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1 Introduction

The wide dispersion of measured human capital in children and its strong relationship
with later life outcomes has prompted a renewed interest in understanding the de-
terminants of skill formation among children (for a recent review, see Heckman and
Mosso, 2014). This paper develops a framework to analyze the key determinants
of child developments during an important transition for many American children:
entering formal schooling at kindergarten. For many children, this stage of their de-
velopment represents a substantial increase in interactions with caregivers other than
family. We analyze how the two crucial environments children face during childhood
–home and school– affect the formation of children’s skills.

Our paper unifies two largely separate and parallel research programs. First,
research in the Child Development literature (such as work by Cunha and Heckman,
2007; Cunha et al., 2010; Agostinelli and Wiswall, 2016a; Attanasio et al., 2019a,b)
uses survey data on measures of children’s cognitive and non-cognitive skills to assess
the importance of parental investments on the development process. This analysis is
largely silent on the role of schools, and how the heterogeneity of school quality across
children affects child development. In contrast, the Education Production Function
literature, much of it using large scale administrative data from particular school
systems (such as work by Rivkin et al., 2005; Krueger, 1999; Chetty et al., 2014a,b),
focuses on estimating the value-added of classrooms and teachers. This research is
largely silent on the role of influences outside school, and how the heterogeneity in
home life affects development.

The starting point for our research is to develop a unified empirical framework
that nests the key features of the prior research. We start by incorporating influences
from both the home and school environments, treating both as latent, fundamentally
unobserved, inputs with no perfect measure. For the home influences, we follow the
latent factor structure of Cunha et al. (2010) by using a number of proxies for parental
investments. For the latent school influences, we follow the education literature, and
treat the school influences, at the classroom level, as a latent fixed effect, which is
identified using data on multiple children in the same classroom.

Our model of child development follows Cunha et al. (2010) in allowing for both
cognitive and non-cognitive skills, and follows the education literature in separating
cognitive skills into mathematics and reading skills.1 We model skill development in

1There is relatively little work using administrative school data to track non-cognitive skill
development. One recent exception is Jackson (2012), which estimates teacher value-added models
using North Carolina administrative data and absences and suspensions for 9th grade students as
a proxy for non-cognitive outcomes.
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each of these domains via a technology of skill formation, which defines the dynamics
of children’s skills through kindergarten. Each of the three types of skills is produced
by the child’s skills at kindergarten entry, and the inputs children are exposed to
during kindergarten from their home and school/classroom environments. We follow
the child development literature in allowing for complementarities between existing
skills and current investments, implying that home and school environments can have
heterogeneous effects on children.

Identification of this model requires solving two key challenges. The first chal-
lenge comes from the fact that we do not perfectly observe children’s skills and
parental investments in the data. Instead, we observe arbitrarily scaled measures
which include measurement error. Previous research has shown that the estimates of
the skill formation technology can suffer substantial bias if this issue is ignored (see
Cunha et al., 2010; Agostinelli and Wiswall, 2016a). For this reason, we implement
a latent factor model to recover the empirical distribution of math, reading, and
non-cognitive latent skills for children from multiple test scores and measures, and
use a similar model for the distribution of latent parental investments.

The second identification challenge comes from the selection bias: children may
be systematically exposed to classrooms and parental investments based on their
unobservable characteristics. This type of selection on unobservables would jeop-
ardize our attempt to identify the school and home impacts on child development.
We approach this issue in two ways. First, because of the rich nature of our data
and the generality of our model, our identifying assumption is based on the exogene-
ity of a particular environment, once we control for a child’s latent cognitive and
non-cognitive skills and other features of the environment. This is a weaker assump-
tion relative to either of the previous strands of the research: we use our data with
measures of prior skills, home, and school investments to “fill-in” the variables that
would otherwise be unobserved.

Second, we test our models for any remaining bias using a set of out-of-sample
validation tests. One set of tests shows that our estimated model can replicate
patterns of end-of-kindergarten skills across parental income and racial groups, even
though these are excluded variables from our model. As in Chetty et al. (2014a),
this suggests that are models are approximately “sufficient,” and remaining bias
is minimal. In a second set of validation exercises we replicate the experimental
results of the Tennessee STAR experiment, in which children are randomly assigned
kindergarten classrooms. Although we face the challenge of matching across datasets
with different skill measures, the reasonably close match of our model predictions for
this experiment to the actual observed experimental results gives us some confidence
in our model estimates.
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Because of the generality of our model, we face another practical challenge in
computing the estimates for our model. The inclusion of non-linear classroom fixed
effects and the interactions between latent classroom components with unobserved
child skills (included to capture complementarities in skill formation) implies that
our estimator does not have a simple closed form. To estimate our model, we there-
fore develop a multi-step iterative procedure, which builds upon previous work by
Arcidiacono et al. (2012) to incorporate an instrumental variable estimator at each
step. This procedure is tractable and transparent, and could be used in a number of
contexts.

We find that both home and classroom investments are important inputs to child
development during kindergarten. A 1 standard deviation increase in classroom
quality has a 0.323, 0.381, and 0.519 impact on end-of-kindergarten mathematics,
reading, and non-cognitive skills, respectively, after accounting for other inputs and
measurement error. In contrast, the effects of a 1 standard deviation change in
home environment has effect sizes that are between 15% and 40% lower than the
classroom estimates, suggesting the greater importance of classroom. However, as
we show in a series of counterfactual decomposition exercises, the quality of home
environments are more closely related to household income than classroom environ-
ment (although of course high income households have higher quality in both), and
therefore re-mediating income gaps in home environments has a larger impact on
skill development than re-mediating gaps in classroom environments. Focusing on
the gaps in skills between the 90th and 10th percentiles of the household income
distribution, providing all children the classroom quality of what the high income,
90th percentile households receive, would decrease the skill gap between the 10th
and the 90th percentile at the end-of-kindergarten by between 8% and 11%. But, if
we instead provide children what the high income 90th percentile households provide
in home investments, the 90-10 gap closes by substantially more, between 16% and
27%. Our finding of the importance of home environments to skill gaps by income
echoes recent findings that long-term gaps in test scores by SES have failed to close in
the United States, despite substantial increases and re-distribution of public school
funding (Hanushek et al., 2019a,b).

Another important finding is that classroom quality has larger effects on the
children entering kindergarten with low skills, essentially heterogeneous “treatment
effects.” The effect of classroom investments in children are 1.44 to 1.95 times higher
for children in the lowest decile of initial skills than for high skill top decile children.
This finding indicates that there are substantial gains in re-distributing classroom
resources to target disadvantaged children.

Finally, we assess the importance of methodology to our conclusions, to provide
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some guidance for future research on the importance of the generalities we allow.
We find that, in general, not correcting for measurement error biases estimates sub-
stantially, although the sign of the bias varies across parameters given the general
non-linear model we estimate. In general, we find that importance of classroom (rel-
ative to home) is upwardly biased in models without measurement error corrections
and in models not allowing for complementarities/interactions.

We also use our estimated model to compare the distributions of classroom ef-
fects/quality implied by our model to alternative value-added models. We find that
the estimated classroom effects in this class of models are biased because of relevant
omitted information about parental investments and children’s non-cognitive skills.
Our results suggest that, within our sample, the value-added models systematically
confound the treatment effect of classroom with the student selection into classrooms
based on their non-cognitive skills and their home quality. Additionally, we study if
the systematic bias in the estimated classroom quality would jeopardize the validity
of the value-added model as a method for teacher evaluation. We find that, because
of the bias in classroom effects, the value-added model would systematically predict
a upward biased evaluation for older teachers and a downward biased evaluation
for black teachers, which dissipates as those teachers gain experience. However, the
magnitude of the bias is not large on average.

Subsequent sections are organized as follows. Section 2 discusses the econometric
model, identification assumptions, and estimation strategy. Section 3 describes the
data and presents some descriptive patterns in development over the kindergarten
year. Sections 4-5 reports the estimates and validation exercises. Sections 6-7 use
the estimated model to assess standard valued-added models and decompose the
determinants of child development. Section 8 concludes.

2 Model and Estimation Framework

This section presents our general framework for child development. Our goal is a
general enough model of skill formation that it can nest the key components of the
previous research. We discuss various conditions for identification of the model, and
close the section by developing a practical multi-step estimator for the model that
we can take to the data.

2.1 Skill Development

At each age t = 0, 1, . . . , T children are characterized by a set of J skills. Let θj,i,t be
child i’s stock of skill j at age t. The collection of J skills for child i is represented
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by the vector Θi,t = {θ1,i,t, . . . , θJ,i,t}. Skills include both cognitive and non-cognitive
skills. Skill j in the next period is produced according to this technology:

θj,i,t+1 = fj,t(Θi,t, Hj,i,t, Cj,i,t, ηj,i,t) (1)

where Hj,i,t is a vector of investments from home and Cj,i,t is a vector of investments
from the classroom the child attends.2 The investments and skill stocks are all strictly
positive. The child development function in equation (1) is indexed by j and t to
emphasize that the technology itself is heterogeneous across skills and over ages. The
unobserved shock in skill formation is defined as ηj,i,t, and we return to its properties
below.

Investment from home represents all child development activities outside of school.
This need not be solely from interactions with parents, but could involve non-parental
caregivers such as after school care. Investment from the classroom can be from any
interaction during the school day, including from teachers, other schools staff, and
peers. In our empirical specifications we allow for classroom specific investment,
which can expose children within the same school to different classroom level envi-
ronments.

In the child development literature (see perhaps Heckman and Masterov, 2007),
equation (1) is typically labeled a “skill production technology.” In the education lit-
erature (see for example Rivkin et al., 2005; Krueger, 1999), equation (1) is labeled
as a “education production function.” In the former case, the skills include cognitive
and non-cognitive skills measured in survey data, and the investments from parents
are the focus of the analysis. In the latter case, reading or mathematics skills are typi-
cally assumed to be directly measured via standardized tests administered in schools,
and the productivity of school inputs (teachers and other classroom attributes) is
the focus. Our specification nests both of these frameworks.

2.2 Measurement

Our skill development/education production function (1) is written in terms of latent
variables. We recognize that children’s skills and the various investments in a child’s
skills from parents and classrooms are unobserved and only imperfectly measured
in data. For this reason, we consider a measurement system which can incorporate
several previous approaches to this issue.

2This formulation of the skill technology specifies skills as a first order Markov process. This
is consistent both with the education value-added literature and the models developed by (such as
work by Cunha and Heckman, 2007; Cunha et al., 2010). The formulation rules out longer lagged
persistence as in Todd and Wolpin (2003).
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First, we allow for multiple measures of latent variables, and following Cunha and
Heckman (2007); Cunha et al. (2010), we conceptualize each measure M as imperfect
and including measurement error. More formally, let ωi,t be a generic latent variable,
e.g. ωi,t = θj,i,t. For each latent variable, we have m = 1, 2, . . . , Kω,t measures. The
number of measures can vary across latent variables and periods, and depends on
the available data. Each scalar measure is denoted Mω,i,t,m and takes the form:

Mω,i,t,m = bω,t,m(ωi,t, εω,i,t,m), (2)

where εω,i,t,m is the measurement error for measure m and bω,t,m is the measurement
function. One of the key identification issues is then how the measurement error
ε relate to the latent variable ω. In much of the previous literature, it is simply
assumed that there is no measurement error at all, and the particular measures
at hand are exact measures of the associated latent variable: Mω,i,t,m = ωi,t. Our
framework generalizes this approach.

A second measurement issue concerns the latent classroom investments. One
could take a similar approach with classroom inputs. In particular, we could assume
that observed classroom characteristics, such as class size or teacher experience, are
imperfect measures of classroom quality (see for example Bernal et al., 2016). In that
case, we could implement the same measurement system as in (2) to recover latent
classroom investments. Instead, we take a different, and more general, approach, and
treat the classroom effects in line with the education literature, as latent fixed effects.
Exploiting the clustered survey design of our data, which surveyed multiple students
per classrooms, we estimate the distribution of classroom quality via a generalized
non-linear fixed effect estimator. We detail this approach below.

2.3 Baseline Empirical Specification

The model presented above provides some of the general concepts of our empirical
specification. Next we present specific functional forms, identification assumptions,
and our estimation strategy, which we can take directly to data. We start with
a baseline specification, based on a particular specification of the production tech-
nology (1) and measurement system (2). This specification is the most restrictive
specification we consider, and we generalize it in subsequent sections.

The baseline specification assumes a log-linear, Cobb-Douglas, form for the pro-
duction technology. We specify the skill development function for each skill j (1)
as
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ln θj,i,t+1 = lnAj,t + γ1,j ln θj,i,t + γ2,j lnCj,i,t + ηj,i,t . (3)

Skill j in period t + 1 is produced by the previous period stock of that skill
θj,i,t and classroom investment in that skill Cj,i,t. To save on notation, we do not
include a classroom or school subscript, but the model allows for clustering of class-
room investments at the classroom and school level. The parameter γ1,j provides the
relative productivity of the existing stock of skills. The productivity of classroom
investments is captured by γ2,j. The skill production shock is defined as ηj,i,t, which
captures unobserved inputs in child development, and lnAj,t represents total factor
productivity (TFP). We normalize the shocks ηj,i,t to be mean zero for all j, t, imply-
ing that the TFP term lnAj,t can be thought as the mean of the “general” structural
shock (lnAj,t + ηj,i,t).

As in much of the previous literature, we consider a linear (or log-linear) system of
measures for the latent skills stocks. For each latent variable ωi,t ∈ {θ1,i,t, . . . , θJ,i,t}
and period t, we have m = 1, 2, . . . , Kω,t measures given by

Mω,i,t,m = µω,t,m + λω,t,m lnωi,t + εω,i,t,m, (4)

where Mω,i,t,m is the mth specific measure, εω,i,t,m represents the measurement error,
and µω,t,m and λω,t,m are the measurement parameters. µω,t,m and λω,t,m provide the
location and scale of the measurem. The parameter λω,t,m is the factor loading for the
latent factor ωi,t and measure m. Given the inclusion of the intercept, we normalize
the measurement error to be mean-zero without loss of generality: E(εω,t,m) = 0
for all ω, t,m. In our data, the set of measures for each type of children’s skills
ωi,t ∈ {θi,1,t, . . . , θi,J,t} is a combination of available assessments, as we discuss in
more detail below.

2.4 Identification of Baseline Specification

Next, we describe the identification of our baseline specification in (3). The concepts
introduced here also apply to the identification of the more general models that we
explore next, but are more easily discussed in a simplified setting.

The baseline specification in (3) is identified up to some initial normalization
given that latent skills (generically indexed by ω) and classroom inputs (C) are not
directly observed and have no particular location or scale. We normalize all of the
initial period (t = 0) latent variables to be mean 0 and variance 1:
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Normalization 1 Initial period (t = 0) normalizations:
(i) E(lnωi,0) = E(lnCj,i,0) = 0
(ii) V (lnωi,0) = V (lnCj,i,0) = 1
for all ωi,0 and j.

With these normalizations, we treat all latent variables symmetrically, imposing the
same normalizations on each in order to ease the interpretation of the estimates.3 The
normalization resolves the arbitrariness of the measures. Any positive monontonic
transformation of the measure would also be a valid measure.

One normalization that appears non-standard relative to the prior literature is
that we write the classroom effect as γ2,j lnCj,i,0, because of the scale normalization
in Normalization (1). That is, given the normalization that V (lnCj,i,0) = 1, the
standard deviation of the classroom quality distribution is equal to the parameter
γ2,j. This normalization of the classroom effects implies that all of the technology
parameters in (3), which represent the productivity of each factor in producing a
child’s skills, can easily be compared.

Next we move to the identification analysis. Given the normalizations on the
location of the latent skills, the measurement intercepts are identified from the mean
of the observed measures:

µω,0,m = E(Mω,i,0,m) for all ωi,0 ∈ {Θi,0}. (5)

We cannot identify the scaling parameters for the initial period, λω,0,m, without
further restrictions on the measurement errors. We consider the following indepen-
dence assumptions, commonly used in this literature (e.g. Cunha et al., 2010), that
the measurement errors are independent of each other and of the latent variables:

Assumption 1 Measurement model assumptions:
(i) εω,i,t,m ⊥ εω,i,t,m′ for all t, m 6= m′, and latent variable ω
(ii) εω,i,t,m ⊥ εω′,i,t,m for all t, m, and latent variable ω 6= ω′

(iii) εω,i,t,m ⊥ εω,i,t′,m′ for all t 6= t′, all m and m′, and latent variable ω
(iv) εω,i,t,m ⊥ ω′ for all t, m, and latent variables ω 6= ω′

Assumption 1 (i) is that measurement errors are independent contemporaneously
across measures. Assumption 1 (ii) is that measurement errors are independent con-
temporaneously across different measures of different factors. Assumption 1 (iii)

3Note that we do not impose any restrictions on the latter period (t > 0) latent variables, for
example the stock of latent skills in periods t > 0. See (Agostinelli and Wiswall, 2016b) for an
analysis the potential biases caused when latent variables are normalized in all periods of dynamic
model.
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is that measurement errors are independent over time. Assumption 1 (iv) is that
measurement errors are independent of the latent variables for child skills and in-
vestments. Although these assumptions are strong in some sense, they are common
in the current literature.4

Under these assumptions, the initial period (t = 0) scaling factors are identified
from ratios of covariances between the measures:

λω,0,m =

√
Cov(Mω,0,m,Mω,0,m′)Cov(Mω,0,m,Mω,0,m′′)

Cov(Mω,0,m′ ,Mω,0,m′′)
(6)

for any three measures m 6= m′ 6= m′′.5 Given the identification of the measurement
parameters for the initial period, we identify latent variables up to the measurement
errors:

lnωi,0 =
Mω,i,0,m − µω,0,m

λω,0,m
− εω,i,0,m
λω,0,m

= M̃ω,i,0,m −
εω,i,0,m
λω,0,m

(7)

where M̃ω,i,0,m is the transformed measure using the identified measurement param-
eters.

To analyze the identification of the skill development function (3), we substitute
the transformed measures for both periods t = {0, 1} skills (7) into (3), and after
some algebra, the empirical analogue of the technology of skill formation can be
written as:

Mj,i,1,m = µj,1,m + λj,1,m lnAj,0 + λj,1,mγ1,jM̃j,i,0,m + λj,1,mγ2,j lnCj,i,0 + κj,i,0,m , (8)

where the residual κj,i,0,m is given by

κj,i,0,m = λj,1,mηj,i,0 − γ1,j
λj,1,m
λj,0,m

εj,i,0,m + εj,i,1,m . (9)

4Our assumption of full independence is sufficient, but not necessary, for at least some of our
identification analysis. Below, we point out instances where weaker assumptions, allowing for some
forms of dependence among measures and among measures and latent variable, can be used for
identification. In cases of parametric production functions and parametric measurement system,
we can relax that assumption with weaker conditions, for example assuming zero correlation.

5As we show in the Appendix, in the presence of at least two latent skills, the identification of
the measurement systems is possible with only two measures for each latent skill. This relies on
the independence of measurement errors across latent variables.
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Note that, at this point, we have not identified the measurement parameters for
period 1 (µj,1,m and λj,1,m), only those for period 0. We do not want to impose any
restrictions on both periods because these would generally imply restrictions on the
skill development process (Agostinelli and Wiswall, 2016b).

The equation in (8) can be re-written in “reduced form” as

Mj,i,1,m = β0,j + β1,jM̃j,i,0,m + β2,j lnCj,i,0 + κj,i,0,m (10)

where the set of reduced form parameters (β0,j, β1,j, β2,j) are functions of both struc-
tural (production function) and measurement parameters:

β0,j = µj,1,m + λj,1,m lnAj,0 (11)

β1,j = λj,1,mγ1,j (12)

β2,j = λj,1,mγ2,j (13)

The system in (11)-(13) includes 3 equations for 5 unknowns. Agostinelli and
Wiswall (2016a) show that this under-identification problem can be solved in the
presence of age-invariant measures for skills. A pair of measures Mt,m and Mt+1,m for
latent variables ωt and ωt+1 is age-invariant if E(Mt,m|ωt = p) = E(Mt+1,m|ωt+1 = p)
for some p ∈ R++. Intuitively, age-invariance implies that the expected measure M ,
say a test score, for two children of different ages but equal skills is the same. This
rules out age specificity of measures between ages t to t+ 1. And, this assumptions
implies that the measurement parameters are constant with respect to a child’s age
(µj,1,m = µj,0,m and λj,1,m = λj,0,m). In the Data Section, we discuss the measures
in our particular dataset and whether the age-invariance assumption is appropriate.
To identify our model, we require that not all measures are age-invariant, but that
we have at least one:

Assumption 2 The data contains at least one age-invariant measure for each skill
j.

Assumption 2 allows us to identify the structural parameters from the reduced-
form parameters as

lnAj,0 =
β0,j − µj,0,m

λj,0,m
(14)

γ`,j =
β`,j
λj,0,m

∀ ` ∈ {1, 2} (15)

10



where the measurement parameters for the initial period (µj,0,m, λj,0,m) are already
identified, up to a normalization, as shown in (5) and (A-2).

Two main identification challenges remain. Equations (14) and (15) show that
in order to identify the structural parameters we need to consistently estimate the
reduced-form parameters βs. The first issue is measurement error. In (10), the
right-hand side measure of children’s skills M̃ are correlated with the residual error
κ because κ includes the measurement error ε associated with M̃ . Even ignoring the
unobservability of the classroom fixed effect, the OLS estimator of β1 would be biased
by measurement error, and in the simplest linear case with no other covariates, the
OLS estimator of β1 would be attenuated toward 0.6

The second identification challenge comes from selection bias with respect to the
structural component η of the residual κ. If children systematically sort into class-
rooms based on unobserved characteristics/inputs η, we would confound the class-
room effect on child development with these baseline characteristics. Similarly, a bias
exists if children’s skills at entry are correlated with the unobservable characteristics
η. In this restricted model, η includes any home influences on skill development,
and it is plausible that the home environment is related systematically to the chosen
school and classroom environment and the child’s kindergarten skills at entry.

The main identification assumption of the baseline model is based on the condi-
tional (on latent child skill) exogeneity of the unobserved shock. We formalize the
identification assumption as follows:

Assumption 3.a Mean-independence of the production function shock:

E(ηj,0|θj,0, Cj,0) = 0

This assumption is similar to the typical one for fixed effect models, but, in
our case, the classroom fixed effects and the θj,0 variable are unobserved. As in
the standard fixed effect case, this assumption allows for unrestricted sorting into
classroom/schools based on unobserved child skills θj,0 (say disadvantaged children
attend low quality classrooms). In subsequent models, we weaken this assumption by
generalizing the model and including more conditioning variables (additional latent
skills, home investments, and interactions/complementarities).

Under Assumption 3.a, the reduced-form parameters βs are consistently iden-
tified using the multiple excluded measures as instrumental variables to adjust for
measurement error (see Agostinelli and Wiswall, 2016a).7

6In this specification, with the inclusion of classroom fixed effects, we may not be able to sign
the bias in this way. The measurement error bias becomes even more difficult to sign in the more
general specifications we consider later, which include additional covariates and non-linearities.

7Note for this simple linear model, we can use standard within classroom differencing to elim-
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2.5 Generalizing: Parental Investments

We generalize our baseline specification in (3) by including parental investments.
This specification includes a unidimensional parental investment input which is com-
mon across the different skill domains, but is allowed to be differently productive in
producing math, reading and non-cognitive skills. Specifically, the technology of skill
formation for each type of skill j is

ln θj,i,t+1 = lnAj,t + γ1,j ln θj,i,t + γ2,j lnCj,i,t + γ3,j lnHi,t + ηj,i,t (16)

where Hi,t is the parental investments, and the parameter γ3,j is the productivity of
parental investments in producing skill j. We assume that parental investments Hi,t

are unobserved and imperfectly measured. We allow for multiple proxies for invest-
ments in the data and for measurement error, in the same fashion as for children’s
skills:

MH,i,t,m = µH,t,m + λH,t,m lnHi,t + εH,i,t,m (17)

where we maintain the assumptions on the measurement errors as in Assumption
(1). We generalize Assumption 3.a by conditioning on latent home investments:

Assumption 3.b Mean-independence of the production function shock:

E(ηj,0|θj,0, H0, Cj,0) = 0

Following the identification discussion in section (2.4), we can write the technol-
ogy in (16) in terms of the measures as

Mj,i,1,m = µj,1,m+λj,1,m lnAj,0 + λj,1,mγ1,jM̃j,i,0,m+

λj,1,mγ2,j lnCj,i,0 + λj,1,mγ3,jM̃H,i,0,m + κj,i,0,m

(18)

where the structural parameters of interested can be identified under assumption 3.b
and age-invariance as shown in equation (14)-(15).

inate the classroom effect. In subsequent models including interaction terms, estimation is more
involved, as we detail below.
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2.6 Generalizing: Multiple Skills and Complementarities

Next, we generalize the technology in (16) in two ways: (i) we include all the J
skills in the technology of skill formation for each type of skill j; and (ii), we allow
for complementarities between classroom investments and skills. In other words,
we allow for heterogeneity in the productivity of class investments with respect to
initial stock of skills. Following Agostinelli and Wiswall (2016a), we consider a kind
of trans-log technology of skill formation with interaction terms between investments
and skills. The technology for each type of skill j is

lnθj,i,t+1 = lnAj,t +

J∑
k=1

γ1,j,k ln θk,i,t + γ2,j lnCj,i,t + γ3,j lnHi,t + γ4,j ln θj,i,t lnCj,i,t + ηj,i,t

(19)

where the parameters {γ1,j,k}Jk=1 represent the elasticity of skills θj,i,t+1 with respect
to each type k of skills (θk,i,t). The TFP term lnAj,t represents the intercept of the
model, and in the empirical analysis will be also function of children’s observable
characteristics like gender and age. The parameter γ4,j governs the complementarity
between classroom investments and skills. Here the elasticity of classroom invest-
ments depends on the child i’s skills at entry:

∂ ln θj,i,t+1

∂ lnCj,i,t
= γ2,j + γ4,j ln θj,i,t (20)

γ4,j > 0 implies a higher return to classroom investment for children with high
initial skills relative to children with low initial skills. In contrast, γ4,j < 0 implies a
higher return of classroom investments for children with low initial skill. The sign of
this parameter indicates how policy interventions (e.g. improved classroom quality)
should be targeted to maximize skill development. We note that an alternative form
of the production function, a Constant Elasticity of Substitution (CES) function,

θj,i,t+1 = Aj,t(
J∑
k=1

γ1,j,kθ
σj
k,i,t + γ2,jC

σj
j,i,t + γ3,jH

σj
i,t )

1/σj exp(ηj,i,t),

with standard parameter restrictions, implies that each input is a weakly positive

complement:
∂2θj,i,t+1

∂Cj,i,t∂θj,i,t
≥ 0. This forces, by functional form, that the productivity

of investments targeted to higher skill children would be larger than if targeted to
lower skill children.
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Because of the generality of the model, the identification of this model requires a
weaker version of Assumption 3.b because we allow for non-linear and heterogeneous
treatment effects of classroom by children’s skills:

Assumption 3.c Mean-independence of the production function shock:

E(ηj,0|θ1,0, . . . , θJ,0, H0, Cj,0) = 0

The empirical model for the technology in (19) can be constructed by substi-

tuting the transformed measures M̃ for each of the corresponding latent factors, as
shown above. This generalized specification is the one we use for the main empirical
analysis. Adding the interaction terms in this more general specification complicates
the estimation because unobserved classroom quality interacts with the unobserved
skills of children. Next, we explain how we address this problem.

2.7 Estimation

We conclude this Section by developing an algorithm for estimating the generalized
technology of skill formation (19). The general concept of the estimation algorithm
applies to several other versions of the model we estimate. The main estimation
challenge is that the data contains only imperfect measures of skills and home invest-
ments, and classroom quality has no measures at all and is inferred from observing
multiple students per classroom. In addition, although we treat the classroom effect
as a general fixed effect, the simple within classroom transformation cannot be used
because the classroom effects enter the model non-linearly (interacted with latent
variables). For this reason, we take a different approach, and develop an estimation
algorithm that accounts for both measurement error and interactions between the
fixed effects and latent variables. Our iterative algorthm follows Arcidiacono et al.
(2012), but unlike their case we use a 2SLS IV estimator to account for measurement
error.8

8Note that we implement a multi-step algorithm to reduce the computational burden of the
estimation. Alternatively, we could estimate the model in a single step via a GMM estimator,
where the selected moments would include both the within-classroom orthogonality conditions, as
well as the average within-classroom residual growth in skills for each classroom. This method would
become more and more computationally intense as the number of classrooms increase (we need to
recover a fixed effect for each classroom). In our case, given we have over 1,000 classrooms in our
sample, the direct method would require us to simultaneously estimate well over 3,000 parameters
(over 1,000 classroom fixed effects for each of the 3 types of skill technologies).
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After estimation of the initial conditions and measurement parameters, following
the identification arguments above, the estimation algorithm for the production func-
tion parameters takes two recursive steps. In the first step, we recover the classroom
latent quality distribution for a given set of technology parameters. In the second
step, we estimate a new set of technology parameters given the updated classroom
quality distribution from the first step. We repeat this two-step sequence until con-
vergence to a fix point for the parameters. The algorithm is described more formally
as follows:

Algorithm 1 We start with an initial n = 0 guess for the parameters:

(lnA0
j,t,
{
γ0

1,j,k

}J
k=1

, γ0
2,j, γ

0
3,j, γ

0
4,j).

For each iteration n ∈ {0, 1, ...}, we compute the following steps in sequence:

• Step 1. Given the current parameter guess n, estimate the classroom fixed
effect for each classroom as the average within-classroom residual in skills at
the end of kindergarten:

lnCn
j,i,0 =

∑
i′∈c(i)

[
Mj,i′,1,m − lnAnj,0 −

∑J
k=1 γ

n
1,j,kM̃k,i′,0,m − γn3,jM̃H,i′,0,m

]
∑

i′∈c(i)

[
γn2,j + γn4,jM̃j,i′,0,m

]
where c(i) is the set of sampled children in the classroom that child i attends.

• Step 2. Given the distribution of classroom effects lnCn
j,i,0 from Step 1, we

estimate the following empirical analogue of the technology in (19)

M̃j,i,1,m = lnAn+1
j,0 +

J∑
k=1

γn+1
1,j,kM̃j,i,0,m + γn+1

2,j lnCn
j,i,0 + γn+1

3,j M̃H,i,0,m+

γn+1
4,j M̃j,i,0,m lnCn

j,i,0 + κj,i,0,m

where κj,i,0,m is the error term, which includes both the structural shock ηj,i,0
as well as all the measurement errors for the measures of skills and home in-
vestments. As discussed above, OLS estimation of the Step 2 equation, even
with the classroom effects known, would produce an inconsistent estimate of the
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remaining parameters. We estimate the parameters using 2SLS using the mul-
tiple excluded measures of skills and parental investments ( Mj,i,0,m′ ,MH,i,0,m′,
for some m′ 6= m) as instrumental variables. This produces the n + 1 iter-

ation of parameters (lnAn+1
j,0 ,

{
γn+1

1,j,k

}J
k=1

, γn+1
2,j , γ

n+1
3,j , γ

n+1
4,j ), which can be used

for Step 1.

The iteration procedure stops when all of the parameters converge, e.g. ||γn+1−
γn)||∞ ≈ 0. Otherwise we return to Step 1 with an updated set of parameters.

The algorithm is relatively simple, fast, and performs well in Monte Carlo simula-
tions reported in the Appendix. All standard errors and statistical tests are computed
using a clustered bootstrap over the classroom and student data. For each bootstrap
repetition, we repeat all of the estimation steps (initial conditions, measurement pa-
rameters, and the iterative production function estimation). Our inference procedure
therefore accounts for the clustering of the data and the multi-step estimation.

3 Data

Our data is from the Early Childhood Longitudinal Study-Kindergarten Class of
1998-99 (ECLS-K). The ECLS-K surveys a US nationally representative cohort of
children who enter kindergarten in 1998-99. Importantly for our analysis, the ECLS-
K employed a multi-stage, cluster sampling design. For each sample school, the
ECLS-K sampled multiple classrooms (when there were multiple classrooms) and
multiple students per classroom. The ECLS-K links each student to their classroom,
to their sampled classmates within that classroom, and to the classroom teacher.
Each student in the ECLS-K was interviewed twice during their kindergarten year,
once at the beginning of the year in the Fall, and again toward the end of the aca-
demic year in the Spring. Building on existing psychometric work, the ECLS-K
fielded their own extensive assessments of the children in various domains at each
survey period. In addition to assessing the students, the ECLS-K also surveyed the
classroom teacher and the parents. From the parent survey, the ECLS-K devel-
oped extensive measures of the child’s home life and parental interactions with their
children. We discuss each of these measures in more detail below.

3.1 Skill Measures

The child interview component of the ECLS-K included an individually administered
assessment of the child consisting of cognitive (reading and mathematics) and non-
cognitive domains.
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3.1.1 Cognitive Skills

The ECLS-K cognitive assessment battery has three subject areas: language and
literacy, mathematical thinking, and general knowledge. We use the language and
literacy assessments as our reading measures, and the mathematical thinking as-
sessments as our mathematics measures. For each subject area, it has a two-stage
design, a first-stage routing test, and based on the routing test score, an appropriate
second-stage form, consisting of a subset of the total questions. This common setup
is designed so that for a finite test taking time, children do not waste time answering
questions that are too easy or too difficult. For the common routing test given to all
children, the ECLS-K provides a raw score, a count of the number of items a child
answers correctly. For the second stage test, ECLS-K provides an Item Response
Theory (IRT) score, an estimate of the number of items that the child would answer
correctly if she were to take all of the questions on all forms.9 From the first wave
Fall testing and the second wave Spring testing, the assessments were designed to be
comparable across periods allowing researchers to track learning across time. There
is strong support therefore for the age-invariance assumption (Assumption 2).

3.1.2 Non-Cognitive Skills

We use the teacher ratings of each student’s non-cognitive skills derived from three
measures: approaches to learning, self-control, and interpersonal skills. Each of these
measures is the average of multiple items/questions. Teachers’ responses to each
item were on a 4 point scale. The approaches to learning scale measures behaviors
that relate to the child’s interaction with the learning environment, and includes
six items that rate the child’s attentiveness, task persistence, eagerness to learn,
learning independence, flexibility, and organization. The self-control scale includes
four items that indicate the child’s ability to control behavior by respecting the
property rights of others, controlling temper, accepting peer ideas for group activities,
and responding appropriately to pressure from peers. The five interpersonal skills
items rate the child’s skill in forming and maintaining friendships, getting along with
people who are different, comforting or helping other children, expressing feelings,
ideas, and opinions in positive ways, and showing sensitivity to the feelings of others.

9We can view the IRT score as some parameterized function of the child’s answers to the
second stage items, where the parameters of this function are estimated. Any estimation error in
the construction of the IRT score would then be part of the measurement error of our model. The
two tests for each subject–routing and IRT–do not share common questions. And, although the
routing test determines where a child starts on the second stage assessment, the child can go up or
down in question difficulty from this initial placement.
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3.2 Home Investment Measures

The home investment measures derive from the parent interview component of the
ECLS-K. One parent per child (typically the mother) was interviewed, and the data
collected included information on family structure and demographics, parental edu-
cation and household income, and various aspects of the child’s home environment
and parent and child interactions. Our home investment measures are a combination
of characteristics of the mother (e.g. mother’s education), resources available to the
child (e.g. books and computers), and parental time with children (e.g. reading with
children).

In the Appendix, we show descriptive statistics for 20 various home investment
measures, and their relationship with parental income, both unadjusted (raw) and
adjusted for the child’s age (in months). In general, home investments are increasing
in parental income. The relationship with income is particularly strong for the
reading and computer availability measures.

3.3 Sample

We include all classrooms that have at least five children who have at least two non-
missing mathematics, reading, and non-cognitive assessments at the beginning and
at the end of the kindergarten year (12 total skill measures), and two measures of
home investment during the kindergarten year. We drop students who switch schools
or classroom during the kindergarten year because we cannot assign them a unique
classroom. These criteria select 8,656 children within 1,118 classrooms and 637
schools. The Data Appendix shows the characteristics of our sample relative to the
full ECLS-K sample. In general, our sample of children with complete information
is more socio-economically advantaged relative to the full sample, as indicated by
the higher household income in our sample of about $68,226 (2017 USD) in Table 1
compared to $62,432 USD in the full sample.

Table 1 presents descriptive statistics for our sample. At kindergarten entry, the
average age of children is 5.68 years. Sixty-eight percent of the children are white,
non-Hispanic, 14 percent are black, non-Hispanic, 9 percent are Hispanic, and 9
percent are of an other race/ethnicity. Sixty-nine percent of the children are living
with both biological parents. Their mothers are on average 34 years old, have an
average of 13.88 years of schooling, and work an average of 26.13 hours per week.

Examining the kindergarten classrooms and schools, the average class size is
about 20 students. Some of the kindergarten classes are half-day, and others full-
day. This implies that the average instructional time across all classrooms is 24 hours
per week, lower than for later grades. The kindergarten teachers are overwhelmingly
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female. They have an average of 9.53 years of experience in teaching kindergarten,
and 35 percent of them have at least a master’s degree.

Finally, about 31 percent of the schools in the sample are non-public schools,
including secular and religious private schools. This distinguishes our sample (from
a nationally representative survey) from other work relying on administrative records
from public schools. We return to how these characteristics relate to classroom and
school quality in later sections.

3.4 Child Development during Kindergarten

We briefly motivate our detailed econometric analysis by first summarizing patterns
in child development during the kindergarten period. Figure 1 displays the average
scores on the mathematics, reading, and non-cognitive assessments at the beginning
and at the end of the kindergarten year, by the level of child’s household income.
In this Figure, each score is normalized using its respective mean and standard
deviation at kindergarten entry to facilitate interpretation. The Figure reveals the
wide dispersion of mathematics, reading, and non-cognitive scores at kindergarten
entry across income deciles. At entry, the gap in average mathematics, reading, and
non-cognitive scores between children at the lowest and the highest income decile is
1.1, 1.0, and 0.5 standard deviations, respectively.

Figure 2 plots the change in average scores between the beginning and the end
of the kindergarten year. The figure indicates that, by the end of kindergarten,
the dispersion of average mathematics and non-cognitive scores widens by 0.1 of a
standard deviation, while the dispersion in reading score remains unchanged.10 That
the skill gaps by income do not fall through the kindergarten year, and for two
domains actually increase, suggests that allocation of school and home investments
is actually exacerbating the degree of inequality. Understanding the source of these
patterns motivates our analysis.

4 Estimates

This section presents our estimates of the measurement model and production func-
tion components of the model. The initial conditions–the sorting of children to class-
rooms and distributions of home investments–we describe in a later section. Also in

10The gap in average mathematics, reading, and non-cognitive scores between 10th and 90th
percentiles at the end of the kindergarten are 1.2, 1.0, and 0.6 of a standard deviation, respectively.
Information on the measures, and figures for additional measures are available in the Appendix:
the patterns are similar across the several other measures available.
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later sections, we provide validation tests for the model, and interpret the estimates
in a series of decomposition and counterfactual exercises.

4.1 Measurement Parameters

Table 3 presents the estimates of the measurement parameters for our measures of
4 latent variables: mathematics, reading, and non-cognitive skills, and home invest-
ments. (The fifth latent variable–classroom quality–has no particular measures.)
The location and scale of each measure is arbitrary and is determined by the initial
period normalization: each latent variable is normalized to be mean 0 and standard
deviation 1. As described above, the location of a measure, given this initial normal-
ization, is the mean value of the measure. For the mathematics routing test measure,
a location of 5.11 indicates that, at the beginning of kindergarten, children score on
average 5.11 on that test. Similarly, the measurement scale (sometimes referred to as
the “factor loading”) is identified from the correlation among the measures. Given
the normalization that each latent variable has standard deviation 1, the scale can
be interpreted as the effect of 1 standard deviation change in the latent variable. A
value of 2.84 for the mathematics routing test indicates that an increase of a standard
deviation in the latent factor predicts an average increase of 2.84 in this measure.

Table 3 also reports the signal-to-noise ratio for each measure at kindergarten
entry. The signal-to-noise ratio ∈ (0, 1) is the fraction of the variance of the measure
that is explained by the latent variable. A higher signal-to-noise ratio indicates
that the measure is more informative about the latent variable. The signal-to-noise
ratio is identified from the correlation of the measures: a higher correlation across
measures implies lower noise. Table 3 shows that the signal-to-noise ratios are high
for our measures of mathematics and reading skills. For example, the signal-to-noise
ratio of 0.93 for the mathematics routing test indicates that 93% of the measure’s
variation is due to the latent factor, while only 7% of the variance of the measure
comes from noise.

The signal-to-noise ratio is lower for the non-cognitive measures, and in particular
for the home investment measures. For the non-cognitive measures, this is perhaps
not surprising. The non-cognitive measures are based on teacher observations, and
perhaps more error prone than direct, test-based, student assessments of mathemat-
ics or reading. The home investment measures have signal-to-noise ratios ranging
from 0.24 to 0.38. This too is perhaps not surprising given the difficulty of capturing
all aspects of the home environment in a limited set of survey items. But even for
these measures, the estimate of 25 percent signal provides some indication that these
measures are certainly not entirely noise. We return to the issue of whether our
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measures of the home environment are sufficient to capture relevant investments in
a series of validation checks. In general, we find that our model is sufficiently rich
enough to capture the influences of family income and other demographic variables
without directly using these variables in the model.

That the measures have non-trivial error components is the main motivation
for pursuing our measurement error correction procedure. We directly assess how
measurement error biases estimates of the child development process below, by es-
timating models with and without the measurement error correction. For an initial
indication of the importance of measurement error, note that in a simple linear re-
gression of some outcome on a noisy measure with a signal-to-noise ratio of 0.5, the
estimated slope coefficient would be biased toward zero, and only 1/2 of the true
value. Although in our more complex non-linear models with multiple right hand
side variables–all potentially measured with error–we cannot sign the bias, it is likely
that measurement error is still an important consideration.

4.2 Production Technology

Table 4 presents the estimates of the baseline technologies, given in Equation (3)
but augmented to include multiple skills. These are the simplest and most restricted
models we estimate, and we provide estimates of several more general models next.
The OLS panel of the Table shows the estimates not corrected for the measurement
error, while the IV panel shows the estimates corrected for measurement error. Recall
that our correction for measurement error is implemented using alternative measures
as instruments for the main measure used. We estimate separate models for each of
the three latent skills at kindergarten exit, mathematics, reading, and non-cognitive.

4.2.1 Prior Skills

Focusing on our preferred IV measurement error corrected estimates first (we discuss
the importance of measurement error later), Table 4 indicates that all skills measured
at kindergarten entry are important in the production of each of the skills at exit, but
the magnitudes vary substantially. The estimate of 0.741 indicates that a 1 standard
deviation increase in (log) mathematics skills at kindergarten entry produces (log)
mathematics skills of 0.741 standard deviations. Note that the magnitude of this
estimate depends on the initial normalization we chose: all initial period latent
variables are normalized to be mean 0 and standard deviation 1. Given the log-log
interpretation for the production technology, the estimate can also be interpreted
as an elasticity: a 1 percent increase in latent mathematics skills at entry leads to
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a 0.741 percent increase in mathematics skills at exit.11 Reading and non-cognitive
skills at entry have non-zero productivity in producing mathematics skills at exit,
but the magnitude in each case is less than 0.1, indicating a strong specificity in skill.
The remaining IV/measurement error corrected columns show a similar pattern, with
stronger own-skill productivity than cross-skill productivity.

4.2.2 Classrooms

In addition to kindergarten skills at entry, these baseline models also include a class-
room component, treated as a classroom specific fixed effect. As discussed above, we
normalize the classroom effects to be mean 0 and standard deviation 1, as with all of
the right-hand side latent variables. Therefore, there is a free parameter to be esti-
mated on the classroom effect γ2,j, and given the normalization, this parameter can be
interpreted as the standard deviation of the classroom effects: V (γ2,j lnCj,i,0) = γ2

2,j.
Table 4 indicates that classrooms have a sizable effect on the production of the

kindergarten skills. For example, the elasticity of end-of-kindergarten mathemat-
ics, reading, and non-cognitive skills with respect to classroom investments, after
the measurement error correction, are 0.323, 0.381, and 0.519, respectively. These
are sizable effects, as they are 40, 70, and 70 percent the corresponding effects for
mathematics, reading, and non-cognitive skills at entry. This suggests that higher
classroom investment can remediate a substantial fraction of the skill gaps at kinder-
garten entry. We return to this issue later, and directly compute a series of counter-
factual re-sorting of students to classrooms in order to quantify the importance of
classrooms.

4.2.3 Home Investment

We next turn to a second, and more general model, of skill development, including
home/parental investments. We approach home investments in the same way as skills
at kindergarten entry, and estimate models with and without measurement error cor-
rections. As with all of the latent variables, home investments too are normalized to
be mean 0 and standard deviation 1. Table 5 shows that home investments have a
significant effect on child development, while the rest of the elasticities on prior skills
remain unchanged. Focusing first on the measurement error corrected/IV estimates,

11In practice, in these translog functions, the log transformation of skills plays little role here
except to make the model adhere to traditional production function concepts in which outputs and
inputs are at least weakly positive. As in the previous literature employing factor models in this
context, we assume the measures in the data, which can range over the whole real line, measure log
inputs and outputs, rather than levels.
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the elasticities of end-of-kindergarten mathematics, reading, and non-cognitive skills
with respect to parental investments are 0.130, 0.094, and 0.083, respectively. These
elasticities are approximately between 15% and 40% of the elasticities with respect
to classroom investments, indicating the relatively higher productivity of the kinder-
garten classroom over the home investment. We emphasize that this is the difference
in the relative productivity, and show below, in a series of counterfactual decompo-
sitions exercises, that the disparities in home environments are quantitatively more
important than in those in school environments.

4.2.4 Complementarities and Heterogeneity

Table 6 shows the estimates for a third model, which includes a potential comple-
mentarity between the child’s stock of skills and classroom investments.12 Com-
plementarity in these types of skill development models imply heterogeneity in the
“treatment effect” of classroom investments: depending on the initial stock of skill
entering kindergarten, children will experience different “returns” from a given class-
room quality.

Heterogeneity by Initial Skill Table 6 documents a negative complementarity
between initial skills and classroom investments: classroom investments are more
productive for children with low initial skills relative to children with high initial
skills. All of the interaction terms are statistically different from zero at standard
levels. Our result here is in contrast to the typical positive complementarity assump-
tion in which investments are more productive for higher skill children.

To better interpret the heterogeneity of the classroom effects in children, we graph
the implied distribution of elasticities of classroom investments with respect to the
stock of a child’s skills in Figure 3. The figure demonstrates that the elasticities
of classroom investments are decreasing in the child’s skills at kindergarten entry.
For example, a 1 standard deviation increase in classroom investments increases
end-of-kindergarten mathematics, reading, and non-cognitive skills of a child in the
lowest decile of math skills by 0.39, 0.46, and 0.59 standard deviations, respectively,
whereas the same change in the classroom investments increases the skills of a child
in the highest decile of initial math skills by 0.20, 0.25, and 0.41 standard deviations.
The effect of classroom investments in children are 1.95, 1.84, and 1.44 times higher

12Estimates for even more general models are available in the Appendix. These include mod-
els where we allow for interaction between “cross-skills” and classroom, and skills and the home
investment. The results are similar, and in particular, we estimate that the productivity of home
investments is higher for lower skill endowed children.

23



for children in the lowest decile of initial skills than for high skill children. The
heterogeneity of classroom effects with respect to reading and non-cognitive skills
display a similar pattern.

Heterogeneity by Family Income Figure 3 also shows the heterogeneity of class-
room effects with respect to household income. Household income is not directly part
of the model, but it is positively correlated with the initial stock of a child’s skills
(as described more fully below). In this Figure, we compute the heterogeneous treat-
ment effects conditional on income (Y ), where average skill j conditional on income
is given by

E(θj,i,1|Y = y) =

∫
Θ0

E(θj,i,1|Θ0)dF (Θ0|Y = y),

where F (Θ0|Y = y) is the conditional distribution of the vector of latent initial skills
with respect to income.

We estimate that a 1 standard deviation increase in classroom investments in-
creases average end-of-kindergarten mathematics, reading, and non-cognitive skills
of a child in the lowest decile of household income by 0.35, 0.43, and 0.55 percent,
respectively, whereas the same increase in the classroom investments increases skills
of a child in the highest decile of household income by 0.3, 0.35, and 0.50 percent,
respectively. This implies that the elasticities of classroom investments for children
in low-income households are 1.16, 1.22, 1.1 times larger than the elasticities for chil-
dren in high-income households. These estimates suggest that targeting low income
students with improved classroom quality would produce a higher effect on end-of-
grade kindergarten skill development than similar investments given to students from
high income households.

4.2.5 Importance of Measurement Error

The other key take-away from Table 4 is the importance of measurement error. Com-
parison between the OLS and the IV estimates shows that correcting for the mea-
surement error increases own productivity (diagonal elements), but it decreases cross-
elasticities (off-diagonal elements). For example, the elasticity of end-of-kindergarten
mathematics skills with respect to initial mathematics skills increases from 0.599 to
0.741, while the elasticities with respect to initial reading and non-cognitive skills
decrease from 0.133 and 0.139 to 0.064 and 0.094, respectively. These are sizable
changes in the magnitudes of the productivity estimates, even with relatively high
signal-to-noise measures, and suggest the importance of correcting for measurement
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error. We return to the importance of measurement error again, when we describe
how correcting for measurement error affects the counterfactual decomposition re-
sults we present below.

5 Testing and Validating the Model

In this section, we test our estimated model using various validation exercises. The
intuition of these validation tests is that if our model is sufficiently rich enough to
capture the key sources of child development, then the model should also be able to
make valid out-of-sample type predictions. In particular, we show that our model
can match patterns of child development by family income and race, even though
our model does not include these variables. Our model is able to fully explain
income and race gaps in child development using information about skills measured
at kindergarten entry, parental investments, and kindergarten classroom quality. We
also show that our estimated model can predict similar effects as the Tennessee STAR
experiment. These results provide a kind of validation of the estimated model, and
give us some confidence that the inferences derived from the estimated model do not
suffer from serious omitted variable bias.

5.1 Validation I: Selection on Unobservables

The main assumption for our estimation exercise is essentially a model “sufficiency”
one: our model, including children’s skills entering kindergarten in 3 domains, home
investments, and latent classroom quality (fixed effects), is rich enough to capture
the key determinants of child development, so that the remaining unobservable di-
mensions are “ignorable.” Formally, the “sufficiency” assumption is discussed in the
Model and Estimation section. The threats to validity are the standard ones: that
the included latent variables for initial skills, home, and school investments are cor-
related with any omitted aspects of child development.

We follow Chetty et al. (2014a) and use the rich set of “omitted” variables in
our dataset, which are likely strongly correlated with any unobserved dimensions of
child development, as the basis of a validation test. Strictly, the mean-independence
assumption is untestable. But, as in Chetty et al. (2014a), we use household income
as a proxy for these unobservable dimensions. As demonstrated in Figures 1-2,
household income is strongly correlated with child skills at the end of kindergarten.
However, household income is not included in our model, and therefore the variation
from household income is a kind of out-of-sample variation we can use for testing.
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We perform this test by regressing household income on the estimated residuals
from our preferred, and most general, production function specification (estimates
reported in Table 6). Table 7 shows that household income is unrelated with the
residual variation of child development from our model, in each of the three domains
(math, reading, and non-cognitive). We estimate several specifications, including
no controls, with child demographic variables, and including the number of hours
of mother’s and father’s labor supply. Across these specifications, we see that an
increase of $100,000 in annual household income (an enormous change) is associated
with effects from -0.02 to 0.02 standard deviations of skills, depending on the spec-
ification. These estimates are very small in magnitude, and are never statistically
different from zero at conventional levels. As in Chetty et al. (2014a), we interpret
this result as a failure to reject the null hypothesis of no omitted variable bias.

5.2 Validation II: Out-of-Sample Predictions

In a second test, we assess whether our estimated model is able to predict the ob-
served variation in end-of-kindergarten scores by household income and race, vari-
ables which we omitted from the model. This idea is essentially the same as testing
whether the estimated model can predict “untargeted” moments–an exercise com-
monly performed in structural or model based estimation. In this case, we are testing
whether our model’s specification based only on heterogeneity in children’s initial
skills, parental investments, and classroom quality is able to explain achievements
gaps among socioeconomic groups.

Figure 4 shows the results for household income. The close match between our
model prediction and the data indicates that the income gradient of children’s skills is
well explained by our model. And, Figure 5 shows similar results by the child’s race–
another variable excluded from our model.13 This close match provides confidence
that our model is not omitting important determinants of the child development
process.

5.3 Validation III: the Tennessee STAR Experiment

Our final validation exercise uses an entirely different dataset and a randomized
control treatment experiment, the Tennessee Student/Teacher Achievement Ratio

13This exercise would be uninformative if classrooms in our estimating sample were completely
segregated by race. In that case, the model prediction would fit exactly the race patterns by
construction via the classroom effects. As we show in Figure C-8, classes in our estimating sample
are not fully segregated, but instead have some non-trivial variation in classroom racial composition.
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(STAR) experiment. The STAR experiment was a four-year longitudinal study of
the effects of class size in which over 11,000 students from 79 schools were randomly
assigned into classrooms with different class size and teaching personnel. The ex-
periment was initiated as the students entered kindergarten in the 1985-1986 school
year and continued through third grade. 14 In one of the more recent evaluations
of the results, Chetty et al. (2011), linking students to recent tax records, find that
the students randomly assigned to higher quality kindergarten classrooms had higher
adult earnings and college attendance rates. Their estimates indicate that improving
class quality by 1 standard deviation increases annual earnings by $1,520 (9.6%) at
age 27.

We use the STAR experiment to test the validity of our model. The intuition of
this validation test is that if our estimated model provides a good representation of
the child development process, with minimal omitted variable bias, then it should
be also be able to replicate the STAR experimental results.

Matching the STAR Treatment Effect We first quantify, using our estimated
model, what change in latent classroom quality would match the STAR experimental
findings. This exercise is important for two reasons: (i) it gives us a first validation
of the model; and (ii) it allows us to use our estimated model to extrapolate the
STAR treatment effects for different changes in classroom quality. We replicate the
STAR treatment effects at the end of kindergarten using the original STAR data.15

And, we use our most general specification of our model (19), estimated using the
ECLS-K data.

Figure 6 shows the treatment effects for math and reading test scores in the STAR
experiment (dashed line) and how the different changes in latent classroom quality
translate into changes in math and reading skills in our model (solid line). The solid
line is a counterfacual manipulation of the classroom quality assigned to each student
in our ECLS-K data, lnC+δ. Each point on the horizontal axis measures an increase
in latent classroom quality provided to each student (δ), with δ = 0 indicating the

146,323 children participated in STAR at kindergarten entry, and over 5,000 more started par-
ticipation in later grades. STAR assigned children to one of three interventions: small class (13 to
17 students per teacher), regular class (22 to 25 students per teacher), and regular-with-aide class
(22 to 25 students with a full-time teacher’s aide). See, for example, Krueger (1999) and Chetty
et al. (2011) for a comprehensive summary of the experiment.

15Specifically, for each outcome Y , we estimate a model of Yis = β0 + β1class sizeis + β2aidis +
αs + εis, where class sizeis is kindergarten class size for student i in school s, aidis is a dummy
variable for whether the class has a teacher’s aid experimentally assigned, and αs is a school specific
fixed effect. We then instrument for class size using the randomly assigned treatment, 1 if small
class or 0 if assigned a large class or large class with teacher’s aid.
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baseline/original level. The slope of this line comes from average estimated effect of
classrooms on skill development, incorporating the estimated heterogeneous effects
of classroom on students with different skill levels.

Where the STAR experimental estimate and our latent classroom simulation lines
cross indicates the increase in latent classroom quality in our model that would ex-
actly replicate the estimated STAR effect. In the case of math skills, the STAR
treatment effect of a 5 percentile increase in end-of-kindergarten math skills is equiv-
alent to assigning students in our estimated model δ = 0.55 standard deviations
higher latent classroom quality. For reading skills, the treatment effect of 6 per-
centiles is equivalent to δ = 0.5 standard deviations higher latent classroom quality.
Moreover, the solid line shows the changes in children’s math and reading skills once
we extrapolate the experimental results from STAR to different changes in classroom
quality. Figure 6 indicates that an increase in δ = 1 standard deviation in classroom
quality would produce an increase in 9 percentiles for math skills, and 12 percentiles
for reading skills.

Matching the STAR Latent Classroom Distribution As discussed by Chetty
et al. (2011), the STAR experiment not only provides the effect of the particular
class size experiment, but also exogenous variation in classroom assignment (within
schools, where the randomization of classrooms took place), providing credible esti-
mates of the effect of an exogenous change in general classroom quality on test scores.
Next, we use this aspect of the STAR experiment and compare the “effect size” of
classroom quality in the STAR experiment to the analog in our model. Here we are
testing whether our model estimates, derived from including controls for latent child
skills and home investments, can replicate the STAR experiment estimates.

Panel A in Table 8 shows the results for this validation exercise. We perform the
validation exercise for both math and reading standardized test scores.16 Columns
(3) and (4) show the results for a simple classroom fixed effects model using STAR
data, and Columns (1) and (2) show the estimated effects of latent classroom quality
for model (19) with ECLS-K data. The two estimates are similar: the STAR and
our estimates differ by 0.038 and 0.045 standard deviations. We take these results
as suggesting limited bias in our estimates.

16Following common practice, we standardized (transform to mean 0, standard deviation 1) the
end-of-grade scores in both datasets. Although the end-of-kindergarten measures in the STAR and
ECLS-K data are different (an issue we return to below), we attempt to match statistics based
on these standardized scores. It should be noted that standardizing test scores does not resolve
the indeterminacy of the measurement model presented above, and our comparison here is only
approximate.
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Matching the STAR Heterogeneous Effects Our final validation exercises
using the STAR experiment is to replicate the heterogeneity in treatment effects. A
key finding from our analysis using the ECLS-K data is that the effect of a higher
quality classroom is larger for those children entering kindergarten at a disadvantage
in math, reading, and non-cognitive skills. Although the STAR dataset does not
contain entry measures of skills, the estimated experimental treatment effects are
generally larger for disadvantaged groups: low income students (those eligible for
free or reduced price lunch) and black students.

Panel B in Table 8 compares the relative effects of the class size treatment on sub-
groups defined by free/reduced price lunch and black and white race, for the STAR
experiment and the analogous treatment using our estimated model.17 In Panel B of
Table 8, we compute ratios of treatment effects between two sub-groups. As derived
in the Appendix, ratios of treatment effects are scale free measures, providing a
statistic that is exactly comparable across the STAR and ECLS-K data, even though
the two datasets use different end-of-grade measures. The cost of this procedure is of
course statistical precision, as comparisons across sub-groups requires using smaller
sub-samples.

Panel B in Table 8 shows that the relative effects of the class size treatment in
both STAR and as predicted by our model are generally higher for the disadvantaged
groups. In STAR, the class size effect on math and reading test scores for black
children relative to white children are 1.08 and 1.20, respectively, implying that the
effect of reducing class size is 8 and 20 percent higher for black children. Similarly,
we find that decreasing class size has a 13 percent higher effect on reading skills
for children who qualify for free or reduced-priced lunch relative to children who do
not. On the other hand, for the same two subpopulations, we find that the relative
treatment effect on math is slightly below one, although statistically indistinguishable
from one.

Our estimated model using ECLS-K data replicates these relative classroom size
effects fairly well. The model exactly replicates the relative classroom effects on
math by race and on reading by free lunch. Moreover, the model predicts a similar
higher relative black/white treatment effect for reading (both above 1). Finally, the
model predicts a relative higher treatment effect of the children who qualify for free
lunch on math, but this result differs from the point estimate in STAR (although

17Within our model, a change in class size is a change in classroom quality. Importantly, when
comparing a common treatment effects between two groups, the relative effect does not depend on
the magnitude of that treatment (no second order effects). Nevertheless, the non-linearities in the
technology of skill formation can still generate heterogeneous treatment effects across subgroups if
these subgroups differ in their initial skills.
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the results are statistically the same). It should be noted that the standard errors
(computed using a clustered by school bootstrap procedure) are large for the STAR
estimates; unsurprising given the small sample sizes for the sub-groups. We perform a
formal multiple hypothesis testing for math and reading separately, and fail to reject
the hypothesis that the STAR treatment effects are equal to the ECLS-K values,
with p-values of 0.84 and 0.95, respectively. With the precision caveat in mind, the
fact that our model predicts similar heterogeneous effects as the randomized STAR
experiment provides some additional confidence that our model estimates do not
suffer from substantial omitted variable bias.

6 Assessing Value-Added Models

Previous education research makes use of administrative data from specific school
systems to estimate classroom or teacher value-added. Although this data offers
tremendous advantages due to the comprehensive coverage of all students in the
school system, it typically only includes standardized mathematics and reading tests
and limited information about other factors that we believe are important correlates
with child development: the child’s home environment and children’s non-cognitive
skills. In this section we quantify the biases in classroom value-added estimates that
ignore home investments and non-cognitive skills.

For this analysis, we use our estimated model to compute the rank of each class-
room in the estimated classroom value-added distribution derived from our nationally
representative ECLS-K sample of kindergarten classrooms. Call this estimated class-
room rank from the unrestricted model ĈUR

Rank. We then compute a second estimate
of the classroom value-added using our data, but a different, restricted, model, omit-
ting the home investment and non-cognitive components, attempting to replicate a
standard value-added type model.18 Call the estimated rank computed using the
standard VA model (ĈV A

Rank).

Figure 7 shows the relationship between the standard VA model estimate (ĈV A
Rank)

and our unrestricted baseline estimates (ĈUR
Rank). Although the rank estimates are

strongly positively correlated, the Figure indicates that for both math and reading,
there is considerable dispersion in the standard VA estimates, conditional on a given
“true” estimate from our general model. For the classroom at the median of the
unrestricted distribution, the restricted value-added models would produce classroom
rank estimates ranging between the 10th and the 90th percentile and from the 20th
and the 75th percentile, for math and reading skills, respectively.

18See Table C-5 for the full set of estimates for the VA model.
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We directly quantify the difference in the two estimates by computing the follow-
ing “bias” term:

BiasV A = ĈV A
Rank − ĈUR

Rank ,

where BiasV AC > 0 (< 0) indicates that the standard VA model is overestimating
(underestimating) the classroom value-added relative to our unrestricted model es-
timates.19

Figure 8 shows how the bias varies by the classroom’s averagem parental invest-
ments and children’s non-cognitive skills. As expected, larger (in absolute value) bias
is associated with classrooms with higher average parental investments and higher
average children’s non-cognitive skills. In other words, we estimate that the omitted
parental investments and children’s non-cognitive skills are incorrectly “loaded” into
the classroom’s value-added in the standard VA models. The VA models would sys-
tematically predict a lower rank of classroom value-added for classrooms with lower
level of parental investments and children’s non-cognitive skills.

We also analyze how the bias in the value-added estimates relates to the char-
acteristics of the classroom teacher. This analysis is important given a major goal
of the value-added literature is the evaluation of teachers’ productivity using these
value-added estimates. We show that the estimates from the VA model can lead
to systematic bias toward specific groups of teachers. Table 9 shows the regression
results for the relationship between teacher’s characteristics and the VA bias. The
results in Table 9 indicate that a teacher’s age and race are predictive of the VA
bias, even within school, with an estimated upward bias for older teachers and a
downward bias for black teachers, which dissipates as those teachers gain experience.

7 School and Family in Child Development

In this section, we use our estimated model to quantify the contribution of classroom
and home investments in closing the achievement gaps between children from low
and high income families. We begin our analysis by describing the estimated initial
(ex ante or at kindergarten entry) joint distribution of latent classroom quality,
home investments, and skills–the initial “sorting” of children to classrooms and home
environments. We then specifically examine sorting by family income, which is not
directly part of the model, but can be strongly related to the distribution of initial
conditions. We conclude with an exercise in which we counterfactually manipulate

19Figure C-9 shows the marginal distribution of the value-added bias.
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the initial conditions and quantify how these reallocations affect the level of ex post
(at kindergarten exit) inequality.

7.1 Classroom, Home, and Initial Skills at Kindergarten En-
try

We first use our estimated model to describe the “initial conditions” of the skill
development model: the joint distribution of latent classroom quality, home invest-
ments, and latent kindergarten skills (at entry). It is important to note that these
patterns cannot be directly examined using just descriptive correlations of data vari-
ables. The latent distributions we compute are “corrected” for measurement error
using all of the available measurement data, and, in the case of the latent classroom
quality, which has no direct measure, are inferred from the estimated outcomes.

Table 10 presents the estimates of the variance-covariance matrix of initial (at
kindergarten entry) latent variables. Because the standard deviation of all inputs
are normalized to one, covariances are equal to correlations. The estimates are de-
rived from our most general model including latent skill and investment interactions,
reported in Table 6.20

Table 10 shows that all three skill domains are positively correlated at kinder-
garten entry. Children who enter kindergarten with high mathematics skills also
tend to have high skills in reading and in non-cognitive domains. Similarly, home
investments received by the children during the school year are positively correlated
with their initial skills, suggesting that there are “permanent” aspects of the home
environment that give rise to highly developed children at entry and persist through
kindergarten, reinforcing initial skill advantages.

Turning to the estimated sorting of students to classrooms, characterized by the
latent classroom effect or value-added, we see a much weaker positive, and in some
cases a weak negative, correlation between initial skills and classroom quality. Recall
that we estimate classroom quality in each skill domain separately, allowing us to
distinguish among classroom quality in mathematics, reading, and non-cognitive
domains. Table 10 indicates that children with high mathematics and reading skills
at entry have a slightly higher chance of receiving better quality classrooms in those
domains. But that higher skill children at entry, across all domains, have a slightly
lower chance of receiving a higher non-cognitive skill classroom.

20Note that in our framework, we impose no particular parametric assumption on this distribu-
tion, in contrast to some previous research which imposes that the marginal distribution of latent
variables is Normally distributed or some low dimensional mixture of Normal distributions. Our
estimate of the full joint distribution, beyond the correlations we report here, is available on request.
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We can also estimate the relationship between classroom quality and latent home
investment. Table 10 indicates that home and classroom quality are negatively cor-
related: children who attend a low quality classroom tend to have higher home
investments. This provides some suggestion that home investments are compensat-
ing for lower quality classroom investments.21 Greaves et al. (2019), for example,
find similar results in the context of England. The authors find that improving
(perceived) school quality causes parents to decrease the time investment into their
children.

7.2 Inequality in Child Skills and Investments by Family
Income

One of the early notions of public education in the United States and elsewhere is that
public education would be an equalizing influence, exposing children of all income
levels to a similarly high quality of education. However, the potential equalizing
effect of public schooling is undone with tuition based private schools and locally
financed public schools whose values are priced into housing, allowing higher income
families to purchase higher quality schooling for their children.

We do not have an assumed model of how classroom sorting arises, but our
estimates reflect, at least in part, how parents, constrained by available resources,
choose neighborhoods and schools, and how children are assigned different classroom
within schools.

Table 11 shows the relationship between our estimated latent classroom quality
in mathematics, reading, and non-cognitive skills and the level of the child’s house-
hold income. The Table demonstrates that classroom investments in mathematics
and reading skills display a positive income gradient only for households with in-
comes below the sample median. That is, for the poorer households, higher income
is correlated with higher quality classrooms, but for households with higher than
median income, classroom quality is no longer related to income. We do not find any
relationship between non-cognitive classroom investments and household income. In
contrast, home investments are positively correlated with household income both for
households below and above the sample median, but the relationship is stronger for

21This negative association between home investments and classroom quality is not driven by a
mechanical relationship : because some kindergarten classrooms are all-day, rather than half-day,
and these classrooms would tend to therefore have higher “investment,” classroom investments
may therefore be directly crowding out home investment. We repeat the results in Table 10 by
controlling for the type of kindergarten: morning classes, afternoon classes and all-day classes. The
results are unchanged. The results of this additional specification are available upon request.
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the lower income households.

7.3 Decomposition Analysis

We next directly quantify the importance of the various elements of the model
through a counterfactual decomposition analysis.

Unrestricted Model Panel A in Table 12 shows the effects for our baseline anal-
ysis. The first two columns show the average math, reading and non-cognitive latent
skills at the end of kindergarten for the 10th and 90th percentile of the income distri-
bution, respectively. The third column shows the achievement gap between the two
subgroups (the difference between Columns 2 and 1). The 90-10 gaps are between
about 0.7 and nearly 1, with respect to the initial latent distributions, normalized
to have standard deviation 1. These gaps are in terms of latent skills, and as shown
previously, our model estimates closely match the data distribution of observed mea-
sures.

In Columns (4) and (5), we counterfactually simulate changes in the initial condi-
tions of the model. Column (4) shows the counterfactual achievement gaps predicted
if all children were provided the average classroom quality of the high-income chil-
dren, and everything else remains the same. In parenthesis we report the percentage
change of achievement gaps relative to baseline (Column 3). Column (5) shows the
counterfactual achievement gaps predicted from the model if the low-income children
were provided with the average parental investments of the high-income children, and
everything else remains the same.

Our results suggest that both classroom and home environments play an impor-
tant role in explaining differences in a child development. Classroom quality closes
between 4 and 9 percent of the skills gap, while parental investments close between
14 and 24 percent of the gap. This suggests that parental investments play a rela-
tively more important role in explaining skills gaps between children from different
socio-economic backgrounds. It is important to contrast this finding with the findings
discussed above that latent classroom quality has a smaller effect-size on child skill
formation than home investments. Home investments explain more of the income
gap because home investments are more highly correlated with household income
(i.e. more unequally distributed) than classroom quality, so that a counterfactual
change in home investments is a larger investment change.

No Measurement Error Correction The previous results in Panel A were for
the our full, preferred model. Panel B in Table 12 shows the effects for a restricted
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version of the model, a restricted linear model where we do not correct for measure-
ment error (i.e. estimated using OLS). Columns (4) and (5) show the decomposition
results for this model. In this case, we find the opposite result as in Panel A: class-
room quality is relatively more effective in reducing skills inequality.

The difference in the results between Panel A and Panel B suggests the impor-
tance of our empirical modelling choice. In particular, it highlights the importance
of: (i) addressing the measurement error problem; and (ii) modeling heterogeneous
classroom effects via our general interactions model. Only with the more general
model do we see the importance of home environment as a key mechanisms in ex-
plaining developmental differences during kindergarten.

Value-Added Model Finally, Panel C estimates a third model, a simple VA spec-
ification, approximating a common specification in the prior education production
function literature. In this specification, we omit non-cognitive skills, complementar-
ities, and home investments, and do not correct for measurement error (i.e. estimated
using OLS). As in Panel B, in this simple VA model we find that the classroom com-
ponent is substantially more important than in our preferred estimates in Panel
A, indicating that the simple VA model is biasing upward the importance of the
classroom.

8 Conclusion

We develop an empirical framework that is general enough to nest many of the key
features of two previously separate and parallel research programs, the Child Devel-
opment literature and the Education Production Function literature. Our framework
allows for both classroom and parental influences in child development, imperfect
measures of both skills and inputs, cognitive and non-cognitive skills, and comple-
mentarities between children’s skills and investments from home and school. We
find that investments from classrooms and from home are important determinants
of children’s skills at the end of kindergarten. In addition, we document a negative
complementarity between children’s skills at kindergarten entry and investments from
classrooms, implying that low-skill children benefit the most from an increase in the
quality of schools. The counterfactual policy experiments show that providing all
children with the 90th percentile of either classroom investments or home invest-
ments would substantially reduce the 90-10 skill gap, with greater effects for home
investments because high quality home environments are more unequally distributed
than school environments.
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Figure 1: Cognitive and Non-cognitive Scores by Income Deciles
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Source: ECLS-K:1998-99.

Notes: The Math and Reading scores are raw scores. The non-cognitive score is the ap-
proaches to learning score evaluated by the teacher. The scores are standardized using
the mean and the standard deviation of scores at k-entry. (Let Mi,t denote a score for
child i in round t = 0, 1 (0 is entry, 1 is exit). Then, the child’s standardized score is
M̂i,t = (Mi,t−µ0)/σ0, where µ0 is the estimated sample mean at k-entry, and σ0 is the esti-
mated standard deviation at k-entry). The deciles of household income in 10,000 2005USD
are 1=1.8, 2=3.0, 3=4.1, 4=4.9, 5=6.0, 6=7.2, 7=8.4, 8=10.2, and 9=13.2.
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Figure 2: Change in Cognitive and Non-cognitive Scores During Kindergarten by Income Deciles
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Source: ECLS-K:1998-99.

Notes: The Math and Reading scores are raw scores. The non-cognitive score is the ap-
proaches to learning score evaluated by the teacher. The scores are standardized using
the mean and the standard deviation of scores at k-entry. (Let Mi,t denote a score for
child i in round t = 0, 1 (0 is entry, 1 is exit). Then, the child’s standardized score is
M̂i,t = (Mi,t − µ0)/σ0, where µ0 is the estimated sample mean at k-entry, and σ0 is the
estimated standard deviation at k-entry). The change is the difference between k-exit and k-
entry standardized scores (M̂i,1−M̂i,0). The deciles of household income in 10,000 2005USD
are 1=1.8, 2=3.0, 3=4.1, 4=4.9, 5=6.0, 6=7.2, 7=8.4, 8=10.2, and 9=13.2.
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Figure 3: Elasticities of Classroom Investments
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Source: ECLS-K:1998-99.

Notes: This figure shows the estimated heterogeneity in the elasticities of skills with respect
to classroom investments. For any skill j, the elasticity of children’s skills with respect to
classroom investments is

∂ ln θj,i,t+1

∂ lnCj,i,t
= γ2,j + γ4,j ln θj,i,t . Results pertain to the model with

complementarities (see Table 6).
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Figure 4: Model Validation: Out-of-Sample Fit of Average Skills by Income
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Source: ECLS-K:1998-99.

Notes: This figure displays the results for the validation exercise with respect to family
income. Each bar represents the mean children’s skills (math, reading or non-cognitive) by
income deciles in the data (grey) and predicted by the estimated model (black), respectively.
Family income is not an included variable in the estimated model; model predictions for
family income are therefore outside of the model.
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Figure 5: Model Validation: Out-of-Sample Fit of Average Skill by Child’s Race
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Source: ECLS-K:1998-99.

Notes: This table displays the results for the validation exercise with respect to the child’s
race: White (non-Hispanic), Black, Hispanic, Asian, Native American and Others. Each bar
represents the mean children’s skills (math, reading or non-cognitive) by the child’s race in
the data (grey) and predicted by the estimated model (black), respectively. Race is not an
included variable in the estimated model; model predictions for race are therefore outside
of the model.
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Figure 6: Model Validation: STAR and Classroom Quality
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Source: ECLS-K and STAR data.
Notes: This figure shows how the average treatment effect in STAR of reducing classroom size translates into classroom quality.
Panel A shows the results for Math Skills, while Panel B shows the results for Reading Skills.



Figure 7: Estimating Classroom Quality: Bias in VA Models
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Notes: This figure shows the relationship between the estimated classroom quality in a standard VA linear model versus our
unrestricted model. The solid line represents the 45 degree line. The value-added bias is defined as the difference between the rank
of estimated latent classroom quality in the standard VA model and our unrestricted model BiasV A = ĈV A

Rank − ĈUR
Rank.



Figure 8: Bias in VA Models and Omitted Non-Cognitive and Parental Investments Information
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Notes: This figure shows the relationship between the classroom quality bias (difference between VA and baseline estimates)
with respect to the average classroom children’s non-cognitive skills and parental investments. The value-added bias is defined
as the difference between the rank of estimated latent classroom quality in the standard VA model and our unrestricted model
BiasV A = ĈV A

Rank − ĈUR
Rank. The solid line represents the best linear fit. Average classroom non-cognitive skills and parental

investments are divided into 20 quantiles.



Table 1: Descriptive Statistics at Kindergarten Entry

Variable Mean Std. Dev.

A: Characteristics of Child
Number of children 8,656
Age 5.68 0.36
Fraction male 0.51
Fraction White, Non-Hispanic 0.68
Fraction Black, Non-Hispanic 0.14
Fraction Hispanic 0.09
Fraction other Race/Ethnicity 0.09
Fraction living with both biological parents 0.69
Fraction living with one biological parent 0.27
Fraction living with no biological parent 0.04
Fraction having no sibling 0.17
Fraction having one sibling 0.45
Fraction having two siblings 0.26
Fraction having three or more siblings 0.12

B: Characteristics of Household
Mother’s age 33.89 6.36
Father’s age 36.77 6.69
Mother’s years of schooling 13.88 2.23
Father’s years of Schooling 14.13 2.56
Mother’s hours worked 26.13 19.01
Father’s hours worked 46.05 13.91
Household income (2017 USD) 68,226 35,480

C: Characteristics of Classroom
Number of classrooms 1,118
Class size 20.11 4.65
Instructional time (hours/week) 24.03 9.26
Fraction Teachers Female 0.99
Teacher’s age 42.23 9.79
Teacher years of experience teaching K 9.53 7.88
Fraction of teachers having at least a master’s degree 0.35

D: Characteristics of School
Number of schools 637
School year length (days) 178.25 3.13
Fraction public school 0.69
Fraction of students receiving free or reduced price lunch 0.26 0.27

Source: ECLS-K: 1998-99.
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Table 2: Children’s Scores and Home Investments at Kindergarten-Entry

Obs Mean SD Min Max

Approach to Learning 8656 3.04 0.66 1.00 4.00
Self Control 8656 3.11 0.61 1.00 4.00
Interpersonal Skills 8430 3.01 0.62 1.00 4.00
Math (Routing) 8656 5.11 2.94 0.00 16.00
Math (IRT) 8656 27.56 9.22 10.51 96.04
Reading (Routing) 8656 6.25 3.97 0.00 20.00
Reading (IRT) 8656 36.28 10.45 21.45 138.51
Number of Books 8656 84.77 60.30 0.00 200.00
Computer is Available (Yes/No) 8656 0.63 0.48 0.00 1.00
Mother’s Years of Education 8656 13.88 2.23 8.00 20.00

Source: ECLS-K:1998-99.
Notes: The math and reading routing scores are a count of the number of items a child
answers correctly on the routing test. The math and reading IRT score are an estimate
of the number of items that a child would have answered correctly had she taken all
of the questions on all forms. Non-cognitive scores are rated by the teacher on a scale
of 1 to 4: 1=Never, 2=Sometimes, 3=Often, 4=Very Often. See the Data Section for
more information.

Table 3: Estimates of Measurement Parameters at Kindergarten-Entry

Latent Location Scale Signal to Noise Ratio

Math Skills Math (Routing) 5.11 2.84 0.93
Math (IRT) 27.56 8.84 0.92

Reading Skills Reading (Routing) 6.25 3.94 0.98
Reading (IRT) 36.28 9.51 0.83

Non-cognitive Skills Approach to Learning 3.04 0.50 0.58
Self Control 3.11 0.53 0.76
Interpersonal Skills 3.01 0.56 0.81

Home Investment Number of Books 84.77 29.49 0.24
Computer is Available (Y/N) 0.63 0.25 0.27
Mother’s Education 13.88 1.38 0.38

Source: Model estimates using a sample of ECLS-K data.

Notes: The estimates are for the initial period (t = 0). For each measure Mω,t,m of latent ω at time t, the location
is µω,t,m, the scale is λω,t,m, and the signal-to-noise ratio is 1 − var(εω,t,m)/var(Mω,t,m). See the measurement
equation 4 for more details.
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Table 8: Comparison of Model Predictions with STAR

(1) (2) (3) (4)

Panel A: Comparison of the Latent Classroom Quality

Model STAR

Math Reading Math Reading

Classroom Quality Effect (SD) 0.316 0.394 0.361 0.356

Panel B: Comparison of the Heterogeneous Treatment Effects

Model STAR

Math Reading Math Reading

Black / White (Ratio) 1.08 1.06 1.08 1.20
[0.45, 1.62] [0.65, 1.70]

Free or Reduced-Price Lunch / No Free Lunch (Ratio) 1.09 1.11 0.95 1.13
[0.46, 1.45] [0.63, 1.76]

Source: Model estimates using ECLS-K and STAR data.

Notes: Panel A shows the comparison of the estimated classroom quality effect between ECLS-K and STAR data. The
outcome in columns (1) and (3) is the math test score, while the outcome in columns (2) and (4) is the reading test score.
Columns (1) and (2) show the marginal effects of the ECLS-K classroom latent classroom quality previously estimated
from our main model (Table 6). Columns (3) and (4) show the marginal effects of classroom quality estimated from the
experimental variation in STAR. Panel B shows the comparison of treatment effect ratios by sub-groups. The class size
effect in STAR is estimated by an IV estimation of class size on test scores, using experimental variation in classroom
assignment as the instrument. Both white and black children are non-hispanic. In the model, we predict, using the es-
timated model, the effect of changing classroom quality on children’s skills. The model’s results are based on the model
which includes parental investments and complementarities. Classroom-clustered bootstrapped 95% confidence intervals
are in brackets.
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Table 9: Value-Added Bias and Teacher’s Characteristics

(1) (2) (3) (4)

Math Reading

Age 0.05 0.02 0.03 0.01
(0.02) (0.01) (0.01) (0.01)

Black Teacher -3.02 -5.08 -5.51 -9.90
(3.93) (2.82) (2.26) (1.78)

Black Teacher X Age 0.12 0.14 0.11 0.25
(0.09) (0.06) (0.05) (0.04)

Obs 7,918 7,918 7,918 7,918
School F.E. No Yes No Yes

Source: ECLS-K:1998-99.

Notes: This table shows how the value-added bias is associated with
teacher’s individual characteristics. The value-added bias is defined
as the difference between the rank of estimated latent classroom
quality in the standard VA model and our unrestricted baseline
model (BiasV A = ĈV ARank − ĈURRank). Columns (1) and (2) show the
results for the bias in math value-added estimates, while columns
(3) and (4) show the results for the bias in reading value-added es-
timates. The even columns report results including school fixed ef-
fects.
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Table 10: Initial Conditions

(1) (2) (3) (4) (5) (6) (7)

ln θM,0 (1) 1.00
ln θR,0 (2) 0.69 1.00
ln θN,0 (3) 0.53 0.47 1.00
lnH0 (4) 0.53 0.42 0.33 1.00
lnCM,0 (5) 0.04 0.07 -0.09 -0.15 1.00
lnCR,0 (6) 0.03 0.09 -0.07 -0.22 0.49 1.00
lnCN,0 (7) -0.06 -0.06 -0.08 -0.17 0.08 0.10 1.00

Source: Model estimates using a sample of ECLS data.

Notes: Results pertain to the model with complementarities.

Table 11: Income Gradient in Classroom Quality and Parental Investments

lnCM,0 lnCR,0 lnCN,0 lnH0

Below Median x Income ($10k) 0.055 0.040 -0.000 0.302
(0.016) (0.016) (0.016) (0.031)

Above Median x Income ($10k) -0.010 -0.010 -0.006 0.095
(0.013) (0.013) (0.013) (0.025)

N 5789 5789 5789 5789

Source: Model estimates using a sample of ECLS-K data.

Notes: Each column shows the estimates from a separate regression of classroom
quality (math, reading or non-cognitive) on family income interacted with a dummy
for whether family income is above or below the median of the sample distribution.
Median family income in the sample is $45,000.
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Appendices

A Mathematical Derivations

A.1 Identification of Measurement System

The identification of the location parameter is the same for all the measures for every type of
skills. It is based on the normalization of the location of the child’s skills during the first period:

E[Mω,0,m] = µω,0,m for all ωi,0 ∈ {θM,i,0, θR,i,0, θN,i,0} (A-1)

where {θM,i,0, θR,i,0, θN,i,0} represents a child’s math, reading and non-cognitive skills, respec-
tively.

The identification of the factor loading requires few more algebraic steps. Let’s start with
the non-cognitive skills, the case in which we have three different measures and we identify the
factor loading as:

λN,0,m =

√
Cov(MN,0,m,MN,0,m′)Cov(MN,0,m,MN,0,m′′)

Cov(MN,0,m′ ,MN,0,m′′)
∀m (A-2)

where (m,m′,m′′) are three different measures for the child’s non-cognitive skills.
We now identify the rest of the loading factors using only two different measures for each

type of skill. In the case of math skills θM we have

√
Cov(MM,0,m,MM,0,m′)Cov(MM,0,m,MN,0,m)

Cov(MM,0,m′ ,MN,0,m)
=√√√√√λM,0,m · λM,0,m′ · V ar(θM)︸ ︷︷ ︸

=1

· λM,0,m · λN,0,m · Cov(θM , θN)

λM,0,m′ · λN,0,m · Cov(θM , θN)
=√

λ2
M,0,m = λM,0,m ∀m ,

which shows that we only need two different measures (m,m′) for math to identify its mea-
surement parameters once we have at least two skills. Identification of measurement parameters
for reading skills (θR) is similar.

A.2 Equivalence in Measures Across Datasets

Consider the following measurement system for each dataset:

MECLS−K
j,i,t,m = µECLS−Kj,t,m + λECLS−Kj,t,m ln θj,i,t + εECLS−Kj,i,t,m (A-3)

MSTAR
j,i,t,m′ = µSTARj,t,m′ + λSTARj,t,m′ ln θj,i,t + εSTARj,i,t,m′ (A-4)
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where the location and scale of the ECLS-K and STAR test scores are unknown, and can be
different from each other. The average treatment effect for some treatment τ is the expected
difference in test scores between the treatment group (τ=1) and the control group (τ=0):

E
[
TESTAR

]
= E

[
MSTAR

j,i,1,m′|τ = 1
]
− E

[
MSTAR

j,i,1,m′|τ = 0
]

= λSTARj,1,m′

(
E [ln θj,i,1|τ = 1]− E [ln θj,i,1|τ = 0]

) (A-5)

Note that the treatment effect depends on the scale of the test score, λSTARj,t,m′ . This creates
a problem in comparing average treatment effects between STAR and ECLS-K if considering
raw scores. Standardizing test scores does not help because it would just change the scale (λ)
by a different standard deviation for each test. However, the relative average treatment effect
between two subpopulations is free from the loading factor and can be compared between the
two datasets. To see this, consider the binary variable X, which takes a value of 1, for example,
if the child qualifies for free or reduced-priced lunch, and 0 otherwise. We define the relative
average treatment effect for these two subpopulations as

E
[
TESTAR|X = 1

]
E [TESTAR|X = 0]

=
E
[
MSTAR

j,i,1,m′ |X = 1, τ = 1
]
− E

[
MSTAR

j,i,1,m′ |X = 1, τ = 0
]

E
[
MSTAR

j,i,1,m′ |X = 0, τ = 1
]
− E

[
MSTAR

j,i,1,m′ |X = 0, τ = 0
]

=
E [ln θj,i,1|X = 1, τ = 1]− E [ln θj,i,1|X = 1, τ = 0]

E [ln θj,i,1|X = 0, τ = 1]− E [ln θj,i,1|X = 0, τ = 0]
(A-6)

which is independent of the loading factor.
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B Monte Carlo

This section uses Monte Carlo exercises to examine the properties of the estimator. The true
data generating process is assumed to be:

ln θi,1 = γ0 + γ1 ln θi,0 + γ2 lnCi,0 + γ3 ln θi,0 lnCi,0 + ηi,0 (B-1)

lnCi,0 ∼ N(0, 1) (B-2)

ln θi,0 ∼ N(1, 1) (B-3)

ηi,0 ∼ N(0, 0.2) (B-4)

where θi,0 is the skill of child i at time 0, lnCi,0 is the investment from school, and ηi,0 is the error
term. We assume that children are clustered by classrooms and we observe multiple children
per classroom. Further, we assume that investment from school is the same for all children in
the same classroom. We assume that ln θi,0 is not observed, but we observe two noisy measures
of it:

lnMi,0,1 = ln θi,0 + εi,0,1 (B-5)

lnMi,0,2 = ln θi,0 + εi,0,2 (B-6)

εi,0,1 ∼ N(0, 0.3) (B-7)

εi,0,2 ∼ N(0, 0.3) (B-8)

We simulate 200 different classrooms for different numbers of children per classroom (n).
We generate 100 simulated dataset of from the data generating process described above. Table
B-1 reports the mean estimates and their 90% confidence intervals.

Table B-1: Monte Carlo Results

True Values γ0 γ1 γ2 γ3

4.000 1.000 2.000 3.000

Model Estimates
n = 10 4.001 0.998 1.993 3.008

[3.958,4.040] [0.945,1.053] [1.939,2.042] [2.954,3.067]

n = 20 3.999 0.999 1.999 3.004
[ 3.971,4.035] [0.955,1.038] [1.952,2.037] [2.961,3.050]

Source: Monte Carlo results.
Notes: n denotes the number of children per classroom. 90% confidence intervals are in parentheses.

58



C Supplementary Analysis

59



Figure C-1: Home Investments in the Year of Kindergarten over Income Deciles
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Source: ECLS-K:1998-99.

Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data.
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Figure C-2: Home Investments in the Year of Kindergarten over Income Deciles
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Source: ECLS-K:1998-99.

Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data.
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Figure C-3: Home Investments in the Year of Kindergarten over Income Deciles
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Source: ECLS-K:1998-99.

Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data.
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Figure C-4: Home Investments in the Year of Kindergarten over Income Deciles: Age Adjusted
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Source: ECLS-K:1998-99.

Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data. Each parental investment measure is age adjusted,
i.e., it is the residual variation after controlling for children’s age (in months).
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Figure C-5: Home Investments in the Year of Kindergarten over Income Deciles: Age Adjusted
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Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data. Each parental investment measure is age adjusted,
i.e., it is the residual variation after controlling for children’s age (in months).
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Figure C-6: Home Investments in the Year of Kindergarten over Income Deciles: Age Adjusted

-.4
-.2

0
.2

.4
0/

1 
P.

Y.

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Computer available

-4
0

-2
0

0
20

40
N

um
be

r

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Books available
-1

-.5
0

.5
1

w
ee

kl
y 

fre
q.

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Computer Usage

-.4
-.2

0
.2

.4
w

ee
kl

y 
fre

q.

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Reading pic-books

-.2
0

.2
.4

w
ee

kl
y 

fre
q.

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Reading

-.1
5

-.1
-.0

5
0

.0
5

.1
0/

1 
P.

Y.

1 2 3 4 5 6 7 8 9 10

Deciles of Household Income

Visited library

Source: ECLS-K:1998-99.

Notes: This figure shows the distribution of various parental investment measures over the
household income deciles in our data. Each parental investment measure is age adjusted,
i.e., it is the residual variation after controlling for children’s age (in months).
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Figure C-7: The Distribution of Class Size
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Notes: This figure shows the empirical distribution of classroom size in our estimating
sample.
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Figure C-8: Distribution of Racial Composition between Classrooms
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Notes: This figure shows the empirical distribution of racail composition between classrooms
in our sample.
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Figure C-9: Distribution of Bias in Classroom Quality Estimates
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Notes: This figure shows the empirical distribution of bias in classroom quality estimates.
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Table C-1: Descriptive Statistics at Kindergarten Entry; Full ECLS-K Data

Variable Mean Std. Dev.

A: Characteristics of Child
Number of children 21,409
Age 5.66 0.37
Fraction male 0.51
Fraction White, Non-Hispanic 0.55
Fraction Black, Non-Hispanic 0.15
Fraction Hispanic 0.18
Fraction other Race/Ethnicity 0.12
Fraction living with both biological parents 0.66
Fraction living with one biological parent 0.30
Fraction living with no biological parent 0.04
Fraction having no sibling 0.18
Fraction having one sibling 0.42
Fraction having two siblings 0.26
Fraction having three or more siblings 0.14

B: Characteristics of Household
Mother’s age 33.21 6.63
Father’s age 36.23 6.99
Mother’s years of schooling 13.36 2.38
Father’s years of Schooling 13.64 2.69
Mother’s hours worked 25.01 19.50
Father’s hours worked 44.81 14.25
Household income (2017 USD) 62,432 35,820

C: Characteristics of Classroom
Number of classrooms 5,224
Class size 20.27 4.41
Instructional time (hours/week) 23.90 8.91
Fraction Teachers Female 0.98
Teacher’s age 41.34 10.12
Teacher years of experience teaching K 8.76 7.70
Fraction of teachers having at least a master’s degree 0.37

D: Characteristics of School
Number of schools 1,591
School year length (days) 178.31 3.14
Fraction public school 0.79
Fraction of students receiving free or reduced price lunch 0.31 0.28

Source: ECLS-K: 1998-99.
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Table C-4: Descriptive Statistics at Kindergarten Entry (ECLS-K vs STAR)

Variable ECLS-K STAR

A: Characteristics of Child
Number of children 8,656 6,325
Age 5.68 5.74
Fraction male 0.51 0.51
Fraction White 0.68 0.67
Fraction Black 0.14 0.33
Fraction Hispanic 0.05 0.00
Fraction other Race/Ethnicity 0.13 0.00

B: Characteristics of Classroom
Number of classrooms 1118 325
Average Class size 20.30 20.34
Fraction Teachers Female 0.99 1.00
Average teacher’s years of experience teaching K 9.44 9.26
Fraction of teachers having at least an MA 0.33 0.35

C: Characteristics of School
Number of schools 637 79
Fraction public school 0.66 1.00
Fraction rural school 0.25 0.46
Fraction inner-city school 0.38 0.23
Fraction urban/suburban school 0.37 0.31
Fraction of students receiving free or reduced price lunch 0.25 0.48

Source: ECLS-K:1998-99 and STAR.
Notes: This table shows the comparison in the sample characteristics between the ECLS-K
and STAR data.
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Table C-5: Estimate for VA Models

Math Reading

Math (t-1) 0.653 0.237
(0.011) (0.010)

Reading (t-1) 0.160 0.517
(0.011) (0.010)

Child’s Race: Black -0.235 -0.070
(0.036) (0.034)

Child’s Race: Hispanic -0.113 -0.003
(0.038) (0.035)

Child’s Race: Hispanic (Race not Identified) -0.079 -0.044
(0.046) (0.043)

Child’s Race: Asian 0.009 0.155
(0.045) (0.042)

Child’s Race: Native Hawaiian -0.062 -0.026
(0.108) (0.101)

Child’s Race: Native American -0.104 -0.095
(0.092) (0.085)

Child’s Race: More than One -0.118 0.066
(0.050) (0.047)

Free Lunch -0.120 -0.141
(0.031) (0.029)

Reduced-Price Lunch -0.063 -0.125
(0.042) (0.039)

SD Value-Added Estimates 0.323 0.395
Observations 8656 8656

Source: Model estimates using a sample of ECLS-K data.

Notes: Classroom-clustered bootstrapped standard errors are in parentheses.
All models control for gender, age, age squared, and the time difference be-
tween the Fall and Spring assessments.
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Table C-6: Analysis of Classroom Quality

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Math Classroom Quality Reading Classroom Quality Noncognitive Classroom Quality

Number of hours/day 0.099 0.057 0.053 0.153 0.222 0.221 -0.030 0.051 0.052
(0.021) (0.095) (0.095) (0.020) (0.065) (0.065) (0.021) (0.077) (0.076)

Class Size -0.007 0.015 0.015 -0.011 -0.047 -0.047 0.011 0.012 0.012
(0.008) (0.026) (0.026) (0.008) (0.021) (0.021) (0.008) (0.028) (0.027)

Teacher’s Age 0.005 -0.000 -0.000 0.010 0.007 0.007 0.003 0.003 0.003
(0.004) (0.006) (0.006) (0.004) (0.005) (0.005) (0.005) (0.009) (0.009)

Years of Experience at the current school -0.015 -0.015 -0.015 -0.010 -0.004 -0.004 0.002 -0.009 -0.009
(0.005) (0.009) (0.009) (0.005) (0.007) (0.007) (0.005) (0.010) (0.010)

lnH0 -0.015 -0.011 -0.012
(0.004) (0.003) (0.004)

ln θM,0 0.000 0.000 -0.011
(0.009) (0.007) (0.011)

ln θR,0 0.030 0.007 -0.002
(0.010) (0.008) (0.011)

ln θN,0 -0.023 0.006 -0.002
(0.009) (0.008) (0.010)

N 7552 7552 7552 7552 7552 7552 7552 7552 7552
School F.E. No Yes Yes No Yes Yes No Yes Yes

Source: the ECLS-K and STAR data.
Notes: this table shows how the estimated latent classroom quality is associated with teachers’ and children’s characteristics.
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