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1. Introduction 

In recent years, Robert Barro's [1974] version of "Ricardian 

equivalence" has stimulated much controversy concerning the effects of 

government budget deficits and social security programs. In his well— 

known paper, Barro supplented the traditional overlapping generations 

model with intergenerational altruism, and argued, in essence, that 

voluntary transfers between parents and children cause the represen- 

tative family to behave as though it is a single, infinite—lived 

individual——a "dynastic" unit. From the point of view of the family, 

neither debt nor social security alters available alternatives; both are 

therefore neutral. Thus, Barro's analysis identifies the strength of 

intergenerational altruism as a key factor in determining tne effects of 

government bond issues and public pension programs. 

Recently, Bernheim and Bagwell [1988] have argued against the 

applicability of Ricardian equivalence by demonstrating that Barro's 
assumptions guarantee the irrelevance of all redistributional policies, 

distortionary taxes, and prices——the neutrality of fiscal policy is only 
the "tip of the iceburg." Their results rely on the existence of 

intrafamily linkages, which arise whenever two unrelated individuals 

produce a common child, Bernheim and Eagwell concluded that, since 

these other propositions do not hold even approxirrately, one cannot 

assert that the world is approximately dynastic. Accordingly, all 

conclusions following from the dynastic framework (including Ricardian 

equivalence) are suspect. 

Bernheim and Bagwell also noted that it might be possible to 



reinstate approximate Ricardian equivalence without generating untenable 

consequences by introducing a small amount of friction'. Intuitively, 
friction would cumulate with each link and would become substantial for 

long chains. Since Ricardian equivalence (for debt redeemed within a 

few generations) presumably depends on short chains while the Bernheim— 

Bagwell results presurrably depand on long ones (we note that these 

presumptions may be erroneous——see section 7), the introduction of 

friction mit just do the trick, 

The purpose of this paper is to evaluate the preceding argument by 

formally introduciing various forms of friction into a model with 

altruistically motivated intergenerational transfers. We focus on 

frictions arising from three sources: the derivation of pleasure 

directly from the act of giving; incomplete information about others' 

preferences; and egalitarian social norms that constrain parents to 

divide transfers evenly between children. The first two sources of 

friction turn out to be quite similar analytically, and give rise to 

qualitatively similar results, In particular, one can obtain 

approxite Ricardian equivalence by introducing a sufficiently small 

amount of friction. Furthermore, for any given amount of friction, one 

can reinstate the relevance of other redistributional policies by taking 

the population to be sufficiently large (it follows from this that taxes 

will distort behavior, and prices will play an important allocational 

role). However, there is a hitch: by simultaneously taking friction to 

be snll and population to be large, one drives each individual's 

marginal propensity to consume out of wealth to zero. In resolving 
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several paradoxes posed by Bernheim and gwell, one therefore merely 

encoiters another. 

The introduction of elitarian constraints generates some 

intruiging results. Most importantly, one obtains exact Ricardian 

equivalence in a world where other redistributional policies have 

significant allocative effects. Since there is no need to assume that 

this source of friction is "small," one does not encounter the own— 

wealth effect puzzle noted above. We are troubled however by the 

rather ad hoc nature of this constraint. In addition, its imposition 

generates a new paradox: we show that an exogenous increase in the 

wealth of any given individual is never Pareto improving. Consequently, 

we conclude that the theoretical case for Ricardian equivalence remeins 

tenuous even when one explicitly recognizes sources of economic 

friction. 

We ornize our discussion as follows. Section 2 lays out the 

basic model, cescribes an appropriate notion of equilibrium, and 

presents some technical results which facilitate the analysis of 

subsequent sections. In sections 3 through 6 we consider, respectively, 

specialized cases in which a) there is no friction, b) altruists derive 

utility in part directly from the act of giving, c) agents have 

incomplete information about each others' preferences, and d) parents 

are constrained to divide transfers equally between their children. 

Section 7 contains some concluding remarks. We defer all technical 

manipulations and proofs to the appendices. Appendix A contains a 

complete treatment of comparative statics for cases b and c above, while 
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Appendix B treats case d. We present proofs of specific results in 

Appendix C. 

2. The Model 

We ccnsider an economy comprised of 2N households. Despite the 

fact that we treat each household as if it consists of a single 

individual, one should for the purpose of interpretation think of 

households as nErried couples. The population is evenly divided between 

two groups of households, henceforth referred to as "parents" and 

children," Thus, there are N parents (labelled p., i = 1,...,N), 
and N children (labelled k., i = 1,... ,N), Eve parent has two 

children, and every child has two parents (reflecting the fact that 

spouses originally come from different households). We assume in 

particular that p's children are k and k1 (where, by 

convention, kNl 
= kj. It is therefore appropriate to think of 

intrafamily relations as a kind of circle (pictured in figure 1), 

consisting of an outer layer (parents) and an inner layer (children). 

This representation of intrafamily relations is unquestionably 

highly stylized, and does not reflect the full complexity of family 

networks, particularly in cases where these networks span more than two 

generations (see Bernheim and Bagwell [1986]). On the other hand, this 

framework has the advantage of rendering our current analytic objectives 

tractable, while in all likelihood doing very little violence to the 

underlying economic issues. We return to this point in section 7, and 

argue that more realistic modelling of family networks would only tend 

to strengthen our conclusions. 
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Parent is endowed with wealth, W similarly, child is 

endowed with w. Parent P. divides his wealth between consumption 

(Ci, a transfer to child k (T), and a transfer to child k (tj, 
1 1 1 1+1 1 

C. = — T. — t. 1 1 1 1 

subject, of course, to non—netivity constraints (C. > 0, T. > 0, 

t. > 0). Child i receives transfers from parents p and p1 
(where, by convention, p p1), and consumes all available resources 

C. = w. + T. + t. 1 1 1 i1 
We suppose that children are completely selfish, so that the well- 

being of child k. is given by 

u. = u(c.) 

With probability It, parent is also completely selfish, so that his 

well being is given by 

= u(Ci 

(note that the felicity function for parents is identical to that for 

children——this restriction is inessential). With probability 

(1 — it), parent p. is altruistic; this entails non—paternalistic 

altruism for his child (as in Frro [1974]), and possibly some concern 

for the magnitude of his bequests (as in Andreoni [1986]): 

= u(C.) + [u(c,) + u(c.1)} + m[v(T.) + v(tj] 
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(a, > 0). For simplicity, we assume that the random events that 

determine parental preferences are distributed independently over 

parents. Throughout, we also assuma that u() and v() are twice 

continuously differentiable and strictly concave. 

The final allocation of resources is determined through a 

simultaneous move game, in which each parent chooses his own 

consumption, as well as intergenerational transfers. Each parent's 

preferences are private information; while parent p. knows whether or 

not he himself is altruistic, his fnformation concerning others is 

limited to owledge of the distribution of preferences described 

above. It is therefore necessary to employ a solution concept that 

allows for incomplete information. The natural choice is to focus 

attention on Eayesian Nash Eauilibria (see Harsanyi [1967—68]). 

In a Bayesian Nash Equilibrium (hencefort BNE), we assign to each 

parent a function mapping his preferences into decisions. These 

decisions m.st maximize his expected utility given associated 

preferences, and given the distribution of other parents' decisions 

induced by their assigned fLmctions. In the current context, a BNE has 

a particularly simple form. When parent i is selfish, he will 

obviously set T1, 
t. = 0, rerdless of what other rents do. Thus, 

we need only describe the choices, (Tt1) which are contingent upon 
* *N 

parent I being altruistic. Accordingly, (T.,t.)i1 
is a BNE if for 

all i, (T,t) solves 
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(3) max u(W. - T. - t,) + (1 - .)[u(w. + T. + t ) + u(w. + T + t) 
T t 1 1 1 1 1 x—1 i+1 i+1 

i' i 

+ Iu(w. + T,) + u(w + t)]} + a[v(T ) + v(t )j 1 1 i+1 1 i I 

(subject to non—negativity constants). We note in passing that when it 

equals either 3 or 1 (so that information is complete), this 

definition reduces to the sore standard notion of a Nash equilibrium. 

Throughout much of our analysis, we will assume that resources are 

initially distributed evenly within generations. That is, 

W, =W 
1 

w = w 
1 

fcr all i. When we assume symmetric endowments, we will also focus 

attention on symmetric equilibria, which have the property that the 

magnitudes of all transfers (conditional upon the parent being 

* * * 

altruistic) are identical (i.e., T. = t. = T for all i 
1 1 

We now present three technical results which justify the 

comparative statics performed in subseqnt sections. The first of 

these establishes existence. 

Theorem 1: For all endowment profiles (W,w.) , 
a BNE exists. 

1 1 i1 

Next, we show that symmetric equilibria do indeed exist when 

endowments are symmetric. 

Theorem 2: If endowments are distributed symmetrically, then 

* 
there exists a symmetric BNE. Furthermore, the associated transfer, T 



is independent of N. 

The second portion of this result establishes that the allocation of 

resources is in some important sense independent of population size. 

This conolusion wIll feature prominently in the ensuing analysis. 

Finally, we establish a iqueness result. 

Theorem 3: If a > 0 or it > 0, then there is a unique BNE. If 
a = 0 and a = 0, 

When altruism is imperfect (a or it positive), equilibrium is unique. 

In particular, we lose nothing at all by focusing on symmetric 

equilibria for the case of symmetric endowments. In a frictionless 

world, there mey indeed be a multiplicity of equilibria (more on this 

later), but all such equilibria are equivalent, so once ain our 

analysis involves no loss of generality. 

Throughout the following sections, we will focus on interior 

equilibria (i.e., parents meke positive transfers to their children). 

Since we will be priuarily concerned with environments that are "almost" 

symmetric and frictionless, it is sufficient to assume that 

u'(W) < u'(w) 

As a final preliminary step, we describe two types of "fiscal" 

policies of particular interest. The first of these corresponds to the 

use of governnt debt. The level of debt, 8, affects endowments as 

follows: 
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dw. 
1 

for all i. That is, the government redistributes resources from the 

younger generation to the older generation, presunbly by deferring 

taxes into the future. Note that this experiment is a pure case of 

intergenerational redistributIon, since all members of the same 

generation are affected identically. 
- 

The second type of fiscal policy considered here amounts to a pure 

redistributions within the parents' generation. In particular, . 
represents a transfer to parent p, financed out of "general revenues' 

dW. I if ji 
d. 

1 —1/(N — 1) otheraise 

It would also be natural to analyze a third type of OliC 

consisting of redistributions within the children's generation. 

Analytically, such policies are extremely similar to redistributions 

within the parent's generation, so we do not consider them explicitly. 

Note that, taken together, these three sets of instruments are 

comprehensive, in the sense that they allow the governrint to achieve 

any conceivable distribution of resources. 

Throughout the rest of this paper, we focus on the extent to which 

fiscal instruments redistribute consumption in equilibrium. For each 

policy p (where p is either public debt, 5, or an intragenerational 

transfer, tj, we define a distributional index: 
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N dC dc. 
= (Ii + 
j =1 

The logic of this index is straightforward. If the policy p has no 

effect on the consumption of any individual, then R = 0. Thus, 

0 corresponds to the Ricardian equivalence hypothesis, and 

R 1 = for all i corresponds to the Rernheim—Bagwell neutrality 

proposition. Note also that, in the absence of operative 

intergenerational linkages, for each of the policies described - 

above, R =- 1 (redistributing endowments leads to a one—for—one 

redistribution of consumption). Thus, a iue of R between 0 and 

1 tells us how closely behavior conforms to each of the polar cases. 

3, Perfect Aitni 

We begin by considering a frictionless world, in which altruism is 

perfectly nonpaternalistic (a = = 0). Since such environrnts have 

received much prior attention (see rro [1974] and Bernheim and gwell 

[1988]), this section contains no new results as such. Rather, we 

restate known neutrality results within the context of our current model 

in order to provide a "base case" with which to compare the results of 

subsequent sections. 

Under the assumptions specified in section 2, an interior 

equilibrium nust satisfy 

(4A) u(C) = u(c) 

(4B) u(C.) = u(c) 
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where 

* * * 
C =L —T. —t 
1 1 1 i 

and 

* * * 
c. = w. + T, + t. 1 1 1 i—I 

for all i. Given our concavity assumptions, these conditions are also 

sufficient to establish an equilibrium. Note that (4A), (4B), (5A), and 

(58) form a system of 4N equations in 4N unknowns. Ordinarily, one 

would think that the system would be fully determined. However, brief 

inspection reveals that one of the equations given in (4A) and (48) is 

redundant (recall that 0N1 
S 

01). Thus, the system is under— 

determined. 

This does not, however, reflect real indeterrniriancy of resource 

allocation. To see this, we sum (5A) and (58) over i to obtain 

* * 
(C. + c. — w. — w. ) = o 

1 1 1 1 

Note that (4A), (4B), and (6) (omitting the redundant equation) form a 

system of 2N equations in 2N unknoms. Accordingly, it seems likely 

that consumption is fully determined. In fact, we have already 

established that there is a a-uique solution to this system of equations 

(Theorem 3). 

In contrast, transfers are indeterminant. To understand this 

point, refer ain to figure 1. Suppose that an equilibrium prevails. 

If every parent simply increases T. by $1 and decreases t by $1, 
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the allocation of real resources retrains unchanged. Thus, the new 

profile of transfers is also an equilibrium. Equilibrium transfers are 

therefore defined only up to an additive constant, with the sole 

restriction that all transfers sist be positive. 
Accordingly, we ny ignore transfers completely, and describe the 

equilibrium consumption profile directly through equations (4A), (4B), 

and (6), Simple inspection of these equations reveals that the 

allocation of resources depends only upon total wealth, 

N 

] (W. + 
i=1 

Changes in the distribution of wealth have no effect on the consumption 

of any individual. 

Several neutrality results follow immediately from this 

observation. We begin with rro's [1974] well—iciown version of 

Ricardian equivalence: 

Propositioni: If a=it=O, then 5 =0. 

The proof simply consists of noting that 

+ wj) = 0 

and invoking the preceding observations. 

Bernheis and Bagwell [1988] have criticized rro's analysis on 

two grounds. First, they argue that, in a world with intrafamily 

linkages, rro' s assumptions (perfect non—çaternalistic altri.iism 
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coupled with operative transfers) imply that all redistributional 

policies are neutral. In the current context, we obtain 

Proposition 2: if 5 = = 0, then R 0 for all i 

This result follows directly from the observation that 

(i (. + )) = 0 
3 i1 

analogously to Proposition 1. 

Proposition 2 indicates that policies that redistribute resources 

beten apparently unrelated members of the same generation have no 

effects on resource allocation. Using this result, one can also show 

that, in somewhat more elaborate environments, apparently distortionary 

taxes have no effects on behavior, and that prices are not only 

indeterminate, but also play no role in the resource allocation process 

see Bernheim and gwell [1988] and Bernheim [1986]). 
Bernheim and Bagwell also offered, but did not emphasize, a second 

criticism of the dynastic framework: as the population size increases, 

each individual's merginal propensity to consume out of his own wealth 

falls to zero. As we shall see, this observation turns out to be 

particularly important in models that incorporate small amounts of 

friction, in the current context, we have 

* 
dC. 

Proposition 3: If a = = 0, lim = 0 for all I. 

N- i 

To establish Proposition 3, we argue as follows. 8y Proposition 2 

(along with a similar result for children), equalizing the distribution 
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of resources within generations has no effect on consumption. Thus, we 

can invoke Theorem 3, to conclude that the distribution of consumption 
is symmetric both before and after the incremental infusion of wealth. 

It is trivial to check that C (s C for all i) and c (a c for 
1 1 

all i) are both increasing in aggregate resources. Thus, 

dC./dW. < i/N, from which the result follows immediately. 

Empirically speaking, Proposition 2 (along with its corollaries) 

and Proposition 3 are both untenable, Indeed, since these properties do 

not hold even as an approximation in the raal. world, eality is in dome 

critical sense not even approximately like the model described here. 

Accordingly, rnheim and gwell conclude that it is inapropriate to 

take the Ricardian equivalence result even as a "rule of thumb" guide to 

policy, without first specifying the nature of the approximation in 

great detail. We undertake this task in subsequent sections, 

4. Joy of Giving 

in this section we analyze the case in which all parents are 

altruistic and, in addition, care directly about the size of the 

transfers they aeke. Formally, a > 0 and m = 0. Parent i chooses 

the transfers T1 and t to satisfy 

(7A) u'(C.) = u'(c.) + av'(T) 

(7E) u'(C1) 
= u'(c.1) + av'(t) 

In deciding on the optimal transfers, parent i considers reducing his 

owr consumption, C, by one unit. If he transfers this unit to child 
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1, the parent's utility is increased by u'(c) + mv'(Tj; if he 

transfers this unit of consumption good to child i + 1, then the 

parent's utility is increased by u'(c11) + av'(t.). The first—order 

conditions (7A) and (7B) show that a consumer chooses T1 
and t so 

that the rrarginal utility loss from decreasing his own consumption is 

equal to the nBrginal utility in from increasing either T or t.. 

To obtain comparative static results for this model, one 

differentiates the entire system formed by equations (7A) and (7B) (for 

each i), along with the budget constraints. The following result is 

extremely helpful for evaluating the effects of specific policy 

exercises. 

Theorem 4: If it = 0, > 0, and the initial distribution of 

endowments is symmetric, then 

= j-k + - - X) ) 
v(T) + u"(c) 

where X solves 

—1 v"(T) v"(T) [av"(Tfl2 
X = 2[1 + u"(c) + u"(C) 

+ u"(C)u"(c) 

Since the formula for X is quadratic, there are, of course, two 

solutions. Given the nature of this formula, one root is simply the 

inverse of the of the other. If a ) 0, then the expression on the 

right hand side strictly exceeds 2, so that one solution exceeds unity, 
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while the other lies beeen C and 1, It is easy to check that the 

value of dC/dW does not depend upon whether one uses the larger or k 

smaller root. For convenience, we henceforth adopt the convention that 

0 < X < 1. 

Now consider the effects of a Ricardian redistribution in which 

is increased by one unit and w is decreased by one unit for all 

i. It is of course feasible for all C and c to remain unchanged 

in the face of this experirint, However, this inriance of consumption 

is not, in general, optimal as argued below. - 

Suppose that all parents intain their own consumption unchanged 

and increase T1 and t each by 1/2, In this case all c. will be 

mchanged. However, the first—order conditions (7A) and (7B) will fail 
to be satisfied because the increase in transfers leads to a reduction 

in av'(T.) and av'(t). Therefore, the narginal utility of parent i's 

consumption, u'(Ci), would exceed the right—hand sides of (7A) and (7B), 

which represent the narginal utility associated with an additional 

transfer. To re—establish optimality, parent i would increase his own 

consumption and decrease his transfers. Therefore, the Ricardian 

experiment increases the consumption of parents and reduces the 

consumption of children. 

The argument that consumption would not remain unchanged in the 

face of a Ricardian experinnt ss based on the fact that increased 

transfers would reduce av'(T1) and av'(t.) and therefore violate the 

first—order conditions (7A) and (7B). However, if a is srrll then 

this effect will be small and the impact on consumption will be minimal. 
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Thus, we would expect the effect of deficits on consumption to be 

continuous in a. Likewise, one would expect to obtain a similar 

continuity property with respect to the effect of transfer policies on 

consumption. Formelly, we have 

Proposition 4: If m = 0 and the initial distribution of 

6 i 
endowments is symmetric, then urn R = urn R = 0. 

a+0 

Proposition 4 tails us that by taking friction to be small we can 

obtain both Ricardian equivalence and the stronger neutrality properties 

as arbitrarily good approximations. By itself, this result does not 

bolster the Ricardian position. However, the key point is that for ¶. 

the quality of the approximation depends upon N, whereas for & it 
does not. Indeed, since public debt does not alter the symmetry of 

a 
endowments, then by Theorem 2 R is completely independent of N. In 

contrast, R 
' varies with systematically with N. 

In keeping with the intuition given in the introduction to this 

paper, we wish to explore the behavior of R as N becomes very 

large. We therefore consider in detail the effect of t. on the 
1 

distribution of consumption in large economies. Note that dC/d is 

the sum of tao components: (1) the direct effect of the increase in 

parent is wealth, dC/dW; and (2) the effect on parent l's 

consumption of the reduction in parent j's wealth by (N — 1)1 units, 

for all j i. To evaluate these components in a large economy, we 

take the limit of the formula given in Theorem 4 (recalling that, since 

endowments are symmetric, C, , and T do not depend on N): 
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dC* 
= X)1 (2 + 

Thus, an increase in Wk has a positive effect on C. but the 

magnitude of the effect declines geometrically as j—k increases—— 

friction dissipates the effect on more distant relatives. We depict 

this pattern graphically in figure 2. 

Consider now the tao component effects of .. For a large 

economy, the effect on parent j's wealth is negligible. Indeed, it 

follows from Theorem 4 that even summing over all j I, there is no 

effect on arent i's consumption (i.e. effect (ii) above is eaual to 

zero). Intuitively, in large economies almost all j are only 

distantly related to i, so that the friction in any chain linking j 

to i almost completely dissipates the effects of changes in j's 

wealth. Thus, In a large economy, the effect on parent i's consumption 

of the redistributive transfer 'r• is the same as the effect on parent 

i's consumption of an increase In parent l's wealth (effect (i) above). 

Inspection of Theorem 4 reveals that, even in a large economy, dC/dW1 

is positive. This follows from the fact that if parent i received an 

additional ixit of wealth and did not increase his own consumption, then 

he would increase his transfers 
T1 

and 
t1, thereby increasing 

c1 
and 

c.÷1. 
In this case, the rrrginal utility of his own 

consumption, u'(C1), 
would exceed the right—hand sides of the first— 

order conditions (7A) and (7B). In order to satisfy the first—order 

conditions, parent i would increase his own consumption. 
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Finally, since the effects of wealth injections are localized, in 

large economies we would expect to redistribute consumption from 

the general population to the close relatives of 1, so that in the 

limit R 
1 + 1. We sumrxarize these conclusions in Proposition 5. 

Proposition 5: If t = C, a > 0, and the initial distribution 

of endowments is symmetric, then lim = 1. Furthermore, 

dC* dC* 
I . I lim — lim — > 0. 

dc. dW. 
N-- i N 1 - 

Taken together, Propositions 4 and 5 may well appear to resolve 

the difficulties raised by Bercheim and Bagwell. Specifically, one can 

obtain Ricardian equivalence to an arbitrarily good approximation by 

taking a sufficiently small. If for a given a the population is 

sufficiently large then, as in a model with no altruistic linkages, a 

one dollar intragenerational transfer will redistribute one dollar of 

I 

consumption in equilibrium (i.e. P 
1 

1). The recipient of such a 

transfer will act as though he has received an injection of new wealth—— 

that is, he will completely ignore the fact that the governrrent acquired 

these resources by levying taxes on individuals to whom the recipient is 

operatively linked. Taking the population to be large does not, 

however, affect the approximate validity of Ricardian equivalence, Thus, 

with a small and N large relative to a1, deficits are approximately 

neutral, but intragenerational redistributions are not. Formally, we 

have 
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Eroposition 6: There exists a decreasing function N such that 

for any sequence 
<ak,N>kl 

with ha (ak,Nk) 
= (0,) and 

Nk Ok) for all k, lim R = 0 and Urn R = 1. - k- 
Note that one does not obtain + 0 and R' + I for all 

sequences (ak,Nk) 
(o,). Nk 

must be sufficiently large for each 

for the argument to work. More generally, (a,,N,) + (o,) 
¶ 

consistent with any limiting value for R ', including 0. Thus, one 

cannot justify Ricardian equivalence simply by arguing that friction is 

small and the population is large. However, the logical puzzle posed by 

Bernheim and gwehl appears for the moment to be mitigated. It seems 

that one must turn to empirical evidence in order to determine whether 

the actual values of a and N are consistent with approximate 

Ricardian equivalence, but inconsistent with the collateral neutrality 

results. 

Yet this resolution is unsatisfactory. if one simultaneously 

takes a small (so that Ricardian equivalence is approxirrtely true) 

and N large (so that intragenerational transfers remain relevant), 

then in the limit each individual's consumption is necessarily unrelated 

to his own wealth. More precisely, 

Proposition 7: Suppose a = 0, and that the initial distribution 

of endowments is symmetric. Let < 
0k' Nk > be such that 

lim 
(ak,Nk) 

= (o,). Then 
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* 
dC. 

urn = 
k+ 1 

Thus, by introducing friction through 5, one cannot simultaneously 

resolve the difficulties raised by Propositions 2 and 3 of section 3: 

if one takes friction to be small without letting the population get 

very large, then in the limit everything is neutral; if one takes 

friction to be small while letting the population grow, then in the 

limit each individuals marginal propensity to consume out of wealth 

falls to zero. 

Propositions 6 and 7 may at first appear to be inconsistent. 

Suppose we take some sequence (ak,Nk) 
-* (O,) with N. > N(z) for 

each k. Sy proposition 7, we know that in the limit consumption does 

not depend upon an individual's own alth. This seems to imply that 

consumption depends upon aggregate wealth, from which it would follow 

that all redistributive policies are neutral. Quite to the contrary, 

proposition 6 tells us that R 1. The key to this puzzle is the 

fact that, in the limit, consumption is a function of local aggregates, 

rather than global aggregates. That is, the consumption of individual 

i depends only upon the wealth holdings of is close" relatives. In 

the limit, i has an infinite number of close realtives (even though 

these relatives form a negligible subset of the entire population), and 

so i's own wealth is irrelevant. However, a redistribution of one 

dollar from i to j (where I and j are only very distantly 

related) will transfer one dollar of consumption from i and his close 

relatives to j and his close relatives. 
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In summary, we find that one can simultaneously take friction 

small (a -* 0) and population large (N - ) such that Ricardian 

equivalence holds arbitrarily well, and such that redistrjbutions have 

real effects (changes in wealth only affect consumption locally). 

However, in doing so one necessarily produces an untenable result: each 

individuals' consumption is unrelated to his own wealth. 

5. Incowplete Inforation 
Now consider an economy in which a fraction it of the parents are 

selfish and the retraining fraction 1 — it of the parents are altruistic. 

Each parent knows whether he is altruistic or selfish, and knows the 

fraction it of selfish parents, but does not know whether any other 

particular parent is selfish or altruistic. For simplicity, we assume 

that there is no joy of giving motive (a 0). 

Rather than treat this case in detail, we will simply indicate its 

formal similarity to the joy of giving model. Specifically, if a > 0 

and it = 0, the utility of each parent is given by 

(6) u(C.) + [u(y.) + u(y.1)J + a [v(T.) + v(tj] 

where 

C. = W. — T — t 
1 1 i I 

and 

y. = w. + T. ÷ t. 
1 1 1 —1 
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Alternatively, when a = 0 and it > 0, parent is expected utility 

(given that he is altruistic) reduces to 

(9) u(C.) + (i - m)[u(y.) + u(y.1) + m[u(wj + T) ÷ u(w1÷1 
+ t)i 

(recall that, with incomplete information, we interpret T, and t, as 

choices conditional upon j being altruistic, with the understanding 

that j transfers nothing if he is completely selfish). 

We note four differences between (8) and (9). First, in (9) the 

second term is multiplied by (1 — it). Clearly, this difference in 

scale can have no qualitative consequences, and even quantitative 

differences disappear as it goes to 0. Second, in (9) the third term 

is multiplied by it rather than . Yet both it and a are riasures 

of friction. Merely changing the index is inconsequential. Third, in 

(9) u() appears in place of v(). Since we never ruled out the 

possibility that u(s) and v() are identical, this too is 

irrelevant. Finally, in (9) w + T. appears in place of T 

(likewise w. + t. in place of t.). Clearly, this cannot affect 
i+1 1 1 

comparative statics for the instruments t., since w. in independent 

of t 1 

Given the strong similarities between (8) and (9), it should not 

be surprising that formal analysis of the two models is virtually 

identical. We therefore treat these models simultaneously in Appendix A 

by analyzing a slightly sore general formulation that subsumas both 

specifications. Since Appendix A gives a complete characterization of 

comparative statics for the general formulation, it is possible to 



—24- 

obtain direct analogs of Propositions 4 through 7 for the case of 

a = 0, it > 0 by mimicking the proofs in Appendix C. We leave details 

to the interested reader. 

6. 

Despite its apparent promise, the introduction of friction does 
not appear to resolve successfully all of the puzzles posed in Bernheim 

and gwell's analysis. We now turn to a less obvious alternative, 

which 15 isotivated by the empirical obsertion that testators often 

choose to divide bequests equally among their heirs (see Menchik 
- 

[1980]). This phenornon has puzzled previous analysts, in that it 

appears to contradict the implications of all widely subscribed theories 

concerning bequest motives (see the discussion in rnheim, Shleifer and 

Summers [198]). We offer no new explanation of equal division here, 

but rather simply assume that altruistic rents rraximize utility 

subject to an elithrian constraint. Like the introduction of friction 

in section 4, the constraint itself is somewhat ad hoc, but, as we shall 

see, its introduction generates some intniiging implications. We leave 

the task of justifying the equal division assumption for future work. 

Accordingly, we set a = it = 0, and modify our basic model by 

assuming that parent p. maximizes utility subject to the constraint 

that 

t. = T. 
1 1 

Formally, Theorems I through 3 do not apply to this case. We therefore 
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provide the following result: 

Theorem 5: Suppose a = it = 0, and that parents face egalitarian 

constraints. For every endowment profile there exists a 

unique equilibrium. Furthermore, if endowments are distributed 

symmetrically, then the equilibrium is symmetric, and the associated 

* 
equilibrium transfer, T , is irideendent of N. 

As in section 4, it is useful to derive some preliminary 

comparative static results that allow us to compute the effects of 

various policy experiments. We therefore provide the following theorem: 

Therem 6: Suppose a = it = 0, and that parents face egalitarian 

constraints. Let initial endowments be distributed symmetrically. Then 

dC —2\(1 + XN)_1(l — N)_1(1 — X)1 for j = k 

k (-kl + XN 3I)(1 + )(i — N)_1(1 — )_1 otherwise 

where X solves 

+X_1240) 
Once again, the formula for X is quadratic. Since the right 

hand side is strictly less than —2, one solution is less than —1, 

while the other lies beten 0 and —1 (one is simply the reciprocal 

of the other). For convenience, we choose the second root (both yield 

the same value of dC/dWk) and adopt 
the convention that 0 > X > —1. 

We begin our analysis of egalitarian altruism by noting that 
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Ricaran equivalence holds exactly (i.e., not approximately, as in the 

preceding sections). To establish this property, we need not assume 

that endowments are distributed symmetrically——the result obtains even 
when the financial status of children differs within families, 

Proposition 8: Suppose a = it = 0, harents face 

litarian constraints. Then Rd = 

it is important to qualify Proposition 8 in the following way. 

The previous models yielded Ticardia equivalence (or approxirnat 

equivalence) for all transfers involving a parent and his children, 

Here, that is not the case, Policies that entail differential treatment 

of children within the same family y well have real effects, since the 

egalitarian constraint prevents parents from offsetting such redistri— 

butions, 

This observation leads naturally into our next result. Just as 

the equal division requirement prevents parents from offsetting 
redistributions within the family, it precludes private individuals from 

offsetting more complex transfer policies. Suppose for example that the 

government taxes parent p., and distributes the procedes to P. In 

the absence of elitarianism, p. will decrease t by the amount of 

his incremental tax, and p1+1 
will raise T1 by his incremental 

subsidy. In the presence of an elitar1an constraint, these 

alternatives are proscribed. Instead, the actual responses of p and 

p11 will offset the policy only partially. 

Accordingly, one might well suspect that egalitarianism introduces 
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a kind of friction, which attenuates the effects of a perturbation as 

one moves further from its source. In large populations, one might once 

ain find that policies of iritragenerational redistribution lead to 

sensible consequences. Taking limits of the formulas in theorem 6 (and 

recalling that, with symmetric endowments, k and the equilibrium 

allocation are independent of N), we obtain 

dC* 
1 — 

dW 
— — / , an 

3 

dC 
dW1 

= l3kI( + X)(1 - )_1 for j k 

As expected, the effect of p.'s wealth on p's consumption declines 

geometrically as j becomes "distant" from i. However, the most 

striking feature of these formulas follows from the fact that X is 

negative. Accordingly, a windfall for parent p. raises the 

consumption of p. (i j) when i — j is odd, and lowers it when 

i — j is even (see figure 3). 
A moment's reflection suggests that this pattern is quite natural. 

In response to an infusion of wealth, parent p1 
increases both his 

consumption and his transfers. Upon seeing that one child (k.,k+1) 
is better off, parents p,1 and p÷ choose to consume more and 

transfer less. As a result, the resources of children k. and k. 
i—i i+2 

fall. Parents p2 and p.2 respond by choosing to consume less, 

and transfer more. The pattern then repeats. 

From these results it is easy to establish the relevance of 
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intragenerational redistributions in large econornies In fact, parent 

p will respend to a transfer funded from general revenues (rn ) just 1 

as he would to an injection of new wealth; furthermore, the pure wealth 

affect does not anish as the population grows 

2Etion9: Suppose a = = 0, and that parents face 

tarian constraints, Let initial endowments be distributed 

dC dC rn 

symmetrically. Then lim ho -- > 0, and Urn 8 > 1. 
- N 'i N- 

This result has one rather peculiar implication, which is that an 

intragenerational transfer has a larger redistributive effect on 

consurrtion if there are egalitarian intergenerational transfers, than 
if there are no private transfers at all (i.e. R' > 1). That is, 
contrary to the implications of previous analyses, private transfers 

serve to magnify rather than dampen the redistributive effects of 

government policies, 

Even so, it might appear that egalitarianism provides the ideal 

resolution to the paradoxes raised by Bernheim and Eagwehl. After all, 

one obtains exact Ricardian equivalence without assuming that this 
source of friction is small. In contrast to previous sections, one need 

not pass to o limits simultaneously, thereby producing a paradoxical 
wealth effect. 

Yet this conclusion is premature, for the imposition of egalita- 

rianism produces a paradox of its own. Specifically, consider the 

welfare effects of an exogenous increase in the wealth of some 

consumer. Ordinarily, we would think of this occurrence as 
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unambiguously desirable. Not so within the context of the current 

rnodelr Indeed, roughly speaking, only one half of the population would 

benefit, while the other half would lose. Formally, 

Proposition 10: Suppose = = 0, and that parents face 

egalitarian constraints. Let initial endowments be distributed 

symmetrically. 

a) If N is even and 3 1, then dtj/dW1 
< 0 1ff 3 is odd. 

b) If N is odd and I niin(j, N — 3 ÷ 2) < N/2, then 
- 

dU/dW1 
< 0 111 min(j, N — 3 + 2) is odd. 

Thus, an exogenous increase in the wealth of any given consumer is 

never a Pareto improvement. The intuition for this result follows 

directly from our discussion of figure 3; if parents j — 1 and 3 ÷ 1 

consume more (and, accordingly, give less to their children), then the 

resources of js family have declined, and 3 crust be worse off even 

after adjusting his own behavior optimally. 

The reader may well feel that the implications of Proposition 10, 

while surprising, are not obviously counterfactual. We do not deny 

this. We merely note that one cannot accept the egalitarian framework 

without reexamining the validity of some very basic premises, and 

abandoning most simple guides to welfare analysis. 

7. Closing Reirks 

In closing, it is important to emphasize that we have conducted 

this analysis in a way that is likely to significantly overstate the 

plausibility of approximately Ricardiari worlds. More generally, the 
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case for Ricardian equivalence is even less compelling for two reasons. 

First, our model spans only two generations. While it is 

therefore adequate for analyzing the effects of deferring taxes to the 

next generation, it is unsuited for drawing inferences about the impact 

of longer term debt, Just as friction compounds through successive 

linkages between families, it will also compound as intergenerational 

chains lengthen. Accordingly, in a more general model, we would expect 

to find that relatively temporary deficits are approxirrately neutral, 

while relatively permanent ones are not. - 

Second, intrafamily linkages are actually much more complicated 

than the network modelled here. As we extend consideration to a larger 

number of generations, we generate a proliferation of paths linking 

different members of the same generation (see Bernheim and gwell, 
section 4, for a detailed discussion). Linkages actually fora a "web", 

rather than the circle illustrated in figure 1 As a result, the 

"distance" between two arbitrarily selected individuals may be quite 

small on average, even when the population is quite large. Suppose, for 

example, that we add one more generation, meintaining our assumption 

that every parent has two children, and every child two parents. Then, 

ioring redundancies (i.e., sibling don't have the same in—laws), each 

grandparent is directly linked through his grandchildren to 10 other 

grandparents, who are in turn linked to 10 others, and so forth. This 

suggests that each household is connected through chains involving L 

or fewer links to on the order of other households, rather than to 

only 2L households, as in the current model. Formal analysis of 
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random graphs indicates that this intuition is essentially correct (see 

Bollabas [1981]). 

These observation suggest that, in a more realistic model, the 

Bernheim—Bagwell puzzles would be much more roixist. If most individuals 

are connected through relatively few links, then it may be very 

difficult to eliminate the approximate neutrality of intragenerational 

transfers without assuming a or it very large. Similarly, each 

individual would in such a world have a tremendous number of "close" 

relatives so that, once agedn, the marginal propensity to consume out of 

own wealth might be extremely small in the absence of large friction. 

Overall, it is very difficult to see how one could introduce just 

enough friction in a model with a realistic pattern of interfamily 

linkages to produce approximate Ricardian equivalence without also 

generating untenable results as in Bernheim and Sagwell. Jhile one can, 

perhaps, avoid these problems by invoking an egalitarian constraint, 

this alternative seems very ad hoc, and in addition generates some 

disturbing welfare results. Conseqntly, the theoretical case for 

Ricardian equivalence remains tenuous at best. 



xA 
Complete Comparative Statics for Joy of Giving 

and Incomplete InfornEtion Models 

This appendix presents the comparative statics analysis of a model 

that nests the joy of giving model in Section 4 and the incomplete 

inforn'tion model in Section 5. Recall that 

C. = consurrtion of adult i 

= consumption of child i 
- 

= wealth of adult i 

= wealth of child i 

= transfer from adult i to child i 

= transfer from adult i to child i + 1. 

Also recall that 

(Al) C. = W. — T. t. 1 1 1 1 

Let y denote the consumption of child i if he receives transfers from 
adults i and i — 1, 

(A2) = + T. + t1_1 

Let 

(A3) Z. = w1 + T. 

(A4) z1 
= + t. 

where is a dummy variable. In particular, if = 0, then Z is 

the transfer from adult i to child i and z is the transfer from 
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adult I to child i + 1. Alternatively, if 1, then Z is the 

consumption of child i if he does not receive a transfer from adult 

I — 1; z. is the consumption of child I + 1 if he does not receive a 

transfer from adult i + 1. 

Now suppose that adult i chooses T1 and t to rrexiniize 

(A5) u(C.) + L[u(y.) u(y.1)J + w(Z) + w(zjj 

The equations (Al — A) contain both the joy of giving model and the 

incomplete inforrration model. To obtain the joy of giving model, set 

p , ii = a, = 0 and w() = v(). Alternatively, to obtain the 

private information model, set p = (i — it), r = sit, = 1, and 

= u(). 
The first—order conditions are obtained by substituting (Al — A4) 

into (A5) and differentiating with respect to T1 and t1: 

(A6a) (T.) —u'(C.) + u'(y.) ÷ nw'(Z.) = 0 

(A6b) (t.) _ut(C) ÷ pu'(y + T1w'(z.) = 0 

Now totally differentiate the first—order conditions with respect to 

T., t., W and w. to obtain 
1 1 i 1 

(A7a) —u"(C.)[dW. — dT. — dtij + u'(y.)[dw1 + dT + dt.1J 

+ T)W"(Z4)[dW7 + 
dT1J 

= 0 

(A7b) —u"(C.)[dW. — 

dT1 
— dtj + u"(y. 1)[dw. 1 

+ dT.1 + dtj 

+ w"(z. )[dw. + dt1J 
= 0 
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e assume that initially W. = W and W1 
= W for all i, and we 

restrict our attention to syametric equilibria. Let 

a 5 u"(C,) + u"(y.) + nw"(z.) < 0 

b a u"(C.) < 0 

e xu(y.) 0 

f 5 w"(z.) 0 

and observe that a = b + e + f < 0. Using the definitions of a b, e 

and f we can rewrite (A7a, b) as 

(ABa) a dT. + b dt, + a dt. = b dU. — (e + f)dw. 1 1 i—I 1 1 

(A8b) b dT. + a dt. + e dT. = b dW, — (e ÷ f)dw. 
1 1 i+1 1 i+1 

Let x• be a 2 1 column vector such that x = [dT,, dt]. The linear 
1 1 1 1 

difference equation system in (A8) can be written as 

ra bi r o —e1 [b 
dW1 — (e + f)dw1 

(A.9) 1[x] 
= 

1 1 [x.] + 
Le 0] L—b —a] 

1 b dW.1 
— (e + f)dw. 

Now observe that 

(Alo) 

[: :r=[; J 



—35— 

and then pre—multiply both sides of (A9) by the rratrix on the right—hand 

side of (MO) to obtain 

x.=Mx. +g, 
3 3—1 3 

where 

b _a e e 

2 
a e a 

+ e b be 

and 

PdW. - (i +—)dw. e j—l e 

g = 

LdW. 
- dW.1 - i)(e + f) 

The behavior of x. = [dT., dt.J is governed by the linear difference 
3 3 3 

equation in (All) and the boundary condition that 

= 
MxN 

The boundary condition in (A12) exploits the fact that the N adults 

are located around a circle and adult I is formally the same as adult 

N + 1. 

For the purposes of our analysis, it is sufficient to allow 

and g2 to be nonzero and to restrict 8. 0 for j = 3,4,5,..., N. 

In this case, it follows from (All) and (A12) that 

2 
= M + 

Mg1 
+ 

g2 
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and 

(A14) xN 
= MN2X2 

Substituting (A14) into (A13) yields an expression for in terms of 

the exogenous changes g1 and 

(A15) = (I — MN) 1{Mg1 
÷ 

g2] 

Using the boundary condition in (A12), the expression for x2 in(A15) 

and the fact that x. = N3 for j = 2,,.. ,N we have a complete 

solution for x1,. ...,XN. 

N—i N—i 
(A16a) 

x1 
= M (I — N ) [Mg1 

+ g2] + 

(A16b) x. = M2(I - MN) 1[Mg1 
+ g2] ; j 2,.. .,N 

Let < be the two characteristic roots of the rtrix N. Observe 

that 

(A17a) + = tr M = 
a - - e2 

> 

(A17b) = det M = 1 

It follows from (A17b) that and are reciprocals of each 

other. Let X denote the smaller root 
X1. 

It follows from (A17a) 

that both roots, X and are positive. 

It can be directly verified that the ntrix N can be written as 

(A18a) N = PAP1 
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where 

1 1 
(A18b) p = I 

1 

L (b÷eX) — (b÷eX1) 

k 0 
(A18c) A= 

1 

and 

- 

+ eX) -a 

(Alad) = 
— ? ) (b + eX) a 

Now observe that 

j—2 N —1 j—2 N —1 —1 (k19) N (I — N ) = PA (I — A ) 

Substituting (AlSb) and (AlBc) into (A19) yields 

r -2 
(A2o) M2(I - MN)I = 

1 

I — 

'(b+eX)X2 (b+eX_1)X(2) 

We are now prepared to analyze two comparative statics 

exercises. First, we examine the effects of an increase in the wealth 

of parent 1. In particular, we let dW1 
> 0 and 

dW =. . . =dW =dw =. . .=dw =0. Inthiscasewehave 2 n 1 N 

(A21a) g1 [] dW1 



—38— 

r a I 

g2=1 JdW1 

L e 
and 

r b-a 
I e 

(A22) Mg1 
+ 

g2 
= 

dW1 12 2 
a —e —ab 
L be J 

Using (A17a) we can rewrite (A22) as 

rb—a 
e 

] 
dW1 Mg1 

+ 
g2 

= 

b — a 
+ A + La 

New cbserve that 

b-a - (b — a)C + a(X + b + a) — 
(A24) F{Ng1+g2] = 

1 r e 

dW1 
b-a 

e(A_X)L(b+) (b—a)X+a(X+C1) I a 

Observe frcm (A17a) that 

—1 

(A25) (b + a)(b - a)/a = —bR + A ) - a 

Substituting (A25) into (A24) yields 

A+ 1 

1 

b-a 
a 

dW1 
(A26) 2[Mg1 + 

g2 
= 

A — A1 [ b—a —1 
a J & —1 
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Pre—multiply (A26) by (A20) and use (A16b) to obtain 

N 
_1)_1 

j—2 N—+2 b—a j—l 
N_÷l) — x .=1—? ) 

— + x — (x ÷ x 

r 
e 

(A27) I 1 b-a XJ 

[ 
L(b + eX)(1 + 

—1 b—a—1 N 
+ (b + e )(1 + e 

To simplify (A27) recall that the roots = X and = satisfy the 

characteristic equation — tr N + det 0 whicn can be written as 
I I 

2 2 2 2 
(A28) beX = (a — b — e — be 

I i 

Now observe that 

b_a 1{( 
2 2 2 

(A29)(b + eX )(i + = — be - ae)X, + (e + b — ab)X + be} 
I e i e 1 

Substituting (A28) into the right—hand side of (A29) yields 

(A30) (b eX )(i + — a _aX.L+X, i=1,2 
1 a i 

— 
1 e j 

Substituting (A30) into (A27) yields 

k +X + e (1 — XN)l(x — k1)1 

[ 

3-2 N—j+2 b—a 
+ 

dW (A31) 

+ XN_3 
b - a 

(X1 N_+1) + e 

I = 2,... 



To calculate x1, observe from (A12) and (A14) ttat 
x1 

= 1N_l + g. 
Formally, xi can be written as XN1 + where = 

(O,dW1). 

Therefore 

Equation (A34) can be rearranged to yield 

(A3 5) 
N—i—i 

x.=PA (I—A) P 

N—i b—a N 
+ (X +1)1 e 

dW1 N-i b — a 
(XN + l)J +x + 

e 

2 
—a +ae I b+e + 

P1g 
1+— r b I 

— 
— 

e 
1 e( - h_i) 2 

dw1 
a —ae 

b 

— = N_1 
(A32) 

Now we consider the alternative exercise of increasing the wealth 

of child 1- by 
dw1 

> 0.- In this case 

(A33) = 1 + ) 
[a e1 

dw1 

and 
g2 

= = = 0. 

In this case, x. = M2(I — MN) iMg1 which can be written as 

(A34) x. = PA2(I — AN)P_1FAP_1g1 j 
= 2,., .,N 

It follows from (Aied) and (A33) that 

(A3 6) 
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2 2-b2-ae -a + ae a 
Now observe that eX. + b + = ek — so that in 

b I b 

light of (A17a), 

2 2 

(A37) eX, + 
—a + ae = e{X — ( + X ) 

— e — set 
+ 

b I j j be 

Simplifying (A'7) yields 

2 
A38) eX. + b — a — ae = e{-X. + b 

Recalling tnat X = X and X2 H, we can use (A38) to rewrite (A36) as 

a—e — X 
e 

(A39) Pg1 = 
-1 

j 
s—e 

Now use (A19), A2O), A35) and (A39) to obtain 

N—i —i—iT —i a—e —1 ';_÷ii 
+ —)(i — X ) (k — X 

) r —(X + X j + (X + X ) e 

(Mo) 1 - at 4 eX)1 - lj_1 

L (b + eX)[ - X1 

j =2,...,N. 

To simplify (MO) observe that 

(A41) (b + ek )(a 
— e 

— x.) = {ab — be # (me — e2 b2 — beX I 

Substituting (A28) into (Ml) yields 

(A42) (b+eX.)(a_e_X)=a(l eaX) i b 1 
+ b i 



—42— 

Substituting (A42) into (A4O) yields 

= + — - + 

(A43) dw 
+ 

j = 2,... ,N. 

To calculate x1, note that forrrelly x1 
= + g1. Using (A43) and 

(P33) we obtain - - 
- 

= (i + i N)-l( 1)1 (x +xNi) (1 + 

(A44) dw1 

L1 + XN) + (x + 

Appendix B 

Egalitarieni am 

This appendix presents the oompantive statics analysis of the 

economy in whioh all parents divide their estates equally among their 

ohildren. Recall that 

= consumption of adult i 

ci = consumption of child i 

= wealth of adult i 
= wealth of child i 

= transfer from parent i to child i, which equals transfer 

from parent i to child i + 1. 

Observe that 

(31) c. = w. — 2'T. 
1 1 1 
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and 

(32) csw +T1 +Ti_i 

Parent i chooses Ti to .mximize 

(33) u(ci; 
+ 
$u(o) 

+ 

and the first-orGer condition for tots razisization problem is 

(34) _2u'(Ci) + u'(o) + B&(ci+i) a 0 

Totally differentiating this first—order condition with respect to Ti. 

and Wj yields 

_2u*(Ci)(dwi — 2dTi] + uM(ci)(dvi d''i 
+ dTii] 

(35) t Pu"(ci+i)(dwi+i + 
dTi 

+ 

We assume that initially '¼ — W and Vi 
— " for all i, and we 

restrict our attention to syrntrio equilibria. Let 

a 4u(Ci) + 2Pu"(oi) < 

b ! 2u"(Ci) < o 

e s $u(oi) < 

and observe that a — 2(b + e). Using the definitions of a, b, and e, 

we oem write (35) as 

e dT,1 + a dTi + e dTi+i — b Si — e — e (86) 
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The second—order linear difference equation in (BE) can be written 

in companion form by defining the 2 X 1 column vector as 

x. = [dT., dT.1] Therefore, 

x. = Mx. + h. I = 2,...,N 
1 i—i 1 

where 

—1 
e 

L1 o 

h. = [ dW.1 
— (dw1 + 

dwj1 

The behavior of is governed by (B7) and the boundary condition 

= Mx + h1 

The boundary condition in (Be) reflects the fact that formally adult 1 

may be represented as adult N + 1. 

For the purposes of our analysis, it is sufficient to allow h1 

and h2 to be nonzero and to restrict h = 0 for i = 3,4,5,... ,N. ifl 

this case, it follows from (B7) and (Be) that 

N—2 
x =M x 

2 
= .M XN 

+ + 



x. = M2x2 for j 
= 2,... ,N, we can use — B1) 

solution for 

N—i N 1r ='4 (I—N) L1+h2i4h1 
i—2 N—i 

= (: — M / [Nn + h2j i = 2, . . . N 

Let ) A2 be the two ccaracteristic roots of the catrjx '4. 

Observe that 

(Bt2a) + '2 tr K = — < —2 

(312b) i 2 
= bet '4 = 

It follows from (Bi2bj that the 
Let k be the larger root 

(Bi2a) that < -i < < 0. 

It can be directly verified that the riatrix '4 can be written as 

'4 = PAPi (Bi a) 

where 

ii 

rx 0 
A = 

L o 
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Using the fact that 

to obtain a complete 

(Blia) 

(Bitt) x. 

roots are reciprocals of each other. 

therefore X = It follows from 

(B13b) 

(Bi 3c) 
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X —1 

(213d) = 1 

— 
X — Lx i- 

Now observe that 

1—2 N —1 1—2 N —1 —1 
(B14) N (I—N) =PA (i—A) 

Substituting (213b, c, d) into (214) and performing the trix 

multiplication yields 

i—2 - N—i N —1. —1—1 Ei—i N—i÷i .i—2 N—i+2 I N (I—N ) = (i—h ) (—X ) I 
- —(h. ÷X ) 

(215) 
I i-2 N-i+2 .1-3 N-i-3 —( ÷ ) 

We are now prepared to analyze two comparative statics exercises. 

First, we examine the effects of an increase in the wealth of adult 1. 

In particular, let dW1 
> 0 and 

dW2 
= •.. = 

dW 
= 

dw1 
= ... 

dw, 
= 

0 rb/e)dw, 
In this case 

h1 
= [ j and h2 

= L o } It follows from (Sub) 

and (215) that 

x. = (1 — xN)( — T1) (i_1 + XN i+1) 

(816) 1 j dW I = 2,... 
I b 1—2 N—i+2 

Therefore, 

(217) 
1 = b 

(1 — XN)_i(x - x1)1['1 + ?N_i+i] 
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i = 

Now consider the alternative exercise of increasing the wealtn 

of child 1. In particular, let dw1 
> 0 and dw2 

= = 
dw, dW1 = 

.=dWN=O. Inthiscase,n1Ll 0J dw1 
and 

h2 
= [—1 oP dw1, 

so that 

a-c 
Mh1 

+ h2 
= 

L j dw1 

It follows from (bllbP (015) and (810) that 

N, —1 —1 —1 a - e i-i N—i÷1 i—2 N-i+2,' 
x. = (1—X ) (k—. ) (. ,i + (X + . ) 

a e 
(X12 1Oi+2) + (Xi_3 + 

i = 2, , N 

Therefore, - 

a — e i—i N—i+1 i—2 N—i+2 

r. e +k )+,,? +X ) 

1 1 - kN)(X - _1) 

1=1,., 
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Appendix C 

Theorem 1: Let S. = {(T,t)jT + t K W. and T, t > o}. S. is 
1 — 1 = 

p's strategy space; let S1 
denote an element of S4. Note that S 

is compact and convex, Further, p's utility is by assumption 

continuous in a = (sl,...,sN), and (it is easy to verify) quasi—concave 

in s.. Thus, by Debreu's {1952] Social Equilibrium Existence Theorem, 

there exists a profile of strategies (s,... ,s) which satisfies our 

definition c equilibrium. Q.E.D. 

* 
Theorem 2: In a symrrtric equilibrium with transfer level T 

* 
(T ,T j must satisfy 

sax u(W — T — t) + {(i — m)[u(w + T + T) + u(w + t + T)) 
T,t 

+ m{u(w + T) + u(w + t)j} + a[v(T) + v(t)] 

subject to T > 0, t > 0, and T + t < W. 5y concavity of u and v, 

we know that the solution always entails T = t, so we simply require 
* 

that T solves 

sax u(W — 2T) + 2{(1 — m)u(w + T + T) + mu(w + T)} + 2v(T) 
T 

subject to U < T K W/2. Let y: [0,W/2] - 0,W/2] be defined as 

y(T) = arg max u(W — Zr) + 2[(1 — lt)u(w + T + T) + mu(w -4- T)} + 2av(T) 
O<T<W/2 

Since this objective function is continuous and strictly concave, 

y is a continuous fumction. By the intermediate value theorem, there 
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* * * 
exists T such that T = y(T ), as required. Finally, note that the 

* 
equilibrium condition is independent of N, so T recains a symmetric 

equilibrium independent of N. 

Theorem 3 For any BNE (T,t.)1, let 

0 c =W —t. 
1 1 1 1 

= w. ÷ T. ÷ t. 
1 1 1 i—i 

That is, C is p's consumption contingent upon p. being altruistic, 

and C. is KS consumption contingent JDOn p. and p. being 1 1 1 i—I 
0 oN 

altruistic. We will first establish trat (C.,c.). must be identical 
1 1 i=1 

in all SNE. 

Suppose this claim is false. Then there are two SNE which give 

• —o —o N N 
rise to distinct profiles L,c.). and (C,c.). . Without loss 

1 1 i=1 1 1 i=1 

of generality, we tray suppose that either > or > c for 

some j. 

Take first the case of > C. Through p's budget constraint, 

we see that either T, K T., or t. K t, Without loss of generality, 

we assume t. K t,. 

Now we use induction. Suppose that for some i > 0, > Ci, 

and t. K t. .. Since it must then be the case that t. . > 0, we 
3+1. 3+1 3+1 

have 

u'(C° ) < (1 — t)u'(C • ) + mu'(w. + t. .) * av'(t. •) 
j+i — 3+1+1 3+1 3+1 

(inequality mey occur if C.= 0). Now we are that ) 
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For suppose not. Using strict concavity of u and v, along with 

C..> C. and t. < t ., wewouidhave 
3+1 3+1 j+i j+l 

u'(?.) < (i — s)u'G?1) + u'(w.1 + + 

But this implies that could increase his utility by transfering 

more to Ic. , 
which is a contradiction. 

3+1+1 

Next, since t. . < t. and c? > o? , then, from 
3+1 3+1 3+1+1 3+1+1 

Ic. 'a budget constraint, we must have T. > T. . Since it 
3+1+1 

- - 3+2+1 3+1+1 - 

must then be the case that T. > C, we have 
3+1+1 - 

- 

—0 / \ —0 — / u'(C. - ) < (1 — lt)u'(c. . ) + su'(w, . + T, . ) + cv'T. 
3+1+1 — 3+1+1 3++1 3+1+1 

Now we argue that C? > C? . . For suppose not. Using strict 
3+1+1 3+1+1 

concavity of u and v, along with c? . > c? . and T. . > T - * 
3+1+1 3+1+1 3+1+1 3+1+1 

we would have 

u'(C? . ) < (1 — a)u'(c? . ) + au'(w. . + T. . ) + av'(T. 
3+1+1 3+1+1 3+1+1 3+1+1 3+1÷1 

But this implies +i+1 could increase his utility by transferring 

more to Ic. . ; which is a contradiction. 
3+1+1 

— —o 
Finally, if T. . > T. . and C. . > C. . , then by P. . 

j+i+1 j+i+1 3+1+1 3+1+1 3+1+1 

budget constraint, t. . < t. . This completes the induction step. 
3+1+1 3+1+1 

Note that induction implies c? > C and ? > c for all i. 

This violates the aggrete budget constraint. Accordingly, we have a 

contradiction for the first case. 

Now turn to the second case (c? > c? for some j). By k's 
3 3 3 
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budget constraint, either T. > T, or > t. . Witnout loss of 
3 3 3— 'J— 

assume T. > T.. We have already demonstrated above that 

c. > c. and T. > I, implies C. > C This returns us to the first 
3 3 3 3 3 3 

case, which yields a contradiction. 

The preceding argument suffices to establish that if m 3 and 

it = 0, all BNE yield the same allocation of consumption. Now suppose 

that > 0 or it > 0. Let denote the unique BNE 
1 1 i1 

consumption profile. 

Suppose first that 0° > 0 for some j. Then either (i) T > 0 

and 

u'(C) — it)u'(c) + Bitu'(w. + T.) + av'(T.) 

or (ii) T, = 0 and 

u'(C) > (i - it)u'(c) ÷ cu'(w,) + sv'(O) 3— 3 

By strict concavity of u and v, only one of these conditions can 

hold; furthermore, (i) can hold for at most one value of T.. Thus, T. 
3 3 

is uniquely determined. We obtain t. from p's budget constraint. 

Now procede by induction. Suppose we know t. Then we obtain T1 
from k 's budget constraint. Knowing T , we can calculate t 

m+1 m+1 m+1 

from p1ts budget constraint. Applying induction, we conclude that 

all transfers are uniquely determined. 

Next, suppose that C = 0 for all j. Consider any i. Since 

T. + t. = W., either (i) 0 < T. < W. and 
1 1 1 1 1 

(1 — lt)u'(c?) + mu'(w. + T.) + sv'(T.) = (1 - lt)u'(c?1) + 

i+1 I I — I I 
+ltu'(w +W —T ) ÷v'(W —T ) 
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or (ii) T. = 0 and 

(1 — + u'(w.) + av'(O) < (1 — + 

+ Ttu'(w. + w) + av'(W) 
1 1 

or (iii) T. = W. and 
1 1 

(1 — 5)u'(c) + u'(w. + w.) + av(W.) > (1 — + 

+ u'(w.1)- + v'(0) 

By strict concavity of u and -v, only one of these three conditions 

can hold; furthermore, (i) can hold for at most one value of T. 
1 

Thus, T. is unicuely determined for each i, as is t. (t. = T). 
1 1 1 1 

Q.E.D. 

Proofs of Propositions 1, 2, and 3 were given in the text. 

Theorem 4: The formula for X + X follows directly from 

substitution into (A17a). Without loss of generality, take k = 1. 

Then from (A32), 

dC dT dt, 
1 

1 
dW 

= 
dW dW 

= 1 - 2(1 xN1( - + (1 + ;)(1 + XN\ 

= 1 — 2(1 — XN)lx — + xN_1 (1 + XN)(x + 

- (i + - (X + x1)/2)(1 + 

= 1 — 2(1 — X)1(k — — + 
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+ (av'(Ti + [vu(T)1 ÷ 
u'(C) 2u(C)u(c)' 

= 1 - 2(1 — N)_1(x — 1)_1[(j — kN)( - 

cv'(T) I av"Tj N 
+ f M+. (i ÷) u"(c) 

N. / - N—1 —1 —1 mv"(T) ______ 1 + )1 - A ) ( — + 

as desired. From (A31). we have 

dC. dT dt. -- ---- 
dW 

- 
dU1 dW1 

N —1 - —1 —1 -, j —2 N— +2 N— = i — A ) (A — X) A + 4- + 

( v"(T) j—1 - — + u"(c) + A 

= (1 - XN)_l(kl - ÷ * 2(1 + )j(k3_1 ÷ 

= (x + 4-1)(1 - )1(x1 - 2 + av\ 
Finally, note that the labelling of parents is arbitrary, so that we can 

always relabel to make any given parent p1, 
and either of the parents 

with whom he shares his children P2 Relabelling produces the desired 

formula. 

Proposition 4: By Theorems 2 and 3, for all symmetric endowment 

levels w and W, the unique equilibrium is symzretric. It can 

therefore be characterized by the first order condition 

u'(C) — u'(w ÷ - C) — avl(W_—_C) = o 
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Since u and v are concave, the equilibrium value of C is also the 

solution to 

W-C 
sax u(C1 ÷ u(w + W — C) + 2av( ) 

0<c<W 

(note that this yields (Ci) as the first order condition). Since this 

problem satisfies all the hypotheses of the maximum theorem, its 

solution is continuous in a. Let C° denote the equilibrium value for 

a =0 (by assumption 0 < C°< W); let C° w ÷W — C° and 

= (w - c°)/2. 

From (Ci), it follows that 

dC v"(T) 
= 

u"(C) + u"(c) + v(T) 

0 0 o 
Letting a 0 and noting that C + C , c - c , and T + T with 

C°, c0, T° > C, we immediately have ha = 0, Since c = w + W — C, a0 
we also have him = 0. Thus, him R = 0. 

aO a0 
Next, from Theorem 4 we have 

dC 
him = urn [(1 — XN)_ x_l — XY1a] 
a+0 I a+0 

i—i N—i÷i v"(T) jx + x 
u"(C) 2 

+ 

We have written this as the limit of the product of two expressions. 

Since urn ) = 1, the limit of the second expression is 4v'(T)/u'(C). 
a+0 

Note that this limit does not depend upon i. Furthermore, the first 
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As in the proof of Theorem 4, relabelling produces the desired formula 

for the derivatives with respect to 

Proposition 8: Equilibrium is characterized by the set of first 

order conditions 

+ T. + ÷ & (w. + T. TV)] = 2u(. — 
1 i+1 I i+1 i+1 1 1 1 

Implicitly differentiating these conditions with respect to 6 yields 

2u"(C.) + [u"(ci) + u"(c.1)J 

dT. dT dT. dT. dT. 
1 C i—i is 1 i+1 = 4u'(C) — + (cj( d6 

÷ + u c.1;( dô 

There are N such equations in N unknowns (the dT./do). One can 

verify by inspection that 

dT. 
1 

dó 
— 

2 

for all i satisfies these equations. From this, it is trivial to 

verify the desired result. Q.E.D. 

Proposition 9 

dC. dC. 

Part 1: urn = urn > 0 

1 N- I 

Recall that 

dO. dC 
1 — __i. 

L dW. dW 
1 1 
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Since the right hand side is positive and finite, we have the desired 

conclusion. Q.E.D. 

ition5 
* 1 Fart 1: ha R = 

N÷ 

Without loss of generality, take 

him F 
1 

> 1, For any sequence Nk 
+ 

N- 
positive integers Mk 

+ wi±h 

=-{i 1 < i < N or 
k = = k 

K = {i 1 
1 < < N 

k = = k 

= 1, First, we prove that 

choose another sequence of 

+ 0. Define - 

N—N +2Ci<N 
k k = = ic 

or N — N + 3 < < N 
k k = = k 

= + !'-l)/2 

dC, do, 

-j/2 + i€E 1 aeK, 1 
k K 

dC• do. 
c' 1 \' 1 = L —+ L 

— 
* d'r 

1 
IcKic 

1 

(where the final equality follows from 

aggregate consumption). Noting that 

dO, do, -÷ iP 1 1 

the fact that ' does not alter 

dC. dC. N dO. 
1 1 v / \1 1 

d'v =dW 
— L" ) 

1 1 =2 

dO, N dO, 
= (N — 1)'(N ' — 

1 31 3 

Note that 
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dC. —l i dC1 — I L 

along with a similar expression for and using symmetry around p, 
we have 

dC K dC. dc. 
2 > - 1)N--- 2 

i=21 
+ 

— 2k — 2dW + dW 
— 

M 

dC k dT. dt. dT. dt, 
= N - 1)1NL + 2 i=21 + - (1 1 

- (2M, - 2) - 

d- 
= k - 1)_i !Nk:! + 2 2 - - 2) - 

= - 1)_i N1 - 2 j - 
(2Mk 

- 2) - 

dt dT 
where the last equality follows from the fact that = and 

1 1 

C1 
+ 

T1 
+ = 

W1. 

Now we take limits. Recall that the symmetric equilibrium 

allocation is independent of N. From (A1), it is obvious that since 
dtM 

Mk 
+ and N 

k 
N + as k + , then • 0 (given 0 K < i). 

Further 
(Nk 

— 1)_i + 0, N(N - + 1, and 
(Nk 111(Mk 

— 1) + 0. 

We are therefore left with lj.m R > 1, as desired. 
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Now we argue that urn 2 < 1. 

N' 
t N dC do 
1 v ( I I 2 = L + 

1=1 1 1 

= (N 1Y(N — ÷ IN 
— 

<(N - i1 {N( I + I) + (II + I )}/ 

- dC, 
- 

From Theorem 4, it is clear that > 0 for all i, It follows that 

do, 1 

> 0 for all i, othen,'ise the first order condition for some rent 

would be violated. Furthermore, from the derivation in the proof of 

proposition 4, it is clear that ' > 0 and > 0. Thus, 

< (N — 1r1N( ÷1) + N( ÷)}/2 

= (N — 1)N 

1 
From this, it is immediately clear that lim F < 1. 

dO, dO. 
Part 2: lim —'i- = lim ''s' > 0. 

dm. dW. N- 1 N+o 1 

As before, without loss of generality, take i = 1. We know that 

dO dO 
— N 1\1rN __.i. 4c.i — — 

L 
dW1 

dW 

Since the symmetric equilibrium allocation is independent of N, the 

second term disappears in the limit. The first term converges to 

dO1 
as desired. Finally, using Theorem 4, 
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dC, 
= (1 - )1 SVU(TL (2+ ) > 

Q.E.D. 

Proposition 6: Fix any a. We ow that li 1 = 1, so there 

exists N such that for all N > Na 
— F < a. For each , let 

N(s) = N . Consider 300e sequence s ,N / ÷ as k wftn 
a a a 

N > N(s ) for all a. Then, for each a, I - F K a . Since k= k 

0, R + I. Further F0 is independent of N, so Râ 0 follows 

from proposition 4. 

Proposition 7: By Theorem 4, 

dO. 
= [(1 - xNl(1 - F)lv(T (2 )(i + 

From this formula, it is possible to deduce toe following three 

properties: 

dO. 

(i) 

(iU 

dO, 

decreasing in N 

(111) lim < 4 

sO i 

Property (i) IS straightforward to check. Propeerty (ii) follows from 

the fact that (1 — XN)_1(l + XN) is decreasing in N. We establish 

property (iii) as follows. 

In the proof of proposition 4, we showed that 
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urn [(i 
- - ['cj[4N °-i 

aO u'(C°) + u'(c°) u(C°) 

Thus, 

hr = [ - ftuq°) 
[4N !iL]—1 [ v"(T°) 

dW. 
u'(C°) ÷ u"(c°) ut(C°) ut(C°) 

= N1[ u"(c°) 
] < 

u(C ) + u'(c ) 

Now suppose that the propositionis false Then by property (ii, 

there rnust exist a sequence <akNk>kl converging to (0,) such that 

1 
> i > o 

for all k. By Proposition 3, we can without loss of generality take 

a > 0 for all k. Choose k* such that 

— a 

for some a > C. Consider a subsequence k such that N, > N for 
p K k 

p 

all p. Then, by property (ii), 

dWlNk*,ak 

> 

WNk,ak 
> > N ÷ a 

so 

dC1 1 
him 

dW N, ,a N.÷ 
÷ a * 

p- 1 k 

But this contradicts property (iii). 
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Theorem 5: Each player's strategy set is the interval [O,W/21 

(he chooses a transfer belonging to this interval). Obviously, this is 

compact and convex. Further, p's utility is cor.tinuous, and concave in 

T.. As in Theorem 1, we immediately have existence. 

Next, note that if we have an equilibrium where t. = T, for 
1 1 

all i without imposing this as a constraint, this configuration 
relains an equilibrium when the constraint is imposed, since the effect 

of this is only to limit deviations. Thus, the existence of a symmetric 

equilibrium when endownnts are symritric is giaranteed by Theorem 2. 

Finally, we come to uniqueness. Throughout our argument, we will 

refer to parents' first order conditions, which, for an interior 

solution, can be written as 

2u'(C.) = (u'(c) + 

Now suppose, contrary to tne theorem, that tnere are two distinct 

equilibria, (T.) and (TY1 . Then, without loss of generality, 1 i=1 1 i=1 

there exists some i for which T. > T. By P.'S budget constraint, 

C. < C.. Inspection of p. '5 first order condition (recalling that u 
1 1 1 

is strictly concave) reveals that either c. < c., or 0.1 < 01+1. 

Without loss of generality, assume the latter. Then by k11's budget 

constraint, I'. < T , and T. — T. < T. — T. 
i+1 is1 1 1 i+i i+i 

Now we procede by induction. Suppose first that m is odd, 

T < T , arid c < c . Then, by p 'S budget constraint, i+m i+m i÷m i-s-rn i÷m 

C. > C. . By p. 's first order condition, c. > c. . By i+m i÷rn 1+nl i÷m+1 i÷÷1 

k. 's budget constraint, T. > T. , and T. — T. > 
i+m+i i+m+1 1+m+1 i+m+i 
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T, I'. 
z+m i+m 

Suppose that a is even, I. < T. , and c. > c. Then, by 
i+m 1+m i+m i÷m 

p. 's budget constraint C. ) C. By p 'S first order condition, 
14-rn j.+rn 1+::: 

> By k '5 budget constraint, T. < T. and 
i+m+-1 i÷rn+1 i+rn+1 i.+m=1 i+rn+1' 

T. -T. >T. -T. 
i÷rn+1 i+m+1 11-rn i+m 

Applying induction, we see that 

- >> . 
i÷m±1 1÷m+1 +m i+m 1 1 

for all rn. taking a = N yields a contradiction. 

Theorem 6: The formula for X + X follows directly from 

substitution into (B12a). From (B17), we have 

dC1 dT1 
= 1 — 2 

= I — 4 (1 - — X)1(1 + 

= 1 + (X + + 2)(1 — N)_1/x - Xl)(1 + 

= 1 — (1 + X)(1 + XN)(l — x)1(l — 

= —2X(1 + XN_1)(l - x)1(l — 

as desired. Also from (517), 

dC, dT. - -2 
dW1 

— 

dW1 

= - (1 - x1(x - + XN_i+1) 

_1 N —1 —1 —1 —1 N— +1 
= (x + ? + 2)(1 — ?) (x — x ) (x + x 

= —(1 + X)(1 - XN)1(l — )_1(_1 + XN_i+I) 
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Since the distribution of endowments is symmetric before and after a 

change in W, the equal division constraint is not binding; thus, the 

formula for dC/dW is exactly as in the proof of Proposition 4 (taking 

a = 0): 

dC 
= u"(c)[u'(C) + 

Since 0 < < 1 and since c and C are independent of N, the 

limit of (N — 1) is 0. Thus, - 

dC. dC dC 
ha = him (N — lr'N = hIm 
N+ i i N÷ 1 

From Theorem 6, this last term equals —2X(1 — X)1, which is strictiy 

positive as desired. 

1 Part 2: im R > 1 

For any Nk 
+ as k + , define 

Nkt k' 
and 

k 
as in the 

proof of Proposition 5. Note that 

a. N dC. dc. 

R 
1 

= (I! + 

1=1 1 1 

dO. dc. dC. do. 

{ I]/2 + I j—'- + I/2 
lCPk 

1 
icKk 

1 1 iKk I 

Consider some C satisfying 0 < a < —2X(1 - X)1. By the argument in 

dC 
Part 1, there exists N1 such that for all N > 

N1, 
—i > a. By an 

argument similar to that given-in Part 1, it is easy to show that 
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= = k(1 + X)(1 - X) (0 

Consider then some n satisfying 0 > > —X(1 + X)(i — X)1. There 

exists 
N2 

sucn that for all N > 
N2, 

. Thus, for 

N > 

do. dC, do. 
1 1 1 1 

R > + / + i L + L + rran{,'1} 
— 

2k iKk i 'k 1 ijK, I 

Proceding exactly as in the proof of Proposition 5, it then follows that 
for N > 

naxN1,N2}, 

dT 

R1 k — 1)_i Nk[l 
— 2 Nk — 

(2Mk -2) - + m1n{c,} 

dTM 

From (B17), it is clear that + C as k + . Thus, 

us R 
1 

> 1 + min{s,n} > 1. Q.E.D. 

Proposition 10: Note that 

= -(i — XN)_l(k — 1)1(x + x_I + 2)( + 

First, assume that N is even. Then it is easy to check that 

dT./dW1 is positive if and only if ,j 
is odd. Now consider p, with 

J * 1 odd. Note that dT.1/dW1 < 0, and dT.1/dW1 
< 0. Recall that 

p.'s well—being is given by 
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u(V — 

2T) + (u(w + + 
T3_1) 

+ u(w + + 

I 
This is strictly increasing in 

T1_1 
and Tj+e Thus, p1s utility 

must declins as 
WI 

tins. We reason analogously for j even. 

Nezt,assussthat N isodd. Thsnitissasytocbsokthatif 
i—I <N—(i—I),dT1/dW1>O iff 3 isodd. Further, if 
N—(j—1)<j—I, then 

dT1/dW1>O 
itt N—i isodd. Accordingly, 

it I * j < N/2 thsn (j + 1) — I < N — (Ci + I) — 1], and so 

dT1_1/dW1 
and 

dT31/d%ç- ann.stivs itt- 1 isodd. As above; this - 

implies that 
P1 

is wons off r ccnvsrsely it 3 is--svsn. If, en the 

otherhand,N—j+2<N/2,then N—((j—I)—1]<(j—I)—I,and 

dT3_1/dW1 
and 

4?1 1/dW are nsptive itt N — j is odd. Lain, this 

implies p1 
is worse ottj ocnvensly it N — j is nen. Q.E.D. 
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