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1 Introduction

Advances in data and computing techniques have kindled hopes that civil society, police,

or peacekeepers could predict costly violence ahead of time. Such early-warning systems

could be used to target scarce security personnel and resources, and prevent violence from

occurring or escalating.

Until recently, prediction focused on large-scale, country-level events, including coups,

civil wars, and terror attacks.1 These macro-level efforts have informed policy, the science

of prediction, and our understanding of violence. But such high-level predictions are not

easy to act on. Scholars such as Cederman and Weidmann (2017) argue that country-level

conflict predictions are unlikely to improve much in the future: there is simply too much

complexity and randomness, they argue, to develop reliable forecasts over such wide time

and space.

Sub-national data or higher-frequency predictions could prove more fruitful. The past

decade has seen the study of conflict push down to the micro-level causes, processes, and con-

sequences, and we can avail ourselves of these data to investigate prediction. If governments,

police, or peacekeepers can reliably predict what places will see escalations of violence, for

instance, they may be able to act to prevent it. Policy options to prevent an ethnic riot or

local unrest are likely better than policy options to prevent a civil war. The feasibility of

these early warning systems are unknown, however. Now is a good moment to take stock of

what existing methods and the richest available micro data can deliver.

This paper takes advantage of high-quality and extensive data in two countries, Colombia

and Indonesia. Both countries have been ravaged by violence for decades—a situation that

typically does not bode well for data availability. But both countries are also wealthy enough

(and have strong enough states and research communities) to produce some of the highest-

1The Political Instability Task Force’s prediction efforts are likely the most well known (Goldstone et al.,
2010). For other examples of cross-national prediction studies, see Beck et al. (2000); Brandt et al. (2011);
Celiku and Kraay (2017); Gleditsch and Ward (2013); Gurr and Lichbach (1986); Harff (2003); Hegre et
al. (2013, 2016); Perry (2013); Ward et al. (2013). For an early exception see Schrodt (2006) who studies
violence in the Balkans.
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quality local data in the developing world. This includes a trove of information on local

socioeconomic conditions and other characteristics, plus at least a decade of subdistrict- or

municipal-level data on local violence.

We chose these two cases because they are among the current “best case” scenarios in

terms of both micro-level data on violent events, as well as a wide range of predictors of

violence, in panel form. If conflict prediction proves fruitful in these two cases, they could be

models for other prediction efforts. If not, then we must ask where or with what additional

data we can expect early warning systems to bear fruit. Finally, both countries have suffered

recurring episodes of local violence during transitions to national peace. Anticipating and

preventing these episodes is of both substantive and practical importance.

We identified, collected, and merged dozens of subnational datasets in each country. This

gives us an unusually rich array of hundreds of covariates per locality, including covariates

that the empirical and theoretical literatures commonly associate with conflict onset and

escalation (Blattman and Miguel, 2010). This data gathering also gives us multiple measures

of the outcome we are trying to predict. For instance, using data from 1998 to 2014 in

Indonesia, we are able to study conflicts related to interethnic or religious tensions, as well

as electoral and resource disputes. In Colombia, our data span 1988 to 2005. We predict

clashes between state, guerrilla, and paramilitary forces during a period of protracted civil

conflict.

We then deploy several machine learning methods to generate predictions of local violent

incidents at the annual level. In our main year-ahead predictions, we train the algorithms on

six to fourteen years of data, and forecast local conflict during the following year. We also

examine predictive power across space as well as time, and with new outbreaks of violence

as well as escalations.

Our results illustrate both the promise and pitfalls of local violence forecasting. An

ensemble of machine learning models effectively identifies locations at risk of having a violent

incident. We are particularly effective at identifying “hot spots” with high concentrations
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of violence, defined as five or more incidents in a single year. Indeed, our ensemble model,

which leverages the best new methods, performs better than previous sub-national attempts

(Blair et al., 2017; Colaresi et al., 2016; Weidmann and Ward, 2010; Witmer et al., 2017).

We view these results as especially important given that such local hot spots can pose an

especially serious risk of regional or national escalation.

We find that local violence is not merely autoregressive, as a model consisting of the

lagged dependent variable alone performs consistently poorly. Rather, our algorithms’ strong

performance is mainly driven by forecasts of where, but not when, violence is likely to occur.

While a simple lagged dependent variable model yields disappointing results, more nuanced

histories of violence tend to be the best predictors of hot spots in particular. In other words,

to predict future violence, it is not enough to know where violence occurred in the past. But

detailed and disaggregated histories of violence—including the severity of particular incidents

(e.g., number of deaths, property damage) and the identity of the actors involved—perform

very well.

Even without such detailed and disaggregated histories, however, the available covariates

also predict hot spots almost equally well. This suggests that much of the information

contained in these violence histories is representative of observable characteristics of the

units in our two samples. The most predictive risk factors tend to be slow-moving or time-

invariant. In Colombia, for example, one of the most reliable predictors is terrain ruggedness.

In Indonesia, robust predictors include religious and ethnic diversity as well as sectoral shares

of the local economy.

Importantly, predictive accuracy improves little when we add time-varying factors, includ-

ing natural disasters, elections, and fluctuations in rainfall, temperature, commodity prices

and drug production. This lies in contrast to a large causal literature on conflict, where

an array of findings associate economic and political shocks to intensified violence (Miguel

et al., 2004; Blattman and Miguel, 2010; Dube and Vargas, 2013; Berman and Couttenier,

2013; Bazzi and Blattman, 2014; Burke et al., 2015; Wright and Signoret, 2016).
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Our models also perform poorly when we attempt to predict annual deviations from

average levels of violence over the study period. That is, even rich histories of violence, rich

covariates, and the most common economic and political shocks do not help us identify what

hot spots are likely to get hotter in the coming year.

In contrast, the models perform well when we forecast conflict across space, using train-

ing data from all available years in one set of locations to predict conflict in another set of

locations. In these cross-location predictions, time-varying shocks typically improve perfor-

mance. The models leverage the longest time series currently available at the local level.

This leads us to believe that a lack of common support in the training and testing periods

may explain the limited predictive performance of time-varying shocks when we attempt to

forecast conflict over time. Thus, early warning performance should improve over time, but

this (by definition) means that better one-year-ahead predictions are a long ways off.

Taken together, our results are both encouraging and disappointing. On the one hand,

we are able to predict hot spots for local violence remarkably accurately, and much more

accurately than previous exercises of this sort. Anticipating where violence is most likely to

occur is potentially highly valuable to resource-constrained governments in conflict-affected

states. On the other hand, early warning systems would ideally be able to predict not just

the location but also the timing of new outbreaks of violence. Our inability to do so, with

some of the richest and most systematic subnational panel data in the developing world, is

important but disheartening news for conflict forecasters.

One interpretation of our results is that local conflict prediction is less fruitful than

hoped. This pessimistic conclusion would resonate with warnings that big data and machine

learning may not deliver the precision that policymakers long for (Jasny and Stone, 2017, p.

469). It also aligns with a view that conflict breaks out for largely idiosyncratic reasons, as

reflected in the warning by Gartzke (1999) that “war is in the error term”.

Another interpretation is that early warning systems may yet be feasible, but require

longer, more frequent data on additional or different risk factors. Longer training samples

5



could give algorithms more variation to train on, and in principle this could help them

identify more complex relationships with time-varying predictors. If true, this implies that

there will be large gains to collecting longer conflict time series, for example, by diving into

past historical archives. There could also be gains from using higher-frequency data, or more

data on new risk factors, including data from mobile phones, social media, or other forms of

media.2 These data innovations, and our increasing ability to collect newer and wider forms

of big data, may enhance our capacity to forecast conflict over time.

Our paper establishes several results that future work should leverage to explore the

promise of machine learning methods in conflict. Overall, conflict can be forecasted well

across space, but not over time. While violence is not simply autoregressive, detailed conflict

histories can substitute for a broader array of covariates, which are potentially more expensive

to collect. But if such detailed histories of violence are unavailable (as is the case in most

countries), a more limited set of common or easy-to-measure covariates can also predict

hot spots remarkably well, at least in our two cases. Basic hot spot prediction systems are

probably feasible in a wide range of countries, even if an escalation early warning system

may not be.

We see these patterns consistently across two different country cases, with very different

forms of violence. These findings suggest that the combination of newer and longer conflict

time series, combined with machine learning methodologies, may be particularly instructive

for improving conflict prediction over time.

2A case in point is work by Mueller and Rauh (2017) which successfully uses topics analyses from newspapers
to forecast conflict within countries. Likewise, Berger et al. (2014) use cell phone call patterns to predict
temporal variation in conflict.
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2 Settings

2.1 Indonesia

Following the 1998 collapse of Suharto’s authoritarian regime, Indonesia experienced large-

scale collective violence.3 Separatist movements in Aceh, East Timor (as it parted from

Indonesia), and Papua resulted in over 10,000 deaths. At the same time, religious and

ethnic conflict reached new highs.

Collective violence abated by 2003, and the separatist conflict in Aceh ended in 2005.

Post-2004, there were far fewer fatalities, and the composition of violence shifted as electoral

and resource-related violence rose. The violence also had different consequences: after 2004

it was more likely to lead to injuries and property damage than to deaths. Deadly violence

nevertheless remained prevalent across the archipelago, primarily concentrated in regions

with histories of large-scale violence.

Scholars debate the drivers of today’s conflict in Indonesia, highlighting fixed factors like

ethnicity and religion, as well as local resources like forests, minerals, and plantation crops.

Regional variation in violence has been linked to political and economic shocks associated

with decentralization and electoral reforms (Bazzi and Gudgeon, 2017; Pierskalla and Sacks,

2017), and with natural disasters, weather shocks, and commodity price fluctuations (Barron

et al., 2009; Wright and Signoret, 2016). While the literature has identified a variety of

proximate causes, it is not clear which of these factors are the best predictors of violence.

2.2 Colombia

Colombia’s long-running civil war has resulted in 220,000 deaths and 25,000 disappearances,

and forcibly displaced over five million civilians (Historical Memory Group, 2013).

During our analysis period, 1988–2005, the conflict mainly involved left-wing guerrilla

groups, the government military, and right-wing paramilitary groups. The insurgency was

3For detailed accounts see Barron et al. (2014, 2016); Tadjoeddin (2014).
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launched by communist guerrillas in the 1960s. Paramilitaries arose in the 1980s when

landowners organized in response to extortion and violence perpetrated by the guerrillas.

Paramilitaries and the government colluded extensively, though their relationship varied

over time and space.

Low violence levels prevailed through the 1980s, but escalated in the 1990s when paramil-

itaries expanded and centralized authority. Intensity remained high until the paramilitaries

demobilized, a process that began in 2003 and continued until 2006, when the main paramili-

tary organization officially disbanded. The conflict subsided further as the death of a number

of guerrilla leaders weakened their respective groups. It drew to an official end in 2016, when

the largest guerrilla group signed a peace deal with the government.

Scholars have linked regional variation in conflict to a host of political and economic

factors, including shocks to drug production (Angrist and Kugler, 2008), fluctuations in

commodity prices (Dube and Vargas, 2013), revenue decentralization (Chacon, 2014), collu-

sion between paramilitaries and politicians (Acemoglu et al., 2013), American military aid

(Dube and Naidu, 2015), and military incentives in the targeting of civilians (Acemoglu et

al., 2016).

3 Data

An important contribution of this study are the two datasets we assembled. In each country

we collected and stitched together dozens of local-level data sets, most of which had not

been consolidated before. The result is a uniquely rich trove of data that we can draw on

for purposes of prediction.

3.1 Indonesia

Our units of analysis are Indonesia’s third-tier administrative units, known as subdistricts or

kecamatan. The country had 7,094 subdistricts in 514 districts in 2014. These subdistricts
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had a median population of around 22,000.4 While districts are the key autonomous admin-

istrative units, responsible for providing major public goods, subdistricts are also important

sites of political organization.

Subdistrict-Level Violence Data Our main measures of violence come from the In-

donesian National Violence Monitoring System (known by its Indonesian acronym, SNPK).

Coverage begins in 1998 for nine conflict-prone provinces and increases to 15 provinces plus

parts of 3 provinces in greater Jakarta beginning in 2005. The data is not formally repre-

sentative of Indonesia, but by 2005 it spans all major island groups and covers a majority of

the population.

The SNPK is built from local media reports of violence. SNPK researchers collected all

available print archives of 120 local newspapers, recording over 2 million images. Coders then

used a standardized template to code each incident based on the underlying trigger, beginning

with broad groupings: domestic violence, violent crime, violence during law enforcement,

and conflict. Within conflict, the coders further sorted into identity, elections/appointments,

governance, resource violence, popular justice, separatist, and other (could not be classified).

Appendix C.1 (Appendix page 10) defines each of these.

We also draw on additional measures of violence from a triennial administrative census

of villages known by its acronym, Podes. Podes asks local government officials about a host

of village characteristics, including recent violent events.5

Outcome Measurement Our main outcome is an indicator for any “social conflict.”

This groups all of the various forms of violence, except domestic violence and crime, into one

category. It guards against miscoding of conflict triggers. Predictive performance is similar

when retaining domestic violence and crime.6

4To deal with Indonesia’s pervasive administrative unit proliferation we harmonize all observations to bound-
aries in 2000.

5To the extent that local leaders face strategic incentives to misreport violence, Podes measures may be
more biased than those from external media reporting (for discussion, see Barron et al., 2014).

6Results available upon request.
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In addition to indicators of any social conflict (which occur in around half of the sub-

districts each year) we also predict an indicator for at least five social conflict incidents in

a given year. This is meant to capture higher intensity episodes. These episodes occur in

around 10% of subdistricts each year. We predict indicators rather than counts in order to

simplify the interpretation of performance: the models either correctly predict the incident

or they do not. We predict counts in Online Appendix A.3 (Appendix page 4); this exercise

does not meaningfully change our conclusions.

Of course, levels of violence tend to be persistent, and we are often interested in predicting

the onset and escalation of violence after a period of peace. There is no natural definition of

“onset” here, as in the civil war literature, since there are no discontinuities in subnational

event-level data. Instead, we construct an indicator for a standard deviation increase in

violence since the previous year, and seek to predict this escalation. A standard deviation

increase is around 4.7 acts of violence in a year, and we observe an increase of this size in

3.3% of subdistrict–years.

Covariates In addition to lagged violence measures from SNPK and Podes, we assemble a

set of over 400 subdistrict-level covariates from multiple data sources, several of them new.

Details on sources and variable construction can be found in Online Appendix C.1 (Appendix

page 10). Predictors include, among others: (a) population and population density; (b) age,

religious, and ethnic composition; (c) topographical traits and transportation infrastruc-

ture; (d) local commodity production, mine locations, and relevant commodity prices; (e)

sectoral shares of output; (e) economic output measured by unemployment, light intensity,

and district-level GDP; (f) rainfall and temperature histories and fluctuations; (g) local and

national election outcomes; (h) subdistrict and district public revenues and expenditures,

and (i) local security personnel and posts. Unless otherwise specified, these measures are

available at the subdistrict level or finer, and are aggregated to their subdistrict boundaries

in 2000.
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3.2 Colombia

Our unit of analysis for Colombia is the municipality. There are 1,023 in our study period,

averaging 37,000 residents (slightly larger than the typical Indonesian subdistrict). Munici-

palities play a key role in the allocation and contestation of public resources in Colombia.

Municipality-Level Violence Data The Conflict Analysis Resource Center (CERAC)

provides data on armed confrontations from 1988 to 2005, collected from 25 major newspa-

pers and supplemented by reports from a network of Catholic priests. The priests are seen

as neutral actors, often serving as negotiators between the two sides. Their accounts are

crucial for remote areas. CERAC cross-checks the events in this database against National

Police, Human Rights Watch, and other sources (see Restrepo et al., 2004).

CERAC codes events as bilateral clashes between sides or unilateral attacks by any one

side against another. Clashes occur between all three, though government versus paramili-

tary clashes are rare.

We only use CERAC data after 1992 for the training sample, since a consistent set of

covariates is unavailable before then.

Outcome Measurement We construct indicators of any attack or clash, analogous to the

indicators for Indonesia. This grouping combines attacks initiated by the government with

attacks initiated by other armed actors. Results are similar when we remove government-

initiated violence.7

In Colombia, our indicator of any conflict occurs in about one-third of municipalities

each year. “Hotspots” with five or more incidents occur about 8% of the time. A standard

deviation change is 3.4 events, and we observe such a change in 4.4% of municipality-years.

7Results available upon request.
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Covariates As in Indonesia, we assemble a broad set of predictors from multiple sources:

over 350 in all (including lags of time-varying predictors).8 These include: (a) population

and population density; (b) topographical traits and road accessibility; (c) military presence

and U.S. military spending (Dube and Naidu, 2015); (d) local commodity production and

relevant commodity prices (as in Dube and Vargas, 2013); (e) illicit drug production and

prices; (f) measures of local poverty and inequality; (g) rainfall and temperature histories and

fluctuations; (h) colonial population and infrastructure (Acemoglu et al., 2015); (i) annual

municipality revenues and spending; and (j) electoral outcomes in local and federal elections.

4 Prediction Methods

4.1 Training and Testing

For each year t we forecast violence in year t + 1. While the events are coded with specific

dates, we aggregate to the annual level because few predictors are measured at sub-annual

frequency, and because disaggregation would serve to exacerbate a class imbalance problem

(i.e. the fact that there are far more non-events than events). Our procedure is as follows:

1. For each model, we take predictors measured from t0 to t − 1 as our training set.

Correspondingly, violence measures up to and including period t are there training

outcomes.

2. We use 5-fold cross validation to choose optimal “tuning parameters” specific to each

machine learning algorithm (see Section 4.2). We choose tuning parameters to max-

imize out-of-sample area under the receiver operating characteristic, or ROC, curve

(AUC). 5-fold cross validation simulates out-of-sample prediction. First, the data is

randomly partitioned into 5 equal sized subsamples. A model is then fit to four sub-

samples and used to predict results for the fifth. This is repeated for each of the five

8See Online Appendix C.2 on Appendix page 16 for full details.
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subsamples, so that there is an “out-of-sample” prediction of each observation. We

replicate this exercise for each tuning parameter value in the parameter search space.

The best performing parameter, in terms of AUC, is chosen.

3. We repeat step 2 ten times with different random partitions, in order to generate 10

“optimal” tuning parameters, and then we take the average over these 10 trials.

4. Using the selected tuning parameter values, we fit the model to the entire training set.

5. With this fitted model, we use the predictors measured up to year t and the estimated

parameters to forecast violence in year t + 1.

We generate out-of-sample predictions starting in 2008 (and ending in 2014) for Indonesia

and in 1998 for Colombia (ending in 2005). We use all data up to the test year to generate

out-of-sample forecasts. So, to predict violence in year t + 1, we train each model on data

through year t; to predict violence in t + 2, we train each model on data through t + 1; etc.

For Indonesia, this procedure generates seven predictions per algorithm. The first uses six

years of data to forecast conflict in 2008, and the last uses twelve years of data to forecast

conflict in 2014. For Colombia, we generate eight predictions per algorithm. The first uses

six years of data to forecast conflict in 1998, and the last uses fourteen years of data to

forecast conflict in 2005.

4.2 Machine Learning Algorithms

We apply several machine learning methods to the above procedure. Since each has its

own strengths and drawbacks discussed below, we also take a weighted average of the four

using an Ensemble Bayesian Model Average.(Beger et al., 2016) Starting with the prior

that each algorithm is equally appropriate, we use cross-validation to update our weights

based on the accuracy of each model (Montgomery et al., 2012). Bayesian model averaging

is especially important for our auxiliary analyses in which we explore different subsets of

predictors and alternative prediction tasks. Since some procedures may be more or less
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suited to particular tasks, the model average allows us to consider the potential of the suite

of algorithms as a whole.

1. LASSO (Tibshirani, 1994) is a logistic regression model that penalizes large coefficients

and forces all but the most important to zero. This algorithm is the simplest of the

five that we test, and the least susceptible to overfitting. It is less suited to identifying

complex relationships between covariates and outcomes. It is also most familiar to

social scientists.

2. Random Forests comprise many independent decision trees. Each tree is a sequence

of rules that splits the sample into subsets, called leaves, based on variable cutoffs. The

prediction for each leaf is the mean outcome for the observations on that leaf, and trees

are fit so as to minimize mean squared error. Each tree is constructed by sampling a

random subset of the training data and a random subset of the predictors. Each of

these trees generates a prediction, and the overall prediction of the Random Forest is

the average of the predictions from each tree. Random forests are very flexible–able to

model complicated interactions between variables. Random forests are also relatively

straightforward in terms of choosing tuning parameters.

3. Gradient Boosted Machines are a variant of Random Forests. Trees are fit neither

randomly nor independently. Instead, each tree is fit sequentially to the full dataset,

but observations are weighted by the error rates of previous trees in the forest, such

that later trees are fit with a larger weight on observations that previous trees found

difficult to predict. In this way, each new tree slightly improves the model (Freund

and Schapire, 1999). Gradient boosted machines can improve upon random forests by

fitting trees in a more targeted manner, but they also require more decisions about

tuning parameters and are more susceptible to overfitting.

4. Neural Networks consist of systems of “nodes,” which are each functions of pre-

dictors. The functions input a linear combination of predictors and output a value
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between zero and one. The outputs of these nodes are then further combined to pro-

duce a single output, with an organization evoking the structure of the human brain

(Hastie et al., 2001). The optimization problem is to choose appropriate weights in

each linear combination.9 Neural networks are widely applied in industry and are best

suited for the most complex classification tasks such as image and speech recognition.

However, neural networks require relatively large datasets and computing resources to

achieve high performance.

Online Appendix B (Appendix page 8) reports further details about hyper-parameter choices

and the mechanics of each algorithm.

While there is an enormous variety of additional algorithms we might have tested, we

focus on these four because they are well established in the machine learning literature,

because they have been used (albeit infrequently) for purposes of forecasting in economics

and political science, and because they reflect much of the variation across the most promi-

nent categories of machine learning models: selection and shrinkage techniques (LASSO),

ensemble and tree-based techniques (Random Forests and Gradient Boosted Machines), and

non-linear adaptive weighting techniques (Neural Networks). Our goal is not to be ex-

haustive, but rather to evaluate the predictive power of well-established models applied to

uniquely rich within-country data on conflict and its correlates.

4.3 Performance Metrics

To evaluate our models, we focus on the area under the ROC curve, although other perfor-

mance metrics such as the mean squared error and accuracy are reported in Online Appendix

A.1 (Appendix page 1). ROC curves plot the tradeoff between true and false positives for a

given model. The area under the curve, or AUC, captures the probability that a randomly

9Because there is a separate set of weights for each node, the number of free parameters can grow very
quickly. Since we do not have many observations relative to our predictor dimensionality, we must first
cut down the number of predictors by taking principal components of the covariates. We use 30 principal
components in Indonesia and 20 in Colombia.
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chosen pair of observations is correctly ordered in terms of predicted risk of violence. A

model that performs no better than chance would have an AUC of 0.5; a perfect model

would have an AUC of 1.

An advantage of the AUC is that it does not require that we specify a probability thresh-

old above which we predict violence will occur. Selecting a specific threshold requires making

a tradeoff between accuracy, sensitivity (the proportion of incidents correctly predicted), and

specificity (the proportion of non-incidents correctly predicted). The threshold one chooses

depends on one’s relative tolerance for false positives and false negatives.

For example, a policymaker with ample resources might choose a low threshold, increasing

sensitivity at the cost of specificity and accuracy, while a policymaker with scarce resources

might choose a high threshold, increasing specificity at the cost of sensitivity and accuracy.

We are more interested in overall performance than in performance at any given threshold,

and so opt to focus on the AUC. But we recognize that the AUC has some limitations as

well, especially in the presence of class-imbalanced data, and report alternative performance

metrics in the appendix.10

5 Results

5.1 Next Year’s Violence is Predictable

Table 1 shows that all machine learning methods have strong predictive performance. For

the ensemble average (EBMA), the AUC is above 0.82 for predicting ≥1 event, above 0.91 for

≥5 events, and above 0.79 for escalations of ≥1 standard deviation. In general, AUCs of 0.8

and above are considered very good, and AUCs of 0.90 and above are considered excellent.

To fix ideas, given a random pair of Indonesian subdistricts in which one location experi-

10An alternative metric that also does not require selecting a threshold is the mean squared error (MSE).
Online Appendix A.1 (Appendix page 1) reports the MSE as well as accuracy, sensitivity, and specificity
at two different thresholds (one that maximizes accuracy and one that maximizes sensitivity while keeping
accuracy above 50%). Our results are qualitatively unchanged when we use the MSE to compare models
and predictors rather than the AUC.
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ences 5 or more incidents and the other does not, there is a 0.935 probability that the more

violent subdistrict would have a higher predicted probability of violence. The lower AUC for

escalations implies that changes are inherently more difficult to predict, and that increasing

the number of true positives comes at the cost of more false positives.

By way of comparison, Blair et al. (2017) report a maximum out-of-sample AUC of 0.74

in a sample of 250 Liberian towns over three years, Weidmann and Ward (2010) achieve a

maximum out-of-sample AUC of 0.78 in Bosnia 1992–95, and Witmer et al. (2017) find a

maximum in-sample AUC of 0.85 across sub-Saharan Africa using 1 degree gridded monthly

data, 1980–2012.11 Gains in the range of 0.05 or 0.10 represent 10–20% of the difference

between the worst and best possible prediction.

The models perform similarly well in Indonesia and Colombia, and performance is similar

across algorithms. LASSO performs roughly as well as the more sophisticated algorithms,

notable given its relative simplicity.

Table 1: Out-of-Sample (One Year Ahead) Performance of Prediction
Models, Area Under the Curve (AUC)

Random Adaptive Neural
LASSO Forest Boosting Network EBMA

(1) (2) (3) (4) (5)

Indonesia (social conflict)
Indicator of any violent event 0.806 0.81 0.814 0.78 0.814
Indicator of ≥ 5 violent events 0.922 0.927 0.932 0.91 0.935
≥ 1 s.d. increase in violent events 0.851 0.797 0.82 0.803 0.841

Colombia (attacks and clashes)
Indicator of any violent event 0.845 0.846 0.848 0.826 0.851
Indicator of ≥ 5 violent events 0.914 0.909 0.91 0.88 0.916
≥ 1 s.d. increase in violent events 0.803 0.787 0.792 0.747 0.798

Notes: Each model is trained on all available data preceding the out-of-sample prediction year. Training
data starts in 1991 in Colombia and 2002 in Indonesia. Out-of-sample prediction begins in 1998 in
Colombia and 2008 in Indonesia. The AUC is the area under the ROC curve, a measure of the trade-
off between the true positive rate and false positive rate at different thresholds. We report average
performance over the out-of-sample years.

11In-sample performance refers to models that are trained and tested on the same data. Out-of-sample refers
to models that are trained on one subset of data and tested on another.
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5.2 We Predict Time-Invariant Risk that Varies Over Space rather

than Time

In this section, we run various analyses to try to understand the nature and sources of

predictability, and conclude that our predictions mainly capture fixed risks of violence. Table

2 reports results. For purposes of comparison, Column (1) reproduces the results from Table

1 above.

5.2.1 Violence Histories Alone are a Good Predictor of Future Conflict

First we examine the predictive power of violence histories alone. Importantly, these histories

are not simply lagged dependent variables. For each country we have data on the actors

involved in different incidents of violence, as well as on the severity of those incidents (number

of deaths, destruction of property, etc.). In Indonesia, we can distinguish between different

motives. Our goal is to assess whether additional covariates improve performance over these

rich conflict histories.

Column (2) and (3) consider models that uses all available information about past vio-

lence. Column (3) adds measures of population and population density to reflect the fact

that more populous places mechanically have more people who can engage in conflict with

one another.

The results are striking. The AUCs with violence histories alone perform almost as well

as, and occasionally better than, our full model in Column (1). The addition of population

in Column (3) improves the performance of violence histories very little.

In Column (4), we take this exercise to the extreme by dispensing with much of the rich

violence data and predicting solely based on whether there was any conflict in the previous

period. Performance is not terrible, as violence is indeed persistent, but it is markedly worse

than when we use a full set of violence measures. Online Appendix A.2 (Appendix page 3)

compares our full model to other autoregressive and OLS fixed effects models, while Online

Appendix A.5 (Appendix page 7) further explores the returns to more detailed violence data.
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5.2.2 Time-Invariant Predictors are Most Effective in Our Models

If detailed, past violence predicts future violence, do we need other predictors at all? In

what follows, we develop a number of tests for parsing the sources of predictability.

Table 2 Column (5) shows a model that only uses predictors that do not directly measure

past violence. These include the hundreds of socioeconomic and demographic measures

discussed above. Performance is comparable to the full model in Column (1) and the violence-

only model in Column (2). This suggests that these socioeconomic and demographic variables

contain more or less the same information as the detailed histories of violence, but add little

value over them.

Of course, our models contain hundreds of variables, and it is possible that some con-

tribute much less than others. In particular, our models include a number of predictors that

change slowly or not at all. Some, such as topographical traits or colonial history, do not

vary by definition. Others, such as ethnic and religious traits in Indonesia, do not vary over

our sample because they are measured only once. Variables that do not change over our

sample cannot, by their nature, predict the timing of violent conflict.

To examine the relative performance of time-varying and time-invariant predictors, we

compare models composed entirely of one or the other. Column (6) uses only time-invariant

traits to predict violence, and performance roughly matches or outperforms the model in

Column (5). Column (7) uses only time-varying predictors, and performance diminishes.12

Thus, most of our model’s performance can be achieved by successfully predicting time-

invariant (or at least highly persistent) violence risk.

In Figure 1, we go one step further and examine the predictive performance of clusters of

related predictors. We start with a baseline model that uses only population (level, growth

rate, and density) to generate predictions. We then add subgroups of predictors to that

baseline model and estimate the change in predictive performance. This approach estimates

12This is true even for the ≥ 1 SD increase. While such increases naturally have a temporal element to
them, it appears that our performance comes from leveraging which places are most at risk of experiencing
escalations as opposed to when these escalations occur.
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Table 2: Out-of-Sample (One Year Ahead) Performance of the Ensemble
(EBMA) Method, Varying Predictor Sets

Area under the curve (AUC) for Models with

All Past All Past Lagged Full Time- Time-
Full Violence Violence & Predictand Excl. Past Invariant Varying

Predictors Measures Population (AR(1)) Violence Predictors Predictors

(1) (2) (3) (4) (5) (6) (7)

Indonesia (2008–2014)

Any Incident (AUC) 0.814 0.801 0.809 0.687 0.798 0.805 0.753
≥ 5 Incidents (AUC) 0.935 0.929 0.934 0.808 0.912 0.920 0.874
≥ 1 S.D. Increase (AUC) 0.841 0.852 0.853 0.527 0.820 0.840 0.783

Colombia (1998–2005)

Any Incident (AUC) 0.851 0.812 0.837 0.743 0.827 0.830 0.768
≥ 5 Incidents (AUC) 0.916 0.905 0.914 0.748 0.878 0.875 0.829
≥ 1 S.D. Increase (AUC) 0.798 0.763 0.786 0.521 0.778 0.768 0.750

Notes: Each model is trained on all available data preceding the out-of-sample prediction year. Training
data starts in 1991 in Colombia and 2002 in Indonesia. Out-of-sample prediction begins in 1998 in
Colombia and 2008 in Indonesia. The AUC is the area under the ROC curve, a measure of the trade-
off between the true positive rate and false positive rate at different thresholds. We report average
performance over the out-of-sample years above. Past violence measures include breakdowns of events
by actors and outcomes such as deaths and damages. Population includes population growth rates and
density.

the predictive power of sets of predictors beyond their association with population.

Figure 1 plots the change in model performance from adding the variable subgroup. We

do so for our three outcomes and both countries. Each out-of-sample year is indicated with

a small dot, to give a sense of the range. The first out-of-sample year is marked with a

green triangle and the last is marked with a blue square. While the first out-of-sample year

generally has worse performance because the training sample is smallest, it is difficult to

see a clear improvement in performance over successive out-of-sample predictions. The final

year of data is not necessarily the best performing. In the discussion below, we focus on the

average change—reflected by the larger open circle.

Consistent with the results above, time-invariant predictors appear to add the most to

predictive performance. This is true even when looking at conflict escalation. The time-

invariant predictors that add the most to predictive performance are also notably similar

across countries and outcomes. Measures of remoteness, like distance from major cities, and
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geographic traits like terrain ruggedness, are generally the best predictors. Measures of eco-

nomic output and economic structure (such as sectoral shares of GDP or total employment)

are also important predictors. (While these measures are not time-invariant in actuality,

they are in our dataset).

In contrast, time-varying covariates seldom improve predictive power, even when predict-

ing a ≥ 1 SD escalation. This is true of natural disasters, commodity prices and climate

shocks. In some instances, adding these predictors decreases performance. However, the

range of estimates is very large, which limits our ability to definitively conclude how these

predictors affect model performance.13 Elections appear to improve predictive power, though

their performance added also varies. Note, moreover, that there is not a clear increase in the

marginal contribution of these predictors over time. The first out-of-sample year is seldom

the worst in terms of the marginal contribution of these time-varying predictors. Likewise,

the final year (which uses the largest training set) is seldom the best.

13The inconclusive performance of these variables in our year-ahead prediction models stands in contrast
to causal studies of conflict, where variables such as commodity prices and weather fluctuations have
been found to exert robust significant effects on conflict intensity and sometimes conflict onset. See, for
example, Miguel et al. (2004), Bazzi and Blattman (2014), Berman and Couttenier (2013), Berman et al.
(forthcoming), Burke et al. (2015) and Dube and Vargas (2013). This underscores the observation that the
relationship between causation and prediction is complex (Shmueli, 2010), and the objective of prediction
differs fundamentally from the objective of parameter estimation (Mullainathan and Spiess, 2017).
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Figure 1: AUC Improvements from Individual Predictor Groups
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(b) Any violent event (Colombia)
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(c) ≥ 5 violent events (Indonesia)
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(d) ≥ 5 violent events (Colombia)
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(e) ≥ 1 S.D. increase in violent events (Indone-
sia)
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(f) ≥ 1 S.D. increase in violent events (Colom-
bia)
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Notes: Performance in individual years appear as small dots. The first (last) year of the sample is
represented by a green triangle (blue square) in order to show the change in performance over time, or
lack thereof. The large hollow circle is the average of performance across the years. A full breakdown of
the variables in each of the different predictor groups can be found in Online Appendix C.3 (Appendix
page 18). 22



5.2.3 Our Models Predict Violence across Locations

So far, several pieces of evidence point to the difficulty of predicting the specific timing of

violence, including: the poor performance of time-varying predictors; the interchangeability

of histories of violence and largely time-invariant predictors; and the fact that histories of

violence predict spikes in violence roughly as well as levels of violence.

An additional exercise in the Online Appendix A.4 (Appendix page 6) shows that our

models perform especially poorly if we seek to predict within-location, over-time variation

in violence, using the deviation of violent incidents in each period from its historical mean.

These results further underscore the difficulty of predicting within-unit changes in violence,

given the available data.

Next, we take the opposite approach, forecasting conflict exclusively across locations.

To do this, we randomly split subdistricts in Indonesia and municipalities in Colombia into

two equal-sized groups. We pool observations over time, and train our algorithms using all

location-years of data in one group of locations, generating predictions for a second group

of location-years. Table 3 reports these results. Column (1) shows that overall performance

when forecasting across locations is strikingly similar to performance when predicting ahead

in time.
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Table 3: Predicting Across Locations
Area Under the Curve (AUC) with

Only Past Only Full
Full Violence Past Violence Excl. Past

Predictors Measures and Population Violence
(1) (2) (3) (4)

Indonesia (2008–2014)
Any Incident (AUC) 0.829 0.813 0.820 0.812
≥ 5 Incidents (AUC) 0.941 0.929 0.933 0.918
≥ 1 S.D. Increase (AUC) 0.863 0.837 0.847 0.844

Colombia (1998-2005)
Any Incident (AUC) 0.838 0.792 0.817 0.807
≥ 5 Incidents (AUC) 0.917 0.902 0.909 0.876
≥ 1 S.D. Increase (AUC) 0.803 0.746 0.770 0.808

Notes: AUCs for a random test set of locations over time. Algorithms are trained using data from
training locations over the entire time span of the datasets. Training data starts in 1991 in Colombia
and 2002 in Indonesia. The AUC is the area under the ROC curve, a measure of the trade-off between
the true positive rate and false positive rate as we vary the discrimination threshold.

However, some differences emerge in the performance of individual predictor groups.

Figure 2 examines which groups of predictors (along with population) best predict out-of-

sample violence across locations. Time-invariant predictors remain important. However,

time-varying predictors including weather, natural disasters and commodity prices no longer

reduce predictive power, and in some cases, improve it substantially. One notable difference

between the across-location and year-ahead predictions is that the training set uses all years

of available data in the across-location approach. The algorithms therefore observe the

entire relevant distribution of weather, disasters and commodity price fluctuations over the

duration of the period. These variables may behave very differently year to year. When we

predict violence one year ahead, if the training period includes such shocks, while the testing

period does not, the lack of common support across these periods may inhibit the predictive

power of these variables. Thus the short time series of the training and testing samples, and

the difficulty of generating off-support predictions, may explain why time-varying covariates

like weather shocks perform worse in our predictions over time.

24



Figure 2: AUC Improvements from Individual Predictor Groups, Cross-
Sectional Prediction
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(c) ≥ 5 violent events (Indonesia)
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(d) ≥ 5 violent events (Colombia)
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(e) ≥ 1 S.D. increase (Indonesia)
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(f) ≥ 1 S.D. increase (Colombia)
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Notes: Performance (AUC) in the single test sample is reported.
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6 Discussion

A large portion of violence in Indonesia and Colombia appears to be predictable, but that

predictability is largely a function of time-invariant, location-specific risk. This is important

in and of itself, since hot spots for violence may pose an especially severe risk of further esca-

lation. But the residual variation—year-to-year changes in violence—is difficult to forecast.

There are several possible explanations. For one, it is possible that the time-varying

dimensions of violence are simply idiosyncratic and therefore hard to predict. In many

cases, conflict is not only inefficient but is an out-of-equilibrium behavior (Fearon, 1995).

These deviations from normal, peaceful social competition could be inherently difficult to

forecast. Violence may also be hard to predict because it responds endogenously to the

strategic calculations of armed actors. For instance, we may observe peace in a particular

region precisely because government security forces crudely predicted a high conflict risk

there, and allocated resources accordingly. Likewise, a terrorist may decide to attack an

area because that is where the attack was least expected.

Measurement problems may also limit model performance. The timing of violence could

be a function of factors that are inherently difficult to observe and measure accurately, such

as social grievances or the deterioration of communal trust. These variables might improve

our models, if only we could measure them. Despite our large set of predictors and our

massively interactive models, measurement challenges may reduce predictive performance.

We may also lack a sufficiently long time series to be able to capture time-varying conflict

risk. The limited predictive power of shocks in our over-time predictions may reflect a lack of

common support in the relatively short training and testing samples. If so, then performance

might improve with more years of data. At the same time, our results hold even when

the training sample is at its longest, and as the training sample gets longer one might be

more concerned about the possibility of structural breaks in the violence generating process.

High-frequency data on local conditions and leading indicators of violence are other potential

avenues for improvement. For now, few developing country contexts offer such data. But
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possibilities in the near future include data from social media, mobile phone meta-data, real-

time incident data, and media monitoring. We view these as promising avenues for future

research seeking to forecast where violence changes over time.

27



References

Acemoglu, Daron, Carlos Garcia-Jimeno, and James A. Robinson, “State capacity
and economic development: A network approach,” American Economic Review, 2015.

, James A. Robinson, and Rafael J. Santos, “The Monopoly of Violence: Evidence
from Colombia,” Journal of the European Economic Association, 2013, 11 (S1), 5–44.
https://economics.mit.edu/files/10402.

, Leopoldo Fergusson, James A. Robinson, Dario Romero, and Juan F. Var-
gas, “The Perils of High-Powered Incentives: Evidence from Colombia’s False Posi-
tives,” Working Paper 22617, National Bureau of Economic Research September 2016.
http://dx.doi.org/10.3386/w22617.

Alesina, A. and E. Zhuravskaya, “Segregation and the Quality of Government in a Cross
Section of Countries,” American Economic Review, 2011, 101 (5), 1872–1911.

Angrist, Joshua D. and Adriana D. Kugler, “Rural Windfall or a New Resource
Curse? Coca, Income, and Civil Conflict in Colombia,” The Review of Economics
and Statistics, May 2008, 90 (2), 191–215. https://ideas.repec.org/a/tpr/restat/

v90y2008i2p191-215.html.

Barron, Patrick, Kai Kaiser, and Menno Pradhan, “Understanding variations in local
conflict: Evidence and implications from Indonesia,” World Development, 2009, 37 (3),
698–713. https://doi.org/10.1016/j.worlddev.2008.08.007.

, Sana Jaffrey, and Ashutosh Varshney, “How Large Conflicts Subside: Evi-
dence From Indonesia,” Indonesia Social Development Paper, 2014, (18). https://

asiafoundation.org/resources/pdfs/HowLargeConflictsSubside.pdf.

, , and , “When Large Conflicts Subside: The Ebbs and Flows of Violence in Post-
Suharto Indonesia,” Journal of East Asian Studies, 2016, 16 (2), 191–217. https://doi.
org/10.1017/jea.2016.6.

Bazzi, Samuel and Christopher Blattman, “Economic shocks and conflict: Evidence
from commodity prices,” American Economic Journal: Macroeconomics, 2014, 6 (4), 1–38.
dx.doi.org/10.1257/mac.6.4.1.

and Matthew Gudgeon, “The Political Boundaries of Ethnic Divisions,” Unpublished
Manuscript, 2017. https://ssrn.com/abstract=3098128.

Beck, Nathaniel, Gary King, and Langche Zeng, “Improving Quantitative Studies
of International Conflict: A Conjecture,” The American Political Science Review, March
2000, 94 (1), 21–35. http://dx.doi.org/10.2307/2586378.

Beger, Andreas, Cassy L. Dorff, and Michael D. Ward, “Irregular leadership changes
in 2014: Forecasts using ensemble, split-population duration models,” International Jour-
nal of Forecasting, January 2016, 32 (1), 98–111. dx.doi.org/10.1016/j.ijforecast.

2015.01.009.

Berger, Daniel, Shankar Kalyanaraman, and Sera Linardi, “Violence and Cell Phone
Communication: Behavior and Prediction in Cote D’Ivoire,” Unpublished Manuscript,
2014. https://ssrn.com/abstract=2526336.

28

https://economics.mit.edu/files/10402
http://dx.doi.org/10.3386/w22617
https://ideas.repec.org/a/tpr/restat/v90y2008i2p191-215.html
https://ideas.repec.org/a/tpr/restat/v90y2008i2p191-215.html
https://doi.org/10.1016/j.worlddev.2008.08.007
https://asiafoundation.org/resources/pdfs/HowLargeConflictsSubside.pdf
https://asiafoundation.org/resources/pdfs/HowLargeConflictsSubside.pdf
https://doi.org/10.1017/jea.2016.6
https://doi.org/10.1017/jea.2016.6
dx.doi.org/10.1257/mac.6.4.1
https://ssrn.com/abstract=3098128
http://dx.doi.org/10.2307/2586378
dx.doi.org/10.1016/j.ijforecast.2015.01.009
dx.doi.org/10.1016/j.ijforecast.2015.01.009
https://ssrn.com/abstract=2526336


Berman, Nicolas and Mathieu Couttenier, “External shocks, internal shots: the
geography of civil conflicts,” Review of Economics and Statistics, 2013, (0). https:

//doi.org/10.1162/REST_a_00521.

, , Dominic Rohner, and Mathias Thoenig, “This Mine is Mine! How Minerals
Fuel Conflicts in Africa,” American Economic Review, forthcoming. dx.doi.org/10.

1257/aer.20150774.

Blair, Robert A., Christopher Blattman, and Alexandra Hartman, “Predicting
local violence: Evidence from a panel survey in Liberia,” Journal of Peace Research,
March 2017, 54 (2), 298–312. http://dx.doi.org/10.1177/0022343316684009.

Blattman, C. and E. Miguel, “Civil war,” Journal of Economic Literature, 2010, pp. 3–
57. dx.doi.org/10.1257/jel.48.1.3.

Brandt, Patrick T., John R. Freeman, and Philip A. Schrodt, “Real Time, Time
Series Forecasting of Inter- and Intra-State Political Conflict,” Conflict Management and
Peace Science, 2011, 28 (1), 41–64. https://doi.org/10.1177/0738894210388125.

Burke, Marshall, Solomon Hsiang, and Edward Miguel, “Climate and Con-
flict,” Annual Review Economics, 2015, 7, 577–617. https://doi.org/10.1146/

annurev-economics-080614-115430.

Cederman, Lars-Erik and Nils B. Weidmann, “Predicting armed conflict: Time to
adjust our expectations?,” Science, 2017, 355 (6324), 474–476. http://dx.doi.org/10.

1126/science.aal4483.

Celiku, Bledi and Aart Kraay, “Predicting conflict,” World Bank Policy Research Work-
ing Paper 8075, 2017. https://openknowledge.worldbank.org/handle/10986/26847.

Chacon, Mario, “In the Line of Fire: Political Violence and Decentralization in Colombia,”
Working Paper, 2014. https://dx.doi.org/10.2139/ssrn.23866677.

Colaresi, Michael, H̊avard Hegre, and Jonas Nordkvelle, “Early ViEWS: A prototype
disaggregated, open-source Violence Early-Warning System,” Presented to the American
Political Science Association annual convention, Philadelphia, 2016. http://www.pcr.

uu.se/digitalAssets/653/c_653796-l_1-k_earlyviewsapsa2016.pdf.

Dube, Oeindrila and Juan F. Vargas, “Commodity price shocks and civil conflict:
Evidence from Colombia,” The Review of Economic Studies, 2013, 80 (4), 1384–1421.
https://doi.org/10.1093/restud/rdt009.

and Suresh Naidu, “Bases, Bullets, and Ballots: The Effect of US Military Aid on
Political Conflict in Colombia,” The Journal of Politics, 2015, 77 (1), 249–267. https:

//www.journals.uchicago.edu/doi/10.1086/679021.

Fearon, James D., “Rationalist explanations for war,” International organization, 1995,
49 (3), 379–414. https://www.jstor.org/stable/2706903.

Fischer, Gunther, Freddy Nachtergaele, Sylvia Prieler, Harrij van Velthuizen,
Luc Verelst, and David Wiberg, “Global Agro-ecological Zones Assessment for Agri-
culture (GAEZ 2008),” Technical Report, GAEZ 2008. http://www.fao.org/nr/gaez/

publications/en/.

Freund, Yoav and Robert E. Schapire, “A Short Introduction to Boosting,” in “In Pro-

29

https://doi.org/10.1162/REST_a_00521 
https://doi.org/10.1162/REST_a_00521 
dx.doi.org/10.1257/aer.20150774
dx.doi.org/10.1257/aer.20150774
http://dx.doi.org/10.1177/0022343316684009
dx.doi.org/10.1257/jel.48.1.3
 https://doi.org/10.1177/0738894210388125 
https://doi.org/10.1146/annurev-economics-080614-115430
https://doi.org/10.1146/annurev-economics-080614-115430
http://dx.doi.org/10.1126/science.aal4483
http://dx.doi.org/10.1126/science.aal4483
https://openknowledge.worldbank.org/handle/10986/26847
https://dx.doi.org/10.2139/ssrn.23866677
http://www.pcr.uu.se/digitalAssets/653/c_653796-l_1-k_earlyviewsapsa2016.pdf
http://www.pcr.uu.se/digitalAssets/653/c_653796-l_1-k_earlyviewsapsa2016.pdf
https://doi.org/10.1093/restud/rdt009
https://www.journals.uchicago.edu/doi/10.1086/679021
https://www.journals.uchicago.edu/doi/10.1086/679021
https://www.jstor.org/stable/2706903
http://www.fao.org/nr/gaez/publications/en/
http://www.fao.org/nr/gaez/publications/en/


ceedings of the Sixteenth International Joint Conference on Artificial Intelligence” Morgan
Kaufmann 1999, pp. 1401–1406. https://dl.acm.org/citation.cfm?id=1624417.

Gartzke, Erik, “War is in the Error Term,” International Organization, 1999, 53 (3), 567–
587. https://doi.org/10.1162/002081899550995.

Gleditsch, Kristian Skrede and Michael D. Ward, “Forecasting is difficult, especially
about the future: Using contentious issues to forecast interstate disputes,” Journal of
Peace Research, 2013, 50 (1), 17–31. https://doi.org/10.1177/0022343312449033.

Goldstone, Jack A., Robert H. Bates, David L. Epstein, Ted Robert Gurr,
Michael B. Lustik, Monty G Marshall, Jay Ulfelder, and Mark Woodward, “A
Global Model for Forecasting Political Instability,” American Journal of Political Science,
January 2010, 54 (1), 190–208. https://doi.org/10.1111/j.1540-5907.2009.00426.x.

Gurr, Ted Robert and Mark Lichbach, “Forecasting Internal Conflict,” Comparative
Political Studies, 1986, 19 (1), 3–38. https://doi.org/10.1177/0010414086019001001.

Harff, Barbara, “No Lessons Learned from the Holocaust? Assessing Risks of Genocide
and Political Mass Murder Since 1955,” American Political Science Review, 2003, 97 (1),
57–73. https://www.jstor.org/stable/3118221.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The Elements of Statis-
tical Learning Springer Series in Statistics, New York, NY, USA: Springer New York Inc.,
2001.

Hegre, H̊avard, Joakim Karlsen, H̊avard Mokleiv Nyg̊ard, H̊avard Strand, and
Henrik Urdal, “Predicting Armed Conflict, 2010–2050,” International Studies Quarterly,
2013, 57 (2), 250–270. https://doi.org/10.1111/isqu.12007.

Hegre, H̊avard, Halvard Buhaug, Katherine V Calvin, Jonas Nordkvelle,
Stephanie T Waldhoff, and Elisabeth Gilmore, “Forecasting civil conflict along the
shared socioeconomic pathways,” Environmental Research Letters, 2016, 11 (5), 054002.
dx.doi.org/10.1088/1748-9326/11/5/054002.

Henderson, J. Vernon, Adam Storeygard, and David N. Weil, “Measuring Economic
Growth from Outer Space,” American Economic Review, 2012, 102 (2), 994–1028. dx.

doi.org/10.1257/aer.102.2.994.

Historical Memory Group, ”Enough Already!” Colombia: Memories of War
and Dignity, The National Center for Historical Memory, 2013. http://www.

centrodememoriahistorica.gov.co/micrositios/informeGeneral/descargas.html.

Jasny, Barbara R. and Richard Stone, “Prediction and its Limits,” Science, 2017, 355
(6324), 468–469. dx.doi.org/10.1126/science.355.6324.468.

Miguel, E., S. Satyanath, and E. Sergenti, “Economic shocks and civil conflict: An
instrumental variables approach,” Journal of Political Economy, 2004, 112 (4), 725–753.
https://www.journals.uchicago.edu/doi/10.1086/421174.

Montgomery, Jacob, Florian Hollenbach, and Michael Ward, “Improving Predic-
tions using Ensemble Bayesian Model Averaging,” Political Analysis, 2012, 20, 271–291.
https://doi.org/10.1093/pan/mps002.

Mueller, Hannes and Christopher Rauh, “Reading Between the Lines: Prediction

30

https://dl.acm.org/citation.cfm?id=1624417
 https://doi.org/10.1162/002081899550995
https://doi.org/10.1177/0022343312449033
https://doi.org/10.1111/j.1540-5907.2009.00426.x
https://doi.org/10.1177/0010414086019001001
https://www.jstor.org/stable/3118221
https://doi.org/10.1111/isqu.12007
dx.doi.org/10.1088/1748-9326/11/5/054002
dx.doi.org/10.1257/aer.102.2.994
dx.doi.org/10.1257/aer.102.2.994
http://www.centrodememoriahistorica.gov.co/micrositios/informeGeneral/descargas.html
http://www.centrodememoriahistorica.gov.co/micrositios/informeGeneral/descargas.html
dx.doi.org/10.1126/science.355.6324.468
https://www.journals.uchicago.edu/doi/10.1086/421174
https://doi.org/10.1093/pan/mps002


of Political Violence Using Newspaper Text,” American Political Science Review, 2017,
pp. 1–18. dx.doi.org/10.1017/S0003055417000570.

Mullainathan, Sendhil and Jann Spiess, “Machine Learning: An Applied Econometric
Approach,” Journal of Economic Perspectives, May 2017, 31 (2), 87–106. http://dx.

doi.org/10.1257/jep.31.2.87.

Perry, C., “Machine learning and conflict prediction: a use case,” Stability: International
Journal of Security and Development, 2013, 2 (3), 56. http://doi.org/10.5334/sta.cr.

Pierskalla, Jan H. and Audrey Sacks, “Unpacking the Effect of Decentralized Gov-
ernance on Routine Violence: Lessons from Indonesia,” World Development, 2017, 90,
213–228. https://doi.org/10.1016/j.worlddev.2016.09.008.

Restrepo, Jorge, Michael Spagat, and Juan Vargas, “The Dynamics of the Columbian
Civil Conflict: A New Dataset,” Homo Oeconomicus, 2004, 21, 396–429. https://ssrn.

com/abstract=480247.

Sappington, J. Mark, Kathleen M. Longshore, and Daniel B. Thompson, “Quan-
tifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn
Sheep in the Mojave Desert,” The Journal of Wildlife Management, 2007, 71 (5), 1419–
1426. http://dx.doi.org/10.2193/2005-723.

Schrodt, Philip A., “Forecasting Conflict in the Balkans using Hidden Markov Models,” in
Robert Trappl, ed., Programming for Peace: Advances in Group Decision and Negotiation,
Vol. 2, Springer, 2006, pp. 161–184. dx.doi.org/10.1214/10-STS330.

Shmueli, Galit, “To explain or to predict?,” Statist. Sci., 08 2010, 25 (3), 289–310. dx.

doi.org/10.1214/10-STS330.

Tadjoeddin, Zulfan, Explaining collective violence in contemporary Indonesia: from con-
flict to cooperation, Springer, 2014.

Tibshirani, Robert, “Regression Shrinkage and Selection Via the Lasso,” Journal of the
Royal Statistical Society, Series B, 1994, 58, 267–288. https://www.jstor.org/stable/
2346178.

Ward, M., N. Metternich, C. Dorff, M. Gallop, F. Hollenbach, A. Schultz, and
S. Weschle, “Learning from the Past and Stepping into the Future: Toward a New
Generation of Conflict Prediction,” International Studies Review, 2013, 15 (4), 473–490.
https://doi.org/10.1111/misr.12072.

Weidmann, Nils and Michael Ward, “Predicting Conflict in Space and Time,”
Journal of Conflict Resolution, 2010, 54 (6), 883–901. https://doi.org/10.1177/

0022002710371669.

Witmer, Frank D.W., Andrew M Linke, John O’Loughlin, Andrew Gettelman,
and Arlene Laing, “Subnational violent conflict forecasts for sub-Saharan Africa, 2015–
65, using climate-sensitive models,” Journal of Peace Research, 2017, 54 (2), 175–192.
http://dx.doi.org/10.1177/0022343316682064.

Wright, Austin L. and Patrick Signoret, “Climate Shocks, Price Dynamics, and Human
Conflict,” Working paper, 2016. https://www.austinlwright.com/climate-shocks/.

31

dx.doi.org/10.1017/S0003055417000570
http://dx.doi.org/10.1257/jep.31.2.87
http://dx.doi.org/10.1257/jep.31.2.87
http://doi.org/10.5334/sta.cr
https://doi.org/10.1016/j.worlddev.2016.09.008
https://ssrn.com/abstract=480247
https://ssrn.com/abstract=480247
http://dx.doi.org/10.2193/2005-723
dx.doi.org/10.1214/10-STS330
dx.doi.org/10.1214/10-STS330
dx.doi.org/10.1214/10-STS330
https://www.jstor.org/stable/2346178
https://www.jstor.org/stable/2346178
https://doi.org/10.1111/misr.12072
https://doi.org/10.1177/0022002710371669
https://doi.org/10.1177/0022002710371669
http://dx.doi.org/10.1177/0022343316682064
https://www.austinlwright.com/climate-shocks/


Appendix for Online Publication



Table of Contents

A Additional Results 1
A.1 Other Measures of Model Performance . . . . . . . . . . . . . . . . . . . . . 1
A.2 Alternative Benchmarks: Autoregression and Fixed Effects . . . . . . . . . . 3
A.3 Predicting Event Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.4 Predicting Within-Location Risk . . . . . . . . . . . . . . . . . . . . . . . . 6
A.5 Returns to More Detailed Violence Measurement . . . . . . . . . . . . . . . 7

B Methodological Details 8

C Data Appendix 10
C.1 Indonesia Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C.1.1 Administrative Divisions . . . . . . . . . . . . . . . . . . . . . . . . . 10
C.1.2 Violence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
C.1.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

C.2 Colombia Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.2.1 Administrative Divisions . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.2.2 Violence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.2.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.3 Predictor Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



A Additional Results

A.1 Other Measures of Model Performance

In the main text, we measure performance with the AUC. However, practitioners may be interested
in other performance statistics. Here we consider choosing various discrimination thresholds, each
of which essentially picks a point on the ROC curve. In Table A.1 we report a number of alternative
performance statistics. Each of our three main predictands are reported in a separate panel. Note
that we do not change the performance metric that we use to choose hyper-parameters. We merely
report alternative performance metrics for the same models that are developed in the main results
to maximize AUC.

Maximal Accuracy. In the top portion of each panel, we report performance when we set a
discrimination threshold to maximize accuracy. We choose this discrimination threshold in our cross
validation routine. We report accuracy (the proportion of all cases correctly predicted), sensitivity
(the proportion of incidents correctly predicted), and specificity (the proportion of non-incidents
correctly predicted).1

Maximal Sensitivity. In the next section of each panel, we choose a different discrimination
threshold to maximize sensitivity. Of course, if we predicted violence everywhere, we would achieve
a sensitivity of 1, but that would not be a useful prediction. Instead, we choose to maximize
sensitivity subject to the constraint that we keep accuracy above 0.5 in the cross-validation process.
We observe, that if needed, these models could identify all of the places that experience violence,
but this coverage comes at a high cost in terms of accuracy and specificity (false positives).2

Mean Squared Error. We report the mean squared error. Generally, the MSE is closely cor-
related with the AUC, but the correspondence is not exact.3 Using the MSE does not meaningfully
change the results of this paper.

Area Under the Precision-Recall Curve. Finally, we report the area under the Precision-
Recall Curve. This metric measures the trade-off between precision (share of true positives in the
sample of positive predictions) and recall (the true positive rate). In contexts such as ours in which
data is imbalanced and violence is relatively rare, high PR-AUC’s can be difficult to achieve. If
there are many non-events, then mis-classifying a small share as positive can have large, deleterious
effects on precision. Indeed, we see for the rarest events (the > 1 standard deviation spikes) the
PR-AUC is quite low. However, we also see that holding the predictand fixed, comparisons of
model performance based on the area under the Precision-Recall curve are largely consistent with
the comparisons based on the area under the ROC curve.

1Observe that as the outcome becomes rarer, accuracy generally increases while sensitivity plummets. This
is a mechanical phenomenon. When an outcome is rare, it is easy to predict that it never happens (an
uninformative prediction) and achieve high accuracy.

2A practitioner might have preferences between these two extremes and consequently choose a point on the
ROC that differs from these two. This is precisely why we use the AUC as our benchmark.

3This is because the AUC penalizes errors in relative rankings of different locations, while the MSE penalizes
errors of prediction according to the magnitude of the difference between actual outcomes and predicted
probabilities. While these two types of errors are related, they are distinct. However, observe that when
the two yield differing comparisons of two models, the differences are small. Assessing model performance
according to MSE only changes comparisons for borderline cases, which we do not put much emphasis on.
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Table A.1: Out-of-Sample Performance of Prediction Models
Indonesia (social conflicts) Colombia (attacks and clashes)

Random Adaptive Neural Random Adaptive Neural
LASSO Forest Boosting Network EBMA LASSO Forest Boosting Network EBMA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(a) Indicator of any violent event

EBMA Weight 0.265 0.261 0.212 0.262 0.258 0.254 0.235 0.253

Threshold maximizes accuracy
Accuracy 0.725 0.728 0.728 0.705 0.731 0.773 0.776 0.778 0.764 0.779
Sensitivity 0.749 0.697 0.729 0.676 0.75 0.609 0.633 0.609 0.601 0.645
Specificity 0.699 0.767 0.732 0.741 0.713 0.872 0.864 0.883 0.863 0.86

Threshold maximizes sensitivity, while accuracy is above 50%
Accuracy 0.546 0.541 0.546 0.54 0.574 0.526 0.522 0.515 0.439 0.56
Sensitivity 0.999 0.999 0.999 1 0.994 0.976 0.976 0.98 0.983 0.966
Specificity 0.017 0.006 0.019 0.003 0.084 0.243 0.241 0.226 0.096 0.302

MSE (Brier Score) 0.18 0.178 0.178 0.195 0.177 0.155 0.154 0.152 0.167 0.152
P-R AUC 0.838 0.845 0.849 0.807 0.848 0.794 0.794 0.792 0.767 0.8
AUC 0.806 0.810 0.814 0.780 0.814 0.845 0.846 0.848 0.826 0.851
Dep Var. Mean 0.531 0.361

LASSO Random Adaptive Network EBMA LASSO Random Adaptive Network EBMA
(b) Indicator of ≥ 5 violent events

EBMA Weight 0.262 0.278 0.179 0.281 0.252 0.251 0.246 0.251

Threshold maximizes accuracy
Accuracy 0.927 0.928 0.926 0.915 0.928 0.922 0.922 0.922 0.916 0.923
Sensitivity 0.599 0.574 0.572 0.449 0.614 0.399 0.369 0.405 0.251 0.443
Specificity 0.974 0.978 0.976 0.981 0.973 0.98 0.983 0.979 0.989 0.976

Threshold maximizes sensitivity, while accuracy is above 50%
Accuracy 0.399 0.355 0.371 0.49 0.54 0.481 0.498 0.495 0.214 0.566
Sensitivity 0.985 0.992 0.991 0.963 0.978 0.974 0.983 0.975 0.977 0.967
Specificity 0.316 0.264 0.283 0.422 0.478 0.424 0.445 0.442 0.129 0.52

MSE (Brier Score) 0.058 0.057 0.057 0.065 0.055 0.058 0.058 0.059 0.067 0.058
P-R AUC 0.707 0.754 0.752 0.675 0.763 0.624 0.601 0.602 0.54 0.619
AUC 0.922 0.927 0.932 0.91 0.935 0.914 0.909 0.910 0.88 0.916
Dep. Var. Mean 0.127 0.083

LASSO Random Adaptive Network EBMA LASSO Random Adaptive Network EBMA
(c) ≥ 1 S.D. increase in violent events

EBMA Weight 0.276 0.299 0.125 0.300 0.250 0.250 0.249 0.251

Threshold maximizes accuracy
Accuracy 0.965 0.965 0.961 0.965 0.964 0.948 0.947 0.948 0.948 0.946
Sensitivity 0.008 0.02 0.041 0.007 0.047 0.012 0.01 0.023 0 0.053
Specificity 0.999 0.999 0.994 1 0.997 0.999 0.998 0.998 1 0.994

Threshold maximizes sensitivity, while accuracy is above 50%
Accuracy 0.392 0.236 0.332 0.352 0.344 0.455 0.406 0.481 0.233 0.495
Sensitivity 0.965 0.975 0.959 0.95 0.961 0.925 0.949 0.91 0.916 0.914
Specificity 0.372 0.21 0.31 0.33 0.322 0.428 0.375 0.457 0.193 0.471

MSE (Brier Score) 0.03 0.034 0.046 0.033 0.032 0.046 0.047 0.049 0.05 0.046
P-R AUC 0.207 0.17 0.185 0.157 0.209 0.197 0.168 0.184 0.157 0.19
AUC 0.851 0.797 0.82 0.803 0.841 0.803 0.787 0.792 0.747 0.798
Dep. Var. Mean 0.033 0.045

Notes: Each model is trained on all data available preceding the out-of-sample prediction year. Accuracy is the proportion
of subdistricts correctly predicted. Sensitivity is the proportion of subdistricts that actually experience violence for which
we predicted violence. Specificity is the proportion of subdistricts that do not actually experience violence, where we
accurately predict non-violence. The AUC is the area under the ROC curve, a measure of the trade-off between the true
positive rate and false positive rate as we vary the discrimination threshold.
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A.2 Alternative Benchmarks: Autoregression and Fixed Effects

Is this simple recurrence? Table A.2 reports the performance for the full model (Column
1) and the model that includes all predictors aside from past violence (Column 2). We compare
these models to simpler ones, such as auto-regressive and fixed effect models that rely purely on
the persistence of violence.

Column 3 reports the simplest recurrence model, restricting the predictors to two lags of the
dependent variable. When predicting more than one or five events, the AUCs generally exceed 0.74,
but performance is nevertheless considerably worse than for the full model. Standard deviation
changes in violence are not particularly auto-correlated, however, and, hence, for this outcome the
simple recursive model performs considerably worse than our full models. The AUC near 0.5 for
the standard deviation increase for Indonesia indicates that this recursive model is about as good
as chance.

Is violence prediction a function of fixed effects? Table A.2 also considers whether our
predictions, which use mostly time-invariant covariates, simply approximate fixed effects. Column
4 reports a benchmark case of ordinary least squares (OLS) regression with fixed effects. We see
that in all cases, prediction using our full set of covariates moderately outperforms the fixed effects
model.4

The relative outperformance of all covariates is greatest in Indonesia and in the cases in which
the dependent variable is rarer. This is intuitive from the perspective of estimator variance. These
fixed effects are noisily estimated, and our prediction algorithms are better able to estimate the
relationship between measured fixed factors and conflict.5

Column 5 attempts to remedy this imprecision by estimating fewer fixed effects at a higher
level of aggregation—the department in Colombia and the district in Indonesia.6 In this case,
performance is close to that of the model with past violence in Indonesia and is slightly superior
to that model in Colombia.

Finally, Column 6 reports a hybrid model, closely related to those in Columns 3 and 5. Here,
we include two lags of the dependent variable, location fixed effects, and log population. In general,
performance improves relative to Columns 3 and 4, but these predictions still fall short of those of
the main models in Columns 1 and 2.

In general, these results show that the full models perform somewhat better than several models
which fully rely on the persistence of violence. For the most part, the model that employs all
variables except past violence also outperforms these benchmark cases, or at least does just as
well. We infer that these predictions do improve upon a simple a recurrence model. However, the
magnitudes are not large in all cases.7 Given the large effort to collect data and employ sophisticated
algorithms, which use days of computing power, these may be relatively modest returns.

4Recall that a .05 AUC gain is akin to a 10% improvement in model performance.
5The fixed effects model is required to estimate 1,023 parameters in Colombia and 2,009 parameters in
Indonesia. As the variation in the dependent variable decreases, which happens as it becomes rarer, this
estimation becomes increasingly difficult. In all but the case of predicting any incident in Colombia, the
performance of the fixed effect model falls short of the model that uses all predictors except for past violence
(Column 2).

6In Colombia, there are 33 departments, and there are 168 districts in Indonesia. Therefore, the number of
parameters drops considerably, as does the imprecision in their estimation.

7The improvements range from 0.02–0.05, which is roughly 4–10% of the difference between a random
prediction and perfection; hence, it is not negligible.

3



Table A.2: Out-of-Sample (One Year Ahead) Performance Versus Bench-
marks

Area under the curve (AUC) for Models with
OLS OLS OLS

Full No Lagged Only Lagged Mun./Subdist. Dept./Dist. Dept./Dist. FE
Predictors Violence Indicator FE FE + population

AR(2) + AR(2)
(1) (2) (3) (4) (5) (6)

Indonesia (2008–2014)
Any Incident (AUC) 0.814 0.798 0.745 0.774 0.752 0.803
≥ 5 Incidents (AUC) 0.935 0.912 0.854 0.880 0.871 0.914
≥ 1 S.D. Increase (AUC) 0.841 0.820 0.527 0.694 0.776 0.821

Colombia (1998–2005)
Any Incident (AUC) 0.851 0.827 0.795 0.828 0.721 0.829
≥ 5 Incidents (AUC) 0.916 0.878 0.798 0.849 0.742 0.870
≥ 1 S.D. Increase (AUC) 0.798 0.778 0.591 0.683 0.712 0.756

Notes: Each model is trained on all data available preceding the out-of-sample prediction year. Training data starts in
1991 in Colombia and 2002 in Indonesia. Out-of-sample prediction begins in 1998 in Colombia and 2008 in Indonesia.
The AUC is the area under the ROC curve, a measure of the trade-off between the true positive rate and false positive
rate as we vary the discrimination threshold. We report average performance over the out-of-sample years above. Past
violence measures include breakdowns of events by actors and outcomes such as deaths and damages whereas the lagged
indicator refers to only the variable that is being predicted. Population includes population growth rates and density.

A.3 Predicting Event Counts

We chose to predict indicators instead of counts in our main analyses for several reasons: they are
easy to interpret, performance statistics are also easy to interpret, and they are the most common
type of outcome predicted by the conflict literature to date. In this section, however, we examine
the predictability of event counts.8

Table A.3 reports performance of the ensemble for a number of predictor sets similar to those
that we consider in the paper. We report two statistics–the mean squared error and a deviance-
based R2. The deviance-based R2 is similar to a typical R2 but is adapted to count data.9

Column (1) reports overall performance of the full model. Our predictions explain a decent
share of the variation in counts in both countries. Column (2) shows that, as in our prediction of
indicators, violence histories perform just as well as the full set of predictors. Column (3) adds
population measures to Column (2) and shows a small increase in performance.

Column (4) considers all of the predictors that do not directly measure violence. These pre-
dictors perform significantly worse than the full model. This drop in performance is worse than
when we are predicting indicators. Columns (5) and (6) further clarify the reason for this. Of the

8Predicting event counts requires some changes to the algorithms. In the cases of Lasso and Gradient Boosted
Machines, we change the loss function to a Poisson loss function to accommodate the count data. In theory,
we could do the same for Random Forests and Neural Networks, but it is technically more challenging
since the existing R packages do not accommodate count data. Instead, we use a Gaussian loss function.
This presents a problem for the Neural Network algorithm, as its output is linear and therefore cannot
take values below zero. While this occurs for some location-years, it is not terribly common and we deal
with this by left censoring the predictions at zero. For Random Forests, this is not an issue because the
algorithm can only make predictions in the convex hull of the predictand values in the training set. We
aggregate these predictions using an ensemble model, in this case with weights based on model likelihood
according to a Poisson distribution.

9While the typical R2 measures the share of variance that for which the fitted values account, R2
dev measures

the share of deviance that the fitted values explain. Specifically, this measure is R2
dev = 1− Residual Deviance

Null Deviance
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non-violence predictors, the time-varying predictors perform more poorly–so much so that their
inclusion actually reduces performance relative to time-invariant predictors alone.

This result is in line with what we see in the main text. In the case of predicting indicators, we
saw that some of the time-varying predictors actually decreased performance. In this case we see
much larger decreases, but that is because the outcome is unbounded and so is the size of possible
errors. Therefore, when extrapolating the effect of commodity price shocks, for example, imprecise
estimation can lead to large differences between actual and predicted violence in a few cases. And
these large errors play an outsized role in contributing to our performance statistics.

Finally, figure A.1 reports a breakdown of specific predictor groups and shows similar patterns
to those we see for the prediction of indicators.

Table A.3: Out-of-sample (one year ahead) performance of the ensemble
(EBMA) method, varying predictor sets

Predicting the count of violent events
Full Only Past Past Viol. No Lagged Fixed Varying
Set Violence plus Pop. Violence Predictors Predictors
(1) (2) (3) (4) (5) (6)

Indonesia (2008-2014)
MSE 7.33 7.59 7.58 12.41 9.41 19.97

R2
dev 0.65 0.66 0.66 0.48 0.63 0.26

Colombia (1998-2005)
MSE 6.36 6.41 6.29 8.17 7.95 9.69

R2
dev 0.53 0.52 0.54 0.44 0.45 0.29

Notes: Each model is trained on all data available preceding the out-of-sample prediction year. Training data starts in
1991 in Colombia and 2002 in Indonesia. Out-of-sample prediction begins in 1998 in Colombia and 2008 in Indonesia. We
report average performance over the out-of-sample years above.
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Figure A.1: MSE Improvements, Predicting Counts
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Notes: Performance in individual years appear as small dots. The first (last) year of the sample is colored green (blue) in
order to show the change in performance over time, or lack thereof. The large hollow circle is the average of performance
across the years.

A.4 Predicting Within-Location Risk

We construct a new outcome measure that isolates within-location, over-time variation in violence.
Specifically, we measure the deviation of the number of incidents in period t from the average
number of incidents per year from the start of the panel to period t − 1. By taking deviations
from the historical mean, we remove the average difference in violence across locations, leaving
purely within-location variation. Given the continuous outcome, we evaluate performance using
the out-of-sample mean squared error (MSE) instead of the AUC.

The results, reported in Table A.4, suggest that our models struggle to predict within-location
variation in violence in both Indonesia and Colombia.10 The first row reports the variance of the
dependent variable in each context. In Indonesia, the MSE is only slightly lower than the variance
of the dependent variable in the test set, indicating we are able to predict very little of this within-
location variation. In Colombia, the MSE is actually higher, on average, than the variance of the
predictand, yielding an out-of-sample R2 below zero.

10These differences arise from the difficulty of predicting within-unit deviations and not changes in the
performance metric or the shift to counts. Online Appendix A.1 shows that our baseline performance is
similar using MSE instead of AUC, while Online Appendix A.3 shows that our benchmark model is able
to predict a large share of the variation in incident counts.
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Table A.4: Predicting Demeaned Number of Violent Events
Indonesia Colombia

(1) (2)
Var(Dependent Variable) 8.622 7.541
EBMA mean squared error (MSE) 7.975 7.772

out-of-sample-R2 0.0129 -0.0276

Notes: Each model is trained on all available data preceding the out-of-sample prediction year. Training data starts in
1991 in Colombia and 2002 in Indonesia. Out-of-sample prediction begins in 1998 in Colombia and 2008 in Indonesia. We
report average mean squared error over the out-of-sample years above.

A.5 Returns to More Detailed Violence Measurement

Our benchmarking exercise found that a model using detailed violence histories performs almost
as well as one that includes additional social, economic, and political covariates. This leads us to
ask what is the payoff to using richer and more detailed violence data. More granular, accurate, or
disaggregated data could improve predictions. For example, a history of small-scale ethnic cleansing
could conceivably presage larger scale violence, whereas other kinds of inter-group hostilities might
not. If a violence measures conflates these two kinds of violence then its predictive performance
will falter. Yet, collecting and coding richer data is costly for policymakers and researchers. Hence,
it is useful to explore the returns in terms of predictive performance.

With Indonesia, which has fairly granular violence data, we can conduct this ‘experiment’ by
using more versus less granular violence data, and observe changes in performance. We report
results in Table A.5. Column (1) reports the full model with all predictors for comparison. Column
(2) reports performance for the lagged dependent variables alone. Column (3) reports performance
using measurements of prior aggregate conflict from SNPK, including total number of incidents,
total deaths, total injuries, and total property damage. Column (4) further breaks down these
incident measures by violence category (e.g., identity violence, resource conflict). And finally,
Column (5) includes the lagged total number of killings and indicators for mass unrest reported in
Podes and the Disaster Information Management System.

The AUCs increase with each successive column. Perhaps unsurprisingly, the largest increase
comes from the move from columns 2 to 3. The AUCs increase more when disaggregating the
subdistrict-level violence categories than when adding additional measures of the same broad
episodes of violence as reported in Podes. This highlights the potential predictive value of having
detailed information on the nature of prior conflict in terms of the key outcomes of contestation.
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Table A.5: Out-of-Sample (One Year Ahead) Performance of the En-
semble (EBMA) Method, Varying Data Granularity

Full Only Lagged Add Disaggregate All Lagged
Predictors Indicator Intensity Violence Violence

AR(2) Data
(1) (2) (3) (4) (5)

Indonesia, 2008–2014

Any Incident (AUC) 0.818 0.745 0.776 0.797 0.807
≥ 5 Incidents (AUC) 0.939 0.854 0.925 0.933 0.936
≥ 1 S.D. Increase (AUC) 0.840 0.527 0.832 0.842 0.853

Predictor set:
Two lags of dependent variable Yes Yes Yes Yes Yes
Total incidents, deaths, injuries, damage Yes Yes Yes Yes
Disaggregate by violence type Yes Yes Yes
Total village-level killings reported Yes Yes
Podes and DIMS Yes Yes
Economic and social characteristics Yes

Notes: Each model is trained on all data available preceding the out-of-sample prediction year. Training data starts in
2002 in Indonesia. Out-of-sample prediction begins in 2008 in Indonesia. The AUC is the area under the ROC curve, a
measure of the trade-off between the true positive rate and false positive rate as we vary the discrimination threshold. We
report average performance over the out-of-sample years above.

B Methodological Details

Each of the machine learning methods that we use involves a number of hyper-parameter choices.
In general, the hyper-parameters govern the degree of flexibility afforded to each algorithm. The
optimal choice of these parameters balances the models’ ability to uncover complex relationships
against the risk that the algorithm over-fits to noise in the data. Moreover, limits to computing
power also prevent the use of certain parameter values. Since we run these algorithms several times
with a number of different subsets of covariates, we needed a set of algorithms that would run in a
manageable amount of time. The baseline set of predictions for Indonesia takes about two hours,
and the predictions take about an hour and a half for Colombia. We choose these parameters using
a mixture of rules-of-thumb and five-fold cross validation. In this section, we detail these choices.

LASSO. We implement a logistic LASSO where predictors are standardized to have a mean of
zero and unit variance before they are fed into the fitting algorithm. LASSO and ridge regression
are two closely-related penalized regression techniques. While LASSO penalizes the sum of the
absolute value of the regression coefficients, ridge regression penalizes the sum of squares. We
follow best practices as in Blair et al. (2017) and use a weighted average of the two penalties, where
the weight for the LASSO penalty is α = 0.95 and the weight on the ridge penalty is 1 − α.

For each country in each year of estimation, we find the optimal penalty parameter λ by
searching over a grid of candidate values and testing the penalties using 5-fold cross validation. We
repeat this process 10 times, and take the average optimal value.

Random Forests are collections of many trees which are fit to random subsets of the data
and then are averaged together. The underlying logic is that the individual trees may be overfit to
their respective dataset, but since each tree is fit using a different set of predictors, the overfitting
averages out over the entire forest. We choose mean-squared error as the loss function for the
random forest. Beyond the choice of the loss function, there are three important hyper-parameters
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to choose.
First, we must specify a rule governing how large trees can be. We could specify the minimum

number of observations per terminal node or the maximum number of terminal nodes. In general,
larger trees afford more complexity, and we err on the side of larger trees as the risks of overfitting
are mitigated by the averaging over the entire forest. However, larger trees also add to computation
time. As a result, we limit our trees to 60 terminal nodes.

Second, we choose the number of trees in the forest. Since each tree is independent, additional
trees simply reduce variance of estimates and do not add to bias. As a result, more trees are always
better. At the same time, performance gains from additional trees generally diminish quickly, while
the computing time costs of fitting individual trees does not. Therefore, we choose to fit 100 trees
in each forest.

Finally, we must choose the number of covariates to be considered at each branch in the trees.
We follow the rule-of-thumb of using one third of the potential covariates at each split. (Hastie et
al., 2001)

Gradient Boosted Machines are comprised of decision trees that are fit sequentially to
the residual variation in the predictand that was not predicted by previous trees. Unlike random
forests which leverage many overfit trees, gradient boosted machines are meant to learn slowly,
with each tree explaining a small amount of additional variation. Therefore, the key parameter is
the shrinkage parameter which limits the extent to which each tree can contribute to the machine’s
overall prediction. Best practice sets these shrinkage parameters as low as possible. However, as the
parameter gets lower, the number of trees required to get a good fit increases, as does computing
time. We choose a shrinkage parameter λ = 0.1.

As for random forests, GBM requires the implementer to specify the complexity of trees and
the number of trees in the ensemble. We specify the number of terminal nodes as 7 in each tree,
a standard parameter value for these models. (Hastie et al., 2001) The number of trees to include
in the model is the key hyper-parameter that drives the overfitting versus complexity trade-off. If
there are too few trees, the predictions will be a very simple function of the predictors, whereas if
the there are too many trees, the later trees will be fit to noise generated by idiosyncrasies of the
the training sample. As a result, we choose the number of trees by 5-fold cross validation over a
grid of candidate sizes. We average the results of 10 such trials to get an optimal number of trees
in each year.

Neural Networks. Neural networks are built from weighted combinations of features, and an
activation function which through which these combinations are passed. We use a single hidden
layer neural network, and the network is trained via back-propagation. Our neural networks use a
sigmoid activation function.

The major parameter governing complexity is the number of nodes to allow in this single layer.
We choose the number of nodes by searching over a grid of values and employing 5-fold cross
validation to test each candidate number of nodes. As with the other algorithms, we repeat this
process 10 times, and choose the average parameter.

Since each predictor has a weight for each node in the hidden layer, training of the neural
network can involve the computation of thousands of parameters. The computation costs are
magnified during the grid search process. To alleviate this pressure, we preprocess the data by
standardizing the predictors and calculating principal components of the predictor set. We use these
principal components instead as predictors to be used in the neural network. We use 30 principal
components in Indonesia and 20 in Colombia. This rotation of the predictor space dramatically
increases speed without throwing away much important variation.

Our Ensemble Bayesian Model Average is computed by generating a 5-fold cross-validaton
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set of probabilistic predictions for each algorithm using the parameters chosen above. We take these
predictions and calculate posterior likelihoods that each model is correct given their predictions
and the observed levels of violence. These likelihoods, when normalized to sum to 1 give us weights
for our model average. We repeat this process 10 times to get ten sets of weights and average them
to aggregate our predictions.

C Data Appendix

C.1 Indonesia Data

C.1.1 Administrative Divisions

Our unit of analysis for the SNPK data is the 2000 subdistrict. Subdistricts have increased in
number over time and are mapped back to the larger 2000 units.

Concurrent with the wave of decentralization, the Indonesia government created many new
districts through a process of redistricting known colloquially as pemekaran or blossoming. After
remaining steady from 1980 to 1998, the number of new districts ballooned from 302 in 1999 to 514
in 2014. The proliferation of districts occurred across the entire archipelago, with the exception
of most districts on the island of Java. New districts are formed when existing subdistricts break
off from their original district and create their own local government, complete with a new capital,
district head, parliament, and government apparatus. On occasion, one district can mushroom into
multiple new districts. Subdistricts have also split (and a few amalgamated) over time.

The number of districts and the number of subdistricts have ballooned over time. Despite
the increase in the number of districts, the number of subdistricts per district actually increase.
The number of villages has remained relatively more steady and thus the number of these per-
district and per-subdistrict decline over time. The unit of analysis in this paper is the subdistrict
amalgamated to its 2000 borders.

C.1.2 Violence Data

The conflict data comes from the Indonesian National Violence Monitoring System (known by its
Indonesian acronym SNPK). The data are reported at the 2011 subdistrict level and include inci-
dent dates. Sub-district codes are non-missing in 84% of cases. We aggregate incidents to the 2000
subdistrict borders in each year. Our main conflict measures are binary indicators for any conflict
in a given subdistrict–year. Table C.1 presents the violence definitions in the SNPK.
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Table C.1: Violence Definitions in the SNPK
Violent Crime Criminal violence not triggered by prior dispute or directed towards specific

targets.
Domestic Violence Physical violence perpetrated by family member(s) against other family mem-

ber(s) living under one roof/same house including against domestic workers
and violence between cohabiting couples.

Violence during law-enforcement Violent action taken by members of formal security forces to perform law-
enforcement functions (includes use of violence mandated by law as well as
violence that exceeds mandate for example torture or extrajudicial-shooting).

Resource Conflict Violence triggered by resource disputes (land, mining, access to employment,
salary, pollution, etc.).

Governance Conflict Violence is triggered by government policies or programs (public services,
corruption, subsidy, region splitting, etc.).

Popular Justice Conflict Violence perpetrated to respond to/punish actual or perceived wrong (group
violence only).

Elections and Appointment Conflict Violence triggered by electoral competition or bureaucratic appoint-
ments.

Separatist Conflict Violence triggered by efforts to secede from the Unitary State of the Republic
of Indonesia (NKRI).

Identity-based Conflict Violence triggered by group identity (religion, ethnicity, tribe, etc).
Other Conflicts Violence triggered by other issue.

Table C.2 reports the rates at which each of these indicators occur. While around half of
subdistricts experience some conflict in a given year, only around 12% experience more than five
incidents, and even fewer experience a large increase in the number of events relative to the prior
year.

Table C.2: Annual Rates of Conflict in Indonesian Subdistricts
≥ 5 ≥ 1 std. dev.

any conflict increase
conflict incidents in incidents

(1) (2) (3)

2005 0.540 0.130
2006 0.537 0.122 0.029
2007 0.509 0.114 0.028
2008 0.550 0.125 0.030
2009 0.527 0.120 0.031
2010 0.536 0.119 0.034
2011 0.531 0.127 0.040
2012 0.573 0.144 0.045
2013 0.541 0.127 0.034
2014 0.539 0.129 0.034

Notes: Conflict incidents above exclude crime
and domestic violence.

C.1.3 Covariates

2000 Population Census

We use the following predictors constructed at the 2000 subdistrict level from Indonesia’s 2000
universal Population Census.

• Employment Shares: Fraction of persons in agriculture, forestry and fishing, industry,
services, trade, and transportation. We compute the fraction of persons in self-employment
and the fraction that are employers.

11



Figure C.1: Violence by Category, Indonesia
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Notes: The graph above plots violent incident counts according to the SNPK. Crimes and domestic
violence are not included. The panel is balanced from 2005 onward.

• Demographic Variables: Share of people in each of the following religions; Muslim,
Catholic, Protestant, Hindu, Buddhist, Confucian, and other; share of the population that is
Chinese and the share Arab; share of men and the share married. Finally, share of persons
under 10 and from 10 to 30 years old.

• Education: Share of individuals who completed no school and the average years of schooling.

• Rural Population Share:

Share of villages within the subdistrict classified as rural.

• Ethnic Fractionalization: Ethnic fractionalization in district d is given by F =
∑Me

g=1 πg(1−
πg), where Me is the number of ethnic groups in the district, and πg is the population share of
group g as reported in the 2000 Census. We observe over 1000 ethnicities and sub-ethnicities
speaking over 400 languages.

• Ethnic Polarization: Same as ethnic fractionalization but own group share is emphasized.
Specifically P =

∑Me
g=1 π

2
g(1 − πg).

• Religious Fractionalization: Religious polarization, R =
∑Mr

g=1

∑Mr
h=1 πgπh, where Mr is

the number of religious groups, and πg (πh) is the population share of group g (h). There
are seven religions recorded in the Census, but in most districts, there is a single cleavage
between a Muslim and a non-Muslim group.

• Religious Polarization: Same as ethnic Polarization but own group share is emphasized.
Specifically RP =

∑Me
g=1 π

2
g(1 − πg).

• Ethnic Residential Segregation: Following Alesina and Zhuravskaya (2011), we use the
2000 census to compute Ethnic segregation by comparing ethnic fractionalization at the
village level to that of the subdistrict level. Specifically we compute:

S =
1

M − 1

M∑
m=1

S∑
s=1

ts
T

(πsm − πm)2

πm
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M is the number of ethnic groups, T is the total population of the subdistrict, ts is the
population in village s, πm is the fraction of group m in the district, and πsm is the fraction
of group m in subdistrict s. We drop the smallest 1% of ethnic groups so that M remains
reasonable (< 25).

Night Lights

• Light Intensity: Annual night light data to proxy for GDP (Henderson et al. (2012)). We
use mean stable light intensity at the village level, which ranges from 0 to 63. This attempts
to filter out background noise and unstable sources of light. We compute the (population
weighted) average light intensity across villages at the 2000 subdistrict boundary level.

Potensi Desa (Podes)

We construct the following variables using the quasi-triennial administrative village census Potensi
Desa, abbreviated Podes. We use the 2000, 2003, 2005, 2008 and 2011 rounds.

• Police and Security: The population weighted (across villages) distance to the nearest
police post in all rounds. In addition we compute the share of villages with any security or
police post in each round.

• Distance to the District Capital: The population weighted (across villages) distance to
the district capital in 2000, 2003, 2008, and 2011. It can vary due to the creation of new
districts capital as a result of district proliferation.

• Population: Subdistrict population in each round.

• Health Care: For the 2000 wave, we record of the number of health care facilities, which
we classify into hospitals (hospital, maternity hospitals, and policlinics) and middle care
(puskesmas and supporting puskesmas).

• Schooling: For the 2000 wave, we compute the number of junior high schools and high
schools per capita. We also include the percentage of villages with a madrasa or pesantran.

• Conflict: In each wave we record the share of villages that experienced any conflict. We do
the same for each type of conflict recorded (Theft, Robbery, Thuggery, Arson, Rape, Drug-
related, Murder, Child Trafficking). We also include the total number of deaths and injuries
reported.

• Natural Disasters: Each wave records the share of villages that experienced a mudslide,
flood, fire, or earthquake in the past three years.

Global Precipitation Climatology Project (GPCP)

The Global Precipitation Climatology Project (GPCP) provides annual rainfall at the district level.
We calculate historical averages and calculate annual deviations from the historical average.

University of Delaware Global Climate Resource Database

The University of Delaware Global Climate Resource Database provides monthly rainfall and tem-
perature data at the subdistrict level from 1900 onward. We calculate historical averages and
annual deviations from the average.

Crop Shocks

• Food Price Shocks: By using the 2003 Agriculture Census we calculate the quantity of each
crop produced within the 2000 subdistrict borders. We use the UN Food and Agriculture
price series for each crops to construct log changes in crop prices and weight these changes
by the 2003 production share. We group into cash crops and food crops.
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• Agricultural GDP: By using the 2003 Agriculture Census we calculate the quantity of each
crop produced within the 2000 subdistrict borders and then use the UN Food and Agriculture
price series to construct total agricultural value in each year.

Mineral Shocks

Geocoded mine data from the SNL Mine Production Data. For each mineral, we calculate the
distance from the center of the subdistrict to the nearest active mine producing that mineral. We
multiply log mineral price changes from the World Bank’s GEM Commodity Price Database by
the inverse of the distance to the nearest mine.

Disaster Information Management System

The Disaster Information Management System lists the major disasters such as floods or volcano
eruptions at the district level.

National Socioeconomic Survey (Susenas)

The National Socioeconomic Survey (Susenas) is an annual survey of about 200,000 national rep-
resentative households. The survey measures household income and expenditures. We use the
expenditure data to construct average expenditures, an expenditure Gini, the ratio of the 80th
percentile to the 20th percentile of inequality, and we use the wage data to construct median wages
in agriculture and non-agriculture, as well as differences between the 75 percentile and the 25th
percentile. We also use this survey to get an annual population measure.

Database for Policy and Economic Research (DAPOER)

The World Bank’s Indonesia Database for Policy and Economic Research (DAPOER), which in
turn obtains data from the Indonesia ministry of finance data, to keep track of total district
revenue in each year.

• Total District Revenue Per Capita: District revenue figures come from the World Bank’s
Indonesia Database for Policy and Economic Research (DAPOER), which in turn obtains
data from the Indonesia ministry of finance data. They are given for each district at the time
of existence. We aggregate up to the 2000 district boundary and separately also consider only
parents. Population data is taken from the same dataset. All figures are inflation adjusted
using 2010 as the base year.

• DAU/DAK Revenue Per Capita: District revenue in Indonesia is divided into a general
allocation grant (Dana Alokasi Umum, DAU), some shared taxes, shared natural resource
rents, and the special allocation grant (Dana Alokasi Khusus, DAK), as well as limited own
revenue. DAU/DAK revenue focuses on the portion of revenue not due to natural resources
or shared taxes.

• Initial Resource Revenue: Natural resource revenue such as that from oil/gas and mines
is first transferred to the center and then partly returned to the district (and to a lesser
extent nearby districts) based on percentages that vary by product and over the course of
the study period. We use the level in 2000 to proxy, albeit imperfectly, for the presence and
value of natural resources in the original district.

Political Data

• Direct Election Data: Direct local elections for district heads were phased in beginning
2005 across districts and occur every 5 years. We record the date of each of these elections.

• Vote Share Polarization within 2000 subdistrict: Data on vote share by party and
subdistrict in the 1999 district parliamentary (DPRDII) elections were used—the first of the
post-Suharto era—to construct a measure of vote share polarization at the subdistrict level.
Forty-eight parties competed in these elections.
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• Time-varying vote Share Polarization at District Level: To construct time-varying
vote share polarization measures we use national parliamentary vote share data in 1999, 2004,
2009 recorded at the district level.

• Party Shares: Using the national vote data we also retain the votes for certain parties. We
keep Golkar and PDIP shares, as well as vote shares for Islamist parties.

Topographical Variables

• Slope and Elevation Data Topographical variables were created using raster data from
the Harmonized World Soil Database (HWSD), Version 2.0 (Fischer et al., 2008). The raster
files are compiled from high-resolution source data and aggregated to 30 arc-second grids.
The terrain, slope, and aspect database provided by HWSD researchers was compiled from a
high-resolution digital elevation map constructed by the Shuttle Radar Topography Mission
(SRTM).

Elevation data were computed for each village as the average elevation over the entire vil-
lage polygon, using raster data from HWSD. Slope and aspect data were also recorded for
each village and calculated similarly. Variables equal to the average share of each village
corresponding to each slope class (0-2 percent, 2-4 percent, etc.) were constructed using
ArcView.

• Ruggedness A 30 arc-second ruggedness raster was computed for Indonesia according to the
methodology described by Sappington et al. (2007), and village-level ruggedness was recorded
as the average raster value. The authors propose a Vector Ruggedness Measure (VRM), which
captures the distance or dispersion between a vector orthogonal to a topographical plane and
the orthogonal vectors in a neighborhood of surrounding elevation planes.

To calculate the measure, one first calculates the x, y, and z coordinates of vectors that are
orthogonal to each 30-arc second grid of the Earth’s surface. These coordinates are computed
using a digital elevation model and standard trigonometric techniques. Given this, a resultant
vector is computed by adding a given cell’s vector to each of the vectors in the surrounding
cells; the neighborhood or window is supplied by the researcher. Finally, the magnitude of
this resultant vector is divided by the size of the cell window and subtracted from 1. This
results in a dimensionless number that ranges from 0 (least rugged) to 1 (most rugged).8.

• Soil Quality We also make use of the HWSD data for soil quality measures. HWSD pro-
vides detailed information on different soil types across the world. The HWSD data for
Indonesia is taken from information printed in the FAO-UNESCO Soil Map of the World
(FAO 1971-1981), a map printed at a 1:5,000,000 scale. For each subdistrict, we we use the
following measures of soil types: percentage of land covered by coarse, medium, and fine soils,
percentage of land covered by soils with poor or excessive drainage, average organic carbon
percentage, average soil salinity, average soil sodicity, and average topsoil pH.

While each of the above datasets covers the entire country, there are inevitably minor missing data
issues as we combine so many sources. Rather than exclude entire predictors or observations, we
impute these missing predictors via regression on contemporaneous predictors for which data is
available. Violence measurements are not used for the imputation of other variables, nor are any
violence measures imputed. The sample is restricted to observations where we have full violence
data.
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C.2 Colombia Data

C.2.1 Administrative Divisions

The municipality is the second level of administrative authority in Colombia (the first is the De-
partment) and is the fundamental territorial entity in the political-administrative division of the
State. It has political, fiscal and administrative autonomy within the framework of the Colombian
law.

As of 2015 Colombia has 1101 municipalities in 32 departments. The departments are composed
by municipalities and are also a territorial entity with administrative autonomy. They must perform
administrative and coordination functions complementing the municipal action and should serve
as intermediaries between the Nation and the municipalities.

C.2.2 Violence Data

Our conflict data in Colombia comes from the Conflict Analysis Resource Center (CERAC) which
contains data on military confrontation from 1988 to 2005. The data are reported at the event level
and episodes are characterized either as bilateral clashes between sides or unilateral attacks from
one side against another. We aggregate incidents by municipality-year in our main specification
including events involving all three conflict actors: the guerrillas, the paramilitaries, or the govern-
ment. However, we also consider a specification where the aggregation excludes government attacks
or clashes (results available on request). Our main dependent variables are binary indicators for
any event in a given municipality-year; more of than five events and more than 1 standard deviation
increase in violence.

Table C.3 presents a descriptive analysis of the dependent variable (total onsets, any incident,
more than five incidents or ‘high’, and greater than a 1 SD increase in violent events or ‘spike’) for
Colombia. We cover the period between 1992 to 2005 at the municipality level and calculate the
overall, within and between variation for each dependent variable.

Table C.3: Annual Rates of Conflict in Colombian Municipalities
≥ 5 ≥ 1 std. dev.

any conflict increase
conflict incidents in incidents

(1) (2) (3)

1992 0.352 0.081 0.039
1993 0.323 0.049 0.021
1994 0.340 0.063 0.043
1995 0.276 0.057 0.018
1996 0.317 0.066 0.042
1997 0.301 0.056 0.031
1998 0.375 0.079 0.045
1999 0.374 0.073 0.040
2000 0.417 0.106 0.073
2001 0.421 0.122 0.064
2002 0.454 0.145 0.082
2003 0.376 0.101 0.038
2004 0.335 0.099 0.053
2005 0.308 0.068 0.020

Notes: Conflict incidents above include paramil-
itary attacks, guerrilla attacks, government at-
tacks, and bilateral clashes between these groups.
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C.2.3 Covariates

Demography and Economic Activity

• Demographics: Information on population by municipality-year was included from the
National Administrative Department of Statistics (referred as DANE). We also consider in-
formation on population density and binary variables classifying large municipalities (e.g.,
more than 250 thousand inhabitants) and metro areas.

• Commodities and international prices: Commodity data compiled by (Dube and Var-
gas, 2013) was used in this study. We consider both the local production and international
price of coffee, oil, coal, silver, platinum, and precious metals.

• Local government finance: Fiscal revenue data from the National Planning Department
(NPD) was collected. Specifically, information on municipal income, spending, deficit and
transfers.

• Wellbeing: Some welfare measures were included. In particular, variables like the Gini
coefficient for land inequality; unmet basic needs (1993) and life quality index.

• Infrastructure: We consider both paved and unpaved roads for main and secondary roads
in thousand of kilometers (1995). Also the density of those roads measures as kilometers over
kilometers square (Km/Km2).

• Illicit production: We obtain data on coca cultivation for Colombia from two sources:
Direccion Nacional de Estupefacientes (DNE) and from the United Nations Office of Drug
Control (UNODC). Additionally, we also incorporate information on coca cultivation for
Bolivia, Peru and the world, along with exportation to certain destinies and prices.

Geographic and Weather

• Geographic: The main features we expoit are: surface area; proportion of non-habitate
land; suitable land for sugar cane or palm; surface; terrain stepness; water availability; main;
secondary and tertiary rivers longitude; flat land; hills; mountains; valleys and water bodies as
a percentage of municipal land; proportion of hilly; montanous and rugged terrain; maximun
slope.

• Weather: The University of Delaware Global Climate Resource Database provides monthly
rainfall and temperature data at the municipal level from 1900 onward. We calculate histor-
ical averages and annual deviations from the average for each municipality-year.

Historical Variables

From Acemoglu et al. (2015), we include measures of colonial institutions and infrastructure, such
as number of crown employees, presence of colonial cities and royal roads, population in 1843, slave
share of the population in 1843, number of indians in 1560, number of encomiendas in 1560, colonial
gold mines, foundation dates, and population in 1843.

Political Data:

• Election Data: Information on mayoral and congressional elections (lower and upper house)
were used from the entire period of analysis. Universidad de los Andes compiled a database
of electoral results since 1958 and has been updating it until 2014. The original data comes
from the Registraduria Nacional del Estado Civil (“National Registry”)1. In particular, we
generate parties’ vote shares, turnout, and time dummies for electoral periods.

1Universidad de los Andes CEDE makes the database publicly available through its’ database website
(https://datoscede.uniandes.edu.co).
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• Vote Share Polarization within municipality: Each of this elections were meant to rep-
resent different levels of political power in Colombia, at the local, regional and national level.
More specifically, we consider measures of concentration, polarization and fractionalization
index for competitiveness of the elections; margin between winner and runner-up; party’s
vote share and political leaning.

Distance to DMZ (Delimitarized Zone)

The Caguan DMZ was a delimitarized zone of 42.000 square kilometers in southern Colombia
authorized by the goverment to negotiate a peace process with the FARC-EP. The region was made
up by the municipalities of Vista Hermosa, La Macarena, La Uribe, Mesetas, and San Vicente
del Caguan. The DMZ started in January of 1999 and ended in February 2002. Its existence
coincides with the scalation of the conflict in Colombia, therefore we calculate the distance of each
municipality in Colombia to the DMZ as a covariate.

US Military Aid

We use the dataset created by (Dube and Naidu, 2015) of US military aid and Colombian mili-
tary bases. One feature of US military aid is that it is disbursed to particular Colombian military
brigades, each of which is attached to and operates out of a particular government military base.
We consider the natural log of US military and antinarcotics aid to Colombia interacted with a
dummy that defines if a particular municipality has a military base. In total, we covered 34 munici-
palities with military bases, of which 32 appear in the sample for which the conflict data is available.

As for Indonesia, we restrict our sample to observations with full violence data. There are inevitably
minor missing data issues as we merge other covariates. Rather than exclude entire predictors or
observations, we impute these missing predictors via regression on contemporaneous predictors for
which data is available. Violence measurements are not used for the imputation of other variables,
nor are any violence measures imputed.

C.3 Predictor Groupings

Tables C.4 and C.5 report the variables that are included in each of the groups displayed in the
predictor breakdown graphs.
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Table C.4: Indonesia Predictor Groups
SNPK

• Incident Counts: total, total excluding crime, resource, governance, election, identity, popular justice, law enforcement, crime, domestic violence, separatist, other.
• Deaths: total, total excluding crime, resource, governance, election, identity, popular justice, law enforcement, crime, domestic violence, separatist, other.
• Injuries: total, total excluding crime, resource, governance, election, identity, popular justice, law enforcement, crime, domestic violence, separatist, other.
• Damaged Buildings: total, total excluding crime, resource, governance, election, identity, popular justice, law enforcement, crime, domestic violence, separatist, other.
• Destroyed Buildings: total, total excluding crime, resource, governance, election, identity, popular justice, law enforcement, crime, domestic violence, separatist, other.
• Total active newspapers used in data collection

PODES Violence Data

• Percent of villages with any: theft, robbery, looting, thuggery, arson, rape, murder, fights among citizens, fights with security officers, fights among students, fights among tribes, any conflict.
• Deaths, injuries
• Distance to nearest police post, number of security posts, number of police posts, number of security officers

DIMS Violence Data

• Terrorism: deaths, counts
• Unrest: deaths, counts

Religion

• Fractionalization, Polarization
• Population Share: Muslim, Catholic, Protestant, Hindu, Buddhist, Confucian, Christian
• Percent of villages with any Islamic boarding school

Ethnicity

• Fractionalization, Polarization, Segregation
• Population Share: Chinese, Arab

Education

• Mean years of schooling
• Share with no schooling
• Junior high schools, high schools

Demographics

• Male share, married share, share below 10 years old, share from 10 to 30 years old

Remoteness

• Rural population share, distance to district capital, distance to province capital, land area
• Main road electrified, road access year-round, telephone signal strength
• Has: airport, bridge, terminal, seaport

Health Infrastructure

• Sophisticated health institutions, mid-level health institutions

Disasters

• Number of mudslides, floods, earthquakes, fires, other disaster (from PODES)
• Count: land abrasions, disease outbreaks, droughts, earthquakes, floods, forest fires, industrial and transportation accidents, landslides, tornadoes, tsunamis, volcanoes, total
• Deaths: land abrasions, disease outbreaks, droughts, earthquakes, floods, forest fires, industrial and transportation accidents, landslides, tornadoes, tsunamis, volcanoes, total

Elections

• 1999 local elections: mainstream party vote share, Islamist party vote share, fractionalization, polarization, voter turnout
• Election year indicator
• National elections: mainstream party vote share, Islamist party vote share, fractionalization, polarization, voter turnout

Agricultural Infrastructure

• Mean access to irrigation, small rice mills per village, large rice mills per village

Finance and trade institutions

• Banks per capita, rural cooperative banks per capita
• Percent of villages with permanent market

Economic Structure

• Output share: major cash crop, cash crop, major food crop
• Share of households with any agricultural land, share with more than 0.1 hectare of agricultural land
• Percent of villages where rice is the primary commodity
• Population share in: agriculture, forestry, industry, trade, service, transport
• Output share: trading, self-employment, agriculture, services, employers
• Distance to nearest mine: bauxite, coal, copper, gold, iron ore, nickel, tin, zinc, silver

Government Finance

• Revenue from: total, village resources, taxes, social organizations, ROSCAs, other villages, higher government administrative unit, central government, provincial government, district government, natural
resource tax-sharing, non-natural resource tax-sharing, total self-generated

• Expenditures: routine, development projects

Output

• Agricultural GDP constructed from 2002 output weights and current commodity prices
• District GDP, district agricultural GDP
• Unemployment
• Nighttime light intensity

Commodity Price Shocks

• Cash crop, major cash crop, major food crop, bauxite, coal, copper, gold, iron ore, nickel, tin, zinc, silver

Historical Commodity Price Shocks Volatility

• Cash crop, major cash crop, major food crop

Climate Shocks

• Temperature and rainfall deviations from historical means

Historical Climate Traits

• Mean: temperature and rainfall
• Standard deviation: temperature and rainfall
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Table C.5: Colombia Predictor Groups
Violence

• Attacks: guerilla, paramilitary, government, total
• Clashes, total attacks and clashes, total casualties
• Massacres: guerilla, paramilitary
• Infrastructure paramilitary attacks, non-infrastucture paramilitary attacks

Production

• Oil production (1988), coal reserves (1978)
• Department coal production, department gold production

Government Finance

• Income: total, capital, tax, non-tax, transfer, land taxes, commerce taxes, other taxes
• Expenditure: total, capital spending, total functional spending, personnel spending, transfers paid
• Municipal expenditure, national expenditure
• Budget deficit, credit

Wellbeing

• Land ownership gini
• Unmet basic needs index, life quality index

Infrastructure

• Main, secondary, tertiary paved roads: length and density
• Main, secondary, tertiary unpaved roads: length and density
• Main, secondary, tertiary dirt roads: length and density

Elections

• Mayoral election: indicator, turnout, winner’s party
• Lower and upper house elections: indicator, turnout, concentration, fractionalization, polarization, margin between 1st and 2nd party, party leaning of winner, party leaning of runner up, party of winner

and runner-up
• Presidential election: indicator

U.S. Military

• U.S. military aid, U.S. narcotics aid, U.S. combined aid
• Colombian government military base presence
• Interaction between base presence and U.S. spending

DMZ

• Demilitarized zone indicator, distance to demilitarized zone

Illicit Production

• Poppy producing hectares, any poppy production, coca producing hectares, any coca production
• Eradicated hectares, any eradication
• Coca production in: Bolivia, Colombia, Peru, world total, non-colombia
• Cocaine production in: Bolivia, Colombia, Peru
• Coca eradicated in: Bolivia, Colombia, Peru
• Cocaine exports to Switzerland: Bolivia, Colombia, Peru
• Coca producing hectares in: Bolivia, Colombia, Peru, world total, non-colombia
• Change in coca price: wholesale U.S., wholesale Europe, retail Europe
• Coca hectares times U.S. cocaine price

Colonial History

• Employees: crown, non-military crown
• Colonial state presence index
• Colonial city status dummy, distance to local roads
• Slave population share, slave presence indicator
• Indian population
• Encomiendas: number, indicator
• Colonial gold mine presence indicator
• Foundation date
• Population 1843

Geography

• Area
• Percent suitable/non-suitable/sub-optimal/optimal: sugar, palm
• Slope: max, mean, standard deviation
• Percent flat, slightly-sloped, sloped, strongly-sloped, moderately steep, strongly steep
• Water availability: mean, standard deviation
• Main, secondary, and tertiary rivers: length and density
• Percent flat, hills, mountains, valleys, water bodies.

Commodity Price Shocks

• Coffee, oil, gold, coal, silver, platinum

Climate Shocks

• Temperature and rainfall deviations from historical means

Historical Climate Traits

• Mean: temperature and rainfall
• Standard deviation: temperature and rainfall

Climate Shocks

• Temperature and rainfall deviations from historical means

Historical Climate Traits

• Mean: temperature and rainfall
• Standard deviation: temperature and rainfall
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