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1 Introduction

Covered interest parity (CIP) violations have been interpreted by many authors as a sign

that intermediaries are constrained (e.g. Du et al. (2018), Boyarchenko et al. (2018),

Hébert (2018)). Meanwhile, the intermediary asset pricing literature has argued that

constraints on intermediaries have important implications for the pricing of assets (see

He and Krishnamurthy (2017) for a survey).

In this paper, we combine these two ideas, and provide a direct test of whether the

risk that intermediary constraints become larger is priced. We begin by demonstrating, in

a standard intermediary asset pricing model, that the intermediaries’ stochastic discount

factor (SDF) can be written as a function of the return on the manager of an interme-

diary’s wealth and the magnitude of a cross-currency basis (i.e. a CIP violation). The

existence of liquid foreign exchange (FX) and interest rate derivative across very granular

maturities allows us to directly measure innovations to intermediaries’ SDF due to shocks

to the cross-currency basis. We argue that the most straightforward test of this model

is a test of whether "forward CIP trading strategies" that bet on arbitrages becoming

smaller earn excess returns.

We then proceed to the data, and estimate the excess returns of these forward CIP

trading strategies. We define the forward CIP trading strategy to be using FX forwards

and forward-starting interest rate swaps to conduct a forward-starting CIP trade, and

then unwinding the trade at its forward starting date. Consider a trader who, at time t,

enters into a forward-starting CIP trade to go long in Japanese yen and short U.S. dollars

for three months between t + 1 and t + 4, with the currency risk fully hedged. We refer

to this trade as a one-month forward three-month CIP trade. In a month, at t + 1, the

trader unwinds the forward CIP trade by going long in U.S. dollars and short Japanese

yen for three months, exactly cancelling all the promised cash flows of the forward CIP

trade. The profits of this forward CIP trading strategy are proportional to the difference

between the market-implied one-month forward three-month CIP deviation observed at t

and the actual three-month CIP deviation realized one month later at t+ 1. The forward
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CIP trading strategy has a positive (negative) return if the future CIP deviation is smaller

(bigger) than the market-implied forward CIP deviation today.

The expected return on the forward CIP trading strategy offers a direct test of inter-

mediary asset pricing theories in which large CIP deviations indicate that intermediaries

are very constrained, because the forward CIP trading strategy pays off poorly in these

constrained states. If the constraints of financial intermediaries are indeed a priced fac-

tor, we should expect the forward CIP trading strategy to earn positive excess returns

on average, as a risk premium to compensate investors for bearing the systematic risk

exposure to variations in the shadow cost of intermediary constraints. At the same time,

if intermediaries are not constrained, there will be no CIP violations, and our forward

CIP trading strategy is unlikely to be profitable.

We find that there is a significant risk premium in our forward CIP trading strategy

during the post-financial crisis period. Specifically, we study our forward CIP trading

strategy for seven widely-traded foreign currencies vis-à-vis the US dollar: the Australian

dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), euro (EUR), British pound

(GBP), New Zealand dollar (NZD), and Japanese yen (JPY). At the individual currency

level, we generally find positive returns for high interest rate currencies and negative

returns for low interest rate currencies. Moreover, the magnitude of the profits is signifi-

cantly larger post-crisis than pre-crisis, consistent with the fact that CIP violations were

very small before the recent financial crisis, became large during the crisis, and remained

large after the crisis (Du et al. (2018)).

Guided by the literature on unhedged FX carry trade returns (such as Lustig et al.

(2011) and Verdelhan (2018)), we also consider two trading strategies based on two port-

folios of currencies. The “carry” strategy goes long in the forward CIP trading strategy

of a high-interest-rate currency (AUD) vis-à-vis the dollar, and short in the forward

CIP trading strategy of a low-interest-rate currency (JPY) vis-à-vis the US dollar. The

"dollar" trading strategy goes long in the forward CIP trading strategy of all individual

currencies vis-à-vis the US dollar with equal weights. We find statistically and economi-

cally significant Sharpe ratio equal to 1.4 for our carry strategy post-crisis. In contrast,
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we do not find evidence of risk premia when using the dollar strategy. We argue that

this is consistent with the predictions of our model, which emphasizes the role of the

cross-currency bases with the largest (in absolute value) magnitudes.

We also test our model’s ability to price the cross section of assets, in an exercise

building on the work of He et al. (2017) and Pasquariello (2014). Relative to the He et al.

(2017) framework, our model adds the innovation to the carry-weighted cross-currency

basis as a pricing factor. We find evidence that the price of this basis risk in US treasury

and corporate bonds, FX portfolios, and sovereign bonds is close to the price we estimate

using our forward CIP trading strategy. We also observe that while innovations to our

basis factor are correlated with innovations to the He et al. (2017) intermediary factor,

the two factors suggest different paths of intermediary marginal utility in recent years,

and that the basis factor provides information not incorporated into the intermediary

factor or captures similar information more precisely.

The addition of this basis factor improves the ability of the model to price the cross

section of assets, a result that is reminiscent to the findings of Pasquariello (2014). How-

ever, the interpretation of our result is quite different. Our model argues that the CIP

violations documented in the post-crisis period by Du et al. (2018) are caused by reg-

ulatory constraints, and that variation in the cost of these constraints as measured by

CIP violations should be priced. In contrast, Pasquariello (2014) constructs a market

dislocation index from a variety of currency-related arbitrages including CIP violations

and triangular arbitrage (e.g. spot dollar-yen and dollar-euro vs. yen-euro), using data

ending in 2009. During most of this period, all of these arbitrages were small, and many

papers in the literature argued that they could be explained by transaction costs, stale

prices, and related issues. The results of Pasquariello (2014) should be understood as

demonstrating that times when transaction costs are high and markets are moving fast

enough to create stale prices are also times of high marginal utility. This point is inter-

esting in its own right and conceptually distinct from our argument that the shadow cost

of regulatory constraints for intermediaries is a priced risk factor.

Our paper sits at the intersection of literature on arbitrage and on intermediary asset
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pricing. Recent empirical work on covered interest parity violations (Du et al. (2018))

has documented the existence and time series properties of these arbitrages, as well as

the quarter-end dynamics of these arbitrages arising from bank regulations. Boyarchenko

et al. (2018) attribute the existence a broad class of arbitrages to non-risk-weighted

leverage constraints due to bank regulations, and Hébert (2018) interprets these arbitrages

through an optimal policy framework.

The existence of these regulations is one necessary ingredient for the existence of

arbitrages, because the regulations prevent intermediaries from closing the arbitrage. A

second necessary ingredient is some form of limited or constrained market access for other

non-regulated agents in the economy. These two ingredients are also the key ingredients

of intermediary asset pricing models (e.g. He and Krishnamurthy (2011)). A recent

survey of intermediary asset pricing, He and Krishnamurthy (2017), summarizes this

literature. Relative to the existing literature, our model emphasizes literal arbitrages, as

opposed to the intermediaries’ ability to access investments with favorable risk/return

trade-offs. In this respect, our model builds on Garleanu and Pedersen (2011). We also

contribute to this literature by emphasizing the importance of intertemporal hedging

considerations, following Campbell (1993) and Kondor and Vayanos (2019), whereas much

of the literature (e.g. He and Krishnamurthy (2011), Garleanu and Pedersen (2011), and

He et al. (2017)) relies on log utility for intermediaries and neglect these considerations.

In taking the model to the data, we are building on the work of He et al. (2017), Adrian

et al. (2014), and Haddad and Muir (2017).

We begin by introducing our model in section 2. We then describe our forward CIP

trading strategy and the relevant data in section 3. Section 4 presents our main results

on excess returns and high Sharpe ratios for these strategies. Section 5 tests our model

in the cross section of asset prices. We conclude in section 6.
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2 Hypothesis and Model

In our empirical analysis that follows, we will test the hypothesis that changes in the

magnitude of cross-currency bases (i.e. CIP violations) are a priced risk factor. In

particular, we are motivated by log SDFs mt+1 of the form

mt+1 = µt − γrwt+1 + ξ|xt+1,1|, (1)

where rwt+1 is the return on the manager of an intermediary’s wealth portfolio and |xt+1,1|

is the absolute value of a one-period cross currency basis. Our hypothesis, in the context

of this functional form, is that ξ is economically and statistically distinguishable from

zero.

The most direct test of this hypothesis is to study a derivative contract whose payoff

is linear in |xt+1,1|. If such a contract has an excess return that cannot be explained by

the covariance between |xt+1,1| and the other parts of the hypothesized SDF (i.e. rwt+1),

we should conclude that innovations in the cross-currency basis are indeed a priced risk

factor (or at least correlated with an omitted factor). The forward CIP trading strategy

that we construct in our empirical analysis is exactly this derivative contract.

Our hypothesis is motivated by an intermediary asset pricing model, which we describe

below. The purpose of the model is both to motivate the hypothesis and to provide a

framework to interpret our results. The model is a discrete time version of He and

Krishnamurthy (2011) that incorporates a regulatory constraint (building on He and

Krishnamurthy (2017)). We derive the particular functional form of equation (1) from

intertemporal hedging considerations, following Campbell (1993), under the assumptions

of joint log-normality and homoskedasticity.

The basic intuition of the model is as follows. Arbitrages like a cross-currency basis

arise due to a regulatory constraint, and therefore provide a way to measure the multiplier

associated with that constraint (a point emphasized by Hébert (2018)). For any asset or

portfolio affected by the constraint, and in particular the portfolio of the intermediary’s

assets, a binding multiplier implies an excess return relative to the intermediary’s SDF

(otherwise, the constraint wouldn’t bind). Consequently, the magnitude of future arbi-
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trage opportunities predicts future returns for the intermediary’s portfolio. Intertemporal

hedging considerations that arise from CRRA or Epstein-Zin preferences (Epstein and Zin

(1989)) with risk aversion parameter γ 6= 1 imply that any predictor of future arbitrage

opportunities, and hence future portfolio returns, co-varies with the SDF. Therefore, if

innovations to a cross-currency basis are persistent (and we find in data that they are),

we should expect those innovations to co-vary with the SDF.

The remainder of this section outlines the model and each of the steps in the preceding

argument. We provide a full description of the model in the appendix, section C. Readers

willing to grant our hypothesis as inherently interesting are invited to skip to the next

section.

Our model adopts the perspective of He and Krishnamurthy (2011) and the subsequent

intermediary asset pricing literature (surveyed in He et al. (2017)), and in particular the

notion that the manager of the intermediary is an agent whose SDF should price assets.

The model is a discrete time version of He and Krishnamurthy (2011), and is partial

equilibrium in that we only consider the problem facing the manager of the intermediary.

We add to He and Krishnamurthy (2011) a variety of assets, including both "cash" assets

and derivatives, and a regulatory constraint. We study a manager with Epstein-Zin

preferences (rather than focus on log preferences), because these preferences will allow us

to discuss the role that intertemporal hedging concerns play in the model.1

In our model, the manager of an intermediary raises equity and debt financing from

outside investors each period. However, a moral hazard constraint requires that the

manager retain at least a share (1 + χ)−1 of the risk of the intermediary. Moreover,

a regulatory constraint (for example, a leverage ratio requirement) requires that the

intermediary finance a certain fraction of its assets with equity, as opposed to debt. Let

i ∈ I denote an asset that the intermediary can hold, let αit be the intermediary’s holding

of asset i at time t as a share of the intermediary’s equity, Nt. Following He et al. (2017),
1In augmenting the He and Krishnamurthy (2011) model with Epstein-Zin preferences, we are building

on Di Tella (2017) among others.
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we write the regulatory constraint as∑
i∈I

ki|αit| ≤ 1 (2)

This constraint captures some of the key features of leverage ratios and risk-weighted

capital requirements. First, to the extent that the ki differ across assets, the constraint

can capture risk-weights. Second, the constraint is relaxed by increasing the level of equity

financing the intermediary relative to debt, holding fixed the dollar holdings of each asset.

Third, the constraint can omit certain assets, such as derivatives, entirely, consistent with

how some but not all leverage constraints and risk-weighted capital constraints operate.

In our analysis, for clarity of exposition, we will assume that derivatives are not included

in the regulatory constraint.

Equity in the intermediary can come from two sources, the bank manager and house-

holds. Let NM
t denote the equity contribution of the manager, and with the remainder

of the intermediary’s equity, Nt −NM
t , coming from households.

Let φt denote the share of the intermediary assets that will be paid to the manager,

with 1 − φt going to the households. In He and Krishnamurthy (2011), which is a con-

tinuous time model, the manager is paid a fee, and invests all of the wealth she does not

consume in the equity of the intermediary. In our discrete time version of the model, these

results imply that the manager is paid in equity, meaning that the share the manager

receives (φt) is not the same as the share she contributes (NM
t /Nt). These results also

imply that the manager’s contribution to the intermediary is NM
t = WM

t − CM
t , where

WM
t is the manager’s wealth at the beginning of the period and CM

t is her consumption.

We define the ratio of what the share the manager receives to the share she contributes

as

fMt ≡
φtNt

NM
t

≥ 1,

and will refer to this ratio as the manager’s fee. We discuss how this fee is determined in

Appendix Section C. Note that this ratio is also the gross return for the manager on the

wealth she contributes, if the intermediary’s assets have zero net return.

The manager’s wealth next period, WM
t+1 will depend on both this fee income and

the returns of the intermediary, which in turn depends on the asset allocation αit. The
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manager receives

WM
t+1 = (WM

t − CM
t )fMt (Rb

t +
∑
i∈I

αit(R
i
t+1 −Rb

t)), (3)

where Rb
t is the gross interest rate paid on the intermediary’s risk-free debt2 and Ri

t+1 is

the gross return on asset i from time t to time t+ 1.3

The manager chooses the intermediary’s asset allocation freely (that is, she does

not commit to any particular asset allocation when raising funds from the households).

Because of this assumption, the equilibrium fee fMt depends only on the investment

opportunities of the intermediary, and is exogenous from the perspective of the manager.

Let zt denote the vector of state variables that describes the distribution of the available

returns.

The manager’s problem, given wealth WM
t and state variable zt, is to maximize her

utility from consumption and continuation value, as in a standard consumption-savings

problem. A manager with risk-aversion parameter γ, intertemporal elasticity of substi-

tution parameter ψ, and subjective discount factor β solves

V (WM
t , zt) = max

CMt ≥0,{αit}i∈I
(4)

{(CM
t )1−ψ−1

+ βE[V (WM
t+1, zt+1)1−γ|zt]θ

−1}
1

1−ψ−1 , (5)

where θ = 1−γ
1−ψ−1 , subject to the equation defining continuation wealth (3) and the regu-

latory constraint (2).

This manager solves a standard consumption-savings problem, with two twists. First,

she receives exogenous fee income in proportion to her wealth, which effectively increases

her return on her wealth portfolio. Second, she faces a regulatory constraint on her

portfolio choice. To relate the manager’s problem to standard portfolio-choice results, we

define the log return on the manager’s wealth portfolio as

rwt+1 = ln fMt + ln(Rb
t +
∑
i∈I

αit(R
i
t+1 −Rb

t))

We also define consumption growth as ∆cMt+1 = lnCM
t+1 − lnCM

t .

2One disadvantage of using discrete time instead of continuous time (as in He and Krishnamurthy
(2011)) is that default is possible. We completely ignore this issue.

3To accommodate derivatives in this expression, we define the gross return on a derivative as the sum
of the profits of the derivative and Rbt .
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With these definitions, the Euler equation associated with the wealth portfolio is the

standard one for Epstein-Zin preferences (Epstein and Zin (1989)),

1 = E[βθ exp (θrwt+1 −
θ

ψ
∆cMt+1)|zt]. (6)

The first-order condition associated with the portfolio share αit is

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)(Ri

t+1 −Rb
t)|zt] = λRCt kisgn(αit), (7)

where sgn(·) is the sign function and λRCt is the (scaled) multiplier on the regulatory

constraint.4

Armed with these first-order conditions, we are now in a position to described how

arbitrages such as a cross-currency basis can exist in the model, and how they are related

to other asset prices. Consider an asset consisting of a foreign currency bond, with

a foreign currency risk-free rate Rc
t , combined with spot and forward currency trades

to convert the return into dollars. This asset is a synthetic risk-free dollar asset; in

the presence of a cross-currency basis, it may have a different interest rate than the

intermediary’s borrowing rate Rb
t .

Let St denote the exchange rate at time t (in units of foreign currency per U.S.

dollar), and let Ft,1 denote the one-period ahead forward exchange rate. We define the

spot one-period cross-currency basis as

Xt,1 =
Rb
t

Rc
t

Ft,1
St
− 1

and let xt,1 = ln (1 +Xt,1) be the log version.

Using the first-order conditions for the foreign bond and the exchange rate forward,

we find that

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)|zt]Rb

t(1− exp(−xt,1)) = −λRCt kcsgn(αct), (8)

where kc and αct are the risk-weights and portfolio shares of the foreign currency risk-free

bond, recalling we have assumed derivatives do not enter the regulatory constraint.5

This equation offers several immediate implications. First, if there is an arbitrage

available, the regulatory constraint must bind– otherwise, the intermediary would take
4In the particular case in which αit = 0, we have the usual inaction inequalities, −λRCt ki ≤

E[βθ exp ((θ − 1)rwt+1 − θ
ψ∆cMt+1)(Rit+1 −Rbt)|zt] ≤ λRCt ki.

5Considering regulatory constraints that include derivatives complicates the analysis but does not
alter the main predictions of the model that we will take to the data.
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advantage of the arbitrage. Second, the intermediary will trade the foreign currency

risk-free asset in the direction that takes advantage of the cross-currency basis (long if

Xt,1 < 0, short if Xt,1 > 0). Third, and most important for our purposes, we can take the

absolute value of both sides of equation (8) and solve explicitly for the multiplier on the

regulatory constraint. Plugging this back into the first-order condition for an arbitrary

asset i, we find that

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)(Ri

t+1 −Rb
t(1 +

ki

kc
sgn(αit)|1− exp(−xt,1)|)|zt] = 0. (9)

This first-order condition shows that the manager acts as if she faced a different risk-free

rate for each asset, one that was higher than her borrowing rate for assets the intermediary

is long and lower for assets the intermediary is short.

One implication of this first-order condition is that, holding risk premia constant, the

absolute value of the cross-currency basis should predict asset returns, at least for those

assets the intermediary is consistently long or short. To see this more clearly, we apply the

log-normality approximation used by Campbell (1993), and assume that all conditional

variances and covariances are constant (i.e. that the model is homoskedastic). Under

these assumptions, and using the first-order approximation

ln (1 +
ki

kc
sgn(αit)|1− exp(−xt,1)|) ≈ ki

kc
sgn(αit)|xt,1|,

we have

E[rit+1|zt]− rbt +
1

2
(σi)2 =

θ

ψ
σic + (1− θ)σiw +

ki

kc
sgn(αit)|xt,1|, (10)

where rit+1 = lnRi
t+1, rbt = lnRb

t , (σi)2 is the conditional variance of the log return,

σic is the conditional covariance of the log return and log consumption growth, and σiw

is the conditional covariance of the log return and the log wealth return. Compared

to the textbook formula (Campbell (2017)), the expected excess return now includes

an effect of the cross-currency basis, scaled by the relative risk-weights between asset i

and the foreign-currency bond. This result is essentially the "margin-based CCAPM"

result of Garleanu and Pedersen (2011), except that we have used a cross-currency basis

to measure that shadow value of the constraint and employed Epstein-Zin preferences

instead of CRRA utility.

This leads to our first conjecture: that the magnitude of the cross-currency basis

10



should predict excess returns on assets that are consistently held by intermediaries. We

should emphasize, however, that the "holding risk premia" constant caveat is potentially

quite important. It may very well be the case that the cross-currency basis co-moves

with other variables in zt that predict changing variances and co-variances, and hence

risk premia and expected returns.

We should also emphasize that this conjecture is difficult to test. Return predictability

regressions often require long time series, but our theory only applies to the period in

which regulatory constraints create CIP violations (essentially the post-financial-crisis

period). It may be possible to construct stronger tests even in short data samples by

imposing structure on the coefficients ki/kc, by taking a stand on the nature of the

regulatory constraint. For example, a pure leverage constraint might set all of these

coefficients to unity for all assets i.

We take an alternative approach, by emphasizing a second prediction of the model.

Because the cross-currency basis predicts returns for all assets i, it predicts returns on the

manager’s wealth portfolio. The work of Campbell (1993) demonstrates that, away from

γ = 1, covariance with expected future wealth portfolio returns is priced. In other words,

with γ 6= 1, asset allocation is not myopic. Consequently, by departing from the log

utility assumption of He and Krishnamurthy (2011), Garleanu and Pedersen (2011),6 and

He et al. (2017), we arrive at our second prediction: covariance with the cross-currency

basis is priced.

To derive this result, we specialize equation (10) to the wealth portfolio, recalling that

the wealth portfolio also receives an extra return from the fee income:

E[rwt+1|zt]− rbt +
1

2
(σw)2 =

θ

ψ
σwc + (1− θ)(σw)2 +

1

kc
|xt,1|+ ln fMt . (11)

Note that, by definition, the intermediary is long its own portfolio, so the sign term has

disappeared, and the sum of the risk weights and portfolio shares always equals one, so

kw = 1.

We next combine the log-linear approximation of the intertemporal budget constraint
6Garleanu and Pedersen (2011) use log utility for their "brave" agents, who are the "intermediaries"

of the model.
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developed by Campbell (1993) and the Euler equation for the wealth portfolio (equation

6). These two equations together show that

∆cMt+1 − E[∆cMt+1|zt] = rwt+1 − E[rwt+1|zt] + (1− ψ)
∞∑
j=1

ρj(E[rwt+1+j|zt+1]− E[rwt+1+j|zt]).

Note that this formula is identical to a result in Campbell (1993), because the Euler equa-

tion for the wealth portfolio ((equation 6)) is not distorted by the regulatory constraint.

Plugging our equation for the expected return on the wealth portfolio (11) into this

equation, and then the resulting expression for consumption growth into the equation

defining the return of an arbitrary asset i (equation (10)), leads to our main result.

Theorem 1. The expected arithmetic excess return of an arbitrary asset i can be written
as

E[rit+1|zt]− rbt +
1

2
(σi)2 = γσiw + (γ − 1)σih +

ki

kc
sgn(αit)|xt,1|, (12)

where σiw is the conditional covariance with the wealth portfolio and

σih = Cov[rit+1,
∞∑
j=1

ρj(E[·|zt+1]− E[·|zt])(
1

kc
|xt+j,1|+ ln fMt+j + rbt+j)|zt]. (13)

Recall that under our homoskedasticity assumption these covariances are constant

over time.

This theorem arrives at the usual conclusion that, if γ > 1, the manager will be

concerned about hedging her investment opportunities, and will demand a risk premium

for assets whose returns co-vary with those investment opportunities. Conversely, if γ < 1,

the manager prefers assets whose returns co-vary with her investment opportunities,

because those assets allow the manager to better take advantage of those investment

opportunities.

Future arbitrage opportunities are a particularly stark example of an investment op-

portunity, and indicative of the expected returns on the wealth portfolio, and hence

returns that negatively co-vary with future arbitrages should have a high risk premium

if γ < 1 and a low risk premium if γ > 1.

The last piece of our argument is the conjecture (which is verified in the data) that

arbitrage opportunities are likely to be persistent. As a result, shocks to the cross-

currency basis at time t + 1 are likely to be indicative of shocks to the arbitrage at
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later dates. For illustrative purposes only (and ignoring issues about negative numbers),

suppose that |xt,1| follows an AR(1) process,

|xt+1,1| = x̄+ φ|xt,1|+ σ|x|εt+1,

where εt+1 is an I.I.D. standard normal shock. In this case, we have
∞∑
j=1

ρj(E[·|zt+1]− E[·|zt])
1

kc
|xt+j,1|) =

1

kc

1

1− ρφ
σ|x|εt+1.

Under very strong assumptions (i.e. that borrowing rates rbt+j and fees fmt+j are uncor-

related with εt+1), the constant 1−γ
kc

1
1−ρφσ

|x| is equal to the value of ξ defined in our

hypothesized functional form for the log SDF. More generally, projecting the revisions

in expectations found in equation (13) onto the current innovation in the cross-currency

basis, under the assumption that such innovations are persistent, motivates our hypoth-

esized functional form for the log SDF, equation (1).

This description should also make it clear that our simple functional form likely omits

important elements of the SDF. Any other variable that predicts these revisions in expec-

tations should also enter the SDF. Moreover, the innovation of the cross-currency basis

might enter the SDF not only because it predicts future cross-currency bases, but also

because it predicts future borrowing rates or fees (or, in a heteroskedastic model like

Campbell et al. (2018), future volatilities).

Note also that our description of the model has emphasized a single cross-currency

basis, whereas our empirical analysis will consider a variety of currencies and portfolios

of currencies. In the context of the model, heterogeneity in the magnitude of the cross-

currency basis across currencies can arise only due to different ki for bonds in different

currencies, or if the manager has zero portfolio weight on all arbitrages except the one

with the largest magnitude. In other words, why would an intermediary conduct a USD-

EUR arbitrage if a USD-JPY arbitrage offers larger profits? Our model, and in particular

the regulatory constraint, is too simplified to offer much guidance on this issue. That

said, the model does push us in our empirical work to focus on the cross-currency bases

with the largest CIP violations.

Our model also demonstrates that the shadow cost of regulatory constraints can be
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measured with CIP violations, but is silent on why CIP violations and investment oppor-

tunities more generally vary over time. We expect that in a general equilibrium setting,

both supply shocks (low intermediary net worth) and demand shocks (changing house-

hold preferences across currencies) will determine the shadow cost of the constraints

on intermediaries. If our model allowed for changes in the structure of the regulatory

constraint, these changes would also create variation in the shadow cost. Our results

should be understood as demonstrating that, regardless of what is driving changes in

these shadow costs, a stochastic discount factor that incorporates intermediary wealth

and CIP violations should be able to price the assets available to the intermediary.

Note also that the two variables in our SDF (the wealth return and innovations to

the cross-currency basis) are likely to move together. Because our model is partial equi-

librium, it makes no particular predictions about this co-movement. Most general equi-

librium models in the intermediary asset pricing literature (e.g. He and Krishnamurthy

(2011)) predict that investment opportunities are best for intermediaries precisely when

intermediaries have lost wealth, and hence we might expect that wealth returns and

innovations to the cross-currency basis are negatively correlated.

Lastly, a word on magnitudes. Innovations in CIP violations are small (σ|x| is on

the order of basis points). However, intermediaries are quite levered, meaning that kc

might be less than ten percent, consumption-wealth ratios for managers are likely small

(meaning ρ is close to one), and innovations in CIP violations are very persistent (φ is

close to one). Consequently, a significant fraction of the volatility of our hypothesized

SDF might be attributable to innovations in CIP violations as opposed to returns on the

manager’s wealth portfolio.

In this section, we have outlined a model that motivates our hypothesis that innova-

tions in the magnitude of CIP violations are a priced risk factor. As discussed above, the

most direct way of testing this hypothesis is to look for excess returns on derivatives that

bet on whether the magnitude of a CIP violation will increase or decrease. In the next

section, we describe the forward CIP trading strategy, which is exactly this kind of bet,

and discuss how we construct the profits from the strategy using the available financial
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market data.

3 Forward CIP Arbitrage

We study the forward CIP trading strategy in three steps. First, we revisit "spot" cross-

currency bases (as described in recent data by Du et al. (2018)), and describe the cross-

currency bases based on overnight index swap (OIS) rates that we will use in our main

empirical analysis. Second, we discuss "forward" cross-currency bases, constructed from

forward-starting OIS and FX forwards. Third, we introduce our forward CIP trading

strategy, which initiates a forward-starting cross-currency basis trade but then unwinds

the trade once it becomes a spot cross-currency basis trade. We emphasize that this

trading strategy is not itself an arbitrage, but rather a bet on whether available arbitrages

will become bigger or smaller. For robustness, we also consider a forward CIP trading

strategy based on interbank offer rates (IBOR) and forward rate agreements (FRAs)

indexed to these IBOR rates.

We study cross-currency bases in seven major currencies, using the US dollar as the

base currency: AUD, CAD, CHF, EUR, GBP, JPY and NZD.7 Our preferred specifi-

cation involves portfolios of the forward CIP trading strategies using these currencies,

in particular a "dollar" portfolio and a "carry" portfolio, whose construction we detail

below.

All data on the spot and forward foreign exchange rates, interest rate swaps and FRAs

are daily data obtained from Bloomberg using London closing rates for the currencies we

study. Our dataset begins in January 2003 and ends in August 2018. We divide our data

into three periods: Pre-Crisis, January 1, 2003 to June 30, 2007, Crisis, July 1, 2007 to

June 30, 2010, and Post-Crisis, July 1, 2010 to August 30, 2018. The OIS and FRA data

for the pre-crisis period appears less reliable (more missing or erroneous values) than the

data over the crisis and post-crisis periods.
7We began with the G10 currencies, and excluded the Norwegian Krona (NOK) and Swedish Krona

(SEK) due to limited data availability on OIS rates and IBOR FRAs.
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3.1 OIS-Based Spot Cross-Currency Bases

Let Rc
t,0,τ denote the annualized spot gross τ -month interest rate in foreign currency c

available at time t, and let R$
t,0,τ denote the corresponding spot rate in U.S. dollars.

Throughout the paper, the middle subscript "0" denotes a spot rate. We adopt the

convention that exchange rates are expressed in units of foreign currency per U.S. dollar.

That is, an increase in the spot exchange rate at time t, St, denotes a depreciation of the

foreign currency and an appreciation of the U.S. dollar. The τ -month forward exchange

rate at time t is Ft,τ .

Following convention of the literature (e.g. Du et al. (2018)), we define the τ -month

spot cross-currency basis at time t as

Xc
t,0,τ =

R$
t,0,τ

Rc
t,0,τ

(
Ft,τ
St

) 12
τ

− 1,

and the log version as

xct,0,τ = ln (1 +Xc
t,0,τ ).

Note that these definitions are identical to the ones employed in our model, except that

we now consider an arbitrary horizon τ and use annualized interest rates.

The classic CIP condition is that xct,0,τ = Xc
t,0,τ = 0. If the cross-currency basis xct,0,τ is

positive, then the direct U.S. dollar interest rate, R$
t,0,τ , is higher than the synthetic dollar

interest rate constructed from the foreign currency bond and exchange rate transactions.

If it is negative, the reverse is true.

The CIP condition is a textbook no-arbitrage condition if the U.S. and foreign interest

rates used in the analysis are risk-free interest rates. For our main analysis, we choose the

OIS rate as our proxy for risk-free interest rate for our analysis. The OIS is an interest

rate swap in which a fixed rate of interest is exchanged for a floating rate indexed to the

overnight unsecured rate.8

The OIS is a good proxy for the risk-free rate across maturities for several reasons.
8The list of overnight reference rates for the OIS and their day count conventions for the seven

major currencies currencies we study and the U.S. dollar can be found in Appendix Table A1. For
three currencies, the OIS rate is non-standard. For CAD, the overnight rate is a repo rate; for NZD,
the overnight rate is an administered central bank policy rate, which is not based on actual overnight
transacitons; for CHF the unsecured overnight rate had volumes so low that the OIS rate was changed
to reference a secured rate in 2017.
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First, the OIS allows investors to lock in fixed borrowing and lending rates for a fixed

maturity, by borrowing and lending at the nearly risk-free floating overnight rate each

day over the duration of the contract. Second, the interest rate swaps themselves have

very little counterparty risk, because there are no exchanges of principal, only exchanges

of interest. These derivative contracts are also highly collateralized and in recently years

have been centrally cleared in most major jurisdictions. Third, OIS swaps are generally

very liquid and traded at a large range of granular maturities (unlike repo contracts where

liquidity is concentrated only at very short maturities).

Figure 1 shows the three-month OIS-based cross-currency basis for the seven sample

currencies between January 2003 and August 2018. The three-month OIS basis was

very close to zero before the crisis. During the peak of the GFC, the OIS basis was

deeply negative for all currencies. After the GFC, OIS-based CIP deviations persisted.

Among the seven sample currencies, the AUD and NZD have the most positive cross-

currency basis, and the JPY, CHF, and EUR have the most negative cross-currency basis.

Appendix Figure A1 shows three-month IBOR-based cross-currency bases, which follow

similar patterns.

3.2 Forward Bases

We next define a forward-starting cross-currency basis. Trading a forward starting cross-

currency basis allows an agent to lock-in the price of a cross-currency basis trade that

will start in the future.

We define a forward-starting cross-currency basis using forward interest rates and FX

forwards. Let Rc
t,h,τ be the h-month forward-starting annualized τ -month gross interest

rate in currency c at time t, and let R$
t,h,τ be the equivalent rate in US dollars. The

forward-starting cross-currency basis is

Xc
t,h,τ =

R$
t,h,τ

Rc
t,h,τ

(
Ft,h+τ

Ft,h

) 12
τ

− 1, (14)

and the log version is xct,h,τ = ln (1 +Xc
t,h,τ ). Figure 2 illustrates the definition of the

three-month spot basis and the one-month-forward three-month basis.
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Equivalently, we can define the log h-month forward τ -month cross currency basis at

time t in terms of spot cross-currency bases only under the assumption of no-arbitrage

between forward interest rate swaps and the term structure of spot interest rate swaps:

xct,h,τ =
h+ τ

τ
xt,0,h+τ −

h

τ
xt,0,h. (15)

The equivalence between equations (14) and (15) is shown in Appendix A. From this

equation (15), we observe that there is a close analogy between the forward cross-currency

basis and the forward interest rate.

We next consider the typical shape of the term structure of CIP violations – that is,

the shape of the cross-currency basis forward curve. Many different forward CIP trades

are possible, as both the forward-starting horizon h and the tenor τ can vary. When

selecting the forward CIP trades to include on the forward curve, we balance the desire

to exhibit as many different forward-starting horizons as possible with the limitation that

the most liquid and reliable OIS tenors are 1M, 2M, 3M, 4M, 6M, 9M, and 12M.

In Figure 3, we present the forward curves of AUD and JPY for all reliable horizons:

1M, 2M, 3M, 4M, 6M, and 9M. The tenor τ of these forward CIP trades differs, beginning

at one month and increasing to three months. An alternative version of the forward curve

that uses only three month tenors is presented in Figure A2.

We present these forward cross-currency bases as time series averages and for two

currencies, AUD and JPY. These two currencies stand out in the data as they generally

have among the most positive/negative spot cross-currency bases on average during our

post-crisis sample period. For each currency, we divide our sample into three sub-samples

based on the tercile of the level of the spot cross-currency basis. We then compute the

time-series average of the spot and forward-starting cross-currency basis within each sub-

sample.

From these forward curves, it is immediately apparent that the forward cross-currency

bases tend to be larger than the spot cross-currency basis for AUD, and smaller for

JPY. This fact is somewhat analogous to the tendency of the term-structure of interest

rates to be upward sloping. If we think of forward cross-currency bases as being equal

to expectations under a risk-neutral measure (an approach that is valid in our model
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despite the presence of arbitrage), then this suggests that the absolute value of spot

cross-currency basis is generally expected to increase under the risk-neutral measure.

We also present, in Appendix Figure A3, a version of this figure with three sub-

samples based on whether the next quarter-end is less than one, two, or three months

in the future. We find that the large spikes in the cross-currency basis at quarter end

documented by Du et al. (2018) are anticipated to some extent by the forwards. We also

observe that, controlling for when the next quarter end occurs, there still appears to be

an upward slope in the AUD basis relative to the JPY basis.

This raises the question of whether the spot cross-currency basis is expected to increase

in absolute value under the physical measure. In other words, does the forward CIP

trading strategy, which we define next, earns a positive risk premium?

3.3 Forward CIP Trading Strategy

A forward CIP trading strategy consists of a forward cross-currency basis trade and a

spot cross-currency basis trade at a later date. At time t, an agent enters into the h-

month forward τ -month cross-currency basis trade. After h months, the agent unwinds

the trade by shorting the then-spot τ -month cross-currency basis.

Although the forward CIP trading strategy involves two potential arbitrage oppor-

tunities, it is itself risky in that the spot τ -month cross currency basis at time t + h is

not guaranteed to be equal to the h-month forward τ -month cross-currency basis at time

t. Figure 4 illustrates the mechanics of a one-month-forward three-month forward CIP

trading strategy.

The profits of this trading strategy are mainly a function of the realized cross-currency

basis at time t+h compared to τ -month forward cross-currency basis at time t. To first-

order, the monthly profit per dollar notional (which can be thought of as an excess return)

is

πct+h,h,τ ≈
τ

12h
(xct,h,τ − xct+h,0,τ ).

We derive this expression, which is a first-order approximation, from a more exact calcu-

lation in the appendix, section B. The exact expression is complicated due to discounting
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effects, which are not straightforward in the presence of arbitrage opportunities. The

term τ
12

plays the role of a duration, converting the difference between the forward and

realized basis, xct,h,τ − xct+h,0,τ , into a dollar profit per unit notional.

The key property of the forward CIP trading strategy for our purposes is that it allows

an intermediary to bet on whether the cross-currency basis will be higher or lower than

implied by the forward cross-currency basis. Our model equates the magnitude of the

cross-currency basis with the degree to which regulatory constraints binds. Consequently,

this strategy allows intermediaries to bet on whether constraints will be tighter or looser

in the future.

Note that our forward CIP trading strategy is a valid trading strategy even if the

underlying cross-currency basis is not actually tradable or not an arbitrage. For example,

the NZD overnight index rate is not a market rate but rather an administered central

bank policy rate. Despite this issue, the forward CIP trading strategy for NZD OIS

is a valid trading strategy that bets on whether the basis as measured by OIS swaps

referencing this rate becomes larger or smaller. Similarly, IBOR bases are not arbitrages

if IBOR rates contain credit risk, but the IBOR-based forward CIP trading strategy is a

feasible way of betting on whether the IBOR basis becomes larger or smaller.

Furthermore, the forward trading strategy per se does not materially contribute to the

balance sheet constraints of financial intermediaries, especially in comparison with the

spot CIP arbitrage. This is because interest rate forwards and FX derivatives have zero

value at inception. The required initial and variation margins for the derivative positions

are generally a few percent of the total notional of the trade. In contrast, the spot CIP

arbitrage requires actual cash market borrowing and lending, which is very balance sheet

intensive.

We also note that we do not have the data on transactions costs that would be re-

quired to implement our forward CIP trading strategy. Large intermediaries are likely

to implement the strategy at low costs (either collecting the bid-offer when trading with

clients or trading at close to the mid-price in inter-dealer transactions). Anecdotal evi-

dence suggests that some hedge funds use interest rate and FX derivatives to arbitrage
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the term structure of CIP violations, suggesting that the transaction costs are not pro-

hibitively large. However, it may well be the case that a typical trader in a small hedge

fund paying the bid-offer on the various instruments used to implement the trading strat-

egy would not find it profitable. We study these trading strategies because they reveal

interesting information about intermediaries, and not because we advocate them as an

investment strategy.

Lastly, we should point out that there is nothing special about CIP violations in

the context of our model. In the model, any arbitrage that intermediaries actively take

advantage of could be used to measure balance sheet constraints, and in principle we

could construct a related forward arbitrage trading strategy. For example, Fleckenstein

and Longstaff (2018) argue that balance sheet costs can be measured using the treasury-

futures basis. What makes CIP violations special is the accuracy with which the arbitrage

can measured (there are no "cheapest-to-deliver" options or other complicating factors)

and the rich term structure that can be used to construct forward arbitrages. However,

at least in theory, forward arbitrage strategies could be constructed for a variety of other

arbitrages, and we intend to explore this possibility in the future.

3.4 Cross-Currency Basis Portfolios

In our empirical analysis, we will focus primarily on two portfolios of cross-currency bases,

"classic carry" and "dollar," rather than the cross-currency basis for a single currency

relative to the dollar. Our portfolio construction builds on the literature on FX carry

trade returns. The classic FX carry trade strategy goes long in the AUD and shorts the

JPY, without hedging currency risk. Analogously, we define the classic carry strategy

for the forward CIP trading strategy to be going long in the forward cross-currency basis

for the AUD vis-à-vis the JPY, and short the later realized spot cross-currency basis for

the same currency pair.9 The monthly profit per dollar notional on the classical carry
9Equivalently, the strategy goes long in the forward CIP trade strategy for the AUD vis-à-vis the

USD, and short in the forward CIP trade strategy for the JPY vis-à-vis the USD. The USD legs are
canceled and thus the strategy is dollar-neutral.
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forward CIP trading strategy is then given by

πCarryt+h,h,τ =
τ

12h
[(xAUDt,h,τ − xJPYt,h,τ )− (xAUDt+h,0,τ − xJPYt+h,0,τ )]. (16)

In addition, we examine the performance of a dollar forward CIP strategy that places

equal weights on forward CIP trading strategy of individual sample currencies vis-à-vis

the US dollar. The profit per dollar notional on the dollar forward CIP trading strategy

is given by

πDollart+h,h,τ =
τ

12hN

N∑
i

(xit,h,τ − xit+h,0,τ ). (17)

In our main text, we study the profits from the 1M-forward CIP trading strategy in

individual currencies and these two portfolios. In Appendix Section E we present results

using alternative methods of constructing carry and dollar portfolios.

4 Forward CIP Trading Strategy’s Excess Returns

In this section, we present evidence that the forward CIP trading strategy earns excess

returns on average. Our model interprets this fact as reflecting a concern for intertemporal

hedging: changes in investment opportunities, as measured by cross-currency bases, are

persistent and priced. We begin by presenting evidence that our forward CIP trading

strategy is profitable. We then show that the excess returns associated with our trading

strategy are predictable using the slope of the term structure of cross-currency basis, in

a manner similar to the term structure return predictability regressions of Campbell and

Shiller (1991).

4.1 Individual Currencies

We begin by discussing results for individual currencies. Panel A of Table 1 reports the

profits per dollar notional on a forward CIP trading strategy in each of the seven sam-

ple currencies, for the one-month-forward three-month forward CIP trading strategy.10

For each forward CIP trading strategy, we present the annualized mean profit per dollar
10Appendix Tables A2, A3, A4, and A5 report the analogous results for one-month forward one-month

returns, three-month forward three-month returns, and for IBOR-based forward CIP trading strategy
returns.
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notional and the Sharpe ratio by periods. Mean and Sharpe ratios are calculated using

monthly profit per dollar notional and then scaled up by 12 and
√

12, respectively. Stan-

dard errors of the statistics are reported in brackets. We use the Newey-West standard

errors based on the Newey-West HAC kernel with the Newey and West (1994) bandwidth

selection procedure to account for overlapping returns.

Beginning with the pre-crisis period, we observe that for all currencies except NZD,11

the pre-crisis profits are virtually zero. In contrast, post-crisis, the profits in most cur-

rencies are larger in absolute value. Moreover, there is a distinct pattern in the sign

of the profits. Low interest rate "funding currencies," like JPY, CHF, and EUR, have

negative profits from the forward CIP trading strategy on average, whereas higher inter-

est rate currencies like AUD have positive profits from the forward CIP trading strategy

on average. In addition, CAD and GBP, currencies that have interest rates lower than

AUD/NZD but higher interest rates than the other currencies, have strongly positive

profits from the forward CIP trading strategy.

We also calculate the Sharpe ratios of the forward CIP trading strategy.12 Pre-crisis,

some currencies such as JPY have marginally statistically significant Sharpe ratios, but

this reflects small mean profits and even smaller standard deviations. In contrast, post-

crisis, four currencies have non-trivial mean profits and substantial Sharpe ratios. Mean

profits and Sharpe ratios from the crisis period are noisily estimated, as one might expect.

Broadly similar patterns hold for three-month forward CIP trading strategy and for

IBOR-based forward CIP trading strategies (Appendix Tables A3, A4, and A5). We

should note, however, that the mean profit in EUR and CHF forward CIP trading strate-

gies are noisily estimated in all specifications, and that the EUR mean changes sign across

specifications. As a result, we cannot say if negative profits from forward CIP trading

strategies are associated with funding currencies more broadly or only with the Japanese

yen. However, even if the EUR and CHF profits are roughly zero, this stands in contrast
11Recall that the NZD ois swaps do not reference a tradable rate, and hence NZD might be expected

to behave differently than the other bases.
12The Sharpe ratio of a forward CIP trading strategy is calculated as the average profit per dollar

notional divided by the sample standard deviation of the profit per dollar notional, as the profit per
dollar notional is analogous to an excess return.
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to the positive profits associated with higher interest rate currencies.

4.2 Portfolios of Forward CIP Trading Strategy

We next consider the forward CIP trading strategy profits of the classic carry and dollar

portfolios (defined in equations (16) and (17)), shown in Panel B of Table 1.

As one might expect from the individual currencies, the pre-crisis mean profits of both

the carry and dollar portfolio are close to zero.13 The annualized post-crisis profits the

classic carry portfolio are 14 basis points and are statistically significant. In addition,

the Sharp ratio of the classic carry is equal to 1.4, and highly statistically significant. In

contrast, the post-crisis profits for the dollar portfolio remain close to zero. We observe

similar patterns for the three-month forward OIS basis and for the IBOR bases (Appendix

Tables A3, A4, and A5), as well as for alternative constructions of carry and dollar

portfolios (Appendix Table A6).

The magnitude of the annualized Sharpe ratios for the classic carry portfolio of 1.4

is high compared to many documented trading strategy returns in the literature. For

example, the traditional carry portfolio, which borrows in low interest currency and lends

in high interest currency, has an annualized Sharpe ratio of 0.48 when using AUD, CAD,

CHF, EUR, GBP, and JPY, from 1987 to 2009. Carry portfolios of up to 20 currencies

from 1997 to 2009 have an annualized Sharpe ratio of 0.865. The annualized Sharpe ratio

of a value-weighted portfolio of all U.S. stocks from 1976 to 2010 is 0.42 (Burnside et al.

(2010), Burnside et al. (2011)).

Our result of high Sharpe ratios for the carry portfolio but not the dollar portfolio is

consistent with our model. As we discuss in Section 2, the spot basis that is relevant for

intermediaries and should enter the SDF is the one with the largest available arbitrage

(in absolute values), adjusted for any differences in risk-weighting in the constraints that

affect the intermediary. If we take the view that all cross-currency bases have similar

risk weights, this theory predicts the largest spot bases such as AUD-JPY, which remains
13The dollar portfolio’s pre-crisis mean would be even closer to zero if we removed the rather-suspect

NZD ois results.
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positive for essentially all of our sample, should be relevant, while smaller bases should

not. The dollar portfolio places equal weight on all currencies vs. the U.S. dollar, and

hence on many of the smaller spot bases.

Going forward, we will focus our analysis entirely on the forward CIP trading strategy

returns of the classic carry portfolio. We will first examine whether these returns are

predictable, and then whether they can used to help price other assets.

4.3 Forward CIP Trading Strategy’s Return Predictability

We next turn to the question of whether the returns of our forward CIP trading strategy

are predictable. In the context of the model, as usual, return predictability implies time

variation in either the quantity or price of cross-currency basis risk.14

We find suggestive evidence that forward CIP trading strategy returns are predictable,

in a manner that is analogous to findings of return predictability in the term structure

literature (e.g. Campbell and Shiller (1991)). Our approach is inspired by Figure 3; the

unconditional returns of the forward CIP trading strategy can be viewed as stating that

the increase in the spot bases implied by the forward curves does not end up happening,

on average. This result is similar to the familiar concept of a term premium in the term

structure literature.

As demonstrated by Campbell and Shiller (1991), the slope of the term structure

predicts the excess returns on longer maturity bonds. That is, not only is there a term

premium, but it varies over time and variation in the term premium is a significant

portion of the variation in the slope of the term structure. We find that a similar fact

holds for the term structure of cross-currency bases. In other words, the slope of the term

structure predicts forward CIP trading strategy returns.

The return predictability regressions we run are presented in Table 2. The regressions

estimate equations of the form

xct,h,τ − xct+h,0,τ = β(xct,h,τ − xct,0,τ ) + γwt + εt+h, (18)

14In Appendix F, we explore a different kind of predictability, and find that quarter-end or year-end
crossings do not systematically predict abnormal returns in forward CIP trading strategy.
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where wt are other controls. We use a three-month horizon (τ = 3) and look at one-

month forward differences between the forward basis and the spot basis that is actually

realized (h = 1). We use the "classic carry" basis of AUD vs. JPY in all regressions,

although we find but do not report similar results for individual currencies. We estimate

the regressions in daily data and rely on a Newey-West HAC kernel with the Newey and

West (1994) bandwidth selection procedure to correct the standard errors for overlap in

the sample. Note that our outcome variable is not exactly the profit per dollar notional

defined in equation (16), because we do not scale the outcome variable by the duration
τ
12
. This is analogous to regressing yield changes on yields instead of price changes on

yields.

The first column of Table 2 simply regresses the outcome variable on a constant. We

estimate an unconditional mean of 5 basis points and a root mean squared error of 12

basis points. In other words, on average, the one-month forward implied three-month

classic carry basis is 5 basis points higher than the spot three-month basis one month in

the future. The ratio of these two, scaled by
√

12, is essentially our point estimate for the

annual Sharpe ratio of the unconditional forward CIP trading strategy. The next four

columns of Table 2 present the estimations of equation (18) with various permutations of

two controls, the current level of the spot basis (xct,τ ) and a constant. Column 4, which

uses the spread and the spot basis as predictors, appears to offer a low RMSE while using

fewer variables than the specification of column 5.15 In what follows, we will use column

4 as our preferred specification, although our results are robust to using any of the other

specifications instead. The specification in column 4 has the appealing property that, in

a world in which both the spot and forward bases are zero (covered interest parity holds),

we should expect no return on our forward CIP trading strategy.

Our return predictability results must be interpreted with caution. We usually expect

return predictability regressions to require long time series to find significant results. Yet

this intuition stems in part from the prior that "good deals" are not available, and that
15Formally, the column 4 specification has the lowest value of the Akaike Information Criterion (AIC),

where the AIC is computed with a sample size of 98 months to account for overlapping data.
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return predictors are very persistent. We find that spreads are not very persistent, and

hence that it is possible to find predictability even in our comparatively small sample.

However, this lack of persistence raises another issue. The forward basis xct,h,τ enters

both sides of equation (18), and is surely measured with some bid-offer induced noise.

This issue is exactly analogous to the role of a price in a regression of return on lagged

return (as in Roll (1984)). A standard approach to dealing with these issues is to avoid

using the current value of the forward basis as a predictor value, and replace it with a

lagged value instead (see, e.g., Jegadeesh (1990)). We adopt this approach, employing

a lagged value of the spread, xct−k,h,τ − xct−k,τ , as an instrument for the current value of

the spread. Columns 6, 7, and 8 of Table 2 repeat the specification of column 4, using a

spread lagged 1, 5, and 10 trading days as an instrument for the current spread value. Our

return predictability results continue to hold with this approach, and our point estimates

remain similar across specifications, although our standard errors increase in the length

of the lag.

We should emphasize that this lag approach is not a panacea (Jegadeesh and Titman

(1995)). We have no theory on what causes the spread to vary over time, and hence

cannot say decisively that the "real" variation dominates the micro-structure induced

variation over a one or two-week period.

In our cross-sectional analysis, presented in the next section, we require a time series

of basis returns. The results we present will use the specification in column 1 of Table 2,

which is the de-meaned forward arbitrage return. We refer to the negative of these resid-

uals as basis shocks, adopting the sign convention that a positive basis shock corresponds

to the absolute value of the basis becoming larger. We find almost identical results when

using one of the other specifications in Table 2.

4.4 The Price of Cross-Currency Basis Risk

Before proceeding to our cross-sectional analysis, we discuss what our estimate of the

return to the forward CIP trading strategy implies about our hypothesized SDF (equation

(1)). Our SDF has two factors: the return to intermediary’s wealth and the magnitude of
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the cross-currency basis. For the purpose of this exercise, we adopt the view that both of

these factors are tradable, in the sense that their innovations are also returns on specific

sets of assets.

By construction, the returns are our forward CIP trading strategy are also the (neg-

ative of) innovations to the magnitude of the cross-currency basis.16 Following He et al.

(2017) (henceforth, HKM), we use those authors’ return on equity issued by broker-dealers

as our tradable proxy for intermediary wealth returns. We next estimate mean excess

returns for these two factors. Our forward CIP trading strategy earns 4.8 bps per month

in the Post-Crisis period (Column 1 of Table 2), and the mean monthly excess return

of the HKM value-weighted intermediary equity from 1970 to 2018 is 0.6% per month.

Define λ as the vector containing these mean excess returns.

Armed with these mean returns, we can extract estimates of γ and ξ by multiplying

these means by the inverse of the variance-covariance matrix (Σ) of the two factors (see

the Cochrane (2009) textbook for a discussion). We estimate the standard deviation of

our Classic Carry forward CIP trading strategy return at 12 bps per month, and the

standard deviation of the HKM intermediary equity return at 6.7% per month. The

correlation between these two factors is 0.19 in our post-crisis sample, meaning that the

basis tends to shrink when intermediaries have positive equity returns, consistent with

many general equilibrium models in the literature.

Using all of these estimates, we have γ

ξ

 = Σ−1λ =

 0.66

305

 .
Our results are consistent with γ < 1 in two ways. First, our direct estimate of the

γ parameter is less than one. Second, the sign of our estimate of ξ is greater than zero,

which (by Theorem 1) should be expected only if γ < 1. Note, however, that these

numbers are based on point estimates and subject to estimation errors.17

Our estimate of ξ > 0 (implying γ < 1) is driven by the fact that the forward CIP
16Recall that we focus on the Classic Carry cross-currency basis because its sign essentially does not

change over our sample, allowing us to ignore issues related to absolute values.
17See Appendix G for discussions of the estimation.
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strategy achieves a risk premium that is larger than would be expected given its beta to

the intermediary equity factor. Recall that a large basis indicates better future investment

opportunities. Agents will view exposure to basis shocks as risky if they prefer to hoard

wealth to take advantage of those better investment opportunities, which occurs when

γ < 1. We emphasize that this is not a quirk of our particular model, but rather a general

fact about investment opportunities and intertemporal hedging. For example, quoting

Kondor and Vayanos (2019),

For γ < 1, ... the arbitrageur has higher marginal utility in states in which

aggregate arbitrageur wealth wt is low. This is because in low-wt states,

expected returns are high and hence the arbitrageur earns a high return on

wealth. By seeking to preserve wealth in those states, so as to earn the high

return by investing it, the arbitrageur scales back his positions, behaving more

risk-aversely than in the absence of intertemporal hedging.

However, we must also urge caution. We cannot rule out the alternative possibility

that our forward CIP strategy’s return is simply a better proxy for the true intermediary

wealth return than the HKM intermediary equity measure. We expect, in general equilib-

rium models, that the magnitude of available arbitrage and intermediary wealth returns

will be negatively correlated. For example, in the aforementioned model of Kondor and

Vayanos (2019), which has only a single state variable, the two measures are perfectly

negatively correlated.

To make this alternative story work, our forward arbitrage returns must be a much

better proxy for the true intermediary wealth return than the HKM measure. If we

suppose that γ = 1, then our Sharpe ratio estimate for forward CIP trading strategy

implies (by the Hansen-Jagannathan bound) that the true intermediary wealth return

must have an annual volatility of at least 138%, far higher than the annualized volatility of

the HKM intermediary equity return. If we suppose instead that γ > 1, the intermediary

manager should view the forward CIP trading strategy as not being very risky at all,

because it offers low returns only when there are future arbitrage opportunities. To

29



overcome this intertemporal hedging effect, we would have to suppose that our forward

arbitrage returns are strongly correlated with the true intermediary wealth returns.18

We believe our results on the risk premia associated with forward CIP trading strategy

are interesting regardless of which of these interpretations is preferred. Either intertem-

poral hedging considerations are very large, and these can be proxied for by our forward

CIP trading strategy return, or our forward CIP trading strategy is a much better way of

measuring the intermediary wealth return that is the main component of the SDF. Under

either of these interpretations, we would be justified in using our forward CIP trading

strategy returns as an asset pricing factor.

We next present our cross-sectional analysis, which provides additional tests of our

theory. If our SDF is correctly specified and the traded factors are good proxies of the

true factors, then the price of risk estimated from the cross-section of asset returns should

be the same as the unconditional risk premia of these traded factors.

5 Parameter Estimation and Cross-Sectional Test

In this section we assess whether exposure to the cross-currency basis is a priced risk

factor, using standard portfolios of test assets. Our exercise builds directly on He et al.

(2017) (henceforth, HKM). Currently, we study the returns on equity portfolios (FF,

the Fama-French 25 size and value-sorted portfolios, Fama and French (1993)), currency

portfolios (FX, developed and EM currencies sorted on interest rates, Lustig et al. (2011)),

treasury and corporate bond portfolios (US, five maturity-sorted CRSP "Fama Bond

Portfolios" and five Bloomberg corporate bond indices), and sovereign bond portfolios

(Sov, sorted on credit rating and beta to the stock market, Borri and Verdelhan (2015)).

We also study single-currency forward CIP trading strategy returns with OIS and IBOR

rates described previously as test assets (FwdArb), excluding AUD and JPY for reasons

we discuss below. We intend to include the remainder of the test assets considered by
18Given the persistence of the cross-currency basis, which causes the intertemporal term to be large,

it is not obvious that even perfect correlation with the intermediary wealth return solves the problem.
However, without an exact quantification of the intertemporal terms, we cannot rule out this possibility.
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HKM in future revisions.

The conjecture we are testing, which follows from our hypothesized form of the

stochastic discount factor19, is that

E[Ri
t+1 −R

f
t ] = α + βiwλw + βixλx, (19)

where βiw is the beta of asset i to the return on the manager of the intermediary’s wealth

portfolio and βix is the beta to the basis shock. These betas can be estimated in the

standard way using a time series regression,

Ri
t+1 −R

f
t = µi + βiw(Rw

t+1 −R
f
t ) + βixr

|x|
t+1 + εit+1, (20)

where r|x|t+1 is the negative of the Classic Carry forward arbitrage return.

Suppose, to begin with, that we use the HKM intermediary wealth return as our

proxy for Rw
t+1. As discussed in Cochrane (2009), with tradable factors, if we include

these factors as test assets and use GLS or two-step GMM to estimate the risk prices λx

and λw, we should recover exactly our estimates of the mean excess returns, described in

the previous section. Our exercise in this section is to ask whether the price of risk implied

by the cross-section of asset returns is consistent with these mean excess returns on our

tradable factors. For this reason, we do not include our factors as test assets. Hence,

in addition to the standard tests for whether our estimated coefficients are statistically

distinguishable from zero, we will also report an "H1 p-value," which is the p-value from

testing whether the λw and λx we estimate in the cross-section are equal to the mean

returns of our tradable factors.20

This cross-sectional exercise requires an empirical proxy for the return on the man-

ager’s wealth portfolio. We consider three specifications, all based on HKM. The first

specification follows HKM in decomposing the wealth return into a market return and an

innovation to the capital ratio, and allows the price of those two risks to be different; we

call this the three-factor SDF. The second specification replaces the HKM capital ratio

innovation with a tradable factor, the HKM intermediary equity return. We call this
19Our hypothesis is expressed as a linear form for the log SDF, but we test a linear SDF to stay closer

to the procedure of He et al. (2017).
20This test compares the cross-sectional coefficients to the point estimates of the mean excess returns,

and therefore does not account for estimation error in the mean excess returns of the factors.
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specification the tradable 3-factor SDF. The third specification uses only the intermedi-

ary equity return (and not the market return) as a proxy for the return of the manager’s

wealth portfolio; we call this the two-factor SDF. Since the three-factor specification uses

a non-traded factor (the innovation to the capital ratio), we are only able to test whether

the price of risk on the market and our basis factors are equal to their time series mean.

We also compare our estimation results from the three-factor SDF with an SDF that

omits the basis factor (the original HKM specifications).

We estimate the prices of risk for the various test asset classes separately and jointly.

We present results that estimate equation (19) as a cross-sectional OLS regression, with

GMM standard errors to account for the estimation of the betas in equation (20), following

chapter 12 of Cochrane (2009).21

One key difference between our exercise and the textbook procedures is that the sam-

ples we use to estimate the betas and the mean excess returns are quite different. Our

model argues that the cross-currency basis enters the pricing kernel because it measures

the degree to which regulatory constraints bind, a viewpoint that is only relevant for the

post-crisis period. Eight years of data, however, is far too short to reliably determine

whether one test portfolio has a higher expected return than another test portfolio. To

overcome this difficulty, we estimate the cross-sectional regression using the longest avail-

able sample for each test portfolio, while estimating the betas using only the post-crisis

sample. This approach is valid if the long-sample expected excess returns are also the

expected excess returns during the post-crises period.22

This issue of samples also illustrates how our various test portfolios may contain

information about the price of cross-currency basis risk that is not captured by the forward

CIP trading strategy returns. As discussed in Cochrane (2009), pg. 244-5, with a two-step

or GLS-type estimation procedure, we would usually find that the risk price associated
21More efficient (in an asymptotic sense) procedures estimate equations (19) and (20) jointly as moment

conditions. These procedures have advantages and disadvantages relative to the cross-sectional approach;
see Cochrane (2009).

22One possible justification for this assumption follows. Intermediaries purchase assets that historically
have high risk-adjusted returns. Consequently, the returns of these assets will co-move with intermediary
constraints and hence cross-currency bases during the post-crisis period. That is, the causality can run
from the returns to the betas, instead of the other way around.
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with a tradable factor is exactly its expected excess return. The explanation for this result

is that any other asset provides a more noisy version of the same information. However,

in our exercise, the mean return on our forward CIP trading strategy is measured over a

small sample period (post-crisis), whereas other mean returns are measured over longer

samples. Consequently, these other mean returns provide information not contained in

the mean forward CIP trading strategy return.

Lastly, before presenting our results, we should note that our estimates differ in a

variety of respects from the main results of HKM. Most importantly, our results are

estimated on monthly data, and our betas are estimated only in the post-crisis period.

For most of the asset classes we study, our test portfolios are also slightly different. We

discuss these details in the appendix, section D.

We present our first set of results are in Table 3. These results use the three-factor

SDF, adding the "classic carry" forward arbitrage trading strategy return to the market

and intermediary factor of HKM. For treasury and corporate bonds, sovereign bonds,

and foreign exchange portfolios (columns 1-3), we estimate risk prices of roughly 6 basis

points per unit beta of basis shock risk, close to the price implied by the mean return

on the forward CIP trading strategy. However, these estimates are imprecise. When

we combine these three asset classes into a single regression (column 5), we get a point

estimate of roughly 10 basis points per unit beta, and can reject the hypothesis that

the price is zero. In contrast, we are not able to reject at the 5% level the alternative

hypothesis (H1 p-value in the table) that the tradable market and basis shock factors

have risk prices equal to their mean excess returns.

Using the cross-section of OIS-based forward CIP trading strategy returns (column

6), we estimate a price of risk of 8 basis points. Note that this result is not driven by

our mean Classic Carry forward arbitrage return, because we exclude the AUD and JPY

forward CIP trading strategies from the set of test assets. In other words, the AUD-JPY

forward arbitrage return helps explain the cross-section of forward arbitrage returns for

other currencies, and the implied price of risk is again consistent with our estimate of the

mean forward arbitrage return. Note also that we are unable to reject our alternative
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hypothesis.

Our results for the treasury bonds, sovereign bonds, FX portfolios, and forward CIP

trading strategies are all consistent with the mean return for the classic carry forward

CIP trading strategy, and all point to a price of risk of between 5 and 10 basis points per

unit beta.

In contrast, for the Fama-French 25 equity portfolios (column 4), we find a risk price

with the opposite sign. This finding is consistent with the results of HKM, who also have

difficulty pricing equities in their monthly data. Moreover, it is consistent with the view

espoused by those authors that intermediaries are unlikely to be the marginal agents in

equity markets. In the context of our model, a binding regulatory constraint can cause

the intermediary SDF to fail to price equities if the risk weight associated with equities

is high relative to other asset classes. That said, our estimates are imprecise, and we are

again unable to reject our alternative hypothesis.

In the last column of Table 3, we use our single-currency forward CIP trading strategy

returns as test assets with the original HKM pricing factors. The HKM intermediary

pricing factor and market return are both strongly priced in the cross-section of forward

CIP trading strategy returns. However, we observe that the presence of the basis shock

factor substantially attenuates the price of the HKM pricing factor,23 a fact that is not

unique to the forward CIP returns but true in all asset classes considered (compare Table

3 to Appendix Table A8). These observations are consistent with the idea that the shocks

to the HKM intermediary factor and shocks to the cross-currency basis factor co-move.

In Figure 6, we present a time series of the spot classic carry AUD-JPY basis and the

HKM factor.24 Innovations to the spot classic carry basis and the HKM intermediary

factor seem to be (negatively) correlated. We interpret this result as suggesting that

variations in the cross-currency basis are in part driven by shocks to intermediary wealth
23This comparison is not quite "apples-to-apples," because most of the betas of in Table A8 are

computed on a longer sample, as there is no reason to restrict the beta estimation sample to the post-
crisis period.

24In Appendix Figure A4, we show that the time series of other carry factors constructed using more
currencies are very close to the time series of the classic carry, the AUD-JPY basis. Definitions of different
carry portfolios are in Appendix E
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or investment opportunities. However, we also note that our basis factor exhibits an

upward trend in recent years. This may be attributable to changes in regulation (e.g.

the implementation of Basel III), and allows the basis factor to capture information not

already present in the HKM intermediary factor.

In fact, the significance of the basis shock factor relative to the HKM intermediary

factor in Table 3 suggests that, although the two are correlated, either the basis shock is

measuring something the HKM factor is not, or that it is more precisely measuring the

parameter of interest. In the context of our model, both considerations are possible. The

HKM intermediary factor might be a proxy for the manager’s wealth portfolio return;

however, it is also isomorphic to a book-to-market ratio and therefore might also be

expected to predict future returns on the manager’s wealth portfolio, and hence be related

to intertemporal hedging. Our use of the basis shock as a factor is also motivated by

intertemporal hedging, and therefore it is not entirely surprising that the two factors

are correlated. Broadly speaking, it is reassuring for intermediary asset pricing theory

that measures of intermediary wealth like the HKM factor and measures of intermediary

constraints like our basis shock move together.

We highlight that, in contrast to our other results, when we do not include our basis

factor, we strongly reject our alternative hypothesis. In column 7 of Table 3, the price of

risk on the market is far too high when compared to the historical market risk premium.

This is the opposite of the usual situation with equities, in which the expected return

vs. beta relationship is flatter than the historical equity premium would predict. This

result suggests that our basis factor is an important omitted variable in the original

HKM specification. In Appendix Table A8, which shows results for the original HKM

specification, we find the same rejection of the alternative hypothesis in our FX portfolios.

Table 4 presents our second set of results, which replace the HKM capital ratio in-

novation with the HKM intermediary equity return. Because this specification involves

only tradable factors, we are able to perform a stronger test of our alternative hypothesis.

We again are unable to reject our alternative hypothesis at the 5% level for US bonds,

Sovereign bonds, FX portfolios, and forward arbitrage returns, and strongly reject the
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alternative hypothesis when our basis factor is not included (column (7)). Relative to

the previous results, the main difference between the two tables is that we rejected our

alternative hypothesis for the equity portfolios. For the reasons discussed above, we do

not view this rejection as overly problematic.

Table 5 presents our third set of results, which use the HKM intermediary equity

return as the sole proxy for the intermediary manager’s wealth portfolio return. The

coefficients on the basis shock factor are generally very close to their counterparts from

Table 3. The coefficients on the intermediary equity return are also broadly consistent

across asset classes, and sometimes statistically significant. As mentioned by HKM, and

especially in monthly data, the innovations to the HKM intermediary factor and the

returns on intermediary equity are highly correlated, and hence it is not surprising that

the results are similar. Note, however, that in this specification we reject our alternative

hypothesis for our FX portfolios, suggesting that omitting the market factor introduces

mis-specification into the model.

6 Discussion and Conclusion

We provide direct evidence (risk premia on forward CIP trading strategies) and indi-

rect evidence (cross-sectional asset pricing) that the classic carry cross-currency basis

is correlated with the stochastic discount factor. These results are consistent with our

motivating hypothesis, derived from an intermediary-based asset pricing framework and

intertemporal hedging considerations.

Taken together, we view our results as strongly supportive of intermediary-based asset

pricing theory. Any alternative theory that seeks to explain our results would have to

overcome three challenges. First, the theory would have to rationalize the existence of

arbitrage (the cross-currency basis). Second, the theory would have to explain why there

is a risk premium associated with the arbitrage becoming larger (the forward CIP trading

strategy returns). Third, the theory would have to explain why forward CIP trading

strategy returns co-move with measures of intermediary wealth, and why co-movement
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with forward CIP trading strategy returns can help explain cross-sectional variation in

expected returns among asset classes in which intermediaries are key participants, but

not within equities.

More broadly, we view this paper as beginning an investigation in the dynamics and

pricing of arbitrages induced by regulatory constraints. If intermediaries play a central

role in both asset pricing and the broader economy, then the question of how to mea-

sure the constraints they face and the properties of those constraints is of first-order

importance.
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Figures and Tables

Figure 1: Three-month OIS-based Cross-Currency Bases

This figure plots the 10-day moving average of daily spot 3M OIS cross-currency basis, measured in basis
points, for the seven sample currencies. The spot OIS basis is xct,0,3, as defined in the text.
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Figure 2: Illustration of the spot vs. forward cross-currency basis

This figure illustrates the spot three-month cross-currency basis and the one-month-forward three-month
cross-currency basis. The spot basis is xt,0,3 as defined in the text, and the forward basis is xt,1,3 as
defined in the text.
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Figure 3: Term structure of the forward cross-currency basis

This figure illustrates the time series average spot and forward-starting cross-currency bases in AUD and
JPY. For each currency, the sample from July 2010 to July 2018 is split into three sub-samples based on
the tercile of the level of the spot 3M OIS cross-currency basis. Within each sub-sample, the time series
average of the relevant spot/forward OIS cross-currency basis is shown.
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Figure 4: Illustration of the profit on forward CIP trading strategy

This figure illustrates the return on a one-month-forward three-month forward arbitrage. At time t, the
trader enters the forward basis, x0,1,3, which is the forward direct interest less the forward synthetic
interest. At time t + 1, the trader unwinds the spot basis, −x1,0,3, which is the spot synthetic interest
less the spot direct interest. The realized monthly profit per dollar notional on this forward arbitrage is
the sum of the two bases: x0,1,3 + (−x1,0,3), normalized by the duration 3/12.
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Figure 5: Sharpe ratios of returns from trading portfolios of 1M-forward
3M forward arbitrages

This figure plots the annualized Sharpe ratios of returns from trading monthly-rebalanced portfolios of
forward arbitrages, by weighting scheme and by periods. Error bars indicate the 95% confidence interval,
using standard errors calculated with Newey-West correction for overlapping returns. The three periods
of analysis are defined as: Pre-Crisis is 2003-01-01 to 2007-06-30, Crisis is 2007-07-01 to 2010-06-30, and
Post-Crisis is 2010-07-01 to 2018-07-31. The Carry portfolio is formed by longing the AUD and shorting
the JPY forward CIP trading strategy. The Dollar portfolio is formed by going long in all seven sample
currencies’ forward CIP trading strategy in equal weight.
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Figure 6: The Basis Factor vs. HKM Capital Factor

This figure plots the monthly basis factor and HKM capital factor from 2003 to July 2018. The basis
factor is the spot 3M OIS basis, carry-weighted, and scaled by 10. The HKM capital factor is the
intermediary capital ratio.
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Table 1: Summary Statistics of Returns on OIS 1M-forward 3M Forward CIP
Trading Strategy

Panel A: Single Currencies
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

AUD 1.06 3.71 4.73** 0.28 0.10 0.90***
(0.97) (17.98) (1.45) (0.26) (0.47) (0.25)

CAD -0.92 1.50 5.57*** -0.26 0.05 1.10***
(1.13) (22.13) (1.50) (0.31) (0.69) (0.29)

CHF -1.33 6.64 -3.61 -0.34* 0.16 -0.25
(0.75) (33.46) (4.92) (0.17) (0.75) (0.37)

EUR -1.15* 14.29 -1.34 -0.60* 0.34 -0.17
(0.48) (39.18) (2.73) (0.26) (0.80) (0.36)

GBP -1.47* 9.27 4.20** -0.48* 0.27 0.82*
(0.67) (36.00) (1.62) (0.24) (0.91) (0.36)

JPY -2.01* 8.18 -9.51** -0.82* 0.17 -1.04**
(0.81) (45.37) (3.33) (0.33) (0.90) (0.34)

NZD -7.06*** -1.70 0.28 -1.03*** -0.06 0.07
(1.56) (15.48) (0.99) (0.20) (0.55) (0.24)

Panel B: Portfolios
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

Carry 2.44 -4.37 14.27*** 0.61 -0.16 1.38***
(1.32) (9.72) (3.32) (0.33) (0.34) (0.34)

Dollar -1.46* 6.16 0.08 -0.68* 0.18 0.02
(0.71) (36.60) (1.58) (0.31) (1.00) (0.34)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the annual profits and annualized Sharpe ratios from the OIS 1M-forward 3M
forward CIP trading strategy. All statistics are reported by period: Pre-Crisis is 2003-01-01 to 2007-
06-30, Crisis is 2007-07-01 to 2010-06-30, and Post-Crisis is 2010-07-01 to 2018-07-31. Panel A reports
results in single currencies. Panel B reports results in portfolios of single currency forward CIP trading
strategy. The Carry portfolio is formed by longing the AUD and shorting the JPY forward CIP trading
strategy. The Dollar portfolio is formed by going long in all seven sample currencies’ forward CIP trading
strategy in equal weight. Newey-West standard errors are reported in parenthesis, where the overlapping
bandwidth is chosen by the Newey-West (1994) selection procedure.
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Appendix

A Equivalent definition of the Forward CIP basis
In this section, we show the equivalence between the two definitions for the forward cross-
currency basis given by equations (14) and (15), under the assumption of no-arbitrage
between forward interest swap rates and term structure of spot interest swap rates.

xt,h,τ = r$
t,h,τ − rct,h,τ −

12

τ
(ft,h+τ − ft,h)

=

(
h+ τ

τ
r$
t,0,h+τ −

h

τ
r$
t,0,τ

)
−
(
h+ τ

τ
rct,0,h+τ −

h

τ
rct,0,τ

)
− 12

τ
(ft,h+τ − ft,h)

=
h+ τ

τ

[
(r$
t,0,h+τ − rct,0,h+τ )−

12

h+ τ
(ft,h+τ − st)

]
− h

τ

[
(r$
t,0,h+τ − rct,0,h+τ )−

12

τ
(ft,τ − st)

]
=

h+ τ

τ
xt,0,h+τ −

h

τ
xt,0,h,

where the second equality follows no arbitrage between forward interest swap rates and
the term structure of spot interest swap rates. This no-arbitrage condition likely holds
in practice because arbitrage between interest rate derivatives is not strongly affected by
most real-world regulatory constraints. It holds in our model under the assumption that
derivatives are not subject to the regulatory constraint.

B Profit Calculations
In this section we detail the calculation of profits for the forward arbitrage trading strat-
egy, and then show how that can be mapped to the cross-currency basis variables we have
defined. We will use yen as our example currency.

At time t, the strategy

1. receives fixed (pays floating) on one dollar notional of a h-month forward-starting
τ -month interest-rate swap in dollars at annualized fixed rate R$

t,h,τ ,

2. enters into a h-month forward agreement to sell Ft,h yen in exchange for one dollar,

3. pays fixed (receives floating) on Ft,h yen notional of a h-month forward-starting
τ -month interest-rate swap in dollars at rate Rc

t,h,τ , and

4. enters into a h+ τ -month forward agreement to buy Ft,h(Rc
t,h,τ )

τ
12h yen in exchange

for dollars at the exchange rate Ft,h+τ .

At time t+ h, the strategy is unwound. The trader
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1. unwinds the receive-fixed dollar swap, earning (
R$
t,h,τ

R$
t+h,0,τ

)
τ

12h − 1 dollars,

2. cash-settles the h-month forward, earning St+h−Ft,h
St+h

dollars,

3. unwinds the pay-fixed swap, earning Ft,h
St+h

(1− (
Rct,h,τ
Rct+h,0,τ

)
τ

12h ) dollars, and

4. unwinds the h+ τ -month forward, earning ( 1
Ft+h,τ

− 1
Ft,h+τ

)
Ft,h(Rct,h,τ )

τ
12h

(R$
t+h,0,τ )

τ
12h

.

In this last expression, we have used R$
t+h,0,τ as the discount rate on the forward

profits (converted to dollars). In our model, because derivatives are unaffected by the
regulatory constraint, the dollar risk-free rate is in indeed the correct discount rate for the
forward profits. If net derivative profits affected the regulatory constraint, the appropriate
discount rate would depend on questions like whether the trader could unwind or net the
derivatives instead of simply taking an offsetting position. However, as a practical matter,
the choice of discount rate has a minuscule effect on the computed profits.

Therefore, total profit per dollar notional (i.e. the excess return) is

Πc
t+h,h,τ = (

R$
t,h,τ

R$
t+h,0,τ

)
τ

12h − Ft,h
St+h

(
Rc
t,h,τ

Rc
t+h,0,τ

)
τ

12h + (
1

Ft+h,τ
− 1

Ft,h+τ

)(
Rc
t,h,τ

R$
t+h,0,τ

)
τ

12hFt,h.

Recall the definition of the cross-currency basis,

(Rc
t+h,0,τ )

τ
12hSt+h =

(R$
t+h,0,τ )

τ
12hFt+h,τ

(1 +Xc
t+h,0,τ )

τ
12h

and

(Rc
t,h,τ )

τ
12hFt,h =

(R$
t,h,τ )

τ
12hFt,h+τ

(1 +Xc
t,h,τ )

τ
12h

.

Plugging in these definitions,

Πc
t+h,h,τ = (

R$
t,h,τ

R$
t+h,0,τ

)
τ

12h

{
1− Ft,h+τ

Ft+h,τ
(
1 +Xc

t+h,0,τ

1 +Xc
t,h,τ

)
τ

12h + (
Ft,h+τ

Ft+h,τ
− 1)

1

(1 +Xc
t,h,τ )

τ
12h

}
.

This exact profit formula is complicated by a variety of discounting effects that arise in
the presence of arbitrage. Note, however, that all of these effects (deviations of interest
rates and forward exchange rates from their previous forward values) are typically at
most a few hundred basis points. In the presence of cross-currency basis values that on
the order of basis points, these discounting effects will be a couple percent of some basis
points, and hence for the most part negligible.
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We therefore employ a first-order approximation. Define

εFt+h,h,τ = ln (
Ft+h,τ
Ft,h+τ

),

εRt+h,h,τ = ln (
R$
t+h,τ

R$
t,h,τ

).

Taking a first-order expansion around xct,h,τ = xct+h,τ = εFt+h,h,τ = εRt+h,h,τ = 0, we have

Πc
t+h,h,τ ≈ πct+h,h,τ =

τ

12h
(xct,h,τ − xct+h,0,τ ),

which is the formula employed in the main text.

C Model Details
In this appendix section we present a more careful derivation of the model results de-
scribed in Section 2. We describe the manager’s preferences and problem, then derive
the Euler equations and intertemporal asset pricing equations presented in the main text.
The model is partial equilibrium, in that it only considers the manager’s problem, and is
based on He and Krishnamurthy (2011).

The manager is endowed with the ability to run an intermediary that survives for a
single period. In the beginning of the period, the manager will raise funds from households
in the form of both debt and equity, subject to various constraints, and choose how much
of her own wealth to contribute. The manager then invests these funds in a variety of
assets. At the end of the period, returns realize and the intermediary is dissolved. The
manager receives a payout based on her equity share in the intermediary. This payout,
plus any savings the manager holds outside the intermediary, determine the manager’s
wealth entering into the next period.

Let WM
t denote the manager’s wealth at the beginning of period t, and let zt be

a state variable that determines the conditional (on time t information) distribution of
asset returns. These two variables are the state variables of the manager’s optimization
problem.

At the beginning of the period, the manager must decide on a contractual structure for
the intermediary she runs. The intermediary begins by raising equity capital Nt ≥ 0. Of
the initial equity capital, NM

t is contributed by the manager, with the remainder coming
from households. The manager receives a share φt of the wealth that will be liquidated
when the intermediary is dissolved at the end of the period, with the remainder going
to households. Note that the share φt is not necessarily equal to the proportion of the
equity that the manager contributes; define the fee

fmt ≡
φtNt

NM
t
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as the ratio of what the manager receives to what she contributes.
The manager raises equity and debt from households in a competitive market. Let

MH
t+1 be the household’s SDF, and let N̂t+1 be the value of the intermediary’s equity

after returns are realized and the debt is repaid (we define this variable in more detail
below). Let Bt be the face value of the intermediary’s debt, and let Rb

t be its interest
rate. For any capital structure (φt, N

M
t , Nt, Bt, R

b
t) proposed by a manager with wealth

WM
t in state zt, households will be willing to purchase the equity if

Nt −NM
t ≤ (1− φt)E[MH

t+1N̂t+1|zt,WM
t , (φt, N

M
t , Nt, Bt, R

b
t)].

We assume that the debt is priced by the household’s SDF,

1 = E[MH
t+1R

b
t |zt].

Note that the expectation is conditional on the state variables zt,WM
t and the capital

structure of the intermediary, but not on the intermediary’s asset allocation (which we
define below). That is, the household must form a conjecture about what the manager
will choose to invest, and price the equity accordingly; the manager cannot commit. This
is a key friction, which is also employed by He and Krishnamurthy (2011).

We have assumed that the intermediary is risk-free. We are ignoring the possibility of
default; the model of He and Krishnamurthy (2011) that we are building on is developed in
continuous time with continuous price processes, and hence also excludes the possibility of
default. We develop a discrete time model to make the intuition behind our hypothesized
SDF clear, and have found that incorporating the possibility of default obfuscates that
intuition.25

We next turn to the intermediary’s budget constraints. We allow the manager of the
intermediary to divert resources from the intermediary instead of investing them. Let
∆t ≥ 0 be the resources diverted. In equilibrium, households will ensure that diversion
does not occur by ensuring that φt, the manager’s claim on the assets, is sufficiently high.

Let I be the set of all assets available to the intermediary. We partition this set into
“cash” and “derivative” assets, Ic and Id, assuming that the former require an upfront
cash investment whereas the latter are contracts entered into with zero initial net-present-
value. The distinction between these two groups of assets is that the former affects the
intermediary’s initial budget constraint, whereas the latter do not. Let αit be the dollar
amount (cash) or notional (derivative) invested in asset i, scaled by the initial non-
diverted intermediary equity Nt.

The intermediary’s initial budget constraint is

Nt +Bt = ∆t +Nt

∑
i∈Ic

αit.

25Note, however, that incorporating the possibility of default is necessary for the model to speak to
issues like whether it is to preferable to examine OIS or IBOR bases. Because our model is silent on
these issues, we have chosen to emphasize only results that are robust to the choice OIS vs. IBOR.
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The excess return (cash assets) or profit per unit notional (derivative assets) of asset
i is defined as Ri

t+1 − Rb
t . The distribution of these returns is a function of zt, and the

returns are realized at the end of the period. The intermediary’s net worth when it is
liquidated at the end of the period is therefore

N̂t+1 = −Rb
tBt +Nt

∑
i∈Ic

αitR
i
t+1 +Nt

∑
i∈Id

αit(R
i
t+1 −Rb

t),

which can be re-written as

N̂t+1 = Rb
t(Nt −∆t) +Nt

∑
i∈I

αit(R
i
t+1 −Rb

t).

Using this definition, we can rewrite the household’s equity participation constraint as

Nt −NM
t ≤ (1− φt)(Nt −∆∗t )

+Nt(1− φt)E[MH
t+1

∑
i∈I

αi∗t (Ri
t+1 −Rb

t)|zt]),

where ∆∗t and αi∗t are the policies that the household conjectures based on observing the
state variables and capital structure.

Lastly, as described in the text, we assume that the intermediary operates under a
regulatory constraint that affects only cash assets:

1 ≥
∑
i∈Ic

ki|αit|.

Note that we have assumed that the regulatory constraint cannot limit the cashflow
diversion of the manager.26

These constraints describe the operation of the intermediary. We next turn to the
decisions and preferences of the manager. We assume the manager has Epstein-Zin pref-
erences (Epstein and Zin (1989)), with risk-aversion parameter γ, intertemporal elasticity
of substitution parameter ψ, and a subjective discount factor of β, and define θ = 1−γ

1−ψ−1 .
Whatever wealth she does not consume or invest in the intermediary, plus any resources
she diverts from the intermediary, is saved in risk-free assets, but the manager cannot
borrow. When the manager diverts ∆t resources from the intermediary, she receives only
(1 + χ)−1∆t, which she can save in the risk-free asset. As a result, her wealth entering
the next period is

WM
t+1 = Rb

t(W
M
t − CM

t −NM
t +

∆t

1 + χ
) + φtN̂t+1,

26Our model inherits from He and Krishnamurthy (2017) the somewhat awkward assumption that
the manager cannot commit when choosing an asset allocation, even though the regulator can limit the
manager’s asset allocation.
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where the first term represents the intermediary’s outside savings and the second her
share of the intermediary’s liquidation value.

We now define the Bellman equation describing the manager’s problem. The manager
solves

V (WM
t , zt) = max

CMt ≥0,NM
t ≥0,Nt≥0,φt∈[0,1],∆t≥0,{αit}i∈I

{(CM
t )1−ψ−1

+ βE[V (WM
t+1, zt+1)1−γ|zt]θ

−1}
1

1−ψ−1 ,

subject to

N̂t+1 = Rb
t(Nt −∆t) +Nt

∑
i∈I

αit(R
i
t+1 −Rb

t),

WM
t+1 = Rb

t(W
M
t − CM

t −NM
t +

∆t

1 + ψ
) + φtN̂t+1,

CM
t +NM

t ≤ WM
t ,

Nt −NM
t ≤ (1− φt)(Nt −∆∗t )

+Nt(1− φt)E[MH
t+1

∑
i∈I

αi∗t (Ri
t+1 −Rb

t)|zt],∑
i∈Ic

ki|αit| ≤ 1,

NM
t ≤ Nt.

In defining this problem, we have eliminated the debt level Bt as a choice variable by
substituting out the initial budget constraint, and we have assumed that the manager will
choose to offer a capital structure acceptable to households. This assumption is without
loss of generality, as the manager can always set NM

t = Nt, φt = 1, which is equivalent
to having her offer rejected. Note also that this problem is part of an equilibrium of
the capital raising game. The households expectations ∆∗t and αi∗t are functions of the
proposed capital structure and must be consistent with the manager’s ultimate choices
given that capital structure.27

We next describe a lemma that collects a number of simplifying results, in particular
focusing on an equilibrium in which no cashflow diversion occurs in equilibrium and the
anticipated asset allocation depends only in the investment opportunities. These results
are essentially identical to statements contained in He and Krishnamurthy (2011).

Lemma 2. In the manager’s problem, there exists an equilibrium in which:
27Formally, we do not require that this equilibrium be subgame perfect. This simplification allows us

to focus directly on an equilibrium in which the manager puts all her savings in the intermediary. He
and Krishnamurthy (2011) Lemma 2 proves (in the context of their model; our model is essentially the
discrete time version) that this outcome holds in all equilibria.
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1. The optimal allocation αi∗t is a function only of the state vector zt, and satisfies

−1 < E[MH
t+1

∑
i∈I

αi∗t (Ri
t+1 −Rb

t)|zt] <
1

χ
,

2. There is no diversion, ∆t = ∆∗t = 0, and the manager’s share satisfies φ∗t ≥
(1 + χ)−1,

3. The household equity participation constraint binds,

4. The manager invests all savings in the intermediary, CM
t +NM

t = WM
t , with NM

t >
0,

5. The manager’s share φ∗t and fee fMt are functions only of zt, with

fMt (zt) =
φ∗t (zt)

φ∗t (zt)− (1− φ∗t (zt))E[MH
t+1

∑
i∈I α

i∗
t (Ri

t+1 −Rb
t)|zt]

.

Proof. See below.

With these results, the manager’s final wealth is

WM
t+1 = φtN̂t+1

= (WM
t − CM

t )fMt (φt, zt)(R
b
t +
∑
i∈I

αit(R
i
t+1 −Rb

t)),

and the manager’s problem can be written as

V (WM
t , zt) = max

CMt ≥0,{αit}i∈I

{(CM
t )1−ψ−1

+ βE[V (WM
t+1, zt+1)1−γ|zt]θ

−1}
1

1−ψ−1 ,

subject to

WM
t+1 = (WM

t − CM
t )fMt (zt)(R

b
t +
∑
i∈I

αit(R
i
t+1 −Rb

t)),∑
i∈Ic

ki|αit| ≤ 1,

This is the manager’s problem defined in the text, equations (2), (3), and (4).
We derive the Euler equation for consumption (i.e. the Euler equation for the wealth

portfolio, equation (6)) and the first-order conditions for portfolio choice (equation (7)) in
the usual way, following Epstein and Zin (1989). The only complications that our model
introduces relative to Epstein and Zin (1989) are the fee fMt , which alters the definition
of the wealth return, and the constraint, which introduces a multiplier into the portfolio
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choice problem but does not change the consumption Euler equation. We summarize
these equations in the lemma below, and for completeness provide a derivation at the end
of this section.

Lemma 3. Define ∆cMt+1 = ln(CM
t+1)−ln(CM

t ). For the manager’s problem, the first-order
condition associated with the consumption-savings decision is

1 = E[βθ exp (θrwt+1 −
θ

ψ
∆cMt+1)|zt]

and the first-order condition for αit is

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)(Ri

t+1 −Rb
t)|zt] = λRCt kisgn(αit),

Proof. See below.

Consider in particular the first-order conditions associated with a foreign currency
risk-free bond and with a forward contract on the exchange rate. The return on the
foreign currency bond is Rc

t
St
St+1

, and the profit of the forward (a derivative) is St+1−Ft,1
St+1

per dollar notional. The two first-order conditions are

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)(Rc

t

St
St+1

−Rb
t)|zt] = λRCt kcsgn(αct)

and
E[βθ exp ((θ − 1)rwt+1 −

θ

ψ
∆cMt+1)(

St+1 − Ft,1
St+1

)|zt] = 0.

Combining these two equations yields

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)(Rc

t

St
Ft,1
−Rb

t)|zt] = λRCt kcsgn(αct),

or
E[βθ exp ((θ − 1)rwt+1 −

θ

ψ
∆cMt+1)|zt]Rb

t(exp(−xt,1)− 1) = λRCt kcsgn(αct),

where xt,1 is defined as in the main text. Taking absolute values,

E[βθ exp ((θ − 1)rwt+1 −
θ

ψ
∆cMt+1)|zt]Rb

t | exp(−xt,1)− 1| = λRCt kc.

The remainder of the derivation of Theorem 1 is contained in the text.
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C.1 Proof of Lemma 2

First, observe that diversion does not change αi∗t in the conjectured equilibrium. Conse-
quently, the net benefit of stealing is proportional to

βRb
tE[V (WM

t+1, zt+1)−γVW (WM
t+1, zt+1)|zt](

1

1 + χ
− φt),

and by the usual arguments VW (WM
t+1, zt+1) > 0. If 1

1+χ
> φt, stealing has a net benefit,

and this benefit does not diminish. Consequently, there cannot be a solution with outside
equity (NM

t > Nt). Conversely, if 1
1+χ
≤ φt, diversion has a weakly negative net benefit,

and it is without loss of generality to suppose diversion does not occur in equilibrium.
By the argument in the main text, it is without loss of generality to suppose 1

1+χ
≤ φt

and there is no equilibrium stealing.
Now consider a perturbation which increases Nt but shrinks αit so that αitNt remains

constant for all assets. If the household participation constraint does not bind, this
generates a strict welfare improvement for the manager and is always feasible. Therefore,
the household participation constraint binds,

φtNt(1−
(1− φt)
φt

E[MH
t+1

∑
i∈I

αi∗t (Ri
t+1 −Rb

t)|zt]) = NM
t .

Note by assumption that

−1 < E[MH
t+1

∑
i∈I

αi∗t (Ri
t+1 −Rb

t)|zt] <
1

χ
≤ φt

1− φt

and hence that positive values of NM
t and Nt are feasible. Observe that if NM

t = Nt = 0,
the manager is taking no risk, which cannot be optimal by the principle of participation.
Therefore these values are strictly positive.

Under these assumptions, the manager’s fee fMt is a function of zt and φt,

fMt (φt, zt) =
φt

φt − (1− φt)E[MH
t+1

∑
i∈I α

i∗
t (Ri

t+1 −Rb
t)|zt]

,

Moreover, the manager’s final wealth is

WM
t+1 = Rb

t(W
M
t − CM

t −NM
t ) +NM

t f
M
t (φt, zt)(R

b
t +
∑
i∈I

αit(R
i
t+1 −Rb

t)).

Note that fMt (φt, zt) is increasing in φt if E[MH
t+1

∑
i∈I α

i∗
t (Ri

t+1 − Rb
t)|zt] < 0 and de-

creasing otherwise. In the increasing case, we must have φ∗t = 1 and in this case fMt = 1;
in the decreasing case, fMt ≥ 1, and therefore fMt ≥ 1 always. It also follows that φ∗t is
purely a function of zt, and hence the fee fMt is also purely a function of zt.

Now consider a perturbation that increasing NM
t while scaling down αit so that
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NM
t f

M
t (φt, zt)α

i
t remains constant for all i ∈ I. This perturbation has a weak net benefit,

as it increasesWM
t+1, and hence it is without loss of generality to supposeNM

t = WM
t −CM

t .
We have demonstrated the stated properties conditional in the conjectured that αi∗t

is a function only of zt. We now show that this an equilibrium. We scale variables by
wealth. Define cmt =

CMt
WM
t
. The problem is

V (WM
t , zt) = max

cMt ≥0,{αit}i∈I

{(WM
t )1−ψ−1

(cMt )1−ψ−1

+ βE[V (WM
t+1, zt+1)1−γ|zt]θ

−1}
1

1−ψ−1 ,

subject to

WM
t+1

WM
t

= fMt (zt)R
b
t(1− cMt ) + (1− cMt )fMt (zt)

∑
i∈I

αit(R
i
t+1 −Rb

t),∑
i∈Ic

ki|αit| ≤ 1.

We can immediately (following Epstein and Zin (1989)) conjecture and verify that V (WM
t , zt)

is linear in wealth,
V (WM

t , zt) = WM
t J(zt)

for some function J(zt), and that as a result the optimal policies do not depend on wealth
(or any capital structure variables), verifying the conjecture.

C.2 Proof of Lemma 3

Define
Rw
t+1 = fMt (zt)(R

b
t +
∑
i∈I

αit(R
i
t+1 −Rb

t)).

Using homotheticity, V (WM
t , zt) = WM

t J(zt), and writing the problem in Lagrangean
form,

J(zt) = max
cMt ≥0,{αit}i∈I

min
λ̂RCt ≥0

{(cMt )1−ψ−1

+ βE[((1− cMt )Rw
t+1)(1−γ)J(zt+1)1−γ|zt]θ

−1}
1

1−ψ−1

+ λ̂RCt (1−
∑
i∈Ic

ki|αit|).

The Euler equation is derived in the usual way. Taking the FOC with respect to cMt ,

(cMt )−ψ
−1

= β(1− cMt )−ψ
−1

E[(Rw
t+1)(1−γ)J(zt+1)1−γ|zt]θ

−1

,

and plugging this back into the Bellman equation,
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J(zt) = {(cMt )1−ψ−1

+ (1− cMt )(cMt )−ψ
−1}

1
1−ψ−1

= {(cMt )−ψ
−1}

1
1−ψ−1 .

Therefore, the Euler equation is reads

(cMt )−ψ
−1

= β(1− cMt )−ψ
−1

E[(Rw
t+1)(1−γ){(cMt+1)−ψ

−1}θ|zt]θ
−1

.

We can rearrange this to

1 = E[(Rw
t+1)(1−γ){β(1− cMt )−ψ

−1

(
cMt+1

cMt
)−ψ

−1}
1−γ

1−ψ−1 |zt],

and then substitute cMt =
CMt
WM
t

and cMt+1 =
CMt+1

WM
t+1

,

1 = E[(Rw
t+1)(1−γ){β(1− cMt )−ψ

−1

(
WM
t

WM
t+1

)−ψ
−1CM

t+1

CM
t

)−ψ
−1}θ|zt].

Using the budget constraint WM
t+1

WM
t

= (1− cMt )Rw
t+1, we have

1 = E[(Rw
t+1)(1−γ){β(Rw

t+1)ψ
−1

(
CM
t+1

CM
t

)−ψ
−1}θ|zt].

Noting that

(1− γ)(1 +
ψ−1

1− ψ−1
) = θ,

we conclude that the standard consumption Euler equation applies,

1 = E[(Rw
t+1)θ{β

CM
t+1

CM
t

)−ψ
−1}θ|zt].

The FOC for asset i is

1

1− ψ−1
{(cMt )1−ψ−1

+ βE[((1− cMt )Rw
t+1)(1−γ)J(zt+1)1−γ|zt]θ

−1}
1

1−ψ−1−1×

θ−1(1− γ)E[βθ((1− cMt )Rw
t+1)(1−γ)J(zt)

1−γ|zt]θ
−1−1×

(1− cMt )1−γE[βθ(Rw
t+1)−γJ(zt+1)1−γ(Ri

t+1 −Rb
t)|zt] = λ̂RCt kcsgn(αct).
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We can substitute

E[βθ(Rw
t+1)−γJ(zt+1)1−γ(Ri

t+1 −Rb
t)|zt] =

(cMt )−ψ
−1θE[βθ(Rw

t+1)−γ(
cMt+1

cMt
)−ψ

−1θ(Ri
t+1 −Rb

t)|zt] =

(cMt )−ψ
−1θE[βθ(Rw

t+1)−γ(
WM
t

WM
t+1

CM
t+1

CM
t

)−ψ
−1θ(Ri

t+1 −Rb
t)|zt] =

(1− cMt )ψ
−1θ(cMt )−ψ

−1θE[βθ(Rw
t+1)ψ

−1θ−γ(
CM
t+1

CM
t

)−ψ
−1θ(Ri

t+1 −Rb
t)|zt] =

(1− cMt )ψ
−1θ(cMt )−ψ

−1θE[βθ(Rw
t+1)θ−1(

CM
t+1

CM
t

)−ψ
−1θ(Ri

t+1 −Rb
t)|zt].

Re-scaling λ̂t to λt results in the FOC in the main text,

E[βθ(Rw
t+1)θ−1(

CM
t+1

CM
t

)−ψ
−1θ(Ri

t+1 −Rb
t)|zt] = λRCt kcsgn(αct).

D Cross-Sectional Asset Pricing Details
In this appendix section, we provide more details about the cross-sectional asset pricing
exercise of Section 5. We begin by describing our test asset portfolios, then discuss the
differences between our exercise and He et al. (2017) (HKM). Appendix Table A8 shows
cross-sectional asset pricing results for our test asset classes with the HKM factors; this
table can be compared (noting the differences in asset class definitions and sample) with
Table 14 of He et al. (2017).

D.1 Factors and Test Assets

As discussed in the main text, our choice of test assets is inspired by HKM, but con-
structing the full set tests assets from that paper is work in progress. Below, we describe
the data used for each asset class. We truncate all of our series at the end of August
2018.

The Market and the Risk-Free Rate

The equity return we use is the Market factor provided on Ken French’s website (originally
from CRSP). We also use, for most of our sample, the 1-month t-bill rate provided on
Ken French’s website (and due to Ibbotson and Associates, Inc.). These are the same
data sources used by HKM. However, as discussed on Ken French’s website, the Market
return was changed in October 2012 and as a result there are some differences between
our series and the one originally used by HKM.
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We also adjust the risk-free rate in the post-crisis period (as defined in our main text,
July 2010 onwards) to use one-month OIS swap rates instead of 1-month t-bill rates.
We make this adjustment to be consistent with the risk-free rates we used to compute
the cross-currency basis and forward arbitrage returns. The adjustment has a minimal
impact on our results.

The HKM Factors

In our equity-return only specification (Table 5), we use as an equity return the "interme-
diary value-weighted investment return" of HKM, obtained from Asaf Manela’s website.
When we use the original HKM specification, perhaps augmented with our basis shock
(Table 3 and Appendix Table A8), we use our market return described above and the
"intermediary capital risk factor" of HKM, obtained from Asaf Manela’s website.

Equities (FF)

Our test equity portfolios are the monthly return series of the "25 Portfolios Formed
on Size and Book-to-Market" available on Ken French’s website, building on Fama and
French (1993). This is exactly the same set of test assets used by HKM, who make their
full dataset (containing data through 2012) available. The series begins in July 1926.
Note that HKM use only the data from 1970 onwards.

There appear to be a variety of small differences between the returns we obtained
from Ken French’s website in 2018 and the returns HKM obtained in 2012. Many of
these differences are small enough that they can be attributed to rounding, but some are
not. Ken French’s website does mention a variety of changes in CRSP between 2012 and
the present, but none seem directly applicable to the 25 size-and-value portfolios.

US Bonds (US)

Our U.S. bond portfolios include both government and corporate bonds. The government
bonds are the five CRSP "Fama Maturity Portfolios" defined in twelve-month intervals.
The corporate bonds are five Bloomberg corporate bond indices, which correspond to US
corporate bonds with ratings of AAA, AA, A, B, and high yield.28

To include the returns for a particular month, we require that the returns for all five
government bond maturity buckets and all five corporate bond indices be available. As
a result, our data starts in March 1999. Our five government portfolios are groupings of
the Fama bond portfolios studied by HKM; our corporate bond indices are different from
the ones studied by HKM, and were chosen for convenience. We intend to construct and
extend the HKM sample in the future.

28The tickers are LU3ATRUU Index, LU2ATRUU Index, LU1ATRUU Index, LUBATRUU Index, and
LF98TRUU Index.
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Sovereign Bonds (Sov)

Our sovereign bond portfolio construction follows the procedure of Borri and Verdelhan
(2015). Those authors consider all countries in the JP Morgan EMBI index, and sort
bonds into six portfolios. They first divide countries into two groups, depending on
whether their bonds have a low or high beta to US equity market returns, and then
within each of these groups split bonds into three sub-groups based on their S&P rating.
HKM use exactly the data of Borri and Verdelhan (2015), as those two papers are roughly
contemporaneous.

We implement this procedure with updated data. However, three countries have been
dropped from the EMBI index, and do not have returns available for the post-crisis
period. These countries are omitted from our entire analysis, and as a result there is
an imperfect (80%) correlation between our portfolio returns and the original Borri and
Verdelhan (2015) returns.

Foreign Exchange Portfolios (FX)

We use the 11 forward-premium-sorted portfolios of Lustig et al. (2011). These portfolios
consist of between 9 and 34 currencies. Six these portfolios contain all currencies, sorted
by forward premia. Five contain only developed-country currencies, sorted by forward
premia.

In contrast, HKM use six portfolios sorted by forward premia from Menkhoff et al.
(2012) and six portfolios sorted by interest rate differential from Lettau et al. (2014).29

Because covered interest parity holds for most of the sample, these two groups of portfolios
should be essentially identical. However, the two papers differ on data sources and samples
(Menkhoff et al. (2012) have up to 48 currencies from 1983 to 2009, Lettau et al. (2014)
have up to 53 from 1974 to 2010), and consequently the two sets of portfolios to do not
exactly span each other.

OIS and IBOR Forward Arbitrage Returns (FwdArb)

We use OIS and IBOR forward arbitrage returns in five currencies (NZD, CAD, GBP,
EUR, CHF) as test assets. Note that this list excludes AUD and JPY, which we used
to construct our basis factor. Consequently, our factor is not spanned by the portfolio
of test assets. Our OIS returns include both 1m forward 1-month tenor and 1m forward
3-month tenor returns, whereas the IBOR returns are restricted to 3-month tenors due a
lack of available data.

For all of these assets, we study as an excess return

xct,h,τ − xct+h,τ ,

which is the profit per dollar notional, normalized by the duration.
29The published version of Menkhoff et al. (2012) describes only five portfolios, and two other portfolios

that are linear combinations of the five.
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We construct the OIS forward arbitrage returns as described in the text. IBOR
forward arbitrage returns are constructed in an essentially identical fashion, using 3M
spot IBOR rates and FRA agreements with 3M IBOR as the underlying rate. For both
sets of arbitrages, we consider only the post-crisis period.

We exclude NZD and CHF ois returns due to problems with the OIS data in those
currencies (and hence use only IBOR for those two currencies), and exclude CAD IBOR
returns due to missing data (and hence use only OIS returns for CAD). As a result,
we combine four IBOR-based forward arbitrages with three OIS-based one-month tenor
forward arbitrages and three OIS-based three-month tenor forward arbitrages, for a total
of ten arbitrages.

D.2 Estimation and Standard Errors

Our analysis is the GMM version of a traditional two-pass regression to estimate the price
of various risk-factors, as described in chapter 12 of Cochrane (2009). Our point estimate
come from an exactly identified single-step GMM estimation procedure, as described on
pages 241-243 of Cochrane (2009). We use a Newey-West kernel with a twelve-month
bandwidth (Newey and West (1987)) to construct standard errors that are robust to
heteroskedasticity and autocorrelation.

The one key difference between our procedure and the textbook procedure is that we
allow the samples for the estimation of the betas and the means to differ.30 To implement
this, we introduce as parameters in our GMM equations a mean-return parameter for
each asset and an extra equation for each asset stating that the difference of the mean
parameter and the asset excess return is zero in expectation. We then write our cross-
sectional asset pricing equation (19) entirely as a function of parameters, with no data.
These changes, and allowing our GMM estimator to use different samples for different
equations, implement the desired outcome that the mean and beta samples can differ.

E Alternative Carry and Dollar Portfolios
In the international asset pricing literature, Carry and Dollar are two common approaches
to forming portfolios. Carry refers to the notion that the portfolio is long in high-interest
rate currencies and short in low-interest rate currencies. Dollar refers to the notion that
the dollar is the one funding currency for all other currencies. We also define a Carry
and a Dollar portfolio in the main text. However, there are several possible ways of
constructing Carry and Dollar. In this section, we explore profits and Sharpe ratios of
profits from different portfolios of forward CIP trading strategy.

Classic Carry: This portfolio is our Carry portfolio in the main text, where the
portfolio profit is defined as the profit from the forward CIP trading strategy profit in

30For this reason, we do not use an automatic bandwidth selection procedure for our standard errors.
We have found that the standard errors are insensitive to the bandwidth choice, likely because returns
exhibit small amounts of auto-correlation.
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the highest interest rate currency (AUD) less that from the lowest interest rate currency
(JPY).

2-currency Carry: This portfolio follows the spirit of a "high-minus-low" carry,
but we include two high-interest rate currencies and two low-interest rate currencies.
Specifically, the portfolio profit is defined as the profit from the forward CIP trading
strategy profit in the two currencies that had the highest interest rate in the Pre-Crisis
period (AUD, NZD), less that from the two currencies with the lowest interest rate in the
Pre-Crisis period (JPY, EUR). Note that while CHF had a lower interest rate than EUR
in the Pre-Crisis period, due to unavailability of CHF OIS rates post-2017, we include
EUR in the portfolio. The results are largely identical when including CHF instead of
EUR.

Dynamic Carry: This portfolio dynamically assigns the portfolio weight to the
single-curency profit from forward CIP trading strategy. Weights are determined by
each currency’s interest rate differential to that of USD. Those with interest rate differ-
entials above the cross-sectional average enters the portfolio as long, and those below the
average enters the portfolio as short. The absolute value of the weight is proportional to
each currency’s interest rate differential.

Simple Dollar: This portfolio is our Dollar portfolio in the main text, where the
portfolio profit is an equal-weighted average of profits from all the single-currency forward
CIP trading strategies.

Carry-neutral Dollar: This portfolio is a linear combination of the Simple Dollar
portfolio and the Classic Carry portfolio so that the weighted interest rate differential
from all sample currencies relative to the USD is 0. To the extent that interest rate
differentials drive the magnitude of CIP violations, this carry-neutral dollar portfolio
bears the advantage that the profits are not due to aggregate interest rate differentials in
the portfolio.

We present in Table A6 the results of the profits and Sharpe ratios of all these port-
folios from following the OIS 1M-forward 3M forward CIP trading strategy. Our main
result that the Carry portfolio commands a risk premium while the Dollar portfolio does
not, is robust to different definitions of Carry and Dollar.

F Quarter-ends in Returns
Since spot bases widen on quarter-ends and year-ends when regulatory constraints tighten,
we might expect that the returns to the forward CIP trading strategy also increase on
quarter-ends or year-ends. Yet this needs not be the case if the price of forward contracts
reflects the expected increase in the spot basis.

To actually earn an h-month forward τ -month cross-currency basis, cash needs to be
invested for τ months after the h-month forward horizon passes. The shadow cost of
having cash on the balance sheet is greater on quarter-ends. This leads to spikes in the
spot basis when the interest tenor crosses quarter ends, a fact documented in Du et al.
(2018). If forward prices expect these quarter-end spikes, then any forward basis that is
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based on a quarter-crossing τ -month interest should also be bigger in magnitude.
In Figure A3, we plot the time series average of the Classic Carry spot, 1M-forward

1M, and 2M-forward 1M cross-currency bases in the Post-Crisis period. We split all
observation-days into three sub-samples based on which of the three bases has its OIS
interest tenor crossing the quarter end. The three lines correspond to these three sub-
samples, and their levels show the time series averages of the cross-currency bases within
the sub-sample. For example, the line labeled 1M-forward 1M is calculate based on all
the days where the 1M interest starting in 1M crosses a quarter end.

We note two observations. First, the general direction of all three lines is sloping
up slightly. This echos Figure 3, where the slope of the forward basis term structure is
the source of the excess return in the forward CIP trading strategy. In addition to the
slight upward trend, all three lines exhibit a spike, precisely when the interest tenor in
the basis crosses the quarter end. This is consistent with forward prices that incorporate
expectations of quarter-end spikes. On quarter-ends, intermediary’s constraint tightens,
leading to bigger bases.

Given that forward prices anticipate quarter-end dynamics, returns to the forward
CIP trading strategy need not be different around quarter ends. This is what we find in
Table A7. In this table, we regress the Post-Crisis returns of the classic-carry (AUD-JPY)
1M-forward 1M CIP trading strategy on indicators of quarter-ends (QE) and year-ends
(YE). We examining the QE and YE crossing of both the interest tenor and the forward
horizon. Column (1) reports the unconditional mean return in the Post-Crisis period; the
large, positive, and significant coefficient is consistent with the risk premium observed
in the 1M-forward 3M CIP trading strategy returns. Columns (2) through (4) examine
if quarter-crossing in either the interest tenor or the forward horizon is associated with
significantly different returns. Columns (5) through (7) report the results when examining
year-crossings, and column (8) checks if crossing of any quarter or year end is associated
with significantly different returns. Neither any of the individual coefficient nor the joint
F-statistics on the dummies is significant.

One caveat in interpreting the results in Table A7 is the limited power in the regression.
The Post-Crisis period of July 2010 to August 2018 provides just 32 quarter ends and
8 year ends. As such, the insignificant coefficients we see may be due to imprecise
estimation.

G Estimating the SDF from Prices of Risk
Our hypothesized SDF (equation (1)) postulates that mt+1 = µt − γrwt+1 + ξ|xt+1,1|. Let
λ = [λrw , λ|x|] be the price of risk on the two factors, the wealth portfolio return and
the magnitude of the cross-currency basis, respectively, and Σ be the variance-covariance
matrix between these two factors, then we could estimate the SDF parameters by[

γ
ξ

]
= Σ−1

[
λrw
λ|x|

]
.
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λ is proportional to the single regression coefficient of the true SDF on the two factors.
It therefore can be estimated from the realized market risk premium on the two factor’s
factor-mimicking portfolios. If we see the He et al. (2017) value-weighted intermediary
return on equity as the factor-mimicking portfolio for intermediary wealth returns, and
we use the returns on the forward CIP trading strategy as a direct measure of the risk
premium on the cross-currency basis, then we can estimate λ and, by extension, the SDF
parameters γ and ξ.

We estimate the price of risk on intermediary equity return from monthly excess
returns from January 1970 to August 2018, the longest panel of returns that we have.
The average monthly excess return is about 0.61%, which implies an annual excess return
of about 7.3%. We estimate the price of risk on the forward CIP trading strategy from
the Post-Crisis sample. Given the short sample, we use daily observations of the monthly
returns on the 1M-forward 3M Classic Carry CIP trading strategy. The average monthly
return is 4.76 basis points, which corresponds to an annual profit of 14.3 basis points on
the notional. Both of these estimates are statistically significant.

To calculate the SDF parameters, we also need the variance-covariance between the
two factors. We estimate Σ using monthly returns on the intermediary equity and the
1M-forward 3M Classic Carry CIP trading strategy in the Post-Crisis period (July 2010
to August 2018). Together with estimates of λ, we find an estimate of γ of 0.66 and an
estimate of ξ of 305. While the estimate of a positive ξ is statistically significant, the
estimate of γ is imprecise, and we cannot reject that the true γ is greater than 1.

We summarize the results below.

Intermediary Equity
Return

Forward CIP Trading
Strategy Return

Price of risk 0.610* 0.048***
(0.288) (0.011)

SDF parameters 0.658 305***
(1.768) (91.7)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the estimated price of risk and SDF parameters on the two proposed factors.
Price of risk is reported in percentage points. The price of risk on intermediary equity return is estimated
using monthly return from 1970 January through 2018 August. The price of risk on the forward CIP
trading strategy return is estimated using daily observations of monthly return from 2010-07-01 to 2018-
07-31. Newey-West standard errors are reported in parenthesis, where the overlapping bandwidth is
chosen by the Newey-West (1994) selection procedure.
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H Additional Figures and Tables

Figure A1: Three-month IBOR-based Cross-Currency Bases

This figure plots the 10-day moving average of daily spot 3M IBOR cross-currency basis, measured in
bps, for the seven sample currencies. The spot IBOR basis is xct,3, as defined in the text.
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Table A1: Sample Currencies and the Associated OIS / IBOR Terms

Panel A: OIS
Currency Indexed Rate Day Count
AUD Reserve Bank of Australia Interbank Overnight Cash Rate ACT / 365
CAD Canadian Overnight Repo Rate Average (CORRA) ACT / 365
CHF Tomorrow/Next Overnight Indexed Swaps ACT / 360
EUR EMMI Euro Overnight Index Average (EONIA) ACT / 360
GBP Sterling Overnight Index Average (SONIA) ACT / 365
JPY Bank of Japan Estimate Unsecured Overnight Call Rate ACT / 365
NZD Reserve Bank of New Zealand Official Cash Daily Rate ACT / 365
USD US Federal Funds Effective Rate ACT / 360

Panel B: IBOR
Currency Interbank Rate Day Count
AUD Australia Bank Bill Swap Rate (BBSW) ACT / 365
CAD Canada Bankers’ Acceptances Rate ACT / 365
CHF ICE LIBOR CHF ACT / 360
EUR Euribor ACT / 360
GBP ICE LIBOR GBP ACT / 365
JPY ICE LIBOR JPY ACT / 360
NZD New Zealand Bank Bill Rate ACT / 365
USD ICE LIBOR USD ACT / 360

This table reports the Overnight Index Swap terms and IBOR terms for sample currencies and the U.S.
dollar. The Overnight Rate refers to the reference rate used to calculate the interest on the floating leg,
against the expectation of which, the rate on the fixed leg is determined. The Day Count specifies how
interests are calculated from the quoted annualized rate. For example, with a quoted annualized rate of
2%, a 32-day contract with a day count of ACT/360 would earn an interest of (1 + 0.02× 32/360)− 1.
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Figure A2: Term structure of the forward cross-currency basis (alternative
forward tenors)

This figure illustrates the time series average spot and forward-starting cross-currency bases in AUD and
JPY. For each currency, the sample from July 2010 to August 2018 is split into three sub-samples based
on the tercile of the level of the spot 3M OIS cross-currency basis. Within each sub-sample, the time
series average of the relevant spot/forward OIS cross-currency basis is shown. Compared to Figure 3,
this Figure plots a different set of forward tenors.
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Figure A3: Quarter-crossing cross-currency basis in the Classic Carry
portfolio

This figure illustrates the time series average of spot, 1M-forward 1M, and 2M-forward 1M cross-currency
bases in the Classic Carry portfolio. The sample from July 2010 to August 2018 is split into three sub-
samples based which of the three bases has its OIS interest tenor crossing the quarter end. The three
lines correspond to the three sub-samples, and each point shows the time series averages of the OIS
cross-currency bases within the sub-sample.
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Figure A4: Variations of the Basis Factor vs. HKM Capital Factor

This figure plots the monthly basis factor and HKM capital factor from 2003 to August 2018. The three
versions of the basis factor plotted are all based on the spot 3M OIS basis and scaled by 10. Dynamic
carry weighs all 7 cross-currency forward arbitrage profits based on each currency’s OIS-spread to USD.
Classic carry longs AUD and shorts JPY forward arbitrage. 2-currency Carry longs AUD and NZD, and
shorts JPY and EUR forward arbitrage. The HKM capital factor is the intermediary capital ratio.
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Table A2: Summary Statistics of Returns on OIS 1M-forward 1M Forward CIP
Trading Strategy

Panel A: Single Currencies
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

AUD 1.17** 1.60 2.83*** 0.68** 0.08 1.27***
(0.39) (9.03) (0.53) (0.25) (0.44) (0.26)

CAD -0.63 -6.80 2.20** -0.36 -0.51 0.88**
(0.46) (6.76) (0.85) (0.28) (0.57) (0.33)

CHF -5.51** 0.62 -1.84 -0.99*** 0.03 -0.25
(1.95) (10.54) (2.09) (0.17) (0.54) (0.32)

EUR -0.47* 7.55 -1.10 -0.57* 0.39 -0.26
(0.21) (18.82) (1.09) (0.23) (0.81) (0.28)

GBP -0.60* 3.24 2.00* -0.46* 0.20 0.69**
(0.26) (8.00) (0.95) (0.20) (0.45) (0.25)

JPY -0.94** 2.13 -3.60** -0.85** 0.09 -0.80*
(0.35) (18.76) (1.27) (0.31) (0.78) (0.31)

NZD -1.99** -5.48 0.19 -0.54** -0.38 0.10
(0.70) (6.95) (0.41) (0.20) (0.45) (0.21)

Panel B: Portfolios
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

Carry 1.94*** -0.52 6.43*** 1.09** -0.04 1.32***
(0.54) (3.39) (1.25) (0.33) (0.26) (0.29)

Dollar -1.49** 0.40 0.13 -1.20* 0.02 0.05
(0.49) (16.28) (0.81) (0.48) (0.99) (0.33)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the annual profits and annualized Sharpe ratios from the OIS 1M-forward 1M
forward CIP trading strategy. All statistics are reported by period: Pre-Crisis is 2003-01-01 to 2007-
06-30, Crisis is 2007-07-01 to 2010-06-30, and Post-Crisis is 2010-07-01 to 2018-07-31. Panel A reports
results in single currencies. Panel B reports results in portfolios of single currency forward CIP trading
strategy. The Carry portfolio is formed by longing the AUD and shorting the JPY forward CIP trading
strategy. The Dollar portfolio is formed by going long in all seven sample currencies’ forward CIP trading
strategy in equal weight. Newey-West standard errors are reported in parenthesis, where the overlapping
bandwidth is chosen by the Newey-West (1994) selection procedure.

75



Table A3: Summary Statistics of Returns on OIS 3M-forward 3M Forward CIP
Trading Strategy

Panel A: Single Currencies
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

AUD 1.31 7.17 2.63* 0.29 0.27 0.48
(0.87) (7.26) (1.30) (0.17) (0.26) (0.24)

CAD 0.11 9.47 3.94*** 0.03 0.42 0.87***
(0.59) (9.60) (1.03) (0.19) (0.38) (0.23)

CHF 0.81 3.65 -2.16 0.17 0.14 -0.17
(0.83) (13.83) (3.51) (0.15) (0.49) (0.29)

EUR -0.19 6.41 -0.89 -0.07 0.24 -0.12
(0.54) (16.81) (2.39) (0.19) (0.57) (0.33)

GBP -0.65 7.39 3.49*** -0.25 0.33 0.77***
(0.38) (9.98) (1.04) (0.15) (0.36) (0.21)

JPY 0.65 6.37 -7.35* 0.13 0.22 -0.82**
(3.34) (16.83) (2.93) (0.55) (0.53) (0.29)

NZD -4.45*** 1.06 0.26 -0.83** 0.05 0.07
(1.09) (7.03) (0.69) (0.31) (0.34) (0.18)

Panel B: Portfolios
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

Carry 0.62 0.74 9.99*** 0.15 0.05 1.04***
(0.71) (2.70) (2.63) (0.19) (0.18) (0.29)

Dollar 0.83 6.00 0.02 0.21 0.26 0.00
(2.60) (13.60) (1.52) (0.52) (0.53) (0.31)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the annual profits and annualized Sharpe ratios from the OIS 3M-forward 3M
forward CIP trading strategy. All statistics are reported by period: Pre-Crisis is 2003-01-01 to 2007-
06-30, Crisis is 2007-07-01 to 2010-06-30, and Post-Crisis is 2010-07-01 to 2018-05-31. Panel A reports
results in single currencies. Panel B reports results in portfolios of single currency forward CIP trading
strategy. The Carry portfolio is formed by longing the AUD and shorting the JPY forward CIP trading
strategy. The Dollar portfolio is formed by going long in all seven sample currencies’ forward CIP trading
strategy in equal weight. Newey-West standard errors are reported in parenthesis, where the overlapping
bandwidth is chosen by the Newey-West (1994) selection procedure.
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Table A4: Summary Statistics of Returns on IBOR 1M-forward 3M Forward
CIP Trading Strategy

Panel A: Single Currencies
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

AUD 2.12* -18.81* 6.93*** 0.55* -0.72** 1.34***
(0.97) (8.13) (1.29) (0.26) (0.27) (0.25)

CAD 2.87** -8.59 10.50*** 0.68* -0.44 2.19***
(1.00) (8.49) (1.54) (0.27) (0.39) (0.42)

CHF -2.76*** 2.58 -1.78 -0.91*** 0.10 -0.13
(0.71) (11.62) (4.58) (0.23) (0.46) (0.35)

EUR 0.43 21.08 3.17 0.15 0.87* 0.32
(0.48) (14.49) (4.38) (0.17) (0.41) (0.41)

GBP 0.31 13.38 4.78** 0.08 0.58 0.93**
(1.09) (13.16) (1.52) (0.27) (0.47) (0.31)

JPY -2.22* -5.56 -7.75** -0.80* -0.19 -0.95**
(0.94) (16.44) (2.63) (0.34) (0.57) (0.30)

NZD 5.84*** -23.08*** 3.50 0.66** -1.24*** 0.52
(1.71) (6.62) (1.93) (0.23) (0.26) (0.27)

Panel B: Portfolios
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

Carry 4.60*** -12.56 14.70*** 1.09*** -0.47 1.58***
(1.24) (8.12) (2.55) (0.26) (0.29) (0.26)

Dollar 0.54 -2.31 2.29 0.27 -0.14 0.48
(0.52) (9.52) (1.63) (0.27) (0.56) (0.32)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the annual profits and annualized Sharpe ratios from the IBOR 1M-forward
3M forward CIP trading strategy. All statistics are reported by period: Pre-Crisis is 2003-01-01 to
2007-06-30, Crisis is 2007-07-01 to 2010-06-30, and Post-Crisis is 2010-07-01 to 2018-07-31. Panel A
reports results in single currencies. Panel B reports results in portfolios of single currency forward CIP
trading strategy. The Carry portfolio is formed by longing the AUD and shorting the JPY forward CIP
trading strategy. The Dollar portfolio is formed by going long in all seven sample currencies’ forward
CIP trading strategy in equal weight. Newey-West standard errors are reported in parenthesis, where
the overlapping bandwidth is chosen by the Newey-West (1994) selection procedure.
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Table A5: Summary Statistics of Returns on IBOR 3M-forward 3M Forward
CIP Trading Strategy

Panel A: Single Currencies
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

AUD 1.67*** -1.64 3.76*** 0.73*** -0.11 0.88***
(0.28) (2.61) (0.89) (0.14) (0.16) (0.23)

CAD 1.03* 7.34* 7.44*** 0.36* 0.60* 1.72***
(0.44) (2.90) (0.98) (0.14) (0.28) (0.30)

CHF -0.50 2.61 -1.91 -0.26 0.17 -0.18
(0.31) (4.84) (2.55) (0.20) (0.31) (0.26)

EUR 0.26 11.53* 1.10 0.14 0.73* 0.11
(0.35) (5.39) (4.84) (0.16) (0.30) (0.46)

GBP 0.57 10.23 3.13** 0.20 0.63** 0.71***
(0.46) (5.55) (0.98) (0.16) (0.19) (0.20)

JPY -0.13 -0.64 -6.64*** -0.06 -0.05 -0.98***
(0.36) (3.25) (1.72) (0.16) (0.24) (0.25)

NZD 0.54 -10.26*** 1.19 0.10 -0.90*** 0.23
(0.67) (2.59) (0.92) (0.12) (0.18) (0.19)

Panel B: Portfolios
Mean Sharpe Ratio

Pre-Crisis Crisis
Post-
Crisis Pre-Crisis Crisis

Post-
Crisis

Carry 1.61** -1.02 10.40*** 0.53*** -0.07 1.43***
(0.52) (1.91) (1.58) (0.13) (0.13) (0.28)

Dollar 0.30 2.89 1.15 0.24 0.28 0.27
(0.18) (2.97) (1.27) (0.13) (0.29) (0.29)

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table reports the annual profits and annualized Sharpe ratios from the IBOR 3M-forward
3M forward CIP trading strategy. All statistics are reported by period: Pre-Crisis is 2003-01-01 to
2007-06-30, Crisis is 2007-07-01 to 2010-06-30, and Post-Crisis is 2010-07-01 to 2018-05-31. Panel A
reports results in single currencies. Panel B reports results in portfolios of single currency forward CIP
trading strategy. The Carry portfolio is formed by longing the AUD and shorting the JPY forward CIP
trading strategy. The Dollar portfolio is formed by going long in all seven sample currencies’ forward
CIP trading strategy in equal weight. Newey-West standard errors are reported in parenthesis, where
the overlapping bandwidth is chosen by the Newey-West (1994) selection procedure.
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