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“[The ATP] did not help [my career], it made it. . . I followed a pathway
that was a combination of hard work, some talent and being in the
right place at the right time. . . None of that would have happened had
I not come down here as a Clinical Associate. . . [I would have] gone to
Vietnam for a few years in the Navy, [and then] I would have probably
returned to New York Hospital. I would probably be practicing
medicine right now on 69th Street and First Avenue. The Clinical
Associate program put me on a career track that I am still on.”

Anthony Fauci, Director, NIAID

Oral History (1998)

1 Introduction

It has become a truism among economists and policy-makers that innovation and tech-

nological advances are a key determinant of economic growth (Solow 1957, Romer 1990,

Aghion and Howitt 1992). But innovation is fundamentally constrained by the supply of

innovators—those individuals whose skills and knowledge put them at risk of bringing forth

a useful “new-to-the-world” idea. Innovators are made, rather than simply born, and growth

possibilities are shaped by the institutions, incentives, and norms that nudge would-be in-

novators to receive the training necessary to bring themselves to the frontier. Indeed, over

the past century, macro evidence suggests that only by steadily increasing the number of

workers engaged in formal R&D activities has a steady growth rate in income per capita

been sustained (Jones 1995).

In the medium run at least, designing institutions that might increase the supply of

potential innovators is therefore of crucial policy importance. Yet, severe headwinds frustrate

efforts to broaden the innovator pipeline. First, because scientific and engineering training

is protracted, individual career choices are often shrouded in uncertainty, both with respect

to the monetary payoffs and the direction of human capital investments likely to earn the

best labor market returns. Witness, for example, the dismal track record of “manpower

analysis” and the perennially flawed predictions of “innovator shortage” (Freeman 1975,

Teitelbaum 2014). Second, innovative careers are fragile (Milojevic et al. 2018) both because

of the winner-take-most aspect of the scientific reward system, and because skills at the

frontier depreciate rapidly, leading many initial entrants to abandon the idea sector and

reenter the production sector (Deming and Noray 2018). Third, especially for countries with

domestic training capabilities, restrictions on high-skilled immigration can act as a brake on

plugging leaks in the innovator pipeline (Kerr 2018). As a result of these headwinds and the
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elimination of mandatory retirement in academia in the mid-1990s, the scientific workforce

is aging rapidly (Blau and Weinberg 2017).

Despite the paucity of research examining the allocation of talent to innovative activities,

some recent evidence points to an important friction, that of exposure to research during

an individual’s formative years. In a telling anecdote, Urschel and Thomas (2019) recount

how pro-footballer turned Math PhD student John Urschel’s athletic prowess was identified

and nurtured from a young age, whereas his mathematical talents were left undeveloped

until a chance encounter with an inquisitive college instructor. More systematically, Bell

et al. (2019), using IRS tax records linked to U.S. Patent data, provide evidence of a

strong association between fathers and sons’ propensity to patent in the exact same narrow

patent class, a finding most easily explained by early socialization opportunities regarding

the feasibility and desirability of a research career.

The existence of exposure effects might at first blush appear surprising, but their poten-

tial importance is better appreciated if one remembers that early research careers exhibit

both brittleness—in the sense that small negative shocks can shift individuals back to the

production sector of the economy (Hill 2018)—and malleability—in the sense that the flexi-

bility to alter one’s research trajectory declines over the life cycle (Higgins 2005). Together,

brittleness and malleability suggest that transient but intense formative experiences in the

early career may significantly influence potential innovators’ decision to enter the “ideas sec-

tor” of the economy, as well as their choice of research trajectory, domain, or methodology.

Despite the empirical plausibility of exposure effects, providing convincing evidence of

their existence and magnitude presents seemingly insurmountable challenges. Three neces-

sary ingredients are required. First, one needs to identify a population of “näıve to research”

individuals who nonetheless possess much of the human capital required to propel themselves

to the research frontier. Second, one requires an intervention consisting of a short but intense

exposure to research in a rarefied intellectual environment to a (preferably random) subset

of this population. A final requirement is the opportunity to observe these individuals for a

long period with minimal loss to follow-up, and see their career unfold.

In this paper, we study an intervention in physician training that comes close to bringing

together these three ingredients: The Associate Training Program (ATP) of the National

Institutes of Health (NIH). The ATP brought recent MD graduates to the intramural campus

of the NIH in Bethesda, Maryland for two to three years to participate in research under

the supervision of NIH investigators. Though quite small when the program was founded in
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1953, its scale steadily grew with applications dramatically increasing during the years of the

Vietnam War.1 The ATP can be considered a large human capital intervention not because

it selected a particularly large cohort (even at its 1973 peak, the program drafted only 229

associates, or approximately 2.5% of graduating male students) but because it induced a

very high proportion of eligible participants to actually apply, from around 20% in 1963 to

close to 80% in 1971.2 Though some applicants had prior exposure to biomedical research

in medical school or during their undergraduate studies, the unpopularity of the war drove

many physicians who otherwise would not have been interested in a research career to apply

for one of those coveted positions (Varmus 2009). This unique confluence of events provides

us with a quasi-experimental lever to disentangle the role of sorting from that of training

and mentorship, always a vexing challenge in empirical studies of the scientific labor market.

We study the careers and productivity of 3,075 medical school graduates who applied

to the ATP during the turbulent period of the Vietnam War. Following the serendipitous

discovery of previously unexamined index cards, our sample includes all male physician

applicants who applied to the program and were interviewed on campus between 1965 and

1975. We build a rich hand-collected data set containing the complete training and career

histories for these individuals, including all publication, patents, NIH grants, and citations.

Despite lasting only two to three years, we find that the ATP had a large and sustained

impact on the careers of those who attended. Carefully selecting on observables, we com-

pare physicians who attended the program to those who passed a first admission screen but

were ultimately not selected. Relative to synthetic control applicants, we find that program

participants were twice as likely to sort into research-focused positions (mostly, but not

exclusively in academic medicine), and dramatically less prone to switch to purely clinical

endeavors as their careers unfolded. Over the life cycle, NIH trainees also garnered pub-

lications, citations, and grant funding at a much higher rate than synthetic controls, with

over a 70% higher odds of joining the biomedical research elite.3 Moreover, the direction of

their research efforts was durably imprinted by their training experience. In particular, NIH

1A unique aspect of the program is that for historical reasons, these physician-trainees became commis-
sioned officers in the U.S. Public Health Service upon acceptance, and as such their participation fulfilled
a draftee’s military service requirement (Berry 1976). After the war ended, trainees began to refer them-
selves ironically as “Yellow Berets,” a derogatory term used to contrast draft dodgers with the elite Green
Berets—the U.S. Army Special Forces (Baskir and Strauss 1978, Klein 1998).

2Since records on the total number of applicants in each year have not survived, the first figure comes
from a back of the envelope calculation (see footnote 7), whereas the second stems from anecdotal accounts
that are plausible, but hard to substantiate empirically.

3Defined as receiving the Nobel Prize, being appointed Howard Hughes Medical Institute investigator,
being elected to the National Academy of Science/Medicine, or winning an NIH R37 MERIT award.
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trainees appear to have acquired a distinct “translational” style of biomedical research which

became an implicit training model for physician-scientists as ATP alumni came to occupy

the commanding heights of academic medicine throughout the United States.

In addition to the unique historical importance of the NIH ATP (Klein 1998, Khot et

al. 2011), our study sheds light on the forces that shape skill acquisition in medicine, and

how medical training influences the rate and direction of medical progress. Much of the

training physicians receive in medical school, internship, and residency is fungible between

medical care and medical research. Early in their career, physicians invest heavily in human

capital, but then typically go on to apply their skills narrowly, for the benefits of their

(private) patients. These same skills, however, can be redeployed in research activities,

where physician effort also generates social returns. In fact, it has been a long-standing

policy goal of the medical elite to steer a larger number of physicians towards research

careers (Wyngaarden 1979). As a result, studying the NIH training programs in the Vietnam

War era provides a unique window on the long-term consequences of exogenously shifting

a well-defined population from the “production sector” of the economy (i.e., clinical care)

to its “ideas sector” (i.e., biomedical research, including bench, clinical, and translational

research).

The rest of the manuscript proceeds as follows. Section 2 provides institutional back-

ground on the NIH ATP program, including the procedures used to select the trainees.

Section 3 describes our sample construction and provides descriptive statistics. Section 4

discusses our econometric approach, while Section 5 presents our main results. Section 6

concludes.

2 Institutional Setting

Relative to other professional or creative endeavors, the scientific labor market is notable

for the extent to which, at any given point of time, a handful of research institutions are

responsible for training a disproportionate share of the future elite in a field while simul-

taneously providing an extraordinary environment for breakthrough discoveries. Examples

abound from a wide variety of scientific fields. In Physics, the Cavendish laboratory was the

prime breeding ground of atomic physicists in the first half of the twentieth century (Rhodes

1986); the Laboratory of Molecular Biology, also located at the University of Cambridge,

played a similar role for biomedical research after the second world war (Bynum 2012, Rubin

2006). This phenomenon is not limited to the physical sciences. For example, the MIT
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economics department stands out from those located at other universities in the extent to

which it spawned a community of academics who went on to exert a profound influence on

the discipline (Svorenc̆́ık 2014).

During the period of our study, the intramural campus of the NIH, located in Bethesda,

Maryland, was widely recognized as one of the preeminent biomedical research institutions.

One aspect setting it apart from other elite institutions, however, was its unique ability to

attract recently minted physicians eager to pursue a research career. Due to the confluence

of multiple factors—the Doctor Draft, plentiful federal funding, and the opening of a massive

clinical research center in 1953—the NIH had probably no equal in the world with respect

to the training of “physician-scientists” (Park 2003). Below, we draw on historical evidence,

including a large archive of oral histories curated by the NIH Office of History4 to describe

this setting in more detail, review the genesis and development of the Associate Training

Program, and describe how trainees were selected and trained during this period.

2.1 The Intramural Campus of the National Institutes of Health
and Its Research Environment

NIH traces its roots to 1887, when a one-room “Laboratory of Hygiene” was created

within the Marine Hospital Service, a predecessor agency to the U.S. Public Health Service.

This laboratory evolved into the Hygienic Laboratory, which moved to Washington, D.C.

in 1891 and, with the Ransdell Act of 1930, became the National Institute of Health. NIH

remained primarily an intramural effort until after World War II, although it collaborated

with academic institutions during wartime to solve war-related health problems such as the

need for large-scale production of penicillin and the need for new drugs for malaria treatment.

In 1944, the Public Health Service Act authorized the Public Health Service to make grants

to universities, laboratories, and hospitals for the conduct of research. The early success of

the extramural funding component of the National Cancer Institute (which became part of

NIH in 1947) laid the foundation for the concept of a health research agency relying on a

mix of extramural and intramural research (NIH Office of History 1982).

After the war, Vannevar Bush, director of the Office of Scientific Research and Devel-

opment, outlined a program for postwar scientific research which affirmed the contributions

of “remote and unexpected fields of medicine and the underlying sciences” in the progress

against disease, and the benefits of cooperative endeavors with industry and academia (Cas-

4https://history.nih.gov/archives/oral histories.html
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sell et al. 1994). Over the next few decades, Congress greatly increased funding to the

NIH, and various institutes and centers within the NIH were created for specific research

programs. The 1953 opening of the Clinical Center on the NIH campus added a new di-

mension to the intramural program—a large capability for patient-related research in close

proximity to basic research laboratories—and brought to the campus a new complement of

physicians as well as other professionals and staff needed to run a research hospital (Shapiro

et al. 1988).

By the early 1960s, the NIH intramural program had become an elite research institution,

a fact acknowledged by a committee report criticizing the rationale for its existence on

the grounds that “. . . the government should not undertake the direct conduct of research

activities that fit precisely into the pattern of scientific work that the universities or other non-

government institutions are equipped to perform” (Wooldridge Committee Report 1965).5

Oral histories from NIH staff are replete with claims attesting to the cutting edge research,

deep expertise, and concentration of talent in biomedical research within the confines of the

intramural campus that resulted in this rarefied environment. Alan Schechter, an ATP fellow

and later Chief of the Molecular Medicine Branch at the NIH noted the NIH created much

of the psychiatric research at the biochemical level, research which was “almost non-existent

anywhere else in the country, or throughout the world, before it was started at the [National

Institute of Mental Health] in Bethesda” (Schechter and Schechter 1998). Similarly, Vincent

DeVita, an ATP fellow who helped to develop the first successful combination chemotherapy

program and held a series of leadership positions at the National Cancer Institute, Memorial

Sloan Kettering Cancer Center, and Yale recalls that “I was going to stay at Yale for a

fellowship, as well, but after I got here I realized that what I was doing at the NIH was

so much more advanced in the cancer field than what was going on here at Yale, that I

just decided to go back” (DeVita 1997). Donald Fredrickson, the Director of NIH between

1975 and 1981, emphasized the breadth of expertise available, noting “you had an expert in

virtually everything you were working on right here on this campus,” so often collaborating

or learning new techniques was a simple walk down the hallway (Fredrickson 1998).

In addition to its scientific expertise, the NIH at the time had several unique strengths. Its

culture is often described as more similar to a university than to a government research lab.

Unlike a university, however, investigators had fewer administrative and teaching responsi-

5Writing a letter to Science in defense of the intramural program, Alfred Gellhorn, a prominent physician-
scientist at Columbia University noted the importance of research training for physicians, asserting that
“. . . this enlargement of manpower in the health-research sciences would be justification enough for the intra-
mural program” (Gellhorn 1965).
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bilities, allowing them to focus a greater proportion of their time on research. Resources

were plentiful, and intramural funding protected investigators from the vagaries of the grant

peer review process. The culture encouraged researchers to be independent and explore their

own ideas wherever they led. Edward Scolnick, an ATP fellow and former head of research

and development at Merck Research Laboratories noted that at the NIH, “the obligation was

that you shouldn’t just turn out the papers. You really had to work on something that was

truly meaningful” (Scolnick 1998).

The draft, and resulting remarkable concentration of talent in one location, also con-

tributed to the research environment at the NIH. Harry Kimball, an ATP fellow and former

President of the American Board of Internal Medicine, recalls, “the very best people and

trainees in the country came to the NIH and that of course led to an atmosphere and an en-

vironment which was truly remarkable. . . Make no mistake the draft concentrated a number of

brilliant minds at one institution” (Kimball 1997). Beyond just impacting their experience

on the NIH campus, the density of talent at the NIH helped form a rich network alumni

could tap into later in their careers.

Finally, many ATP fellows came to view the focus on what would later be called trans-

lational research as a distinctive element of the approach to research at the NIH. This was

no accident. James Shannon, one of the early leaders of the NIH, carefully structured the

intramural program to facilitate close cooperation between basic and clinical research (Gold-

stein and Brown 1997, Park 2003). This was reinforced in the physical design of buildings,

where the clinical center had patient care areas and research laboratories adjacent to one an-

other within each floor to facilitate interactions across them. Shannon saw a special role for

the physician-scientist, who could make fundamental discoveries about biologic mechanisms

and apply these findings to the bedside. Anthony Fauci, an ATP alumni and prominent

HIV/AIDS researcher, recalls, “what the Clinical Associate Program does is it gives you a

very interesting perspective on the relationship between disease and the basic science that you

have to study to be able to approach disease. . . Also the link, as we used to say, between the

bed and the bench, you see something at the bedside, you bring it back and ask the question at

the bench or you make a discovery at the bench and you go back and apply it to the bedside,

that bedside to bench phenomena was really what the Clinical Associates program was all

about” (Fauci 1998). Fauci also contrasts the approach at the NIH to those of other aca-

demic medical centers at the time, “[At Cornell] there was very little time to think about why

patients developed certain diseases or infections. It was always treat them, get them ready

and get them out. Whereas at the NIH, you see the patient and then you say, ‘You know, I

think I want to do a project to ask that question.’”
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2.2 The Associate Training Program

The NIH ATP started in 1953 with about 15 medical graduates to provide research

training to physicians (Klein 1998). Associates would come to the NIH and do research

under NIH investigators, usually after completing a portion of their residency training. Two

years were typically spent in the program, but in some cases there was the option to extend

the period to three years. From the start, the program was focused on turning physicians

into independent medical investigators well-grounded in scientific knowledge and methods.

The goal was on learning how to do research more than simply doing research itself and

on bringing the physicians into close contact with accomplished scientists. In addition to

the research, the NIH also hosted a set of after-hours basic sciences courses for program

participants that could rival the offerings of major universities. Christian Anfinsen, a Nobel

Laureate and NIH investigator during the early years of the program, describes its key

features: “The importance of having the [associates] work on problems of [their] own choice

rather than be servants in the research problems of the preceptor, and the importance of

providing the student[s] with some integrated and organized basic knowledge as a foundation

that would permit them to do their own integrating of knowledge later” (Anfinsen 1963).

While the focus was on research, for some clinical specialties and subspecialties participants

were able to get credit for their time at the NIH towards their required clinical training for

board certification.

By the early 1960s, the Associate Training Program at the NIH had been expanded to

include three separate tracks. Clinical associates would divide their time between clinical

care at the NIH Clinical Center and laboratory research. Research associates would spend

most of their time on research and had limited clinical responsibilities. Staff associates also

had training in research administration as well as undertaking clinical or laboratory research.

Since the NIH, through historical accident, grew out of a laboratory within one of the

U.S. Navy Marine Hospitals, ATP applicants applied to the program under the auspices

of the U.S. Public Health Service and those selected became commissioned officers. This

allowed service with the U.S. Public Health Service to fulfill any military service obligation

a physician may have if drafted.6

6Of note, in addition to the NIH, the U.S. Public Health Service had other programs through which
physicians could apply to spend two years of service, including at the Center for Disease Control, the Food
and Drug Administration, and the Indian Health Service.
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Understanding the institutional setting of the NIH ATP requires reviewing the relation-

ship between physicians and the military draft during the Korean and Vietnam Wars. With

the start of the Korean War in June of 1950, there was an increased need for physician in

the military to care for the expanding population of enlisted personnel. While physicians

could be drafted, their extended training and educational exemptions in the draft allowed

them a better chance to avoid being called through the standard draft process (Card and

Lemieux 2001, Park 2003). To ensure an adequate supply of physician draftees, lawmakers

passed an amendment to the Selective Service Act in September of 1950, colloquially known

as the Doctor Draft. This amendment allowed for the special registration and induction of

physician and certain allied health professionals. The Berry Plan, named after Assistant

Secretary of Defense for Health and Medical Affairs Frank Berry, was enacted in 1954 and

modified the Doctor Draft. The Berry Plan allowed trainees to defer their military service

during medical school and for a certain portion of their residency training; however, timing

preferences were often not honored (Berry 1976, Klein 1998). In 1967 there were additional

restrictions on exemptions for physicians seeking draft deferment. This change in exemp-

tions, along with increasing needs by the Department of Defense, led to about 6,000 of the

9,000 doctors graduating from medical school annually to be drafted, with about 700 physi-

cians, dentists, and allied professionals able to fulfill military obligations through the Public

Health Service Commissioned Corps (Committee on Labor and Public Welfare 1970).

While the NIH ATP began on a small scale, it steadily grew throughout the 1950s and

1960s. The NIH was often seen as a highly desirable place to spend time for young doctors,

reflecting both its prominence within the U.S. biomedical R&D ecosystem as well as its

singular position as a training center that would enable young physicians to fulfill their

military obligations while still advancing their medical careers. The interest in and level of

competition for spots in the program increased in proportion to the perceived hardship of

military service. The program, however, was highly competitive even before the increased

interest during the Vietnam War. Unfortunately, there is no reliable information on the

total number of applicants to the program, except in a single year before the start of our

information period: 1963. That year 53 of 1,464 physician applicants were selected (NIH

Office of Research Information 1963).7 At its peak, in 1973, the program included 229

associates (Klein 1998). In contrast, in the year following the 1973 Paris Peace Accords which

effectively led to an end to the military draft, the NIH was not able to fill its associateship

7In 1963 there were 7,265 graduates from US Medical Schools (Association of American Medical Colleges
2016), an estimated 5.6% of which were female (Snyder 1993). Using this, we can conclude approximately
21% of eligible applicants actually applied to the NIH ATP in 1963.
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quota for the year, and by 1976 included only 108 physicians, down over 50% from its peak

(Klein 1998).

While certainly some of the physicians would have applied to and attended the program

regardless of the war, avoiding the draft was a significant motivation for some physicians.

Donald Frederickson, a former director of the NIH and one of the first clinical associates

in the program in 1953, later played a role in determining who to admit to the program

during the 1960s and 1970s. He recalled, “The NIH Associates program would never have

been as popular or as competitive as it was without the draft” (Fredrickson 1998). Anthony

Fauci, a program alumni and the former head of the National Institute of Allergy and

Infectious Disease, echoed these sentiments “. . . every single physician went into military

service. . . essentially, I came down to the NIH because I didn’t have any choice” (Fauci

1989). The ability of program participants to fulfill their military service requirement did

not escape popular attention. The NIH associates were often called the “Yellow Berets,”

although the exact origin of this term is unclear (Klein 1998).8

Not only did the draft influence individual decisions to apply to the NIH, it shaped the

growth of the NIH by facilitating concentration of talent in one location. Some have argued

that the ATP and doctor draft played an important role in the preeminence of the NIH for

precisely this reason (Park 2003). Harry Kimball, an alumni of the program and former

president of the American Board of Internal Medicine said, “We all knew we were going to

serve in the military one way or the other. . . so it was just a matter of trying to arrange the

best possible experience during your military time. . . the fact that there was a doctor draft

made the NIH the premier place.” (Kimball 1997).

2.3 The Application Process

Applications to the NIH ATP were typically submitted two years in advance, generally

during the final year of medical school with a planned program start date after completing in-

ternship and the first year of residency training. Applications included academic transcripts,

references, publications, and planned post-graduate training institutions. After a first screen

based on these documents, a small number of applicants were invited to interview on campus

at the NIH in order to match with a particular laboratory and mentor. Unfortunately, much

of this written documentation was destroyed, leaving only the application index cards of the

subset of candidates who cleared the first admission hurdle and attempted to match with a

8Bob Seger wrote a parody of Barry Sadler’s “The Ballad of the Green Berets” called “The Ballad of the
Yellow Beret,” which was composed by D. Dodger in 1966.
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laboratory. There is also no official record of the labs with which each participant attempted

to match or of offers made. The data can only tell us that out of these second round appli-

cants, roughly 63% accepted an ATP position and attended the program. According to the

NIH’s official documentation, these final appointments were made based upon intellectual

attainment and demonstrated research interest and ability (NIH 1968).

Applicants were undoubtedly positively selected from the eligible population—male med-

ical school graduates. In Appendix B, Table B1, we can see that compared to a random

sample of non-applicants drawn from the American Medical Association (AMA) Physician

Master File, applicants graduated from more selective medical schools (as measured by NIH

grants) and published at significantly higher rates than non-applicants before application (0.9

vs. 0.3 publications on average). However, it would be wrong to conclude from this evidence

that applicants displayed a preternatural disposition for research career prior to application.

For instance, the median number of publications for applicants is zero; the overwhelming

majority of applicants do not hold a PhD degree; and applicants do not appear particu-

larly precocious, relative to the eligible population (kernel densities corresponding to the age

distribution of at the time of application for applicants and non applicants is depicted in

Figure B1; the two curves are nearly identical).9

The oral and written historical records also speak to the difficulty in evaluating research

potential and making decisions between candidates. Donald Fredrickson, an ATP alumnus

who later served on the selection committee for the program in the 1960s and 1970s, recalls

that “. . . the main objective was getting people who would use this environment to turn into

scientists,” but also notes selecting participants was “extremely difficult because all we really

had was the scholastic record of most people. Very few had done any research. . . so the

art of picking out of a whole group of qualified people those who might become successful

scientists was extremely difficult. . . We would have to pick them with a certain amount of

variety because our programs needed people of diverse interests” (Fredrickson 1998). Harry

Kimball, another alumnus of the program who was also later involved in applicant selection

remembers “It was truly astonishing how qualified these people were and the kind of close

decisions you had to make as to who to offer a spot in the program” (Kimball 1997). Harold

Varmus describes how the decisive factor in his own selection into the program likely did not

9An additional piece of evidence argues against viewing the applicant population as being dominated
by science “geniuses”: matching carefully the applicant roster with the Directory of Rhodes Scholars, we
found only seven matches (four treated physicians and three control physicians). Note that comparisons
with “non-applicants” are subject to an important caveat: since we do not know the identity of the first-
round applicants, our sample of non-applicants could in fact include individuals who did not pass the first
application screen.
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hinge on his promise as a budding scientist. Rather, he writes that during his interview with

Ira Pastan “My schooling in literature turned out to be more important than my interest in

endocrinology, Ira’s field, because Ira’s wife Linda, a poet, had often complained that Ira’s

colleagues seldom talked about books. Ira, himself an enthusiastic reader, thought it might be

helpful to have someone with my background in his lab” (Varmus 2009).

2.4 Prior Evaluations

A handful of prior studies have examined the program. Klein (1998) provides a thorough

description of the ATP and the NIH during the Vietnam era grounded primarily in the

conduct and review of historical documents and interviews. We have drawn on her analysis

to provide much of the necessary institutional background required to guide our empirical

analysis. Khot et al. (2001) analyze the careers of NIH ATP attendees from 1955 to 1973,

comparing them to a random sample of medical school faculty that graduated in the same

years selected from the Association of American Medical Colleges Faculty Roster. The

authors show that relative to these controls, ATP participants were 150% more likely to

achieve the rank of full professor, twice as likely to become a department chair, and three

times as likely to become a medical school dean. Matching the population of attendees with a

series of prestige markers appropriate for biomedical researchers, they found in their sample

nine winners of the Nobel Prize in Physiology or Medicine, ten recipients of the National

Medal of Science, 44 members of the National Academy of Sciences, and 125 members of the

Institute of Medicine. Our study improves on their design with a more appropriate control

group, that of unsuccessful applicants to the ATP, which helps shed light not simply on the

effect of ATP attendance on the intensive margin—articles, citations, grants, patents—but

also on the extensive margin: how did selection shape applicants choice of career, in particular

participation in research activities as opposed to purely clinical endeavors?

3 Empirical Design, Data, and Descriptive Statistics

3.1 Data

The application index cards for the NIH Associate Training Programs form the raw

material for the creation of our dataset. While the cards for successful applicants had

been previously digitized and used in prior research efforts (e.g., Khot et al. 2011), the

index card for applicants who did not attend the program were previously thought to have

been destroyed. In 2015, carton boxes containing a subset of these index cards—those
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corresponding to applicants who interviewed on campus but were ultimately not offered a

position—were discovered at the National Archives by the NIH archivist, Barbara Harkins.

Figure 1 displays the number of index cards in our dataset in each year belonging to our

observation window, 1965 and 1975. While the ratio of successful to unsuccessful applicants

is approximately 2:1 over the entire period, this average masks large swings, with the years

1970, 1971, and 1972 exhibiting a greater proportion of unsuccessful applicants. These years

correspond to the height of the Vietnam War mobilization effort, coincidentally those during

which the draft lottery was in effect.

We limited our analysis to those who applied to the program between 1965 and 1975.

To arrive at the final list of 3,075 applicants, we eliminated 22 applicants who did not hold

an MD degree, three unsuccessful applicants who applied at the very start of medical school

(and did not reapply), and eight who died while in training, or soon thereafter. We also

excluded 34 female and 22 foreign medical school graduates as their motivations to apply,

and conditional on applying, attend may have been very different from applicants subject to

the draft. Despite our best effort, we also lost 13 applicants to follow-up (less than 0.42% of

the total). In the case of repeated applications for the same applicant, we retained only the

latest one.

For each of these physicians, we manually collected their training and career history using

a mix of Google, Doximity, and LinkedIn searches; medical licensure records; professional

profiles and CVs; Who’s Who profiles; and other publicly available internet sources. These

were supplemented with physician biographical information contained in the AMA Physician

Masterfile. To ascertain treatment status, participation in the ATP was verified with the

biographical resources above as well as NIH telephone directories and internal human resource

records.10 Applicants who were appointed to the Public Health Service Commissioned Corps

but served at the Center for Disease Control (CDC) or the Indian Health Service were

assigned to the control group. Of course, many members of the control group received

research training in traditional academic medical settings, some of them after a period of

military service, though only one applicant in the sample appears to have served in the

Vietnam military theater. The final sample contains the records of 3,075 physicians (1,929

program attendees and 1,146 non-attendee controls).

10Our set of treated applicants include fellows who completed their training outside of the confines of the
NIH intramural campus in Bethesda, such as the Baltimore Cancer Research Center or the FDA. Other NIH
locations were even more far-flung such as the Rocky Mountain Laboratory (located in Hamilton, Montana)
or the Panama Control Zone. As a robustness check, we repeated our analysis excluding the 267 ATP
attendees not located on the main NIH campus in Bethesda with similar results obtained.
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We distinguish between three career phases for all applicants. First, the education,

or pre-application phase, which ends at the end of medical school. Second, the training

phase, which covers internship, residency, post-residency fellowships, as well as national

service regardless of the setting where it was served (Army/Navy, NIH, CDC, Indian Health

Service). Finally, the independent phase of the career begins immediately after the end of

the training phase, and ends with retirement or death. When referring to career choice in the

rest of the paper, we refer to the choice of employment in this last career phase. 277 (9.01%)

applicants pass away prior to their retirement; 762 (24.78%) retire prior to 2017, the end of

our observation period; and for 2,036 applicants (66.21%), the career is still ongoing as of

2017. Though these observations are technically censored, it is important to acknowledge

that the youngest applicant in our sample was 65 years old in 2017 and in his thirty first

career year. To a first order of approximation, these physicians are therefore at the twilight

of the active phase of their research or clinical careers.

Publications, citations, patents, and NIH grants were collected for each individual from

PubMed, the Web of Science, the U.S. Patent and Trademark Office (USPTO), and the NIH’s

Consolidated Grant Applicant File, respectively, and carefully name-disambiguated. For

publications we include only original research articles, excluding other types of publications

such as letters, erratum, and review articles. Importantly for our analysis, we use the

richness of the individual profiles collected to measure participation in research independently

of the applicants’ employers. For instance, the career of many of our applicants unfolds

within academic medical centers in purely clinical positions where there is no expectation of

publication. In contrast, other applicants work in industry or other non-academic institutions

and yet amass a respectable publication record in the context of non-traditional research

careers. Since our motivation is to understand how early career interventions might influence

long-run engagement with the idea sector of the economy, distinguishing between career locus

(academic versus non-academic jobs) and career focus (research jobs versus clinical jobs) is

important.

3.2 Descriptive statistics

Pre-application characteristics. Table 1a presents descriptive statistics regarding ATP

applicants at the time of application. Applicants with stronger academic credentials, or with

evidence of involvement in research activities are also more likely to attend the program. For

instance, applicants holding a PhD degree, those with a publication record, those inducted
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in an elite medical school honors society (AΩA),11 and those having graduated from elite

medical schools (as proxied by the NIH funding received by its affiliated faculty members)

are more likely to be selected.12 Recall that these applicants all survived a first screen, so one

might have expected that covariates observable before this initial screen would not influence

the selection decision at the interview stage. The fact that observable markers of “research

preparedness” do in fact predict selection imply that interviewing “skills” are correlated with

these markers, or alternatively, that the ultimate decision makers place positive weights on

them even at the second stage of the process. However, one must remember that due to

the young age of the applicants, the signals of research potential upon which the selection

decision relies are necessarily noisy. For instance, 59.4% of applicants have no publication

to their name within two years of their ATP application (67.4% for attendees; 54.7% for

non-attendees). ATP attendees also applied to more NIH institutes (3.9 vs. 2.9), perhaps

signaling greater interest in or motivation for research undertakings. At application, their

age and draft lottery number (for the subset of 1,898 applicants whose birth year made them

eligible for the draft lottery) are balanced across attendees and non-attendees, as one would

expect.

Career choice. Table 1b provides basic statistics regarding career outcomes, with a par-

ticular focus on the first job following the end of the training phase and the last job held

by each applicant before the earliest of 2017, retirement, or death (Appendix Tables A2

and A3 provide a finer-grained occupational breakdown). It is immediately apparent that

ATP attendees choose academic (76% vs. 57%) and research (69% vs. 46%) careers at a

more pronounced rate, relative to non-attendees, following the end of their training. These

differences reflect in part time spent in training, though this contrast is not especially stark:

On average, ATP attendees spend an additional 6.7 months in post-graduate training prior to

achieving career independence, relative to non-attendees. The gap does not seem to narrow

as their career unfolds, though one can observe attrition in the subsample of attendees. The

proportion of fellows in research positions falls from 69% to 52% between the beginning and

the end of the career. Overall, these univariate comparisons corroborate the claims made by

ATP alumns regarding the effect of their training on career orientation. For instance, Harry

Keiser, an ATP alumnus and later clinical director of the National Heart, Lung and Blood

11Criteria for selection into AΩA varies by school, but typically weighs academic and clinical excellence
most heavily.

12Appendix Table A1 lists the 10 most frequent medical schools from which physicians in the sample
graduated, separately for attendees and non-attendee controls. Appendix Figure A1 provides a histogram
for the distribution of the number of original publications published up to the year of ATP application,
weighted by the journal impact factor of the publication outlet in which they appeared.
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Institute, mentions that “if I had gone back to Northwestern. . . I would have almost certainly

gone out into private practice. . . but I certainly would not have continued to devote the rest

of my life to research” (Keiser 1998).

Research outcomes. Tables 1c reports descriptive statistics on a variety of research out-

comes. ATP attendees garner over twice the number of career publications on average (77.8

vs. 37.3). Similar differences can be observed for patents (1.7 vs. 0.7), NIH extramural grant

funding ($12.4 vs. $4.5 million), and citation impact (5,131 vs. 1,988 for article-to-article

citations; 20.2 vs. 7.5 for patent-to-patent citations). ATP attendees publications are also

more heavily cited in patents (252 vs. 80). Attendees receive greater NIH R01 funding as

well, with $3.1 million compared to $1.2 million over their career.

We also examine the “fecundity” of ATP applicants by identifying the set of individuals

they train over their career who go on to be awarded NIH R01 funding, a key marker of

research independence in U.S. academic medicine. In the context of our data, a trainee is

an individual who, in a window centered on the time of her highest degree, appears as first

author on a publication jointly with the ATP applicant in last authorship position. We

then match the names of these individuals with the NIH Consolidated Grant Applicant File,

allowing us to identify the subset of trainees who go on to be awarded NIH funding (more

details are provided in Appendix B). This is a relatively sparse outcome, but there again,

successful applicants appear more prolific than unsuccessful ones (0.76 vs. 0.21 R01-funded

trainees on average).

Panels A, B, and C of Figure 2 display histograms for the distribution of career pub-

lications, citations, and NIH funding by treatment status. The differences in achievement

between attendees and non-attendees are even more pronounced in the right-tails of these

distributions. This is also reflected in the rate at which attendees accrue markers of research

excellence over the career, relative to non-attendees (Table 1d). In the control group, no

physician ever receives a Nobel Prize or a Howard Hughes Medical Institute (HHMI) Inves-

tigatorship (the corresponding numbers in the treatment group are 7 and 32, respectively).

The differences in the rate at which treatment and control physicians become Members of

the National Academies or NIH MERIT awardees are less stark, but still large in magnitude.

Research style. We develop a battery of measures to capture differences in research style

across physicians in the sample. In particular, we take a first stab at measuring “transla-

tional” biomedical research. Translational research does not have an agreed-upon definition
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(Butler 2008, Woolf 2008). For the purposes of this paper, we will build upon the view

of David Nathan, an NIH ATP alumni and former president of the Dana-Farber Cancer

Institute (2005):

“Translational clinical investigators come in at least two flavors. . . One class includes
physician-scientists interested in disease mechanisms. . . But these almost never interact
in their research with an intact patient/subject. Such disease-oriented researchers are
content to study tissue samples, cell lines, and model systems such as mice, fish, and
yeast and do so with great benefit. . . Their career paths are only slightly distinguishable
from those of basic scientists. . . The other class of physician-scientists include patient
oriented researchers. They actively search for patients who may enable them to uncover
the secrets of complex diseases, care for those patients, and with their permission, un-
dertake to explore new diagnostic and therapeutic approaches to treating their diseases.”

As a concrete (and famous) example of translational research of the first type, consider the

work of NIH ATP alumni Joseph Goldstein and Michael Brown, recipients of the 1985 Nobel

Prize for Medicine and Physiology. Their initial investigations were inspired by observa-

tions of patients with familial hypercholesterolemia they saw at the NIH Clinical Center

(Goldstein and Brown 1997). Through patient-inspired basic investigations performed at

the laboratory bench, they identified the underlying root case of this disease as a lack of

low-density lipoprotein receptors. These discoveries in turn informed drug development ef-

forts, ultimately leading to the market introduction of statins. The work of Goldstein and

Brown illustrates well the importance of both the “bench to bedside” and “bedside to bench”

transitions which are a recurring theme in the oral histories of ATP alumni.

Conversely, Philip Pizzo personifies an approach to translational research closely con-

nected with patient care. After his clinical associateship, Pizzo stayed on at NIH, becoming

Chief of Pediatrics and Scientific Director of the Division of Clinical Sciences at the National

Cancer Institute before being named Physician-in-Chief of Boston Childrens Hospital and

later Dean of Stanford Medical School. An expert in infectious disease and cancer, examples

of his contributions include the first use of antiretroviral medication in children with HIV,

a phase I trial of a solubilized receptor used by HIV for cell attachment, assessing the effec-

tiveness in cancer patients of a diagnostic test for invasive fungal infection previously studied

only in animal models, and in vitro testing of approaches to rescue neutrophil dysfunction

using HIV patient samples.

The MeSH thesaurus from the National Library of Medicine provides the raw material

necessary to create our measures of research style. MeSH consists of terms arranged in a
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hierarchical structure that permit searching at various levels of specificity (there are over

29,000 descriptors in the 2019 edition of MeSH). Almost every publication in PubMed is

tagged with a set of MeSH terms (between 1 and 68 in the current edition of PubMed,

with both the mean and median approximately equal to 10). For each article published

by a scientist in the sample, we measure disease orientation by the presence of a disease

MeSH term. To capture bench research, we take note of the presence of MeSH terms for

molecular biology techniques—such as nucleic acid amplification techniques or cell migration

assays, MeSH terms corresponding to model organisms—such as the nematode caenorhabditis

elegans or the fruit fly drosophila melanogaster, MeSH terms related to cellular structures

and macromolecules—e.g., DNA topoisomerase IV, or MeSH terms denoting biochemical

and cellular processes—e.g., oxidative phosphorylation (See Appendix D for further details).

In a second step, we partition the bibliome into four mutually exclusive styles: (i) Basic

science articles are not disease-oriented, are tagged by at least one bench science keyword,

and are not clinical trials; (ii) translational articles are disease-oriented, tagged by at least

one bench science keyword, and not clinical trials; (iii) clinical trials (identified using the

publication type field in PubMed); and (iv) “other” clinical articles, which are disease-

oriented, not clinical trials, and not tagged by any bench MeSH keywords.13

We create three additional measures. First, we designate an article as “inspiring transla-

tional research” whenever it is translational according to the above criteria and is cited by a

clinical trial publication. Second, we identify work that “builds on translational research”:

articles that report the results of a clinical trial and also list a translational publication in

their references. Finally, we tag each article that garners at least one citation in the header

of a patent subsequently granted by the USPTO (see Marx & Fuegi 2020 for more details

on article-to-patent citations). This provides a crude way to capture the extent to which

biopharmaceutical firms build on the work of the scientists in the sample to inform their

applied R&D efforts.

Table 1e reports descriptive statistics for the research style measures. Because these

measures are only meaningfully defined for publishing researchers, we create a subsample

that only includes the 2,584 scientists (1,730 treated and 854 controls) who publish at least

one article after the end of their training. Rather than focusing on the levels of these

variables, we normalize them by the total number of articles published by each scientist in

the independent career phase.

13Jointly, these styles comprise 93% of the applicant’s published output. For the style analysis, we ignore
the residual unclassifiable publications.
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Non-attendees and attendees differ markedly in the style composition of their published

work. The proportion of basic science articles is almost twice as high for successful applicants

(19.9% vs. 10.4%); the proportion of translational articles is approximately 30% higher; and

the proportion of clinical trials is approximately 10% higher. This means that a higher

fraction of the non-attendees’ output falls into the “other” clinical category.

Additional univariate comparisons point to higher translational orientation for attendees,

relative to non-attendees using additional metrics such as the number of articles appearing

in a small set of explicitly translational journals, the number of articles inspiring follow-on

translational research, or the number of articles building on translational research. A higher

fraction of attendees’ articles is also referenced in patents. Below, we explore whether these

differences subsist when comparing treated and control physicians with similar observable

characteristics.

3.3 Econometric Considerations

The univariate comparisons point to large differences in outcomes between attendees

and non-attendees of the NIH ATP. It would be hazardous to interpret these differences

as reflecting the causal effect of the ATP “treatment,” since it is obviously a goal of NIH

laboratory heads to admit applicants with the most research promise. Recall that all appli-

cants in our sample already passed a first selection screen. Yet residual sources of selection

might remain at the interview stage, e.g., the admissions committee might extract relevant

information regarding an applicant’s suitability for a research career in a series of relatively

short interviews. To address this fundamental identification challenge, we adopt a propensity

score weighting methodology which belongs to a broad class of “selection-on-observables”

techniques.

Inverse probability of treatment weighted estimation. Let us first assume that the

NIH PIs recruiting fellows at the interview stage are unable to select applicants on the

basis of covariates unobserved by the econometrician and correlated with research career

success—the “unconfoundedness” assumption. This assumption is not refutable and it places

strong demands on the data generating process.14

14We know from past research that “selection-on-observables”-type techniques perform best (in the sense
of replicating an experimental benchmark) when it is possible to include a comprehensive list of covariates to
model the probability of assignment to treatment (Dehejia and Wahba 2002). In our sample, we have at our
disposal a large set of pre-treatment covariates that we believe to be likely to confound comparisons between
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In addition, we must assume that, for all included values of the covariates predicting

treatment, the likelihood of being selected to attend is positive—the “common support”

assumption. The common support assumption implies that we should limit our comparisons

to sets of values for which there is sufficient overlap in the match probabilities between actual

and counterfactual matches (Barber, Murphy, and Verbitsky 2004).

Under these assumptions, Hirano and Imbens (2001) show that various treatment effects

of attending the NIH ATP on outcome y, conditional on exogenous applicant characteris-

tics Z, can be recovered by estimating

E[y|X,Z] = β0 + β
′

1Z + β2TREAT (1)

by weighted least squares or weighted maximum likelihood (depending on the distribution

of y), where the weights correspond to the inverse probability that each observation is treated.

Implementation is straightforward. We first estimate the propensity of attending the program

as a function of pre-treatment observable characteristics

φ(Xi) = Prob(TREATi = 1|Xi) (2)

for each applicant i. The predicted probabilities (the propensity scores) help create regression

weight wi for each subject. To estimate the Average Treatment Effect (ATE):

wi =

{
1

1−φ̂(Xi)
if TREATi = 0

1

φ̂(Xi)
if TREATi = 1

(3.1)

To estimate the Average Treatment Effect on the Treated (ATET):

wi =

{
φ̂(Xi)

1−φ̂(Xi)
if TREATi = 0

1 if TREATi = 1
(3.2)

Weighting equation (1) by wi effectively creates a pseudo-population of applicants in which X

no longer predicts assignment to treatment and the causal association between treatment

and the outcome variable is unchanged from the original population.15 We refer to β2 when

equation (1) is weighted by wi as the Inverse Probability of Treatment Weighted (IPTW)

estimator of β2 (Xu et al. 2010, Austin and Stuart 2015).

attendees and non-attendees: quality of medical school attended, research publications as an undergraduate
and medical school student, etc.

15We use stabilized inverse probability of treatment weighting, which multiplies weights by the marginal
probability of receiving treatment. This method addresses the difficulty of very large weights being assigned
to treated individuals with a probability of treatment close to zero or controls with a probability of treatment
close to one (Xu et al. 2010, Austin and Stuart 2015).
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Informative censoring. Although we focused the first part of the discussion on the problem

of non-random selection into treatment, a second problem arises because some applicants

might fail to engage in research activities for the sole reason that their chosen position does

not afford them the possibility to publish, seek external grants, or train the next generation

of scientists. This problem is distinct from informative loss to follow-up. These physicians

careers are observed in full and yet it does not seem meaningful to compare the research

productivity of a full-time, tenure-track academic researcher with that of a clinician who

very occasionally dabbles in research. We deal with this problem by treating early exit

from research as another treatment. As Robins et al. (2000) note, adjusting for this type

of informative censoring in this way is tantamount to estimating the causal effect of ATP

attendance on an outcome if, contrary to the fact, all applicants had remained engaged in

research rather than followed their censoring history. We model the exit decision as a function

of the same pre-application covariates used to model selection into treatment, and compute

weights corresponding to the probability of exit given these observables. Concretely, we

estimate the propensity of early exit as a function of pre-treatment observable characteristics

and program receipt:

ρ(Xi) = Prob(EXITi = 1|Xi) (4)

for each applicant i. The predicted probabilities help create regression weights vi for each

subject. For example, the Average Treatment Effect (ATE) can be estimated with vi defined

as:

vi =

{
1

1−ρ̂(Xi)
if EXITi = 0

1
ρ̂(Xi)

if EXITi = 1
(4.1)

Hernan et al. (2001) show that consistent estimates for β2 can be obtained by multiplying

the weight corresponding to the inverse probability of treatment wi and the weight corre-

sponding to the inverse probability of censoring vi. The denominator of the final weight is

the probability that an applicant subject would have followed his own treatment and cen-

soring history, conditional on observables. We label this methodology Inverse Probability of

Treatment and Censoring-Weighted (IPTCW) estimation in what follows.

Selection on unobservables. Despite a long list of observable covariates to predict selec-

tion into the ATP, IPTW estimation does little to address the threat to identification due

to factors unobservable to the econometrician. The time period of the study suggests an

instrumental variable approach based on draft eligibility, as in Angrist (1990). For several

cohorts of applicants in our sample, their eligibility for the draft was potentially influenced

by the lotteries held by the U.S. Selective Service in 1969, 1970, and 1971. In total, 1,898
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(61.72%) of the applicants were born between 1944 and 1952 and therefore assigned a lottery

number, based on their birth date. Applicants whose number was called might have been

especially determined to escape service in Vietnam, and invested more in preparing their

application. Alternatively, NIH PIs might have exhibited a bias in favor of applicants whose

alternative to training at NIH would have been service in a conflict zone. In the subsample

of applicants impacted by the draft lottery, 978 (51.53%) have a number that was called,

i.e., classified as available for military service (more details are provided in Appendix C).

For the vast majority of the physicians in the sample affected by the draft, the lottery

occurred several years prior to their graduation from medical school and their application to

the ATP. As a result, most may have been able to postpone their draft eligibility through

deferments granted for educational purposes (Rousselot 1971). Table C1 in Appendix C

demonstrates that in practice, having one’s number called in the lottery does not help predict

ATP attendance.

Estimation procedure. Many of the outcomes we study, including publication counts

and NIH grants awarded, are skewed and non-negative with a large mass point at zero (see

Figures 2a, 2b, and 2c). For example, 426 (13.9%) of the applicants do not publish after

their training; approximately two thirds of the sample never receive any NIH grant funding

over the career. Following a long-standing tradition in the study of scientific and technical

change, for these skewed outcomes we present Poisson quasi-maximum likelihood (hereafter

QML) estimates (Santos Silva and Tenreyro 2006). Because the Poisson model is in the

linear exponential family, the coefficient estimates remain consistent as long as the mean of

the dependent variable is correctly specified (Gouriéroux et al. 1984). QML (i.e., “robust”)

standard errors are computed using the outer product of the gradient vector (and therefore

does not rely on the Poisson variance assumption).

4 Results

The exposition of the econometric results proceeds in stages. We first explore empirically

the determinants of selection into the ATP. Using the predicted probabilities from these

models as regression weights, we then report estimates of the effect of ATP attendance

on (i) career choice outcomes; (ii) research productivity outcomes; and (iii) research style

outcomes. Finally, we perform a battery of robustness tests to probe the plausibility of the

unconfoundedness assumption in our context.
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4.1 Selection into the NIH ATP

We model the likelihood of selection in a logit framework using an extensive list of

covariates observed at the time of selection (Table 2).16 We capture the research orientation

of the medical school and intended internship hospital for each applicant with the NIH

funding that accrue to principal investigators in these institutions. We also include an

indicator variable for applicants who received a PhD before they applied, and an indicator

variable for election to the AΩA Honor Medical Society. The most informative indicator of

research promise is probably demonstrated engagement in research activities, as ascertained

by an applicant’s list of scientific works published, or soon-to-be-published at the time of

application. We weight each of these student publications by the impact factor of the journal

in which they appeared as a crude quality adjustment (raw counts produce similar results).

Columns 1a and 1b report the results and finds the coefficient signs for most of the

covariates are in the expected direction. Relative to applicants without publications, and at

the mean of all other covariates, applicants with one publication are 7% more likely to be

selected; those with two publications or more, 20% more likely.

Estimates in column 1c correspond to the results of a cross-fit partialing-out lasso logit

procedure with ten folds, as described in Chernozhukov et al. (2018). The specification

includes all the covariates mentioned above, plus a full suite of medical school indicator vari-

ables and a full suite of internship hospitals indicator variables, for a total of 372 covariates,

151 of which the procedure selects for inclusion as control variables. This procedure allows

for statistical inference to be performed on five covariates of interest also included in the

specification in column 1b, enabling the coefficients and standard errors to be compared

across columns.17

Columns 2a, 2b, and 2c perform a similar exercise, but the response variable is not

selection in this case, but rather exit from research at the end of training. The signs of the

coefficient estimates for the predictive covariates are flipped, relative to the specifications in

columns 1a, 1b, and 1c.

16In fact, most of these factors might have been observed at the initial selection stage (e.g., medical school
attended) while for others the timing is more ambiguous as they might become known to the applicant
between the first and second stage of the ATP selection process (e.g., intended internship hospital, accepted
or forthcoming journal publications).

17Note that medical school and internship hospital funding variables are not separately identified from the
fixed effects and drop out of the specification. The χ2 test statistic (i.e., the Wald test of the hypothesis
that the coefficients of these five covariates are jointly equal to zero) is equal to 78.85 (p < 0.01).
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The specifications used to compute selection probabilities and regression weights for each

applicant depart ever so slightly from those in columns 1c (for the selection weights) and 2c

(for the informative censoring weights). Since the estimation of the propensity score is purely

a prediction exercise, we favor an abundance of explanatory variables in these models. Our

least restrictive specification includes 94 fixed effects for medical schools and 238 indicator

variables for intended internship hospitals. We constrain the model to include the same

variables as the specification in column 1c and 2c as well as the inverse hyperbolic sine of

medical school and internship hospital NIH grant funding. The other variables are selected

via a logit procedure with a lasso penalty term, using ten-fold cross-validation to prevent

overfitting the data. The predicted probabilities from this model are used to generate the

benchmark set of weights used below to estimate treatment effects.18

Appendix Table A4 confirms that pre-application covariates appear balanced across

treated and control observations in the sample appropriately weighted using the fitted se-

lection probabilities to construct the selection weights according to the method described in

Section 3.3.

4.2 Career choice

Table 3 reports estimates of the treatment effect of ATP attendance on career outcomes.

For each outcome (which differ across rows), the first column of reports the näıve cross-

sectional estimate. The next set of two columns reports the average treatment effect (ATE)

and the average treatment effect on the treated (ATET) using inverse probability of treat-

ment and censoring logit weights (computed using the model in Table 2, columns 1b and 2b).

The final set of two columns reports the ATE and ATET using inverse probability of treat-

ment and censoring lasso weights (computed using the model in Table 2, columns 1c and 2c).

The first two rows of Table 3 report the ATP effect on the length of the training period

as well as the length of the career overall. Each estimate in the table corresponds to the

coefficient on a treatment indicator variable (and its associated robust (QML) standard error)

from a Poisson model where the outcome of interest is regressed on an indicator variable for

18We test the quality of our predictions by splitting the sample into a prediction subsample (2,460 or 80%
of the observations) and a hold-out sample (615 or 20% of the observations). The out-of-sample deviance
ratio (a measure of goodness of fit for logit models) is equal to 0.70 of the corresponding in-sample value,
which is acceptable. Note that the correlation between the predicted selection probabilities from column 1b
and that of the model with lasso regularization is 0.919. As a result, the magnitudes and precision of the
IPTCW estimates presented below are not very sensitive to the choice of weights.
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holding a PhD degree at the time of application and a full suite of medical school graduation

year effects in addition the treatment variable.

Exponentiating the coefficient and subtracting one yields a magnitude interpretable as

an elasticity. For example, the estimates in the first cell of Table 3 imply that ATP attendees

spend 100 × (exp[0.087] − 1) = 9.1% longer in training than non-attendees—an additional

six months on average. This is a meaningful yet rather small increase relative to the time

of commitment of the ATP (two years). It underscores the extent to which our results

pertain to the effect of the content of training, rather than to the mere fact that training

was received. We also find that NIH training reduces slightly the length of the overall post-

independence career, but the effect is small (between 1 and 2%, or seven months on average),

and imprecisely estimated in some specifications.

The next six rows of Table 3 pertain to the effect of the program on the choice of career.

We report the marginal effects from logistic regressions of these career choice indicators on the

treatment indicator and our usual set of controls. Across columns, we observe that attending

the ATP greatly increases the likelihood of embarking on an academic or research career.

For instance, using the average treatment effect estimated using lasso weights, the marginal

effect of starting in academia is 0.11, which corresponds to an odds ratio of 1.77. The

program increases the probability of a research-focused initial job even more (the marginal

effect is 0.17, which translates into an odds ratio of 2.17) for treated physicians, relative to

controls. The effects are also persistent, with similar magnitudes observed when analyzing

the program’s impact on end-of-career positions. Conversely, attending NIH ATP appears

to make it markedly less likely to choose a clinical career (an odds ratio of 0.46).

We also create a composite outcome for joining the biomedical research elite over the

course of one’s career, which we define as either (i) receiving the Nobel Prize; (ii) being

elected to the National Academy of Sciences or the National Academy of Medicine; (iii) being

appointed Investigator of the Howard Hughes Medical Institute; or (iv) getting a MERIT

designation from the NIH in at least one R01 grant cycle. Only 173 (5.6%) of the applicants

belong to this select group by career’s end (7.7% of the attendees; 2.2% of the non-attendee

controls). Adjusting for selection and censoring based on observable covariates dampens

somewhat this raw difference in odds, but the average treatment effect still corresponds to

a sizable odds ratio of 1.77.
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4.3 Research outcomes

Whereas Table 3 focused on the effect of NIH training at the extensive margin (i.e., the

choice to begin a research career or to stay in one), Tables 4 and 5 hone in on the effect of

the program at the intensive margin (the intensity of research effort over the career, as it is

being converted into publications, patents, and grants).

Table 4 reports estimates of the treatment effect of ATP attendance on various metrics

of research output over the career. Each outcome variable has been constructed to exclude

output that results from research undertaken as a student or a trainee: they correspond

to research output for the entire post-training (i.e., “independent”) career. We consider

seven different outcomes: a count of original publications (i.e., excluding reviews, editorials,

etc.); a count of original publications, excluding those where the applicant is in the middle

of the authorship list;19 the cumulative count of citations that accrued to each scientist’s

post-training original publications by 2015; a count of patents granted by the USPTO (by

2016); a count of references to the scientist’s publications appearing on the front page or

within the body of patents (Marx and Fuegi 2020); the cumulative amount of NIH grants

received as a principal investigator; and the cumulative amount of NIH R01 grants received

as a principal investigator.

Synthesizing the results across rows and columns of Table 4, a number of patterns emerge.

First, the magnitude of the treatment effects are large, even when they filter out the effect

of selection and censoring under the maintained assumption of unconfoundedness. Using the

lasso weights, for example, the ATE for publications corresponds to an increase of 67.7%,

and the ATET to an increase of 60.5%. Second, modeling selection based on observable

covariates does shrink the magnitude of the estimated effects by 25 to 50%, depending

on the outcome. Third, the ATE and ATET typically have similar magnitudes, which is

logical since control scientists are drawn from the same underlying population. All estimates

are precisely estimated, although some specifications for patents and R01 grants are only

significant at the 10% level.20

19A robust social norm in the life sciences systematically assigns last authorship to the principal investi-
gator, first authorship to the junior author who was responsible for the conduct of the investigation, and
apportions the remaining credit to authors in the middle of the authorship list, generally as a decreasing
function of the distance from the extremities (Dance 2012; Sauermann and Haeussler 2017). Therefore, the
first- and last-authored publications correspond to those associated most closely with each applicant.

20This is not entirely surprising since a sizable number of applicants become NIH staff scientists and are
not eligible to apply for extramural funding. Furthermore, applicants in clinical research careers are at very
low risk of patenting (only 20% of the physicians on the sample are awarded at least one patent over the
course of their career). In contrast, all applicants in the sample are at risk of publishing.
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When trainees become trainers. The imprint left on trainees by their training could

persist through the training of the next generation. In this way, the impact of training

institutions can ripple through a much larger community of scholars as yesterday’s trainees

become the trainers of today.

We examine the fecundity of ATP applicants by identifying the set of individuals they

train over their career who go on to later secure NIH funding of their own. Our results (on

the last row of Table 4) demonstrate that ATP attendees appear to train proportionately

more successful researchers, as measured by receipt of NIH R01 by these offsprings once they

embark on their own independent careers. The magnitude of the effect is on the order of

68% after adjusting for the influence of observable covariates through inverse probability of

treatment and censoring weights.

Citation analysis. The estimates for the effect on overall citations in Table 4 conflate the

effect of treatment on the quantity of output with the effect of treatment on the quality of

output. Table 5 sheds light on the effect of NIH training on citation impact (a reasonable

proxy for publication quality) specifically. For each publication, we use the Web of Science

to ascertain its percentile in the vintage-specific article-level citation distribution.21 This

makes it possible to meaningfully aggregate, for each applicant, the number of his post-

training publications whose eventual impact falls above the jth-percentile of the citation

distribution, even though these publications might have appeared at different times. The

structure of Table 5 is otherwise identical to that of Table 3.

The first row of Table 5 replicates the first row of Table 4, with the caveat that we exclude

from the publication count variable those for which citations are not available because they

appear in a journal indexed by PubMed but not the Web of Science.22 The next five rows

progressively restrict the count to those whose citations put them above an impact percentile

threshold: above the 50th, above the 75th, above the 95th, above the 99th, and above the 99.9th

percentile. Looking across the rows, the magnitude of the treatment effects increases slightly

as one moves up the tail of the impact distribution (except when focusing on the one in a

thousand “citation hits”). The more important conclusion is that ATP attendance increases

21When referring to the vintage-specific, article-level distribution of citations, the relevant universe to
compute quantiles is not limited to the articles authored by scientists who belong to our applicant sample.
Rather, the relevant universe includes the entire set of 17,312,059 articles that can be cross-linked between
PubMed and the Web of Science.

22These account for 13,853 of 192,785 (7.2%) of all post-independence original research publications for
the sample of applicants.
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dramatically the number of low-impact as well as the number of high-impact publications

over the career.

Isolating the effect of informative censoring. We know from the results in Table 3

that the program shifts physicians from the clinical sector (where publication is considered

at best a hobby) to the research sector (where publications and grants are absolutely key to

career success). The large intensive margin magnitudes documented in Tables 4 and 5 could

reflect, at least in part, the choice or opportunity to select into a position that affords the

possibility of participating in idea-producing activities. To gauge whether this is the case,

we could re-estimate the models corresponding to the outcomes in Table 4 on the subsample

of physicians who begin their careers as researchers. However, since an initial placement in

a research position lies on the causal pathway between training and research output, the

estimates on the restricted sample cannot be given a causal interpretation.

Instead, we choose to analyze the effect of treatment using weights that adjust the naive

estimates for selection into the program, but do not adjust them for selection into research

careers (i.e., the corresponding specifications use IPT weights w rather than IPTC weights

w × v [cf. Section 4.4, eqns. (3.1) and (4.1)]). Appendix Table A5 reports these results.

The magnitudes are always higher when using IPT weights instead of IPTC weights, but

the differences between the two is not itself very large. Non-attendees publish less than

attendees not simply by virtue of the fact the former are much less likely to be researchers.

Rather, the effects on output reflect impacts at both the intensive and extensive margins.

4.4 Research style

Table 6 examines the impact of NIH training on the style of the research published by

applicants to the ATP. Since the style measures cannot be computed absent publications,

we limit the analysis in this section to the 2,584 applicants (1,730 attendees and 854 non-

attendees) who publish at least once in the post-training phase of the career.23 We consider

eight distinct style measures. The effect on the overall number of publications for the re-

stricted sample of publishers appears in the first row of Table 6 as a benchmark.

The first four measures of styles—basic science, translational medicine, clinical trials,

and “other” clinical—are mutually exclusive and account for almost 95% of these scientists’

23The inverse probability of treatment and censoring weights are recomputed on the restricted sample to
take into account the fact that the publication constraint disproportionately drops unsuccessful applicants
from the data.
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overall post-training output. The results imply that the program increases output regardless

of style, but not evenly. The effect on the number of basic science publications is unambigu-

ously the largest in magnitude, followed by translational and clinical trial publications, with

the “other clinical” experiencing only modest and imprecisely estimated increases.24

Recall that a hallmark of the training received at NIH was exposure to laboratory research

for young physicians that might have had only limited exposure to the bench as undergrad-

uates or medical school students (and might be unable to receive that style of training in

postgraduate fellowships outside of NIH). Our evidence shows that this imprinting persists

after training. Given the emphasis placed in the oral histories on facilitating the “bench

to bedside” transition, we seek additional approaches to uncover the empirical signature of

a translational research style.25 We find that relative to controls, treated physicians pub-

lish much more in six high-impact journals that prominently advertise their translational

focus (the Journal of Clinical Investigation, the Journal of Translational Medicine, Science

Translational Medicine, Nature Medicine, Translational Research: The Journal of Labora-

tory and Clinical Medicine, and the Journal of Experimental Medicine). A natural way

for the transition from bench to bedside to take place is for clinical researchers to further

develop translational work, for example by performing a clinical trial. We do find that at-

tendees greatly “inspire” follow-on translational research according to this definition. In the

same spirit, we can also compute the number of times applicants publish clinical trials that

backward-reference translational articles. We also find large effects of treatment on the ap-

plicants’ tendency to “stand on translational shoulders.” Yet a different way to facilitate the

bench-to-bedside transition is to enable biopharmaceutical firms to build on the applicants’s

published research, since many health-related innovations cannot reach patients unless firms

invest in bringing them to market (Azoulay et al. 2009). Consistent with that intuition, we

find that the NIH ATP increases the proportion of published output that will eventually be

cited in one or more USPTO patents.

While Table 6 presented results on the influence of NIH training on the direction of re-

search pursued in the independent phase of a research career, Appendix Table A6 focuses on

providing direct evidence of imprinting during training. To do so, the publication outcomes

24Estimating these four specifications jointly enables us to compare the magnitudes explicitly. χ2 tests
strongly reject the hypothesis that the coefficient for basic science is equal to any of the other three categories
(p < 0.01). Similarly, we can reject the hypothesis that the coefficient for translational medicine and clinical
trials are equal to the coefficient for “other clinical” articles. However, we fail to reject the hypothesis that
the translational medicine and clinical trial coefficients are in fact equal.

25This is not straightforward, since the term has been progressively emptied of content through overuse.
Our working definition of a translational publication is the simultaneous presence of a disease keyword and
a basic science keyword (e,g., molecular biology technique, model organism, etc.)
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include only articles that appeared after one year from medical school graduation up to one

year after the start of the independent career (to allow for publication lags). Unsurprisingly,

NIH trainees publish more than non-attendee controls in training. But the type of publi-

cation published also differs markedly from that exhibited by control trainees. Attendees’

publications are much less likely to fall in the “other clinical” category, for instance.26

Considered as a whole, these results points to a durable intellectual imprint associated

with the training received at NIH. Some of the trainees became bench scientists, indistin-

guishable in their output from PhD-holding scientists trained in biology or other basic science

departments. Harold Varmus, who went on to win the Nobel Prize in 1989 for his discovery

of oncogenes with J. Michael Bishop, is an exemplar of the subset of trainees who leveraged

their training to embark on a career at the laboratory bench. Many others, however, did not

foresake clinical work completely, but rather acquired in Bethesda an approach to clinical re-

search that was informed by basic research advances, seeding academia with a new generation

of who saw themselves as “physician-scientists” rather than “clinician-researchers.”

4.5 Robustness analyses

We perform a number of robustness checks to probe the sensitivity of our estimates to

alternative modeling assumptions and subsamples. Recall that in addition to unconfound-

edness, the validity of IPTW estimates requires common support. Figure 3 displays the

histogram corresponding to the predicted probabilities generated by the selection model in

column 1b of Table 2. One can readily observe that the common support assumption is

violated in the tails: our model predicts a high probability of selection for very few controls,

and low probability of selection for very few treated applicants. The first three columns of

Table 7a vary the extent of winsorization for the regression weights: no winsorization (as in

Table 3), winsorization at the 5th and 95th percentiles of the distribution of lasso weights;

and winsorization at the 10th and 90th percentile of the distribution of lasso weights. The

magnitudes of the average treatment effect (corresponding to a single outcome, the num-

ber of post-training publications) increases slightly. The violation of the common support

assumption is therefore not a first-order concern to assess the robustness of our results.

Rather than weighting by the inverse probability of treatment, the next set of estimates

uses coarsened exact matching, a blocking technique due to Iacus et al. (2011) to match

attendees and non-attendees on a handful of covariates: year of medical school graduation,

26In the subsamples for each track, we only include as controls trainees who applied unsuccessfully for
that track.
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medical school attended, and quintile of the distribution of the pre-application publication

count, weighted by journal impact factor. Any treated applicant for whom we cannot find a

matched control based on this list of pre-application covariates is simply dropped from the

estimation sample. We find that the estimated treatment effect is similar in magnitude to

that reported earlier (Table 3).

The last set of two columns in Table 7a focuses on the subset of 1,837 applicants (59.7%

of the sample) who had little—if any—research preparation at the time they applied for

the program, as ascertained by a lack of any published output. It is of course possible

that interviewers were able to divine research potential at the second stage of the selection

process, but they would not have had a strong evidentiary record to back up their intuition.

The results show that the magnitude of the average treatment effect is just as high, if not

higher, in this subpopulation.

Table 7b reports estimates using the “post-double-selection” lasso (hereafter pds-lasso)

estimator due to Belloni et al. (2014). This estimator uses the lasso to select covariates to

predict both the treatment and the outcome variable, and then estimates the treatment effect

of interest by the linear regression of the outcome on the treatment variable and the union

of the set of variables selected in the two variable selection steps. The resulting estimator is

“doubly robust” in that it allows for imperfect variable selection in either (but not both) of

the covariate selection steps. Since the theoretical properties of the pds-lasso estimator have

been demonstrated for a linear model, we apply it to our data using ordinary least squares

to model the impact of the NIH ATP on the count of post-training publications.27 The

estimates yielded by this procedure are once again large in magnitude, very similar to those

associated with IPTW estimation using OLS, and precisely estimated. The point estimate

of 25 extra publications, corresponds to 62% of the raw mean difference in the number of

publications between attendees and non-attendees.

We also use the bounding technique recently proposed by Oster (2019) to gauge the sen-

sitivity of our results to a failure of the unconfoundedness assumption. The intuition behind

this approach is that the stability of the coefficient for the treatment effect when varying

the set of control variables included in the model, scaled by movement in R2, provides in-

formation about the potential impact of unobserved covariates. To generate these bounds,

the analyst must assume proportionality between the covariances of the outcome with ob-

27We also use the inverse hyperbolic sine function to transform the publication count. This generates
estimates that can approximately be interpreted as elasticities, and therefore be compared to those presented
in Table 3.
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served and unobserved covariates, and posit a maximum value for R2 if the regression could

include all observed and unobserved covariates. Oster’s technique generates a bound δ, the

covariance ratio that would be required to reduce the magnitude of the treatment effect to

zero. Table 7c reports the results of this exercise for a number of research outcomes. In all

cases, δ is far above one, the threshold value recommended by Oster to suggest robustness

to the influence of unobservable covariates.

Appendix Table A7 examines whether the program’s effects varied in magnitude over the

time period considered in this study. Recall from Figure 1 that we have only a small number

of controls available in the early part of the sample (1965-1969). It is also possible that the

incentives to apply (and to attend if selected) decreased in the waning years of the Vietnam

conflict and the impending end of the draft (1973-1975). We find that program attendance

impacted initial placement in research-focused jobs regardless of time period. In contrast,

effects at the intensive margins (e.g., post-training career publications) are lower and less

precisely estimated in the latter part of the observation period. This attenuation might

reflect a decrease in the quality of the applicant pool, but a more cogent explanation is that

the progressive availability of high-quality research training outside the confined boundaries

of NIH’s Bethesda campus boosted the outcomes for non-attendees.

Finally, in Appendix Table A8 we examine whether the effects of program attendance

differ according to the track (research associate, clinical associate, or staff associate) for which

attendees were selected. Across a broad range of outcome variables, we do not find evidence

of markedly different magnitudes between the effects of the research and clinical associate

tracks, whereas the post-training record of staff associates appears slightly less distinguished.

Similarly, we find little evidence of significant differences in the style-composition of the

research portfolio for scientists in these tracks (once again this is less true for the staff

associate track). While perhaps surprising, it is important to note that research associates

and clinical associates ultimately often worked in the same labs, and the distinction between

research and clinical time was not always clear-cut in practice.

5 Conclusion

In this article, we examine the role of early career exposure to research on sorting into

the “ideas sector” of the economy, as well as research trajectory and productivity within

this domain. The NIH ATP had a large impact on attendees’ careers on both the intensive

and extensive margins. Attendees entered research positions at higher rates after training
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and remained in them for longer. They not only published more and earned more grant

funding, their work was also more impactful as measured by citations. More specifically,

ATP attendees acquired at NIH a more “translational” style of research, with a greater focus

on the bench-to-bedside transition. Remarkably, these changes were sustained throughout

their subsequent careers. It is notable that, while there are more “superstars” among ATP

attendees than in the set of non-attendee controls, the average physician showed a substantial

treatment effect as well. All in all, it is a remarkable impact for a two- to three-year training

experience.

Our conclusions depend on the maintained assumption that, conditional on an extensive

list of covariates observable at the time of application, selection into the program was es-

sentially random. At first blush, this would appear to be an untenable assumption. While

we have adopted a variety of econometric strategies to minimize omitted variable bias, we

recognize that at least some of our results could be explained by factors observed by the

scientists in charge of selecting the trainees, but not by the econometric analyst. Yet, the

institutional setting and the details of the selection process suggest that these concerns may

loom less large than expected.

Our control group includes only those who have also applied to the program, which

eliminates interest in the program as a potential omitted variable (Jones et al. 2018). In

addition, the set of non-attendee controls consists exclusively of those who reached the final

interview stage for program admittance and are therefore already highly selected. While

we would of course prefer to have interview notes to model the influence of unobservable

covariates directly, a large literature suggests that unstructured interviews provide only

limited additional information, relative to what is observable on a curriculum vitæ (Dana et

al. 2013, McDaniel et al. 1994, Wiesner and Cronshaw 1988, Huffcutt et al. 1996, Wright

et al. 1989). In fact, psychological research has shown that the addition of noisy signals

may in fact impair the quality of decision making (Nisbett et al. 1981, Hall et al. 2007).

Our reading of this literature leads us to doubt that the unstructured NIH ATP interviews

enabled the selection of individuals poised for research greatness. Indeed, medical education

is one of a handful of settings where the limited usefulness of interviews has been documented

in the field (Milstein et al. 1981).28 In line with this literature, the oral histories corroborate

the difficulty faced by the interviewers in discerning the scientific potential of applicants at

28For instance, the University of Texas Medical School at Houston was forced to admit an additional 50
students, all of whom were initially rejected for admission post-interview, due to a legislative decree in 1979;
these students had no meaningful difference in clinical performance, academic performance and honors, or
attrition at either the end of medical school or the first year of postgraduate training (Devaul et al. 1987).
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such an early career stage. Finally, the evidence on research style does not appear to be

consistent with the view that selection alone accounts for the results. It strains credulity

that the demand side of this labor market might have been able to evaluate aptitude for

translational research specifically, in addition to more general research abilities.

It is likely that attending the NIH ATP may impact career and research trajectories

through multiple mechanisms, including skill building, signaling, status, peer, and network

effects, or instilling values and aspirations (Argote and Fahrenkopf 2016). Distinguishing

between these mechanisms lies outside of the scope of this study, and indeed more than a

single mechanism might be responsible for the treatment effects we estimate. It is notable

that many physicians in the control group had exposure to research opportunities outside of

the NIH; there was only a small difference in total training time compared to ATP attendees

relative to the length of the program. This suggests that the NIH treatment entails more

than mere exposure to research. At the same time, the research style evidence seems hard

to reconcile with a simple status or signaling story.

Table A9 in Appendix A reports the results of an analysis contrasting the effect of different

levels in the intensity of treatment, as proxied by the number of years spent in the ATP.

Within the set of 1,929 attendees, 12 (0.6%) spent a year or less at NIH, which we interpret

as reflecting the decision to quit the program and receive training elsewhere; 1,321 (68.5%)

spent exactly two years as trainees; and 596 (30.9%) three years or more.29 In these analyses,

we model ATP attendance as a multi-valued treatment (Imbens 2000), and use an ordered

logit specification to generate inverse probability of treatment weights. The results uncover

a strong dose-response relationship. Across several outcomes, “quitters” and non-attendees

exhibit similar outcomes (with the caveat that the effect of quitting is very imprecisely

estimated). The effect of spending an additional year within the program is large, and

precisely estimated. For example, relative to non-attendees, those staying 3 years publish

more over their careers (106% vs. 49%), gather more citations (153% vs. 41%) and are

more likely to enter a research job after training (23% vs. 15%) than those staying only the

two years necessary to fulfill their service obligation. Once again, we must interpret these

results with a great deal of caution, since treatment length is endogenous, and after two

years, preceptors are presumably better able to ascertain correctly the research potential

of a trainee. While not rejecting selection as a plausible mechanism, this dose-response

relationship appears inconsistent with an interpretation of the results based on signaling

or status, since it is unlikely that additional years spent in the program would shift future

29This last category includes a small set of about sixty attendees who transitioned from the ATP to another
postdoctoral fellowship within NIH, before securing a permanent position.
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employers’ perceptions, or elevate one’s status even more in the minds of collaborators,

funders, editors, and referees.

Many of the ATP alumnis oral histories evoke the feeling of being in the right place at the

right time. In light of these accounts, the sociological concept of imprinting offers a powerful

lens to interpret our results. This stream of research finds that organizations and individuals

often exhibit a sensitive period, during which they are susceptible to external influences and

come to reflect aspects of this environment, and these aspects can persist despite subsequent

environmental changes (Stinchcombe 1965, Marquis and Tilcsik 2013). While much of the

work on imprinting has focused on firms, there is evidence that imprinting also occurs in

the context of individual careers (Burton and Beckman 2007, Boeker 1988, Baron et al.

1999, Hannan et al. 1996, Higgins 2005). During career imprinting, individuals absorb a

set of capabilities, connections, and cognitive models from one employer which persist as

they change employers later on. Careers are more likely to exhibit the characteristics of an

early imprint when their current environment allows them to be surrounded by colleagues

with the same imprint, offers them considerable freedom in how they might express an

imprint, and if they believe the imprint contributed to prior success (Higgins 2005). The

NIH ATP and the academic medicine context would appear particularly conducive to career

imprinting: not only was the ATP an intense experience early in the career, when an imprint

is more likely to be absorbed, but the program also had many alumni who seeded the

expansion of U.S. Medical Schools in the period immediately following the end of the Vietnam

War.30 Finally, academic research offers a considerable degree of leeway to investigators in

structuring the direction and style of their research, and the senior NIH investigators who

had acted as mentors to the ATP trainees during the program exemplified the creative use

of this autonomy.

In light of the unique historical circumstances within which physician research training

took place at NIH during the period of our study, we must exercise caution to suggest wider

policy implications. Certainly, part of the effectiveness of the ATP in turning physicians

into researchers owes much to the extreme concentration of talent in one institution that was

facilitated by the Vietnam War. The effects of the ATP may have been large and long-lasting

precisely because the exposure received was intense. Yet, this program provides an existence

proof for the proposition that it is possible to design interventions to turn individuals who

in the main would not have had scientific careers into frontier researchers. This stands in

contrast with many other active labor market policies often studied by economists. The

30Between 1975 and 2005, the number of faculty members un US Medical Schools increased by a factor of
more than two (Jolly 1988; AAMC Data Book, various editions).
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effects of these programs are typically modest in magnitude, and their effects relatively

transitory (Heckman et al. 1999). Conversely, the labor market effects of military service

appear to mostly correspond to loss of experience, as the earnings profiles of veterans and

non-veterans converge relatively quickly (Angrist 1990, 2011).

There have been attempts to recreate the “hot house” environment that characterized

the intramural campus of the NIH in the 1960s and 1970s (Rubin 2006). This raises, but

does not answer, the question of how much dilution in the intensity of treatment is allowable

before any resultant impact starts to fade. While it is unclear to what extent other training

programs can be designed to reproduce the effect of the ATP, there is little doubt that in

addition to durably altering the course of attendees’ careers, the ATP also generated human

capital externalities and established the research path as a relatively mainstream choice

available to physicians. In the words of Donald Fredrickson (1988): “You can say that out of

this program, unequivocally, came a remarkable surge of momentum that has set the standard

for biomedical research in this country and all over the world.”
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Figure 1. NIH ATP interviewed candidates by year 

 

Note: Number of second-round applicants, by year and treatment status. N=3,075 applicants (1,929 attendees; 1,146 
non-attendees). Sources: ATP Index Cards. 
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Figure 2. Career research outcomes 
 

A. Career publications B. Career citations C. Career NIH funding 

   
Note: Histogram for the number of original journal 
publications over the entire post-training career. Twenty 
five outliers with more than 500 post-training publications 
omitted. 86% of applicants publish one article or more after 
career independence (91% of attendees; 78% of non-
attendees). Sources: ATP Index Cards and PubMed. 

Note: Histogram for the cumulative number of citations to 
original journal publications published over the entire post-
training career. Twenty outliers with more than 50,000 
citations omitted (excludes citations to publications as a 
student or trainee). Sources: ATP Index Cards, PubMed, 
and Web of Science. 

Note: Histogram for the cumulative NIH funding received 
over the entire post-training career (2015 dollars, deflated 
by the Biomedical R&D PPI). 1,087 fellows receive at least 
some NIH funding during their career. Two hundred and 
eighty four outliers with more than $25 mln. in career 
funding omitted. Sources: ATP Index Cards and NIH 
Compoud Grant Applicant File (CGAF). 
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Figure 3. Predicted probability of selection 

 

Note: Predicted probabilities from the logit specification reported in Table 2, column (1b). 

 

Note: Predicted probabilities from the lasso penalized logit procedure described in the last paragraph of section 4.1 of 
the manuscript. The correlation coefficient between the two sets of weights is 0.92. 
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Table 1a. Descriptive statistics: Pre-application data 
  Mean Median Std. Dev. Min. Max. 
Non-Attendees 

     

PhD 0.013 0 0.114 0 1 
Age in the Year of Last Application 25.931 26 1.427 22 39 
Nb. of Applications 1.028 1 0.170 1 3 
Draft Lottery Number 187.935 192 108.667 1 366 
Draft Lottery Number Called 0.510 1 0.500 0 1 
Number of Institutes Applied For 2.948 3 1.944 1 11 
Number of Associate Tracks Applied For 1.828 2 0.776 1 3 
AΩA Honor Medical Society 0.257 0 0.437 0 1 
Pre-ATP Nb. of Publications 0.582 0 1.243 0 13 
Pre-ATP JIF-weighted Nb. of Publications 3.288 0 9.882 0 100 
NIH Grants for Applicant’s Medical School 170,322,949 144,327,040 128,368,334 2,229,763 598,948,672 
NIH Grants for Applicant’s Internship Hospital 89,384,220 63,689,084 87,060,971 0 285,714,560 
Attendees 

     

PhD 0.036 0 0.186 0 1 
Age in the Year of Last Application 26.016 26 1.428 21 35 
Nb. of Applications 1.029 1 0.170 1 3 
Draft Lottery Number 183.468 188 105.714 1 366 
Draft Lottery Number Called 0.521 1 0.500 0 1 
Number of Institutes Applied For 3.933 4 2.237 1 11 
Number of Associate Tracks Applied For 2.068 2 0.763 1 3 
AΩA Honor Medical Society 0.383 0 0.486 0 1 
Pre-ATP Nb. of Publications 1.005 0 1.692 0 14 
Pre-ATP JIF-weighted Nb. of Publications 6.595 0 14.496 0 154 
NIH Grants for Applicant’s Medical School 207,006,393 171,863,840 150,979,213 0 639,319,744 
NIH Grants for Applicant’s Internship Hospital 95,494,683 85,238,536 82,201,355 0 285,714,560 

Note: N=3,075 applicants (1,929 attendees; 1,146 non-attendees). For NIH grants, original amounts were deflated using the 
Biomedical R&D Producer Price Index (2015 dollars).  JIF—journal impact factor. Sources: ATP Index Cards, PubMed, CGAF. 
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Table 1b. Descriptive statistics: Career choice 
 Mean Median Std. Dev. Min. Max. 
Non-Attendees      
Deceased 0.074 0 0.262 0 1 
Years of Post-graduate Training 5.864 6 1.688 1 13 
Nb. of Career Years (censored in 2017) 37.651 39 5.805 0 50 
First Job in Academia 0.572 1 0.495 0 1 
Ends Career in Academia 0.381 0 0.486 0 1 
Researcher First Job 0.460 0 0.499 0 1 
Ends Career as Researcher 0.300 0 0.459 0 1 
First Job in Clinical Practice 0.535 1 0.499 0 1 
Ends Career in Clinical Practice 0.657 1 0.475 0 1 
Attendees      
Deceased 0.100 0 0.299 0 1 
Years of Post-graduate Training 6.425 6 1.556 1 15 
Nb. of Career Years (censored in 2017) 38.149 39 6.389 0 50 
First Job in Academia 0.757 1 0.429 0 1 
Ends Career in Academia 0.546 1 0.498 0 1 
Researcher First Job 0.694 1 0.461 0 1 
Ends Career as Researcher 0.519 1 0.500 0 1 
First Job in Clinical Practice 0.296 0 0.457 0 1 
Ends Career in Clinical Practice 0.441 0 0.497 0 1 

Note: Academia includes both universities/medical schools and research settings such as the NIH or private non-profit 
institutes (e.g., The Salk Research Institute). Researcher jobs is different from academia in that it includes for-profit 
industry research positions but excludes clinical university faculty. Clinical practice includes both those in community 
practice as well as medical school clinical faculty. Sources: ATP Index Cards, AMA Physician Masterfile, doximity.com, 
state licensure records, NIH telephone directories. 
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Table 1c. Descriptive statistics: Research outcomes 
  Mean Median Std. Dev. Min. Max. 
Non-Attendees 

     

Nb. of Pubs, Training Period 2.400 1 4.079 0 38 
Career Nb. of Pubs 37.313 5 80.078 0 826 
Career Citations 1,988 127 5,345 0 55,480 
Nb. of Patents 0.657 0 3.729 0 51 
Career Citations to Patents in Patents 7.506 0 53.651 0 1,159 
Career Citations to Pubs in Patents 80.095 0 347.028 0 4,487 
NIH Grant Recipient 0.206 0 0.405 0 1 
Career NIH Grants ($ 2015) 4,511,372 0 35,192,232 0 1,043,797,568 
Career NIH R01 Grants ($ 2015) 1,193,642 0 5,035,673 0 72,207,600 
Nb. NIH-R01-funded Trainees 0.214 0 0.885 0 14 
Attendees 

     

Nb. of Pubs, Training Period 6.050 4 6.389 0 65 
Career Nb. of Pubs 77.773 34 109.584 0 841 
Career Citations 5,131 1235 10,391 0 181,822 
Nb. of Patents 1.738 0 6.569 0 163 
Career Citations to Patents in Patents 20.227 0 106.080 0 2,409 
Career Citations to Pubs in Patents 252.029 19 914.263 0 19,247 
NIH Grant Recipient 0.442 0 0.497 0 1 
Career NIH Grants ($ 2015) 12,436,209 0 42,898,984 0 1,114,597,504 
Career NIH R01 Grants ($ 2015) 3,149,951 0 8,197,320 0 101,280,192 
Nb. NIH-R01-funded Trainees 0.758 0 1.914 0 25 
Note: Except in the first row, all outcomes should be understood to be restricted to output in the post-training (i.e., 
independent) phase of the career. Sources: ATP Index Cards, PubMed, CGAF, USPTO, Marx and Fuegi (2020) 
“reliance on science” publication-to-patent linkages. 
 
 
 
 
Table 1d. Notable achievements 

  Nobel Prize 
Natl. 

Academies 
Member 

Howard 
Hughes Med. 
Investigator 

NIH MERIT [R37] 
Awardee 

Non-Attendees 0 (0.00%) 14 (1.12%) 0 (0.00%) 14 (1.22%) 
Attendees 7 (0.36%) 90 (4.67%) 32 (1.66%) 79 (4.10%) 
Total 7 (0.23%) 104 (3.34%) 32 (1.04%) 93 (3.02%) 

Sources: ATP Index Cards, CGAF, Nonel Prize, HHMI, and NAS web sites. 
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Table 1e. Descriptive statistics: Research style 
  Mean Median Std. Dev. Min. Max. 
Non-Attendees 

     

Basic Science Articles 0.107 0 0.200 0 1 
Translational Medicine Articles 0.209 0 0.234 0 1 
Clinical Trial Articles 0.097 0 0.161 0 1 
Other Clinical Articles 0.467 0 0.324 0 1 
Articles Appearing in “Translational” Journals 0.012 0 0.065 0 1 
Inspires Translational Research 0.088 0 0.135 0 1 
Builds on Translational Research 0.068 0 0.131 0 1 
Articles Cited in Patents 0.109 0 0.149 0 1 
Attendees      
Basic Science Articles 0.199 0 0.248 0 1 
Translational Medicine Articles 0.273 0 0.232 0 1 
Clinical Trial Articles 0.107 0 0.162 0 1 
Other Clinical Articles 0.338 0 0.292 0 1 
Articles Appearing in “Translational” Journals 0.016 0 0.039 0 1 
Inspires Translational Research 0.118 0 0.137 0 1 
Builds on Translational Research 0.078 0 0.130 0 1 
Articles Cited in Patents 0.162 0 0.162 0 1 
Note: N=2,584 scientists (491 scientists with zero publications cited at least once in the independent phase of 
the career are excluded).  Statistics correspond to the fraction of each scientist’s work with the corresponding 
characteristic. Sources: ATP Index Cards, PubMed. 
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Table 2. Modeling selection into the NIH ATP 

 Program Selection  Informative Censoring 

 Parsimonious 
Model 
[Logit] 

Saturated 
Model [Lasso] 

 
Parsimonious 

Model 
[Logit] 

Saturated 
Model 
[Lasso] 

 (1a) (1b) (1c)  (2a) (2b) (2c) 

Log(Pre-ATP Nb. of Publications)  0.308** 0.325**   -0.192** -0.210** 
 (0.071) (0.070)   (0.064) (0.066) 

Ln(NIH Grants for Applicant’s Medical School) 0.357** 0.317**   -0.193** -0.158*  
(0.090) (0.091)   (0.067) (0.066)  

Ln(NIH Grants for Applicant’s Internship Hospital) 0.019* 0.017†    -0.031** -0.029**  
(0.009) (0.010)   (0.008) (0.009)  

PhD 0.926** 0.568†  0.807**  -1.348** -1.037** -1.140** 
(0.333) (0.341) (0.313)  (0.354) (0.358) (0.359) 

No Internship 1.467†  1.265†  5.223  -2.755** -2.643* -4.703†  
(0.761) (0.768) (9.418)  (1.054) (1.065) (2.743) 

Applies more than once -0.033 -0.083 0.061  0.076 0.115 -0.030 
(0.299) (0.294) (0.276)  (0.246) (0.249) (0.242) 

AΩA Honor Medical Society 0.686** 0.699** 0.662**  -0.345** -0.345** -0.345** 
(0.105) (0.106) (0.102)  (0.088) (0.088) (0.087) 

Constant -3.263†   -2.634   3.076* 2.362†   
(1.747) (1.775)   (1.313) (1.312)  

Medical School Fixed Effects No No Yes  No No Yes 
Internship Hospitals Fixed Effects No No Yes  No No Yes 
Nb. of Non-zero Predictors   151    169 
Nb. of Potential Predictors   372    372 
χ2 Test Statistic   78.85    38.32 
Pseudo-R2 0.250 0.265   0.056 0.073  
Log-likelihood -1,522 -1,493   -1,944 -1,910  
Nb. of Applicants 3,075 3,075 3,075  3,075 3,075 3,073 

Note: The dependent variable is an indicator variable equal to one for attendees, zero for non-attendees (first three columns) or an indicator variable equal to one 
for attendees who exit research immediately after training (last three columns). All models incorporate a full suite of medical school graduation year effects; a set of 
indicator variables for the applicant’s age at the time of application; indicator variables for the number of distinct NIH component institutes that received the 
application; indicator variables for the number of tracks applied to within the Associate Training Program; indicator variables for the number of years between the 
application and the medical school graduation year; and a series of indicator variables capturing if the applicant (1) intended to postpone his internship until after 
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training, (2) intends to perform his internship abroad, (3) intends to intern in a hospital affiliated with the Veterans Affairs Administration, or (4) has missing 
information regarding his intended internship hospital. All models except (1a) and (2a) also include an indicator variable for applicants without any publication 
before application. Estimates in columns [1c] and [2c] correspond to the results of a cross-fit partialing-out lasso logit procedure with ten folds, as described in 
Chernozhukov et al. (2018). The specification includes all the covariates mentioned above, plus a full suite of medical school indicator variables and a full suite of 
internship hospitals indicator variables, but only a subset of this list is selected for inclusion (151 out of 372 in model [1c]; 169 out of 372 in model [2c]. In both 
models [1c] and [2c], a Wald test rejects the hypothesis that the “coefficients of interest” (i.e., those that are constrained to appear in the model, and for which 
inference is performed) are jointly equal to zero. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). Sources: ATP Index Cards, PubMed, CGAF.
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Table 3. Career choice outcomes 
  X-Sect.  Logit Weights  Lasso Weights 
  Naive  ATE ATET  ATE ATET 

Poisson Estimates        

Years of Post-graduate Training  
0.087**  0.081** 0.072**  0.080** 0.067** 
(0.011)  (0.018) (0.025)  (0.014) (0.018) 

         

Nb. of Career Years  
-0.012†  -0.012 -0.016†  -0.012† -0.011 
(0.006)  (0.008) (0.009)  (0.007) (0.008) 

Logit Estimates        

First Job in Academia  
0.160**  0.109** 0.073*  0.111** 0.082** 
(0.018)  (0.025) (0.033)  (0.021) (0.025) 

         

Ends Career in Academia  
0.146**  0.095** 0.101**  0.131** 0.109** 
(0.020)  (0.019) (0.034)  (0.032) (0.027) 

         

Researcher First Job  
0.212**  0.179** 0.161**  0.168** 0.150** 
(0.018)  (0.026) (0.033)  (0.022) (0.026) 

         

Ends Career as Researcher  
0.216**  0.140** 0.175**  0.191** 0.173** 
(0.019)  (0.022) (0.030)  (0.031) (0.025) 

         

First Job in Clinical Practice  
-0.212**  -0.180** -0.165**  -0.168** -0.151** 
(0.018)  (0.025) (0.033)  (0.022) (0.026) 

         

Ends Career in Clinical Practice  
-0.215**  -0.135** -0.180**  -0.187** -0.172** 
(0.019)  (0.021) (0.030)  (0.029) (0.025) 

        

Joins the Research Elite 
0.056**  0.008 0.032†  0.025* 0.031* 
(0.013)  (0.007) (0.017)  (0.012) (0.013)      

Number of Applicants 3,075  3,075 3,075  3,075 3,075 
Note: Each cell contains an estimate for the treatment effect in a separate regression. The dependent variables are listed 
in the left-most column. All models incorporate a full suite of medical school graduation year effects as well as an 
indicator variable for holding a PhD degree at the time of application. The last four columns perform inverse probability 
of treatment weighted estimation for first career position and training length outcomes (rows 1, 2, 3, 5, and 7) and 
inverse probability of treatment and censoring weighted estimation for all other outcomes; the corresponding estimates 
can be interpreted as the ATE/ATET of NIH training, under the assumption of unconfoundedness. On the first two 
rows, the estimates stem from Poisson regressions. Exponentiating the coefficients and subtracting one yield magnitudes 
interpretable as elasticities. For example, the estimate in the top cell of the first column imply that attendees stay 
100×(exp[0.087]-1)=9.1% longer in training, relative to non-attendees; the effect is highly statistically significant. On the 
next six rows, the estimates stem from logistic regressions. The marginal effects for the treatment indicator are reported. 
For instance, the coefficient in the third row of the first column implies that attendees are 16.0% more likely than non-
attendees to be initially placed in academia after completing their training. Robust errors in parentheses (†p < 0.10, *p 
< 0.05, **p < 0.01). Sources: ATP Index Cards, AMA Physician Masterfile, doximity.com, state licensure records, NIH 
telephone directories. 
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Table 4. Research outcomes 
  X-Sect. Logit Weights Lasso Weights 
  Naïve ATE ATET ATE ATET 

Career Nb. of Pubs 
0.653** 0.529** 0.561** 0.488** 0.504** 
(0.076) (0.088) (0.112) (0.078) (0.091) 

       
Career Nb. of Pubs, 
First/Last Authorship Position 

0.678** 0.536** 0.557** 0.511** 0.528** 
(0.074) (0.093) (0.119) (0.078) (0.092) 

       

Career Citations 
0.840** 0.562** 0.670** 0.560** 0.615** 
(0.098) (0.124) (0.150) (0.108) (0.118) 

       

Nb. of Patents 
0.922** 0.225 0.254 0.487* 0.440† 
(0.207) (0.244) (0.319) (0.226) (0.262) 

       
Career Citations to Pubs in 
Patents 

1.104** 0.478† 0.560† 0.629** 0.652** 
(0.170) (0.268) (0.317) (0.205) (0.236) 

      

Career NIH Grants 
0.939** 0.482 0.480 0.610* 0.587* 
(0.231) (0.311) (0.367) (0.266) (0.288) 

       

Career NIH R01 Grants  
0.827** 0.366† 0.538* 0.509** 0.572** 
(0.154) (0.213) (0.250) (0.179) (0.193) 

      

Nb. NIH-R01-Funded Trainees 
0.880** 0.298 0.446 0.477* 0.520* 
(0.151) (0.294) (0.341) (0.217) (0.256)      

Number of Applicants 3,075 3,075 3,075 3,075 3,075 
Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson 
regressions. The dependent variables are listed in the left-most column. All models incorporate a full suite of medical 
school graduation year effects as well as an indicator variable for holding a PhD degree at the time of application. 
Exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the 
estimate in the first cell imply that attendees publish 100×(exp[0.653]-1)=92.13% more original articles during the 
independent phase of their career, relative to non-attendees; the effect is highly statistically significant. The last four 
columns perform inverse probability of treatment and censoring weighted; the corresponding estimates can be interpreted 
as the ATE/ATET of NIH training, under the assumption of unconfoundedness. Robust errors in parentheses (†p < 0.10, 
*p < 0.05, **p < 0.01). Sources: ATP Index Cards, PubMed, Web of Science, CGAF, USPTO, Marx and Fuegi (2020) 
“reliance on science” publication-to-patent linkages. 
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Table 5. Publication outcomes, by citation quantiles 
  X-Sect.  Logit Weights   Lasso Weights 
  Naïve  ATE ATET   ATE ATET      

Career Nb. of Pubs, Total 
(with citation data available)  

0.669**  0.512** 0.562**   0.487** 0.512** 
(0.077)  (0.091) (0.114)   (0.079) (0.093) 

          

Career Nb. of Pubs 
Top 50% of the Citation Distribution  

0.725**  0.539** 0.588**   0.520** 0.541** 
(0.082)  (0.100) (0.127)   (0.086) (0.101) 

          

Career Nb. of Pubs 
Top 25% of the Citation Distribution 

0.769**  0.539** 0.602**   0.529** 0.557** 
(0.088)  (0.113) (0.142)   (0.095) (0.111) 

          

Career Nb. of Pubs 
Top 5% of the Citation Distribution  

0.853**  0.594** 0.677**   0.575** 0.614** 
(0.105)  (0.135) (0.167)   (0.113) (0.129) 

          

Career Nb. of Pubs 
Top 1% of the Citation Distribution 

0.976**  0.679** 0.842**   0.652** 0.744** 
(0.131)  (0.162) (0.188)   (0.146) (0.152) 

          

Career Nb. of Pubs 
Top 0.1‰ of the Citation Distribution 

1.034**  0.644** 0.843**   0.674** 0.781** 
(0.189)  (0.207) (0.218)   (0.204) (0.193)      

Number of Applicants 3,075  3,075 3,075   3,075 3,075 
Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson 
regressions. The dependent variables are listed in the left-most column. All models incorporate a full suite of medical 
school graduation year effects as well as an indicator variable for holding a PhD degree at the time of application. 
Exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the 
estimate in the bottom cell of the first column imply that attendees publish 100×(exp[1.034]-1)=181% more articles in 
the top 0.1‰ of the citation distribution during the independent phase of their career, relative to non-attendees; the 
effect is highly statistically significant. The last four columns perform inverse probability of treatment and censoring 
weighted estimation; the corresponding estimates can be interpreted as the ATE/ATET of NIH training, under the 
assumption of unconfoundedness. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). Sources: ATP Index 
Cards, PubMed, Web of Science. 
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Table 6: Research style 
 X-Sect.  Logit Weights  Lasso Weights 
 Naive  ATE ATET  ATE ATET 

Career Nb. of Pubs 0.475**  0.413** 0.423**  0.393** 0.416** 
(0.073)  (0.088) (0.108)  (0.076) (0.089) 

Basic Science Articles 1.025**  0.622** 0.663**  0.766** 0.741** 
(0.115)  (0.173) (0.218)  (0.137) (0.169) 

Translational Medicine Articles 0.604**  0.385** 0.453**  0.426** 0.457** 
(0.107)  (0.140) (0.163)  (0.117) (0.134) 

Clinical Trial Articles 0.460**  0.473** 0.614**  0.430** 0.548** 
(0.119)  (0.118) (0.126)  (0.114) (0.114) 

Other Clinical Articles 0.054  0.285** 0.207  0.137 0.143 
(0.088)  (0.104) (0.129)  (0.100) (0.110) 

Articles Appearing in 
Translational Journals 

0.934**  0.646** 0.711*  0.707** 0.785** 
(0.167)  (0.211) (0.317)  (0.176) (0.200) 

        

Inspires Translational Research 0.587**  0.460** 0.514**  0.459** 0.502** 
(0.117)  (0.131) (0.151)  (0.117) (0.125) 

Builds on Translational Research 0.526**  0.462** 0.635**  0.458** 0.584** 
(0.126)  (0.127) (0.133)  (0.123) (0.120) 

Articles Cited in Patents 0.760**  0.469** 0.538*  0.555** 0.586** 
(0.106)  (0.160) (0.215)  (0.125) (0.152) 

Number of Applicants 2,584  2,584 2,584  2,584 2,584 
Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson 
regressions. The dependent variables are listed in the left-most column. All models also include a full suite of medical 
school graduation year effects as well as an indicator variable for holding a PhD degree at the time of application. 
Exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the 
estimate in the cell at the bottom left imply that attendees publish 100×(exp[0.760]-1)=113.82% more articles cite by 
patents, relative to non-attendees; the effect is highly statistically significant. The last four columns perform inverse 
probability of treatment and censoring weighted; the corresponding estimates can be interpreted as the ATE/ATET of 
NIH training, under the assumption of unconfoundedness. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
Sources: ATP Index Cards, PubMed. 
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Table 7a: Robustness analyses 
 IPTC Lasso Weights    Zero Pre-ATP Pubs 

 No 
Winsoring 

Winsoring, 
95th pctl. 

Winsoring, 
90th pctl.  CEM  Top 10 Med 

Schools 
Other Med 

Schools 

Career Nb. of Pubs 0.488** 0.419** 0.382**  0.653**  0.992** 0.516** 
(0.078) (0.082) (0.084)  (0.114)  (0.158) (0.140) 

Log Pseudo-Likelihood -152,455 -129,538 -113,547  -53,656  -47,084 -49,882 
Number of Applicants 3075 2769 2461  1,036  849 988 

Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson 
regressions. All models incorporate a full suite of medical school graduation year effects as well as an indicator variable 
for holding a PhD degree at the time of application. Exponentiating the coefficients and subtracting one yield magnitudes 
interpretable as elasticities. For example, the estimate in the first column imply that attendees publish 100×(exp[0.488]-
1)=62.91% more articles during the independent phase of their career, relative to non-attendees. The first three columns 
vary the sample to reflect the winsorization of the regression weights. In the fourth column, CEM refers to coarsened 
exact matching, a blocking technique to guarantee balance on a small set of covariates. The last two columns restrict 
sample to the set of applicants with no research experience prior to application, separately for those having graduated 
from elite and non-elite medical schools. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
 
 
 
Table 7b: Robustness analyses 
 Nb. of Pubs  sinh-1(Nb. of Pubs) 

 IPTC Lasso 
Weights Double Lasso  IPTC Lasso 

Weights Double Lasso 

ATE 27.460** 25.749**  0.893** 0.868** 
(3.975) (4.001)  (0.115) (0.085) 

Number of Applicants 3,075 3,075  3,075 3,075 
Note: Each cell contains an estimate for the average treatment effect in a separate regression. All estimates stem from 
OLS regressions. The dependent variable is either the number of post-training publications in levels (first pair of columns) 
or the inverse hyperbolic sine of the number of post-training publications (second pair of columns). The first and third 
columns perform inverse probability of treatment and censoring weighted estimation as in Table 4. The second and 
fourth column report an estimate of the average treatment effect using the “post-double-selection” lasso estimator due 
to Belloni et al. (2014). Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
 
 
 
 
Table 7c: Robustness analyses 
  Oster’s δ 

Career Nb. of Pubs 1.740 
Career Nb. of Pubs, Top 5% of the Cit. Distrib. 1.788 
Career Nb. of Pubs, Top 1% of the Cit. Distrib. 1.766 
Career Citations 1.751 
Nb. of Patents 2.282 
Career NIH Grants ($ 2015) 1.518 

Note: The score reported corresponds to the δ parameter from Oster (2019), the ratio between the covariances of the 
outcome with observed and unobserved covariates, respectively. All outcomes are transformed using the inverse 
hyperbolic sine function, and δ is computed using OLS regression and the list of covariates selected by the pds-lasso 
estimator of Belloni et al. (2014), and chosen to produce an estimate of the treatment effect equal to zero. We follow 
Oster’s recommendation of setting Rmax = 1.3×R2 from the fully saturated specification. 
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Appendix A: Robustness Checks & Ancilliary Results 
 
 
 

Figure A1. Pre-application publications 

 

Note: Histogram for the number of original publications published up to the year of ATP application weighted by the 
journal impact factor of the publication outlet in which they appeared. Twenty four outliers are omitted. 

 
 
 
 
  



ii 
 

 
Table A1. Most common medical schools attended by applicants 

Medical School 
Non-

Attendees 
Attendees Total 

Harvard Medical School 
86 274 360 

(7.50) (14.20) (11.71) 

Johns Hopkins University School of Medicine 
54 113 167 

(4.71) (5.86) (5.43) 

Columbia University College of Physicians & Surgeons 
57 85 142 

(4.97) (4.41) (4.62) 

University of Pennsylvania School of Medicine 
53 87 140 

(4.62) (4.51) (4.55) 

New York University School of Medicine 
45 84 129 

(3.93) (4.35) (4.20) 

Yale University School of Medicine 
52 77 129 

(4.54) (3.99) (4.20) 

Albert Einstein College of Medicine of Yeshiva University 
52 63 115 

(4.54) (3.27) (3.74) 

Duke University School of Medicine 
22 75 97 

(1.92) (3.89) (3.15) 

SUNY Downstate Medical Center College of Medicine 
38 51 89 

(3.32) (2.64) (2.89) 

Cornell University Medical College 
30 52 82 

(2.62) (2.70) (2.67) 

Total 
489 961 1,450 

(42.67) (49.82) (47.15) 
Note: Column percentages in parentheses. 
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Table A2. Occupational breakdown, first position (post-training) 
First Position Non-Attendees Attendees Total 

Academic Researcher  
509 1,170 1,679 

(44.42) (60.65) (54.60) 

Academic Clinician  
131 130 261 

(11.43) (6.74) (8.49) 

NIH Staff Scientist  
15 161 176 

(1.31) (8.35) (5.72) 

Solo Clinical Practice  
176 143 319 

(15.36) (7.41) (10.37) 

Group Clinical Practice  
233 203 436 

(20.33) (10.52) (14.18) 

Hospital Clinical Practice  
73 95 168 

(6.37) (4.92) (5.46) 

Industry  
2 7 9 

(0.17) (0.36) (0.29) 

Biopharma Consulting  
1 1 2 

(0.09) (0.05) (0.07) 

Administrative Position  
1 2 3 

(0.09) (0.10) (0.10) 

Health & Science Policy  
2 15 17 

(0.17) (0.78) (0.55) 

Miscellaneous  
3 2 5 

(0.26) (0.10) (0.16) 

Total  
1,146 1,929 3,075 

(100.00) (100.00) (100.00) 
N 3,075     

Note: Column percentages in parentheses. 
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Table A3. Occupational breakdown, last position 
Last Position Non-Attendees Attendees Total 

Academic Researcher  
295 851 1,146 

(25.75) (44.12) (37.30) 

Academic Clinician  
134 168 302 

(11.69) (8.71) (9.82) 

NIH Staff Scientist  
8 34 42 

(0.70) (1.76) (1.37) 

Solo Clinical Practice  
209 222 431 

(18.24) (11.51) (14.02) 

Group Clinical Practice  
317 344 661 

(27.66) (17.83) (21.50) 

Hospital Clinical Practice  
93 116 209 

(8.12) (6.01) (6.80) 

Industry  
24 79 103 

(2.09) (4.10) (3.35) 

Biopharma Consulting  
17 38 55 

(1.48) (1.97) (1.79) 

Administrative Position  
24 50 74 

(2.09) (2.59) (2.41) 

Health & Science Policy  
15 18 33 

(1.31) (0.93) (1.07) 

Miscellaneous  
10 9 19 

(0.87) (0.47) (0.62) 

Total  
1,146 1,929 3,075 

(100.00) (100.00) (100.00) 
N 3,075     

Note: Column percentages in parentheses.  
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Table A4. Covariate balance after weighting 
 Unweighted sample  Logit IPTW Reweighting  Lasso IPTW Reweighting 
 Treated Control T-Stat  Treated Control T-Stat  Treated Control T-Stat 
Pre-ATP JIF-Weighted Publications 6.595 3.288 6.835  4.587 6.349 1.540  5.362 5.524 0.218 
 (0.330) (0.292)   (0.636) (1.093)   (0.311) (0.682)  
NIH Grants for Applicant's Medical School 207.006 170.323 6.879  169.964 188.220 0.815  191.941 187.942 0.447 
 (3.438) (3.792)   (22.130) (8.776)   (6.135) (6.388)  
NIH Grants for Applicant's Internship Hospital 97.153 90.890 1.986  82.556 83.688 0.096  93.377 90.501 0.619 
 (1.882) (2.592)   (10.984) (4.276)   (3.259) (3.274)  
PhD 0.036 0.013 3.738  0.024 0.030 0.585  0.027 0.025 0.295 
 (0.004) (0.003)   (0.004) (0.011)   (0.003) (0.007)  
No Internship 0.009 0.003 2.187  0.006 0.008 0.354  0.007 0.008 0.171 
 (0.002) (0.002)   (0.002) (0.005)   (0.002) (0.005)  
Applies more than once 0.028 0.027 0.154  0.025 0.041 1.604  0.028 0.042 1.398 
 (0.004) (0.005)   (0.005) (0.010)   (0.004) (0.009)  
AOA Honor Medical Society 0.383 0.257 7.162  0.294 0.328 0.706  0.332 0.307 1.050 
 (0.011) (0.013)   (0.039) (0.028)   (0.014) (0.019)  
Attended Harvard Medical School 0.142 0.075 5.614  0.110 0.106 0.130  0.122 0.107 0.871 
 (0.008) (0.008)   (0.016) (0.021)   (0.008) (0.015)  
Attended Johns Hopkins School of Medicine 0.059 0.047 1.356  0.050 0.041 0.797  0.056 0.043 1.501 
 (0.005) (0.006)   (0.008) (0.008)   (0.006) (0.007)  
Attended Columbia University 0.044 0.050 0.725  0.037 0.052 1.191  0.043 0.049 0.668 
 (0.005) (0.006)   (0.007) (0.011)   (0.005) (0.007)  

Note: Means, standard errors, and t-statistics are reported; reweighting is performed using average treatment effect inverse probability of treatment weights. T-
statistics are calculated using IPTW-weighted OLS regression of the variable of interest on an indicator variable for ATP attendance. Harvard, Johns Hopkins, and 
Columbia are the three most common medical schools attended in the sample. For NIH grants, original amounts were deflated using the Biomedical R&D Producer 
Price Index (2015 dollars) and presented in units of millions of dollars. JIF—journal impact factor. 
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Table A5. Research and training outcomes by weighting procedure 
 Naive 

Estimates 
Reweighted 
Estimates 

Reweighted 
Estimates 

Reweighted 
Estimates 

 X-Sect. IPTW IPCW IPTCW 
Logit Estimates     
     
Researcher First Job  0.212** 0.168**   
 (0.018) (0.022)   
     
Ends Career as Researcher  0.216** 0.189** 0.180** 0.191** 
 (0.019) (0.024) (0.021) (0.031) 
     
Poisson Estimates     
     
Career Nb. of Pubs 0.653** 0.520** 0.544** 0.488** 
 (0.076) (0.079) (0.077) (0.078) 
     
Career citations 0.840** 0.644** 0.699** 0.560** 
 (0.098) (0.108) (0.102) (0.108) 
     
Nb. of Patents 0.922** 0.630** 0.802** 0.487* 
 (0.207) (0.221) (0.208) (0.226) 
     
Career NIH R01 Grants ($ 2015) 0.827** 0.573** 0.730** 0.509** 
 (0.154) (0.172) (0.155) (0.179) 
     
Nb. NIH-R01-funded trainees 0.880** 0.530* 0.778** 0.477* 
 (0.151) (0.219) (0.149) (0.217) 
Number of Applicants 3,075 3,075 3,075 3,075 

Note: Each cell contains an estimate for the treatment effect in a separate regression. The dependent variables are listed 
in the left-most column. All models incorporate a full suite of medical school graduation year effects as well as an 
indicator variable for holding a PhD degree at the time of application. In the first two rows, the estimates stem from 
logistic regressions. The marginal effects for the treatment indicator are reported. For instance, the coefficient in the 
first row of the first column implies that attendees are 21.2% more likely than non-attendees to be initially placed in a 
research position after completing their training. In the remaining rows, the estimates stem from Poisson regressions. 
Exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the 
estimate in the first column of the third row imply that attendees publish 100×(exp[0.653]-1)=92.13% more original 
publications after career independence, relative to non-attendees. The first column corresponds to a naïve cross sectional 
estimate of the difference in outcomes for treated and control applicants, controlling for a handful of predetermined 
covariates. The second column corresponds to reweighted estimates using inverse probability of treatment weights, 
which adjust the effect for selection but ignore informative censoring. The third column corresponds to reweighted 
estimates using inverse probability of censoring weights, which adjust the effect for early exit from research but ignore 
selection concerns. The fourth column combines the two sets of weights, producing estimates robust to selection and 
informative censoring under the maintained assumption of unconfoundedness. All weights are average treatment effects 
calculating from a lasso model. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
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Table A6. Research outcomes and style during training, by program track 
 All Associates Research Assoc. Clinical Assoc. Staff Assoc. 
 Naive ATE Naive ATE Naive ATE Naive ATE 
Poisson Estimates for full sample         

Nb. of Pubs, Training Period 0.878** 0.723** 0.886** 0.780** 0.926** 0.788** 0.951** 0.766** 
(0.059) (0.079) (0.074) (0.094) (0.064) (0.076) (0.107) (0.134) 

Number of Applicants 3,075 3,075 1,940 1,940 2,460 2,460 1,044 1,044 
         
         
Poisson Estimates for research style sample         

Nb. of Pubs, Training Period 0.416** 0.359** 0.419** 0.410** 0.446** 0.402** 0.452** 0.371** 
(0.050) (0.054) (0.061) (0.068) (0.053) (0.059) (0.092) (0.100) 

         

Basic Science Articles 1.058** 0.941** 1.001** 0.898** 1.026** 0.882** 0.992** 0.961** 
(0.088) (0.095) (0.113) (0.126) (0.097) (0.108) (0.167) (0.180) 

         

Translational Medicine Articles 0.607** 0.513** 0.599** 0.563** 0.714** 0.617** 0.542** 0.445** 
(0.074) (0.081) (0.098) (0.108) (0.079) (0.090) (0.144) (0.147) 

         

Clinical Trial Articles 0.535** 0.501* 0.508* 0.548* 0.719** 0.767** 0.591 0.511 
(0.200) (0.200) (0.226) (0.217) (0.182) (0.194) (0.364) (0.341) 

         

Other Clinical Articles -0.127† -0.106 -0.227* -0.192* -0.078 -0.057 -0.151 -0.229 
(0.074) (0.088) (0.088) (0.089) (0.079) (0.081) (0.126) (0.159) 

         

Inspires Translational Research 0.559** 0.450** 0.599** 0.547** 0.712** 0.641** 0.520** 0.553** 
(0.103) (0.110) (0.130) (0.135) (0.109) (0.122) (0.198) (0.183) 

         

Builds on Translational Research 0.551** 0.518* 0.584* 0.664** 0.707** 0.789** 0.460 0.452 
(0.204) (0.207) (0.246) (0.244) (0.199) (0.216) (0.380) (0.362) 

Number of Applicants 2,486 2,486 1,625 1,625 1,968 1,968 862 862 
Note: Each cell contains an estimate for the treatment effect in a separate regression. All estimates stem from Poisson regressions. The dependent variables are listed in 
the left-most column. All models incorporate a full suite of medical school graduation year effects as well as an indicator variable for holding a PhD degree at the time 
of application. The second, fourth, sixth, and eighth columns perform inverse probability of treatment weighted estimation as computed from lasso specifications very 
similar to that appearing in Table 2; the corresponding estimates can be interpreted as the ATE of NIH training, under the assumption of unconfoundedness. 
Exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the estimate in the top cell of the first column imply that 
attendees publish 100×(exp[0.878]-1)=140.61% more publications during training relative to non-attendees; the effect is highly statistically significant. The first row uses 
the full sample, while the other rows limit the sample to those with at least one cited publication during training. The number of applicants includes all those known to 
have applied to the corresponding track within the Associate Training Program. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
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Table A7. Treatment effect by application year 
 All years Applied 1965-1969 Applied 1970-1972 Applied 1973-1975 
 Naive ATE Naive ATE Naive ATE Naive ATE 
         
Researcher First Job 0.212** 0.168** 0.239** 0.175* 0.219** 0.173** 0.173** 0.135** 
 (0.018) (0.022) (0.050) (0.070) (0.022) (0.026) (0.040) (0.042) 
         
Career Nb. of Pubs 0.653** 0.488** 0.848** 0.707** 0.743** 0.569** 0.269 0.138 
 (0.076) (0.078) (0.210) (0.241) (0.089) (0.093) (0.171) (0.171) 
Total Applicants 3,075 3,075 1,037 1,037 1,570 1,570 468 468 
Attendees 1,929 1,929 959 959 690 690 280 280 
Non-Attendees 1,146 1,146 78 78 880 880 188 188 

Note: Each cell contains an estimate for the treatment effect in a separate regression. The dependent variables are listed in the left-most column. All models 
incorporate a full suite of medical school graduation year effects as well as an indicator variable for holding a PhD degree at the time of application. The 
second, fourth, sixth, and eighth columns perform inverse probability of treatment (row 1) or inverse probability of treatment and censoring (row 2) weighted 
estimation as computed from lasso specifications very similar to that appearing in Table 2; the corresponding estimates can be interpreted as the ATE of 
NIH training, under the assumption of unconfoundedness. On the first row, the estimates stem from logistic regressions. The marginal effects for the 
treatment indicator are reported. For instance, the coefficient in the second row of the first column implies that attendees are 21.2% more likely than non-
attendees to be initially placed in academia after completing their training. On the second row, the estimates stem from Poisson regressions. Exponentiating 
the coefficients and subtracting one yield magnitudes interpretable as elasticities. For example, the estimate in the top cell of the first column imply that 
attendees publish 100×(exp[0.653]-1)=92.13% more original publications after career independence, relative to non-attendees; the effect is highly statistically 
significant. The number of applicants during each time period are also presented. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
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Table A8. Research outcomes and style, by program track 
 All Associates Research Assoc. Clinical Assoc. Staff Assoc. 
 Naive ATE Naive ATE Naive ATE Naive ATE 
Logit Estimates         

Researcher First Job 0.212** 0.168** 0.195** 0.154** 0.193** 0.140** 0.225** 0.173** 
(0.018) (0.022) (0.023) (0.029) (0.021) (0.025) (0.032) (0.039) 

Number of Applicants 3075 3075 1,940 1,940 2,460 2,460 1,044 1,044 
         
Poisson Estimates for full sample         

Career Nb. of Pubs 0.653** 0.488** 0.651** 0.506** 0.651** 0.486** 0.655** 0.487** 
(0.076) (0.078) (0.095) (0.099) (0.086) (0.088) (0.134) (0.148) 

Number of Applicants 3075 3075 1,940 1,940 2,460 2,460 1,044 1,044 
         
Poisson Estimates for research style sample         

Career Nb. of Pubs 0.475** 0.393** 0.495** 0.358** 0.486** 0.391** 0.461** 0.360** 
(0.073) (0.076) (0.090) (0.091) (0.081) (0.086) (0.127) (0.125) 

         

Basic Science Articles 1.025** 0.766** 1.005** 0.896** 1.004** 0.834** 0.893** 0.748** 
(0.115) (0.137) (0.144) (0.143) (0.135) (0.142) (0.205) (0.210) 

         

Translational Medicine Articles 0.604** 0.426** 0.627** 0.487** 0.656** 0.433** 0.427* 0.322† 
(0.107) (0.117) (0.134) (0.129) (0.125) (0.140) (0.197) (0.191) 

         

Clinical Trial Articles 0.460** 0.430** 0.434** 0.200 0.530** 0.464** 0.426† 0.259 
(0.119) (0.114) (0.162) (0.192) (0.135) (0.139) (0.222) (0.222) 

         

Other Clinical Articles 0.054 0.137 0.015 -0.086 0.073 0.115 0.183 0.121 
(0.088) (0.100) (0.117) (0.118) (0.093) (0.096) (0.166) (0.152) 

         

Inspires Translational Research 0.587** 0.459** 0.629** 0.491** 0.689** 0.478** 0.415† 0.282 
(0.117) (0.117) (0.146) (0.144) (0.138) (0.142) (0.225) (0.216) 

         

Builds on Translational Research 0.526** 0.458** 0.516** 0.258 0.618** 0.509** 0.521* 0.313 
(0.126) (0.123) (0.161) (0.198) (0.143) (0.147) (0.210) (0.224) 

Number of Applicants 2,584 2,584 1,685 1,685 2,061 2,061 899 899 
Note: Each cell contains an estimate for the treatment effect in a separate regression. The dependent variables are listed in the left-most column. All models incorporate 
a full suite of medical school graduation year effects as well as an indicator variable for holding a PhD degree at the time of application. The second, fourth, sixth, 
and eighth columns perform inverse probability of treatment (row 1) or inverse probability of treatment and censoring (row 2-9) weighted estimation as computed 
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from lasso specifications very similar to that appearing in Table 2; the corresponding estimates can be interpreted as the ATE of NIH training, under the assumption 
of unconfoundedness. On the first row, the estimates stem from logistic regressions. The marginal effects for the treatment indicator are reported. For instance, the 
coefficient in the first row of the first column implies that attendees are 21.2% more likely than non-attendees to be initially placed in a research position after 
completing their training. The estimates of the other rows stem from Poisson regressions. Exponentiating the coefficients and subtracting one yield magnitudes 
interpretable as elasticities. For example, the estimate in the second row the first column imply that attendees publish 100×(exp[0.653]-1)=92.13% more publications 
after career independence, relative to non-attendees; the effect is highly statistically significant. The first two rows uses the full sample, while the other rows limit the 
sample to those with at least one cited publication during training. The number of applicants includes all those known to have applied to the corresponding track 
within the Associate Training Program. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
 

 

 
 
Table A9. Intensity of Treatment Effects (dose-response relationship) 

 Publications Citations NIH Funding Patents Academic 
First Job 

Academic 
Last Job 

Research 
First Job 

Research 
Last Job 

One year of NIH training 0.109 -0.209 -1.597* -1.054 0.068 0.069 0.144 0.118 
(0.393) (0.554) (0.731) (0.928) (0.142) (0.129) (0.149) (0.121) 

Two years of NIH training 0.396** 0.347** 0.147 0.182 0.095** 0.151** 0.152** 0.214** 
(0.080) (0.111) (0.295) (0.274) (0.023) (0.033) (0.026) (0.029) 

Three years of NIH training 0.724** 0.928** 1.296** 0.826** 0.172** 0.178** 0.228** 0.217** 
(0.103) (0.127) (0.408) (0.241) (0.031) (0.036) (0.032) (0.035) 

Log Pseudo-Likelihood -176,266 -14,078,704 -72,591,506,317 -10,356 -1,786 -2,364 -1,946 -2,319 
Number of Applicants 3,075 3,075 3,075 3,075 3,075 3,075 3,075 3,075 

Note: Each column reports estimates from a regression of the outcome listed in the header on four indicator variables corresponding to different intensities of treatment, 
as well as a full suite of medical school graduation year effects and an indicator variable for holding a PhD degree at the time of application. No NIH training is the 
omitted category of treatment intensity. The estimates stem from Poisson regressions (first four columns) and logit regressions (last four columns). For the Poisson 
estimates, exponentiating the coefficients and subtracting one yield magnitudes interpretable as elasticities. For the logit regressions, marginal effects are reported. 
Each observation is weighted by its inverse probability of treatment and censoring (columns 1-4, 6, and 8) or inverse probability of treatment (columns 5 and 7), as 
computed from a separate ordered logit specification very similar to that appearing in Table 2. The corresponding estimates can be interpreted as the ATE of NIH 
training, under the assumption of unconfoundedness. Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). 
 
 
 
 



Appendix B
Non-applicant Sample

To construct information on the characteristics of physicians who did not apply to the NIH ATP, we capi-
talized on the American Medical Association (AMA) Physician Masterfile. The AMA Physician Masterfile
was established in 1906; records for United States medical graduates are established upon medical school
enrollment. We obtained records only for those physicians whose last name and first initial matched one
of the applicants in our sample. We limited our analysis to male M.D. graduates from 1965 to 1975 who
attended a U.S. medical school. Age was calculated directly from birthdates; we excluded those with an age
greater than 36 out of concern for erroneous recorded birthdates. The final sample was comprised of 10,738
physicians who did not interview for an NIH ATP position.

To identify publications by non-applicants during medical school attendance, we focused on a subset of this
population with a name frequency of 1 or 2 in our AMA Masterfile data (188 non-applicants and 1,502
applicants). Non-applicants were matched against author-name disambiguated publications using Author-
ity (Torvik et al. 2005; Torvik and Smalheiser 2009). All potential matches to publications were manually
verified. Paralleling the measurement of pre-application publications by applicants, we kept only those
original articles published within 1 year of medical school graduation.
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Figure B1. Age at medical school graduation 
 

 
Note: Kernel density of age at medical school graduation by application status. Non-applicants are male U.S. medical 
school graduates 1965-1975 identified from the American Medical Association Physician Masterfile (see Appendix B for 
details). N = 13,814 physicians (3,075 applicants and 10,738 non-applicants). Sources: ATP Index Cards, AMA 
Physician Masterfile. 

 

 

 

 

 

Table B1. Descriptive Statistics: Characteristics of Non-Applicants 
 Mean Median Min. Max. Nb. of Obs. 
Non-Applicants      
Age at medical school graduation 26.513 26.004 22 36 10,738 
NIH Grants for Applicant’s Med. School (×1,000) 103,459 77,069 0 639,320 10,738 
Pre-ATP Nb. of Publications 0.314 0.000 0 5 188 
ATP Interviewees      
Age at medical school graduation 25.952 25.845 22 36 3,075 
NIH Grants for Applicant’s Med. School (×1,000) 193,335 164,903 0 639,320 3,075 
Pre-ATP Nb. of Publications 0.917 0.000 0 12 1,502 

Note: Non-applicants are male U.S. medical school graduates between 1965 and 1975 identified from the American Medical 
Association Physician Masterfile. Pre-ATP publications are identified only for those with a name frequency of one or two 
(see Appendix B for details). For NIH grants, original amounts were deflated using the Biomedical R&D Producer Price 
Index (2015 dollars). Sources: ATP Index Cards, AMA Physician Masterfile, PubMed, CGAF. 

 



Appendix C
Draft Lottery Subsample

For several cohorts of applicants in our sample, their eligibility for the draft was potentially influenced
by the lotteries held by the U.S. Selective Service in 1969, 1970, and 1971. In total, 1,898 (61.72%) of
the applicants were born between 1944 and 1952 and therefore assigned a lottery number, based on their
birth date. Applicants whose number was called might have been especially determined to escape service in
Vietnam, and invested more in preparing their application. Alternatively, NIH PIs might have exhibited a
bias in favor of applicants whose alternative to training at NIH would have been service in a conflict zone.
In the subsample of applicants impacted by the draft lottery, 978 (51.53%) have a number that was called,
i.e., classified as available for military service.

For the vast majority of the physicians in the sample affected by the draft, the lottery occurred several years
prior to their graduation from medical school and their application to the ATP. As a result, most may have
been able to postpone their draft eligibility through deferments granted for educational purposes (Rousselot
1971). Table C1 demonstrates that in practice, having one’s number called in the lottery does not help
predict ATP attendance, focusing on the applicants cohorts for which the draft lottery was operating (i.e.,
those born between 1944 and 1952).

Column 1 enters the same covariates into the specification as column 1a in Table 2, but estimates the model
on the restricted sample of 1,898 “lottery-affected” applicants. Using this parsimonious model, column 2
shows that having one’s lottery number called does not predict selection into the program, consistent with
the premise that physicians were already on the required service list during the Vietnam era. Column 3
confirms this result using a lasso covariate selection procedure akin to that used in Table 2, column 1c (the
draft lottery number indicator variable is constrained to appear in the specification).
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Table C1. Modeling selection into the NIH ATP: Draft Lottery 

 w/o Draft 
Covariates 

w/ Draft 
Covariates 

Saturated 
Model [Lasso] 

 (1) (2) (3) 
Draft Lottery Number Called  0.061 0.047 
  (0.103) (0.100) 
Log(Pre-ATP Nb. of Publications) 0.294** 0.294** 0.302** 

(0.078) (0.078) (0.079) 
Ln(NIH Grants for Applicant’s Medical School) 0.248* 0.247*  

(0.109) (0.109)  
Ln(NIH Grants for Applicant’s Internship 
Hospital) 

0.008 0.008  
(0.011) (0.011)  

PhD 0.744 0.747 1.087* 
(0.494) (0.496) (0.453) 

No Internship   2.770* 
  (1.143) 

Applies more than once 0.119 0.117 0.433 
(0.305) (0.307) (0.282) 

AΩA Honor Medical Society 0.634** 0.634** 0.623** 
(0.121) (0.121) (0.115) 

Constant 8.775** 8.746**  
(2.178) (2.179)  

Medical School Fixed Effects No No Yes 
Internship Hospitals Fixed Effects No No Yes 
Nb. of Non-zero Predictors   155 
Nb. of Potential Predictors   369 
χ2 Test Statistic   52.22 
Pseudo-R2 0.144 0.144  
Log-likelihood -1,125 -1,125  
Nb. of Applicants 1,898 1,898 1,898 

Note: Estimates in columns 1a and 1b stem from logit specifications; the dependent variable is an indicator variable 
equal to one for attendees, zero for non-attendees. All models incorporate a full suite of medical school graduation 
year effects; a set of indicator variables for the applicant’s age at the time of application; indicator variables for the 
number of distinct NIH component institutes that received the application; indicator variables for the number of 
tracks applied to within the Associate Training Program; indicator variables for the number of years between the 
application and the medical school graduation year; an indicator variable if the applicant applied more than once; an 
indicator variable for zero publications before application, and a series of indicator variables capturing if the applicant 
(1) intended to postpone his internship until after training, (2) intends to perform his internship abroad, (3) intends 
to intern in a hospital affiliated with the Veterans Affairs Administration, or (4) has missing information regarding 
his intended internship hospital. Estimates in column 1c correspond to the results of a cross-fit partialing-out lasso 
logit procedure with ten folds, as described in Chernozhukov et al. (2018). The specification includes all the covariates 
mentioned above, plus a full suite of medical school indicator variables and a full suite of internship hospitals indicator 
variables, for a total of 369 covariates, 155 of which the procedure selects for inclusion as control variables. The χ2 
test statistic (i.e., the Wald test of the hypothesis that the coefficients of the five variables of interest—for which 
inference is performed and are constrained to appear in the model—are jointly equal to zero) is equal to 52.22 (p < 
0.01). Robust errors in parentheses (†p < 0.10, *p < 0.05, **p < 0.01). Sources: ATP Index Cards, AMA Physician 
Masterfile, PubMed, CGAF, draft lottery numbers available at https://www.sss.gov/history-and-records/vietnam-
lotteries/. 



Appendix D
Research Style Measures

To characterize research style, we take advantage of MeSH terms, a hierarchical controlled vocabulary the-
saurus maintained by the National Library of Medicine. The National Library of Medicine employs pro-
fessional indexers to select MeSH indexing terms for biomedical publications according to specific protocol
and considers each article in the context of the entire collection. Importantly, given the subjectivity of any
indexing task, the authors are not involved in the process of selecting MeSH terms.

Disease-oriented articles were identified as all those under the MeSH tree disease category (C01-C26). We
excluded C22, which primarily measures veterinary diseases, and included F03, mental disorders. All together
this measure includes 4,895 unique MeSH terms. Example terms include hematuria, aortic valve stenosis,
and Klippel-Feil Syndrome. Some microbiologic agents, such as escherichia coli, may be both pathologic
causes of disease as well as common organisms in molecular biology research. To ensure results are not
being driven by conflation of microbiologic disease with a research model organism, a second measure of
disease-orientation was constructed as above but dropping all bacterial infectious disease terms (C01) with
similar results obtained.

Articles using molecular biology methods were identified primarily based on the MeSH category for inves-
tigative techniques (F05). These were manually reviewed to eliminate any terms which may have a potential
direct clinical application outside of a laboratory, such as angioplasty or glasgow coma scale. The final
list of MeSH codes includes: E05.017, E05.091, E05.118, E05.181, E05.196 (but excluding E05.196.353),
E05.197, E05.198, E05.242.223, E05.242.335, E05.242.363.342, E05.242.373, E05.242.383.910, E05.242.551,
E05.242.800, E05.295, E05.301, E05.313, E05.318.416, E05.393, E05.478, E05.481, E05.484, E05.490, E05.522,
E05.588, E05.591, E05.595, E05.598, E05.601, E05.624, E05.650, E05.657, E05.830, E05.916.680, and A11.251
(excluding A11.251.476). Together, these codes identify 510 unique MeSH terms with examples including
immunoelectrophoresis, nucleic acid hybridization, and real-time polymerase chain reaction.

To construct a measure of the use of a model organism in research, we compiled a list of 53 different
model organisms used in biomedical research: tobacco mosaic virus, bacteriophage λ, bacteriophage φX174,
SV40, T4 phage, escherichia coli, bacillus subtilis, caulobacter crescentus, aliivibrio fischeri, synechocys-
tis, pseudomonas fluorescens, azotobacter vinelandii, Streptomyces coelicolor, chlamydomonas reinhardtii,
dictyostelium discoideum, tetrahymena thermophila, eremothecium, aspergillus nidulans, coprinus cinereus,
Cryptococcus neoformans, ceurospora crassa, saccharomyces cerevisiae, schizophyllum, schizosaccharomyces
pombe, ustilago maydis, arbacia punctulata, aplysia, caenorhabditis elegans, ciona intestinalis, drosophila,
loligo pealei, trichoplax adhaerens, ambystoma mexicanum, cat, chicken, dog, mesocricetus auratus, guinea
pigs, rabbits, oryzias latipes, mice, genetically modified animals (B01.050.050.136 and B01.050.050.199.520),
mole-rat, pigeon, poecilia reticulata, rat, rhesus macaque, petromyzon marinus, takifugu, xenopus laevis,
and zebrafish. The associated MeSH codes for these organisms resulted in 125 unique MeSH terms. As a
robustness check to ensure the result was not driven by microbiologic model organisms which may also be
pathologic diseases, as well as for clarity given the large number of organisms, a second measure limited only
to major non-microbiologic organisms was constructed. This consisted of the MeSH codes for the following
model organisms: caenorhabditis elegans, drosophila, zebrafish, mice, genetically modified animals (exam-
ples under this category include knockout and SCID mice), saccharomyces cerevisiae, and rhesus macaque.
This subset contained a total of 67 unique MeSH terms. Results were similar using this alternative measure
of model organism.

We constructed two additional measures of basic science based on the research topic: the first focused
on cellular structures and macromolecules, and the second on biochemical and cellular processes. We
identified 2,620 MeSH terms related to cellular structures and macromolecules and 1,028 related to bio-
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chemical and cellular processes. Care was taken to avoid terms which may have direct clinical relevance.
The final list of MeSH codes for cellular structures and macromolecules includes: A11.284, A20 (excluding
A20.593), D05.500, D08.811, D09.067 (excluding D09.067.687.668, D09.067.342.531), D09.254, D12.125.780,
D12.644.360, D12.644.770, D12.776.575, D12.776.580, D12.776.835, D12.776.938, D12.776.947, D13, D23.125,
and D23.585. Example MeSH terms capture by this measure include golgi apparatus, 16S ribosomal RNA,
DNA topoisomerase IV, and COP9 signalosome complex. The final list of MeSH codes for biochemical
and cellular processes includes: G02 (but excluding G02.111.130, G02.111.007, G02.186, G02.819), G03
(but excluding G03.015, G03.030, G03.180, G03.191, G03.312, G03.442, G03.458, G03.615.500, G03.680,
G03.787, G03.800, G03.820, G03.857), G04 (excluding G04.140), G05 (excluding G05.045, G05.090, G05.180,
G05.285, G05.347, G05.350, G05.390, G05.400, G05.410, G05.697, G05.815, G05.910), G06.920 (excluding
G06.225.420, G06.920.850), G07.265.755, G12, G11.561.653, G11.561.638, G16.075.250. Examples include
chaperone-mediated autophagy, signal transduction, post-transcriptional RNA processing, and oxidative
phosphorylation.

Clinical trial articles were identified by two approaches. First, we used MeSH terms for publication type
(V03.175) as well as topic (E05.318.372.250, N05.715.360.330.250, N06.850.520.450.250), with veterinary
terms eliminated (V03.175.375, V03.175.750, N05.715.360.330.250.375, N06.850.520.450.250.750). These
MeSH codes resulted in 25 unique MeSH terms. Examples include clinical trial, phase II ; randomized
controlled trial; and observational study. As a second measure, we identified all those papers tagged in
PubMed with a publication type containing the term trial. Example publication types include adaptive
clinical trial; clinical trial, phase III ; and randomized controlled trial.
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Appendix E
Identification of Trainees

To identify the trainees of ATP applicants who later go on to receive NIH grants, we first identified the
set of original research articles after career independence in which the ATP applicant was the last author.
The first authors of these publications were then matched against NIH grantees who earned their doctorate
degree 1965-2015 from the Consolidated Grant Applicant File and NIH Exporter. Only those publications
that occurred in a window centered on the time of his or her highest degree were considered to be during
training (3 years prior to earning a doctorate to 5 or 7 years afterwards for a PhD or MD, respectively, to
account for residency, fellowship, and postdoctoral training as well as any publication lags). This established
a set of potential trainee/ATP applicant dyads.

We employed several strategies to verify the potential match between the first author and NIH grantee. We
considered all dyads matching on location or specialty to be a valid match. We defined a location match as
occurring if the NIH grantee institution matched either the institutions of the NIH ATP applicants first or last
job after career independence. This approach capitalizes on the fact that a significant number of residency
or fellowship graduates take their first faculty job at the same institution they completed their training.
Care was taken to account for close institutional affiliations (for example, the San Francisco Veterans Affairs
Medical Center and University of California, San Francisco would be considered as matching).

The specialty of NIH grantees was derived from their departmental affiliation when available. A difficulty
with this approach is that some medicine subspecialists are reported as working in the general medicine
department rather than their subspecialty (i.e. reported in the department of medicine rather than a cardi-
ology department). We conservatively only considered exact specialty matches (i.e. general internal medicine
matching to general internal medicine and cardiology to cardiology). As a robustness check, the analysis
was repeated using a stricter definition of specialty match which excluded any general medicine or general
pediatrics matches. We also considered a specialty as matching if a pediatric subspecialist studied with their
adult physician counterparts or vice versa.

For our baseline specification, we defined a trainee/ATP applicant dyad as valid if it matched on location,
matched on specialty, or had a last name frequency within the NIH grantees of less than or equal to 10.
As a robustness check, we employed a stricter definition using only a hand-coded subset. We consider R01
grantees to also include those receiving R29 and R37 grants.

xvii


