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ABSTRACT

Cost-effectiveness analysis (CEA) remains the de-facto method of choice to evaluate and 
compare medical interventions.  Standard approaches to CEA use the average (mean) outcomes 
from clinical effectiveness studies such as randomized controlled trials.  This paper generalizes 
standard methods to include uncertainty in clinical outcomes and proposes a generalized version 
of the quality-adjusted life-year (QALY), referred to as a quality- and risk-adjusted life-year 
(QRALY). Our approach requires new information from clinical studies – not only means and 
variances of health outcomes, but also skewness.  With that added parameter, this paper shows 
how Taylor Series expansions of expected utility can account for two distinct effects of 
uncertainty:  the “insurance value” of reducing overall risks to health, and the “value of hope” 
produced by the presence of positively skewed outcomes. Simulations demonstrate that stochastic 
terms are particularly important when baseline disease severity is high, and mean treatment 
effects are low.  They also demonstrate that the variance-based term has the greatest importance 
among the stochastic terms, although skewness- and kurtosis-based terms can be significant in 
some situations.
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I. INTRODUCTION 

For decades, economists have studied how consumers trade off mortality risk and money 

[1, 2].  The normative implications of this analysis are particularly helpful in contexts where 

markets for life-extension investments are incomplete or absent.  For example, consumers rarely 

pay directly for safer transportation infrastructure or environmental standards.  In contexts where 

consumer life expectancy is influenced by the decisions of third parties, the economic theory of 

mortality risk is often used to calculate how much these third parties should spend on risk-

reduction. 

These insights have particularly relevance for healthcare.  Public health insurers, 

commercial health insurers, and other third-parties routinely make healthcare spending decisions 

that influence the length and quality of life for consumers.  In these contexts, the economic 

theory of mortality risk-reduction helps answer the question of how much a social planner should 

spend on extending life.  However, it does not address the question of how to allocate resources 

across a range of competing interventions, and especially not when these resources are allocated 

by healthcare payers with potentially inefficient incentives.  This question has been addressed by 

the related theory of cost-effectiveness, of roughly the same vintage as the theory of mortality 

risk-reduction [3].  

Cost-effectiveness has long been used in Britain, Canada, and Australia to determine 

coverage and reimbursement of new medical technologies by health insurer and to evaluate 

medical technologies in the US and elsewhere.  By recent reports, almost 7300 (and counting) 
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cost-effectiveness analyses of medical technologies have been published.1   Our current decade 

has brought with it increasing interest in cost-effectiveness among insurers in the United States 

as well.  The Institute for Clinical and Economic Review (ICER), a US nonprofit organization, 

now routinely conducts and releases cost-effectiveness studies for use by American healthcare 

payers and providers.2   A recent study suggests that nearly 60% of US payers have relied on or 

consulted cost-effectiveness analyses in their price negotiations or reimbursement decisions [4].  

Moreover, a large Pharmacy Benefit Manager (CVS Caremark) recently proposed to link 

payment for prescription drugs to their cost-effectiveness by limiting reimbursement to a 

maximum of $100,000 per estimated Quality Adjusted Life Year (QALY) gained.3  As cost-

effectiveness expands its reach, it becomes increasingly important to ensure that its methods 

accurately reflect individual and societal preferences. 

Traditionally, cost-effectiveness analyses have relied on average health outcomes to 

assess the value of clinical interventions [5].  Yet, focusing on averages overlooks the role of risk 

and uncertainty in the effects of medical technologies.  This issue has become increasingly 

salient with the rise of personalized and targeted medical technologies that produce 

heterogeneous effects across different genotypes.  Several recent studies illustrate ways in which 

abstracting from uncertainty can lead to erroneous inferences about value.  Technologies that 

reduce the variance of overall health outcomes generate substantial value to risk-averse 

consumers, even holding average outcomes fixed [6]. Effective new treatments for a severe 

illness reduce risk by limiting the probability of harmful complications.  Further, technologies 

                                                 

1 https://cevr.tuftsmedicalcenter.org/databases/cea-registry, last visited March 22, 2019. This lists reports 
through 2017.   

2  https://icer-review.org 
3 https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-

the-american-nice/#1cb23a8b6173  last visited June 18, 2019.  

https://cevr.tuftsmedicalcenter.org/databases/cea-registry
https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-the-american-nice/#1cb23a8b6173
https://www.forbes.com/sites/joshuacohen/2018/09/20/will-cvs-caremark-make-icer-the-american-nice/#1cb23a8b6173
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that increase variance may still be incrementally valuable to risk-averse consumers if they also 

increase the positive skew in the distribution of health outcomes. An example is the “value of 

hope” exhibited by cancer patients, many of whom prefer a risky therapy that offers a modest 

chance of a large long-term survival gain [7, 8].  Motivated by the accumulating empirical 

evidence, a recent economic task force report from the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) called for methods to monetize the value 

of risk reduction and the value of hope in standard cost-effectiveness frameworks [9].   

Two decades ago, Garber and Phelps [10] developed a framework for cost-effectiveness 

analysis rooted in microeconomic theory.  By focusing on treatment interventions with non-

stochastic outcomes, their framework showed how to conduct cost-effectiveness analysis based 

on average treatment effects alone.  We seek to generalize that framework by providing 

empirically tractable methods for conducting cost-effectiveness analysis when consumers are 

risk-averse over health and health technologies produce variable benefits.  Our theoretical 

analysis yields several insights. First, we identify the “certainty-equivalence ratio” in health 

improvement that quantifies the value of a risky health intervention in terms of certainty-

equivalent health units gained.  Second, we quantify how the value of a health intervention falls 

with variance and rises with positive skewness. In so doing, we bring together into a single 

framework the earlier identification of “insurance value” from health interventions that lower 

variance, and “value of hope” from health interventions that offer the chance of positively 

skewed outcomes.  Finally, we develop the concept of the “quality- and risk-adjusted life-year” 

(QRALY), which generalizes the traditional “quality-adjusted life-year” (QALY) that presumes 

an absence of uncertainty in health outcomes.  Our framework takes as inputs the variance, 

skewness and (if available) kurtosis in clinical trial or quasi-experimental studies of health 
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outcomes, along with risk preference parameters already estimated in the economics literature.  

The earlier Garber and Phelps approach nests as a special case of ours, one in which treatment 

effects are certain. 

The valuation of uncertainty in consumer decision making dates back to the pioneering 

work of Markowitz [11], Pratt [12] and Arrow [13].  These early studies led to the now-classic 

“mean-variance” tradeoff in financial economics.  Building upon these studies and the work of 

Kimball on higher-order risk attitudes [14], we develop a framework that incorporates mean, 

variance, skewness, and kurtosis into the valuation of uncertain health improvements. We 

primarily study the application to cost-effectiveness analysis in healthcare, but the methods are 

identical for studying stochastic outcomes of investments in other human capital goods like, 

vehicle safety, environmental quality, building standards, and any other regulation that affects 

human health and safety.  In addition, the methods could be adapted readily to include any scalar 

summary of multi-dimensional measures of value such as Multi-Criteria Decision Analysis 

(MCDA) metrics [15].    

Our analysis demonstrates that variance in health outcomes is an economic “bad” when 

consumers are risk-averse, and it shows how health technologies may increase or decrease 

variance in outcomes.  In addition, we show how positive skewness in treatment effects is an 

economic “good” when consumers are prudent.  More generally, we demonstrate how changes in 

the skewness and kurtosis of distributions of health outcomes can modify the effects of changes 

in variance.  Our framework illustrates how to introduce these elements without having to build 

complicated decision trees that might seek to capture the same events.  Our methods only require 

new estimates of treatment effect skewness (and, optionally, kurtosis) in health outcomes for 

competing health technologies.   
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Our results have implications for the coverage and reimbursement of new medical 

technologies by health insurers.  Accounting for uncertain health outcomes can better align 

coverage policies with the underlying utility of risk-averse enrollees.  Current practices in cost-

effectiveness analysis may over-value technologies with highly variable outcomes, but under-

value those with positively skewed outcomes.  This in itself is an increasingly important issue.  A 

wide variety of diseases exhibit variable treatment responses [16], including highly prevalent 

diseases like depression [17], rheumatoid arthritis [18], diabetes [19], and cancer [20].  While 

continued progress in diagnostics might eventually improve the ability to forecast which patients 

will respond to a particular drug, there remains a considerable amount of variable treatment 

response that is unknown before treatments are administered.    Value assessment methods need 

to incorporate practical strategies for quantifying the effects of this uncertainty. 

We begin by developing a theoretical framework that accounts for uncertain clinical 

effects in the valuation of medical technologies.  We then illustrate the implications of this 

framework with a series of numerical examples centering on parameter estimates derived from 

the economic literature.  

II. THEORETICAL FRAMEWORK 

We aim for a theoretically grounded framework amenable to empirical analysis.  We 

make several simplifications to achieve this. First, we assume that the consumer displays the 

same degree of relative risk-aversion over health outcomes as over consumption. While our 

theoretical derivations do not require this assumption, empirical considerations do.  To our 

knowledge, risk-aversion over health outcomes has not separately been estimated in the 
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consumer economics literature.4  From a practical standpoint, this suggests one of two 

approaches: assume the same risk-aversion over composite consumption and health flows, or 

assume risk-neutrality over health.  We believe that the latter approach is no longer tenable, in 

light of the empirical evidence on consumer risk preferences over health improvements.   

Our analysis provides a specific and rigorous method to evaluate the utility from 

stochastic (risky) health gains.  The key pieces of information needed to compare two 

technologies are the means, variances and skewness of the distribution of health benefits that 

they produce, with the potential of adding estimates of kurtosis if available.  The analysis relies 

on proof of the economic legitimacy of using cost-effectiveness analysis (CEA) to guide 

resource allocation and the existence of an optimal cost-effectiveness cutoff 𝐾𝐾 – the willingness 

to pay (WTP) for one quality-adjusted life-year (QALY) -- which can also be expressed as a 

multiplier of income (𝑀𝑀).  In that formulation,  𝐾𝐾
𝑀𝑀

= 1
𝐸𝐸𝑈𝑈𝑈𝑈

, the inverse of the elasticity of utility 

with respect to income [21]. It represents the opportunity cost in terms of foregone consumption 

of goods and services that can be purchased with income. 

In our model, an individual is sick with probability 𝑝𝑝 and well with probability (1 − 𝑝𝑝).  

The flow of health in the well state is the scalar 𝐻𝐻𝑊𝑊.  The flow of health in the sick state is 

𝐻𝐻𝑆𝑆(𝑠𝑠) ≡ 𝐻𝐻𝑊𝑊 − 𝑠𝑠, where the health reduction in the sick state, 𝑠𝑠 ∈ (0,𝐻𝐻𝑊𝑊), is a random variable 

with probability density 𝑔𝑔𝑠𝑠(𝑠𝑠).  For empirical purposes, suppose that health is measured in 

quality-adjusted life-years (QALYs) per year (or other period) of life.  The theoretical analysis 

                                                 

4 Cordoba and Ripoll [23] estimate a lifetime expected utility model using Epstein-Zin-Weil preferences 
that separates the parameters for intertemporal substitution (the inverse of the coefficient of relative risk-aversion) 
and a “mortality aversion” parameter that measures aversion to the risk of dying.  The latter is not the same as risk 
aversion over an index of the health state, which our model requires.  Further, their estimate of mortality aversion is 
calibrated to estimates of the value of a statistical life (VSL) that have many potential upward biases (see  [24] 
Appendix C1a and C1b).    
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would be unchanged if health were measured as life-years, disability-free life-years, or some 

other related construct.  In this context, health is measured in natural units, not in utility-

equivalents as might be derived in the (seldom-used) standard gamble approach.  The period 

utility function is 𝑢𝑢(𝑀𝑀,𝐻𝐻), for composite consumption, 𝑀𝑀, and health level 𝐻𝐻.  The willingness 

to pay for a QALY equals 𝐾𝐾 ≡ 𝑢𝑢𝐻𝐻
𝑢𝑢𝑀𝑀

 – the marginal rate of substitution (MRS) between health and 

general consumption.   Expected utility is given by: 

 𝐸𝐸𝐸𝐸 ≡ 𝑝𝑝∫ 𝑢𝑢(𝑀𝑀,𝐻𝐻𝑆𝑆(𝑠𝑠))𝑔𝑔𝑠𝑠(𝑠𝑠)𝑑𝑑𝑑𝑑𝑠𝑠∈𝑆𝑆 + (1 − 𝑝𝑝)𝑢𝑢(𝑀𝑀,𝐻𝐻𝑊𝑊) (1) 

The standard QALYs framework specifies 𝑢𝑢(𝑀𝑀,𝐻𝐻) = 𝑣𝑣(𝑀𝑀)𝐻𝐻, for some strictly concave 

function 𝑣𝑣 [10].  However, if utility is instead concave in 𝐻𝐻, the usual implications for QALYs 

will not obtain.  To pursue this point further, observe that the willingness to pay for Δ additional 

QALYs is given by 𝑢𝑢𝐻𝐻(𝑀𝑀,𝑞𝑞)
𝑢𝑢𝑀𝑀(𝑀𝑀,𝑞𝑞)

Δ for an individual at baseline QALY level 𝑞𝑞.  Moreover, in the 

conventional framework, the value of a statistical life-year spent at QALY level 𝑞𝑞 is 𝑢𝑢(𝑀𝑀,𝑞𝑞)
𝑢𝑢𝑀𝑀(𝑀𝑀,𝑞𝑞)

 [2].  

The QALYs framework requires that the willingness to pay for Δ additional QALYs be the same, 

regardless of whether these are purchased via quality-of-life increases (i.e., a gain of Δ QALYs) 

or via life-extension (i.e., adding Δ
𝑞𝑞
 years of life at the QALY level 𝑞𝑞).  Therefore, it must be true 

that 𝑢𝑢𝐻𝐻(𝑀𝑀,𝑞𝑞)
𝑢𝑢𝑀𝑀(𝑀𝑀,𝑞𝑞)

Δ = 𝑢𝑢(𝑀𝑀,𝑞𝑞)
𝑢𝑢𝑀𝑀(𝑀𝑀,𝑞𝑞)

Δ
𝑞𝑞
.  It is straightforward to show that this expression holds at equality 

only if utility is linear in health, in which case 𝑢𝑢𝐻𝐻(𝑀𝑀, 𝑞𝑞)𝑞𝑞 = 𝑢𝑢(𝑀𝑀, 𝑞𝑞).  However, consumer risk-

aversion over health breaks the equivalence between QALYs gained via life-extension and via 

quality of life improvement.  Later, we show that the simplicity of QALY-based resource 

allocation rules can still be preserved by a more generalized formulation – the quality- and risk-

adjusted life-year (QRALY). 
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III. VALUE ASSESSMENT 

We wish to assess the value of the incremental health benefit produced by a new medical 

technology.  In the absence of treatment by this technology, a sick patient experiences the 

baseline health outcome given above, 𝐻𝐻𝑆𝑆(𝑠𝑠) ≡ 𝐻𝐻𝑊𝑊 − 𝑠𝑠, where  𝐻𝐻𝑊𝑊 is the known level of health 

in the “well” state, and the reduction in health, 𝑠𝑠, is a random variable with mean 𝜇𝜇𝑠𝑠, variance 

𝜎𝜎𝑠𝑠2, Pearson’s skewness coefficient 𝛾𝛾1𝑠𝑠, and Pearson’s kurtosis 𝛾𝛾2𝑠𝑠.  Thus, 𝜇𝜇𝑆𝑆 ≡ 𝐸𝐸(𝑠𝑠), 𝜎𝜎𝑆𝑆2 ≡

𝐸𝐸(𝑠𝑠 − 𝜇𝜇𝑆𝑆)2, and 𝛾𝛾1𝑆𝑆 ≡
𝐸𝐸(𝑠𝑠−𝜇𝜇𝑆𝑆)3

𝜎𝜎𝑠𝑠3
 and  𝛾𝛾2𝑆𝑆 ≡

𝐸𝐸(𝑠𝑠−𝜇𝜇𝑆𝑆)4

𝜎𝜎𝑠𝑠4
.  For compactness, define the average health 

outcome in the sick state as 𝐻𝐻�𝑆𝑆 ≡ 𝐻𝐻𝑊𝑊 − 𝜇𝜇𝑆𝑆.  The baseline health outcome, 𝐻𝐻𝑆𝑆, may represent  the 

benefits from a portfolio of “standard of care” technologies, or the health outcome in an entirely 

untreated state, depending on the context. 

Consider the introduction of a new medical technology (T).  A sick patient treated with 

this technology receives the incremental benefit, 𝛽𝛽, a random variable with probability density 

𝑔𝑔𝛽𝛽(𝛽𝛽) measuring the benefit of this technology compared to the current standard of care.  𝛽𝛽 ∈ 𝐵𝐵 

is distributed with mean 𝜇𝜇𝐵𝐵, variance 𝜎𝜎𝐵𝐵2 ≡ 𝐸𝐸(𝛽𝛽 − 𝜇𝜇𝐵𝐵)2, Pearson’s skewness coefficient 𝛾𝛾1 ≡

𝐸𝐸(𝜏𝜏−𝜇𝜇𝐵𝐵)3

𝜎𝜎𝐵𝐵
3 , and Pearson’s kurtosis 𝛾𝛾2𝐵𝐵 ≡

𝐸𝐸(𝛽𝛽−𝜇𝜇𝐵𝐵)4

𝜎𝜎𝐵𝐵
4 .  We allow for the possibility of correlation 

between 𝑠𝑠 (the baseline health outcome) and 𝛽𝛽 (the incremental benefit of the technology).  If the 

two are positively correlated, the new technology is particularly effective for the sickest patients, 

and vice-versa.  Define 𝜎𝜎𝑆𝑆+𝐵𝐵2 , 𝛾𝛾1(𝑆𝑆+𝐵𝐵), and 𝛾𝛾2(𝑆𝑆+𝐵𝐵), as variance, Pearson’s skewness coefficient, 

and Pearson’s kurtosis of 𝐻𝐻𝑆𝑆 + 𝛽𝛽, respectively.  

The incremental ex ante expected utility of the technology 𝑇𝑇, from the perspective of a 

consumer whose health state is not yet realized is given by:   
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 𝐸𝐸(Δ𝑈𝑈(𝑇𝑇)) ≡  𝑝𝑝 �
∫ ∫ 𝑢𝑢�𝑀𝑀, (𝐻𝐻𝑊𝑊 − 𝑠𝑠 + 𝛽𝛽)�𝑔𝑔𝛽𝛽(𝛽𝛽)𝑔𝑔𝑆𝑆(s)𝑑𝑑𝑑𝑑β∈𝐵𝐵 𝑑𝑑ss∈𝑆𝑆

−∫ 𝑢𝑢(𝑀𝑀,𝐻𝐻𝑊𝑊 − 𝑠𝑠)𝑔𝑔𝑆𝑆(𝑠𝑠)𝑑𝑑𝑑𝑑s∈𝑆𝑆

� (2) 

Since the nonlinearity in this problem will pose empirical difficulties, we develop Taylor 

Series expansions of the two terms in Δ𝑈𝑈(𝑇𝑇).  Taylor Series approximations have long been used 

to approximate the costs of risk-bearing.  In the finance literature, Markowitz (1952) first 

proposed the use of second-order Taylor Series expansions to create mean-variance 

approximations to expected utility [11].  Arrow (1963) and Pratt (1964) independently derived 

their well-known risk premium equation partially on this basis [12, 13].  In subsequent decades, a 

substantial literature in finance has grown around the topic of Taylor-Series approximations to 

the cost of risk-bearing [22].   

Two points from the literature are especially noteworthy for our application.  First, a 

Taylor-Series approximation may not converge to the object of its approximation for every value 

in its domain.  This is a well-known mathematical result that strikes a cautionary note for the use 

of Taylor approximations to expected utility [23].  We address this issue below by presenting 

some sufficient conditions for asymptotic Taylor Series convergence.  Moreover, Taylor Series 

convergence is neither a necessary nor sufficient condition for a Taylor approximation with only 

a handful of terms to be precise [24].  We address this issue in our empirical calibration 

exercises, by illustrating how quickly our Taylor Series expansion converges in the context of 

measuring health improvements.  We also provide a guide for practitioners to measure the speed 

of convergence in their particular applications. 

Assume that technology is paid for through health insurance—ex ante—before the 

realization of the health state or, equivalently, in both the healthy and the sick states.  

Normalizing this Taylor Series expansion by the expected marginal utility of consumption, 𝐸𝐸𝑈𝑈𝑀𝑀, 
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yields the consumer’s ex ante willingness to pay for the new technology, which we define as 

𝑉𝑉(𝑇𝑇) = Δ𝑈𝑈(𝑇𝑇)
𝐸𝐸𝑈𝑈𝑀𝑀

.   

Our analysis presumes that increases in average health benefits can be summarized in a 

single scalar 𝜇𝜇𝐵𝐵, whereas in real situations, multiple dimensions of value could affect health 

benefits.  In our situation, the proper approach would first summarize the different dimensions of 

quality into a scalar using some process such as multi-criteria decision analysis [15, 25] or 

discrete choice experiments [26], with weights supplied (for technology evaluation purposes) by 

an appropriate representative panel of potential patients, or even by individual patients when 

considering specific treatment options available to them (e.g., different cancer therapy regimens 

or surgical alternatives).  Then the distribution of the summary (scalar) scores would enter our 

model as 𝜇𝜇𝐵𝐵.  

A. Absolute Value of a Technology 
Begin with the ex ante Taylor series expansion of the expected utility of the patient who 

receives the benefits of the new technology, expanding 𝑢𝑢(𝑀𝑀,𝐻𝐻) around 𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆 + 𝜇𝜇𝐵𝐵) and 

scaling by 𝐸𝐸𝑈𝑈𝑀𝑀.  Thus: 

𝐸𝐸(𝑉𝑉(𝐻𝐻𝑆𝑆 + 𝛽𝛽)) ≈  𝑝𝑝 �𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)
𝐸𝐸𝑈𝑈𝑀𝑀

+ 1
2
𝑢𝑢𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)

𝐸𝐸𝑈𝑈𝑀𝑀
𝜎𝜎𝑆𝑆+𝐵𝐵2 + 1

6
𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)

𝐸𝐸𝑈𝑈𝑀𝑀
𝛾𝛾1(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵3 +

1
24

𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)
𝐸𝐸𝐸𝐸𝑀𝑀

𝛾𝛾2(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵4 … � (3) 

The following Proposition, proven in the Appendix, provides sufficient conditions under 

which this Taylor Series converges. 

Proposition 1:  Suppose the health index, H, has support on the interval [𝟎𝟎,𝟏𝟏], and 

the utility function takes the form 𝑼𝑼(𝒄𝒄,𝑯𝑯) = 𝒖𝒖(𝒄𝒄)𝒗𝒗(𝑯𝑯), where 𝒗𝒗 belongs to the class of 

HARA (hyperbolic absolute risk-aversion) utility functions. If 𝑯𝑯 is a random variable with 
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support [𝟎𝟎,𝟏𝟏] and mean 𝝁𝝁𝟎𝟎, then the Taylor expansion of 𝒗𝒗(𝑯𝑯) around 𝝁𝝁𝟎𝟎 converges for all 

values in the support of 𝑯𝑯. 

When health is represented as a quality-adjusted life-year, its domain is [0,1], as required 

by this Proposition.  In addition, the HARA family of utility functions contains numerous 

commonly used forms:  constant relative risk-aversion (power utility functions), constant 

absolute risk-aversion (exponential utility), increasing and decreasing absolute risk-aversion 

(IARA and DARA), increasing and decreasing relative risk aversion (IRRA and DRRA) and 

quadratic utility.  HARA utility functions all exhibit the useful property that risk tolerance (the 

inverse of absolute risk-aversion) is linear in wealth [27].   

The Taylor Series in Equation (3) allows us to express the utility function in terms of risk 

preference parameters known in the economics literature.  Define the coefficient of absolute risk-

aversion in consumption,  𝑟𝑟 ≡ − 𝑢𝑢𝑀𝑀𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝑢𝑢𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆) .  We always evaluate this, and the other risk 

preference parameters, at the baseline untreated health level, under the assumption that the health 

technology produces a marginal improvement in health that does not materially change the level 

of absolute risk-aversion.  Define the coefficient of absolute prudence in consumption, 𝜋𝜋 ≡

−𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆) 
𝑢𝑢𝑀𝑀𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆) , and absolute temperance as 𝜏𝜏 ≡ −𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆) 

𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀,𝐻𝐻�𝑆𝑆)   [14, 28].   Analogously, define 

the coefficient of relative risk-aversion in consumption as 𝑟𝑟∗ ≡ 𝑟𝑟𝑟𝑟, relative prudence as 𝜋𝜋∗ ≡

𝜋𝜋𝜋𝜋, and relative temperance as 𝜏𝜏∗ ≡ 𝜏𝜏𝜏𝜏.  Box A discusses these terms in more detail.   

[BOX A GOES HERE] 

These terms characterize risk preferences with respect to consumption. In our application, 

we are more directly concerned with risk preferences over health.  Define the coefficient of 

absolute risk-aversion in health as 𝑟𝑟𝐻𝐻 ≡ −𝑢𝑢𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝑢𝑢𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆) , of absolute prudence in health as 𝜋𝜋𝐻𝐻 ≡
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−𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆) 
𝑢𝑢𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆) , and of absolute temperance in health as 𝜏𝜏 ≡ −𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆) 

𝑢𝑢𝐻𝐻𝐻𝐻𝐻𝐻(𝑀𝑀,𝐻𝐻�𝑆𝑆) .  Similarly, define 

relative risk aversion in health as 𝑟𝑟𝐻𝐻∗ ≡ 𝑟𝑟𝐻𝐻𝐻𝐻�𝑆𝑆, relative prudence in health as 𝜋𝜋𝐻𝐻∗ ≡ 𝜋𝜋𝐻𝐻𝐻𝐻�𝑆𝑆, and 

relative temperance in health as 𝜏𝜏𝐻𝐻∗ ≡ 𝜏𝜏𝐻𝐻𝐻𝐻�𝑆𝑆.   

The economics literature provides estimates for relative risk preferences over 

consumption, but to date has not estimated relative risk preferences over health.  Therefore, 

while our theoretical results are expressed in terms of the health risk preference parameters, our 

empirical applications impose the assumption that relative risk preferences over health are equal 

to relative risk preferences over consumption.  This assumption is not required for our theoretical 

results, but it allows practitioners to incorporate risk preferences based on the current empirical 

literature, and it would be exactly correct in cases where 𝑈𝑈(𝑐𝑐,𝐻𝐻) = 𝑣𝑣(𝑐𝑐)𝑣𝑣(𝐻𝐻).  Formally, we 

assume that 𝑟𝑟∗ = 𝑟𝑟𝐻𝐻∗ , 𝜋𝜋∗ = 𝜋𝜋𝐻𝐻∗ , and 𝜏𝜏∗ = 𝜏𝜏𝐻𝐻∗ . 

Finally, observe that 𝜌𝜌 ≡ 𝑝𝑝𝑢𝑢𝑀𝑀
𝐸𝐸𝐸𝐸𝑀𝑀

 is the marginal rate of substitution between a unit of 

consumption in the ex ante state and an expected unit in the ex post sick state [29].  This is 

equivalent to the willingness to pay ex ante for a $1 increase in the actuarial value of insurance 

payable in the sick state.  With these parameters in hand, simple algebraic manipulation allows 

us to rewrite Equation (3) as:5 

𝐸𝐸(𝑉𝑉(𝐻𝐻𝑆𝑆 + 𝛽𝛽)) ≈ 𝜌𝜌 �𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)
𝑢𝑢𝑀𝑀

− 1
2
𝑟𝑟𝐻𝐻𝐾𝐾𝜎𝜎𝑆𝑆+𝐵𝐵2 + 1

6
𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝐾𝐾 𝛾𝛾1(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵3 −

1
24
𝜏𝜏𝐻𝐻𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝐾𝐾𝛾𝛾2(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵4 … � (4) 

The structure of this Taylor expansion has an intuitive interpretation:  The scalar 𝜌𝜌 

converts consumption in the sick state into ex ante dollars.  Thus, while 𝐸𝐸(𝑉𝑉(𝐻𝐻𝑆𝑆 + 𝛽𝛽)) is 

                                                 

5 Note that 𝑟𝑟, 𝜋𝜋, and 𝜏𝜏 each contain a negative sign.  Thus the signs of the even power terms in (4), variance 
and kurtosis, are negative, but in the skewness term, the products of two negative terms create the positive sign.  



13 

expressed in terms of ex ante dollars, the term in curly braces is expressed in terms of sick state 

(ex post) consumption units. 

The first term inside the curly braces, �𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)
𝑢𝑢𝑀𝑀

�, is the value of a statistical life-year 

spent at the average health level 𝐻𝐻�𝑆𝑆 + 𝜇𝜇𝐵𝐵.  This is the conventional estimate for the value of 

spending one year in the treated state, and it abstracts from uncertainty.  The second term, 

−1
2
𝑟𝑟𝐻𝐻𝐾𝐾𝜎𝜎𝑆𝑆+𝐵𝐵2 , adjusts for the presence of variance in the health gain.  Higher variance (𝜎𝜎𝑆𝑆+𝐵𝐵2 ) 

creates lower  certainty-equivalent values of the treated state.  Specifically, 1
2
𝑟𝑟𝐻𝐻𝐾𝐾𝜎𝜎𝑆𝑆+𝐵𝐵2  represents 

the risk premium associated with the use of the new technology, measured in units of 

consumption.  The risk premium of any consumption gamble 𝑎𝑎 is defined as 1
2
𝑟𝑟𝑟𝑟(𝑎𝑎), where 𝑟𝑟 is 

the coefficient of absolute risk-aversion, and 𝑉𝑉(𝑎𝑎) is the variance of 𝑎𝑎 [12, 13]. Thus, 1
2
𝑟𝑟𝐻𝐻𝜎𝜎𝑆𝑆+𝑇𝑇2  

measures the units of health the consumer would give up in exchange for eliminating the 

variance in the treated health distribution.  Multiplying by 𝐾𝐾 scales this risk premium in terms of 

consumption units.   

Higher-order terms similarly account for the cost (or benefit) to consumers of changes in 

skewness and kurtosis that new technologies create. The term 1
6
𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝐾𝐾𝛾𝛾1(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵3  measures the 

consumption-denominated risk premium associated with 𝛾𝛾1(𝑆𝑆+𝐵𝐵), skewness in the health 

outcome.  The term − 1
24
𝜏𝜏𝐻𝐻𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝐾𝐾𝛾𝛾2(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵4  measures the consumption-denominated risk 

premium associated with 𝛾𝛾2(𝑆𝑆+𝐵𝐵) kurtosis in the distribution of health outcomes. 

B. Incremental Value of a Technology 
Equation (4) approximates the level of utility associated with the new technology, but we 

wish to characterize its incremental utility.  Therefore, we perform a similar Taylor Series 

expansion of utility in the untreated sick state, 𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝐸𝐸𝑈𝑈𝑀𝑀

, around 𝐻𝐻�𝑆𝑆: 
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 𝐸𝐸(𝑉𝑉(𝐻𝐻𝑆𝑆)) ≈ 𝜌𝜌 �𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝑢𝑢𝑀𝑀

− 1
2
𝑟𝑟𝐻𝐻𝐾𝐾𝜎𝜎𝑆𝑆2 + 1

6
𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻 𝐾𝐾𝛾𝛾1(𝑆𝑆)𝜎𝜎𝑆𝑆3 −

1
24
𝜏𝜏𝐻𝐻𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝐾𝐾𝛾𝛾2(𝑆𝑆)𝜎𝜎𝑆𝑆4 … � (5) 

The difference between 𝐸𝐸�𝑉𝑉(𝐻𝐻𝑆𝑆 + 𝛽𝛽)� and 𝐸𝐸(𝑉𝑉(𝐻𝐻𝑆𝑆)) approximates a new technology’s 

marginal value in units of ex ante consumption.6  Maintaining our assumption of a marginal 

improvement in health, we treat absolute risk-preference parameters as roughly constant across 

treated and untreated states.  This results in an approximation for 𝐸𝐸(Δ𝑉𝑉(𝑇𝑇)), which we define as 

a technology’s incremental value in terms of ex ante consumption:  

𝐸𝐸(Δ𝑉𝑉(𝑇𝑇)) ≈ 𝜌𝜌𝜌𝜌 ��𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)−𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝑢𝑢𝑀𝑀

� 1
𝐾𝐾
− 1

2
𝑟𝑟𝐻𝐻(𝜎𝜎𝑆𝑆+𝐵𝐵2 − 𝜎𝜎𝑆𝑆2) + 1

6
𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻�𝛾𝛾1(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝐵𝐵3 −

𝛾𝛾1(𝑆𝑆)𝜎𝜎𝑆𝑆3� −
1
24
𝜏𝜏𝐻𝐻𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻�𝛾𝛾2(𝑆𝑆+𝐵𝐵)𝜎𝜎𝑆𝑆+𝑇𝑇4 − 𝛾𝛾2(𝑆𝑆)𝜎𝜎𝑆𝑆4�…� (6) 

To a first-order approximation, �𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆+𝜇𝜇𝐵𝐵)−𝑢𝑢(𝑀𝑀,𝐻𝐻�𝑆𝑆)
𝑢𝑢𝑀𝑀

� is the ex post willingness to pay for 

𝜇𝜇𝐵𝐵 units of health; the approximation becomes exact for marginal improvements in health.  Since 

this willingness to pay can be written equivalently as 𝐾𝐾𝜇𝜇𝐵𝐵, we can eliminate the expressions for 

utility, using Δ to denote the changes in variance, skewness, and kurtosis between the treated and 

untreated states, resulting in: 

 𝐸𝐸(𝛥𝛥𝛥𝛥(𝑇𝑇)) ≈ 𝜌𝜌𝜌𝜌 �𝜇𝜇𝐵𝐵 −
1
2
𝑟𝑟𝐻𝐻𝛥𝛥𝜎𝜎2 + 1

6
𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝛥𝛥(𝛾𝛾1𝜎𝜎3) − 1

24
𝜏𝜏𝐻𝐻𝜋𝜋𝐻𝐻𝑟𝑟𝐻𝐻𝛥𝛥(𝛾𝛾2𝜎𝜎4) … � (7)  

Note that in this formulation, 𝛥𝛥(𝛾𝛾1𝜎𝜎3) indicates the change in the third central moment, 

and similarly for the fourth-order term.  As discussed above, the last three terms approximate the 

risk premium associated with this new technology, using not only changes in variance 

(associated with risk aversion), but also changes in skewness (associated with prudence), and 

changes in kurtosis (associated with temperance) induced by the new technology.   

                                                 

6 Later, we study the convergence properties of this Taylor Series equations.    
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The expression in curly braces represents the certainty-equivalent gain in QALYs 

experienced by users of the technology.  If the actual QALY gain is stochastic, this term yields 

the non-stochastic gain in QALYs that would be equivalent to it.  For example, a stochastic gain 

of 2.0 average QALYs might be worth 1.5 non-stochastic or “certainty-equivalent” QALYs, if it 

involves considerable variance. 

This certainty-equivalent QALY gain consists of components that depend on mean and 

higher-order moments of the QALY gain.  The first term—𝜇𝜇𝐵𝐵—gives the standard mean-based 

measure of QALYs gained.  On its own, the second term encapsulates the gain (reduction) in 

equivalent units of health that the risk-averse consumer enjoys (suffers) if the technology 

decreases (increases) the variance of health outcomes.  Earlier research has defined this as the 

“insurance value” of medical technology [6].  New technologies that lower the overall variance 

of sick state health outcome (𝐻𝐻𝑠𝑠 + 𝛽𝛽) generate the most insurance value to consumers.  For 

instance, technologies that effectively treat the most severe illness state – i.e., those possessing 

negative covariance 𝜎𝜎𝑆𝑆𝑆𝑆 – are most valuable, because they reduce the variance of 𝐻𝐻𝑠𝑠 + 𝛽𝛽 the 

most.  In addition, technologies with the least variable treatment effects— i.e., lower values of 

𝜎𝜎𝑆𝑆+𝐵𝐵2 — are the most-valuable to a risk-averse consumer.  Thus, treatments that target severe 

states and that produce consistent health improvements produce the most insurance value to risk-

averse consumers.   

The third term implies that positively skewed treatment outcomes are potentially valuable 

to risk-averse consumers.  This result sheds light on prior evidence suggesting that patients might 

prefer treatments with more positively skewed treatment effects.  Several studies have presented 

patients with a stated-preference choice between two therapies that have the same average 

treatment benefit, where one treatment has a non-random outcome and the other has the same 
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expected health gain but more variance and positive skew [30, 31].  In these settings, patients 

have expressed a preference for the second type of therapy.  This is consistent with patients 

responding to increases in positive skew rather than (and perhaps even in spite of) increases in 

variance.  Prior studies have inferred from this phenomenon the “value of hope,” a preference for 

modest chances at a positively skewed outcome. Holding variance constant, as skewness 

changes, Δ𝛾𝛾1(𝑆𝑆+𝐵𝐵) increases, and so does this “value of hope” for consumers.  Note that in our 

formulation, the Pearson skewness parameter is multiplied by 𝜎𝜎3, reflecting the interaction of 

skewness and variance.  

The fourth order term involving kurtosis may be more problematic to incorporate into 

real-world estimates of value. Obtaining sufficiently precise estimates of kurtosis may expand 

sample sizes in clinical trials to unreasonable levels, particularly because we require differences 

in kurtosis, the variance of which is the sum of the individual variances of the separate estimates 

of kurtosis.  If available data exist, analysts can readily incorporate these effects into their 

analysis.  Pearson’s kurtosis measure is multiplied by 𝜎𝜎4 in our expressions involving the fourth 

central moment of the outcome distributions.  

Empirical applications commonly employ the assumption that relative risk-aversion, 

relative prudence, and relative temperance are approximately independent of the level of 

consumption [32].  Therefore, it is convenient to reformulate Equation (7) in terms of relative 

rather than absolute risk preferences.  This transformation has the added benefit of removing the 

dimensionality from the risk preference terms, which will no longer be sensitive to the 

magnitudes of health.  Along the same lines, it is also useful to normalize the statistical central 

moments so that they do not vary with the scale of the dispersion in treatment outcomes.  This 

allows us to perform the following transformation on Equation (7), recalling that 𝐻𝐻�𝑆𝑆 ≡ 𝐻𝐻𝑊𝑊 − 𝜇𝜇𝑆𝑆: 
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�𝛥𝛥𝛥𝛥(𝑇𝑇)� ≈ 𝜌𝜌𝜌𝜌𝜇𝜇𝐵𝐵 �1 −
1
2
𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
𝐻𝐻�𝑆𝑆
� �Δ𝜎𝜎2

𝜇𝜇𝐵𝐵
2 � + 1

6
𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
2

𝐻𝐻�𝑆𝑆
2� �

Δ(𝛾𝛾1𝜎𝜎
3)

𝜇𝜇𝐵𝐵
3 � −

1
24
𝜏𝜏𝐻𝐻∗ 𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
3

𝐻𝐻�𝑆𝑆
3� �

Δ(𝛾𝛾2𝜎𝜎
4)

𝜇𝜇𝐵𝐵
4 � + ⋯� (8)  

This represents the ex ante value in consumption units of the QALY gain from the 

technology. The term in square braces in Equation (8) represents the “certainty-equivalence 

ratio,” which adjusts the average QALY gain to account for differences in risk profiles of the 

new and comparison technologies. We define this ratio as 𝜖𝜖Δ, which indexes the proportional 

amount of compensation that risk-averse individuals would demand in exchange for bearing the 

incremental risk associated with the new medical technology.  For example, if 𝜖𝜖Δ = 0.8, 

individuals would demand a payment (or reduction in price) equal to 20% of the value of the 

mean improvement in health.  In parallel, if 𝜖𝜖Δ = 1.2,  a risk averse person would be willing to 

pay 20% more than for an otherwise-similar technology that created no risk reduction. 

The ratio 𝜖𝜖Δ is defined by:  

𝜖𝜖Δ ≈ �1 − 1
2
𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
𝐻𝐻�𝑆𝑆
� �Δ𝜎𝜎

2

𝜇𝜇𝐵𝐵
2 � + 1

6
𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
2

𝐻𝐻�𝑆𝑆
2� �

Δ(𝛾𝛾1𝜎𝜎
3)

𝜇𝜇𝐵𝐵
3 � − 1

24
𝜏𝜏𝐻𝐻∗ 𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

𝜇𝜇𝐵𝐵
3

𝐻𝐻�𝑆𝑆
3� �

Δ(𝛾𝛾2𝜎𝜎
4)

𝜇𝜇𝐵𝐵
4 � + ⋯�   (9)  

The product 𝜖𝜖Δ𝜇𝜇𝐵𝐵 represents the certain gain in QALYs that is equal in value to the risky 

gain offered by the technology.  By definition, 𝜖𝜖Δ ≈ 1 if treatment outcomes are nearly certain 

in both the treated and untreated states, if they do not differ meaningfully in their stochastic 

components, or if consumers are risk-neutral.   The extent to which  𝜖𝜖Δ differs from one (in either 

direction) indicates the percent error when the analysis ignores the stochastic components of the 

proper expression for expected utility.   

Equation (9) captures three terms expressing the effect of uncertainty on economic value 

(relative to the customary mean-based measure of value).  The first term (involving relative risk 

aversion in health, 𝑟𝑟𝐻𝐻∗ , and the change in variance of outcomes) is comparable to the standard 
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Pratt-Arrow measure of risk aversion.  The second term, involving 𝑟𝑟𝐻𝐻∗ , relative prudence,𝜋𝜋𝐻𝐻∗ ,  

and differences in the third central moment values expresses the “value of hope” that right-

skewed distributions of outcomes can produce.  The third term, involving 𝑟𝑟𝐻𝐻∗ , 𝜋𝜋𝐻𝐻∗ , and 𝜏𝜏𝐻𝐻∗  

(relative temperance) and the change in kurtosis, moderates the effects of changes in variance 

and skewness.  Generally, if variance and kurtosis change in the same direction, this amplifies 

the effects of variance changes, and conversely.  Similarly, when changes in skewness and 

kurtosis move in opposite directions, that amplifies the effect of skewness changes, and 

conversely.   

We can reformulate Equation (9) to demonstrate two key issues associated with our 

model: 

 𝜖𝜖Δ ≈ �1 − {1
2
𝑟𝑟𝐻𝐻∗ �

1
𝐻𝐻�𝑆𝑆
� Δσ2 + 1

6
𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

1
𝐻𝐻�𝑆𝑆
2� γ1Δσ3 −

1
24
𝜏𝜏𝐻𝐻∗ 𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗ �

1
𝐻𝐻�𝑆𝑆
3� 𝛾𝛾2Δ𝜎𝜎

4 + ⋯ }( 1
𝜇𝜇𝐵𝐵

)�  

 ≡ 1 + {𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}
𝜇𝜇𝐵𝐵

  (10)   

First, note that the relative importance of the risk components diminishes as 𝜇𝜇𝐵𝐵 increases.  

Intuitively, this makes good sense.  As the mean difference increases, the stochastic (higher 

order) terms in the Taylor Series have less proportional consequence.  Conversely, this also 

implies that when mean differences in treatment outcomes are relatively small, the stochastic 

information becomes more important.  We would expect that over time, incremental gains in 

treatment efficacy for a given disease condition will become increasingly more difficult to attain, 

hence the importance of the stochastic components may well rise over time [33].  Subsequent 

simulations will demonstrate this phenomenon.  

The second observation arises from our assumption of constant relative risk aversion 

parameters (𝑟𝑟𝐻𝐻∗ ,𝜋𝜋𝐻𝐻∗ and 𝜏𝜏𝐻𝐻∗ ).  This formulation adds increasingly higher powers of 𝐻𝐻𝑆𝑆 in the 

denominators of the risk components (in order to create relative risk aversion parameters defined 
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in terms of health in the untreated sick state).  This makes the risk-related terms relatively more 

important for more severe diseases, with values of 𝐻𝐻�𝑆𝑆 closer to zero.  We illustrate the 

quantitative implications in our simulations.  As we demonstrate in additional simulations, this 

also means that convergence of the Taylor Series hinges to some extent on the assumed values of 

𝐻𝐻𝑆𝑆.  In general, 0 < 𝐻𝐻𝑆𝑆 < 1, with 0 representing death and 1 representing perfect health.  

However, even a terminal illness diagnosis with just a few months of remaining life could give 

𝐻𝐻𝑆𝑆 values of 0.2 to 0.5, for example, so extremely small values of 𝐻𝐻𝑆𝑆 are not particularly 

relevant to our analysis.  

IV. IMPLICATIONS FOR COST-EFFECTIVENESS ANALYSIS 

We now turn to the performance of cost-effectiveness analysis for medical technologies 

of uncertain benefit.  Without treatment, patients experience the random health outcome, 

𝐻𝐻𝑆𝑆 ≡ 𝐻𝐻𝑊𝑊 − 𝑠𝑠.  With the new technology, they experience the random outcome, 𝐻𝐻𝑆𝑆 + 𝛽𝛽.  Recall 

that 𝜇𝜇𝐵𝐵 is the mean health benefit that results from the use of this technology.  This parameter 

would be estimated by computing the difference in mean outcomes across the treatment and 

control groups in a randomized trial of the medical technology.  Conventionally, cost-

effectiveness analysis calculates this mean improvement due to a healthcare technology and 

compares the incremental cost-effectiveness ratio (ICER) with the operational willingness to pay 

for QALYs (𝐾𝐾).   An alternative approach selects a specific value of 𝐾𝐾 and monetizes the gain— 

the “net monetary benefit” (NMB) form of a cost-effectiveness calculation.  In our terminology, 

the standard framework produces the net monetary benefit from the ex ante perspective as simply 

𝐾𝐾𝐾𝐾𝜇𝜇𝐵𝐵.  Our analysis generalizes this conventional approach and incorporates stochastic health 

improvement by including higher-order terms in the Taylor Series expansion of expected utility. 
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Consider the technology adoption decision.  Conceptually, the question is whether it is 

efficient for a health insurer to cover the technology.  This question is best viewed from the ex 

ante perspective of an insured consumer whose health status is not yet realized.  Define Δ𝐶𝐶(𝑇𝑇) as 

the incremental cost of technology 𝑇𝑇 when administered to a sick patient.  The actuarially fair ex 

ante increase in insurance premium costs of covering the technology is 𝑝𝑝Δ𝐶𝐶(𝑇𝑇).  Therefore, the 

technology is adopted if Δ𝑉𝑉(𝑇𝑇) ≥ 𝑝𝑝Δ𝐶𝐶(𝑇𝑇), or equivalently, if 𝐾𝐾𝐾𝐾𝜇𝜇𝐵𝐵𝜖𝜖𝑄𝑄(𝑇𝑇) ≥ 𝑝𝑝Δ𝐶𝐶(𝑇𝑇).  The 

latter condition is equivalent to: 

 𝑝𝑝Δ𝐶𝐶(𝑧𝑧)
𝜌𝜌𝜇𝜇𝐵𝐵𝜖𝜖Δ(𝑇𝑇) ≤ 𝐾𝐾 (11) 

The left-hand side of this inequality is the ratio of ex ante incremental costs to ex ante 

certainty-equivalent QALYs gained.  This is a more general version of the typical incremental 

cost-effectiveness ratio (ICER), adjusted here to account for stochastic changes in QALYs from 

the ex ante perspective of an individual whose health status has not yet been realized.   Our 

framework nests the traditional ICER decision rule as the special case in which 𝜖𝜖Δ(𝑇𝑇) = 1.  Put 

differently, by ignoring the stochastic elements of the analysis, traditional cost-effectiveness 

analysis presumes that 𝜖𝜖Δ(𝑇𝑇) ≡ 1.  

It is important to note that incorporating the stochastic nature of treatment effects does 

not require development of a new maximum WTP cutoff value 𝐾𝐾. Derivation of the optimal level 

of 𝐾𝐾 used a framework of expected utility maximization [10], and our Taylor Series expansion 

provides a more accurate representation of changes in expected utility than simply using the 

average improvement in quality of life outcomes (𝜇𝜇𝐵𝐵).  Estimates of the optimal value of 𝐾𝐾 thus 

apply directly to our approach to estimating the value of health technologies with stochastic 

outcomes [21].  
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Several extensions to our model are relatively straightforward.  In the first place, our 

model allows for incorporating adverse events from medical treatments (AEMTs) in two ways.  

First, health and cost consequences of AEMTs could be summed directly into net health gains 

and net cost changes.  Doing so would imply that the health consequences of AEMTs should be 

valued identically to other health changes.  An argument exists that AEMTs should be valued at 

willingness to accept (WTA) rather than willingness to pay (WTP) valuations, where WTA > 

WTP, perhaps by considerable amounts [34] .  Our model would readily incorporate such 

concepts by separately accumulating AEMT risks, and valuing them at 𝜈𝜈𝜈𝜈, where 𝜈𝜈 > 1.   

In addition, the analysis above presumes technology adoption decisions by a social 

planner.  In contrast, a payer with a fixed healthcare budget that falls below the efficient level 

will solve a constrained maximization problem with a binding budget constraint.  For such a 

payer, the threshold, 𝐾𝐾, will be more stringent but the rest of the problem is formulated 

identically.  

V. INCORPORATING LONGEVITY EFFECTS 

The analysis so far has focused on changes in quality of life.  We now incorporate 

changes in probabilities of survival as well.   

A. Life-Cycle Framework 
Suppose that our health technology,𝑇𝑇, produces stochastic survival benefits, along with 

its stochastic quality of life benefits.  The probability of a treated patient surviving from period 

zero to period 𝑖𝑖 is given by the random variable, 𝜆𝜆𝑇𝑇𝑇𝑇, which has expected value 𝐸𝐸(𝜆𝜆𝑇𝑇𝑇𝑇), 

essentially equivalent to actuarial life table values. The treated patient’s period 𝑖𝑖 utility is given 

by 𝑢𝑢(𝑀𝑀𝑖𝑖,𝐻𝐻𝑆𝑆𝑆𝑆 + 𝛽𝛽𝑖𝑖).  Note that mortality risk does not influence the period utility function.  To 

abstract from the dynamics of intertemporal consumption smoothing, there is no borrowing or 
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lending in our model, so mortality has no effect on the level of consumption.7  Define 𝛿𝛿(𝜆𝜆𝑇𝑇𝑇𝑇) as 

the density of 𝜆𝜆𝑇𝑇𝑇𝑇.  To conserve notation, define 𝑌𝑌𝑇𝑇𝑇𝑇 ≡ (𝑀𝑀𝑖𝑖,𝐻𝐻𝑆𝑆𝑆𝑆 + 𝛽𝛽𝑖𝑖). The treated individual 

with the one-period utility discount factor 𝜙𝜙 derives expected lifetime utility: 

 𝑢𝑢(𝑌𝑌𝑇𝑇0) + ∑ � 1
1+𝜙𝜙

�
𝑖𝑖
∫ 𝜆𝜆𝑇𝑇𝑇𝑇𝑢𝑢(𝑌𝑌𝑇𝑇𝑇𝑇)𝛿𝛿(𝜆𝜆𝑇𝑇𝑇𝑇)𝑑𝑑𝜆𝜆𝑇𝑇𝑇𝑇𝜆𝜆𝑇𝑇𝑇𝑇∈Λi

∞
𝑖𝑖=1 = 𝑢𝑢(𝑌𝑌T0) + ∑ � 1

1+𝜙𝜙
�
𝑖𝑖
𝐸𝐸(𝜆𝜆𝑇𝑇𝑇𝑇)𝑢𝑢(𝑌𝑌𝑇𝑇𝑇𝑇)∞

𝑖𝑖=1  

 (12) 

The survival probability itself is allowed to be stochastic in this framework.  In the conventional 

case where survival probabilities are modeled deterministically, 𝛿𝛿(𝜆𝜆𝑇𝑇𝑇𝑇) ≡ 1.  

Observe that we maintain the typical life-cycle framework in which period utilities are 

additively separable.  Thus, since expected utility is linear in mortality risk, individuals exhibit 

risk-neutrality over mortality risk.8  This contrasts with consumer risk-aversion over quality of 

life.  It also eliminates one strong implication of the common quality-adjusted life-years 

formulation, namely that a one percent decrease in mortality risk is just as valuable as a one 

percent increase in quality of life.  This conventional implication would persist only if risk-

aversion over quality of life is identical to risk-aversion over mortality. 

B. Absolute Value of Technology 
As a result of risk-neutrality over mortality, only expected mortality risk enters the 

consumer’s lifetime utility-maximization problem.  Define 𝜆𝜆𝑆𝑆𝑆𝑆 as the stochastic survival rate in 

period 𝑖𝑖 under the standard of care, and define the expected survival benefit of the treatment as 

                                                 

7 The conventional life-cycle model for the value of a statistical life also implies independence between 
mortality risk and life-cycle consumption decisions, although in this case the result arises due to perfect 
annuitization [1, 2].  The presence of incomplete financial markets can produce a relationship between mortality risk 
and consumption [35]. 

8 Some authors have explored various alternative formulations that introduce risk-aversion over longevity 
[cf, 36, 37].  We remain agnostic about the correct formulation and proceed using the standard model in order to 
focus attention on other issues.  Regardless, even under the alternative formulations, there is no reason to believe 
that the degree of risk-aversion over quality of life is necessarily identical to that over quantity of life. As such, our 
conclusions regarding the challenges of the QALY formulation remain. 
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Δ𝐸𝐸(𝜆𝜆𝑖𝑖) = 𝐸𝐸(𝜆𝜆𝑇𝑇𝑇𝑇) − 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆).  The treatment now has a two-dimensional benefit in each period 𝑖𝑖, 

(Δ𝐸𝐸(𝜆𝜆𝑖𝑖), 𝜇𝜇𝐵𝐵𝐵𝐵), and its value can be written as the sum of two parts:  (1) the change in survival 

probability multiplied by the value of a period 𝑖𝑖 life-year spent in the baseline untreated state; 

plus (2) the expected probability of surviving to period 𝑖𝑖, multiplied by the certainty-equivalent 

value of morbidity reduction in period 𝑖𝑖.  This results in: 

 𝐸𝐸(𝛥𝛥𝑉𝑉𝑖𝑖(𝛥𝛥𝛥𝛥(𝜆𝜆𝑖𝑖),𝜇𝜇𝐵𝐵𝐵𝐵 ,𝐻𝐻𝑆𝑆𝑆𝑆)) ≡ Δ𝐸𝐸(𝜆𝜆𝑖𝑖)𝑉𝑉(𝐻𝐻𝑆𝑆𝑆𝑆) + 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆Δ𝑉𝑉(𝑇𝑇))  (13) 

Relying on the earlier development of the term 𝐸𝐸(Δ𝑉𝑉(𝑇𝑇)), we can rewrite the second 

term in this expression as 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆)𝜌𝜌𝜌𝜌𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵.  Since 𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵 is the certainty-equivalent gain in 

QALYs associated with the new technology, the product 𝜌𝜌𝜌𝜌𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵 is the value (in ex ante 

consumption units) of that certainty-equivalent gain.  Finally, 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆)𝜌𝜌𝜌𝜌𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵 is the expected 

value of the certainty-equivalent gain in QALYs, discounted by the risk of dying before the 

QALY gain is experienced. 

Employing this logic, we can rewrite equation (13) so that it measures the expected value 

of certainty-equivalent QALYs gained.   

 𝐸𝐸(𝑉𝑉(𝐻𝐻𝑠𝑠𝑠𝑠)) ≈ 𝜌𝜌𝜌𝜌 ��𝑢𝑢(𝑀𝑀𝑖𝑖,𝐻𝐻�𝑆𝑆𝑆𝑆)
𝑢𝑢𝑀𝑀𝐾𝐾𝐻𝐻�𝑠𝑠𝑠𝑠

− 1
2
𝑟𝑟𝐻𝐻∗

𝜎𝜎𝑆𝑆𝑆𝑆
2

𝐻𝐻�𝑆𝑆𝑆𝑆
2 + 1

6
𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗

𝛾𝛾1𝑠𝑠𝑠𝑠𝜎𝜎𝑆𝑆𝑆𝑆
3

𝐻𝐻�𝑆𝑆𝑆𝑆
3 − 1

24
𝜏𝜏𝐻𝐻∗ 𝜋𝜋𝐻𝐻∗ 𝑟𝑟𝐻𝐻∗

𝛾𝛾2𝑆𝑆𝑆𝑆𝜎𝜎𝑆𝑆𝑆𝑆
4

𝐻𝐻�𝑆𝑆𝑆𝑆
4 …�𝐻𝐻�𝑠𝑠𝑠𝑠� (14) 

Note that, comparing this expression to 𝑣𝑣(𝐻𝐻𝑠𝑠𝑠𝑠 + 𝜏𝜏), the terms 𝜇𝜇𝐵𝐵
𝐻𝐻�𝑆𝑆

 drop out, because we are 

normalizing absolute risk preferences and the statistical moments by the same parameter, 𝐻𝐻�𝑆𝑆𝑆𝑆. 

Notice also that the term in square brackets equals 𝑉𝑉(𝐻𝐻𝑆𝑆𝑆𝑆)
𝜌𝜌𝜌𝜌𝐻𝐻�𝑠𝑠𝑠𝑠

, the certainty-equivalence ratio in the 

level of health, as opposed to the gain in health.  We define it as 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆).   

To summarize this concept, every one-unit gain in average QALYs is worth 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) 

QALYs to the consumer.  When health is stochastic and consumers are risk-averse over health, 

they demand compensation for the variance in 𝐻𝐻𝑆𝑆𝑆𝑆.  As a result, 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) < 1. On the other hand, 
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positive skewness in 𝐻𝐻𝑆𝑆𝑖𝑖 could result in 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) > 1, so that average QALY gains might 

understate the value of health improvements. 

With the definition of 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) in hand, we can rewrite the value of the technology for 

period i as: 

 𝐸𝐸(𝛥𝛥𝑉𝑉𝑖𝑖(𝜆𝜆𝑖𝑖, 𝜇𝜇𝑇𝑇𝑇𝑇,𝐻𝐻𝑆𝑆𝑆𝑆)) ≡ 𝜌𝜌𝜌𝜌{Δ𝐸𝐸(𝜆𝜆𝑖𝑖)𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆)𝐻𝐻�𝑆𝑆𝑆𝑆 + 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆)𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵𝐵𝐵} (15) 

We define the term in curly braces as the quality- and risk-adjusted life-years (QRALYs) 

gained in period 𝑖𝑖 as a result of the technology: 

 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑌𝑌i = Δ𝐸𝐸(𝜆𝜆𝑖𝑖)𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆)𝐻𝐻�𝑆𝑆𝑆𝑆 + 𝐸𝐸(𝜆𝜆𝑆𝑆𝑆𝑆)𝜖𝜖Δ(𝑇𝑇)𝜇𝜇𝐵𝐵𝐵𝐵 (16) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 gained equal the certainty-equivalent QALY gain, discounted by the probability 

of dying before the gain is accrued.  

Conveniently, our expressions nest traditional cost-effectiveness as a special case.  

Observe that in the traditional model, average QALYs gained equal certainty-equivalent QALYs 

gained, and 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) = 1.  The traditional model assumes that health is non-stochastic and that 

𝑢𝑢(𝑀𝑀,𝐻𝐻) ≡ 𝑣𝑣(𝑀𝑀)𝐻𝐻.  These points imply that 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) = 𝑢𝑢(𝑀𝑀𝑖𝑖,𝐻𝐻𝑆𝑆𝑆𝑆)
𝑢𝑢𝑀𝑀𝐾𝐾𝐻𝐻𝑆𝑆𝑆𝑆

 and 𝐾𝐾 = 𝑢𝑢𝐻𝐻
𝑢𝑢𝑀𝑀

= 𝑣𝑣(𝑀𝑀)
𝑣𝑣′(𝑀𝑀)𝐻𝐻

.  

Therefore, 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) = 𝑣𝑣(𝑀𝑀)𝐻𝐻𝑆𝑆𝑆𝑆
(𝑣𝑣′(𝑀𝑀)𝐻𝐻𝑆𝑆𝑆𝑆)�

𝑣𝑣(𝑀𝑀)
𝑣𝑣′(𝑀𝑀)𝐻𝐻𝑆𝑆𝑆𝑆

�𝐻𝐻𝑆𝑆𝑆𝑆
= 1 in the traditional cost-effectiveness model.  

Moreover, recall that 𝜖𝜖Δ(𝑇𝑇) = 1 in the traditional model, because average QALY gains are equal 

to certainty-equivalent QALY gains.  Since 𝜖𝜖(𝐻𝐻𝑆𝑆𝑆𝑆) = 𝜖𝜖Δ(𝑇𝑇) = 1, , it follows that gains in 

QRALYs are identical to gains in QALYs.  As a result, all our results prove identical to the 

standard cost-effectiveness framework in the special case where QRALYs and QALYs are equal. 

Returning to the generalized QRALYs framework, the net monetary benefit of the 

technology in period 𝑖𝑖 is: 

 𝑁𝑁𝑁𝑁𝐵𝐵𝑖𝑖 = 𝜌𝜌𝜌𝜌Δ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑌𝑌𝑖𝑖 (17) 
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Extending to the multi-period case, assume that units of consumption are discounted at 

the rate of interest−𝜙𝜙. Technology adoption is welfare-improving whenever its lifetime net 

present value to the consumer is nonnegative, or its total discounted net monetary benefit is 

positive:9 

 𝑃𝑃𝑃𝑃𝑃𝑃({𝑁𝑁𝑁𝑁𝐵𝐵𝑖𝑖}𝑖𝑖=1∞ ) ≡ ∑ � 1
1+𝜙𝜙

�
𝑖𝑖

[𝜌𝜌𝜌𝜌Δ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑌𝑌𝑖𝑖 − 𝐶𝐶𝑖𝑖]∞
𝑖𝑖=1 ≥ 0 (18) 

C. Incremental Cost-Effectiveness Ratios 
We now develop incremental cost-effectiveness ratios of the usual form.  If the 

technology costs 𝐶𝐶𝑖𝑖 in each period 𝑖𝑖, it is (weakly) welfare-improving in period 𝑖𝑖 if 

𝛥𝛥𝑉𝑉𝑖𝑖(𝛥𝛥𝛥𝛥(𝜆𝜆𝑖𝑖),𝜇𝜇𝐵𝐵𝑖𝑖 ,𝐻𝐻𝑆𝑆𝑆𝑆) ≥ 𝐶𝐶𝑖𝑖, or: 

 𝐶𝐶𝑖𝑖
𝜌𝜌Δ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑌𝑌𝑖𝑖

≤ 𝐾𝐾 (19) 

The generalized incremental cost-effectiveness ratio, on the left-hand side, calculates cost 

per QRALY gained, from the ex ante perspective. 

There is an analogous multi-period decision rule.  Making the typical assumption that the 

𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 value of QALYs is constant over time, the technology is welfare-improving over a 

lifetime horizon if 𝐾𝐾∑ � 1
1+𝜙𝜙

�
𝑖𝑖
𝜌𝜌Δ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑌𝑌𝑖𝑖∞

𝑖𝑖=1 ≥ ∑ � 1
1+𝜙𝜙

�
𝑖𝑖
𝐶𝐶𝑖𝑖∞

𝑖𝑖=1 .  Therefore, the technology is 

welfare-improving if and only if: 

 
∑ � 1

1+𝜙𝜙�
𝑖𝑖
𝐶𝐶𝑖𝑖∞

𝑖𝑖=1

∑ � 1
1+𝜙𝜙�

𝑖𝑖
𝜌𝜌Δ𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑌𝑌𝑖𝑖∞

𝑖𝑖=1

≤ 𝐾𝐾 (20) 

This is again analogous to the typical multi-period decision rule, but replacing QALYs gained 

with QRALYs gained. 

                                                 

9 To conserve notation, we assume the consumer discounts utility and consumption at the same rate, but 
this assumption is easily generalized. 
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VI. NUMERICAL SIMULATION METHODS AND PARAMETER 

ESTIMATES 

 In this section we present our methods for simulating how 𝜖𝜖Δ – our certainty-

equivalence ratio (CER) — changes as different parameters of the distributions of health 

outcomes change.  These simulations focus on changes in quality of life in a single period to 

compactly demonstrate our methodology.  Similar results would appear in the multi-period 

formulations of Section V, but with the added complications of multiple years and possibly time-

varying stochastic parameters.  

The term 𝜖𝜖Δ neatly summarizes the implications of our theory, because it provides the 

ratio between our value estimate and that of the conventional, non-stochastic approach. We use 

Equation (9) as the basis for our simulations, graphing  𝜖𝜖Δ against changes in skewness for 

various levels of changes in variance, ignoring higher-order terms for visual and expositional 

clarity.   In our initial simulations, we independently vary the changes in variance and skewness.   

Including effects of changes in kurtosis would complicate the analysis with little gain in intuition 

for the reader. In general, if kurtosis and variance move in the same direction, the omitted terms 

would amplify the effects of changing variance, and conversely.   Similarly, if skewness and 

kurtosis move in opposite directions, that amplifies the effect of skewness changes, and 

conversely.  Later, we also present simulations that calculate the speed at which the Taylor 

Series converges, using variance, skew, and kurtosis. 

Our simulations independently vary the changes in standardized variance and 

standardized skewness to demonstrate how these measures affect the CER.  Since we do not 

know of any reported measures of skewness in clinical trials, we cannot know for certain the 

potential range of standardized variances and skewness parameters (or more importantly, their 
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differences). The Figures that follow limit the range of changes in standardized variance and 

skewness in arbitrary ways for visual clarity.  They also provide guidance to practitioners 

regarding how the CER varies with the moments of treatment effects, and how quickly the 

relevant Taylor Series converges. 

To simulate the effects of higher-order terms in the Taylor Series expansion, we require 

estimates of the relative risk preference parameters, 𝑟𝑟∗, 𝜋𝜋∗, and 𝜏𝜏∗.  We also require estimates of 

the optimal willingness to pay (𝐾𝐾) and the marginal rate of substitution between health and sick 

states (𝜌𝜌) for the full measures of value.  We discuss each of these in turn. 

A. Estimates of Relative Risk-Aversion 
Relative risk aversion has long been studied in the economic literature.  Phelps (2019) 

summarizes central estimates for 𝑟𝑟∗ as follows (see Section III for details and references) [21]:  

  Labor Supply-based estimates  0.7 ≤ 𝑟𝑟∗ ≤ 1  

  Micro-simulation parameters  “about 0.8” 

  Studies of reported happiness  0.92 to 1.26 in developed nations 

  Experimental data   0.88 to 1.43 (centering on 0.93).  

Taken together, these suggest that 𝑟𝑟∗ is slightly below 1.  We use 𝑟𝑟∗ = 1 in our 

simulations.  

B. Estimates of Relative Prudence and Temperance 
For relative prudence and temperance, Noussair et al. (Table 11) provide a range of 

estimates with differently scaled lotteries and assumptions about the specific utility function 

[32]. Summarizing these parameters, we use 𝜋𝜋∗ = 1.75 and 𝜏𝜏∗ = 2.5 in our simulations.  
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Subsequent research estimates that 𝜋𝜋∗ is close to 2.0 [38], although our results are not heavily 

sensitive to these parameter choices.10 

We can also calibrate the estimate of relative prudence (𝜋𝜋∗) from observations about the 

nature of risk aversion from financial portfolio selection [39].  Arrow observed that the 

magnitude of risky assets rises with wealth, so utility must exhibit decreasing absolute risk 

aversion (DARA).  Separately, he observed that the proportion of portfolios devoted to risky 

assets declines as wealth rises.  Now define the income elasticity of 𝑟𝑟 as 𝛼𝛼.   DARA requires 𝛼𝛼 <

0.  IRRA requires 𝛼𝛼 >  −1.  Taken together, these require 0 > 𝛼𝛼 >  −1.   This in turn 

requires  1 > (𝜋𝜋∗ − 𝑟𝑟∗) > 0. The  estimates of Noussair et al. (their Table 11) meet all these 

requirements [32].11  

C. Optimal WTP Relative to Income and 𝝆𝝆 
For formulae involving total value of a technology (but not 𝜖𝜖Δ), we also need empirical 

values for 𝐾𝐾 (the optimal WTP for health gains) and 𝜌𝜌 (the ex ante to ex post conversion factor) 

to estimate the incremental value of a new technology (but not to estimate 𝜖𝜖Δ).  A variety of 

ways exist to estimate the optimal 𝐾𝐾, the most common of which relies on wage premiums for 

risky occupations.  A new method for estimating 𝐾𝐾
𝑀𝑀

 uses a specific utility function (the Weibull 

function, also known as expo-power utility), calibrated using estimates of relative risk aversion 

(𝑟𝑟∗).  That approach yields an estimate of 𝐾𝐾
𝑀𝑀

 of approximately 2 at average levels of income in 

the US and other developed countries, and also shows that the optimal levels of both 𝐾𝐾 and 𝐾𝐾
𝑀𝑀

 

increase with income [21].   In assessing total value equations, we would use 𝐾𝐾
𝑀𝑀

 = 2 as necessary.  

                                                 

10 For comparison, in the power utility function,  r* = 1, 𝜋𝜋∗ = 2, 𝜏𝜏∗ = 3, …. 
11  The proof begins by defining the elasticity of 𝑟𝑟 with respect to 𝑀𝑀 as 𝛼𝛼. Next, DARA requires α < 0.  

Then it is easy to show that (𝑟𝑟∗ − 𝛼𝛼) =  𝜋𝜋∗  Thus it must be true that 1 > (𝜋𝜋∗ − 𝑟𝑟∗) > 0 if utility is both DARA and 
IRRA.   
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Recall that 𝜌𝜌 ≡ 𝑝𝑝𝑢𝑢𝑀𝑀
𝐸𝐸𝐸𝐸𝑀𝑀

, the ex ante willingness to pay for a $1 increase in the actuarial value 

of insurance payable in the sick state.  This parameter has been estimated in the context of health 

insurance using discrete choice experiment survey methods [40]. In particular, a representative 

sample of American consumers was surveyed to determine how much additional insurance 

premium each would pay in exchange for $1 of additional actuarial value payable in the sick 

state from a health insurance policy.  The estimated willingness to pay was approximately $2.50, 

which we would use in any equation where 𝜌𝜌 appears.  

VII. SIMULATION RESULTS 

A. Independent Changes in Variance and Skewness 
We first graph 𝜖𝜖Δ in the stylized context where variance and skewness vary 

independently.   While standard statistical distributions do not exhibit this independence between 

variance and skew, this exercise facilitates intuition and insight. The basic structure of Figure 1 

follows Equation (9), truncated after the third term (skewness). The vertical axis is the CER ratio 

𝜖𝜖Δ, graphed against the change in standardized skewness for various changes in standardized 

variance.  Table 1 summarizes the general effect of changes in the key parameters – variance and 

skewness of 𝑇𝑇 and 𝑆𝑆.   

Table 1 here 

In Figure 1, the topmost lines represent larger reductions in variance of 𝑇𝑇 compared with 

𝑆𝑆, so that the value of Δ𝜎𝜎2

𝜇𝜇𝐵𝐵
2 is negative (more so for higher lines), and for the lower lines, the 

variance has increased.  Decreased (increased) variance is an economic good (bad).  The heavy 

horizontal line at 𝜖𝜖Δ = 1 is the “breakeven” for the stochastic terms.  Figure 1 contains four 

panels with increasing values of 𝜇𝜇𝐵𝐵 = {0.1,0.2,0.3,0.5} and a fixed value of 𝐻𝐻𝑠𝑠 = 0.5.   
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    [FIGURES 1a – 1d  here] 

 Several things are apparent from these graphs.   First, as the health gain 𝜇𝜇𝐵𝐵 increases, the 

relative importance of the stochastic terms decreases (as shown in Equation 10) and the group of 

lines flattens out. We should expect nothing else.  At the extreme, if two technologies had 

identical means (𝜇𝜇𝐵𝐵 = 0), their stochastic profiles alone would determine which was preferable 

(see Equation (7)).  In panel (a) of Figure 1, with 𝜇𝜇𝐵𝐵 = 0.1, the highest values of 𝜖𝜖Δ are near 1.6 

for a change in standardized Pearson skewness of 0.5.  For the largest average health gain in 

Panel (c),   (𝜇𝜇𝐵𝐵 = 0.3) 𝜖𝜖Δ values are below 1.3 for otherwise-identical parameterization of the 

model. When 𝜇𝜇𝐵𝐵 reaches 0.5 (Panel (d)), the upper line (the largest difference in variances) is 

essentially flat.  

Second, within any panel in Figure 1, the lines have different slopes because the 

horizontal axis graphs the Pearson skewness parameter (a commonly reported statistical 

parameter) rather than the third central moment that our model requires.  This introduces an 

interaction between the slopes of the lines and the magnitude of 𝜎𝜎𝐵𝐵+𝑆𝑆.  As the variance of 𝑇𝑇 falls, 

the difference in variances rises (holding  𝜎𝜎𝑠𝑠2 constant), so the upper lines in all panels of Figure 

1 have flatter slopes than the lower lines in each panel.  Asymptotically, as  𝜎𝜎𝐵𝐵+𝑆𝑆 approaches 0, 

for any given value of 𝜎𝜎𝑆𝑆, the slope of these lines also approaches 0.   

[FIGURES 2a –2d here] 

Figure 2 performs a similar exercise as Figure 1, but for variations in baseline health 

status, 𝐻𝐻�𝑆𝑆. This figure fixes 𝜇𝜇𝐵𝐵 at 0.25 and varies 𝐻𝐻�𝑆𝑆 from 0.2 to 0.8 for the same range of 

variation in skewness and variance shown in Figure 1.  Lower levels of baseline health 

(𝐻𝐻�𝑆𝑆) magnify the effects of variance and skewness.  For baseline health, 𝐻𝐻�𝑆𝑆 = 0.2, the term 𝜖𝜖Δ 

ranges from about −2.0 to 4.0.  In contrast, when 𝐻𝐻�𝑆𝑆 = 0.8, 𝜖𝜖Δ ranges from around 0.75 to 1.2.  
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Intuitively, risk-averse people find it costlier to bear risk when their marginal utility is higher; 

this explains why there is a greater demand for certainty in worse health states.   

For highly severe illness, neglecting uncertainty can misstate value by a factor of two to 

four.  In cases where treatment effects are negatively skewed, this could even cause the sign of 

the estimate to be wrong.  To be sure, the latter case is fairly extreme, as 𝐻𝐻�𝑆𝑆 = 0.2 is an 

extremely severe illness, close to death in its seriousness.  Nevertheless, this analysis suggests 

that conventional CEA understates the relative value of effectively treating severe illness 

compared to milder disease.  The degree of understatement rises with the improvement in 

variance and skewness in the treatment effect.   

These simulations make several things evident.  Most importantly, 𝜖𝜖Δ (the CER) can vary   

substantially from a value of 1 when stochastic components of expected utility are taken into 

account, and especially for severe illness.  Shifts away from 𝜖𝜖Δ  = 1 occur both from changes in 

variance and skewness.   Omitting these considerations can significantly bias technology 

evaluations in either direction, depending on how the new technology changes the risk profile for 

treated patients.  Further, the bias is more important with relatively small changes in the mean 

health benefit.  

B. Examples with 4-parameter Beta distributions.  
To provide additional examples of our model, we use four-parameter Beta distributions to 

describe distributions of health outcomes for treated and untreated patients.  Box B discusses this 

distribution for those not familiar with it.  Beyond the standard two-parameter Beta distribution, 

two additional parameters (𝑐𝑐 and 𝑑𝑑) define the region of support, which we here limit to subsets 

of the [0,1] interval. Our simulations in Figures 3 and 4 focus on distributions where 𝑇𝑇 has 

support in the [0.5,1] range (width of support (c-d) = 0.5) and 𝑆𝑆 has support with a width of (c-d) 
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= 0.4.  The other parameters (𝛼𝛼 and 𝛽𝛽) define the mean, variance, skewness and kurtosis, as 

defined in Box B.  Specific parameters appear in the legends of each figure.   

BOX B here 

Figures 3a-d show the effect of reducing variance and increasing skewness of the 

distribution of the new therapy (T) relative to the comparison therapy, which always has a mean 

outcome of 0.6 QALYs, a fixed variance (0.011) and zero skewness.  Technology 𝑇𝑇 has a ratio 

of 𝛼𝛼 and 𝛽𝛽 fixed at 1:3, thereby introducing moderate skewness.  As the absolute value of those 

parameters falls, the mean remains unchanged but the variance and skewness both increase.  

Higher variance reduces the stochastic terms, because risk-averse consumers dislike it.  This is 

reflected in a lower certainty-equivalence ratio, 𝜖𝜖Δ, because more variable treatments result in 

lower certainty-equivalent QALY gains.  Higher positive skew does the opposite, because 

prudent consumers value positive skew.  Unfortunately, we cannot independently alter the 

skewness and variance in the 4-parameter Beta distribution, nor in any other probability 

distribution of which we are aware.  But since they change at different rates, we can nonetheless 

observe the separate effects of variance and skewness.    

Figure 3 here 

Figure 3a, (𝛼𝛼 = 4 and 𝛽𝛽 = 12) has the smallest variance for T and the largest certainty-

equivalence ratio, with 𝜖𝜖Δ = 1.46.  In this case, nearly 99% of the stochastic effect comes from 

variance rather than skew.  Reducing the parameters (Figure 3b) to 𝛼𝛼 = 2 and 𝛽𝛽 = 6  increases 

the variance and skewness such that 𝜖𝜖Δ = 1.34.  Compared with Figure 3a, the contribution of 

skew to the stochastic terms rises from 1.2% to 5.5%.  Reducing these parameters to 𝛼𝛼 =

1.2 and 𝛽𝛽 = 3.6, yields 𝜖𝜖Δ = 1.23.  As the variance of T rises, the certainty-equivalence ratio 

falls; the certainty-equivalent gain in QALYs is smaller for a more variable treatment.  Dropping 
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the parameters to 𝛼𝛼 = 0.7 and 𝛽𝛽 = 2.1 increases the variance of 𝑇𝑇 to slightly above that of 𝑆𝑆. 

This would otherwise lead to a value of 𝜖𝜖Δ < 1, except for the positive skewness, which gives a 

net value of 𝜖𝜖Δ = 1.07, and 144% of the value of the stochastic terms comes from the positive 

skewness.  

Figure 4 here 

Figure 4 demonstrates the implications of higher mean treatment effects.  Figure 4a 

reproduces Figure 3a, with a value of 𝜖𝜖Δ = 1.46.  We then successively shift the distribution of 

the control therapy (S) leftward to increase the mean difference between T and S, holding all 

other parameters constant.  The value of 𝜖𝜖Δ falls from 1.46 down to 1.07 as the mean treatment 

effect expands from 𝜇𝜇𝐵𝐵 = 0.025 to 𝜇𝜇𝐵𝐵 = 0.175.  These simulations provide a separate 

visualization of the phenomenon discussed previously—the importance of the stochastic 

components of value is greater when only small incremental changes in average benefit occur 

between competing therapies. 

One conclusion – or at least suggestion – from these simulations is that variance accounts 

for the lion’s share of the value created by stochastic components in many situations.  

Particularly when 𝜖𝜖Δ is large (e.g., over 1.3 or more), improved variance accounts for a large 

fraction of the overall stochastic gain, as appears most strongly in Figures 3a and 3b.  As the 

variance of 𝑇𝑇 rises (and thus 𝜖𝜖Δ falls towards 1.0), the contribution of skewness increases in 

percentage terms, and can actually reach the situation where positive skewness overcomes what 

would otherwise be a loss in value from increased variance in 𝑇𝑇.    

This suggests that as least in some cases, knowing variances of the distributions of 

treatment outcomes may present a reasonably clear picture of the overall stochastic gain (or loss) 

arising from the stochastic terms in our model.  Thus, measuring skewness may not be highly 
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important in some settings.  If true, this is in some sense good news, since randomized controlled 

trials already contain estimates of variances in different treatment arms, although standard 

reporting may obscure such data by only reporting p-values for differences of means.  However, 

only experience with real-world data will reveal the extent to which this is a general 

phenomenon or merely an artifact of our simulations.   

This result would not be overly surprising given the general nature of Taylor Series 

expansions, where the first and second-order terms often capture much of the overall estimate.  

In such cases, we also know the direction of bias, namely that omitting measures of skewness 

from Taylor Series estimates will understate or overstate the value of a new technology as the 

omitted change in skewness is positive or negative.  

C.  Assessing Convergence of the Taylor Series Expansion 

Next, we assess the convergence characteristics of our Taylor Series expansion using 

four-parameter Beta distributions with varying skewness and kurtosis.  We calculated the 

absolute value of the second, third and fourth-order Taylor series terms to compare various 

technologies (𝑇𝑇) with a common control (𝑆𝑆), where the control intervention always has a four 

parameter Beta distribution with parameters 𝛼𝛼 = 2,𝛽𝛽 = 2  (the zero-skewness distribution used 

in Figures 3 and 4) and support that is 0.5 units wide.  Similarly, the 𝑇𝑇 distributions feature 𝛼𝛼 =

2 and vary 𝛽𝛽 between 5 and 10 in increments of 1, with 0.5 unit width of support.  Each increase 

in 𝛽𝛽 increases the skewness and alters the kurtosis in complex ways (since 𝛽𝛽 appears in both the 

numerator and denominator of the expression for kurtosis).  

We characterize speed of convergence by calculating ratios between the 3rd-order and 2nd-

order Taylor Series terms, and between 4th-order and 2nd-order Taylor Series terms.  Our 

simulations illustrate the result from Equation (10), i.e., that the speed of convergence varies 
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with the average level of health in the untreated sick state (𝐻𝐻𝑆𝑆).  Figure 5a shows the ratio of the 

3rd to the 2nd order terms for distributions of T with successively increasing skewness (𝛽𝛽 ranging 

from 5 to 10 in increments of 1, with the lowest skewness in the bottom line, increasingly for 

higher lines).  As predicted, convergence is always faster when average health in the untreated 

sick state is higher.  In Figure 5a (the ratio of 3rd to 2nd order terms) the ratio is about 0.32 for 

𝐻𝐻𝑆𝑆 = 0.1, rapidly falling below 0.15 as 𝐻𝐻𝑆𝑆 exceeds 0.2.  Figure 5b similarly graphs the ratio of 

the 4th order (kurtosis-related) term to the 2nd order term.  There, the lines reverse in sequence, 

with the smallest 𝛽𝛽 parameters in the higher lines. The ratios are all below 0.75 and rapidly fall 

below 0.17 for values of 𝐻𝐻𝑆𝑆 exceeding 0.2.  These simulations demonstrate a reasonably rapid 

rate of convergence with these specific parameters, particularly when we limit the analysis to 

values of  𝐻𝐻𝑆𝑆 ≥ 0.2.14F

12  Since QALY values below 0.2 correspond to near-death states, e.g., for a 

person with an untreatable and highly aggressive cancer, this is a helpful result. 

Figure 5 also demonstrates that statistical moments produce uncertain effects on speed of 

convergence.  For example, in the case of a four-parameter beta distribution, higher positive 

skew (larger values of 𝛽𝛽) results in slower convergence for a third-order Taylor expansion, but 

faster convergence for a fourth-order expansion.  Nonetheless, our calculations illustrate how 

practitioners can readily calculate speed of convergence using their specific statistical moments 

and parameter values. 

                                                 

12 The width of the support interval affects Figures 4a and 4b.  As the support interval narrows for any 4-
parameter Beta distribution, the variance falls with the square of that interval’s width. Since Figure 4a contains  𝜎𝜎3 
in the calculations of the 3rd moment (and similarly Figure 4b contains  𝜎𝜎4 to calculate the 4th moments), the ratios 
shown in these figures become smaller as the support interval narrows.  The effect is linear in the support width in 
Figure 4a and quadratic in Figure 4b.  The most pessimistic convergence would occur for support intervals near 1.0.   
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Sensitivity analyses (not shown) identify situations where the higher-order terms have 

ratios of the 3rd to 2nd order terms exceed 1.0, indicating slower convergence.  The most 

important of these cases occurs when the two distributions have nearly-identical skewness, so 

that their difference is very small, and hence the ratio of the 2nd order to the 3rd order term 

relatively large.  Even in these cases, it requires a relatively high degree of variance, which 

further increases the 3rd and 4th moment values.  A similar phenomenon occurs when the two 

distributions have nearly-identical values of kurtosis.   

Figure 5 here 

VIII. CONCLUSIONS 

Cost-effectiveness analysis has become one of the most successful economic methods  in 

real-world applications to evaluate medical technologies, and its use continues to expand. 

However, standard cost-effectiveness frameworks fail to adequately account for the role of 

uncertainty in treatment effects.  This can lead to misallocation of resources by health insurers 

and/or health care systems such as the British National Health Service.  We develop a relatively 

straightforward and tractable way for analysts and real-world decision makers to account for 

treatment effect uncertainty as it affects risk-averse consumers. 

Our analysis suggests the importance of measuring uncertainty in clinical trials.  Variance 

is typically measured in clinical trials to establish the precision by which mean outcomes are 

known, but (to our knowledge) it never enters the actual calculation of the expected utility of 

health is affected by the treatment.   We show that including estimates of variance and skewness 

(and potentially adding estimates of kurtosis) can improve accuracy of measures of value for 

medical technologies.  Measuring skewness (and kurtosis) with meaningful accuracy may require 

increases in sample size in typical clinical trials used to establish treatment effects or meta-
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analysis combinations of multiple trials on the same treatment.  Assessing the extent of required 

sample size increases is best left to experts in that type of analysis, e.g., clinical trial 

biostatisticians.  

Our analysis also illustrates the potential importance of accurate measures for relative 

risk-aversion, relative prudence (and perhaps relative temperance) over flows of health.  For 

practical reasons, we employ the assumption that relative risk preferences are similar across 

health and non-health composite consumption, but this need not be so. Future research 

quantifying attitudes towards health risk can help sharpen our value assessments of medical 

technology.  It seems plausible to assume that health risk attitudes will be constant across types 

of health interventions, suggesting that estimation need not be repeated for every individual 

health intervention.   

Future cost-effectiveness analyses could implement our calculations using knowledge of 

the variance and skewness of treatment effects.  Indeed, including measures of variance alone 

would improve the accuracy of value estimates, above and beyond the conventional approach of 

assuming risk-neutrality, but omitting the skewness term would penalize technologies with 

favorable changes in skewness in the distribution of health benefits.   

Finally, we note that these results could help to guide design of new technologies in 

beneficial ways.  Many diseases have ranges of consequences varying from relatively small to 

very large.  Interventions that deal with the lower end of severity produce less total gain in 

expected utility than those treating patients with the most severe disease, even holding constant 

the magnitude of average improvement (𝜇𝜇𝐵𝐵).   

Our analysis also directly answers a separate question raised by the ISPOR Task Force in 

2018— whether there should be adjustments to value calculations based on the underlying 
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severity of disease.  Our model shows that the proper answer is “yes,” since introducing negative 

covariance between treatment outcomes and initial disease severity beneficially reduces the 

variance of disease outcomes.  Put differently, this simply recognizes that humans experience 

diminishing marginal utility, so that utility gains arising from an improvement of some specific 

health gain are greater when they are bestowed on persons with lower initial health status.  

Our model provides a systematic basis for incorporating measures of uncertainty in the 

outcomes of medical treatments that can differ importantly from traditional mean-based 

measures used in most cost-effectiveness analysis.   These methods, grounded in economic 

theory and supported by literature-based estimates of relevant parameters, offer a tractable 

method for improving the accuracy of incremental cost-effectiveness analyses.  Our simulations 

suggest that ignoring these stochastic components of treatment outcomes can seriously bias 

estimates of incremental cost-effectiveness, either in upward or downward direction, depending 

on how the new technology alters the risk profile of patient outcomes.  Repairing this defect 

merely requires good estimates of skewness (and possibly kurtosis) measures of clinical 

outcomes in studies comparing medical interventions, and incorporation of those parameters into 

our new model.  
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BOX A 

 THREE WAYS TO INTERPRET PRUDENCE AND TEMPERANCE 

 Most economists are familiar with the standard measure of risk aversion (John W. 
Pratt, 1964, Kenneth J. Arrow 1963), but less so (perhaps wholly unfamiliar) with the higher-order 
terms of prudence and temperance [12, 13].  We offer several interpretations here.  

 
1.  Precautionary Savings. 

In his pioneering work on the concept, Kimball defines prudence as “the sensitivity of a 
decision variable to risk”  [14].  Define positive prudence as 𝜋𝜋 ≡ −𝑢𝑢′′′(𝑌𝑌𝑇𝑇) 

𝑢𝑢′′(𝑌𝑌𝑇𝑇) .  An individual with 
positive prudence will respond to increases in the variance of future income by saving more today, 
known as “precautionary savings.”  Define the coefficient of absolute temperance, 𝜏𝜏 ≡ − 𝑢𝑢′′′′(𝑌𝑌𝑇𝑇) 

𝑢𝑢′′′(𝑌𝑌𝑇𝑇)  [14, 
28].  Individuals with positive temperance seek to moderate their total exposure to risk [1, 28].   The 
prudence and temperance parameters—𝜋𝜋 and 𝜏𝜏—are analogous to the more-familiar 𝑟𝑟 = −𝑈𝑈′′

𝑈𝑈′
 except 

that they apply to the higher-order derivatives of the utility function.  Positive prudence means that 
U’’’ > 0.  Positive temperance means that U’’’’ < 0. 

 
2.  “Decreasing” behavior. 

 All utility functions with positive prudence (𝜋𝜋 > 0) have decreasing absolute risk 
aversion (DARA), a feature of utility functions widely accepted in the economics literature.  Thus the 
following relationships generally hold:  (1) positive risk aversion (r > 0) implies decreasing marginal 
utility of income; (2) positive prudence (𝜋𝜋 > 0) implies decreasing absolute risk aversion (DARA); 
(3) positive temperance (𝜏𝜏 > 0) implies decreasing DARA.   

 
3.   Mean-Preserving Spreads in Risk 

 Eeckhoudt et al (1995) explain the intuition behind the prudence and temperance terms 
[8].  It is well-understood that the degree of absolute risk-aversion measures a consumer’s distaste for 
mean-preserving spreads in the distribution of consumption [41].  Risk-averse but prudent people 
dislike mean-preserving spreads.  However, if they must accept one, they prefer that such spreads be 
applied to positive outcomes rather than negative ones.  The degree of prudence represents the 
strength of their preferences in this respect [8].   

 
 Finally, temperate, prudent, and risk-averse people continue to dislike mean-

preserving spreads, but prefer that spreads be applied to more positive outcomes.  However, 
temperance means that such consumers derive diminishing marginal utility from successive rightward 
shifts of mean-preserving spreads of positive outcomes [8].     This is linked to kurtosis, which 
measures the degree to which positive skewness is produced by a few very extreme outliers or a 
larger number of more moderate outliers.  
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BOX B 

   FOUR-PARAMETER BETA DISTRIBUTIONS 

First consider the (standardized) Beta distribution, with support over the [0,1] interval 
with parameters 𝛼𝛼,𝛽𝛽,  It describes proportions or percentages, with the following attributes: 

 
 Mean = 𝛼𝛼

𝛼𝛼+𝛽𝛽
 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝛼𝛼𝛼𝛼
[(𝛼𝛼+𝛽𝛽)2(𝛼𝛼+𝛽𝛽+1)] 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛′𝑠𝑠 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �2(𝛽𝛽−𝛼𝛼)�𝛼𝛼+𝛽𝛽+1 �
�(𝛼𝛼+𝛽𝛽+2 )�𝛼𝛼𝛼𝛼�

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛′𝑠𝑠 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 3[
(𝛼𝛼 + 𝛽𝛽 + 1)(2(𝛼𝛼 + 𝛽𝛽)2 + 𝛼𝛼𝛼𝛼(𝛼𝛼 + 𝛽𝛽 − 6)]

[𝛼𝛼𝛼𝛼(𝛼𝛼 + 𝛽𝛽 + 2)(𝛼𝛼 + 𝛽𝛽 + 3)] ] 

 For any fixed ratio 𝛼𝛼/𝛽𝛽, means remain unchanged, but variances shrink as the 
absolute parameter magnitudes increase.  Thus, one can independently alter means and variances 
of Beta distributions. Beta distributions are positively skewed when 𝛽𝛽 > 𝛼𝛼, with mean < 0.5 and 
negatively skewed with mean > 0.5 when 𝛼𝛼 > 𝛽𝛽.   

 
For our simulations, this unfortunately leads to adverse changes in skewness as mean 

treatment benefits increase, an undesirable feature since positive skewness is desirable in our 
model.  Hence this distribution cannot serve our modeling goals. To resolve this, we use four-
parameter Beta distributions, with a support over [c,d], a subset of  [0,1].  Then we have: 

 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑐𝑐 + (𝑑𝑑 − 𝑐𝑐)[ 𝛼𝛼

𝛼𝛼+𝛽𝛽
] 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = (𝑑𝑑−𝑐𝑐)2𝛼𝛼𝛼𝛼
[(𝛼𝛼+𝛽𝛽)2(𝛼𝛼+𝛽𝛽+1)] 

The distribution shifts and is “squeezed” into the [c,d] interval.  The variance also 
changes by the factor (d-c)2.  Pearson’s skewness and kurtosis remain unaffected.  Thus, we can 
independently alter means without affecting skewness, and we can independently alter variances 
as previously noted. Thus, four-parameter Beta distributions are well-suited for our simulations. 
The only remaining defect is that we cannot independently change variance and skewness.   
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MATHEMATICAL APPENDIX 

Here we prove Proposition 1 from the text. 

Proposition 1:  Suppose the health index has support on the interval [0,1], and the utility 

function takes the form 𝑈𝑈(𝑐𝑐,𝐻𝐻) = 𝑢𝑢(𝑐𝑐)𝑣𝑣(𝐻𝐻), where 𝑣𝑣 belongs to the class of HARA (hyperbolic 

absolute risk-aversion) utility functions. If 𝐻𝐻 is a random variable with support [0,1] and mean 

𝜇𝜇0, then the Taylor expansion of 𝑣𝑣(𝐻𝐻) around 𝜇𝜇0 converges. 

Proof:  Any utility function in the HARA family can be written as 𝑈𝑈(𝐻𝐻) =

1−𝛾𝛾
𝛾𝛾
� 𝛽𝛽𝛽𝛽
1−𝛾𝛾

+ 𝜂𝜂�
𝛾𝛾
 [27].  The Taylor expansion around the mean of 𝐻𝐻 takes the form: 

𝐸𝐸𝐸𝐸(𝐻𝐻) ≈ 𝑈𝑈(𝜇𝜇0) + 𝑈𝑈′(𝜇𝜇0)𝐸𝐸(𝐻𝐻 − 𝜇𝜇0)) +
1
2!
𝑈𝑈′′(𝜇𝜇0)𝐸𝐸(𝐻𝐻 − 𝜇𝜇0)2 +

1
3!
𝑈𝑈′′′(𝜇𝜇0)𝐸𝐸(𝐻𝐻 − 𝜇𝜇0)3 + ⋯ 

Since 𝐻𝐻 has support on the unit interval, it is evident that lim
𝑛𝑛→∞

𝐸𝐸(𝐻𝐻−𝜇𝜇0)𝑛𝑛+1

𝐸𝐸(𝐻𝐻−𝜇𝜇0)𝑛𝑛 = 0.  Moreover, 

defining the nth derivative of 𝑈𝑈 as 𝑈𝑈(𝑛𝑛), we can write: 

𝑈𝑈(𝑛𝑛+1)

𝑈𝑈(𝑛𝑛) =
𝛽𝛽𝑛𝑛+1(𝛾𝛾 − 2) … 𝛾𝛾 − 𝑛𝑛

(1 − 𝛾𝛾)𝑛𝑛−1 �
𝛽𝛽𝜇𝜇0

1 − 𝛾𝛾 + 𝜂𝜂�
𝛾𝛾−(𝑛𝑛+1)

𝛽𝛽𝑛𝑛(𝛾𝛾 − 2) …
�𝛾𝛾 − (𝑛𝑛 − 1)�

(1 − 𝛾𝛾)𝑛𝑛−2 � 𝛽𝛽𝜇𝜇01 − 𝛾𝛾 + 𝜂𝜂�
𝛾𝛾−𝑛𝑛 =

𝛽𝛽(𝛾𝛾 − 𝑛𝑛)

� 𝛽𝛽𝜇𝜇01 − 𝛾𝛾 + 𝜂𝜂� (1 − 𝛾𝛾)
     

Thus, L’Hôpital’s rule implies that lim
𝑛𝑛→∞

𝑈𝑈(𝑛𝑛+1)

(𝑛𝑛+1)𝑈𝑈(𝑛𝑛) = lim
𝑛𝑛→∞

𝛽𝛽(𝛾𝛾−𝑛𝑛)

(𝑛𝑛+1)�𝛽𝛽𝜇𝜇01−𝛾𝛾+𝜂𝜂�(1−𝛾𝛾)
= −𝛽𝛽

�𝛽𝛽𝜇𝜇01−𝛾𝛾+𝜂𝜂�(1−𝛾𝛾)
.  

Since 𝛽𝛽 and 𝛾𝛾 are both finite scalars, since 0 ≤ 𝜇𝜇0 ≤ 1, and since lim
𝑛𝑛→∞

𝐸𝐸(𝐻𝐻−𝜇𝜇0)𝑛𝑛+1

𝐸𝐸(𝐻𝐻−𝜇𝜇0)𝑛𝑛 = 0, it follows 

that: 

lim
𝑛𝑛→∞

𝑈𝑈(𝑛𝑛)𝐸𝐸(𝐻𝐻 − 𝜇𝜇0)𝑛𝑛+1

(𝑛𝑛 + 1)𝑈𝑈(𝑛𝑛+1)𝐸𝐸(𝐻𝐻 − 𝜇𝜇0)𝑛𝑛 = 0 
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TABLES AND FIGURES 

 

Table 1.  Summary of variance and skewness effects on certainty-equivalence ratio. 

 Δσ2 > 0 Δσ2 < 0  

Δ𝛾𝛾1 > 0 Bad, but muted, 

possible reversal  

Good, 

amplified. Both terms 

increase 𝜖𝜖Δ  

Δ𝛾𝛾1 <  0 Bad; both terms 

diminish  𝜖𝜖Δ 

 Good but 

muted, possible 

reversal 
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Figure 1. Contribution of variance, skewness, and treatment effects to the certainty-equivalence ratio. 

 

 Figure 1(a) Figure 1(b) 
 

 Figure 1(c) Figure 1(d) 
 

 
Notes: The vertical axis shows the value of the certainty-equivalence ratio, 𝜖𝜖Δ.  The five lines 
represent different values for the change in standardized variance between the treatment and 
control, defined as �Δ𝜎𝜎2

𝜇𝜇𝐵𝐵
2 �. The upper line represents a decline of 1 (-1 value), the lowest line an 

increase of 1 (+1 value), the middle line no change in variance (0 value), and the other two 
halfway between the middle and the extremes (-0.5 or + 0.5).  The horizontal axis shows the 
difference in Pearson’s skewness coefficient, 𝛾𝛾1, between the treatment and control.   The figures 
show increasing degrees of health gain from the treatment (T) compared with the untreated (or 
comparison treatment) state, with values of 𝜇𝜇𝐵𝐵 ranging from 0.1 to 0.5.  In all cases, average 
health in the untreated state is 𝐻𝐻𝑆𝑆 = 0.5.  The heavy line at 𝜖𝜖Δ = 1 represents the breakeven 
point where the traditional mean-based estimate of value equals the stochastic-based estimate.  
These demonstrate the effects of 𝜇𝜇𝐵𝐵 on the estimated values of 𝜖𝜖Δ for given values of 𝐻𝐻𝑆𝑆. 
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Figure 2. Baseline disease severity and the certainty-equivalence ratio. 

 
 
 
 

  
 
 

 
 Figure 2(a) Figure 2(b) 
 

 Figure 2(c) Figure 2(d) 
 
 

Notes: The structure of these figures is identical to that in Figure 1 except that they hold 𝜇𝜇𝐵𝐵 =
0.25 and vary 𝐻𝐻𝑆𝑆 from 0.2 to 0.8.  These demonstrate the effects of 𝐻𝐻𝑆𝑆 on the estimated values 
of the certainty-equivalence ratio, 𝜖𝜖Δ, for given values of 𝜇𝜇𝐵𝐵. 
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Figure 3. Probability densities of treatment effects and implications for certainty-equivalence ratio. 

 Figure 3(a)  Figure 3(b) 
 

 Figure 3(c) Figure 3(d) 
 
 
Notes: These Figures employ four-parameter Beta distributions (see “BOX B” in main text for 
details).  In all panels, the Sick distribution has support on the [0.4, 0.8] interval with parameters 
𝛼𝛼 = 1.2, 𝛽𝛽 = 1.2, so it has no skewness.  The distribution of outcomes for T all have a ratio of 
𝛼𝛼:𝛽𝛽 of 1/3, with increasingly smaller values, so that the variance and skewness both increase as 
one moves from panels (a) to (d).  The increasing variance of T causes the certainty-equivalence 
ratio, 𝜖𝜖Δ, to decline from 1.46 to 1.07.  In panel (d), the variance of the T distribution exceeds 
that of the S distribution, but the positive skewness still leaves 𝜖𝜖Δ = 1.07, demonstrating the 
value of skewness even when the T distribution has worse variance than the S distribution. 
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Figure 4. Treatment effect sizes and implications for the certainty-equivalence ratio. 

 Figure 4(a) Figure 4(b) 

 Figure 4(c) Figure 4(d) 
 
 
Notes: Figure 4(a) is identical to Figure 3(a), with a “moderate” degree of positive skewness in 
T.  Panels 4(b) to 4(d) successively shift the distribution of S leftward, thus increasing 𝜇𝜇𝐵𝐵 from 
0.025 to 0.175.  As 𝜇𝜇𝐵𝐵 increases, the importance of the stochastic components falls, so the 
certainty-equivalence ratio, 𝜖𝜖Δ, declines from 1.46 to 1.07 when moving from Panels (a) to (d). 
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Figure 5. Speed of convergence in Taylor Series approximation to value of medical technology. 

 Figure 5(a) Figure 5(b) 
 
 
Notes: These figures demonstrate the rate of convergence of the Taylor series by taking the ratio 
of the 3rd to the 2nd order terms (Figure 5(a)) and the 4th to 2nd order terms (Figure 5(b)).  Smaller 
ratios demonstrate faster convergence.  In both panels, the S outcomes have Beta distribution 
parameters of 𝛼𝛼 = 2;𝛽𝛽 = 4.  In Panel 5(a), the uppermost line has the greatest skewness (𝛼𝛼 =
2;𝛽𝛽 = 10), with the value of 𝛽𝛽 declining (serially) in the lower lines by unit values to 9, … 5, 
holding 𝛼𝛼 constant at 2.  Therefore, the skewness declines as one moves from the uppermost to 
the lowermost lines.  In Figure 5(b), the sequence is reversed (following the formula for kurtosis 
in the 4-parameter Beta distribution).  Otherwise Figures 5(a) and 5(b) have similar structure. 
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