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1 Introduction

A central question in development economics concerns the relative importance of agriculture
in the process of economic growth. Are dramatic increases in agricultural productivity pre-
requisites for industrial-sector development and take-off, as Rostow (1990) argued? Or do we
observe aggregate correlations between agricultural productivity and structural change merely
because different growth indicators trend together as countries grow? While agriculture’s
broader role in driving growth is theoretically ambiguous (Matsuyama, 1992), recent empirical
evidence suggests a causal link between increased staple yields and national welfare (Bravo-
Ortega and Lederman, 2005; Ligon and Sadoulet, 2011; Ravallion and Chen, 2007), especially
GDP growth, through the increased use of improved agricultural technologies (Gollin et al.,
2018). Further, McArthur and McCord (2017) show that agricultural productivity growth
plays an important role in driving structural change, over time reducing the labor share in
agriculture. Additionally, beyond its potential influence on industrialization and growth,
agricultural productivity directly influences the food security and well-being of billions of
people whose livelihoods depend on agriculture (Byerlee et al., 2009).

Agricultural productivity in Sub-Saharan Africa (SSA) lags far behind all other regions
of the world (Block, 2014; World Bank, 2008) despite substantial government expenditures
in agriculture (Akroyd and Smith, 2007). Some scholars believe that low agricultural
productivity has contributed to the region’s failure to embark on a path of sustained economic
growth. The slow growth of agricultural output, modern input use, and commercialization
serve as a kind of litmus test for researchers and policy-makers alike: to some, the existence
of constraints to technology adoption and commercialization suggests that relaxing those
constraints with well-designed investments could stimulate dramatic increases in African
agricultural productivity (Byerlee et al., 2009; Magruder, 2018). To others, widening
productivity gaps indicate that policy-makers should instead allocate scarce public resources
towards directly stimulating industrialization by, for example, investing in manufacturing.

Even among those who believe that agriculture is crucial to the region’s growth, there
is recognition that a long list of agricultural policy experiments—whether implemented by
governments, NGOs, or researchers—have yielded substantial evidence on what fails and a
limited catalogue of successes. Evidence on the effectiveness of agricultural extension services
is mixed at best, plagued by issues of measurement, selection, and comparability across
programs (Aker, 2011; Anderson and Feder, 2007). Extension services often train lead or
contact farmers in villages, who are then tasked with diffusing information to other farmers.
Even when these contact farmers adopt new technologies, diffusion to other nearby farmers
tends to be limited (Kondylis et al., 2017). A number of studies find that the adoption of
new practices or increased input use are often not enough to induce measurable increases in
yields (Udry et al., 2019) or profits (Beaman et al., 2013).

If large investments in government extension programs, input subsidies, and insurance
products have not transformed agricultural productivity, is this a sign that African agriculture
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is a lost cause? An alternative explanation, argued forcefully by Collier and Dercon (2014),
is that the predominant focus on smallholder agriculture is to blame. Or perhaps existing
public and private providers of extension services have thus far failed to successfully address
the constraints facing the large populations of poor staple crop producers, focusing instead
on regions with high agricultural potential and those that can grow cash crops (Muyanga
and Jayne, 2006).

Our study provides experimental evidence on the impacts of a rare success story that
explicitly targets small staple crop producers, and which is operating at scale. We evaluate
One Acre Fund’s (1AF) small-farmer program. 1AF is an NGO that currently works with
over 700,000 farm households in 7 countries in Eastern and Southern Africa, up from
only 200,000 in 2014 (and 38 farmers in their 2006 pilot program). The components of
1AF’s programming will not surprise readers familiar with the 1960s and 1970s World
Bank-promoted agricultural extension investments (Birkhaeuser et al., 1991): participating
farmers receive training on improved farming practices, input loans, and crop insurance.
One feature that distinguishes the 1AF program from its antecedents is the tight bundling of
these component parts into a single program offering (Tinsley and Agapitova, 2018); this is
typically not the case for government-led extension, nor for more recent programs targeting
individual constraints to productivity.

We analyze a pre-registered cluster-randomized control trial of 1AF’s main program in
Kenya and find that program participation causes statistically and economically significant
increases in yields and profits. The effects are large (especially compared to most agriculture-
focused programs): in our preferred specification, total maize output increases by 24%
and profits increase by 16%. This effect is robust to a variety of specifications and sample
definitions.

Given the recent proliferation of NGOs and social enterprises offering financial and
extension services to farmers, this result has implications beyond 1AF. If past programs
have in fact underestimated the potential for well-designed programs to increase agricultural
productivity in SSA, then basing investment decisions on past evidence could lead to socially
sub-optimal choices. Unlike many government-run extension and input subsidy programs,
1AF is largely farmer-funded, covering about 75% of operating costs from farmer participation
fees and overhead on input sales (Tinsley and Agapitova, 2018). In this paper, we find that
a well-designed, efficiently-run program can not only provide economically significant returns
to farmers, but that this is possible with limited subsidies by donors.

We additionally explore several approaches to heterogeneity analysis, to better understand
whether impacts vary markedly across individuals. We find little evidence of heterogeneous
treatment effects on maize yields. We observe some evidence of heterogeneity in the program’s
effects on total maize output and profits, with lower treatment effects at the top end of the
distribution.
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2 Context, data and experimental design

This study analyzes the main operating model of an established agricultural NGO, the
One Acre Fund. The organization was funded in 2006, and has grown rapidly in the last
several years. In 2014, the NGO reported working with around 200,000 farmers, compared to
their current enrollment numbers of over 700,000 smallholder households across six different
countries in Eastern and Southern Africa (One Acre Fund, 2019). The NGO’s core “market
bundle” provides farmer groups with group-liability loans for improved seeds and high-quality
fertilizer, regular trainings on modern agricultural techniques, crop and funeral index-based
insurance, and market facilitation support to help farmers sell their products for higher
prices (Tinsley and Agapitova, 2018). Farmer groups are organized by geographical areas
that can be served by a single 1AF officer, and they typically range in size from 8-12 farmers.

The 1AF program’s focus on credit, insurance, inputs, and information will feel familiar
to many readers. The program components have many parallels to the agricultural extension
programs popular in the 1960s and 1970s (Birkhaeuser et al., 1991). The motivation
behind these components has support in the economics literature, which has accumulated
substantial evidence that failures in these domains hinder farmers’ ability or willingness
to adopt improved agricultural technologies. Feder et al. (1985) emphasize three of these
constraints in their review of the technology adoption literature at the time (credit, risk,
and information). Magruder (2018) focuses on the same three constraints as key barriers to
adoption in a more recent review of the experimental evidence on technology adoption.1

Farmers choose the amount of land to enroll, and 1AF provides the agricultural input
loans as a function of the amount of land enrolled. The group liability loans are given to
self-selected farmer groups. The loan terms are flexible, allowing farmers to repay in any
amount at any time during the growing season. Groups must complete repayment in full
by the end of the harvest, but they have a 2-week grace period to ensure repayment by
all members. Historically, repayment rates have been over ninety-seven percent (Tinsley
and Agapitova, 2018). Field officers conduct specific in-field training in targeted areas
throughout the season, and provide educational handouts on fertilizer impact and proper use.
Additionally, 1AF carries a weather-index insurance and passes on the benefit to farmers by
forgiving input loans in case of crop failure, thus helping them mitigate risk (Tinsley and
Agapitova, 2018).

This RCT was conducted in western Kenya, where 1AF has operated for more than ten
years and reached over 200,000 enrollees in 2016. Kenya’s agriculture sector contributes 51
percent to the country’s GDP (25% indirectly) and is dominated by small-scale producers
(Government of Kenya, 2010). Despite the importance of the agricultural sector to the
economy, most smallholder farmers are not running successful micro-enterprises. Households

1The focus on providing high-quality inputs also has empirical support: a growing literature establishes
that fertilizer available on local markets in the region often falls short of quality standards (Bold et al., 2017;
Tjernström et al., 2018).
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in Kenya typically derive their income from the production of a variety of crops, often
combined with a range of off-farm activities (Sheahan et al., 2013). These statistics are
reminiscent of Collier and Dercon’s (2014) description of African agriculture’s “reluctant
micro-entrepreneurs,” whom they describe as a “recipe for continued divergence of the
[agricultural] sector from global agricultural performance, limiting growth and unlikely to
help large scale poverty reduction.”

The main crop in Kenya is maize, a staple crop that is important both to the economy
and to food security. Accordingly, a large share of 1AF’s efforts are devoted to the crop.
Seventy percent of Kenya’s maize is produced by smallholders who farm between 0.2 and
3 hectares (Government of Kenya, 2010, pg. 11-12). While Kenyan farmers use improved
maize varieties and inorganic fertilizer at higher rates than other countries in the region,
yields remain low and the country is a net importer of maize, despite policy goals to the
contrary. Increasing yields and profits is crucial if we want the agricultural sector to act not
simply as a means of subsistence, but as a pathway out of poverty.

2.1 Experimental design

The cluster-randomized experimental design was carried out in the Teso region of Kenya.
Recruitment, enrollment, and the intervention itself followed the NGO’s standard protocol.
Participants self-selected into farmer groups of 8-12 farmers. The randomization took place
at the level of a cluster of 2-4 of these joint-liability farmer groups. Typically, once a farmer
indicates interest in signing up and satisfies the basic criteria, she pays a small program
participation deposit of approximately $5 USD.2

Once farmers had paid the fee and signed the contract, they were informed that half
of them would be randomly assigned to treatment, while the other half would receive an
alternative compensation package consisting of household goods and a discount for program
participation the following season—this amounted to roughly 20% of the typical program
cost. Randomization took place by public lottery.

While the ideal areas for a study like this would perhaps focus on a new area, where
the organization had never operated, this proved difficult in Kenya. Since the study took
place in a country where 1AF has already operated for several years, the second-best was
an area in which 1AF had already begun operations but where marketing had not reached
all of the target areas.3 The specific villages selected for study inclusion had never been
offered the 1AF program, but neighboring villages had previously been offered the program.

2In addition to the participation fee, farmers who wish to join 1AF must additionally have a phone
number and national identification, and agree to repay their loan. For the study population, 1AF added the
requirement that farmers give consent to be part of the study, that they had to cultivate maize, and that
they be able to cultivate at least a quarter of an acre of maize. Shortly after contract signing, 1AF informed
farmers about the study, that their participation would be voluntary, and provided them with informed
consent documents.

3Choosing completely untouched regions in Kenya would have forced the evaluation team to study regions
that are quite unrepresentative of the typical program.
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Figure 1: Sample definitions

Thus, a substantial portion of farmers who expressed interest in participating had previously
participated in the 1AF program (by “commuting” to the neighboring villages to participate).

Because of the contamination of some of the sample, the experimental design stratified
randomization on previous exposure to the 1AF program. Throughout the paper, we estimate
treatment effects for two samples: the primary sample, which consists of treated and control
farmers who had never previously participated, and the full sample, which includes the
pre-exposed farmers. Figure 1 illustrates the difference between the different samples.

Both of the samples present some challenges. On the one hand, if the pre-exposed control
farmers continue to benefit from their prior program involvement even after quitting the
program (by, for example, continuing to use the new practices that they’ve learned), then
we would expect treatment effects estimated with the full sample to result in a downward-
biased impact estimate. On the other hand, farmers who had never been exposed may be
different than those who self-selected into the program in earlier years. If prior selection
into the program is positively correlated with potential returns to the program (i.e., more
entrepreneurial or higher-return farmers opt in earlier), we would expect the impacts on
our primary sample of “hold-out” farmers to be a lower bound of the true impacts; if on
the other hand the hold-out farmers resemble the never-adopters in Suri (2011) and have
surprisingly high returns but perhaps high costs of participation, then it is possible that
focusing solely on the primary sample might overestimate impacts.
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2.1.1 Data

The data collection was directly managed by 1AF. To reduce potential concerns about the
independence of the research design, the research team took three main steps. First, it
worked with the International Initiative for Impact Evaluation (3ie) to help design and
review all parts of the trial—including the experimental design, the field protocols, sampling
and randomization, as well as the data collection instruments (Dubey and Yegbemey, 2017).
3ie concluded that the randomization was conducted successfully, and noted that 1AF
staff showed high levels of professionalism in conducting the randomization.4 Second, the
data collection applied best-practice protocols to ensure data quality, such as back-checks
and in-field supervision. Third, 1AF contracted an independent survey firm, Intermedia
Development Consultants (iDC), to carry out a three-step audit of the data collection.
The overall summary evaluation concludes that “...the data collection is well planned and
executed. The possibilities for improving performance are quite limited. The survey team
members are well selected and committed to the process. The recording and transmission
of data is well done, with minimal errors.” Fourth, some readers may worry about social
desirability bias in contexts where participants or enumerators want to “help” by showing the
program in a good light. In our case, the main dependent variable was physically weighed, so
should help alleviate such concerns. Finally, two of the authors on this paper were brought
in as independent evaluators; this part of the team reviewed the pre-analysis plan, cleaned
the data, constructed variables, and conducted the analysis according to the pre-analysis
plan. Appendix D contains more details on variable construction,

Baseline data collection occurred in November and December of 2016—after program
enrollment but before treatment assignment. The public lottery, which assigned clusters of
farmer groups to treatment, took place in January 2017. Enumerator teams rolled out input
use surveys after the planting of the main season in 2017, from April through June. The
data from these surveys provide detailed information on the extent of farmer compliance
with behaviors that the program encourages, including whether farmers spaced their plants
correctly and applied the correct fertilizer dosage at the recommended time during the
season. We use these data as indicators of the extent to which farmers are actually learning
and changing their behaviors as a result of the 1AF training.

2.2 Outcome variables

We pre-registered three main outcome variables: program maize yields, total maize output,
and profits. The relevant measures of harvests and land sizes are observed, rather than
based on farmer self-reports. Program maize yields are so termed because they compare
yields on treatment farmers’ enrolled plot to control farmers’ overall per-acre yields. Total
maize output measures the overall output on farmers’ maize land, and profits are computed

4A letter from 3ie attesting to their review and approval of the pre-analysis plan can be found in Appendix
A.
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as the projected value of the output less farmers’ costs. The data for the physical harvests
and yields were collected during the main harvest period in 2017. Enumerators collected
fresh and dry harvest weights from two randomly placed 8 x 5 meter boxes for each selected
plot.5 Land sizes were measured by GPS readings. Based on recent research documenting
substantial non-classical measurement error in both variables (see for example Abay et al.
2019; Carletto et al. 2013; Desiere and Jolliffe 2018; Gourlay et al. 2017), we expect these
methods to produce substantially better yield estimates than the self-reports commonly
reported in economics studies.

The two physical output measures have different benefits. The program maize yields
measure the direct impacts on the land that farmers chose to enroll. The total output measure
better measures overall welfare impacts and should account for any spillover effects between
enrolled and non-enrolled plots. For example, if farmers decide to reallocate labor and other
complimentary inputs to the enrolled plot, sacrificing production on the non-enrolled plot,
then yields on the enrolled plot would overestimate the true impacts on production and
welfare. Alternatively, if there are learning spillovers or if farmers reallocate some inputs to
the non-enrolled plots, then effects on program land only could understate the effects.6

2.2.1 Balance

Table 1 presents full-sample baseline means of pre-specified control variables, as well as
balance tests across treatment and control samples. Appendix B displays distributions of
the non-binary variables. The summary statistics depict a population of mostly married
household heads with low levels of secondary school completion. The majority of households
earned more than half of their income from farm labor in the last year and planted roughly
one acre of maize, harvesting roughly half a ton (500 kgs) of maize per acre. Three-quarters
of the sample use improved agricultural technologies at baseline, but a closer look at the
intensity reveals that the actual rate of input use is quite low.

About half the sample answer that they have knowledge of 1AF planting practices, which
is primarily driven by the pre-exposed farmers.7 By chance, household size and 2016 maize
yields differ significantly across treatment and control. An F -test of joint orthogonality of
the variables in Table 1 is not significant in the full sample, but it is significant at the 10%

5For control farmers, per-acre yields are computed by scaling the harvest box measurements to one acre.
For treatment farmers, harvests are scaled separately for the enrolled and non-enrolled plots. For the total
output measure, these are scaled to the total size of the plot and then aggregated. Harvest box measurements
are considered a more reliable way to measure physical yields than relying on self-reports, which are subject
to recall bias and have been shown to suffer from several types of non-classical measurement error.

6Input reallocation could lead to positive yield effects overall if the marginal returns to inputs on the
non-enrolled plot exceeded those on the enrolled land, which seems plausible if input levels are constrained in
the absence of the program.

7The levels are lower in the primary sample: six percent in the control group and fourteen percent in the
treatment group; Appendix B provides more detail, including separate balance tables for the primary sample
and the pre-exposed sample. That said, the difference between treated and control groups is statistically
significant in the primary-only sample.
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Table 1: Baseline balance across treatment and control groups

(1) (2)
Control Treatment Difference

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE (1)-(2)
Panel A: Binary variables
Married (0/1) 1056

[60]
0.878
(0.012)

1066
[60]

0.880
(0.011)

-0.002

Household head has secondary school 1056
[60]

0.385
(0.020)

1066
[60]

0.426
(0.023)

-0.040

Household income >50% from farm labor 1056
[60]

0.777
(0.020)

1066
[60]

0.779
(0.019)

-0.001

Used improved ag technology in 2016 1056
[60]

0.784
(0.025)

1066
[60]

0.802
(0.017)

-0.018

Reports knowledge of 1AF practices 1056
[60]

0.468
(0.033)

1066
[60]

0.526
(0.026)

-0.058

Intercropped maize and beans in 2016 1056
[60]

0.475
(0.027)

1066
[60]

0.477
(0.031)

-0.001

Reports having credit access in 2016 1056
[60]

0.709
(0.022)

1066
[60]

0.726
(0.020)

-0.017

Panel B: Continuous variables
Household size 1056

[60]
6.647
(0.095)

1066
[60]

6.820
(0.099)

-0.173*

Acres under maize cultivation in 2016 1056
[60]

1.004
(0.042)

1066
[60]

1.024
(0.034)

-0.020

Maize yield (kg/acre) in 2016 1056
[60]

534.787
(29.222)

1066
[60]

579.901
(28.181)

-45.115*

F -statistic (test of joint significance) 1.089
Number of observations 2122
Notes: Field office fixed effects are included in all estimation regressions. Standard errors are clustered at
farmer group cluster level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
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level in the primary sample. Household size and baseline maize yields are by chance different
between the two groups, with maize yields almost nine percent larger in the treatment
group. We are not very concerned about this difference, since the variables that are slightly
imbalanced are not highly correlated with our outcome variables. This may seem surprising
for baseline maize yields, but several factors contribute to the low correlations: first, baseline
yields are based on self-reported harvests and land sizes, both of which likely suffer from
substantial measurement error. Second, the stochastic nature of agricultural production
leads to substantial year-to-year variation in productivity.

2.2.2 Pre-exposed vs. new participants

Table B.2 and Figure B.2 compare participants across the pre-exposed and new participant
samples. The two samples differ substantially. Farmers who previously self-selected into
the program are more likely to have an educated father in the household, more likely to
earn at least fifty percent of household income from farm labor, more likely to report using
improved seeds or fertilizer at baseline, more likely to report baseline knowledge of 1AF
practices, less likely at baseline to intercrop beans with maize, more likely to report having
access to credit, reported using more land for maize at baseline, have bigger households, and
reported higher maize yields per acre at baseline. Several of these differences (education,
land endowments, yields, etc.) suggest that farmers who enrolled earlier may come from a
better-off population. That said, several of these variables could also have been affected by
program participation, so the slight attenuation of estimated program impacts in the full
sample (compared to the primary sample) should be interpreted accordingly.

3 Results

Our econometric approach for the main analyses is straightforward, given the randomization.
For each outcome yis, we estimate the following regression:

yis = α+ βTis + δXis + γs + εis (1)

where Tis is the treatment dummy for individual i in field officer area s, Xis includes the
list of pre-specified controls (when included), γs is a field office area fixed effect, and εis

is clustered at the farmer group cluster level, i.e., the level of the treatment assignment.
Our pre-analysis plan (PAP) specified three outcomes of interest: program maize yields,
total maize output, and profits. The PAP specified that Xis in Eq. 1 include controls for
marital status, household size, amount of land owned, education, agricultural reliance, credit
constraints, use of agricultural technology in the prior season, intercropping, and knowledge
of 1AF practices.8 We follow the PAP closely, but also present results both with and without

8Where appropriate, regressions should also include a control for whether the farmer was pre-exposed.
Additionally, the PAP planned to include a spillover inverse probability weight. Our results are robust
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controls, which rarely leads to any changes in the results.

3.1 Intermediate outcomes: behavioral change

We begin by examining some intermediate outcomes that were not described in our PAP but
that are useful for thinking about “first-stage” effects: does program participation change
the kinds of behaviors that 1AF encourages? The NGO’s farmer trainings include several
components, including a crop calendar that guides farmers through the different stages of
production. Another cornerstone of the program is called the “power of three,” which refers
to hybrids, fertilizer, and 1AF practices. Field officers teach these practices, and follow up
with farmer groups afterwards. Of particular focus are land preparation (emphasizing the
timing of planting relative to the onset of rains for the season), input application (focusing
on the use of hybrid seeds and fertilizer, both with respect to the type of fertilizer and
the timing of different fertilizer applications), proper spacing between rows of plants and
of plants within a row. Each practice is tied to farming aspects that the organization has
identified as important for crop yields and are documented in a 95-page manual.

Given the many parts of the program, and the wide range of improved practices that
1AF encourages, farmers could respond to the program in a variety of ways and through
many different mechanisms. If we observe no changes in farmer practices, we could imagine
that a cheaper version of the program—perhaps without the intensive training—could
achieve similar results at a lower cost. The bundled nature of the program prevents us from
confidently digging deep into the mechanisms through which the program works, but we use
detailed data on behavior to examine uptake of practices that are actively encouraged by
the NGO.

We construct several metrics related to farming practices: first, we generate indicator
variables that equal one if participants’ plant spacing was within 5 cm of the recommended
spacing, separately for rows and plants.9 Second, we measure whether farmers applied
fertilizer at the appropriate time of the season.10 Maize requires substantial nitrogen
application to produce high output, but requires relatively little up front and greater
amounts midway through the season, which is what is referred to as “top dressing.” Research
suggests that even highly experienced producers can fail to notice crucial features of the
production process (Hanna et al., 2014) or less-salient profitability margins (Beaman et al.,

to including this weighting, but for simplicity we present all results without weights. The PAP specified
additional analysis to explore “enduring impacts” using only the control sample, i.e. exploring whether the
pre-exposed farmers in the control group were still better off.

91AF participants receive a stick that corresponds to the recommended spacing between rows, and a
string that marks the recommended space between plants in a row. The planting string has colored ties every
25 cm along the length of the to indicate where the next plant should go. The spacing is clearly defined to
encourage appropriate plant density. Placing plants too close together could result in plants competing for
sunlight, water and nutrients, but planting too sparsely will waste space, which is a binding constraint for
most smallholders.

101AF recommends that farmers apply DAP (diammonium phosphate) at the time of planting, and CAN
(calcium ammonium nitrate) at top dressing, which takes place several weeks after planting.
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2013; Duflo et al., 2008). Given that fertilizer rates are often discussed without specific
attention to the within-season timing, it seems plausible that farmers may not be aware of
the importance of timing.11

Table 2: Take-up of program practices and input use, primary sample

Panel A: (1) (2) (3) (4)
Take-up of program practices Row Spacing Plant Spacing Fertilizer Timing Used Plow

1AF participant 0.22*** 0.21*** 0.66*** 0.05
(0.040) (0.030) (0.030) (0.030)

Control group mean 0.37 0.09 0.26 0.73
Observations 757 757 757 757
Panel B:
Input costs (USD) Fertilizer Seeds Paid Labor Unpaid Labor

1AF participant 21.74*** 2.61*** 5.68* 5.67***
(1.950) (0.860) (3.210) (1.070)

Control group mean 17.56 14.53 30.33 14.08
Observations 691 691 691 691
This table presents results from linear regressions of the outcome variables in each column on the treatment dummy.
Panel A shows the effect of 1AF participation on the use of practices recommended by the NGO: the spacing used
between plants and fertilizer use at the correct time in the season. Row and plant spacing are indicator variables for
whether or not a farmer was within 5cm of the recommended spacing, for the rows in which they planted and the
plants within rows, respectively. Fertilizer timing is an indicator variable for whether or not farmers applied DAP at
planting and CAN at top dressing (the timing recommended by the NGO). Used plow is an indicator for whether or
not the farmer used a plow to prepare their plot. Panel B shows the effect of 1AF participation on the intensive
margin of farmer expenses for fertilizer, seeds, paid labor, and unpaid labor. Costs are expressed in USD. For more
on how we define labor costs, see Appendix D. Standard errors (in parentheses) are clustered at the treatment
assignment (farmer group cluster) level. All regressions include field office (site) fixed effects. This table includes
only farmers in the primary sample.

Panel A of Table 2 reports treatment effects from linear probability models of the indicator
variables for adopting 1AF practices. Columns (1)-(3) show that program participants are
substantially more likely than control farmers to follow spacing recommendations and to
apply the different types of fertilizer at the recommended time. Column (4) shows the
treatment effect on the use of an ox-plow. While 1AF provides farmers with specific
recommendations about when to plough their fields, their manual is agnostic about the use
of a plough versus more manual methods. They specifically instruct farmers not to wait
for an ox plow to be available, but to instead focus on timing relative to the onset of the
rains. Incorrect farming practices certainly have the potential to reduce productivity—both
directly by reducing productivity and indirectly through effects on adoption due to lowered
returns to said inputs.12 Still, improving planting practices alone without an accompanying
increase in the intensive margin of investments seems unlikely to be able to put the region

11In the region, typical government recommendations regarding fertilizer use tend to focus primarily on
the amount of fertilizer rather than on application timing. While some extension manuals do distinguish
between fertilizer application at planting and at top dressing, they typically do not explain the rationale
behind these different timings or emphasize the importance of timing. See for example National Farmers
Information Services (2019).

12The latter effect resembles what we would expect to observe in the presence of low-quality inputs as in
Bold et al. 2017).
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on a dramatically different growth trajectory.
Panel B shows the causal effect of program participation on the intensive margin of

participant farming investments. Enrolled farmers spend 124% more on fertilizer, 18% more
on seeds, 19% more on paid labor, and 40% more on unpaid labor.13 These are substantial
expenditure increases, all of which (including unpaid labor) are accounted for in the profit
calculations. Treated farmers’ fertilizer expenditures are more than double those in the
control group, seed expenditures increase by eighteen percent. Labor costs increase by
nineteen percent for paid labor and forty percent for unpaid labor.14

Table 3 reports the full-sample analog to Table 2, controlling for previous program
exposure and its interaction with the treatment. We interpret these results with caution,
since we do not know whether differences between the pre-exposed and new farmers are due
to their past participation in the program or due to pre-existing differences between the two
populations. That said, we believe that it is informative to compare the treatment effects for
the two populations. If information constraints constitute the main obstacle to agricultural
productivity in this context and one-time exposure to the program suffices to relax those
constraints, then it could be socially efficient to focus on training new farmers, rather than
providing the same information to participants who have already received it. If behavioral
change instead takes place more slowly, re-exposure to the training could be beneficial.

The results in Panel A of Table 3 show that the program has substantially smaller
effects on 1AF-promoted practices for the pre-exposed farmers, but the point estimates
are still positive and significant. While it is possible that pre-exposed farmers are actively
choosing not to adopt these practices when not enrolled, both spacing and fertilizer timing
are positively correlated with yields.15 We therefore think it is more plausible that less-than
complete adoption for pre-exposed farmers who were randomized into the control group is
due to imperfect recall rather than representative of an active choice to not adopt.

Panel B of Table 3 reports effects on the overall level of investments in maize produc-
tion. Unlike for behavioral change, the treatment effect on the pre-exposed is statistically
indistinguishable from that on new enrollees. Combined with the fact that the pre-exposed
farmers use more inputs even when not enrolled, as seen by the coefficient on the pre-exposed
dummy, this could suggest that credit constraints limit pre-exposed farmers from applying
as much fertilizer and seed as they would like. Pre-exposed farmers do enroll slightly more
land in the program than new farmers and plant slightly more land overall, so their higher
input use could reflect an increase along the intensive margin of maize production, or that

13Note that 1AF charges prices for seeds and fertilizer that are comparable to local market prices; their
average gross margin on inputs is 32 percent according to Tinsley and Agapitova (2018), which is similar to
markups in the agro-dealer sector in this region. The program effects on costs are therefore unlikely driven
by prices.

14Appendix D contains more details on how we define labor costs, especially for unpaid labor and as it
relates to profits.

15Production function estimation results showing the relationship between various behaviors and yields
available from the authors.
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Table 3: Take-up of program practices and input use, full sample

Panel A: (1) (2) (3) (4)
Take-up of program practices Row Spacing Plant Spacing Fertilizer Timing Used Plow

1AF participant 0.23*** 0.21*** 0.66*** 0.05
(0.040) (0.030) (0.030) (0.040)

Pre-exposed 0.07* 0.02 0.15*** 0.08***
(0.030) (0.020) (0.030) (0.030)

1AF participant -0.10** -0.07** -0.18*** 0.02
× pre-exposed (0.050) (0.040) (0.040) (0.040)

Control group mean 0.41 0.12 0.37 0.76
N 2122 2122 2122 2122
Panel B:
Input costs (USD) Fertilizer Seeds Paid Labor Unpaid Labor

1AF participant 21.89*** 2.76*** 6.23* 5.92***
(1.960) (0.850) (3.340) (1.130)

Pre-exposed 5.84*** 1.60** 6.38*** -0.68
(1.700) (0.770) (2.160) (0.970)

1AF participant -0.03 0.36 3.11 1.25
× pre-exposed (2.750) (1.130) (4.090) (1.380)

Control group mean 22.24 15.42 32.85 13.31
N 1919 1919 1919 1919
Panel C:
Input costs/acre Fertilizer Seeds Paid Labor Unpaid Labor

1AF participant 22.54*** 0.38 -0.99 3.49*
(2.100) (1.000) (3.620) (1.790)

Pre-exposed 2.85 -0.83 3.68 -3.63**
(1.980) (0.980) (3.180) (1.470)

1AF participant -2.33 0.03 3.93 0.69
× pre-exposed (2.620) (1.150) (4.260) (2.090)

Control group mean 27.45 19.37 39.92 19.69
N 1919 1919 1919 1919
This table presents results from linear regressions of the outcome variables in each column on the treatment dummy.
Panel A shows the effect of 1AF participation on the use of practices recommended by the NGO: the spacing used
between plants and fertilizer use at the correct time in the season. Row and plant spacing are indicator variables for
whether or not a farmer was within 5cm of the recommended spacing, for the rows in which they planted and the
plants within rows, respectively. Fertilizer timing is an indicator variable for whether or not farmers applied DAP at
planting and CAN at top dressing (the timing recommended by the NGO). Used plow is an indicator for whether or
not the farmer used a plow to prepare their plot. Panel B shows the effect of 1AF participation on the intensive
margin of farmer expenses for fertilizer, seeds, paid labor, and unpaid labor. Costs are expressed in USD. For more
on how we define labor costs, see Appendix D. Standard errors (in parentheses) are clustered at the treatment
assignment (farmer group cluster) level. All regressions include field office (site) fixed effects. This table includes
both primary and pre-exposed farmers.
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they have access to more land or capital to begin with.16

Panel C accounts for this by reporting program impacts on per-acre use of these inputs.
These results show that the difference in overall input use for pre-exposed farmers seems to
be driven by differences in the amount of land planted to maize, with attenuated effects on
seed costs and paid labor, but very similar impacts on fertilizer rates and unpaid labor use
to those in Panel B. The estimated effects of the program on fertilizer and labor therefore
seem to be taking place at least partly through increased intensification and not primarily
through extensive margin effects on maize acreage planted.

3.2 Main outcomes

Figure 2 presents the distributions of total production, maize acreage, and overall maize
yields by treatment status. For treatment farmers, total maize production and acreage are
the sum of harvests and acreage on their enrolled and non-enrolled plots, and the yields
represent the harvests divided by each plot’s respective size. In the top figure, we can see
that treatment farmers are less likely to attain very low production levels. Further, the
treatment group distribution lies to the right of the control group distribution for much of
the support. However, the second panel shows that treatment farmers also plant slightly
more land to maize (by 0.1 acres on average, significant at the 5% level). The bottom panel
tries to adjust for this and shows the overall per-acre yields that farmers get. Similar to the
level effects, treatment group farmers are less likely to experience very low yields, and the
distribution of yields is clearly shifted to the right. Note that the top figure here corresponds
to what we call the total output measure, since it accounts both for yields on the enrolled
plot and the non-enrolled plot, but the bottom panel is different than the program maize
yields as it counts yields on both program and non-program land for treated farmers.

Table 4 presents regression estimates of the average treatment effects (ATEs), following
Eq. 1, for our three outcomes of interest in both the primary and full samples. Panel A
reports the results from the primary sample and Panel B shows results in the full sample
(Tables C.1 and C.2 report the full set of coefficients for the regressions with control variables).
Participation in the 1AF program has an economically and statistically significant impact
on maize yields, total output, and profit. The impact on program yields ranges between
25-28% across the different samples and specifications, total output is 17-24% greater in the
treatment group, and profit impacts range between 8% in the full sample with covariates to
16% in the primary sample. The point estimates are systematically attenuated in the full
sample, but program participation still has a substantial and positive impact, even in this
sample where a marked portion of participants had previously been exposed to the program.
These results are robust to various different specifications, sample definitions, and attempts

16Pre-exposed treatment farmers enroll about 0.1 acre more than new enrollees; t-statistic for test of the
difference between pre-exposed and new farmer enrolled maize acreage: -3.8771. Pre-exposed farmers also
plant more land to maize overall than new farmers, regardless of treatment status, the difference is around
0.05 acres; t-statistic: -2.5036.

15



0
.0

00
2

.0
00

4
.0

00
6

.0
00

8
.0

01
D

en
si

ty

0 1000 2000 3000 4000 5000

Maize production (kgs)

Control Treatment

0
.2

.4
.6

.8
1

D
en

si
ty

0 1 2 3 4

Total maize acres

0
.0

00
2

.0
00

4
.0

00
6

.0
00

8
.0

01
D

en
si

ty

0 500 1000 1500 2000 2500

Overall maize yields (kgs/acre)

Figure 2: Distributions of production, acreage and yields
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Table 4: Main results

Program Maize Yields Total Maize Output Profit

(1) (2) (3) (4) (5) (6)

Panel A: Primary sample
1AF participant 304.76*** 318.90*** 250.52*** 264.92*** 49.50 54.80**

(35.370) (36.050) (85.530) (75.750) (30.030) (27.220)

Baseline controls N Y N Y N Y
Control group mean 1123.58 1082.93 339.73
Observations 757 757 691 691 691 691

Panel B: Full sample
1AF participant 295.95*** 290.61*** 258.57*** 200.22*** 46.40** 28.48*

(23.590) (23.350) (49.400) (44.760) (17.760) (16.740)

Baseline controls N Y N Y N Y
Control group mean 1144.56 1160.03 366.40
Observations 2122 2122 1919 1919 1919 1919
This table presents results from linear regressions of the three outcomes of interest on the treatment dummy.
Program maize yields are measured in kgs per acre, total maize output is measured in kgs, and profits are
measured in USD. Standard errors (in parentheses) are clustered at the treatment assignment (farmer group
cluster) level. The primary sample includes only farmers who had never previously participated in the 1AF
program. The full sample additionally includes a sample of farmers who had previously enrolled in the 1AF
program. All regressions include field office (site) fixed effects. Columns 2, 4, and 6 include the full set
of pre-specified controls, omitted here. Binary baseline controls are married, at least secondary education
by male household head, whether the household receives half of its income from farm labor, whether the
household used improved seeds at baseline, whether the household reported knowledge of 1AF practices
at baseline, whether the farmer intercropped beans and maize at baseline, and whether the household
reported having access to credit. Continuous baseline controls are household size, a measure of Fall Army
Worm presence collected during the 2017 season, baseline maize acres, and baseline maize yields per acre.
Regressions on the full sample in columns 2, 4, and 6 additionally control for whether households participated
in 1AF in the past. See Appendix E for details on the reduced sample size in columns 3-6.
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to deal with attrition (see Appendix E for more details on the latter).
As mentioned above, treatment farmers often only enroll a portion of their land in the

program, and almost twenty-five percent of participants enroll all of their maize land.17 For
those who have both program and non-program land, there are many reasons to believe
that the program could result in different types of spillover effects. For example, if farmers
substitute labor and other complimentary investments towards the enrolled plot, leaving
fewer resources for non-program land, then we could see high yields on treated land but
reduced productivity on non-program land. If instead there are learning spillovers, whereby
farmers for example apply the improved practices that they have learned to their non-
program land, or reallocate some inputs to the non-program land, then we might expect
yields on both plots to be higher than yields in the control group. Figure 3 suggests that the
yield effects are largely driven by productivity increases on enrolled land; treatment group
yields on non-enrolled land are statistically indistinguishable from control farmers yields.
We will investigate distributional aspects of the treatment effects in the next section. Note
that the enrolled plot was not randomly selected, so it is also possible that plot selection
affects these results. For example, if participants enroll their best plot, the non-enrolled plot
could produce less than the high-quality plot even with positive spillovers.

Figure 4 shows the distribution of treatment plot yields separately for farmers who enroll
all of their land and those who enroll a fraction or their land assets. If farmers reallocate a
substantial portion of the program-supplied inputs to non-enrolled plots, we would expect to
see that yields on enrolled plots are higher for those who do not have alternative land towards
which to substitute away from the enrolled plot. We observe the opposite here: participants
who enroll all of their land in the program obtain lower yields than those who enroll only
part of their land (Kolmogorov-Smirnov test of equality of distributions p-value: 0.01). Of
course, this could reflect other differences between those with high- and low amounts of land
ownership, or with different perceptions of the benefits of the program. Still, the sign of the
difference is suggestive that reallocation towards the non-enrolled plot is not a major factor.

17See Figure C.1 for the distribution of enrolled land shares and its relationship with overall maize acres
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4 Heterogeneity

Although we show that the ATE of the 1AF program is statistically and economically
significant for program yields, total maize output, and profits, we may still wonder if this
average masks underlying heterogeneity in program impacts. In particular, given that the
effect on profits is slightly attenuated when we account for missing data (see Appendix E),
it is useful to know whether effects are larger for specific sub-populations.

Figure 5 shows estimates of the treatment effect of program participation on the un-
conditional quantiles of the outcome distributions. We use the Frölich and Melly (2010)
implementation of Firpo (2007). These estimates help us understand whether program
participation leads to consistent changes in outcomes along different quantiles of the uncondi-
tional outcome distributions.18 We can see that the treatment effect is remarkably consistent
across the distribution of program maize yields. For total maize production and profits,
treatment effects for farmers at the top end of the output distribution are substantially lower;
at the very top effects become imprecisely estimated and statistically indistinguishable from
zero. For these two outcomes, we cannot detect significant treatment effects for the top two
deciles of the distribution.

Another way to look at this kind of effect is through distribution regressions, discussed
in Chernozhukov et al. (2013). These are closely related to unconditional quantile partial
effects but can be easier to interpret since the x-axis is values rather than percentiles of a
distribution. Figure 6 shows coefficients from a series of regressions; each coefficient is an
estimate of βx from the following regression:

1(Y > x)ij = α+ βxTi + δPi + γj + εi,

where Y is the outcome of interest, x varies along the x-axis of each figure along the support
of the outcome variable, Ti is the treatment dummy, and γj is a field office area (site) fixed
effect. These results are from estimations with a linear probability model, but the results are
robust to using a logit model to estimate the threshold probabilities. An appealing aspect of

18Standard quantile regressions, by contrast, which are computed by taking the horizontal distance between
the treatment and control CDFs, assume rank preservation, i.e., require individuals’ potential outcomes under
treatment and control to preserve their rank order in the distribution. We additionally conduct a Monte
Carlo simulation exercise suggested in Appendix E of Heckman et al. (1997). To simulate the distribution of
impact standard deviations under the null hypothesis of no heterogeneity, we repeatedly sample the control
group to generate synthetic treatment and control groups. This gives us a distribution of the standard
deviation of percentile effect differences under the null, which we then compare to the impact standard
deviation seen in the data. For all outcomes, we fail to reject the null of no heterogeneity. This suggests that
we are unable to detect treatment effect heterogeneity under the assumption of perfect positive dependence
between treatment and control outcome percentiles (also called the location shift assumption). Since this is a
strong assumption, we implement the rank preservation test proposed in Bitler et al. (2005). This tests for
rank reversal in baseline characteristics between quartiles of the treatment and control distribution. For each
sample definition and outcome variable, we fail to reject the null in the test for joint-orthogonality. Results
of both exercises are available from the authors upon request. Further, the unconditional quantile treatment
effects reported here barely differ from standard quantile regressions, which only capture quantile treatment
effects if the location shift assumption holds.
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distribution regressions is that we can pinpoint where along the distribution effects occur.
The top panel shows the effects along different values of maize. We can see that the

effect of the treatment on the proportion of participants above a certain yield is substantial,
especially between thresholds of 750 kg/acre and 1750 kg/acre. These correspond to the
bulk of the control group yield distribution, confirming the take-away from the quantile
effect results: the effects are substantial and consistent over most of the yield distribution.
The results for maize output and profits suggest that the effects are largest around the
lower end of the distribution, but unlike yields, there is no binding upper limit on the total
output. While total maize output can at least in theory be expanded by bringing more land
under cultivation, maize yields likely have some physiological upper bound, beyond which
decreasing marginal returns to inputs start to make additional intensification unprofitable.

Finally, we implement methods proposed by Chernozhukov et al. (2018) (henceforth
CDDF) to estimate key features of heterogeneous effects on our outcomes of interest. A key
difference between this approach and the previous two is that it focuses on understanding
whether or not specific covariates can predict what participants will be most and least affected.
While we do not detect much heterogeneity along the distribution of the outcome variable,
this does not automatically rule out the existence of subgroups for whom the treatment
is more or less effective. As we did not pre-specify sub-group heterogeneity analyses, we
wanted to avoid specification searching and decided to use the CDDF method.19 A key
challenge with machine learning tools in high-dimensional settings is that they typically
require strong assumptions to produce consistent estimators of conditional average treatment
effects (CATE). The new method developed in Chernozhukov et al. (2018) sacrifices some
generalizability, but in return the authors are able to rely on fewer assumptions.

In particular, instead of trying to make inference on the full CATE function, the method
focuses on making inference on key features of the CATE. These features are (1) the Best
Linear Predictor (BLP) of the CATE function, (2) Sorted Group Average Treatment Effects
(GATES), reporting predicted treatment effects at different deciles of the predicted treatment
effect distribution, and (3) Classification Analysis (CLAN), showing how covariates of interest
differ between the units that we predict will be the most and least affected, and these most-
affected and least-affected groups are also defined by the highest and lowest deciles of the
predicted treatment effect distribution. Below, we provide some more intuition for the BLP,
as it is perhaps the least obvious of the three (BLP results available from the authors).

Briefly, the method splits the data into an auxiliary subset, separate from the main data
(the data is split into main and auxiliary many times, as is standard with ML techniques).
Letting Y 0 and Y 1 denote potential outcomes under control and treatment, respectively,
we can write out two key functions: b0(Z) := E[Y 0|Z], which is the baseline conditional
average, and s0(Z) := E[Y 1|Z]− E[Y 0|Z]. Given a randomly assigned treatment variable

19Our discussion of the method below draws heavily on the discussion in Chernozhukov et al. (2018).
Section 6.2 in their paper describes the implementation algorithm in detail.
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D, a known propensity score p(Z), and a few more assumptions on the propensity score,
the observed outcome can be written as a regression function (here, conditional on D,Z):
Y = b0(Z) +Ds0(Z) + U , where E[U |Z,D] = 0.

We then proceed by using each auxiliary sample to train an ML estimator and obtain
ML estimates of the baseline and treatment effects, called proxy scores. We will refer to
the estimated proxies of b0(Z) and s0(Z) as B(Z) and S(Z), respectively. Note that we can
then use these predicted proxies in the main sample to estimate the BLP of the conditional
average treatment effect. Essentially, we regress the observed outcome on the treatment
variable minus the propensity score (to estimate the average treatment effect, or ATE), and
on the treatment variable minus the propensity score interacted with deviations of the S(Z)
that we estimated in the auxiliary data from the expected value of S(Z) in the main sample.
The coefficient on this second interaction term is what provides information about treatment
effect heterogeneity. More specifically, we obtain the BLP parameters by estimating the
following relationship in the main sample, using weighted OLS:

Yi = α̂′X1,i + β̂1(Di − p(Zi)) + β̂2(Di − p(Zi))(Si − ENSi) + ε̂i (2)

where S(Z) is written as S for simplicity, EN [w(Zi)ε̂iXi] = 0 with w(Zi) = {p(Zi)(1 −
p(Zi))}−1. Further, Xi,1 is constructed as Xi = [X ′1,i, (Di − p(Zi), (Di − p(Zi)(Si − ENSi)]′,
and X1,i includes a constant, B(Zi), and S(Zi). In the above regression, the estimated β1 is
the ATE, and β2 is best linear predictor of the existing heterogeneity. If what we estimate in
the auxiliary sample (S(Z)) is a perfect proxy for the true heterogeneity, s0(Z), then β2 = 1.
If there is no heterogeneity, and the estimates from the ML are pure noise, then β2 = 0.

We include as explanatory variables a number of baseline controls that could plausibly be
correlated with outcomes: pre-exposure to 1AF program, household size, baseline fertilizer
use, asset score, father above secondary education, self-reported credit access), as well as
several additional variables: rainfall and temperature by growing season phase (pre-planting,
immediate post-planting, and post-top-dressing). The results are largely unaffected by
the inclusion of additional variables. We run the method using six ML methods: Neural
Nets, Lasso, Ridge, Elastic Net, Boosting, and Random Forest. In our case, our vector of
covariates has very low ability to predict heterogeneity; the confidence intervals on β2 = 0
are centered at zero, but are also imprecisely estimated. We do not report the results here,
but they are available from the authors. This does not tell us with certainty that there exists
no heterogeneity in treatment effects, but it does inform us that the vector of covariates
included has no power to predict treatment effect heterogeneity.

Figure 7 presents the Sorted Group Average Treatment Effects (GATES) estimated using
Neural Nets.20 We can see that for the lowest-ranked groups, the GATES estimate is not
distinguishable from zero other than for program maize yields. That said, the groups are not

20Results from other ML methods, available on request, are qualitatively similar, but neural nets performed
the best in the simulations.
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starkly different from each other, and if we examine the means of baseline variables across
the least-affected and most-affected groups (CLAN), they do not differ significantly in a
systematic way (results omitted). It may be that the method requires a larger sample size to
have enough power to conclude that the GATES are significantly different from each other.
Since it relies on covariates to predict heterogeneity, it could also be that we are simply not
including the correct covariates. It is also possible that the program simply works well for
the majority of the population that self-select into enrolling.

5 What happens after the treatment year?

An additional means by which we can assess the value of the 1AF program is in how
participants themselves value the program. If their experiences are positive, we might expect
this to be reflected in whether they choose to re-enroll in 1AF in subsequent years and how
much land they enroll. To answer this question, we match farmers to 1AF administrative
program data, which includes information about farmers’ enrollment history and loan
repayment.

Of particular interest is how farmers make the decision to re-enroll in the program. We
do not have strong a priori expectations about the extensive margin effect. If farmers value
the program because of the resources that it provides, farmers may be more likely to re-enroll
if they participated in the previous season. However, if the program is effective at helping
farmers “graduate” by nudging them across a poverty trap, then we might expect some
successful treated farmers to drop out of the program. Table 5 shows that being randomly
allocated to participation in 2017 did not significantly increase the probability that farmers
enrolled in 2018. This is somewhat surprising, but the farmers who were held out in the
control group received a discount on their participation fee in 2018 to compensate for having
to wait a year due to the study. This could have off-set the effect of being exposed to the
program.

In addition to the decision at the extensive margin, farmers also face an additional
choice: how much land to enroll. If farmers find it useful to enroll more land to access more
credit and/or larger quantities of high-quality inputs, then they may increase enrollment
year-on-year after their first year of participation. However, if the program is more useful
to farmers for its information effects, then we may not expect any change in land enrolled.
We know from Table 1 that farmers in treatment and control groups were not significantly
different in baseline maize acres cultivated. We might therefore expect that treated and
control farmers on average would choose to enroll the same amount of land in the program
in 2018.

We first consider the primary sample, who had no previous exposure to the 1AF program.
Table 6 shows that being randomly assigned to participate in the program in 2017 significantly
increased land enrolled in 2018. Column (1) includes only the sample of farmers who did
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Table 5: Enrolled in 2018, primary and full samples

(1) (2)
Enrolled 2018 Enrolled 2018

(primary sample) (full sample)

1AF participant 0.01 0.01
(0.03) (0.03)

Pre-exposed 0.07∗∗
(0.03)

1AF participant -0.02
× pre-exposed (0.03)

Observations 757 2122
R2 0.343 0.446
Control group mean 0.66 0.67
Results in this table are from linear regressions of the outcome
variables on the treatment dummy. The outcome variable is a binary
indicator of whether the farmer appeared in the 2018 administrative
data as enrolled in the program. Standard errors (in parentheses)
are clustered at the treatment assignment (farmer group cluster)
level. All regressions include field office (site) fixed effects.

Table 6: Acres enrolled in 2018, primary sample

(1) (2)
2018 Acres 2018 Acres, Missings=0

1AF participant 0.13∗∗∗ 0.09∗∗
(0.04) (0.04)

Observations 487 757
R2 0.131 0.232
Control group mean 0.62 0.41
Results in this table are from linear regressions of the outcome variables
on the treatment dummy. Missing enrolled acres in (2) are coded as
zero, so this table includes farmers who chose not to re-enroll. Standard
errors (in parentheses) clustered at treatment assignment (farmer group
cluster) level. All regressions include field office area (site) fixed effects.
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choose to re-enroll, whereas column (2) adds farmers who did not re-enroll by treating their
enrolled acres as zero. This second column should be a very conservative estimate of the
effect. This lends further support to the idea that farmers find the access to credit and
quality inputs useful. We might also interpret these results as suggesting that program
participation in one year may be easing constraints, allowing farmers to increase enrollment
in the next year. Alternatively, it could suggest a learning mechanism, whereby farmers are
more interested in enrolling more of their land having experimented with the program in
the past year.

We try to go a bit further to distinguish between eased constraints and farmer learning
as explanations for increased land enrollment by treatment farmers. In column (1) of Table
7, we show enrollment decisions in 2018 by farmers who joined 1AF in 2016. Although initial
enrollment was non-random, control farmers were randomly held out from the program in
2017. Thus, exposure to one vs two years of the program is random. The effect of 2017
participation on 2018 acres enrolled is positive and significant. This sample was already
aware of how the program worked, having participated in 2016, so we take this as suggestive
evidence that the mechanism that leads farmers to increase enrollment in the next year runs
through a relaxation of constraints (either by increasing yields and profits, or by continuing
to allow farmers to update their beliefs about the returns to the program).

Table 7: Acres enrolled in 2018, from past new enrollees

(1) (2)
2018 Acres (Joined 2016) 2018 Acres (Joined 2015)

1AF participant 0.23∗∗∗ 0.08∗∗
(0.04) (0.04)

Observations 394 293
R2 0.180 0.136
Control group mean 0.58 0.62
Results in this table are from linear regressions of the outcome variables on the treatment
dummy. The outcome variable is the enrolled land size recorded in the 2018 administrative
data. Standard errors (in parentheses) are clustered at the treatment assignment (farmer
group cluster) level. All regressions include field office (site) fixed effects.

6 Discussion

We uncover large ATEs from participation in 1AF’s core program, which seem to vary
relatively little across the population, across a variety of heterogeneity tests. A large
theoretical literature on poverty traps, and a growing empirical body of evidence shows that
poor households may need bundled interventions in order to move out of poverty (Bandiera
et al., 2017; Banerjee et al., 2015). If we believe that farmers face multiple simultaneous
constraints, offering an intervention that only relaxes credit constraints, or only provides
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information, may not be sufficient to raise yields and profits in a significant or economically
meaningful way.

A reader could of course question whether this bundled approach is the most cost-effective
one. Could a simpler program work as well at lower cost? The most common criticism
against bundled programs tends to be aimed at donor-funded and government programs.
The 1AF model, in contrast, is largely farmer-funded. By revealed preference, given the
rates of re-enrollment in the program and the high rates of loan repayments, it seems that
farmers experience a substantial return on their investments.

More generally, it is plausible that bundled programs that address multiple constraints
may be effective across a greater number of contexts if the nature and severity of market
failures varies enough across space. In specific contexts where implementers have identified
the most binding constraint, it is likely more cost-effective to focus on a single, highly
effective component. However, a standardized program that addresses multiple constraints
may enable an organization to scale interventions without having to tweak program specifics
extensively in each new context. While opponents may contend that more complex programs
are costlier to implement than more targeted interventions, this argument ignores the
potential cost of the market research that would be required to tailor targeted programs
to suit many diverse new contexts. Determining what the binding constraints are in many
small, local markets could in many cases be prohibitively costly.

Returning to the broader question of the role of the agricultural sector in Africa’s future,
and whether or not smallholder farmers can help drive growth, we of course recognize the
limits of a single study in a particular region in a specific year. A deeper discussion of
external validity (even as it applies to extrapolating to other 1AF locations) would be
valuable, but is beyond the scope of the current paper. That said, if we review the 1AF
approach—and that of the growing number of similar programs—in light of the critiques
outlined in Collier and Dercon (2014), several aspects of the program can be interpreted as
trying to address their concerns about the (lack of) promise of smallholder farming systems.

Collier and Dercon (2014) identify three areas of potential economies of scale in SSA
agriculture: first, they discuss skills and technology. They argue that in agriculture, as in
most sectors, larger producers are more likely to successfully handle new information, process
it, and manage adoption risks. Large organizations may also be better able to internalize
learning costs. Large non-profit organizations like 1AF could plausibly absorb some of these
costs, leveraging their scale and human capital to distill information and channel the relevant
information to smallholders when and where they need it.21 A second reason for economies
of scale is finance costs, since scale influences both the costs of obtaining capital, logistics,

21Tinsley and Agapitova (2018) report that 1AF launched an initiative called “Tubura University,” described
as a set of in-house development courses to provide its staff with training in English, computing, leadership
and management skills. The organization has also put together a “scale innovations team” with the goal of
exploring ways to increase client density, run research projects to build organizational knowledge, and to
propose changes to the model as the competitive environment develops.
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and bargaining power. Large-scale NGOs and other organizations can and do leverage grant
funding for working capital from both agro-input suppliers and banks (Tinsley and Agapitova,
2018). Most financial institutions shy away from input loans, preferring to provide cash
credit over shorter time periods; by extending their credit to smallholders, organizations
like 1AF can effectively reduce the transaction costs and asymmetric information facing
small farmers. Third, economies of scale matter for trading, marketing, and storage. By
integrating several parts of the value chain (input importing and quality checks, as well as
storage and market facilities), it would seem like 1AF and other large organizations can
share the benefits of scale with their clients.

Perhaps this new evidence will nudge a few cynics into reconsidering the future for
(smallholder) agriculture in sub-Saharan Africa. For those already optimistic about the
sector, we hope that it provides compelling input into a discussion about optimal instruments
for boosting productivity. Thinking about large-scale NGOs as enabling creative vertically-
integrated opportunities for farmers may hold a clue to the types of investments needed to
transform African agriculture into a more dynamic sector.
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A Pre-Analysis Plan Review Letter

 
 
 
 
 
 
 

 

 

 

 

 

 

 

New Delhi, 23rd July 2018 

 

 

To whom it may concern 

 

Reg.: Confirmation of the review of the Pre-Analysis Plan (PAP) 

 

Dear Sir/Madam 
 

This letter is to confirm that 3ie reviewed the PAP of the Impact Evaluation of the One Acre Fund 
program on yields and profits of maize and beans farmers in Teso, Kenya. 

 

The PAP was submitted to 3ie by Maya Duru and Kim Siegal. The PAP review process was led by 
Rosaine N. Yegbemey between July and November, 2016.  
 

The PAP went through three main rounds of review with several iterations of comments and a couple of 
Skype calls. Considering the context of the evaluation and the 1AF team’s responses to the comments, the 
revised PAP was found to be appropriate to the goals of the study and of sufficient level or rigor.   
 

For any questions on the PAP review process, please contact Rosaine N. Yegbemey at 
ryegbemey@3ieimpact.org. 

 

 

Marie Gaarder 
Director of Evaluation Office and Global Director for Innovation and Country Engagement 
International Initiative for Impact Evaluation (3ie) 
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B Additional baseline results
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Figure B.1: Distributions of non-binary baseline characteristics, by treatment status
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Figure B.2: Distributions of non-binary baseline characteristics, by previous 1AF exposure
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Table B.1: Baseline balance (primary sample)

(1) (2)
Control Treatment Difference

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE (1)-(2)
Panel A: Binary variables

Married (0/1) 396
[58]

0.904
(0.016)

361
[59]

0.881
(0.016)

0.023

Household head has secondary school 396
[58]

0.346
(0.030)

361
[59]

0.377
(0.026)

-0.031

Household income >50% from farm labor 396
[58]

0.788
(0.032)

361
[59]

0.753
(0.027)

0.034

Used improved ag technology in 2016 396
[58]

0.619
(0.037)

361
[59]

0.651
(0.031)

-0.032

Reports knowledge of 1AF practices 396
[58]

0.061
(0.015)

361
[59]

0.141
(0.020)

-0.081***

Intercropped maize and beans in 2016 396
[58]

0.472
(0.034)

361
[59]

0.560
(0.041)

-0.087

Reports having credit access in 2016 396
[58]

0.705
(0.030)

361
[59]

0.709
(0.028)

-0.005

Panel B: Continuous variables
Household size 396

[58]
6.616
(0.154)

361
[59]

6.662
(0.153)

-0.046

Acres under maize cultivation in 2016 396
[58]

0.994
(0.064)

361
[59]

0.936
(0.050)

0.058

Maize yield (kg/acre) in 2016 396
[58]

427.257
(32.866)

361
[59]

443.707
(35.653)

-16.450

F -statistic (test of joint significance) 2.066**
Number of observations 757
Notes: Field office fixed effects are included in all estimation regressions. Standard errors clustered at farmer
group cluster level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
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Table B.2: Baseline balance (pre-exposed sample)

(1) (2)
Control Treatment Difference

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE (1)-(2)
Panel A: Binary variables

Married (0/1) 660
[60]

0.862
(0.015)

705
[59]

0.879
(0.013)

-0.017

Household head has secondary school 660
[60]

0.409
(0.024)

705
[59]

0.451
(0.030)

-0.042

Household income >50% from farm labor 660
[60]

0.771
(0.021)

705
[59]

0.791
(0.020)

-0.020

Used improved ag technology in 2016 660
[60]

0.883
(0.014)

705
[59]

0.879
(0.014)

0.004

Reports knowledge of 1AF practices 660
[60]

0.712
(0.024)

705
[59]

0.723
(0.023)

-0.011

Intercropped maize and beans in 2016 660
[60]

0.477
(0.032)

705
[59]

0.434
(0.030)

0.043

Reports having credit access in 2016 660
[60]

0.712
(0.023)

705
[59]

0.735
(0.023)

-0.023

Panel B: Continuous variables
Household size 660

[60]
6.665
(0.122)

705
[59]

6.901
(0.113)

-0.236

Acres under maize cultivation in 2016 660
[60]

1.010
(0.040)

705
[59]

1.068
(0.040)

-0.059

Maize yield (kg/acre) in 2016 660
[60]

599.304
(32.313)

705
[59]

649.640
(30.483)

-50.336**

F -statistic (test of joint significance) 1.300
Number of observations 1365
Notes: Field office fixed effects are included in all estimation regressions. Standard errors clustered at farmer
group cluster level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
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Table B.3: Baseline comparison of primary and pre-exposed samples

(1) (2)
Primary Sample Pre-Exposed Sample Difference

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE (1)-(2)
Panel A: Binary variables

Married (0/1) 757
[117]

0.893
(0.011)

1365
[119]

0.871
(0.010)

0.022

Household head has secondary school 757
[117]

0.361
(0.020)

1365
[119]

0.431
(0.019)

-0.070**

Household income >50% from farm labor 757
[117]

0.771
(0.021)

1365
[119]

0.782
(0.015)

-0.010**

Used improved ag technology in 2016 757
[117]

0.634
(0.025)

1365
[119]

0.881
(0.010)

-0.247***

Reports knowledge of 1AF practices 757
[117]

0.099
(0.013)

1365
[119]

0.718
(0.017)

-0.619***

Intercropped maize and beans in 2016 757
[117]

0.514
(0.027)

1365
[119]

0.455
(0.022)

0.059***

Reports having credit access in 2016 757
[117]

0.707
(0.020)

1365
[119]

0.724
(0.016)

-0.017***

Panel B: Continuous variables
Household size 757

[117]
6.638
(0.108)

1365
[119]

6.787
(0.083)

-0.149**

Acres under maize cultivation in 2016 757
[117]

0.966
(0.041)

1365
[119]

1.040
(0.029)

-0.073***

Maize yield (kg/acre) in 2016 757
[117]

435.102
(24.250)

1365
[119]

625.302
(22.143)

-190.200***

F -statistic (test of joint significance) 86.345***
Number of observations 2122
Notes: Field office fixed effects are included in all estimation regressions. Standard errors clustered at farmer
group cluster level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
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C Additional results
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Figure C.1: Share of land that treatment farmers enroll in the program
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Table C.1: Primary outcomes with controls, primary sample

(1) (2) (3)
Program Maize Yields Total Maize Output Profit

1AF participant 318.90∗∗∗ 264.92∗∗∗ 54.80∗∗
(36.05) (75.75) (27.22)

Married (0/1) 112.42∗ 19.75 3.80
(59.08) (147.01) (53.83)

Household head has -0.76 259.84∗∗∗ 86.90∗∗∗
secondary school (45.96) (88.10) (32.70)

Household income 7.86 24.51 16.12
>50% from farm labor (47.17) (79.03) (28.78)

Used improved ag -94.27∗∗ -142.42∗ -61.67∗∗
technology in 2016 (42.62) (85.34) (30.87)

Reports knowledge of -10.18 25.51 -8.90
1AF practices (69.24) (145.85) (53.47)

Intercropped maize -23.53 -82.25 -24.97
and beans in 2016 (43.68) (90.91) (33.36)

Reports having -90.85∗∗ -45.97 -19.97
credit access in 2016 (35.37) (78.80) (28.12)

Household size 8.06 33.46∗∗ 12.99∗∗
(7.44) (15.28) (5.34)

FAW Incidence -5.98∗ 1.79 1.37
(3.52) (7.71) (2.87)

Acres under maize 69.31∗∗ 361.85∗∗∗ 107.06∗∗∗
cultivation in 2016 (26.98) (73.64) (26.21)

Maize yield 0.18∗∗∗ 0.45∗∗∗ 0.14∗∗∗
(kg/acre) in 2016 (0.05) (0.10) (0.04)

Observations 757 691 691
R2 0.198 0.248 0.207
Results in this table are from linear regressions of the outcome variables on the treatment dummy.
Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster)
level. All regressions include field office (site) fixed effects.
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Table C.2: Primary outcomes with controls, full sample

(1) (2) (3)
Program Maize Yields Total Maize Output Profit

1AF participant 290.61∗∗∗ 200.22∗∗∗ 28.48∗
(23.35) (44.76) (16.74)

Past 1AF participant -28.73 20.07 7.90
(27.12) (66.28) (23.54)

Married (0/1) 65.57∗∗ 69.06 14.47
(31.89) (68.69) (25.54)

Household head has 6.76 181.69∗∗∗ 60.21∗∗∗
secondary school (25.00) (51.81) (18.85)

Household income 45.89∗ 132.78∗∗ 53.98∗∗∗
>50% from farm labor (26.35) (52.30) (19.40)

Used improved ag -29.88 -58.41 -28.68
technology in 2016 (33.70) (63.26) (23.16)

Reports knowledge of 21.80 74.35 17.53
1AF practices (28.99) (55.58) (20.85)

Intercropped maize -13.86 -19.31 0.63
and beans in 2016 (24.37) (56.28) (20.73)

Reports having -23.96 -17.76 -14.26
credit access in 2016 (22.32) (46.40) (17.13)

Household size 4.81 42.29∗∗∗ 14.21∗∗∗
(4.31) (9.72) (3.51)

FAW Incidence -3.99∗ 3.84 1.44
(2.12) (4.18) (1.56)

Acres under maize 33.11∗∗ 368.87∗∗∗ 114.25∗∗∗
cultivation in 2016 (15.68) (54.14) (19.47)

Maize yield 0.14∗∗∗ 0.36∗∗∗ 0.11∗∗∗
(kg/acre) in 2016 (0.03) (0.08) (0.03)

Observations 2122 1919 1919
R2 0.164 0.214 0.170
Results in this table are from linear regressions of the outcome variables on the treatment dummy.
Standard errors (in parentheses) are clustered at the treatment assignment (farmer group cluster)
level. All regressions include field office (site) fixed effects.

43



D Variable construction and measurement

Maize yield measurements were taken by enumerators on two 40-square-meter areas selected
from farmer plots. Enumerators marked each area before farmers harvested any maize. For
treated farmers, two areas were marked each on enrolled and non-enrolled land. Additionally,
if farmers planned to harvest green maize from some parts of their plot, enumerators marked
areas within these parts for measurement. Yield variables use the average dry weight from
the two marked areas. For treated farmers, when we consider farmer-level outcomes, we
average yields across enrolled and non-enrolled land, weighted by the proportion of land
farmers enrolled.

We calculate projected revenues using average market prices from nearby vendors
covering post-harvest months, multiplied by 1.08 to account for typical price increases
over the consumption/selling season. We calculate farmer costs using program costs and
self-reported costs for treated farmers, and self-reported seed and fertilizer costs for control
farmers. Labor costs include land prep, plowing, and planting costs, collected in a survey
after planting, as well as post-planting costs collected at harvest time. For paid labor, we
use farmer self-reported costs by planting phase. To include the opportunity cost of unpaid
labor use, we calculate the mean day wage reported within the sample, devalue this mean
wage by 50% (roughly the rural unemployment rate according to DHS data), and multiply
this devalued mean by total person-days of unpaid labor for each planting phase. Profit is
simply the difference between projected farmer revenues and costs.

Note that in the original PAP, all labor costs were specified to be devalued by 50%.
We feel that it is more appropriate to only make this correction for unpaid labor, as this
more appropriately reflects the expected wage a household laborer could earn in the market.
However, we show in Table D.1 and D.2 that our profit results are robust to valuing all labor
at the market rate, although unsurprisingly the treatment effect does decrease slightly in
magnitude.

Table D.1: Profit with different labor cost definitions, primary sample

(1) (2) (3)
Profit (PAP def) Profit (Mkt + 50% own) Profit (Mkt rate labor)

1AF participant 57.435∗∗ 54.800∗∗ 48.865∗
(27.497) (27.224) (27.119)

Observations 691 691 691
R2 0.215 0.207 0.203
Control Mean Dep. Var 353.189 337.624 323.719
This table presents results from linear regressions of the outcomes in each column on the treatment dummy.
Column (1) uses the pre-registered definition of profit which devalued all labor costs from market rate by 50%
following local unemployment rate estimates. Column (2) uses our preferred definition, which only devalues unpaid
labor at 50% of the market rate. Column (3) values all labor at the market rate. Standard errors (in parentheses)
are clustered at the treatment assignment (farmer group cluster) level. All regressions include field office (site)
fixed effects and the full set of pre-specified controls.
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Table D.2: Profit with different labor cost definitions, full sample

(1) (2) (3)
Profit (PAP def) Profit (Mkt + 50% own) Profit (Mkt rate labor)

1AF participant 31.617∗ 28.476∗ 21.871
(16.756) (16.739) (16.627)

Observations 1919 1919 1919
R2 0.177 0.170 0.167
Control Mean Dep. Var 379.453 362.975 349.813
This table presents results from linear regressions of the outcomes in each column on the treatment dummy.
Column (1) uses the pre-registered definition of profit which devalued all labor costs from market rate by 50%
following local unemployment rate estimates. Column (2) uses our preferred definition, which only devalues unpaid
labor at 50% of the market rate. Column (3) values all labor at the market rate. Standard errors (in parentheses)
are clustered at the treatment assignment (farmer group cluster) level. All regressions include field office (site)
fixed effects and the full set of pre-specified controls.

Note in Panel B of Tables 2 and 3, we consider input use valued in USD. Tables D.3 and
D.4 show that we also detect a sizeable increase in fertilizer use when measured in kilograms.
We can also break down fertilizer use by phase, and here we see the underlying substitution
behind the effect on fertilizer timing noted in Panel A of Table 2. Farmers in the treatment
group are not only using more fertilizer at the “correct” time, but also using less fertilizer at
incorrect times.

Table D.3: Quantity of fertilizer used (kgs) by planting phase, primary sample

At Planting Post Planting
(1) (2) (3) (4)
DAP CAN DAP CAN

1AF participant 21.653∗∗∗ -0.110 -6.853∗∗∗ 19.801∗∗∗
(1.780) (0.133) (1.689) (1.809)

Observations 757 757 757 757
R2 0.232 0.011 0.202 0.192
Control Mean Dep. Var 8.938 0.212 10.053 10.782
Results in this table are from linear regressions of the outcomes in each column
on the treatment dummy. Standard errors (in parentheses) clustered at the
treatment assignment (farmer group cluster) level. All regressions include field
office (site) fixed effects.
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Table D.4: Quantity of fertilizer used (kgs) by planting phase, full sample

At Planting Post Planting
(1) (2) (3) (4)
DAP CAN DAP CAN

1AF participant=1 21.694∗∗∗ -0.094 -6.943∗∗∗ 20.074∗∗∗
(1.855) (0.165) (1.752) (1.871)

Past 1AF 7.653∗∗∗ 0.174 -2.613∗ 6.277∗∗∗
participant=1 (1.621) (0.235) (1.544) (1.461)

1AF participant=1 -3.255 0.237 2.794 -0.333
× Past 1AF participant=1 (2.434) (0.300) (1.710) (2.494)

Observations 2122 2122 2122 2122
R2 0.171 0.008 0.160 0.169
Control Mean Dep. Var 8.938 0.212 10.053 10.782
Results in this table are from linear regressions of the outcomes in each column on
the treatment dummy. Standard errors (in parentheses) clustered at the treatment
assignment (farmer group cluster) level. All regressions include field office (site) fixed
effects.
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E Sample Attrition

In this section, we aim to provide a careful accounting of sample attrition across surveys
and stages of the intervention. The first level of potential attrition was between the baseline
survey and pre-enrollment qualification. To qualify for the study, farmers had to pay a 500
KES deposit and form farmer groups. Farmers who did not complete the prepayment or
farmers who failed to form a group of at least 3 members were dropped. This meant that of
3137 farmers originally surveyed at baseline, 662 did not end up enrolling in 1AF for the
study season. Note that treatment was assigned after farmers were dropped at this stage, so
we should not expect any threats to internal validity from post-baseline attrition. However,
investigating this should allow us to better understand how the results may generalize outside
the scope of this study.

Table E.1 shows how the enrolled and dropped samples differ, and show that almost
across the board, the farmers who managed to enroll were significantly different than dropped
farmers. Enrolled farmers were more likely to be pre-exposed, had better knowledge of
1AF practices, were more likely to use improved seeds and fertilizer, and were more likely
to intercrop. Enrolled farmers also seem more specialized in farming, being more likely to
receive more than half their income from farm labor, farming more acres for maize in 2016
and 2015, and harvesting more maize in both previous seasons. Finally, enrolled farmers
seem more wealthy, reporting higher acreage for owned land, and a higher assets score.

For the most part, these variables simply suggest that 1AF may struggle to reach the
poorest farmers, a challenge that is not unusual for entrepreneurially-focused agriculture
programs (Carter et al., 2019). The enrolled farmers cultivate fewer acres than the average
farmer in more representative samples like that from Tegemeo Institute, suggesting that
although 1AF reaches many small farmers effectively, there may be a role for other approaches
to help the very poorest. However, keeping in mind the difference in pre-exposure, it could
also be that since past participation may have itself changed many of these variables, it
could also simply be that this is driving most of the differences here.

To check this, Table E.2 repeats the balance test for the primary sample. We see that
enrolled farmers are still significantly different on many variables, but mostly related to
wealth and agricultural specialization. In terms of knowledge of 1AF practices, use of
improved seed and fertilizer, credit access, and intercropping, the two groups are statistically
indistinguishable. We see also that many differences, while significant, are much smaller in
magnitude.

E.1 Harvest Survey Attrition

Once we restrict to the sample assigned to treatment, our primary driver of attrition from
the final analysis dataset is missing harvest data. This missingness takes two forms. The
first is total attrition: farmers for whom we have no dry weight survey data. This applies
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Table E.1: Baseline balance across enrolled and dropped groups

(1) (2)
Enrolled Dropped Difference

Variable N Mean/SE N Mean/SE (1)-(2)
Pre-exposed 2475 0.627

(0.010)
662 0.521

(0.019)
0.106***

Married 2427 0.876
(0.007)

662 0.881
(0.013)

-0.005

Father has Secondary Education 2429 0.411
(0.010)

634 0.339
(0.019)

0.072***

Receives more than half of income from farm 2427 0.765
(0.009)

662 0.719
(0.017)

0.046**

Used CAN or DAP and improved seeds on maize or beans 2456 0.770
(0.008)

659 0.677
(0.018)

0.094***

Reports Knowledge of OAF practices 2427 0.487
(0.010)

662 0.335
(0.018)

0.152***

Intercrops Maize and Beans 2427 0.473
(0.010)

662 0.432
(0.019)

0.041*

Farmer has access to credit 2427 0.719
(0.009)

662 0.702
(0.018)

0.017

Number of Household Members 2426 6.715
(0.052)

662 6.088
(0.097)

0.628***

Maize acres 2016 2427 1.006
(0.016)

662 0.839
(0.030)

0.167***

Maize acres 2015 2211 1.050
(0.059)

545 0.887
(0.028)

0.163

Acres owned for LR 2017 2387 2.698
(0.058)

644 2.149
(0.100)

0.549***

Acres owned and planted in LR 2016 2420 1.164
(0.022)

659 0.905
(0.032)

0.260***

Maize harvest 2016 (kgs) 2365 551.701
(12.160)

605 430.522
(20.624)

121.179***

Maize harvest 2015 (kgs) 2406 519.241
(12.225)

649 388.405
(23.114)

130.835***

Assets score 2475 18.749
(0.154)

662 16.184
(0.262)

2.565***

F-statistic (test of joint significance) 6.545***
Number of observations 2572
Notes: ***, **, and * indicate significance at the 1, 5, and 10 percent
critical level.
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Table E.2: Baseline balance across enrolled and dropped groups among primary sample

(1) (2)
Enrolled Dropped Difference

Variable N Mean/SE N Mean/SE (1)-(2)
Married 874 0.886

(0.011)
317 0.874

(0.019)
0.012

Father has Secondary Education 896 0.363
(0.016)

303 0.284
(0.026)

0.079**

Receives more than half of income from farm 874 0.757
(0.015)

317 0.675
(0.026)

0.082***

Used CAN or DAP and improved seeds on maize or beans 917 0.593
(0.016)

315 0.575
(0.028)

0.019

Reports Knowledge of OAF practices 874 0.097
(0.010)

317 0.104
(0.017)

-0.007

Intercrops Maize and Beans 874 0.509
(0.017)

317 0.467
(0.028)

0.042

Farmer has access to credit 874 0.706
(0.015)

317 0.681
(0.026)

0.025

Number of Household Members 874 6.597
(0.087)

317 5.839
(0.130)

0.758***

Maize acres 2016 874 0.955
(0.027)

317 0.759
(0.036)

0.195***

Maize acres 2015 763 1.143
(0.165)

255 0.834
(0.039)

0.309

Acres owned for LR 2017 859 2.614
(0.093)

306 2.060
(0.178)

0.554***

Acres owned and planted in LR 2016 872 1.128
(0.037)

314 0.842
(0.044)

0.286***

Maize harvest 2016 (kgs) 857 433.838
(19.396)

286 349.549
(23.385)

84.289**

Maize harvest 2015 (kgs) 864 377.908
(17.452)

310 295.306
(22.909)

82.602**

Assets score 922 16.319
(0.264)

317 14.795
(0.351)

1.524***

F-statistic (test of joint significance) 3.088***
Number of observations 940
Notes: ***, **, and * indicate significance at the 1, 5, and 10 percent
critical level.
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to 102 (137) farmers in the primary (pre-exposed) sample, for a total attrition rate of 11%
(9%). Total attrition is uncorrelated with treatment status, but is negatively correlated with
pre-exposure.

The second form of missingness is partial attrition, which by definition is restricted to
treated farmers: for some farmers, despite knowing that they cultivated more than zero
maize non-enrolled acres, we are missing dry weight survey data (and, sometimes, input
survey data). The primary driver of this missingness is due to farmer survey responses:
some farmers initially told enumerators they had no non-enrolled maize acres, but for a later
(post-harvest) GPS land measurement survey did indeed have non-enrolled acres. After
excluding total attrition farmers, partial attrition affects 58 (95) farmers in the primary
(pre-exposed) groups, for a partial attrition rate of 7% (7%).

We consider a number of strategies for checking the robustness of our results to partial
attrition. The results of these strategies are presented in Figure E.1 and Figure E.2. Our
first strategy is to make the simple but extreme assumption that missing yield data actually
represents extremely poor yields or an entirely failed harvest and the respondent or the
enumerator preferred not to report them. For this exercise, we set the missing yields to zero.
We show separately the effects of making this assumption only for full attrition, and then
additionally making this assumption for partial attrition. This estimate sets a rather extreme
lower bound for the treatment effect given the attrition. For full attrition, the treatment
effects we estimate are robust to even this extreme assumption. Given the greater numbers
involved, this strategy substantially lowers the magnitude of our estimated treatment effects
for partial attrition, especially for profit. This suggests that in this worst-case scenario, the
average treatment effect of the program on profit may not be distinguishable from zero.

In addition, we consider two strategies we consider reasonable if we instead assume partial
attrition is primarily or entirely (conditionally) random, rather than driven by negative
results. In the first, we use a simple imputation strategy and fill missing non-enrolled yields
with the field-office mean yields among control farmers. In the second, we use multiple
imputation methods in Stata to impute the missing non-enrolled yields, using the multivariate
normal method. Imputation is done exclusively using baseline farming practices and yields,
although this result is also robust to using study-season covariates.
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No Imputation

Full Attrition = 0

Partial Attr. = 0

Partial = Field Office Mean

Partial = Multiply Imputed

0 100 200 300 400
Maize (kgs) per farmer

Note: Full Attrition means missing outcome survey data. Partial Attrition means missing outcome for
non-enrolled plot only for treated farmers. Multiple imputation uses multivariate normal with baseline
farming practices and yields to predict missing non-enrolled yields for Partial Attrition group.

Maize per farmer, primary sample
Imputation strategies and treatment effect estimates

No Imputation

Full Attrition = 0

Partial Attr. = 0

Partial = Field Office Mean

Partial = Multiply Imputed

-50 0 50 100 150
Profit (USD)

Note: Full Attrition means missing outcome survey data. Partial Attrition means missing outcome for
non-enrolled plot only for treated farmers. Multiple imputation uses multivariate normal with baseline
farming practices and yields to predict missing non-enrolled yields for Partial Attrition group.

Profit, primary sample
Imputation strategies and treatment effect estimates

Figure E.1: Imputation strategies for attrition, primary sample
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No Imputation

Full Attrition = 5th pctile

Partial Attr. = 5th pctile

Partial = Field Office Mean

Partial = Multiply Imputed

0 100 200 300 400
Maize (kgs) per farmer

Note: Full Attrition means missing outcome survey data. Partial Attrition means missing outcome for
non-enrolled plot only for treated farmers. Multiple imputation uses multivariate normal with baseline
farming practices and yields to predict missing non-enrolled yields for Partial Attrition group.

Maize per farmer, full sample
Imputation strategies and treatment effect estimates

No Imputation

Full Attrition = 0

Partial Attr. = 0

Partial = Field Office Mean

Partial = Multiply Imputed

-50 0 50 100 150
Profit (USD)

Note: Full Attrition means missing outcome survey data. Partial Attrition means missing outcome for
non-enrolled plot only for treated farmers. Multiple imputation uses multivariate normal with baseline
farming practices and yields to predict missing non-enrolled yields for Partial Attrition group.

Profit, full sample
Imputation strategies and treatment effect estimates

Figure E.2: Imputation strategies for attrition, full sample
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