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How should scarce public resources be allocated across sectors of the economy to advance
growth? This question occupies a central role in development economics and policy debates.
As a large contributor to GDP, employment, and food security, the agricultural sector
is often at the heart of such discussions. While agriculture’s role in driving growth is
theoretically ambiguous (Matsuyama, 1992), a growing body of empirical evidence links
increased staple yields to greater national welfare (Bravo-Ortega and Lederman, 2005;
Ligon and Sadoulet, 2011; Ravallion and Chen, 2007) and structural change (McArthur and
McCord, 2017). More recently, Gollin, Hansen and Wingender (2018) show that agricultural
productivity shocks—as measured by the adoption of improved crop varieties—generate
large per-capita GDP increases.

Investments in the agricultural sector in sub-Saharan Africa (SSA) have yielded con-
siderable evidence on what fails and a limited catalog of successes. Despite substantial
government and donor expenditures on research and extension programs, agricultural input
subsidies, and insurance products, agricultural productivity in SSA still lags behind all
other regions of the world (Block, 2014; World Bank, 2008). The fact that expenditures
have failed to transform the agricultural sector in SSA serves as a kind of Rorschach test
for researchers and policy-makers alike. To some, widening agricultural productivity gaps
indicate that public resources would be better spent elsewhere. To others, the existence
of constraints limiting technology adoption and commercialization suggests that relaxing
those constraints with well-designed and targeted investments could stimulate dramatic
increases in African smallholder agricultural productivity and economic growth (Byerlee,
de Janvry and Sadoulet, 2009; Magruder, 2018).

Our paper contributes to this policy debate by documenting that a multi-faceted program
can generate economically meaningful returns. Despite the importance of the agricultural
sector, there is a dearth of rigorous empirical evidence on agricultural extension service
effectiveness. High-quality evaluations of programs operating at scale are especially rare.
Research efforts often suffer from issues of measurement, selection, and comparability across
programs (Aker, 2011; Anderson and Feder, 2007). Relatively few experimental studies find
positive impacts on farmer practices or improved input use—and even then, researchers
often fail to detect measurable increases in yields (Udry et al., 2019) or profits (Beaman
et al., 2013).

We report experimental results from a cluster-randomized RCT of a program that
targets small-scale staple crop producers: the One Acre Fund (1AF) program. 1AF is a
non-governmental organization (NGO), established in 2006, that currently works with over
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one million farm households in seven countries across Eastern and Southern Africa. We
study 1AF’s programming by randomizing access to their scaled-up operations in Kenya.
We find that program participation causes statistically and economically significant increases
in output, yields, and profits. In our preferred specification, total maize output increases
by 26% and profits increase by 16%. Our estimated treatment effects are robust across
empirical specifications.

Our paper builds on the literature studying technology diffusion in low-income countries.
Within this body of work, three constraints stand out as key barriers to adoption of
improved agricultural technologies: credit, risk, and information (Feder, Just and Zilberman,
1985; Magruder, 2018). The components of 1AF’s programming are closely tied to these
constraints: participating farmers receive input loans for high-quality seeds and fertilizer,
crop insurance, and training on improved farming practices. None of the ingredients of the
program are based on radical ideas; in fact, they overlap substantially with the kinds of
programs that the World Bank promoted as part of their agricultural extension investments
in the 1960s and 1970s (Birkhaeuser, Evenson and Feder, 1991).

These similarities aside, the 1AF program distinguishes itself from its antecedents by
tightly bundling the component parts into a single unified package (Tinsley and Agapitova,
2018). This kind of bundling is not typical of government-led extension, nor is it common
in the economics literature on technology adoption. Since bundled interventions make it
difficult to disentangle the underlying economic mechanisms, the academic literature tends
to evaluate the impact of relaxing a single constraint at a time—this is especially true in
the growing experimental literature reviewed by Magruder (2018).

The theoretical literature on poverty traps is a notable exception to the frequent focus
on single constraints. A growing empirical body of evidence complements this theoretical
literature by investigating the possibility that poor households may need large, bundled
interventions in order to move out of poverty (Banerjee et al., 2015; Bandiera et al., 2017;
Balboni et al., 2020). Our results echo recent findings from multi-faceted anti-poverty
programs, where individual intervention components seem unable to generate the gains
achieved by the full program.

One interpretation of our results is that past research may have underestimated the
potential for well-designed programs to increase agricultural productivity. To the extent that
governments and donors make their investment choices based on evidence, these findings
could lead to more efficient decision-making. We discuss some candidate explanations for
why our findings differ from those in the literature in Section 5. Disentangling among these
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and establishing the external validity of our findings would be fruitful avenues for future
research.

In light of the recent proliferation of social enterprises offering financial and extension
services to farmers, we undertake two sets of complementary analyses. First, we examine
whether the average treatment effects mask underlying impact heterogeneity using econo-
metric and machine learning techniques. Treatment effect heterogeneity could indicate
potential efficiency gains from programmatic changes or improved participant targeting.
Perhaps surprisingly, treatment effects on maize yields are large and consistent across the
sample. The treatment effects on total maize output and profits are lower at the top end
of the distribution. The relative lack of heterogeneity may be due to the small upfront
fee that 1AF requires prior to enrollment—another difference between 1AF and its many
predecessors. If the fee screens potential participants and drives positive selection into the
program, this could explain the homogeneous impacts.1

Second, we match our sample to administrative records from the subsequent growing
season to study participant enrollment decisions at the extensive and intensive margins.
Being randomly assigned to the program in 2017 does not affect enrollment probabilities
in 2018. However, farmers who are randomly exposed to the program in 2017 enroll
significantly more land in the program the following year. These effects are consistent with
a successive easing of constraints as well as with participants learning about the returns to
the program through participation.

1 Context, data, and experimental design

1.1 One Acre Fund’s program in Kenya

We analyze the main operating model of an established agricultural NGO, One Acre Fund.
Founded in 2006, the organization has grown rapidly in the last several years: enrollment
has grown from 200,000 farm households in 2014 to more than one million in 2020 (One Acre
Fund, 2020). 1AF’s “market bundle” provides farmer groups with group-liability loans for
improved seeds and fertilizer, regular training on modern agricultural techniques, crop and
funeral insurance, and market facilitation support to help farmers obtain higher prices for

1Studies of health products in low-income countries generally find cost-sharing mechanisms to be ineffective
screening devices (Ashraf, Berry and Shapiro, 2010; Cohen and Dupas, 2010; Tarozzi et al., 2014). In
contrast, Beaman et al. (2020) find evidence of positive selection into an agricultural credit program in Mali.
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their output (Tinsley and Agapitova, 2018). Farmer groups are organized by geographical
areas and comprised of 8-12 farmers.

The program’s focus on credit, risk, and information has support in the economics
literature, which has accumulated substantial evidence that failures in these domains hinder
farmers’ ability or willingness to adopt improved agricultural technologies (Feder, Just
and Zilberman, 1985; Magruder, 2018). 1AF’s focus on providing high-quality inputs also
has empirical support: a growing literature establishes that fertilizer and seeds sold in the
region’s local markets often fall short of quality standards (Bold et al., 2017; Tjernström,
Carter and Lybbert, 2018).

Prior to enrolling, participants sort into self-selected farmer groups. The credit compo-
nent begins with each participant choosing how much of their land to enroll; 1AF determines
the size of agricultural input loans as a function of the amount of land enrolled. Farmer
groups are jointly responsible for repayment of these loans. Loan terms are relatively
flexible, allowing repayment at any time during the growing season. Groups must complete
repayment in full within a two-week grace period after harvest.2 To alleviate information
constraints, 1AF field officers conduct repeated trainings and provide handouts on the
benefits and proper use of improved inputs. To alleviate risk, 1AF provides yield-index
insurance based on crop cuts and forgives a portion of the input loan in case of crop
failure(Tinsley and Agapitova, 2018).

This experiment was conducted in western Kenya, where 1AF has operated for more
than ten years. Agriculture contributes 51% to Kenya’s GDP and is dominated by small-
scale producers (Government of Kenya, 2010). Despite the importance of the agricultural
sector to the economy, most small-scale farmers are not running successful micro-enterprises.
Households in Kenya typically derive their income from the production of a variety of crops
(Sheahan, Black and Jayne, 2013) and average productivity often fails to meet households’
dietary needs (Kirimi et al., 2011).

Although small-scale farmers in Kenya produce a range of crops across a diverse
production environment, 1AF’s efforts are focused on the dominant staple crop: maize.
Maize is important both to the economy and for food security. Seventy percent of Kenya’s
maize is produced by smallholders who farm between 0.2 and 3 hectares (Government of
Kenya, 2010, pg. 11-12). While Kenyan farmers use improved seed varieties and inorganic
fertilizer at higher rates than neighboring countries, yields remain low. Further, the country

2Historically, repayment rates exceed 97% (Tinsley and Agapitova, 2018).
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remains a net importer of maize, despite policy targets to the contrary.

1.2 Experimental design

Recruitment, enrollment, and program implementation for this experiment took place in the
Teso region of Kenya, following 1AF’s standard protocol. Farmers who satisfied the basic
program criteria paid a participation deposit of approximately $5 USD.3 Once participants
had self-selected into groups of 8-12 farmers, the randomization was conducted at the level
of clusters, which consisted of 2-4 of these joint-liability farmer groups. This aggregation
was designed to minimize potential spillovers by maximizing the distance between clusters.

After participants had paid the fee and signed the contract, they were informed of the
randomization, which took place as a public lottery. The control group farmers, who were
randomly assigned to delay program access received a compensation package consisting of
a bundle of household goods valued at the cost of participation. The control group also
received a discount for enrollment the following season.

Dealing with control group contamination

While the ideal location for this study would arguably be an area where 1AF had never
operated, this proved difficult in Kenya. Given 1AF’s long presence in the country, all
“untouched” regions would have been unrepresentative of the production environments and
farmer populations that 1AF usually engages with. As a second-best option, the evaluation
team decided to sample villages within an area where 1AF was already working but where
a large population had not yet been offered the program.

In practice, although 1AF had never offered its program to the sampled villages, some
farmers had managed to access it anyway, by “commuting” to neighboring villages to
participate. The proportion of such “pre-exposed” farmers does not differ across treatment
and control. We may nonetheless be concerned that the pre-exposed farmers introduce bias
into our results. Accordingly, we report our main results both for the full sample and for
the “primary sample,” which refers to the sample of farmers who had never participated in
1AF programming.

3The participation criteria for the standard program is possession of a phone number and national
identification. Study participants had to consent to be part of the study and plan to cultivate at least 0.25
acres of maize. After contract signing, 1AF informed farmers about the study, that their participation would
be voluntary, and went over informed consent.
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The sign of any potential bias depends on at least two factors: the persistence of
treatment effects and the correlation between selection and program returns. Suppose that
1AF participation changes farmers’ production processes for the better. If pre-exposed
farmers continue to operate more efficiently in subsequent seasons, then treatment effects
estimated using the full sample may be attenuated.

We also do not know the sign of the correlation between self-selection into early access
and returns to enrollment. If the most eager farmers have higher returns, we would expect
the impacts on our primary sample of hold-out farmers to be a lower bound of the true
impacts. If these hold-out farmers instead resemble the never-adopters in Suri (2011) and
have surprisingly high returns—but perhaps face high costs of participation—then it is
possible that focusing solely on the primary sample might overestimate impacts.

1.3 Data

The data collection was managed by the NGO. The evaluation team took several steps to
reduce concerns about research independence: First, the International Initiative for Impact
Evaluation (3ie) helped design and review all parts of the trial (the experimental design,
field protocols, sampling, randomization, and data collection instruments (Dubey and
Yegbemey, 2017)). Second, the data collection included back-checks and in-field supervision.
Third, 1AF contracted an independent firm, Intermedia Development Consultants, to carry
out a three-step audit of the data collection. Appendix A documents 3ie’s review of the
pre-analysis plan, and Appendix G provides more details about the audit procedures and
results.

Fourth, the main dependent variables, yield and land size, were physically weighed and
measured with GPS, respectively, which should minimize the potential for social desirability
bias.4 All weighing and surveying was carried out by 1AF enumerator staff from outside the
study area who did not know the sample farmers. Finally, two of the authors on this paper
were brought in as independent evaluators. This part of the team reviewed the pre-analysis
plan (PAP) prior to data collection and independently conducted the data cleaning, variable
construction, and analysis.

Baseline data collection took place in November and December of 2016—after initial
enrollment but before contract signing. A public lottery assigned clusters of farmer groups

4Social desirability bias can be a concern if participants or enumerators change answers in an attempt to
help.
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to treatment in January 2017. Enumerator teams conducted input use surveys after the
planting of the main season in 2017, from April through June. Enumerators collected fresh
weight measurements between July-August 2017 and dry weight measurements between
July-September 2017.

Outcome variables

Following our PAP, our main analysis centers on program maize yields, total maize output,
and profits. Program yields capture a direct comparison of average yield on treated farmers’
enrolled land to the average yield in the control group. Since farmers rarely enroll all of
their land, we might worry about various forms of spillovers across a given farmer’s plots.5

Total output should better capture the overall welfare effects for participants—net of any
cross-field substitution.

To obtain “crop cut” yields, enumerators collected and physically weighed fresh and
dry harvests from two randomly placed 40-square-meter boxes. Cultivated land sizes were
measured by GPS readings, with enumerators walking the boundaries of each plot three
times.6 Based on the objective measures of land size and crop cut yields, we generate more
standard per-acre yield and total output measures.

Enumerators collected separate crop cut measurements for enrolled land and non-enrolled
land in the treatment group. While program maize yields refers to treated farmers’ per-acre
yield on their enrolled plot, total maize output is a weighted average of per-acre yields
on the enrolled vs. non-enrolled plot (with weights proportional to the amount of land in
each category). Control farmers did not separate their fields into enrolled and non-enrolled
sub-plots. For them, program yields equal per-acre yields on a randomly-selected maize
plot. Total output is scaled up to their total land under maize cultivation.7

Finally, we calculate profits as the value of output less farmers’ costs. Revenues are
the product of total output and average market prices from nearby vendors. For control
farmers, input costs are elicited via self-reports. For treatment farmers, we know the input

5For example, there could be positive knowledge spillovers to non-enrolled plots, or participants may
reallocate scarce complementary inputs such as labor to the enrolled plot. Conversely, farmers might prefer
to spread 1AF-provided inputs across multiple plots in an effort to reduce risk.

6A growing body of research documents non-classical measurement error in self-reported land size and
harvests in developing-country studies (see e.g. Abay, Bevis and Barrett 2019; Carletto, Savastano and
Zezza 2013; Desiere and Jolliffe 2018; Gourlay, Kilic and Lobell 2017). Self-reported harvests are additionally
subject to recall bias.

7Appendix C provides additional variable construction details.
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costs on the enrolled land (since these are administered by the program); we elicit other
input costs with self-reports.8

Labor costs are challenging to measure in this context, given the prevalence of unpaid
labor. To reduce recall bias, we elicit early-season paid and family labor use in a survey
administered shortly after planting (including labor for land preparation, plowing, and
planting). Late-season family and paid labor use, including for weeding and harvest, was
collected shortly after harvest. We ascribe a monetary value to unpaid labor by calculating
the mean day wage reported within the sample and devaluing this mean wage by 50%
(based on rural unemployment rates in Kenyan DHS data). We then multiply this devalued
mean by the number of person-days of unpaid labor.9

Attrition

Attrition in our data is mostly due to missing variables, not to participants dropping out of
the sample entirely. During data cleaning, we are forced to drop observations for missing
land size and harvest data. Land size data was collected during and immediately after
harvest time and enumerators struggled to measure all plots of all farmers. Harvest data
was recorded both immediately after harvest (the “fresh weight”) and after drying (the “dry
weight”). Our analysis relies on dry weight estimates of yields, which are a more comparable
measure across farmers since moisture content before drying can vary. For some dropped
observations, dry weight data is missing but not fresh weight. For others, we are missing
both.

In Appendix E, we include a more complete description of the attrition and implement
several imputation strategies to test the robustness of our results. Section 2 shows that our
results are consistent across various robustness checks, including missing-data imputation
methods.

Sample description and balance tests

We report summary statistics and balance tests on our pre-specified control variables in
Appendix B. In addition to balance checks for treatment and control groups, we compare
baseline characteristics of our two sub-populations: the “primary” sample (farmers who

8Overall, the data confirm that 1AF charges prices for seeds and fertilizer that are comparable to local
market prices.

9See Appendix E for a discussion of alternative valuations of unpaid labor.
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have never enrolled in 1AF) and the “pre-exposed,” who had previously enrolled in 1AF
programming. The two groups together make up the “full sample.”

Summary statistics in Table 4 confirm the importance of agriculture for this population:
nearly eighty percent of participants earned more than half of their income from farm
labor in the year prior to the study. On average, participants cultivated roughly one acre
of maize, harvesting about half a ton per acre. While three-quarters of the sample used
improved agricultural technologies at baseline, average input intensity is low. About half
of the respondents report some knowledge of 1AF planting practices, which is primarily
driven by the pre-exposed farmers.10

Although household size, education, and baseline maize yields differ significantly across
treatment and control, an F -test of joint orthogonality of the variables in Table 4 does not
reject the null that all the variables are jointly orthogonal to treatment status. None of the
three significantly different variables are highly correlated with our outcome variables, so
the differences are unlikely to affect our results. It may seem counter-intuitive that baseline
maize yields do not correlate with maize yields, but these variables are very noisy and low
autocorrelation is common.

We also compare participants in the primary sample to those who enrolled prior to
the study (Table 7). At baseline, farmers who self-selected into early program access
are more educated, cultivate more maize land, report using improved inputs and having
access to credit, and are more likely to have prior knowledge of 1AF practices. We cannot
determine whether this is due to early enrollees being better off to start or whether program
participation contributed to the observed differences.

2 Results

We obtain intent-to-treat estimates of program impacts by estimating the following regression
with OLS:

yics = α+ βTcs + δXics + γs + εics (1)

where yics denotes the outcome for individual i in cluster c and strata s, with strata defined
based on 1AF field-office areas. The indicator variable Tcs takes on a value of one for
clusters assigned to treatment. Xics is a vector of pre-specified controls, γs is a strata fixed
effect to account for variations in the probability of assignment to treatment, and εics is

10Appendix B provides more detail, including separate balance tables for primary and pre-exposed samples.
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clustered at the level of treatment assignment (farmer group clusters).
Our PAP specified Xics in Eq. 1 as including controls for household demographics

(marital status, household size, education, credit access, land ownership, agricultural
reliance) and baseline agricultural characteristics (technology use, intercropping, knowledge
of 1AF practices). 11 Otherwise, we follow the PAP closely and present results with and
without controls, which does not affect our results. The standard errors in our main results
are not adjusted for multiple hypothesis testing.12

2.1 Intermediate outcomes: behavioral change

Before turning to our main outcome variables, we examine intermediate outcomes that
capture participant behavior. We would expect treatment effects to be traceable through
observable changes in farmer behavior. Concretely, 1AF trains farmers on practical details
such as the correct spacing between rows of plants and plants within a row, as well as the
timing of different fertilizer applications.13

Treatment effects on production decisions

We examine several extensive- and intensive-margin aspects of production. Panel A of 1
reports treatment effects on the extensive margin of key practices, estimated with linear
probability models.14 The outcome variables in columns (1) and (2) are dummies for
whether participants planted within 5 cm of 1AF’s recommended spacing (between rows
and for plants within rows, respectively). In column (3), fertilizer timing equals one if the
participant applied fertilizer at the appropriate time of the season. High maize productivity
requires substantial amounts of nitrogen—but the timing matters. Maize plants require
relatively little nutrient input at the time of planting and are most responsive to inputs
later in the season. Accordingly, farmers are recommended to apply DAP (diammonium

11Where appropriate, regressions also include a control for past exposure to the 1AF program. Additionally,
the PAP proposed to include a spillover inverse probability weight, with spillover likelihood measured by a
farmer’s total agricultural contacts that were randomized into treatment. Including this weighting does not
change the statistical significance or qualitative interpretation of our results (see Table 19); for parsimony
we report un-weighted results.

12See Table 18 for MHT-adjusted and randomization inference p-values, none of which change the
interpretation of our results.

13Each practice is tied to farming aspects that 1AF has identified as important for crop yields; these
are documented in a 95-page manual. Appropriate plant density avoids plants competing for sunlight and
nutrients while maximizing the use of scarce land by not planting too sparsely.

14See Table 11 in Appendix D for analogous results when we restrict to the primary sample.

11



phosphate) at planting and CAN (calcium ammonium nitrate) several weeks later. As a
placebo test we include an indicator variable for participant use of an ox-driven plow. 1AF
emphasizes the timing of plowing over the method. Since most farmers do not own an
ox-plow, 1AF discourages waiting for one to become available and encourage focusing on
timing relative to the rainy season onset.

Columns (1)-(3) show that treated participants are more likely than control farmers to
follow spacing recommendations. Adherence to recommended spacing increases by almost
60% (160%) for row spacing (plant spacing) among farmers unacquainted with the program.
Similarly, treated farmers are 170% more likely to use appropriate fertilizer timing. In
column (4), we can see that the treatment did not affect the likelihood that a farmer used
an ox-plow.

It is not surprising that experienced farmers may have overlooked what might seem like
basic facts. Research suggests that even highly-experienced producers can fail to notice
crucial features of the production process (Hanna, Mullainathan and Schwartzstein, 2014)
or less-salient profitability margins (Beaman et al., 2013; Duflo, Kremer and Robinson,
2008). Fertilizer recommendations in the region typically focus more on the amount of
fertilizer rather than on application timing.15

Input intensification is an important contributor to agricultural productivity gains.
Panels B and C of table 1 therefore examine program impacts on the intensive margins of
production. The main variables are expenditure on fertilizer, seeds, and labor (both paid
and unpaid, with the latter valued as described in section 1.3), with treatment effects on
total expenditures shown in panel B and per-acre measures in panel C. Enrolled farmers
spend 75% more on fertilizer, 26% more on seeds, 18% more on paid labor, and 37% more
on unpaid labor. These are substantial expenditure increases, which we account for in our
analysis of profit below.16

Comparing treatment effects for pre-exposed and new participants

Table 1 also reports estimated coefficients on previous program exposure and its interaction
with the treatment. Note that these results do not reveal whether pre-exposed and new
farmers differ because of past participation in the program or due to pre-existing differences.

15While extension manuals often distinguish between fertilizer application at planting and at top dressing,
they rarely emphasize the importance of timing (e.g. National Farmers Information Services 2019).

161AF’s average gross margin on inputs is 32%, which is similar to markups in the agro-dealer sector in
the region (Tinsley and Agapitova, 2018). Cost increases are therefore unlikely driven by 1AF’s input prices.
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Table 1: Take-up of program practices and input use, full sample

Panel A: (1) (2) (3) (4)
Program practice Row Plant Fertilizer Used
adoption Spacing Spacing Timing Plow

1AF participant 0.24 0.21 0.65 0.05
(0.040) (0.030) (0.030) (0.040)

Pre-exposed 0.07 0.02 0.15 0.08
(0.030) (0.020) (0.030) (0.030)

1AF participant -0.11 -0.07 -0.18 0.03
× pre-exposed (0.050) (0.040) (0.040) (0.040)

Control group mean 0.41 0.13 0.37 0.76

Panel B: Fertilizer Seeds Paid Unpaid
Input costs (USD) Labor Labor

1AF participant 18.98 4.01 5.85 5.11
(1.930) (0.820) (3.030) (1.080)

Pre-exposed 5.62 1.23 6.17 -0.96
(1.740) (0.750) (1.900) (0.970)

1AF participant 0.45 0.62 2.89 1.31
× pre-exposed (2.630) (1.140) (3.700) (1.280)

Control group mean 25.23 15.59 31.90 13.69

Panel C: Fertilizer Seeds Paid Unpaid
Input costs/acre Labor Labor

1AF participant 17.15 0.17 -4.51 1.11
(2.750) (1.220) (4.300) (2.020)

Pre-exposed 2.14 -2.00 1.44 -4.88
(2.680) (1.330) (4.110) (1.810)

1AF participant -0.73 1.41 6.53 2.23
× pre-exposed (3.240) (1.470) (5.080) (2.360)

Control group mean 32.35 20.52 41.07 20.57
Observations 1896
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The results in Panel A of Table 1 show that the treatment effects on 1AF-promoted
practices are substantially larger for new participants (85% for row spacing, 50% for plant
spacing, and 38% for fertilizer timing). The pre-exposed also experience positive and
significant treatment effects, ranging from 13% (14%) for row (plant) spacing to 47% for
fertilizer timing. It appears that even seemingly basic information may bear repeating
multiple times.

Panels B and C of Table 1 show treatment effects on per-farmer and per-acre input
expenditures. Unlike the practices in panel A, the treatment effect on pre-exposed farmers
is statistically indistinguishable from that on new enrollees. Combined with the fact that
pre-exposed farmers in the control group use more fertilizer and paid labor than new
control farmers, this may suggest that credit constraints prevent pre-exposed farmers from
intensifying their production when not enrolled in the program. Pre-exposed farmers enroll
slightly more land in the program than new farmers. Their higher input use could signal
an intensive margin increase in maize production—or perhaps they simply had access to
more land or capital. Panel C suggests that many of these differences could be driven
by increases in maize acreage, although unpaid labor costs per acre are much lower for
pre-exposed farmers.

2.2 Main outcomes

Next, we examine the treatment effects on our primary outcomes of interest: program maize
yields, total maize output, and profits. Table 2 presents regression estimates of the average
treatment effects (ATEs), following equation (1), for our three outcomes of interest. Panel
A reports the results from the primary sample and panel B shows results in the full sample
(Appendix tables 12 and 13 report the full set of coefficients for the regressions with control
variables).

Participation in the 1AF program has an economically and statistically significant
impact on maize yields, total output, and profit. The treatment effect on program yields is
25-27% across the different samples and specifications and 18-25% for total output. The
estimated treatment effects on profit vary more across specifications, ranging between 9%
in the full sample with covariates to 18% in the primary sample. The point estimates are
attenuated in the full sample, but the effect of program participation is consistently positive
and significant.
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Table 2: Main results

Program Maize Total Maize Profit
Yields Output

(1) (2) (3) (4) (5) (6)

Panel A: Primary sample
1AF participant 295.43 303.99 264.90 274.15 58.02 61.93

(37.230) (36.810) (85.730) (75.820) (30.200) (27.520)

Baseline controls N Y N Y N Y
Control group mean 1128.39 1082.38 335.35
Observations 682 682 682 682 682 682

Panel B: Full sample
1AF participant 297.77 289.64 257.31 210.49 48.25 33.80

(23.490) (23.380) (49.700) (44.370) (18.110) (16.750)

Baseline controls N Y N Y N Y
Control group mean 1150.49 1164.00 364.61
Observations 1896 1896 1896 1896 1896 1896

Note: This table presents results from linear regressions of the three outcomes of interest on the treatment
dummy. Program maize yields are measured in kgs per acre, total maize output is measured in kgs, and
profits are measured in USD. Standard errors (in parentheses) are clustered at the treatment assignment
(farmer group cluster) level. The primary sample includes only farmers who had never previously participated
in the 1AF program. The full sample additionally includes a sample of farmers who had previously enrolled
in the 1AF program. All regressions include field office (site) fixed effects. Columns 2, 4, and 6 include
the full set of pre-specified controls, omitted here. Binary baseline controls are married, at least secondary
education by male household head, whether the household receives half of its income from farm labor,
whether the household used improved seeds at baseline, whether the household reported knowledge of
1AF practices at baseline, whether the farmer intercropped beans and maize at baseline, and whether the
household reported having access to credit. Continuous baseline controls are household size, a measure
of Fall Army Worm presence collected during the 2017 season, baseline maize acres, and baseline maize
yields per acre. Regressions in Panel B in columns 2, 4, and 6 additionally control for whether households
participated in 1AF in the past.
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2.3 Robustness to alternative specifications and attrition

We test the robustness of our results to different specifications, approaches to dealing with
attrition, and sample inclusion criteria. We describe the main variations below. We pre-
specified our baseline controls, but collected many additional covariates that may improve
the precision of our estimates. Following Belloni, Chernozhukov and Hansen (2014) and
Urminsky, Hansen and Chernozhukov (2016), we implement a double-Lasso procedure
for variable selection. In addition to pre-specified controls and fixed effects, we include
additional baseline demographic, wealth, and farming experience variables.17

We account for attrition due to missing data in the key variables: land size and yields.
This summary of our robustness checks is described in more detail in Appendix E. We
impute missing values for yields and land sizes in multiple ways. For yields, we use two
strategies; one imputes using non-missing “fresh weight” measurements when possible, and
conservatively assumes zero yields (i.e. total crop failure) for the rest; the other replaces
missing yield values with the mean yields by plot type (treated-enrolled, treated-non-enrolled,
control). For land size, we use the estimated relationships in the sample of households with
overlapping GPS-measured and self-reported land size to predict values for observations
that are missing data. Across the different rounds of data collection, we collected several
measures of self-reported land; we impute based on each measure individually and the mean
of all three self-reports. For the latter, if a participant is missing one or two self-reports, we
take the mean of non-missing self-reported values.

The results in Figure 1 summarize these specifications, overall revealing that our
estimates are robust to different specifications, sample definitions, and attempts to deal with
attrition.18 Each vertical bar represents a different estimated ATE. Point estimates from
our main specifications are indicated by green diamonds while alternative specifications
are denoted by blue squares. Along the bottom, the legend indicates the corresponding
specification for each estimate. For example, the left-most point estimate in Figure 1(a) is
based on a regression with the full sample that includes double-LASSO controls.

17See e.g. Panel B of Table 7 for details about these variables.
18Note that Figure 1 (a) has fewer permutations than (b) and (c). Since this outcome variable is based

purely on crop-cut yield measurements, the various approaches to dealing with missing land measurements
are irrelevant.
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(c) Robustness checks, profit

Figure 1: ATE of yields, output, and profits across specifications and samples with 95%
and 99% confidence intervals

17



3 Heterogeneity

We have shown that the ATE of the 1AF program is statistically and economically significant
for program yields, total maize output, and profits. Does this average mask underlying
heterogeneity in program impacts? Given that our profit results are slightly attenuated
when we account for missing data, we may want to know whether effects are larger for
specific sub-populations.

We examine treatment effect heterogeneity in three ways: unconditional quantile
treatment effects, distribution regressions (Chernozhukov, Fernández-Val and Melly, 2013),
and machine learning methods introduced by Chernozhukov et al. (2018). The three
methods produce consistent results, so we present one set here and the others in Appendix
F.

Figure 2 displays estimates of the treatment effect of program participation on uncondi-
tional quantiles of the outcome distributions (Firpo, 2007; Frölich and Melly, 2010). The
treatment effect is remarkably consistent across the distribution of program maize yields.
For total maize production and profits, treatment effects for farmers at the top end of
the output distribution are substantially lower. For these two outcomes, we cannot detect
significant treatment effects for the top two deciles of the distribution.

4 Epilogue: participation decisions a year later

We now turn to farmer behavior in the year after our study. We match our sample farmers
to 1AF administrative data and examine their choices in the subsequent season. The goal
of this analysis is to shed some light on the mechanisms through which the program works,
recognizing that these results are only suggestive.

First, we ask whether treated farmers are more or less likely to enroll in the subsequent
season than the control farmers. We do not have strong a priori expectations about the
extensive margin effect. If treated farmers learn that program resources are more valuable
than they thought, they may re-enroll in larger proportions. If the program instead helps
farmers “graduate” by nudging them across a poverty trap threshold, then we might expect
fewer treated farmers to re-enroll. Column 1 of Table 3 shows that being randomly allocated
to participation in 2017 did not affect the probability that farmers enrolled in 2018. We
may be picking up a mix of the two aforementioned effects.

In addition to the extensive margin decision, farmers choose how much land to enroll.
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Figure 2: Unconditional quantile treatment effects
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Table 3: Re-enrollment after the experiment

Re-enrolled Acres enrolled Acres enrolled
in 2018 in 2018 in 2018, missings=0
(1) (2) (3)

Panel A: Primary sample
1AF participant 0.00 0.15 0.09

(0.030) (0.040) (0.040)

Control group mean 0.66 0.62 0.62
Observations 682 441 682

Panel B: Full sample
1AF participant -0.01 0.15 0.10

(0.020) (0.030) (0.030)

Control group mean 0.67 0.61 0.61
Observations 1896 1267 1896

Note: This table presents results from linear regressions of the three outcomes of interest on the treatment
dummy. Re-enrolled in 2018 is a dummy variable equal to one if the client ID shows up in the 1AF
administrative data as enrolled in 2018, the season after the experiment. Acres enrolled in 2018 is the land
size farmers chose to enroll in the 1AF program in 2018. Column 3 assumes that any missing farmers chose to
enroll zero land, and estimates the effect on acreage including those farmers. Standard errors (in parentheses)
are clustered at the treatment assignment (farmer group cluster) level. The primary sample includes only
farmers who had never previously participated in the 1AF program. The full sample additionally includes a
sample of farmers who had previously enrolled in the 1AF program. All regressions include field office (site)
fixed effects. Regressions on the full sample control for whether households participated in 1AF in the past.
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Larger enrollments include more credit and larger quantities of high-quality inputs, but
require farmers to commit more land to a specific crop. Columns 2 and 3 of Table 3 show
that farmers in the treatment group increase the amount of land that they enroll in the
subsequent year. This result holds even in column 3, where we conservatively count farmers
absent from the administrative data as having chosen to enroll zero acres.

These findings are consistent with several mechanisms. Participation in the 1AF program
may relax participants’ credit constraints, or it may help farmers learn about the returns
to program participation and agricultural intensification. One additional piece of evidence,
found in Table 14 reveals the same pattern among pre-exposed farmers with one and two
years of past program experience. Although pre-exposure is non-random, the exposure to
an additional year is randomly assigned. Among these repeat-participants, we see increased
enrollments of 0.23 and 0.1 acres (for farmers who had enrolled once and twice prior to the
study, respectively).

5 Discussion

We uncover large ATEs from participation in 1AF’s core program. The treatment effects are
remarkably stable across sample definitions and specifications and we find limited evidence
of heterogeneous effects. Our results are consistent with the large theoretical literature on
poverty traps as well as empirical work showing that poor households benefit from bundled
interventions (Banerjee et al., 2015; Bandiera et al., 2017; Balboni et al., 2020). If we believe
that farmers face multiple simultaneous constraints, an intervention that only provides
credit or information may not suffice to raise yields and profits in a meaningful way.

One important question that we cannot answer with our study design is whether the
bundled approach is most cost-effective, or whether a simpler program could work as well
at lower cost? Our work suggests some considerations that future work on this topic could
explore further. In contexts where the nature and severity of market failures vary sharply
across individuals or space, it may be prohibitively costly for an organization to target
interventions to each locality. A standardized program that targets multiple constraints
may allow an organization to scale across space without tweaking program specifics in
each new context. The cost-effectiveness of bundled programs therefore hinges on the costs
associated with “over-bundling” relative to the cost of the market research required to tailor
programs to each new context.

Returning to the broader question of the role of the agricultural sector in Africa’s future
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and the contribution of smallholder farmers to economic growth, we recognize the limits
of a single study in a particular region in a specific year. A deeper discussion of external
validity (even as it applies to extrapolating to other 1AF locations) would be valuable, but
is beyond the scope of the current paper. Nevertheless, the 1AF model addresses several
of the concerns about smallholder farming systems that Collier and Dercon (2014) raise.
First, a large organization like 1AF can leverage their scale and human capital to process
and distill large amounts of information to share with small farmers when and where they
need it. This allows small farmers to benefit from skills and technology transfers otherwise
often out of reach for all but the largest market participants.

A second reason why small farmers may struggle to compete relates to how scale
influences capital costs, logistical capacity, and bargaining power. Large organizations
can and do leverage grant funding for working capital from both agro-input suppliers
and banks (Tinsley and Agapitova, 2018). Most financial institutions shy away from
input loans, preferring to provide credit over shorter time periods. By extending their
credit to smallholders, organizations like 1AF can effectively reduce the transaction costs
and asymmetric information facing small farmers. Third, 1AF imports their own inputs,
conducts their own quality controls, and manages their own storage facilities. In so doing,
they have successfully integrated several parts of the value chain, allowing them to benefit
from economies of scale—the benefits of which they can pass on to their clients.

Perhaps this new evidence will nudge a few cynics into reconsidering the future for
(smallholder) agriculture in sub-Saharan Africa. For those already optimistic about the
sector, we hope that it provides compelling input into a discussion about optimal instruments
for boosting productivity. Thinking about large-scale organizations like 1AF as enabling
creative vertically-integrated opportunities for farmers may hold a clue to the types of
investments needed to transform African agriculture into a more dynamic sector.
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B B – Additional summary statistics and balance checks

B.1 Balance by treatment assignment

Table 4: Baseline balance by treatment assignment, full sample

(1) (2)
Control Treatment Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Married (0/1) 0.88 (0.01) 0.88 (0.01) 0.01
Household head has secondary school (0/1) 0.38 (0.02) 0.44 (0.02) 0.05*
Household income >50% from farm labor (0/1) 0.78 (0.01) 0.78 (0.01) 0.00
Used improved ag technology in 2016 (0/1) 0.78 (0.01) 0.81 (0.01) 0.02
Reports knowledge of 1AF practices (0/1) 0.47 (0.02) 0.51 (0.02) 0.04
Intercropped maize and beans in 2016 (0/1) 0.48 (0.02) 0.48 (0.02) 0.00
Reports having credit access in 2016 (0/1) 0.71 (0.01) 0.74 (0.02) 0.03
Household size 6.66 (0.08) 6.90 (0.09) 0.26**
Acres under maize cultivation in 2016 1.01 (0.03) 1.05 (0.03) 0.04
Maize yield (kg/acre) in 2016 537.01 (13.52) 587.77 (16.25) 51.99**

F-statistic (test of joint significance) 0.82
Number of observations 1896
Note: field office area fixed effects included in all balance test regressions. Standard errors are clustered at
the treatment assignment (farmer group cluster) level.
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Table 5: Baseline balance by treatment assignment, primary sample

(1) (2)
Control Treatment Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Married (0/1) 0.90 (0.01) 0.89 (0.02) -0.01
Household head has secondary school (0/1) 0.34 (0.02) 0.38 (0.03) 0.01
Household income >50% from farm labor (0/1) 0.79 (0.02) 0.76 (0.03) -0.02
Used improved ag technology in 2016 (0/1) 0.62 (0.02) 0.66 (0.03) 0.00
Reports knowledge of 1AF practices (0/1) 0.06 (0.01) 0.14 (0.02) 0.07***
Intercropped maize and beans in 2016 (0/1) 0.47 (0.03) 0.56 (0.03) 0.05
Reports having credit access in 2016 (0/1) 0.71 (0.02) 0.73 (0.03) 0.03
Household size 6.63 (0.13) 6.75 (0.15) 0.20
Acres under maize cultivation in 2016 1.00 (0.04) 0.99 (0.05) -0.01
Maize yield (kg/acre) in 2016 429.55 (21.81) 443.26 (21.75) -26.34

F-statistic (test of joint significance) 1.25
Number of observations 682
Note: field office area fixed effects included in all balance test regressions. Standard errors are clustered at
the treatment assignment (farmer group cluster) level.

Table 6: Baseline balance by treatment assignment, pre-exposed sample

(1) (2)
Control Treatment Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Married (0/1) 0.86 (0.01) 0.88 (0.01) 0.01
Household head has secondary school (0/1) 0.41 (0.02) 0.47 (0.02) 0.06*
Household income >50% from farm labor (0/1) 0.77 (0.02) 0.79 (0.02) 0.01
Used improved ag technology in 2016 (0/1) 0.88 (0.01) 0.88 (0.01) 0.00
Reports knowledge of 1AF practices (0/1) 0.71 (0.02) 0.71 (0.02) 0.00
Intercropped maize and beans in 2016 (0/1) 0.48 (0.02) 0.43 (0.02) -0.02
Reports having credit access in 2016 (0/1) 0.71 (0.02) 0.74 (0.02) 0.01
Household size 6.68 (0.10) 6.98 (0.11) 0.26*
Acres under maize cultivation in 2016 1.01 (0.03) 1.08 (0.04) 0.05
Maize yield (kg/acre) in 2016 602.12 (16.73) 661.56 (21.24) 79.04***

F-statistic (test of joint significance) 1.26
Number of observations 1214
Note: field office area fixed effects included in all balance test regressions. Standard errors are clustered at
the treatment assignment (farmer group cluster) level.
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B.2 Baseline comparison of pre-exposed and new farmers

Table 7: Baseline balance across “primary” and pre-exposed samples

(1) (2)
Primary Sample Pre-Exposed Sample Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Panel A: Pre-Specified Control Variables
Married (0/1) 0.90 (0.01) 0.87 (0.01) -0.02
Household head has secondary school (0/1) 0.36 (0.02) 0.44 (0.01) 0.07**
Household income >50% from farm labor (0/1) 0.78 (0.02) 0.78 (0.01) 0.04*
Used improved ag technology in 2016 (0/1) 0.64 (0.02) 0.88 (0.01) 0.21***
Reports knowledge of 1AF practices (0/1) 0.10 (0.01) 0.71 (0.01) 0.59***
Intercropped maize and beans in 2016 (0/1) 0.51 (0.02) 0.46 (0.01) -0.08***
Reports having credit access in 2016 (0/1) 0.72 (0.02) 0.73 (0.01) 0.06***
Household size 6.68 (0.10) 6.82 (0.07) 0.29**
Acres under maize cultivation in 2016 0.99 (0.03) 1.05 (0.02) 0.09**
Maize yield (kg/acre) in 2016 435.32 (15.59) 629.64 (13.34) 171.79***

Panel B: Additional Baseline Variables
Female Respondent (0/1) 0.57 (0.02) 0.61 (0.01) 0.02
Income from non-farm labor (0/1) 0.50 (0.02) 0.49 (0.01) -0.02
Income from business (0/1) 0.67 (0.02) 0.64 (0.01) -0.01
Income from remittances (0/1) 0.43 (0.02) 0.51 (0.01) 0.09***
Income from formal employment (0/1) 0.26 (0.02) 0.26 (0.01) 0.01
Hired farm labor in 2016 (0/1) 0.72 (0.02) 0.75 (0.01) 0.04
DAP used in 2016 (kgs) 22.64 (1.45) 36.15 (1.03) 12.35***
# of non-maize crops cultivated 0.51 (0.03) 0.56 (0.02) 0.05
# extension officer visits, 2016 0.18 (0.04) 0.22 (0.03) 0.07
# of non-1AF farming org. memberships 0.17 (0.02) 0.15 (0.01) 0.02
Asset score 17.05 (0.27) 20.15 (0.20) 2.79***

F-statistic (test of joint significance) 39.19
Number of observations 1896
Note: field office area fixed effects included in all balance test regressions. Standard errors are clustered at
the treatment assignment (farmer group cluster) level.
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B.2.1 Distributions of nonbinary baseline variables by treatment status
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Figure 3: Distributions of non-binary baseline characteristics, by treatment status
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C C – Variable construction and measurement

Maize yield measurements were taken by enumerators on two 40-square-meter areas selected
from farmer plots. Enumerators marked each area before farmers harvested any maize. For
treated farmers, two areas were marked each on enrolled and non-enrolled land. Additionally,
if farmers planned to harvest green maize from some parts of their plot, enumerators marked
areas within these parts for measurement. Yield variables use the average dry weight from
the two marked areas. For treated farmers, when we consider farmer-level outcomes, we
average yields across enrolled and non-enrolled land, weighted by the proportion of land
farmers enrolled.

We calculate projected revenues using average market prices from nearby vendors
covering post-harvest months, multiplied by 1.08 to account for typical price increases
over the consumption/selling season. We calculate farmer costs using program costs and
self-reported costs for treated farmers, and self-reported seed and fertilizer costs for control
farmers. Labor costs include land prep, plowing, and planting costs, collected in a survey
after planting, as well as post-planting costs collected at harvest time. For paid labor, we
use farmer self-reported costs by planting phase. To include the opportunity cost of unpaid
labor use, we calculate the mean day wage reported within the sample, devalue this mean
wage by 50% (roughly the rural unemployment rate according to DHS data), and multiply
this devalued mean by total person-days of unpaid labor for each planting phase. Profit is
simply the difference between projected farmer revenues and costs.

Note that in the original PAP, all labor costs were specified to be devalued by 50%. We
feel that it is more appropriate to only make this correction for unpaid labor, as this more
appropriately reflects the expected wage a household laborer could earn in the market. We
show in Table 8 that our profit results are robust to valuing all labor at the market rate,
although unsurprisingly the treatment effect does decrease slightly in magnitude.

Panel B of Table 11 (and in 1 in the main text) considers input use valued in USD,
while tables 9 and 10 measure fertilizer use in kilograms. We detect a sizeable increase in
fertilizer use when measured in kilograms, reinforcing that it is unlikely 1AF prices that are
driving increased expenditures. We can also break down fertilizer use by phase, and here
we see the underlying substitution behind the effect on fertilizer timing noted in Panel A of
Table 11. Farmers in the treatment group are not only using more fertilizer at the “correct”
time, but also using less fertilizer at incorrect times.
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Table 8: Profit with different labor cost definitions,

Primary Sample Full Sample
(1) (2) (3) (4)

Profit (PAP def) Profit (Mkt rate labor) Profit (PAP def) Profit (Mkt rate labor)

1AF participant 58.021∗ 53.122∗ 48.245∗∗∗ 42.297∗∗
(30.196) (30.019) (18.105) (17.933)

Observations 682 682 1896 1896
R2 0.124 0.120 0.075 0.074
Control Mean Dep. Var 335.349 320.703 364.615 350.920
This table presents results from linear regressions of the outcomes in each column on the treatment dummy. Columns (1) and (3) value
paid labor at market rates and values unpaid labor at 50% of market rate (following PAP). Columns (2) and (4) value all labor at market
rates. Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster) level. All regressions include field
office (site) fixed effects. Full sample regressions additionally control for pre-exposure status.

Table 9: Quantity of fertilizer used (kgs) by planting phase, primary sample

At Planting Post Planting
(1) (2) (3) (4)
DAP CAN DAP CAN

1AF participant 22.250∗∗∗ -0.054 -7.169∗∗∗ 15.472∗∗∗
(1.906) (0.145) (1.846) (2.378)

Observations 682 682 682 682
R2 0.236 0.013 0.221 0.211
Control Mean Dep. Var 8.976 0.213 10.256 18.068
Results in this table are from linear regressions of the outcomes in each column on
the treatment dummy. Standard errors (in parentheses) clustered at the treatment
assignment (farmer group cluster) level. All regressions include field office (site) fixed
effects.
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Table 10: Quantity of fertilizer used (kgs) by planting phase, full sample

At Planting Post Planting
(1) (2) (3) (4)
DAP CAN DAP CAN

1AF participant=1 22.201∗∗∗ -0.035 -7.188∗∗∗ 15.821∗∗∗
(1.995) (0.177) (1.879) (2.325)

Past 1AF 7.708∗∗∗ 0.235 -2.763∗ 5.281∗∗
participant=1 (1.650) (0.261) (1.531) (2.065)

1AF participant=1 -2.773 0.258 3.497∗ 0.351
× Past 1AF participant=1 (2.555) (0.326) (1.813) (3.020)

Observations 1896 1896 1896 1896
R2 0.177 0.009 0.166 0.185
Control Mean Dep. Var 15.044 0.394 8.598 21.945
Results in this table are from linear regressions of the outcomes in each column on
the treatment dummy. Standard errors (in parentheses) clustered at the treatment
assignment (farmer group cluster) level. All regressions include field office (site) fixed
effects.
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D D – Intermediate outcomes under alternative sample spec-
ifications
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Table 11: Take-up of program practices and input use, primary sample

-2

Panel A: (1) (2) (3) (4)
Take-up of program practicesRow SpacingPlant SpacingFertilizer Timing Used Plow

1AF participant 0.22*** 0.20*** 0.66*** 0.05
(0.040) (0.030) (0.030) (0.040)

Control group mean 0.37 0.09 0.26 0.73
N 682 682 682 682

Panel B:
Input costs (USD) Fertilizer Seeds Paid Labor Unpaid Labor

1AF participant 18.74*** 3.84*** 5.32* 4.90***
(1.950) (0.810) (2.920) (1.000)

Control group mean 20.55 14.77 29.63 14.65
N 682 682 682 682

Panel C:
Input costs/acre Fertilizer Seeds Paid Labor Unpaid Labor

1AF participant 17.02*** 0.21 -4.09 0.61
(2.720) (1.110) (3.770) (1.960)

Control group mean 28.34 21.18 41.85 23.48
N 682 682 682 682
This table presents results from linear regressions of the outcome variables in each column on the treatment dummy.
Panel A shows the effect of 1AF participation on the use of practices recommended by the NGO: the spacing used
between plants and fertilizer use at the correct time in the season. Row and plant spacing are indicator variables for
whether or not a farmer was within 5cm of the recommended spacing, for the rows in which they planted and the plants
within rows, respectively. Fertilizer timing is an indicator variable for whether or not farmers applied DAP at planting
and CAN at top dressing (the timing recommended by the NGO). Used plow is an indicator for whether or not the
farmer used a plow to prepare their plot. Panel B shows the effect of 1AF participation on the intensive margin of
farmer expenses for fertilizer, seeds, paid labor, and unpaid labor. Costs are expressed in USD. For more on how we
define labor costs, see Appendix C. Panel C shows the effect of 1AF participation on investment per acre for the cost
types shown in Panel B. Standard errors (in parentheses) are clustered at the treatment assignment (farmer group
cluster) level. All regressions include field office (site) fixed effects. This table includes only farmers in the primary
sample.

Note: This table presents results from linear regressions of the outcome variables in each column on the
treatment dummy. Panel A shows the effect of 1AF participation on the use of practices recommended
by the NGO: the spacing used between plants and fertilizer use at the correct time in the season. Row
and plant spacing are indicator variables for whether or not a farmer was within 5cm of the recommended
spacing, for the rows in which they planted and the plants within rows, respectively. Fertilizer timing is an
indicator variable for whether or not farmers applied DAP at planting and CAN at top dressing (the timing
recommended by the NGO). Used plow is an indicator for whether or not the farmer used a plow to prepare
their plot. Panel B shows the effect of 1AF participation on the intensive margin of farmer expenses for
fertilizer, seeds, paid labor, and unpaid labor. Costs are expressed in USD. For more on how we define labor
costs, see Appendix C. Panel C shows the effect of 1AF participation on investment per acre for the cost
types shown in Panel B. Standard errors (in parentheses) are clustered at the treatment assignment (farmer
group cluster) level. All regressions include field office (site) fixed effects. This table includes only farmers
in the primary sample.
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Table 12: Primary outcomes with controls, primary sample

(1) (2) (3)
Program Maize Yields Total Maize Output Profit

1AF participant 303.99∗∗∗ 274.15∗∗∗ 61.93∗∗
(36.81) (75.82) (27.52)

Married 119.74∗ -8.55 -5.14
(65.30) (147.30) (53.60)

Household head has 4.52 262.50∗∗∗ 88.15∗∗∗
secondary school (50.68) (88.32) (32.47)

Household income 28.20 47.94 21.24
>50% from farm labor (46.10) (79.68) (29.37)

Used improved ag -99.26∗∗ -146.89∗ -62.64∗
technology in 2016 (47.00) (86.66) (31.70)

Reports knowledge of 22.78 52.70 2.10
1AF practices (74.40) (144.61) (53.95)

Intercropped maize -21.71 -70.62 -23.67
and beans in 2016 (47.53) (92.07) (33.85)

Reports having -93.83∗∗ -65.93 -26.95
credit access in 2016 (37.53) (79.57) (28.89)

Household size 6.09 29.10∗ 11.42∗∗
(7.66) (15.60) (5.45)

Acres under maize 72.03∗∗ 362.62∗∗∗ 111.05∗∗∗
cultivation in 2016 (29.22) (73.38) (26.66)

Maize yield 0.18∗∗∗ 0.45∗∗∗ 0.15∗∗∗
(kg/acre) in 2016 (0.05) (0.10) (0.04)

FAW incidence -70.60 -135.38 -50.90
(45.96) (117.44) (43.37)

Observations 682 682 682
R2 0.199 0.254 0.211
Results in this table are from linear regressions of the outcome variables on the treatment dummy.
Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster)
level. All regressions include field office (site) fixed effects.
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Table 13: Primary outcomes with controls, full sample

(1) (2) (3)
Program Maize Yields Total Maize Output Profit

1AF participant 289.64∗∗∗ 210.49∗∗∗ 33.80∗∗
(23.38) (44.37) (16.75)

Past 1AF participant -23.53 26.84 10.46
(28.62) (65.17) (23.35)

Married 60.66∗ 59.95 11.68
(36.26) (69.44) (25.88)

Household head has 9.78 187.58∗∗∗ 62.72∗∗∗
secondary school (26.20) (51.14) (18.66)

Household income 56.92∗∗ 135.18∗∗ 54.96∗∗∗
>50% from farm labor (26.22) (51.93) (19.36)

Used improved ag -42.32 -72.97 -34.45
technology in 2016 (36.54) (65.33) (24.13)

Reports knowledge of 31.68 79.06 20.76
1AF practices (30.92) (55.74) (21.09)

Intercropped maize -13.67 -16.00 1.83
and beans in 2016 (26.04) (56.03) (20.76)

Reports having -21.37 -27.78 -19.44
credit access in 2016 (24.58) (47.10) (17.47)

Household size 4.47 38.72∗∗∗ 13.30∗∗∗
(4.60) (9.76) (3.56)

Acres under maize 30.60∗ 374.50∗∗∗ 118.11∗∗∗
cultivation in 2016 (16.78) (54.46) (19.89)

Maize yield 0.13∗∗∗ 0.36∗∗∗ 0.11∗∗∗
(kg/acre) in 2016 (0.03) (0.08) (0.03)

FAW incidence -28.56 -73.86 -27.01
(31.57) (69.45) (25.24)

Observations 1896 1896 1896
R2 0.165 0.215 0.168
Results in this table are from linear regressions of the outcome variables on the treatment dummy.
Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster)
level. All regressions include field office (site) fixed effects.
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Table 14: Acres enrolled in 2018, from past new enrollees

(1) (2)
2018 Acres (Joined 2016) 2018 Acres (Joined 2015)

1AF participant 0.23∗∗∗ 0.10∗∗
(0.04) (0.04)

Observations 344 262
R2 0.177 0.143
Control Mean Dep. Var 0.58 0.63
Results in this table are from linear regressions of the outcome variables on the treatment dummy.
The outcome variable is the enrolled land size recorded in the 2018 administrative data. Standard
errors (in parentheses) are clustered at the treatment assignment (farmer group cluster) level. All
regressions include field office (site) fixed effects.
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E E – Robustness and external validity

E.1 Distributions of outcome variables

Some readers may wish to see what the raw data look like, in addition to the regression
results. Figure 4 shows the distributions of total production, maize acreage, and overall
maize yields by treatment status. For treatment farmers, total maize production and acreage
include both enrolled and non-enrolled plots, and the yields represent total harvests divided
by each plot’s respective size. In the top figure, we can see that treatment farmers are less
likely to attain very low production levels. Further, the treatment group distribution lies to
the right of the control group distribution for much of the support.

The second panel shows that treatment farmers also plant slightly more land to maize
(by 0.1 acres on average, significant at the 1% level). The bottom panel shows overall
per-farmer yields. Similar to the level effects, treatment group farmers are less likely to
experience very low yields, and the distribution of yields is clearly shifted to the right. The
top figure here corresponds to what we call the total output measure, since it accounts both
for yields on the enrolled plot and the non-enrolled plot. The bottom panel is different than
the program maize yields as it counts yields on both program and non-program land for
treated farmers.

E.2 Attrition

This section addresses the different types of attrition that we find in our data: first, we
examine attrition that occurred between the baseline survey but before farmers passed
the pre-enrollment qualification. To qualify for the study, farmers had to pay a 500 KES
deposit and form farmer groups. Farmers who did not complete the prepayment and/or
failed to form a group of at least 3 members were dropped. Because the baseline was
completed before this qualification stage, the study intentionally sampled more farmers than
the desired sample size. Since treatment was assigned after the pre-qualification, we should
not expect any threats to internal validity from post-baseline attrition. Understanding
what caused this attrition may however be informative with respect to generalizability. We
examine this in Section E.2.1.

Conditional on being enrolled in the study, attrition is driven by two main factors:
missing land size values and missing harvest data. During data cleaning, we lose 175
observations that are missing land size and 329 observations that are missing dry weight
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harvest data (of these 329, we observe fresh weight harvest measurements for 53 observations).
This attrition is not trivial, and in the following subsections we discuss how we ensure our
results are robust to a variety of assumptions about the missing data.

E.2.1 Attrition prior to season and external validity

Table 15 shows how the qualified and dropped samples differ. The farmers who managed
to qualify differ significantly from the farmers who dropped out. Farmers who passed the
pre-qualification stage were more likely to be pre-exposed, had better knowledge of 1AF
practices, were more likely to use improved seeds and fertilizer, and were more likely to
intercrop. Qualified farmers also seem more specialized in farming, as measured by the
higher likelihood of receiving more than half their income from farm labor, farming more
acres for maize in 2016 and 2015, and the amount of maize that they harvested in previous
seasons. Finally, qualified farmers are wealthier, as indicated by ownership of more land
and a higher asset score.

These variables suggest that 1AF may not reach the poorest farmers—a common
challenge for entrepreneurially-focused agriculture programs (Carter, Tjernström and Toledo,
2019). That said, compared to a more representative sample—Tegemeo Institute’s panel
survey of maize farming households—the qualified farmers cultivate fewer acres than the
Tegemeo sample (see Figure 5).19 Note that the Tegemeo survey relies on self-reported
acreage; we therefore report our baseline self-reported acreage variable (dotted line in Figure
5) in addition to the GPS-measured land sized (short-dashed line in Figure 5). Our sample
farmers farm smaller plots than the average TAPRA survey participant.

Our pre-exposed farmers could be driving these differences. To check this, Table 16
repeats the balance test for the “primary” sample (i.e., without the pre-exposed farmers).
Farmers who make it past the pre-qualification stage are still significantly different, but
mostly related to wealth and agricultural specialization. In terms of knowledge of 1AF
practices, use of improved seed and fertilizer, credit access, and intercropping, the two groups
are statistically indistinguishable. We see also that many differences, while significant, are
much smaller in magnitude.

19Tegemeo Institute’s panel survey was designed to be broadly representative of the maize-growing regions
of Kenya.
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Table 15: Baseline balance across enrolled and dropped groups

(1) (2)
Qualified Dropped Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Panel A: Pre-Specified Control Variables
Married (0/1) 0.88 (0.01) 0.88 (0.01) 0.00
Household head has secondary school (0/1) 0.40 (0.01) 0.32 (0.02) -0.08***
Household income >50% from farm labor (0/1) 0.77 (0.01) 0.72 (0.02) -0.05**
Used improved ag technology in 2016 (0/1) 0.77 (0.01) 0.68 (0.02) -0.09***
Reports knowledge of 1AF practices (0/1) 0.49 (0.01) 0.34 (0.02) -0.15***
Intercropped maize and beans in 2016 (0/1) 0.47 (0.01) 0.43 (0.02) -0.04*
Reports having credit access in 2016 (0/1) 0.71 (0.01) 0.70 (0.02) 0.00
Household size 6.72 (0.05) 6.09 (0.10) -0.63***
Acres under maize cultivation in 2016 1.01 (0.02) 0.84 (0.03) -0.17***
Maize yield (kg/acre) in 2016 555.75 (9.17) 470.22 (17.01) -85.52***

Panel B: Additional Baseline Variables
Female Respondent (0/1) 0.59 (0.01) 0.51 (0.02) -0.08***
Income from non-farm labor (0/1) 0.48 (0.01) 0.57 (0.02) 0.10***
Income from business (0/1) 0.64 (0.01) 0.58 (0.02) -0.06***
Income from remittances (0/1) 0.48 (0.01) 0.46 (0.02) -0.02
Income from formal employment (0/1) 0.26 (0.01) 0.19 (0.02) -0.08***
Hired farm labor in 2016 (0/1) 0.72 (0.01) 0.67 (0.02) -0.05**
DAP used in 2016 (kgs) 30.83 (0.75) 22.69 (1.92) -8.14***
# of non-maize crops cultivated 0.54 (0.01) 0.46 (0.03) -0.07**
# extension officer visits, 2016 0.19 (0.02) 0.13 (0.03) -0.06
# of non-1AF farming org. memberships 0.15 (0.01) 0.10 (0.01) -0.05**
Asset score 18.75 (0.15) 16.18 (0.26) -2.56***

F-statistic (test of joint significance) 94.36
Number of observations 3002
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Table 16: Baseline balance across enrolled and dropped groups among primary sample

(1) (2)
Qualified Dropped Difference

Variable Mean (SE) Mean (SE) (2)-(1)

Panel A: Pre-Specified Control Variables
Married (0/1) 0.88 (0.01) 0.87 (0.02) -0.01
Household head has secondary school (0/1) 0.35 (0.02) 0.27 (0.03) -0.08***
Household income >50% from farm labor (0/1) 0.76 (0.01) 0.68 (0.03) -0.08***
Used improved ag technology in 2016 (0/1) 0.59 (0.02) 0.57 (0.03) -0.02
Reports knowledge of 1AF practices (0/1) 0.10 (0.01) 0.10 (0.02) 0.01
Intercropped maize and beans in 2016 (0/1) 0.51 (0.02) 0.47 (0.03) -0.04
Reports having credit access in 2016 (0/1) 0.67 (0.02) 0.68 (0.03) 0.01
Household size 6.59 (0.09) 5.84 (0.13) -0.76***
Acres under maize cultivation in 2016 0.95 (0.03) 0.76 (0.04) -0.19***
Maize yield (kg/acre) in 2016 433.24 (13.78) 398.07 (22.38) -35.17

Panel B: Additional Baseline Variables
Female Respondent (0/1) 0.57 (0.02) 0.52 (0.03) -0.05
Income from non-farm labor (0/1) 0.46 (0.02) 0.56 (0.03) 0.10***
Income from business (0/1) 0.63 (0.02) 0.58 (0.03) -0.05*
Income from remittances (0/1) 0.42 (0.02) 0.47 (0.03) 0.05
Income from formal employment (0/1) 0.25 (0.01) 0.18 (0.02) -0.07***
Hired farm labor in 2016 (0/1) 0.68 (0.02) 0.67 (0.03) -0.01
DAP used in 2016 (kgs) 21.92 (1.28) 14.82 (1.75) -7.10***
# of non-maize crops cultivated 0.51 (0.02) 0.44 (0.04) -0.06
# extension officer visits, 2016 0.16 (0.03) 0.14 (0.05) -0.02
# of non-1AF farming org. memberships 0.15 (0.02) 0.09 (0.02) -0.06**
Asset score 16.31 (0.26) 14.79 (0.35) -1.51***

F-statistic (test of joint significance) 46.52
Number of observations 1155
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E.2.2 Within-season attrition

To test the robustness of our results to the potentially non-random missing data, we impute
missing values in a number of ways. The main source of missingness occurs in the harvest
variable (yields on the crop-cut plot) and the land size variable.

For yields, we use two different imputation strategies. First, for a subset of farmers, we
have non-missing “fresh weight” yields (but missing dry weight yields). We use the sample
of farmers for whom we have both fresh and dry maize weights to estimate the relationship
between the two variables. We then predict the dry weight yields for the subsample with
only fresh weights. For farmers without any harvest weights, we make the most conservative
assumption and assume zero yields (i.e., total crop failure). This should allow us to estimate
a realistic lower bound on possible treatment effects. Second, we complement the above
with a simpler approach where we replace missing yield values with the mean yields by plot
type (treated-enrolled plot, treated-non-enrolled plot, control plot).

For missing land size, we use survey-collected self-reported measures across three different
surveys that were part of the data collection efforts. Similarly to the yield imputations, we
use the estimated relationships in the sample of households with overlapping GPS-measured
land size and self-reported data to predict land size for the missing observations. Here,
too, we conduct the predictions separately by plot type. Given that we have several
different self-reported measures, we report results from four different imputations, using
each self-reported value on its own (i)-(iii), and using the mean of these three self-reports
(iv). For the latter, if a participant is missing one of the three self-reports, we take the
mean of the non-missing self-reported values.
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E.3 Alternative specification details

Although the PAP pre-specified a set of baseline controls that should be included in analysis
of our outcomes of interest, the baseline survey contains a number of additional covariates
that may be useful in improving the precision of treatment effect estimates.20 Following
Belloni, Chernozhukov and Hansen (2014) and Urminsky, Hansen and Chernozhukov (2016),
we implement a double-Lasso procedure for variable selection. In addition to all pre-specified
controls and fixed effects, we additionally include respondent gender, DAP use, crop diversity,
extension officer visits, membership in other farming organizations, use of hired farm labor,
an assets score, and dummies for income from nonfarm labor, businesses, remittances, or
formal employment. Variable selection is distinct for each outcome variable and each sample
definition. The results of this exercise, presented in Table 17, demonstrate that the results
are not particularly sensitive to the inclusion of an optimal set of controls.

20An additional deviation from the original PAP is that the PAP included an additional covariate measuring
Fall Army Worm incidence. During the course of the 2017 season, a pest called Fall Army Worm had a
dramatic effect on Kenyan farmers. We were concerned that the pest may affect treatment estimates. To
measure the extent of FAW, enumerators visited farmer fields during the growing season and randomly
selected 30 plants to inspect and check for signs of Fall Army Worm. The problem was indeed widespread:
nearly 80% of farmers had at least some plants affected by FAW, and 66% of farmers had signs of FAW on
all inspected plants. In theory, we may be concerned that FAW incidence could be higher among treated
farmers, for example if their maize is healthier and more easily allows FAW to propagate. In practice,
however, including this variable as an additional control has no meaningful impact on the magnitude or
precision of our treatment effect estimates.
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Table 17: Main outcomes with double-Lasso variable selection

Program Maize Yields Total Maize Output Profit
(1) (2) (3) (4) (5) (6) (8) (8) (9)

Panel A: Primary sample
1AF participant 295.43*** 303.99*** 299.67*** 264.90*** 274.15*** 266.08*** 58.02* 61.93** 59.69**

(37.230) (36.810) (37.190) (85.730) (75.820) (73.720) (30.200) (27.520) (27.070)

Pre-specified controls N Y N N Y N N Y N
Lasso-selected controls N N Y N N Y N N Y
Control group mean 1128.39 1082.38 335.35
Observations 682 682 682

Panel B: Full sample
1AF participant 297.77*** 289.64*** 290.76*** 257.31*** 210.49*** 206.32*** 48.25*** 33.80** 32.90**

(23.490) (23.380) (23.190) (49.700) (44.370) (41.300) (18.110) (16.750) (15.860)

Pre-specified controls N Y N N Y N N Y N
Lasso-selected controls N N Y N N Y N N Y
Control group mean 1150.49 1164.00 364.61
Observations 1896 1896 1896

Note: This table presents results from linear regressions of the three outcomes of interest on the treatment
dummy. Program maize yields are measured in kgs per acre, total maize output is measured in kgs, and
profits are measured in USD. Standard errors (in parentheses) are clustered at the treatment assignment
(farmer group cluster) level. The primary sample includes only farmers who had never previously participated
in the 1AF program. The full sample additionally includes a sample of farmers who had previously enrolled
in the 1AF program. All regressions include field office (site) fixed effects. Columns 2, 5, and 8 include
the full set of pre-specified controls, omitted here. Binary baseline controls are married, at least secondary
education by male household head, whether the household receives half of its income from farm labor,
whether the household used improved seeds at baseline, whether the household reported knowledge of
1AF practices at baseline, whether the farmer intercropped beans and maize at baseline, and whether the
household reported having access to credit. Continuous baseline controls are household size, a measure
of Fall Army Worm presence collected during the 2017 season, baseline maize acres, and baseline maize
yields per acre. Regressions on the full sample additionally control for whether households participated
in 1AF in the past. Columns 3, 6, and 9 use the double-Lasso approach of Belloni, Chernozhukov and
Hansen (2014); Urminsky, Hansen and Chernozhukov (2016) to select control variables using 10-fold cross
validation. The Lasso regressions select from all baseline covariates included in columns 2, 5, and 8, as well
as the following additional baseline covariates: respondent gender, DAP use, crop diversity, extension officer
visits, membership in other farming organizations, use of hired farm labor, an assets score, and dummies for
income from nonfarm labor, businesses, remittances, or formal employment. Variable selection is distinct for
each outcome variable and each sample definition.
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Table 18: Main outcomes with MHT-adjusted p-values

Program Maize Yields Total Maize Output Profit

(1) (2) (3) (4) (5) (6)

Panel A: Primary sample
1AF participant 295.43 303.99 264.90 274.15 58.02 61.93
Unadjusted p-value (0.00) (0.00) (0.00) (0.00) (0.06) (0.03)
Westfall-Young adjusted p-value (0.00) (0.00) (0.01) (0.00) (0.09) (0.05)
Holm-Bonferroni adjusted p-value (0.00) (0.00) (0.01) (0.00) (0.06) (0.03)
Randomization Inference p-value (0.00) (0.00) (0.01) (0.00) (0.06) (0.03)

Baseline controls N Y N Y N Y
Control group mean 1128.39 1082.38 335.35
Observations 682 682 682 682 682 682

Panel B: Full sample
1AF participant 297.77 289.64 257.31 210.49 48.25 33.80
Unadjusted p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.05)
Westfall-Young adjusted p-value (0.00) (0.00) (0.00) (0.00) (0.02) (0.07)
Holm-Bonferroni adjusted p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.05)
Randomization Inference p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.05)

Baseline controls N Y N Y N Y
Control group mean 1150.49 1164.00 364.61
Observations 1896 1896 1896 1896 1896 1896

Note: This table presents results from linear regressions of the three outcomes of interest on the treatment
dummy. Westfall-Young and Holm-Bonferroni adjusted p-values are estimated with 10000 bootstrap replica-
tions, with adjustments done considering each sample definition and regressions with/without controls as
separate families of outcomes. Randomization Inference p-values are estimated using 2000 re-randomizations.
Program maize yields are measured in kgs per acre, total maize output is measured in kgs, and profits are
measured in USD. Standard errors (in parentheses) are clustered at the treatment assignment (farmer group
cluster) level. The primary sample includes only farmers who had never previously participated in the 1AF
program. The full sample additionally includes a sample of farmers who had previously enrolled in the 1AF
program. All regressions include field office (site) fixed effects. Columns 2, 4, and 6 include the full set
of pre-specified controls, omitted here. Binary baseline controls are married, at least secondary education
by male household head, whether the household receives half of its income from farm labor, whether the
household used improved seeds at baseline, whether the household reported knowledge of 1AF practices
at baseline, whether the farmer intercropped beans and maize at baseline, and whether the household
reported having access to credit. Continuous baseline controls are household size, a measure of Fall Army
Worm presence collected during the 2017 season, baseline maize acres, and baseline maize yields per acre.
Regressions in Panel B in columns 2, 4, and 6 additionally control for whether households participated in
1AF in the past.
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Table 19: Main outcomes with MHT-adjusted p-values and spillover weights

Program Maize Yields Total Maize Output Profit

(1) (2) (3) (4) (5) (6)

Panel A: Primary sample
1AF participant 293.20 299.46 265.21 268.19 60.00 60.79
Unadjusted p-value (0.00) (0.00) (0.00) (0.00) (0.06) (0.03)
Westfall-Young adjusted p-value (0.00) (0.00) (0.01) (0.01) (0.09) (0.07)
Holm-Bonferroni adjusted p-value (0.00) (0.00) (0.01) (0.00) (0.06) (0.03)
Randomization Inference p-value (0.00) (0.00) (0.01) (0.00) (0.06) (0.03)

Baseline controls N Y N Y N Y
Control group mean 1128.39 1082.38 335.35
Observations 682 682 682 682 682 682

Panel B: Full sample
1AF participant 294.13 291.70 233.27 212.24 41.33 34.53
Unadjusted p-value (0.00) (0.00) (0.00) (0.00) (0.02) (0.04)
Westfall-Young adjusted p-value (0.00) (0.00) (0.00) (0.00) (0.04) (0.06)
Holm-Bonferroni adjusted p-value (0.00) (0.00) (0.00) (0.00) (0.02) (0.04)
Randomization Inference p-value (0.00) (0.00) (0.00) (0.00) (0.02) (0.04)

Baseline controls N Y N Y N Y
Control group mean 1150.49 1164.00 364.61
Observations 1896 1896 1896 1896 1896 1896

Note: This table presents results from linear regressions of the three outcomes of interest on the treatment
dummy. Regressions are weighted using the inverse of the probability of exposure to treated farmers.
Westfall-Young and Holm-Bonferroni adjusted p-values are estimated with 10000 bootstrap replications,
with adjustments done considering each sample definition and regressions with/without controls as separate
families of outcomes. Randomization Inference p-values are estimated using 2000 re-randomizations. Program
maize yields are measured in kgs per acre, total maize output is measured in kgs, and profits are measured
in USD. Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster)
level. The primary sample includes only farmers who had never previously participated in the 1AF program.
The full sample additionally includes a sample of farmers who had previously enrolled in the 1AF program.
All regressions include field office (site) fixed effects. Columns 2, 4, and 6 include the full set of pre-specified
controls, omitted here. Binary baseline controls are married, at least secondary education by male household
head, whether the household receives half of its income from farm labor, whether the household used
improved seeds at baseline, whether the household reported knowledge of 1AF practices at baseline, whether
the farmer intercropped beans and maize at baseline, and whether the household reported having access to
credit. Continuous baseline controls are household size, a measure of Fall Army Worm presence collected
during the 2017 season, baseline maize acres, and baseline maize yields per acre. Regressions in Panel B in
columns 2, 4, and 6 additionally control for whether households participated in 1AF in the past.

52



F F – Additional heterogeneity results

Beyond the quantile regression results found in Section 3, another way to view heterogeneity
is through distribution regressions (Chernozhukov, Fernández-Val and Melly, 2013). These
are related to unconditional quantile partial effects but can be easier to interpret since the
x-axis shows meaningful values rather than percentiles of a distribution. We implement
this by running a series of regressions of the following form

1(Y > x)ij = α+ βxTi + γj + εi,

where Y is the outcome of interest, x varies along the x-axis of each figure along the
support of the outcome variable, Ti is the treatment dummy, and γj is a cluster fixed effect.
Each blue dot in Figure 6 is an estimated βx coefficient. The results shown here are from
estimations with a linear probability model, but the results are robust to using a logit
model to estimate the threshold probabilities.

We can see that the effect of the treatment on the proportion of participants above a
certain yield is substantial, across the bulk of the control group yield distribution. The
results for maize output and profits both suggest that the effects are largest around the
lower end of the distribution and they attenuate at large values of the outcomes. While total
maize output can at least in theory be expanded by bringing more land under cultivation,
maize yields likely have some physiological upper bound, beyond which decreasing marginal
returns to inputs start to make additional intensification unprofitable.

Figure 7 implements methods proposed by Chernozhukov et al. (2018) to estimate key
features of heterogeneous effects on our outcomes of interest. A key difference between this
approach and the previous two is that it focuses on whether specific covariates can predict
the size of participants’ treatment effects. Figure ?? presents the Sorted Group Average
Treatment Effects (GATES) estimated using Neural Nets. Each vertical bar represents
the estimated treatment effect at a different percentile of the predicted treatment effect
distribution.

For the groups who are predicted to have low treatment effects based on observables,
the GATES estimate is only significantly greater than zero for program maize yields. That
said, the least-affected and most-affected groups do not differ starkly from each other and
the method introduces substantial noise in our relatively small sample. While we do not
detect much heterogeneity along the distribution of the outcome variable, this does not
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automatically rule out the existence of subgroups for whom the treatment is more or less
effective. Since this approach relies on covariates to predict heterogeneity, it could be that
we are not including the correct covariates.

Our discussion of below draws heavily on the discussion in Chernozhukov et al. (2018).
Section 6.2 in their paper describes the implementation algorithm in detail. A key challenge
with machine learning tools in high-dimensional settings is that they typically require
strong assumptions to produce consistent estimators of conditional average treatment
effects (CATE). The new method developed in Chernozhukov et al. (2018) sacrifices some
generalizability, but in return the authors are able to rely on fewer assumptions.

In particular, instead of trying to make inference on the full CATE function, the
method focuses on making inference on key features of the CATE. These features are
(1) the Best Linear Predictor (BLP) of the CATE function, (2) Sorted Group Average
Treatment Effects (GATES), reporting predicted treatment effects at different deciles of the
predicted treatment effect distribution, and (3) Classification Analysis (CLAN), showing
how covariates of interest differ between the units that we predict will be the most and least
affected, and these most-affected and least-affected groups are also defined by the highest
and lowest deciles of the predicted treatment effect distribution. Below, we provide some
more intuition for the BLP, as it is perhaps the least obvious of the three (BLP results
available from the authors).

Briefly, the method splits the data into an auxiliary subset, separate from the main data
(the data is split into main and auxiliary many times, as is standard with ML techniques).
Letting Y 0 and Y 1 denote potential outcomes under control and treatment, respectively,
we can write out two key functions: b0(Z) := E[Y 0|Z], which is the baseline conditional
average, and s0(Z) := E[Y 1|Z]− E[Y 0|Z]. Given a randomly assigned treatment variable
D, a known propensity score p(Z), and a few more assumptions on the propensity score,
the observed outcome can be written as a regression function (here, conditional on D,Z):
Y = b0(Z) +Ds0(Z) + U , where E[U |Z,D] = 0.

We then proceed by using each auxiliary sample to train an ML estimator and obtain
ML estimates of the baseline and treatment effects, called proxy scores. We will refer to the
estimated proxies of b0(Z) and s0(Z) as B(Z) and S(Z), respectively. Note that we can
then use these predicted proxies in the main sample to estimate the BLP of the conditional
average treatment effect. Essentially, we regress the observed outcome on the treatment
variable minus the propensity score (to estimate the average treatment effect, or ATE),
and on the treatment variable minus the propensity score interacted with deviations of
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the S(Z) that we estimated in the auxiliary data from the expected value of S(Z) in the
main sample. The coefficient on this second interaction term is what provides information
about treatment effect heterogeneity. More specifically, we obtain the BLP parameters by
estimating the following relationship in the main sample, using weighted OLS:

Yi = α̂′X1,i + β̂1(Di − p(Zi)) + β̂2(Di − p(Zi))(Si − ENSi) + ε̂i (2)

where S(Z) is written as S for simplicity, EN [w(Zi)ε̂iXi] = 0 with w(Zi) = {p(Zi)(1 −
p(Zi))}−1. Further, Xi,1 is constructed as Xi = [X ′1,i, (Di − p(Zi), (Di − p(Zi)(Si −ENSi)]′,
and X1,i includes a constant, B(Zi), and S(Zi). In the above regression, the estimated β1 is
the ATE, and β2 is best linear predictor of the existing heterogeneity. If what we estimate
in the auxiliary sample (S(Z)) is a perfect proxy for the true heterogeneity, s0(Z), then
β2 = 1. If there is no heterogeneity, and the estimates from the ML are pure noise, then
β2 = 0.

We consider a range of possible baseline variables that could plausibly be correlated
with outcomes: pre-exposure to 1AF program, household size, baseline fertilizer use, asset
score, father above secondary education, self-reported credit access), as well as additional
variables such as rainfall and temperature by growing season phase (pre-planting, immediate
post-planting, and post-top-dressing). The results are qualitatively similar over many
combinations and subsets of these variables. We present results generated using Neural
Nets, but find similarly low levels of heterogeneity using a host of ML methods, including
Lasso, Ridge, Elastic Net, Boosting, and Random Forest. In every instance, we have low
ability to predict heterogeneity; the confidence intervals on β2 = 0 are centered at zero, but
are also imprecisely estimated. We do not report the results here, but they are available
from the authors. This does not tell us with certainty that there exists no heterogeneity in
treatment effects, but it does inform us that the vector of covariates included has no power
to predict treatment effect heterogeneity.

We additionally conduct a Monte Carlo simulation exercise of the type suggested in
Appendix E of Heckman, Smith and Clements (1997). To simulate the distribution of
impact standard deviations under the null hypothesis of no heterogeneity, we repeatedly
sample the control group to generate synthetic treatment and control groups. This gives us
a distribution of the standard deviation of percentile effect differences under the null, which
we then compare to the impact standard deviation seen in the data.

For all outcomes, we fail to reject the null of no heterogeneity. This suggests that we
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are unable to detect treatment effect heterogeneity under the assumption of perfect positive
dependence between treatment and control outcome percentiles (also called the location shift
assumption). Since this is a strong assumption, we also implement the rank preservation
test proposed in Bitler, Gelbach and Hoynes (2005). This tests for rank reversal in baseline
characteristics between quartiles of the treatment and control distribution. For each sample
definition and outcome variable, we fail to reject the null in the test for joint-orthogonality.
Results of both exercises are available from the authors upon request.
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G G – Audit procedures

To boost the credibility of the data collection, 1AF contracted Intermedia Development
Consultants (iDC), an independent survey firm, to carry out a three-step audit of the data
collection. The full iDC audit report is available from the authors upon request; the overall
conclusion of the audit stated the following “With respect to the Teso trial, the strategy
and planning are appropriate to the situation, and they have attempted to make every
effort to obtain accurate, reliable and valid results. ... Overall, the data collection is well
planned and executed. The possibilities for improving performance are quite limited. The
survey team members are well selected and committed to the process. The recording and
transmission of data is well done, with minimal errors.”

The goal of the audit exercise was to evaluate 1AF against best-practice M&E standards,
on dimensions including the technical capacity of monitoring staff, supervision, the M&E
strategy and planning, data collection, data quality (accuracy, reliability and validity), data
recording and analysis, dissemination and use of data, and participation of stakeholders.
The auditors recorded observations in the field, which were then compared with data
collected by the enumerators to expose any gaps or strengths in the OAF system.

The audit procedure took place in three steps: Step 1 reviewed the planting compliance
and crop mix survey data collection. The audit covered a sample of the 2,425 farmers
surveyed. Step 2 covered data collection of the beans harvest survey, covering a sample of
around 1,400 farmers. Step 3 entailed completing similar activities for the maize harvest
survey, covering a sample of around 2,425 farmers.

As part of this process, the audit team participated in group meetings held by the
1AF monitoring team and spent 26 days in the field, during which they observed the
work of enumerators on 76 occasions and enumerators’ interactions with farmers on 246
occasions. The audit team observed the work of supervisors on 11 separate occasions and
that of supervisors as back-checkers on five occasions (Intermedia Development Consultants,
2017). They further carried out parallel data collection efforts to the 1AF data collection,
comparing the results and finding minimal discrepancies.
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