure survey. For these reasons

and to be conservative, we focus on the full sample in all our baseline results but only note here that

using other samples only strengthens our conclusions.
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A.3 Measuring Varieties

A.3.1 Measuring Varieties Consumed Per Household

Figure A3 shows the average number of UPCs purchased per household constructed using the same

weights as were used in equations (3) and (5).6 Whether we define a product as a UPC or as a more

aggregated brand, it is clear that the typical household is purchasing a smaller number of products

across time.

Figure A3: Ave # Products Purchased by Each Household
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It is also important to note that the typical household purchases many varieties within product cat-

egories. This motivates our modeling approach which includes love-of-variety effect at the individual

level rather than the more standard macro model in which a representative agent has love-of-variety

preferences which arise from aggregating over heterogeneous individuals who only consume a single

product. We take this modeling approach because in our data context, individual households fre-

quently purchase multiple products in narrow categories. This is true even if we focus on spending by

single member households over short periods of time than our annual benchmark, so it is not driven

solely by temporal aggregation or by multi-member households.

For example, focusing just on single person households, we find that for product-group weeks with

positive spending, 40% have spending on 2+ UPCs, 18% have spending on 3+ UPCs, and 9% on 4+

UPCs. Again focusing on single person households but aggregating to monthly spending, we find

61% of product-group months have spending on 2+ UPCs, 37% on 3+ UPCs and 23% on 4+ UPCs.7

6Since there is correlation across households in which products are consumed, the average number of products consumed
by the typical household is not equal to the total number of products divided by the total number of households. For
example, if all households consumed a single identical product, the average number of products per household would be 1
while the total number of products divided by the total number of households would be 1/(# households).

7These statistics weight individual households by their spending; these shares are reduced slightly if we weight house-
holds equally. We also still find frequent instances of purchasing multiple products if we define products as brands instead
of UPCs but the shares are dampened by around half.
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A.3.2 Measuring Varieties Consumed in the Aggregate

The variety statistics thus far focus on the number of products purchased by individual households.

We now turn to a discussion of aggregate variety availability and show that, due to both a statistical

and conceptual complication, measuring the total number of products available (or purchased) in the

economy is much more challenging. Thus, we treat aggregate variety availability as unobservable in

our model. Importantly, in Homescan data, we observe only the set of UPCs which are purchased by

households in the panel, not the set of all products which are purchased in the economy. While the

Nielsen panel is large, a large number of products nevertheless are purchased by very few households

and have tiny aggregate spending. The presence of a large number of products with very small sales

means that in a statistical sense, it is very hard to measure entry and exit reliably due to sampling

error. If we observe a product with no sales in period t-1 and very small total spending in period t, it is

difficult to tell whether the product is newly available in period t, or if we just happened to not sample

a household purchasing this product in period t-1. We can show with certainty that the Homescan

panel does not capture the full set of products available in the economy, since we can observe products

which have sales in the Nielsen retail data set but no sales in Homescan. For example, of all the UPCs

which are ever purchased in a Retail Panel store, 25.5% are not purchased by a single household in

Homescan. One might think that we could get around this by instead measuring products in the Retail

Scanner data. However, this does not solve the problem, because this data is not a census of all stores.

For example, we can see that 22.2% of UPCs which are purchased in Homescan are not sold in any

store in the retail panel.

The more conceptual challenge, which would not be solved even if we had a full census of all

U.S. product sales, is that our model implies a distinction between products which are available and

products which are purchased. We interpret products which are available but have no sales in our

model as failed products. However, this is clearly an abstraction, and even the worst failed products

will likely have tiny, but not actually zero sales. This means that even if there were no sampling issues

related to products with small spending, we might still want to include some minimum aggregate

spending threshold in order to “count" a product in the data.

Table A1 shows that the treatment of products with tiny spending in the Nielsen data indeed

makes a huge difference for measures of aggregate varieties (both in levels and in growth rates), which

is why we choose to treat this as an unobservable object in our model. For example, this table shows

that although they represent only 2% of total spending, roughly half of all UPCs in the Homescan

data have total annual spending across all households of less than $25. Excluding products with small

aggregate spending also leads to large changes in measured variety growth: counting products with

even extremely tiny aggregate spending, delivers growth of 6.2% from 2004 to 2016, while dropping

products with very tiny spending (which again are more sensitive to sampling error and interpretation

8



issues) raises measured growth to 20-30%.8 Thus, while the data paints a robust pattern that the

number of products is large and growing, exact product counts and growth rates are too uncertain to

be usable as inputs to our model or resulting welfare inference.

Table A1: Effect of Products with Small Aggregate Spending on Statistics

Agg
Spend
Threshold

Share
Spend>
Threshold

UPCs per
category
2004

UPCs per
category
2016

UPCs per
category
% change HHH

2004 HHH
2016

HHH %
change HAgg

2004 HAgg
2016

HAgg %
change Ω2004 Ω2016

Ω %
change

$0 100% 9248 9820 6% 0.262 0.284 8% 0.0036 0.0028 -21% 16.6 15.6 -6%

$25 98% 4362 5193 19% 0.268 0.290 8% 0.0038 0.0030 -21% 15.8 15.0 -5%

$50 95% 3153 3856 22% 0.275 0.296 7% 0.0039 0.0031 -22% 15.3 14.6 -5%

$250 83% 1206 1555 29% 0.304 0.324 6% 0.0051 0.0039 -22% 13.2 12.7 -4%

In contrast, the statistics which are the focus of our analysis (household and aggregate Herfindahls

as well as the average number of products purchased by individual households) are very robust to the

treatment of these products with small aggregate spending, since these statistics depend much more on

products with substantial spending. Growth rates of these variables (which are more important for our

model inference) are even more stable across these spending thresholds, changing by at most a couple

percentage points when moving from no aggregate spending threshold to a fairly restrictive threshold.

An advantage of our modeling framework is thus that we can infer product availability changes and

their welfare consequences using these observable statistics even though we cannot reliably measure

product availability itself.

Most importantly Table A1 shows that our model inference for variety availability and welfare

are almost completely unaffected by the behavior of these products with small aggregate spending.

Performing inference on statistics constructed using spending on all products produces nearly identical

8Note that for all of the calculations in Table A1, we compute statistics using a random subset of the Homescan Panel
with a constant number of households per year so that statistics are not affected by changes in the panel size.

Table A2: Effect of Products with Small Aggregate Spending on Model Implied Annual Growth Rates

Agg Spend
Threshold j∗ growth Ñ growth η growth

Utility growth
from N

Utility growth
from N, F, σ

$0 2.0% 4.5% -0.18% 0.56% 0.45%

$25 2.0% 4.6% -0.21% 0.57% 0.46%

$50 2.1% 4.6% -0.21% 0.57% 0.47%

$250 2.1% 4.5% -0.26% 0.56% 0.47%
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conclusions to inference performed on statistics which exclude products with tiny or modest aggregate

spending. For example, in all cases, the model implies that the annual growth in consumed varieties

(j∗) is always 2-2.1%, and that annual welfare growth when fully accounting for all of the time-trends

in the data is 0.45%-0.47%. Thus, none of our model conclusions are affected by the behavior of the

large set of UPCs in Nielsen with negligible spending.

A.4 Census Concentration of Production

A large and growing literature uses production data from the Census to show that the concentration

of production has been broadly increasing from 1982-2012. For example, Autor, Dorn, Katz, Patterson,

and Reenen (2017) calculates industry concentration within 4-digit industries, and averages this up to 6

major sectors and shows that various concentration measures have all increased when comparing 1982

to 2012. In this section we explore the relationship between the concentration measures in our paper

and this large literature and argue that relevant comparisons from Nielsen data are broadly consistent

with this Census based literature.

First, it is important to note that the concentration notions we emphasize in our paper are conceptu-

ally distinct along a number of important dimensions from the concentration of firms or establishments

studied using census data. Most importantly, we are measuring the concentration of spending over

very detailed UPCs (or slightly coarser but still highly disaggregated brands). This is a fundamentally

much more disaggregated notion of concentration than that studied with production data, since firms

can potentially produce tens, hundreds or even thousands of different products. For example, in our

data Procter and Gamble produces over 40,000 unique UPCs, L’Oreal produces over 28,000 UPCs and

General Mills, Unilever, and Kraft Heinz all produce 10,000-20,000 UPCs.9

Furthermore, the categories within which we calculate concentration are also more disaggregated

than those in typical Census-based calculations and also cover a more narrow subset of production.

For example, the broad manufacturing sector in Autor, Dorn, Katz, Patterson, and Reenen (2017)

covers 86 4-digit industries within which concentration is computed. However, of these 86 industries

only a small subset produce in categories which are covered by Nielsen (for example NAICS Code

3111 "Animal Food Manufacturing") while most are in production industries which have no overlap

with Nielsen categories (for example NAICS Code 3336 "Engine, turbine, and power transmission

equipment manufacturing" or NAICS Code 3365 "Railroad rolling stock manufacturing").

Finally, it is important to note that our sample covers the period 2004-2016 while census data

starts in 1982 and is last available in 2012. The exact timing of concentration trends in Census data

varies substantially, with many sectors exhibiting increases primarily in the period prior to our sample

period.

9It is also worth noting that our "household" concentration measures have no analogue in the Census literature even if we
were measuring producer rather than product concentration.
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Since they are conceptually different notions, this means the aggregate product concentration

trends which we emphasize in the body of the paper should not be directly compared to produc-

tion concentration trends in Census. However, we can construct concentration measures using the

Nielsen data which are more comparable with Census calculations and that can be used to explore the

external validity of our data. We now explore these comparisons.

Since households in the Nielsen sample report the retail chain in which they shop, we can aggregate

up total spending to compute a Nielsen based measure of spending at each retail chain and resulting

retailer concentration. This can then be compared to the concentration of retail trade in Census data.

Specifically, since the Nielsen sample is focused on grocery and drug store spending, in the Census

we use firm concentration numbers only from NAICS Code 445 "Food and beverage stores" and 446

"Health and personal care stores" and weight the publicly available Census concentration numbers for

these two sectors using their relative share of sales. This clearly does not provide a precise match

between the retail establishments covered in Nielsen and Census so we should not expect numbers to

line up exactly, but Figure A4 shows that that Nielsen data broadly matches the level of retail spending

accounted for by the Top 4, Top 20 and Top 50 firms as well as the upward trend in retail concentration.

Figure A4: Retail Trade Concentration
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We can also perform a similar exercise by allocating UPC-level spending up to the manufacturer.

When manufacturers produce a new product, it is assigned a barcode by the company GS1, which

then maintains a database which can be used to link UPCs to manufacturers. This lets us aggregate

product spending up to a measure of manufacturer spending, with two important caveats:
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First, the link from UPCs to parent companies is sometimes inconsistent. For example, Gillette

and Old Spice were both acquired in the past by Proctor and Gamble, and the UPCs for Gillette and

Old Spice products both map to Proctor and Gamble. However, Ben and Jerry’s was acquired by

Unilever in 2000, yet UPCs for these products are assigned to the "Ben and Jerry’s Homemade Inc"

firm name rather than to the Unilever parent company. Similarly, Goose Island Beer UPCs are assigned

to "Goose Island Beer Company" even though this firm was acquired by InBev in 2011. To the extent

that some UPCs are assigned to subsidiaries rather than parent companies, our Nielsen based measure

of manufacturer concentration will be biased downwards.

Second, UPCs for store-brand products map to the retailer rather than the actual manufacturer of

the product. For example, Costco’s "Kirkland" store-brand barcodes all map to "Costco", even though

Costco does not actually produce most of these products. Although sometimes the actual producer

can be identified (for example Kirkland Coffees are advertised as being roasted by Starbucks), this in-

formation is typically a trade-secret. This means that we cannot measure the producer for most generic

products, and as a result we must drop these products when aggregating up UPCs to manufacturers

and focus only on branded products. To the extent that the production of generic products is propor-

tional to the production of branded products, this will have no effect on concentration. However, it

is likely that generic products are disproportionately produced by larger manufacturers, so dropping

generic products is likely a second force that will bias our Nielsen based measures of manufacturer

concentration downwards.

To again focus the comparisons on the most relevant producers, we keep NAICS codes 311 and

312 "Food Manufacturing" and "Beverage and Tobacco Product Manufacturing" from the Census data

and weight these concentration measures by their relative sales shares. Figure A5 shows that despite

the above concerns, Nielsen data again broadly matches Census data, producing similar levels of

manufacturer concentration and a flat to mild downward trend.

Overall the results in these two subsections give us confidence that the Nielsen data is largely in

line with external evidence on aggregate spending and with Census data on producer concentration.

A.5 Additional Empirical Results

12



Figure A5: Manufacturer Concentration
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Figure A6: Concentration Trends: Excluding Generics
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Figure A7: Concentration Trends: Including Category Composition Changes
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Figure A8: Concentration Trends: Brand Instead of UPC
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Figure A9: Concentration Trends: Product Module instead of Group
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Figure A10: Alternative Concentration Measures
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Figure A11: Concentration Trends for Different Samples
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Figure A12: 2004-2016 Concentration Growth by Household Size
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Figure A13: 2004-2016 Concentration Growth Within Location
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Figure A14: 2004-2016 Concentration Growth Within Retailer
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Figure A15: Intensive Margin P v. Q effects for UPCs
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Figure A16: 2004-2016 Concentration growth for continuing vs. all products (brands)
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Appendix B. Theory Appendix

We start this section of the appendix with Subsection B.1, which provides detailed derivations of the

main expressions presented in the body of the paper. Subsection B.2 offers additional results related

to the simulation of our model. Finally, Subsection B.3 presents a version of our model where demand

is assumed to be linear, rather than exhibiting a constant elasticity of substitution.

B.1 Derivation of Key Model Equations

In this appendix subsection, we provide detailed derivations of our expression for the price index P,

the Household Herfindahl HHH, the CDF characterizing rank-values R(r), the aggregate market share

of a product sj, the Aggregate Herfindahl HAgg, and elasticities of demand ε j and markups at the

product µj and aggregate levels µAgg.

B.1.1 Deriving the Price Index in Equation (10)

Start by noting that under the assumption that G(y) is a Pareto distribution, the cutoff good is charac-

terized by:
|Ωi|
N

=

(
b

γ̃∗i

)θ

,

which implies:

γ̃∗i = N
1
θ (|Ωi|)−

1
θ b. (A1)

From the definition of the ideal-price index, we have:

P = Pi =

(∫
k∈Ωi

(γ̃i,k)
σ−1 dk

) 1
1−σ

=

(
N
∫ ∞

γ̃∗i

yσ−1dG(y)
) 1

1−σ

= N
1

1−σ

(
1

σ− 1− θ
yσ−1−θ

∣∣∣∣∞
γ̃∗i

) 1
1−σ

θ
1

1−σ b
θ

1−σ =

(
1 +

1− σ

θ

) 1
σ−1

b
θ

1−σ N
1

1−σ (γ̃∗i )
θ

σ−1−1 .

Substituting the value for γ̃∗i from equation (A1), we get:

P = Pi =

(
1 +

1− σ

θ

) 1
σ−1

b−1︸ ︷︷ ︸
Average Price

× (|Ωi|)
1

1−σ︸ ︷︷ ︸
Variety Effects

×
(
|Ωi|
N

) 1
θ

︸ ︷︷ ︸
Selection Effects

.

B.1.2 Deriving the Household Herfindahl HHH in Equation (14)

We have:

HHH = HHH
i = N

∫ ∞

γ̃∗i

(Piy)
2(σ−1) G(y)dy = P2(σ−1) Nθbθ

θ − 2 (σ− 1)
(γ̃∗)2(σ−1)−θ .
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Substituting in the definition of γ̃∗i from equation (A1), we have:

HHH = P2(σ−1) θ

θ − 2 (σ− 1)
N

2(σ−1)
θ |Ω|1−

2(σ−1)
θ b2(σ−1),

and substituting in the definition of P from equation (10), we get:

HHH =

(
1 +

1− σ

θ

)2 1

1− 2(σ−1)
θ

1
|Ω| .

Defining η = 1− 2(σ−1)
θ , we then have:

HHH =
1
η

(
1 +

1− σ

θ

)2 1
|Ω| =

1
η

(
1− 2 (σ− 1)

θ
+

σ− 1
θ

)2 1
|Ω|

=
1
η

(
η +

σ− 1
θ

)2 1
|Ω| =

(η + 1)2

4η

1
|Ω| .

B.1.3 Deriving the CDF R(r) in Equation (16)

The goal here is to find the CDF of the rank value ri,j = (1− α) j + αxi,j when these values are pooled

across households i and products j. As a first step, let’s pool only across households and solve for the

conditional CDF for each product j ∈ (0, N]:

Rj(r) = Pr
[
(1− α) j + αxi,j ≤ r

]
= Pr

[
xi,j <

r− (1− α) j
α

]
.

This yields:

Rj(r) =


0, 0 ≤ r < (1− α) j

r− (1− α) j
αN

, (1− α) j ≤ r < (1− α) j + αN

1, (1− α) j + αN ≤ r ≤ N.

We then can get the unconditional CDF by integrating these conditional CDFs across all products:

R(r) = 1
N

∫ N
0 Rj(r)dj. As an intermediate step, it will be useful to assume that α < 0.5, which implies

that α < 1− α, and to re-write the boundaries on the parameter space that define the three regions of

the conditional CDF as follows:

Rj(r) =



0, min
(

r
1− α

, N
)
≤ j < N

r− (1− α) j
αN

, max
(

0,
r− αN
1− α

)
≤ j < min

(
N,

r
1− α

)
1, 0 ≤ j ≤ max

(
0,

r− αN
1− α

)
,

where the min and max conditions come from the restriction that j ∈ (0, N].

20



We can then start by calculating the CDF in the first region – where 0 ≤ r < αN – as:

R(r) =
1
N

∫ N

0
Rj(r)dj =

1
N

∫ 0

0
1× dj +

1
N

∫ r
1−α

0

r− (1− α) j
αN

dj +
1
N

∫ N

r
1−α

0× dj

=
1
N

(
r

αN
r

1− α
− 1− α

αN
1
2

(
r

1− α

)2
)

=
1
2

( r
N

)2 1
α (1− α)

,

where limits on the definite integrals come from evaluting the min and max operators above inside the

region 0 ≤ r < αN.

Next, we can calculate the CDF in the second region – where αN ≤ r < (1− α) N – as:

R(r) =
1
N

∫ r−αN
1−α

0
1× dj +

1
N

∫ r
1−α

r−αN
1−α

r− (1− α) j
αN

dj +
1
N

∫ N

r
1−α

0× dj

=
1
N

r− αN
1− α

+
1
N

(
r

αN
r

1− α
− (1− α)

αN
1
2

(
r

1− α

)2
)
− 1

N

(
r

αN
r− αN
1− α

− (1− α)

αN
1
2

(
r− αN
1− α

)2
)

=
1
N
(
r22αN (1− α)

)
+

r
(1− α) N

− α

1− α
− 1

2N

(
r2

αN (1− α)
− αN

1− α

)
=

r
N

1
1− α

− 1
2

α

1− α
.

Finally, we can calculate the CDF in the third region – where (1− α) N ≤ r ≤ N – as:

R(r) =
1
N

∫ r−αN
1−α

0
1× dj +

1
N

∫ N

r−αN
1−α

r− (1− α) j
αN

dj +
1
N

∫ N

N
0× dj

=
1
N

r− αN
1− α

+
1
N

(
r
α
− N

2
1− α

α
− 1

2
r2 − α2N2

α (1− α) N

)
=

1
2

( r
N

)2 1
α (1− α)

+
r
N

1
α (1− α)

− 1
2

(
1− α

α
+

α

1− α

)
.

Collecting these results yields the CDF for r in Equations (16).

B.1.4 Deriving the Aggregate Market Share sj in Equation (21)

To derive the aggregate market share for a product j, we need to integrate spending shares across

all households that buy j, where their spending shares are heterogeneous due to their receipt of an

idiosyncratic taste shock xi,j. Toward that end, we will use four new expressions:

1. Noting that γ̃i,j = G−1 (1− R(ri,j)
)
= b

(
R(ri,j)

)− 1
θ , we can substitute in to write the household’s

spending share on good j as:

si,j = Pσ−1
i γ̃σ−1

i,j = (Pib)
σ−1 (R (ri,j

))− σ−1
θ ,

if R(ri,j) ≤ |Ω|/N, and zero otherwise.
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2. We need to solve for the cutoff rank value r∗ so we can determine the worst idiosyncratic draw

x∗j for product j that still yields positive spending on that variety. Focusing only on the first of the

three regions from the CDFs above, we have that the cutoff r∗ satisfies R(r∗) = |Ω|/N or:

1
2

(
r∗

N

)2 1
α (1− α)

=
|Ω|
N

.

Solving the resulting quadratic equation for a positive root in (0, N] leaves: r∗ = (2 (1− α) α|Ω|N)
1
2 .

3. We can then solve for the highest j good that experiences any positive consumption in the econ-

omy, j∗, as its rank value will equal r∗ even when the idiosyncratic draw is the best possible case

of x = 0. It will satisfy r∗ = (1− α) j∗, or j∗ = r∗/ (1− α) =
(

2α|Ω|N
1−α

) 1
2
.

4. Note that for a given good j, the worst possible idiosyncratic taste draw, x∗j that yields positive

consumption of j satisfies: (1− α) j + αx∗j = r∗ = (1− α) j∗, or x∗j = 1−α
α (j∗ − j) .

We can then solve for the aggregate expenditure share of good j as:

sj =
1∫

i Edi

∫
i
Esi,jdi =

η + 1
2

N
η−1

2 |Ω|−
η+1

2

∫ x∗j

0
(R ((1− α) j + αx))

η−1
2

dx
N

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2

∫ 1−α
α (j∗−j)

0
(R ((1− α) j + αx))

η−1
2

dx
N

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2

∫ 1−α
α (j∗−j)

0

(
1
2

(
(1− α) j + αx

N

)2 1
α (1− α)

) η−1
2 dx

N

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2

∫ 1−α
α (j∗−j)

0
2

1−η
2 N1−η (α (1− α))

1−η
2 ((1− α) j + αx)η−1 dx

N

= (η + 1) (2N|Ω|)−
η+1

2 (α (1− α))
1−η

2

∫ 1−α
α (j∗−j)

0
((1− α) j + αx)η−1 dx

= (η + 1) (2N|Ω|)−
η+1

2 (α (1− α))
1−η

2
1

αη
((1− α) j + αx)η∣∣ 1−α

α (j∗−j)
0

=
η + 1

η

((
2αN|Ω|

1− α

) 1
2
)− η+1

2 (
(j∗)η − jeta

)
=

η + 1
η j∗

(
1−

(
j
j∗

)η)
.

B.1.5 Deriving the Aggregate Herfindahl HAgg in Equation (22)

The Aggregate Herfindahl is calculated as:

HAgg =
∫ j∗

0
s2

j dj =
(

η + 1
η j∗

)2 ∫ j∗

0

(
1−

(
j
j∗

)η)2

dj

=

(
η + 1
η j∗

)2 ∫ j∗

0

(
1− 2

(
j
j∗

)η

+

(
j
j∗

)2η
)

dj
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=

(
η + 1
η j∗

)2
[

j− 2
(

1
j∗

)η jη+1

η + 1
+

(
1
j∗

)2η j2η+1

2η + 1

]j∗

0

=

(
η + 1
η j∗

)2 [
j∗ − 2

j∗

η + 1
+

j∗

2η + 1

]
=

2 (η + 1)
2η + 1

1
j∗

=
2 (η + 1)

2η + 1

(
1

2|Ω|Ñ

) 1
2

,

where we define Ñ = αN/ (1− α).

B.1.6 Deriving Elasticities ε j and Markups µj and µAgg in Equations (31), (32), and (33)

To solve for the price elasticity of aggregate demand for product j, we start by expressing its total sales

as the integral of each household’s spending on j, taken over all households:

sj =
1
N

∫ x∗j

0
six ,jdx, (A2)

where we use the notation six ,j to denote the spending share of a household with taste draw on product

j equal to x. We take the partial derivative of sj in equation (A2) with respect to pj to get:

∂sj

∂pj
=

1
N

(∫ x∗j

0

∂six ,j

∂pj
dx + six∗j

,j
∂x∗j
∂pj

)
, (A3)

where the right hand side of equation (A3) follows from Leibniz’s rule. The first term can be solved

using equation (17) as:
∂six ,j

∂pj
=

∂Pσ−1 p1−σ
j γσ−1

i,j

∂pj
= (1− σ)

six ,j

pj
, (A4)

where we take the aggregate price index P as fixed. Moving on to the second term, we can evaluate

equation (17) at the marginal household with taste x∗j to get:

six∗j
,j

∂x∗j
∂pj

=
η + 1

2
N

η−1
2 |Ω|−

η+1
2 (R (r∗))

η−1
2

∂x∗j
∂pj

. (A5)

Substituting equations (A4) and (A5) back into equation (A3), we get:

∂sj

∂pj
= (1− σ)

1
pj

1
N

∫ x∗j

0
six ,jdx +

1
N

six∗j
,j

∂x∗j
∂pj

= (1− σ)
sj

pj
+

1
N

η + 1
2

(|Ω|)−
1+η

2 N
η−1

2 (R (r∗))
η−1

2
∂x∗j
∂pj

= (1− σ)
sj

pj
+

1
N

η + 1
2

(|Ω|)−
1+η

2 N
η−1

2

(
1− α

2αN2 (j∗)
) η−1

2 ∂x∗j
∂pj
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= (1− σ)
sj

pj
+

η + 1
2N|Ω|

∂x∗j
∂pj

. (A6)

To approximate ∂x∗j /∂pj, we start with the relationship:

1
2

(
ri,j

N

)2 1
α (1− α)

= R
(
(1− α) j + αxi,j

)
= 1− G

(
γi,j

pj

)
= bθγ−θ

i,j pθ
j , (A7)

and differentiate to yield:
ri,j

1− α

1
N2

∂xi,j

∂pj
= θbθγ−θ

i,j pθ−1
j , (A8)

where we’ve substituted ∂ri,j/∂xi,j = α. We then evaluate equation (A8) at ri,j = r∗ and γ̃i,j = γ̃∗ using

equation (18) and add a minus sign to reflect the fact that increase in the price of good j should reduce

the set of households purchasing that good, to get:

∂x∗j
∂pj

= −θbθγ−θ
i,j pθ−1

j N2 1− α

r∗

= −θbθ (γ̃∗)−θ p−1
j N2 1

j∗

= −θ
|Ω|
N

p−1
j N2 1

j∗

= −θ|Ω|Np−1
j

1
j∗

= − θ

j∗
|Ω|N 1

pj
.

Inserting this into equation (A6), we have:

∂sj

∂pj
= (1− σ)

sj

pj
+

η + 1
2N|Ω|

∂x∗j
∂pj

= (1− σ)
sj

pj
− η + 1

2N|Ω|
θ

j∗
|Ω|N 1

pj

= (1− σ)
sj

pj
− η + 1

j∗
θ

2
1
pj

= (1− σ)
sj

pj
− ηθ

2
(

1−
(

j
j∗

)η) sj

pj
, (A9)

where the last substitution uses the definition of product share in equation (21). Equation (30) implies

that product j’s price elasticity of demand ε j can be written as:

ε j = 1−
∂sj

∂pj

pj

sj
= σ︸︷︷︸

Intensive Margin

+

(
1−

(
j
j∗

)η)−1

[θ/2− (σ− 1)]︸ ︷︷ ︸
Extensive Margin

> σ. (A10)
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The markup µj then be written (in gross terms) as:

µj =
ε j

ε j − 1
=

σ + θ(η+1)
2j∗sj

σ + θ(η+1)
2j∗sj

− 1
. (A11)

The aggregate markup µAgg is equal to the ratio of aggregate sales to aggregate costs. Using

equations (21) and (A10), it can be written as:

µAgg =

∫ j∗

0 sjdj∫ j∗
0 sj

ε j−1
ε j

dj
=

[
θ + (σ− 1)2

σ2 − 1
2

ηθ2

σ2

(
η + 1
2 + θ

)
× 2F1

(
1,

1
η

; 1 +
1
η

;
2σ

2 + θ

)]−1

, (A12)

where we’ve used Mathematica to evaluate and simplify this final expression.

B.2 Model Simulation Results

In this section, we explore numerical simulations of our model to test the validity of our elasticity

approximation as well as to explore how restrictive the assumption of a stable distribution of Pareto

taste-adjusted prices is for our conclusion.

We simulate a discrete approximation to the main model in the paper by drawing a large random

vector γ̃rand of price-adjusted tastes from a Pareto distribution for a large sample of households, using

the same parameters as our baseline model. Our random sample uses 2.25 million draws for each of

20,000 households since we are trying to approximate a continuum of products from [0,N]. However,

rather than using analytical formulas to calculate household market shares, for each household we

instead keep the random set Ω = γ̃rand > γ̃∗ and then calculate a numerical price index directly from

P =
(∫

k∈Ωi
(γ̃i,k)

σ−1 dk
) 1

1−σ
and then compute market shares from Equation 13. These formulas hold

for arbitrary distributions of taste, so even though we still simulate the taste draws from a Pareto dis-

tribution, in this simulation we are using no analytical results that rely on this assumption, which also

means that we can also perform a similar procedure even if tastes do not follow a Pareto distribution.

In order to get aggregate market shares, we must identify the particular products that each house-

hold consumes. In order to do so, we use our rank function Equation 15 with a random uniform draw

to compute for each household, the aggregate ranking of each of the 2.25 million possible products in

[0,N] and then compute household i′s particular idiosyncratic rank for each of the 2.25 million j prod-

ucts. We then sort γ̃rand and map the highest value to ri,j = 0, the second highest value to ri,j = 1 and

so on to ri,j = 2.25 million. Finally, since for each ri,j, we know the value of j, this means that we then

know household i’s taste draw and resulting individual spending for each aggregate product j. For

example, the households highest γ̃rand draw will always map to their ri,j = 0, but the corresponding

aggregate j which household 1 ranks highest might be j = 0, the j which household 2 ranks highest

might be j = 2043, and the j which household 3 ranks highest might be j = 17. Once we have these
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household specific spending shares for each product j, we can then numerically add up total spending

on each product j to calculate aggregate market shares.

Since these are computed entirely numerically, they do not rely on any of our closed form solutions

for aggregate market shares and are thus again valid even under departures from the Pareto distribu-

tion. As we note in 4.5, our analytical market shares are only valid under the Pareto distribution so

we must approximate the elasticity of demand by modeling a price change as a switch with another

product in the aggregate ranking. Since these numerical results do not rely on the Pareto distribution,

we can use this numerical model to simulate the aggregate elasticity of demand and resulting markup

for a product j by just raising all households’ random taste draw for that product by a small amount.

Note that calculating elasticities for each j requires re-simulating a new set of aggregate market shares.

For these sample sizes, computing an elasticity for a single j requires roughly 2 hours of computational

time, so it is infeasible to simulate the elasticity of demand for all 2.5 million products. Instead, we

compute the elasticity of demand and implied markups for 50 different values of j distributed through-

out the product space. Figure A17 compares this simulated markup to our analytical approximation

and shows that the analytical approach produces essentially identical results (noting that there is still

obvious numerical simulation error even with these large sample sizes).

Figure A17: Simulated vs. Analytical Approximation for Markup
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As stressed throughout the paper, our analytical derivations and implications of changes in N are

only valid under the assumption that the distribution of price-adjusted tastes continues to follow a

Pareto distribution as we vary N. If markups were fixed for all products, then assuming that the
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distribution of price-adjusted tastes is held fixed as N varies would be a natural benchmark. How-

ever, our model instead implies that optimal markups do vary across products, and that the markups

for individual products change as we vary N. This implies that if household tastes for products and

their marginal costs held fixed, but we allow prices to change along with optimal markups when N

changes, then there will necessarily be a violation of the assumed Pareto distribution. Since all of our

analytical results assume the Pareto distribution of price-adjusted tastes, this means that our analytical

comparative statics to changes in N and F which induce changes in product markups are technically

comparative statics in response to these parameter changes plus whatever implicit changes in house-

hold tastes (or marginal costs) are necessary to preserve a Pareto distribution of price-adjusted tastes

after markups adjust. In practice, high turnover means that the set of products purchased in 2004 and

in 2016 is mostly disjoint, so one can primarily interpret these as taste shifts for new products rather

than taste changes for existing products.10 However, if the required taste shifts necessary to main-

tain the Pareto distribution under our counterfactuals were substantial, then this would potentially

substantively change the interpretation of the welfare effects of changes in N.

However, we now use our numerical model to show that even though there are indeed implicit

taste changes necessary to maintain the Pareto distribution as N changes, in practice these required

taste changes are quantitatively small and actually work against our conclusion that N is welfare

improving. We thus conclude that even though this is a large potential issue for the interpretation

of our comparative statics, it is of little quantitative importance in practice. Specifically, we perform

the following exercise: For the initial value of N in 2004, we simulate our numerical model exactly as

described above. Given household i’s resulting distribution of tastes for all j products γ̃rand
i,j , we can

then compute a households actual (non-price adjusted) taste for product j γrand
i,j = γ̃rand

i,j µj using the

analytical formula for µj from Section 4.5.11 Note that as we explore above, even though our numerical

model does not otherwise rely on analytical results, this analytical formula for the markup is valid

since we are drawing the numerical distribution of price-adjusted tastes in the model from a Pareto

distribution.

We then increase N in the model but hold the particular random realizations of γ̃rand
i,j exactly fixed

in the new simulation. Thus, by assumption, the values of price-adjusted tastes will be identical in

the two simulations. However, as N increases, the function µj and resulting prices will change. If

price-adjusted tastes are fixed by assumption, but prices change then household tastes must change.12.

How large are the required taste changes necessary to maintain an identical realization from a

Pareto distribution of price-adjusted tastes as N increases? Figure A18 shows that these changes are

10Only 13.2% of UPCs purchased in 2004 are still purchased in 2016.
11For notational simplicity, we assume that marginal cost is 1 for all products. More generally this approach actually

recovers the distribution of marginal cost adjusted tastes. As long as we assume marginal cost is constant as we vary N, one
can interpret changes in taste and changes in marginal cost adjusted taste equivalently so these are equivalent exercises.

12Further, since markup changes are a monotonic function of j but individual rankings of the j products are non-monotonic
when α > 1, these price changes will be non-monotonic over individual households’ consumption baskets.
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small. The left panel plots the implied taste draws as a function of initial aggregate product rank j

for a fixed household before and after a 70% increase in N.13 Clearly the increase in N induces some

implied changes in tastes in order to maintain the Pareto distribution for price-adjusted tastes, but

it is also clear that the requisite taste changes are small. The right panel of the plot shows a scatter

plot of the realizations of taste before and after the increase in N. Overall the R2 is above 0.999,

so there is an almost perfect correlation of tastes under the two scenarios. In order to maintain an

identical distribution of price-adjusted tastes, there is a modest decline in the implied average taste

when N increases, which lowers implied welfare by roughly 1.3%. This occurs because as N increases,

markups for incumbent products decline, which makes price fall and thus taste/price rise. In order to

maintain a constant taste/price for that product, this means taste for those products must decline.

Figure A18: Household Taste Changes Required to Maintain Pareto with N increase

(a): Initial and New Tastes by Aggregate Product Rank (b): Initial vs. New Tastes
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However, the welfare conclusion in the body of the paper under the assumed constant Pareto dis-

tribution of price-adjusted tastes is that an increase in N of 70% raises welfare by roughly 9.5%. The

numerical results above show that that those welfare results are only valid if there is also a simultane-

ous modest decline in non-price adjusted tastes when N rises, suggesting that if one instead held tastes

fixed when increasing N and departed from Pareto, the welfare increase would be slightly stronger.

While such an exercise could potentially be performed numerically, it would require solving for the

entire equilibrium distribution of the elasticity of demand and resulting markups numerically. As dis-

cussed above, the numerical calculation of the elasticity of demand (even for a single product in partial

equilibrium) is very computationally costly.

Finally, we use this simulated model to also explore the role of potential measurement error in

13Here we focus on products which are consumed in both scenarios so that such taste comparisons are relevant.
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driving concentration trends. Although A.2 shows that the Nielsen data tracks aggregate spending

measures fairly closely, the declining within-household spending patterns suggest there may be some

role for attrition related measurement error across time. Furthermore, even though households are

supposed to report online purchases and that Figure A1 shows that online spending is relatively

unimportant for these sectors, it is possible that under-reported online spending might also drive

increasing measurement error across time.

While it is difficult to analytically characterize the role of various forms of measurement error for

concentration trends, we follow the indirect inference approach in Berger and Vavra (2015) and Berger

and Vavra (2019) and simulate various flexible forms of measurement error in the numerical version

of our model under the assumption that all other model parameters are held fixed. Specifically, we

simulate the discrete version of our model and separately consider the effects of measurement error

on household and aggregate concentration. We focus primarily on measurement error arising from

failing to report transactions entirely rather than from misreporting the size of a transaction, since the

former is much more likely given the structure of the Homescan data collection. We consider three

types of potential under-reporting encompassing various different extremes: 1) households failing

to report some randomly chosen purchases, 2) households failing to report their smallest purchases

and 3) households failing to report their largest transactions. Overall, we find that while measurement

error can change both household and aggregate concentration, it pushes both household and aggregate

concentration in the same direction and so is unlikely to be an important explanation for the observed

rise in niche consumption. Unsurprisingly, the first and second form of measurement error raise both

household and aggregate concentration while the third form of measurement error instead lowers both

concentration measures. Furthermore, the second form of measurement error seems most plausible

given the nature of the Nielsen data, since a household might fail to report a small one-off purchase

which is likely to be a small share of that household’s annual spending but is unlikely to consistently

fail to report large, regular purchases that are likely to be a large share of annual spending. Since the

third form of measurement error is especially unlikely, this means that measurement error is then also

quite unlikely to explain a decline in aggregate concentration. A decline in aggregate concentration

with flat household concentration would generally be sufficient to infer an increase in N. Overall,

these simulation results strongly suggest that measurement error does not drive the rise of niche

consumption.

B.3 Specification with Linear Demand

In this subsection, we sketch a comparable setup to our baseline but using a linear demand system,

following Melitz and Ottaviano (2008). We include key analytical results, such as derivations of House-

hold and Aggregate Herfindhals, but additional details are available on request. We owe particular

thanks to Levi Crews and Agustin Gutierrez for their outstanding research assistance in deriving the
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below expressions.

B.3.1 Setup

We assume household preferences are defined over a continuum of differentiated varieties indexed by

k ∈ (0, N]. All consumers share the same utility function given by

Ui = β
∫

k∈(0,N]
γi,kCi,kdk− 1

2
σ
∫

k∈(0,N]
(γi,kCi,k)

2dk− 1
2

η

(∫
k∈(0,N]

γi,kCi,kdk
)2

,

where β, σ, η, and all preference shifters γi,k are all non-negative. We impose an additional cost of

consuming differentiated varieties, which we assume takes an exponential form in the measure of

consumed varieties. Specifically, household i pays a cost F× (|Ωi|)ε in units of the numeraire, where

Ωi is the set of differentiated varieties consumed in a positive amount by household i and F is non-

negative. Household i therefore solves:

max
{Ci,k}

Ui s.t.
∫

k∈(0,N]
pi,kCi,kdk + F× (|Ωi|)ε ≤ E.

We continue assume that price-adjusted tastes for each k ∈ (0, N] are distributed Pareto for each

household i with shape θ and support [b, ∞) with b > 0. Because there is a continuum of varieties,

each household faces the same set of taste-adjusted prices, though as before, their ranking of varieties

within that set may differ. It can be shown that there exists a unique optimal measure of consumed

varieties if and only if β
b

(
θ

θ+2

)
N > E− F× Nε. In the expressions that follow, assume this condition

holds.

B.3.2 Key Expressions

Household expenditure shares in this environment can be written in closed-form as:

si,k =
1
|Ωi|

(
(θ + 1) (θ + 2)

θ

)(
1− γ̃∗

γ̃i,k

)
γ̃∗

γ̃i,k
,

where γ̃∗ = |Ω|− 1
θ N

1
θ b. This then allows us to calculate and express the Household Herfindahl as:

HHH =

[
2(θ + 2)(θ + 1)2

θ(θ + 3)(θ + 4)

]
1
|Ω| .

To move to the Aggregate Herfindahl, we impose the same form for the rank function as we used

in the main analysis and obtain an expression for the aggregate share of product j:

sj =

[
(θ + 1)(θ + 2)

θ

] [
2(1− α)

αN|Ω|

] 1
2
{

θ

θ + 2

[
1−

(
j
j∗

) 2
θ +1
]
− θ

θ + 4

[
1−

(
j
j∗

) 4
θ +1
]}

.
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This leads to the expression for the Aggregate Herfindahl:

HAgg =
8
3

[
(θ + 1)(7θ + 12)
(3θ + 4)(3θ + 8)

] [
1

2Ñ|Ω|

] 1
2

.

B.3.3 Comparison to the CES Case

When we confront these expressions with the data to extract changes in θ and Ñ, we find very similar

results as what we found in the baseline CES case. In particular, the implied Ñ increases by roughly

70-80 percent, while the value for θ declines very slightly.

The implied value for θ, however, is much lower in the linear demand model than in the CES

model. Though there is not a clear empirical benchmark for the value of θ, the value strikes as as less

plausible than that from the CES case. Further, the aggregate market share distribution for such low

values of θ do not conform as well with the CDF of market shares in our Nielsen data, as plotted in

Figure 7. As a result, we use the CES specification as our benchmark.
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