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static framework– we extend both the accounting decomposition and the model to a dynamic 
setting and enrich the space of shocks. Quantitatively, delayed propagation contributes relatively 
little to the overall GDP comovement compared to the impact effects captured by the static 
production network model. Models featuring two intratemporal shocks (TFP and labor supply) 
strike a good balance between parsimony and fit to the data.
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1. Introduction

Production networks play an important role in transmitting shocks within countries and amplifying
aggregate fluctuations.1 Since input networks increasingly cross national borders, a natural conjecture
is that they may also help explain the well known positive correlation of real GDP growth across
countries. Although there is a growing body of work on the propagation of disaggregate shocks
through interconnected sectors, we still lack a comprehensive theoretical and quantitative account of
the role of production networks in international GDP synchronization.

The main contributions of this paper are twofold. Conceptually, we propose a general and unified
framework to study international comovement in the presence of global production networks. The
framework is tractable and can be readily applied to a broad range of questions, using widely available
data. Quantitatively, we provide an application that assesses the relative importance of correlated
shocks versus shock transmission in generating GDP comovement.

We develop our framework and application in three stages. First, we derive an additive decom-
position of bilateral GDP comovement into components capturing shock transmission and shock
correlation. Second, we quantify this decomposition in a parsimonious multi-country, multi-sector
network propagation model featuring a single composite supply shock. We find that transmission of
shocks through the network can account for a minority of observed comovement under a range of
standard values of structural elasticities. Fully reproducing observed comovement requires correlated
shocks. Third, we extend both the accounting decomposition and the model to a dynamic setting
and enrich the space of shocks, to assess the role of delayed propagation and intertemporal shocks.
Quantitatively, delayed propagation contributes relatively little to the overall GDP comovement com-
pared to the impact effects captured by the static model. Models featuring two intratemporal shocks
(TFP and labor supply) provide a reasonably good fit to the data.

Section 2 sets up a simple accounting framework that clarifies the mechanisms at play and objects
of interest for measurement. Two countries can experience positive comovement if shocks in one
country influence the other country’s GDP through trade and production linkages. Comovement
also arises if influential sectors in the two economies have correlated shocks. The GDP covariance
between two countries can be expressed as a function of the primitive shock covariances and a global
influence matrix. The latter collects the general equilibrium elasticities of GDP in each country
with respect to all sector-country-specific shocks worldwide, and thus translates the variances and
covariances of the primitive shocks into comovements of GDP. We show that the GDP covariance
between two countries can be written as a sum of two terms, respectively capturing correlated shocks
and transmission.

The accounting framework provides a road map for quantification and measurement. First, as

1The closed-economy literature on the micro origins of aggregate fluctuations and on shock propagation via input
linkages goes back to Long and Plosser (1983), and has been modernized recently following the seminal contributions by
Gabaix (2011) and Acemoglu et al. (2012).

1



the global influence matrix will always be model-dependent, we must impose sufficient structure
and bring sufficient data on international production network linkages to recover the global influence
matrix. Second, we must measure some underlying shocks to determine the extent of their correlation
across countries. This will allow us to establish both how the influence matrix interacts with the shock
correlation, and how it produces transmission.

Section 3 sets up a multi-country, multi-sector, multi-factor model of the world economy. Countries
trade both intermediate and final goods. Each sector uses labor, capital, and intermediate inputs that
can come from any sector and country in the world. Sector-specific composite supply shocks propagate
through the production network both domestically and internationally. Closed-economy models of
network propagation (e.g. Acemoglu et al., 2012) write the change in real GDP as an inner product
of the vector of sectoral shocks and the influence vector. We extend this approach to an international
setting, and write the change in GDP of a single country as an inner product of the vector of shocks
to all countries and sectors in the world and the country-specific influence vector that collects the
elasticities of that country’s GDP to every sectoral shock in the world. A key feature of our analysis
is that we provide a first-order analytical solution for this influence vector in a multi-country general
equilibrium setting. This analytical solution expresses the influence matrix in terms of observables
that can be measured and a small number of structural elasticities.

One use of the quantitative framework is as a means for shock measurement. As the global
influence matrix translates sector-country specific shocks to equilibrium changes in output, it can also
be inverted to infer supply shocks that rationalize the observed output changes. By construction, when
these shocks are fed back into the model, they reproduce each country’s GDP, and hence observed
international GDP correlations exactly. This exercise is an open-economy version of Foerster, Sarte,
and Watson (2011).2 , 3

Section 4 quantifies the model using sector-level data for 29 countries and up to 30 years. The
influence matrix and the recovered shocks are the two ingredients required to implement the decom-
position of the overall comovement into the correlated shocks and transmission components from
Section 2. Our first main finding is that the supply shocks required to rationalize output growth are
correlated across countries, regardless of the choice of the elasticities needed to calibrate the influence
matrix. In our preferred calibration the transmission component accounts for about one-fifth of the
total GDP correlation, with the shock correlation responsible for the remaining four-fifths. Thus,
while network linkages do propagate shocks across borders, the internal transmission mechanisms
in global production network models cannot generate all of the observed comovement.

We stress that our contribution here is not to arrive at an ironclad number for the fraction of
2Naturally, externally estimated shocks for any subset of countries and sectors can readily be fed into this framework as

well. For an example, see Bonadio et al. (2020)
3In our framework, the TFP and factor supply shocks have the same effect on the global vector of output changes, up to a

scaling factor. Thus, inverting the global influence matrix recovers a composite supply shock, which is sufficient to answer
the main question posed in Section 3. As discussed in detail below, many “demand” shocks such as monetary policy or
sentiments manifest themselves in reduced form as factor supply shifts, and would thus be picked up in our composite
shocks. Section 5 unpacks the shocks.
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transmission in the overall comovement. Rather, we provide a transparent way of thinking about the
question, and a tractable means of quantification that promises to have a wide array of applications.4
Though we econometrically estimate most of the parameters underlying our preferred quantification,
we recognize the uncertainty around those parameters and do not overemphasize exact numerical
values to the detriment of highlighting the methodological contribution. Instead, we probe the
quantification in a number of ways to uncover the economic forces at work.

The analytical solution makes it transparent that model quantification requires two sets of objects:
the input network (final and intermediate expenditure shares), and elasticities (of labor supply and
substitution). We perform two counterfactuals that explore the role of the input network in generating
comovement. First, we compare the baseline economy to one in which countries are in autarky.
This exercise reveals an underappreciated mechanism through which trade opening affects GDP
comovement: it changes the relative influence of domestic sectors. We write the difference in GDP
comovement between the trade and autarky equilibria as a sum of two terms: the international
transmission of shocks, and the changes in the influence of the domestic shocks times the covariances
of those shocks. The second term captures whether trade opening leads to an expansion or contraction
of sectors with more correlated shocks. International transmission is positive in the trade equilibrium
and increases comovement relative to autarky. The second effect tends to be negative on average,
and can be quantitatively large. For instance, in the G7 it reduces average GDP correlations by
0.05-0.1, depending on the calibration. This result reveals an unexpected role of input linkages in
cross-border comovement: there are cases in which trade opening leads to a shift away from the most
internationally correlated sectors.5 Second, we shut down trade in intermediate inputs. The model
without the input network underpredicts comovement in all calibrations, and by about 10-15% in our
preferred calibration.

The model requires only 3 elasticities: the Frisch elasticity of labor supply, and substitution elastici-
ties between inputs and final goods. We re-do the shock extraction and shock correlation/transmission
decompositions under a range of these elasticities. By construction, the procedure matches the data on
the overall GDP correlations under each set of elasticities, but the fraction of comovement attributed to
transmission varies with these parameters. The share of transmission in total comovement increases
in the Frisch elasticity, and decreases in both substitution elasticities. However, transmission accounts
for at most 50-55% of total comovement in the wide range of elasticity combinations we consider.

Sections 3-4 focus on the role of the input network in amplifying or dampening the correlations

4For instance, Huo, Levchenko, and Pandalai-Nayar (2020) apply a similar framework to study the role of variable factor
utilization in TFP measurement and international comovement; Bonadio et al. (2020) study the propagation of the pandemic
shock through global supply chains; Bonadio et al. (2021) examine the roles of structural change and globalization in the
long-run evolution of international GDP comovement; de Soyres and Gaillard (2021) use our accounting decomposition of
comovement into bilateral and multilateral transmission terms to dissect the well-known trade-comovement relationship.

5This is a purely quantitative finding, arising from the particular correlation properties of the estimated shocks and
input coefficients. Nonetheless, it is a counterexample to the effect often invoked in the optimum currency area literature,
whereby trade integration is expected to increase comovement by making aggregate shocks more correlated (e.g. Frankel
and Rose, 1998). We reveal an alternative mechanism, through which countries might become less correlated with trade
integration despite the same underlying sectoral shocks.
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of the sectoral shocks, but leave several open questions. As is conventional in the literature on shock
transmission in production networks, the model is static. Therefore it is silent on dynamic propagation
and delayed responses of economies to shocks. The composite supply shock is by construction not
especially informative on the underlying drivers of business cycles in general, and of international
comovement in particular. Finally, connecting the two points above, intertemporal shocks cannot be
extracted using the static influence matrix.

Section 5 introduces dynamics and enriches the model to allow for several distinct shocks. Capital
can now be accumulated in each sector between periods, in response to both domestic and foreign
shocks. In our theoretical framework the contemporaneous response of GDP in the dynamic model
to intratemporal shocks is characterized by the global influence matrix, and thus coincides with the
GDP response of the static world economy studied in Section 3. In addition, as illustrated in Section
2 the static and the dynamic components of the total covariance are simply additive. Thus the static
and dynamic comovement are separable, and our framework bridges the network propagation and
the international business cycle literatures.6 We consider 4 shocks: TFP, labor, capital/investment,
and intermediate input. Together, these 4 shocks rationalize the data on output and labor, capital,
and intermediate inputs.

Quantitatively, the intertemporal transmission through capital accumulation is much less im-
portant for comovement than the impact effects of correlated shocks amplified by the production
network. We write overall GDP correlation as the sum of the correlations of the contemporaneous
change in GDPs due to a shock innovation, and the infinite sum of responses to all the past innova-
tions. The component capturing the contemporaneous effects of shocks accounts for 80% of the total
GDP correlations.

Finally, we simulate the dynamic model conditional on subsets of shocks to understand which
ones are most important for comovement. No single shock has a dominant role in international
comovement. Individually, the labor and the TFP shocks appear most promising, but for different
reasons.7 The labor shock has the highest synchronizing impact, with the qualification that much of
its overall effect appears to come from its correlation with other shocks rather than with itself. Taken
alone, the TFP and labor shocks generate similar amounts of GDP comovement, but the TFP shock
also produces GDP series closer to the data.

A model that combines labor and TFP shocks strikes a good balance between parsimony and fit

6A key assumption that enables a clean separation of the contemporaneous static and delayed dynamic responses to
shocks is financial autarky. As highlighted by Heathcote and Perri (2002), models featuring financial autarky outperform
complete and incomplete markets models in accounting for business cycle comovement. This may be due to the fact that in
the data, capital flows in the “wrong” direction in response to cross-country productivity growth differentials (Gourinchas
and Jeanne, 2013). Developing frameworks that can successfully replicate the responses of capital flows to shocks, and
using them to understand international comovement is beyond the scope of this paper, but remains a fruitful avenue for
future research.

7Our labor supply shock can be viewed as a generalization of the “labor wedge” (e.g. Chari, Kehoe, and McGrattan,
2007) to the sector level. Though reduced-form, it has a variety of “demand shock” microfoundations, such as sentiment
shocks (e.g. Angeletos and La’O, 2013; Huo and Takayama, 2015), monetary policy shocks under sticky wages (Galí, Gertler,
and López-Salido, 2007; Chari, Kehoe, and McGrattan, 2007), or shocks to working capital constraints (e.g. Neumeyer and
Perri, 2005; Mendoza, 2010).
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to the data. The two shocks together generate more than two-thirds of the observed international
correlation, and produce behavior of GDP similar to the data. This specification is parsimonious both
in the sense that it relies on only two shocks, as well as in the sense that these shocks themselves
are relatively simple, and would work in the same way in both static and dynamic models. The
next shock in order of importance is the investment shock. Adding it to TFP and labor essentially
reproduces the data. However, adding this shock comes at a cost of parsimony, especially because
both extracting and using this shock requires solving and iterating on the full dynamic model. The
intermediate input shock is the least important, either by itself or in conjunction with other shocks.
A quantification is not missing much by omitting it.8

Related Literature. Our paper draws from, and contributes to two literatures. The first is the active
recent research agenda on shock propagation in production networks. A number of closed-economy
papers following the seminal contributions of Carvalho (2010), Gabaix (2011) and Acemoglu et al.
(2012) enrich the theory, provide econometric evidence, and estimate key structural parameters (see,
among others, Foerster, Sarte, and Watson, 2011; Acemoglu, Akcigit, and Kerr, 2016; Barrot and
Sauvagnat, 2016; Atalay, 2017; Grassi, 2017; Baqaee, 2018; Baqaee and Farhi, 2019a,b; Boehm, Flaaen,
and Pandalai-Nayar, 2019; Foerster et al., 2019; Bigio and La’O, 2020; Carvalho et al., 2020; Allen,
Arkolakis, and Takahashi, 2020; Adao, Arkolakis, and Esposito, 2020; vom Lehn and Winberry, 2021).
We apply the insights and tools developed by this body of work to the study of international GDP
comovement. The notion that international input trade is the key feature of the global economy goes
back to Hummels, Ishii, and Yi (2001) and Yi (2003), and has more recently been documented and
quantified in a series of contributions by Johnson and Noguera (2012, 2017) and Caliendo and Parro
(2015).9

The second is the research program in international macro that studies business cycle comovement
using dynamic IRBC models featuring simple production structures. A large literature builds models
in which fluctuations are driven by productivity shocks, and asks under what conditions those
models can generate observed international comovement (see, among many others, Backus, Kehoe,
and Kydland, 1992; Heathcote and Perri, 2002). A smaller set of contributions adds non-technology
shocks (Stockman and Tesar, 1995; Wen, 2007; Bai and Ríos-Rull, 2015).10

8One caveat with this analysis is that the 4 extracted shocks are not mutually uncorrelated across countries. So there
is no additive decomposition of overall comovement into the components driven by a single shock. This is a well known
feature of this type of business cycle accounting exercise (see, among others, Chari, Kehoe, and McGrattan, 2007; Eaton
et al., 2016).

9In the international trade literature, contemporaneous work by Baqaee and Farhi (2019c) and subsequent work by
Kleinman, Liu, and Redding (2020) also derives analytical first-order solutions to international network models. While
these frameworks focus on long-run comparative statics such as gains from trade or foreign productivity growth, they cannot
be used to study international transmission of business cycle shocks (and related applications). Because these papers feature
fixed factor supply, measured real GDP is not responsive to foreign shocks, and thus international transmission (to real
GDP) is nonexistent by construction.

10A number of papers are dedicated to documenting international correlations in productivity shocks and inputs (e.g.
Imbs, 1999; Kose, Otrok, and Whiteman, 2003; Ambler, Cardia, and Zimmermann, 2004). Also related is the body of work
that identifies technology and demand shocks in a VAR setting and examines their international propagation (e.g. Canova,
2005; Corsetti, Dedola, and Leduc, 2014; Levchenko and Pandalai-Nayar, 2020). Our work complements these papers by
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Our framework nests both the rich static production network models and the canonical IRBC
models, as well as more recent frameworks (such as Burstein, Kurz, and Tesar, 2008; Johnson, 2014;
Eaton et al., 2016; Eaton, Kortum, and Neiman, 2016) that combine dynamics with simplified Input-
Output structures. Note that the accounting decompositions of transmission vs. shock correlation
and the static vs. dynamic components developed in Section 2 also apply to all of these. While all
papers on international business cycle comovement must take a stand on the relative importance
of correlated shocks vs. transmission, we provide a method to cleanly separate these two potential
sources of comovement that can be applied across models. We further contribute to this research
agenda by deriving a set of analytical results that help quantify the relative importance of transmission
and correlated shocks, measuring the shocks, and expanding the scope of quantification to more
countries and sectors.11 , 12

2. Accounting Framework

Consider an economy comprised of 𝐽 sectors indexed by 𝑗 and 𝑖, and 𝑁 countries indexed by 𝑛 and 𝑚.
Gross output in sector 𝑗 country 𝑛 aggregates a primary factor input bundle ℐ𝑛𝑗 (for instance, capital
and labor) and materials inputs 𝑋𝑛𝑗 :

𝑌𝑛𝑗 = 𝐹
(ℐ𝑛𝑗(θ), 𝑋𝑛𝑗(θ);θ) . (2.1)

The bundle of inputs 𝑋𝑛𝑗 can include foreign imported intermediates. The sectoral output is affected
by a generic matrix of shocksθ. For concreteness, one can think of productivity shocks. A productivity
shock 𝜃𝑛𝑗 to sector 𝑗 in country 𝑛 will directly affect output in that sector. Because the economy is
interconnected through trade, output in every sector and country is in principle a function of all the
shocks anywhere in the world, hence the dependence of 𝑌𝑛𝑗 on the full world vector θ. The matrix
θ can include multiple types of shocks (such as technology and non-technology). The next section
completely specifies the shocks, and the nature of output’s dependence on those shocks in the context
of a particular model.

providing novel estimates of several types of shocks at sector level, and expanding the sample of countries.
11Also related is the large empirical and quantitative literature on the positive association between international trade

and comovement (e.g. Frankel and Rose, 1998; Imbs, 2004; Kose and Yi, 2006; di Giovanni and Levchenko, 2010; Ng, 2010;
Liao and Santacreu, 2015; di Giovanni, Levchenko, and Mejean, 2018; de Soyres and Gaillard, 2019; Drozd, Kolbin, and
Nosal, 2020). While these papers focus on the slope of the trade-correlation relationship in a cross-section of countries, we
broaden the scope to provide a complete treatment of international comovement. Appendix D.4 explores the connection
between the “trade-comovement” regressions and our analysis.

12Following the network propagation literature, our analysis captures the shock transmission through the market for
inputs. It leaves open the possibility that the presence of input trade endogenously leads to correlated shocks, for instance
through coordination of monetary policy, flow of information/sentiments, or transmission of productivity shocks within
multinationals, among others. Microfounding shock correlation is outside the scope of our analysis but remains a fruitful
avenue for future research.
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Real GDP is defined as value added evaluated at base prices 𝑏:

𝑉𝑛 =
𝐽∑
𝑗=1

(
𝑃𝑛𝑗,𝑏𝑌𝑛𝑗(θ) − 𝑃𝑋𝑛𝑗,𝑏𝑋𝑛𝑗(θ)

)
, (2.2)

where 𝑃𝑛𝑗,𝑏 is the gross output base price, and 𝑃𝑋𝑛𝑗,𝑏 is the base price of inputs in that sector-country.
Let 𝜃𝑚𝑖 be a scalar-valued shock affecting sector 𝑖 in country 𝑚.13 A first order approximation to

the log change in real GDP of country 𝑛 can be written as:

𝑑 ln𝑉𝑛 ≈
∑
𝑚

∑
𝑖

𝑠𝑚𝑛𝑖𝜃𝑚𝑖 , (2.3)

where 𝑠𝑚𝑛𝑖 are the elements of the global influence matrix, that give the elasticity of the GDP of
country 𝑛 with respect to shocks in sector 𝑖, country 𝑚. Notice that these elasticities capture the
full impact of a shock through direct and indirect input-output links and general equilibrium effects.
We derive a first-order closed-form solution to the influence matrix in our model economy with
international trade in Section 3.2.

To highlight the sources of international GDP comovement, write real GDP growth as

𝑑 ln𝑉𝑛 =
∑
𝑗

𝑠𝑛𝑛𝑗𝜃𝑛𝑗︸       ︷︷       ︸
𝒟𝑛

+
∑
𝑗

𝑠𝑚𝑛𝑗𝜃𝑚𝑗︸        ︷︷        ︸
𝒫𝑛

+
∑

𝑛′≠𝑛,𝑚

∑
𝑗

𝑠𝑛′𝑛𝑗𝜃𝑛′ 𝑗︸                 ︷︷                 ︸
𝒯𝑛

. (2.4)

This equation simply breaks out the double sum in (2.3) into the component due to country 𝑛’s own
shocks (𝒟𝑛), the component due to a particular trading partner 𝑚’s shocks (𝒫𝑛), and the impact of
“third” countries that are neither 𝑛 nor 𝑚 (𝒯𝑛).

Then, the GDP covariance between country 𝑛 and country 𝑚 is:

Cov(𝑑 ln𝑉𝑛 , 𝑑 ln𝑉𝑚) = Cov(𝒟𝑛 ,𝒟𝑚)︸           ︷︷           ︸
Shock Correlation

+ Cov(𝒟𝑛 ,𝒫𝑚) + Cov(𝒫𝑛 ,𝒟𝑚) + Cov(𝒫𝑛 ,𝒫𝑚)︸                                                      ︷︷                                                      ︸
Bilateral Transmission

(2.5)

+ Cov(𝒟𝑛 + 𝒫𝑛 + 𝒯𝑛 ,𝒯𝑚) + Cov(𝒯𝑛 ,𝒟𝑚 + 𝒫𝑚)︸                                                      ︷︷                                                      ︸
Multilateral Transmission

.

This expression underscores the sources of international comovement. The first term, Cov(𝒟𝑛 ,𝒟𝑚),
captures the fact that economies might be correlated even in the absence of trade if the underlying
shocks themselves are correlated, especially in sectors influential in the two economies. The shock

13The extension to vector-valued 𝜃𝑚𝑖 is straightforward, i.e. each sector can experience multiple shocks simultaneously.
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correlation term can be written as:

Cov(𝒟𝑛 ,𝒟𝑚) =
∑
𝑗

∑
𝑖

𝑠𝑛𝑛𝑗𝑠𝑚𝑚𝑖Cov(𝜃𝑛𝑗 , 𝜃𝑚𝑖).

The second term captures bilateral or direct transmission. If the GDP of country 𝑛 has an elasticity
with respect to the shocks occurring in country 𝑚 (𝑠𝑚𝑛𝑖 > 0), that would contribute to comovement
as well. Taking one of the terms of the Bilateral Transmission component:

Cov(𝒟𝑛 ,𝒫𝑚) =
∑
𝑗

∑
𝑖

𝑠𝑛𝑛𝑗𝑠𝑛𝑚𝑖Cov(𝜃𝑛𝑗 , 𝜃𝑛𝑖)

= s′𝑛𝑛𝚺𝑛s𝑛𝑚 , (2.6)

where 𝚺n is the 𝐽 × 𝐽 covariance matrix of shocks in country 𝑛, and s𝑛𝑚 is the 𝐽 × 1 influence vector
collecting the impact of shocks in 𝑛 on GDP in 𝑚. This expression underscores that one source of
comovement is that under trade, both country 𝑛 and country 𝑚 will be affected by shocks in 𝑛.

Finally, the Multilateral Transmission term collects all the other sources of comovement between
𝑛 and 𝑚 that do not come from shocks to either 𝑛 or 𝑚, such as shocks in other countries.

Dynamics. The decompositions above generalize to a dynamic environment in which shocks can
have prolonged effects on output. In that case, GDP in period 𝑡,𝑉𝑛𝑡 , is potentially a function of all the
history of shocks {θ𝑡−𝑘}∞𝑘=0:

𝑑 ln𝑉𝑛𝑡 ≈
∞∑
𝑘=0

∑
𝑚

∑
𝑖

𝑠𝑚𝑛𝑖,𝑘𝜃𝑚𝑖,𝑡−𝑘 , (2.7)

where 𝜃𝑚𝑖,𝑡 is now interpreted as the time-𝑡 innovation to the shock process. All the results above are
generalized simply by adding a summation over 𝑘.14

We can decompose overall comovement into the static (contemporaneous) and dynamic compo-
nents. The covariance between countries 𝑛 and 𝑚 can be written as:

Cov(𝑑 ln𝑉𝑛𝑡 , 𝑑 ln𝑉𝑚𝑡) =
∞∑
𝑘=0

s′𝑛,𝑘𝚺s𝑚,𝑘 , (2.8)

where s𝑛,𝑘 is the 𝑁𝐽 × 1 influence vector collecting the impact of all worldwide innovations 𝑘 periods
ago on country 𝑛, and 𝚺 is the covariance matrix of innovations. Thus, the overall GDP covariance is
additive in the component due to the contemporaneous innovations s′𝑛,0𝚺s𝑚,0 and the dynamic prop-
agation of past shocks. The contemporaneous component is also notable because in the quantitative
framework below, the contemporaneous influence vector s𝑛,0 in the fully-specified dynamic model
coincides with the influence vector in a static model that only features instantaneous propagation of
shocks.

14That is, (2.5) is unchanged, while 𝒟𝑛 becomes 𝒟𝑛 =
∑∞
𝑘=0

∑
𝑗 𝑠𝑛𝑛𝑗,𝑘𝜃𝑛𝑗,𝑡−𝑘 , for example.
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To summarize, in order to provide an account of international comovement, we must (i) measure
shocks in order to understand their comovement properties; and (ii) assess how sectoral composition
(the distribution of 𝑠𝑛𝑛𝑗’s) translates sectoral comovement of the primitive shocks into GDP comove-
ment. Finally, (iii) we must discipline the persistence of both the shocks and equilibrium adjustments
over time in order to quantify the relative importance of contemporaneous vs. intertemporal correla-
tion.

3. Global Network Model

The decomposition above is general and would apply in any production economy. However, any
measurement of the elements of the influence matrix and of shocks requires additional theoretical
structure. This section introduces a parsimonious multi-country production network model in the
spirit of Acemoglu et al. (2012), and solves it analytically. Section 4 uses it to quantify the contributions
of correlated shocks and transmission in GDP comovement.

3.1 Setup

Preliminaries. Each country 𝑛 is populated by a representative household. The household con-
sumes the final good available in country 𝑛 and supplies labor and capital to firms. Trade is subject to
iceberg costs 𝜏𝑚𝑛𝑗 to ship good 𝑗 from country 𝑚 to country 𝑛 (throughout, we adopt the convention
that the first subscript denotes source, and the second destination).

Households. There is a continuum of workers in a representative household who share the same
consumption. The problem of the household is

max
ℱ𝑛 ,{𝐻𝑛𝑗}

𝑈
©­«ℱ𝑛 −

∑
𝑗

𝐻
1+ 1

𝜓

𝑛𝑗
ª®¬ (3.1)

subject to

𝑃𝑛ℱ𝑛 =
∑
𝑗

𝑊𝑛𝑗𝐻𝑛𝑗 +
∑
𝑗

𝑅𝑛𝑗𝐾𝑛𝑗

where ℱ𝑛 is consumption of final goods, 𝐻𝑛𝑗 is the total labor hours supplied to sector 𝑗, and 𝐾𝑛𝑗 is the
amount of installed capital, which for now is assumed to be exogenous. Labor collects a sector-specific
wage𝑊𝑛𝑗 , and capital is rented at the price 𝑅𝑛𝑗 .

We highlight two features of the household problem. First, our formulation of the disutility of
the labor supply is based on the Greenwood, Hercowitz, and Huffman (1988) preferences. The GHH
preferences mute the interest rate effects and income effects on the labor supply, which helps to study
the properties of the static equilibrium where the amount of capital is treated as predetermined.
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Second, labor and capital are differentiated by sector, as the household supplies factors to each
sector separately. In this formulation, labor is neither fixed to each sector nor fully flexible, and its
responsiveness is determined by the Frisch elasticity 𝜓. As 𝜓 → ∞, labor supply across sectors
becomes more sensitive to wage differentials, in the limit households supplying labor only to the
sector offering the highest wage. At the opposite extreme, as 𝜓 → 0, the supply of labor is fixed in
each sector by the preference parameters.15

The final use in the economy, denoted ℱ𝑛 , is an Armington aggregate across countries and sectors.
The functional form and its associated price index are given by

ℱ𝑛 =


∑
𝑗

∑
𝑚

𝜗
1
𝜌

𝑚𝑛𝑗ℱ𝑚𝑛𝑗
𝜌−1
𝜌


𝜌

𝜌−1

, 𝑃𝑛 =


∑
𝑗

∑
𝑚

𝜗𝑚𝑛𝑗𝑃
1−𝜌
𝑚𝑛𝑗


1

1−𝜌

, (3.2)

where ℱ𝑚𝑛𝑗 is final use in 𝑛 of sector 𝑗 goods coming from country 𝑚, and 𝑃𝑚𝑛𝑗 is the price of ℱ𝑚𝑛𝑗 .
For goods 𝑗, the expenditure share for final goods imported from country 𝑚 is given by

𝜋
𝑓
𝑚𝑛𝑗 =

𝜗𝑚𝑛𝑗𝑃
1−𝜌
𝑚𝑛𝑗∑

𝑘,ℓ 𝜗𝑘𝑛ℓ𝑃
1−𝜌
𝑘𝑛ℓ

.

The labor supply curves are isoelastic in the wages relative to the consumption price index, and
given by (up to a normalization constant):

𝐻
1
𝜓

𝑛𝑗 =
𝑊𝑛𝑗

𝑃𝑛
.

Firms. A representative firm in sector 𝑗 in country 𝑛 operates a CRS production function

𝑌𝑛𝑗 = 𝑍𝑛𝑗
(
𝐾

1−𝛼 𝑗
𝑛𝑗 𝐻

𝛼 𝑗
𝑛𝑗

)𝜂𝑗
𝑋

1−𝜂𝑗
𝑛𝑗 , (3.3)

where the total factor productivity is denoted by 𝑍𝑛𝑗 , and the intermediate input usage 𝑋𝑛𝑗 is an
aggregate of inputs from potentially all countries and sectors:

𝑋𝑛𝑗 ≡
(∑

𝑖

∑
𝑚

𝜇
1
𝜀
𝑚𝑖,𝑛 𝑗𝑋

𝜀−1
𝜀

𝑚𝑖,𝑛 𝑗

) 𝜀
𝜀−1

,

where 𝑋𝑚𝑖,𝑛 𝑗 is the usage of inputs coming from sector 𝑖 in country 𝑚 in production of sector 𝑗 in
country 𝑛, and 𝜇𝑚𝑖,𝑛 𝑗 is the taste shifter.16

15The specification of labor supply bears an affinity to the “Roy-Frechet” models common in international trade (e.g.
Galle, Rodríguez-Clare, and Yi, 2017), in the sense that the relative supply of hours to two different sectors is isoelastic in
the relative wages in the two sectors. The difference is that in most existing Roy-Frechet implementations, aggregate labor
supply is fixed and only sectoral shares vary, whereas in our analysis total economywide labor supply shifts as well.

16Our framework is competitive. Liao and Santacreu (2015) show that in the presence of profits, international input trade
will synchronize TFPs across countries, as measured by the Solow residual. A model with profits affecting the measured
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Let 𝑃𝑛𝑗 denote the price of output produced by sector 𝑗 in country 𝑛, and let 𝑃𝑚𝑖,𝑛 𝑗 be the price
paid in sector 𝑛, 𝑗 for inputs from 𝑚, 𝑖. No arbitrage in shipping implies that the prices “at the factory
gate” and the price at the time of final or intermediate usage are related by:

𝑃𝑚𝑖,𝑛 𝑗 = 𝑃𝑚𝑛𝑖 = 𝜏𝑚𝑛𝑖𝑃𝑚𝑖 ,

where 𝜏𝑚𝑛𝑖 is the iceberg trade cost.
Cost minimization implies that the payments to primary factors and intermediate inputs are:

𝑅𝑛𝑗𝐾𝑛𝑗 = (1 − 𝛼 𝑗)𝜂 𝑗𝑃𝑛𝑗𝑌𝑛𝑗
𝑊𝑛𝑗𝐻𝑛𝑗 = 𝛼 𝑗𝜂 𝑗𝑃𝑛𝑗𝑌𝑛𝑗 (3.4)

𝑃𝑚𝑖,𝑛 𝑗𝑋𝑚𝑖,𝑛 𝑗 = 𝜋𝑥𝑚𝑖,𝑛 𝑗
(
1 − 𝜂 𝑗

)
𝑃𝑛𝑗𝑌𝑛𝑗 , (3.5)

where 𝜋𝑥𝑚𝑖,𝑛 𝑗 is the share of intermediates from country 𝑚 sector 𝑖 in total intermediate spending by
𝑛, 𝑗, given by:

𝜋𝑥𝑚𝑖,𝑛 𝑗 =
𝜇𝑚𝑖,𝑛 𝑗 (𝜏𝑚𝑛𝑖𝑃𝑚𝑖)1−𝜀∑
𝑘,ℓ 𝜇𝑘ℓ ,𝑛 𝑗 (𝜏𝑘𝑛𝑙𝑃𝑘ℓ )1−𝜀

.

Equilibrium. An equilibrium in this economy is a set of goods and factor prices
{
𝑃𝑛𝑗 ,𝑊𝑛𝑗 , 𝑅𝑛𝑗

}
,

factor allocations
{
𝐾𝑛𝑗 , 𝐻𝑛𝑗

}
, and goods allocations

{
𝑌𝑛𝑗

}
,
{ℱ𝑚𝑛𝑗 , 𝑋𝑚𝑖,𝑛 𝑗} for all countries and sectors

such that (i) households maximize utility; (ii) firms maximize profits; and (iii) all markets clear.
At the sectoral level, the following market clearing condition has to hold for each country 𝑛 sector

𝑗:

𝑃𝑛𝑗𝑌𝑛𝑗 =
∑
𝑚

𝑃𝑚ℱ𝑚𝜋 𝑓
𝑛𝑚𝑗 +

∑
𝑚

∑
𝑖

(1 − 𝜂𝑖)𝑃𝑚𝑖𝑌𝑚𝑖𝜋𝑥𝑛𝑗,𝑚𝑖 . (3.6)

Meanwhile, trade balance implies that each country’s final expenditure equals the sum of value added
across domestic sectors17

𝑃𝑚ℱ𝑚 =
∑
𝑖

𝜂𝑛𝑖𝑃𝑚𝑖𝑌𝑚𝑖 . (3.7)

Note that once we know the share of value added in production 𝜂 𝑗 , the expenditure shares 𝜋 𝑓
𝑛𝑚𝑗 and

𝜋𝑥𝑛𝑗,𝑚𝑖 for all 𝑛, 𝑚, 𝑖, 𝑗, we can compute the nominal output 𝑃𝑛𝑗𝑌𝑛𝑗 for all country-sectors (𝑛, 𝑗) after
choosing a numeraire good. There is no need to specify further details of the model, and we will
utilize this property to derive the influence matrix.

Solow residual is observationally equivalent to a model with decreasing returns to scale (see, e.g. Ho and Ruzic, 2019,
for a discussion). In related work (Huo, Levchenko, and Pandalai-Nayar, 2020) we extend our framework to estimate
returns to scale and find them to be quite close to constant. Thus, in this paper we abstract from the role of profits in GDP
synchronization.

17We can incorporate deficits in a manner similar to Dekle, Eaton, and Kortum (2008), without much change in our
results.
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Shocks. At a formal level, the only shock in this world economy is the TFP shock 𝑍𝑛𝑗 . From the
perspective of the quantification below, 𝑍𝑛𝑗 should be interpreted broadly as a composite supply
shock, encompassing both technology and primary factors. In the model, labor supply is upward-
sloping in real wages, but shifts in the labor supply curve are isomorphic to TFP shocks in their effect
on the global vector of output changes, up to a scaling factor. The model is static, so changes in the
capital stock from period to period in the data are trivially viewed by the model as shocks to capital
supply, and also isomorphic to TFP. Thus, inverting the global influence matrix recovers a composite
supply shock, which is sufficient to answer the main question posed in this section.18 This property
is related to the point stressed by Baqaee and Farhi (2019a) that factor supply shocks can always be
restated as productivity shocks, and thus are in that sense isomorphic to them. Section 5 separates
technology, labor supply, and capital supply shocks.

3.2 Analytical Solution

We now provide an analytical expression for the global influence matrix. In general, closed-form
solutions for the exact influence vectors cannot be obtained in multi-country multi-sector models
such as ours. However, we can solve for the first-order approximation of the influence vector in our
setting. Denote by “ln” the log-deviation from steady state/pre-shock equilibrium. Let the vector
ln Y of length 𝑁𝐽 collect the worldwide sectoral output changes.

Theorem 1. The response of ln Y to the global vector of supply shocks ln Z is to a first order approximation
given by

ln Y = 𝚲 ln Z, (3.8)

where

𝚲 =

(
I − 𝜓

1 + 𝜓
αη

(
I +

(
I −𝚷 𝑓 ⊗ 1

)
𝓟

)
− (I − η) (I + (I −𝚷𝑥)𝓟)

)−1

, (3.9)

η and α are matrices of output elasticities, 𝚷 𝑓 and 𝚷𝑥 are matrices of final consumption and intermediate
shares, respectively, and 𝓟 is a matrix that combines both structural elasticities and spending shares.19

Proof. See Appendix B.1. �

18In related work (Huo, Levchenko, and Pandalai-Nayar, 2020) we follow an alternative approach and measure utilization-
adjusted TFP shocks structurally. We find that utilization-adjusted TFP is uncorrelated across countries. As stressed here,
the composite shock 𝑍𝑛𝑗 should be thought of broadly, as encompassing not just TFP but other factor supply shocks. The
fact that 𝑍𝑛𝑗 is internationally correlated whereas utilization-adjusted TFP is not is already a hint that we should look to
non-TFP shocks as sources of comovement, the point further explored in both Huo, Levchenko, and Pandalai-Nayar (2020)
and Section 5. On the theory side, the variable factor utilization margin introduced in Huo, Levchenko, and Pandalai-Nayar
(2020) is isomorphic to the model in this section with a different Frisch elasticity (details available upon request). Thus,
up to a potential difference in calibrated parameters, the more parsimonious model here is without loss of generality for
the purposes of the present paper. Of course, the explicit utilization margin is important if the objective is to measure
utilization-adjusted TFP, which is the main goal of our other paper.

19The 𝑁𝐽 ×𝑁𝐽 diagonal matrices η and α collect the 𝜂𝑗 ’s and 𝛼 𝑗 ’s. A typical element of 𝚷 𝑓 is 𝜋 𝑓𝑚𝑛𝑗 and a typical element
of 𝚷𝑥 is 𝜋𝑥𝑚𝑖,𝑛 𝑗 . All of these matrices are defined precisely in Appendix B.1.
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Equations (3.8)-(3.9) illustrate that all we need to understand the response of worldwide output
to various sector-country shocks in this quantitative framework are measures of steady state final
goods consumption and production shares, as well as model elasticities. The matrix 𝚲 is the influence
matrix. It encodes the general equilibrium response of sectoral output in a country to shocks in any
sector-country, taking into account the full model structure and all direct and indirect links between
the countries and sectors.

Two aspects of the influence matrix are worth noting. The first is a resemblance of (3.8)-(3.9) to
the typical solution of a network model, that writes the equilibrium change in output as a product
of the Leontief inverse and the vector of shocks. Our expression also features a vector of shocks,
and an inverse of a matrix that is more complicated due to the multi-country structure of our model
combined with elastic factor supply and non-unitary elasticities of substitution.

Second, the response of output in a static model (fixing 𝐾𝑛𝑗 in each sector) coincides with the
impact response in the fully dynamic DSGE model in Section 5. Both are given by (3.8)-(3.9). Our
analysis thus integrates the static network propagation literature that follows Acemoglu et al. (2012)
and the dynamic international business cycle literature. We can cleanly separate the instantaneous
propagation analyzed in the former and the delayed responses to shocks emphasized by the latter.
In later periods the response of GDP will depend on the persistence of shocks and the capital
accumulation decisions, which are not encoded in this vector (but can be evaluated numerically).

The proof proceeds by manipulating the equilibrium conditions of the model. To build intuition
on the nature of general equilibrium effects captured by the influence matrix, linearize the market
clearing conditions (3.6) to obtain

ln P + ln Y =

(
𝚿 𝑓𝚼 +𝚿𝑥

)
(ln P + ln Y)︸                          ︷︷                          ︸

destination country output variation

+ (3.10)

(1 − 𝜌)
(
diag

(
𝚿 𝑓 1

)
−𝚿 𝑓𝚷 𝑓

)
ln P︸                                       ︷︷                                       ︸

consumption goods relative price variation

+ (1 − 𝜀)
(
diag (𝚿𝑥1) −𝚿𝑥𝚷𝑥

)
ln P︸                                     ︷︷                                     ︸

intermediate goods relative price variation

where the vector ln P collects sector-level log-deviations in prices, 𝚿𝑥 and 𝚿 𝑓 are matrices containing
the steady-state export shares of intermediate and final goods, and 𝚼 is a matrix of value added
shares.20 The first term contains the response of nominal output that arises from output changes
in every country and sector following a shock. The second term contains the relative price changes
of final goods and the final term the relative price changes of intermediate inputs. Equation (3.10)
implies that we can solve for the vector of country-sector price changes as a function of output changes

20A typical element of 𝚿 𝑓 is
𝑃𝑚ℱ𝑚𝜋 𝑓

𝑛𝑚𝑗

𝑃𝑛𝑗𝑌𝑛𝑗
, a typical element of 𝚿𝑥 is

𝑃𝑚𝑖𝑌𝑚𝑖𝜋𝑥𝑛𝑗,𝑚𝑖
𝑃𝑛𝑗𝑌𝑛𝑗

, and a typical element of 𝚼 is 𝜂𝑚𝑖𝑃𝑚𝑖𝑌𝑚𝑖
𝑃𝑚ℱ𝑚 . See

the proof of Theorem 1 in Appendix B.1 for the detailed definitions.
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and a matrix 𝓟 that depends only on spending shares and structural elasticities:

ln P = 𝓟 ln Y. (3.11)

The matrix 𝓟 is then an input into the influence matrix. Combining (3.11) with linearized versions of
the production function (3.3), labor market clearing, and the demand for intermediate goods leads to
the model solution (3.8).

To build intuition, we can write the change in output (3.8) as a sum of the partial equilibrium (PE)
and general equilibrium (GE) effects in response to a change in TFP:

ln Y =

(
η −αη

)−1

ln Z︸              ︷︷              ︸
PE effects

+
(
γ + γ2 + γ3 + . . .

) (
η −αη

)−1

ln Z︸                                         ︷︷                                         ︸
GE effects

, (3.12)

where the matrix γ has the following relationship with the influence matrix: 𝚲 = (I−γ)−1(η −αη)−1.
The PE effect is the change in output following a productivity shock when movements in prices, wage
rates, and other aggregate variables are muted.21 The PE response of a sector output depends only on
own productivity shock, and not on others’, and is captured by the diagonal matrix (η −αη)−1. Note
that even in partial equilibrium, a sector’s output changes more than one-for-one with TFP, due to the
endogenous response of firms’ demand for labor and intermediate inputs. The GE effect is captured
by the infinite summation of the powers of the γ matrix, reflecting first-, second-, etc. round effects
propagating via relative price changes through the input and factor markets. Through the GE effects,
each sector’s output is generically a function of the entire global vector of productivity shocks.

Appendix B.3 evaluates the fit of the first-order approximation relative to the full nonlinear model
solution. The first-order approximation performs quite well.

GDP Change and Shock Transmission. Theorem 1 states the change in gross output, whereas GDP
is value added. The following corollary describes the GDP changes.

Corollary 1. The real GDP change in any country 𝑛 is given by

ln𝑉𝑛 =
∑
𝑗=1

𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛

ln𝑍𝑛𝑗 +
∑
𝑗=1

𝛼 𝑗𝜂 𝑗
𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛

ln𝐻𝑛𝑗 . (3.13)

The global vector of changes in hours is given by:

ln H =
𝜓

1 + 𝜓

(
I +

(
I −𝚷 𝑓 ⊗ 1

)
𝓟

)
𝚲 ln Z ≡ 𝓗 ln Z. (3.14)

21Note that is definition of the PE effect is different from that in Allen, Arkolakis, and Takahashi (2020). In their setup,
the PE effect includes the local GE effect, while our PE effect excludes the local labor market response and the global goods
market response.
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Proof. See Appendix B.1. �

To construct GDP, we need to aggregate the changes of sector-country real value added, as in
(2.2). The first term in equation (3.13) captures the impact of domestic TFP changes on GDP. Note that
there is no direct dependence of country 𝑛’s GDP on foreign TFP changes. The second term in (3.13)
captures the changes in hours.

Corollary 1 connects to the accounting decomposition (2.5) of comovement into shock correlation
and transmission components. The direct effect of own TFP changes (the first term in 3.13) plus the
diagonal elements of 𝓗 together make up 𝒟𝑛 – the influence of domestic shocks on GDP, and thus
determine the shock correlation term. The off-diagonal elements of𝓗 capture the influence of foreign
shocks on a country’s GDP, and thus make up the transmission terms. Equation (3.14) underscores
that hours in every country and sector depend on the entire vector of TFP changes worldwide.22

The international transmission mechanism in our model is thus the endogenous factor supply
responses to foreign shocks. This is the main transmission mechanism in the international macro
literature going back to its origins (e.g. Backus, Kehoe, and Kydland, 1992), that has been used to
study shock transmission through production networks (e.g. Kose and Yi, 2006; Burstein, Kurz, and
Tesar, 2008; Johnson, 2014). Our contribution here is to provide a transparent analytical solution to
a larger-scale international input network model, that enables a simple decomposition of the overall
comovement into the transmission and shock correlation terms.

Recovering Shocks. We now describe how to recover the supply shocks 𝑍𝑛𝑗 in such a way as to
match actual value added growth in every country-sector (and therefore actual GDP growth in every
country). The procedure is inspired by Foerster, Sarte, and Watson (2011), who perform a related
exercise in a closed economy.

Let the vector ln V of length 𝑁𝐽 denote sectoral value added in log deviations from steady state.
Similar to Corollary 1, sectoral value added can also be expressed as changes in primary inputs

ln V = η−1 ln Z +α ln H.

We have data on the 𝑁𝐽 × 1 vector of log changes in real value added ln V in each year, which allows
us to recover the shocks:

ln Z =

(
α𝓗 + η−1

)−1

ln V. (3.15)

In other words, the structure of the model world economy and the observed/measured objects can

22The corollary highlights the difference between our analytical results and the contemporaneous work by Baqaee and
Farhi (2019c) that considers the case of exogenous factor supplies. Corollary 1 under the assumption that ln𝐻𝑛𝑗 is exogenous
is essentially Theorem 1 in that paper (and the earlier result in Kehoe and Ruhl, 2008). By contrast, we obtain an analytical
solution when factor supplies are endogenous to shocks, and show that in this case a country’s real GDP does respond to
foreign shocks. Obviously, this property is essential to make the analysis of international shock transmission non-trivial.
When factor supply is exogenous as in Baqaee and Farhi (2019c), international shock transmission to real GDP is ruled out
by construction, and the entirety of international GDP comovement is trivially accounted for by shock correlation.
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be used to infer a global vector of supply shocks ln Z that rationalizes observed growth rates in real
value added in each country-sector. Note that the interdependence between country-sectors through
input linkages implies that the entire global vector ln Z must be solved for jointly. As stressed above,
the recovered ln Z should be viewed more broadly as a general sector-level supply shock.

4. Quanti�cation of the Global Network Model

This section quantifies the static network model laid out in the previous section to explore the nature
of international GDP comovement. We start by subjecting the world economy to several hypothetical
productivity shocks, to highlight the strength of the transmission forces embodied in the model. We
then use actual data on value added growth to recover productivity shocks as in (3.15), and present
the headline decomposition of GDP growth correlations into shock correlation and transmission
components as in (2.5). We then illustrate the roles of transmission and correlated shocks by means
of several counterfactual exercises.

4.1 Data and Calibration

The data requirements for recovering shocks using (3.15) and computing the instantaneous global
response to shocks using (3.8) are: (i) growth of real value added for a panel of countries, sectors, and
years and (ii) global input-output linkages. The dataset with the broadest coverage for real value added
is KLEMS 2009 (O’Mahony and Timmer, 2009).23 This database contains gross output, value added,
labor and capital inputs, as well as output and input deflators. In a limited number of instances,
we supplemented the information available in KLEMS with data from the WIOD Socioeconomic
Accounts, which contains similar variables. After data quality checking and cleaning, we retain a
sample of 29 countries, listed in Appendix Table A1. The database covers all sectors of the economy
at a level slightly more aggregated than the 2-digit ISIC revision 3, yielding, after harmonization, 30
sectors listed in Appendix Table A2. In the best cases we have 38 years of data, 1970-2007, although
the panel is not balanced and many emerging market countries do not appear in the data until the
mid-1990s.

The data on input linkages at the country-sector-pair level, as well as on final goods trade come
from the 2013 WIOD database (Timmer et al., 2015), which contains the global input-output matrix.

In implementing the network model, we only need to take a stand on the value of a small number of
parameters, and use our data to provide the required quantities. Table 1 summarizes the parameter
assumptions for the network model and data sources. We estimate the substitution elasticities in
final and intermediate use. The estimation procedure, described in detail in Appendix C.1, uses
the model-implied relationship between log changes in relative expenditure shares and in relative

23This is not the latest vintage of KLEMS, as there is a version released in 2016. Unfortunately, the 2016 version has a
shorter available time series, as the data start in 1995, and also has many fewer countries. A consistent concordance between
the two vintages is not feasible without substantial aggregation.
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Table 1: Parameter Values

Param. Value Source Related to

𝜌 2.75 Appendix C.1 final substitution elasticity
𝜀 1 Appendix C.1 intermediate substitution elasticity
𝜓 2 Frisch elasticity
𝛼 𝑗 [0.40, 0.79] KLEMS labor and capital shares
𝜂 𝑗 [0.31, 0.67] KLEMS intermediate input shares

𝜋
𝑓
𝑚𝑛𝑗 — WIOD final use trade shares

𝜋𝑥𝑚𝑖,𝑛 𝑗 — WIOD intermediate use trade shares

Notes: This table summarizes the parameters and data targets used in the quantitative model, and their sources. For
𝛼 𝑗 and 𝜂𝑗 , the table reports the 10th and 90th percentiles of the range of these parameters.

prices of different source countries. For our purposes, the two benefits of our elasticity estimation
procedure are that (i) we perform it separately for intermediate and final goods; and (ii) we do it at the
annual frequency, which corresponds to the business cycle focus of our quantification. Based on these
estimation results, the final consumption Armington elasticity 𝜌 is set to 2.75, and the intermediate
elasticity 𝜀 to 1.24 The parameter 𝜓 governs the labor supply elasticity. We set it to imply the Frisch
labor supply elasticity of 2, common in the business cycle literature. Section 4.4.1 and Appendix D
discuss how our results vary with alternative values of the three elasticities.

All other parameters in the static model have close counterparts in basic data and thus we compute
them directly. Capital shares in total output 𝛼 𝑗 and value added shares in gross output 𝜂 𝑗 come from
KLEMS, and are averaged in each sector across countries and time to reduce noise. We initialize both
the static and dynamic models in the same steady state. Steady state input shares 𝜋𝑥𝑚𝑖,𝑛 𝑗 and final

consumption shares 𝜋 𝑓
𝑚𝑛𝑗 are computed from WIOD as time averages.

4.2 Impulse Responses

Prior to recovering the underlying supply shocks and simulating the model with them, we “test drive”
the propagation mechanism by computing the world economy’s response to some simple hypothetical
shocks:

1. a 1% US shock in all sectors,

2. a 1% rest-of-the-world shock in all sectors from the perspective of each country, and,

3. a 1% symmetric shock in each sector in every country of the world.

24In the quantitative implementation, we introduce an additional nest in the final goods aggregation: the top layer is
Cobb-Douglas across sectors, whereas the within-sector (bottom) layer is CES across source countries with elasticity 𝜌. This
makes no difference in robustness exercises when 𝜌 = 1, but reduces substitutability across sectors when 𝜌 = 2.75.
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The rest-of-the-world exercise assumes that the country in question is not shocked, but all other
possible countries and sectors are, and thus has to be conducted country by country.

The left panel of Figure 1 displays the change in real GDP in every other country in the world
following a 1% US shock in each sector. The results show that the observed trade linkages do result
in transmission. Smaller economies with large trade linkages to the US, such as Canada, are the most
strongly affected by the US shocks. The mean response of foreign GDP is 0.034%, and the maximum
response – Canada – is about 0.22%.

Figure 1: Impulse Responses to US and Rest-of-World Shocks
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Notes: Panel (a) displays the change in log real GDP of every other country in the sample when the United States
experiences a supply shock of 0.01 in every sector. Panel (b) displays the change in log real GDP of every country in the
sample when the rest of the world excluding the country experiences a supply shock of 0.01 in every sector.

Next, we simulate the real GDP responses of each country 𝑛 in the sample when all other countries
(excluding 𝑛) experience a 1% technology shock. This exercise answers the question, if there is a 1%
world shock outside of the country, how much of that shock will manifest itself in the country’s GDP?
The right panel of Figure 1 displays the results. In response to a 1% outside world shock, the mean
country’s GDP increases by 0.4%, with the impact ranging from around 0.1-0.15% in the US and Japan
to around 0.6% in Lithuania and Estonia. Not surprisingly, smaller countries are more affected by
shocks in their trade partners. All in all, these exercises suggest that outside world shocks have a
significant impact on most countries.

Figure 2 reports the results of our third impulse response exercise, a 1% shock to every country
and sector in the world. Here, we are most interested in the share of the total GDP change that comes
from the shocks to the country’s own productivity, and how much comes from foreign shocks. Thus,
we use the linear approximation to a country’s GDP growth (2.4), and separate the overall impact into
the own term 𝒟𝑛 and the rest. The figure highlights that for all countries, shocks to domestic sectors
matter much more for GDP growth than foreign sector shocks. The mean and the median share of the
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foreign terms in the total GDP change are around 11%. The impact is heterogeneous across countries,
with the fraction of GDP change due to foreign impact ranging from 3 to 6% of the total for Japan, the
US and India to 18% of the total for Estonia.

Figure 2: Impulse Responses to a 1% Shock in Every Sector in Every Country
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Notes: This figure displays the change in log real GDP of every country in the sample, decomposed into a direct effect
(𝒟𝑛) and a rest of world effect, when all sectors in every country experience a supply shock of 0.01.

4.3 GDP Correlations in the Model

We next use the calibrated model to recover the supply shock vector ln Z as in (3.15), and simulate
the full static model by feeding in the recovered shocks. Throughout, we use the first-order analytical
solution expressed as a global influence matrix in Section 3.2. Alternatively, we can also obtain the
exact solution using the hat algebra approach of Dekle, Eaton, and Kortum (2008). The details of the
exact solution to the model are in Appendix B.3. The appendix also provides a comparison between
the GDP growth rates implied by the first-order approach and the exact GDP growth rates. It turns
out that in our setting, the exact and first-order approximation solutions are very close to each other,
with a correlation between the two GDP growth rates of 0.999.25 Below, we work with the first-order
analytical solution because it permits the decomposition of the overall comovement into the additive
shock correlation and transmission terms.26

Table 2 presents the results. The first row of each panel reports the GDP growth correlations in

25Appendix B.3 also explores the difference between the exact and linearized models for varying shock sizes and shock
correlations, and illustrates that in the quantitatively relevant range of shocks, the linearized approximation is a very good
fit.

26Throughout the quantitative analysis, we report correlations of growth rates. Since our data are annual and for many
countries in our sample only start in 1995, we do not have sufficient time series to implement other detrending methods.
Appendix Table A6 compares the properties of GDP growth rates to HP-filtered series for the G7 countries, where we have
a longer time series of 30 annual observations. The properties of GDP growth rates and HP-filtered GDP series are quite
similar.
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the data, the second row in the model. Our procedure is designed to match the growth rates in the
data. The difference is due to the fact that in the model, we use fixed values for all the expenditure
weights, that are set to the time averages of those values in WIOD, whereas in the data all expenditure
weights evolve over time. The discrepancy introduced by this divergence between the model and the
data is small (see also Appendix D.1).

To assess the importance of correlated shocks relative to transmission, we decompose bilateral
correlations along the lines of equation (2.5), rewritten in correlations. That equation combined
with the first-order solution to the model in (3.13) produces a breakdown of the overall comovement
into the shock correlation and transmission terms. For the G7 countries, the correlation of shocks is
responsible for around four-fifths of the total comovement. Nonetheless, the bilateral and multilateral
transmission terms have a non-negligible contribution to the overall correlation, accounting for the
remaining one-fifth. The share accounted for by transmission is slightly larger in the full sample,
about one quarter.

Table 2: Correlated Shocks vs. Transmission Decomposition

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Data 0.358 0.337 0.242 0.565
Baseline: 0.381 0.435 0.232 0.610

Decomposition:
Shock Correlation 0.301 0.328 0.183 0.459
Bilateral Transmission 0.019 0.015 0.007 0.019
Multilateral Transmission 0.060 0.058 0.032 0.092

All countries (N. obs. = 406)

Data 0.190 0.231 -0.027 0.437
Baseline: 0.188 0.193 -0.110 0.498

Decomposition:
Shock Correlation 0.139 0.164 -0.125 0.427
Bilateral Transmission 0.007 0.004 0.002 0.008
Multilateral Transmission 0.043 0.034 0.011 0.074

Notes: This table presents the decomposition of the GDP correlations into the shock correlation, the direct transmission,
and the multilateral transmission terms as in equation (2.5).

Figure 3 displays the heterogeneity in the correlation and transmission terms in a network graph
for the G7 countries. The upper left panel depicts all the bilateral correlations among those countries,
with thicker lines denoting larger values, and blue (resp. red) depicting positive (resp. negative)
correlations. The top right panel displays the same for the shock correlation component, and the
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bottom two panels the bilateral and multilateral components. The scale (thickness of the lines) is
the same in all four panels. It is clear that the differences in the shock correlation component are
responsible for both the bulk of the overall correlation, as well as the variation across countries.
For instance, none of the transmission components are negative, and thus all the negative actual
correlations are due to the negative correlations of the shocks.

Figure 3: Total Correlation, Shock Correlation, and Transmission in the G7

Notes: This figure displays the network of GDP correlations (top left), decomposing it into the shock correlation (top
right) and transmission (lower panel) components. Thicker lines denote higher values. Blue displays positive values,
red negative values. Larger nodes (countries) displayed with bigger dots.

Influence Matrix and Shock Correlation. Figure 4 displays four heat maps for the G7 countries.
In each, both rows and columns are broken into country-sectors, though due to space constraints
sectors are too numerous to be labeled. In the top left is the usual heat map of log intermediate input
shares in the WIOD, with the suppliers on the x-axis, and input users on the y-axis. Versions of this
heat map have appeared in the literature (see, e.g., Jones, 2013). The most saturated reds, indicating
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greater input linkages, are in blocks on the diagonal, corresponding to countries’ domestic linkages.
In the top right panel is the heat map of log final expenditure shares instead. For final shares, there is
no notion of a using (y-axis) sector, as final expenditure is undertaken by a representative consumer
in each country. Nonetheless, we keep the format of the plot the same as the others. Once again,
domestic final shares are the highest, but there is meaningful variation across sectors within country
pairs. Both intermediate and final shares are inputs into the influence matrix. By construction, all the
values displayed in the top two panels are non-negative.

The bottom left panel displays the influence matrix. It shares some clear similarities with the
input-output and final shares matrices. Specifically, the largest positive entries tend to be domestic,
and there are clear relationships between close trading partners like Canada and the US (upper right
corner). However, there is one important difference: entries of the influence matrix are sometimes
negative. Visible negative values in this heatmap are darker blue lines running parallel to the diagonal.
These correspond to the same industries in different countries: in our influence matrix, a positive
supply shock to foreign producers in the same industry tends to have a negative impact on sectoral
output. This is in spite of the fact that often, the input shares in those sectors are also relatively high
(the lines parallel to the diagonal are also evident in the input-output heat map). This discussion
illustrates that the influence matrix conveys information distinct from the IO matrix itself.

The bottom right panel depicts the heat map of shock correlations. This panel is quite different
from all the others. In fact, there is little if any similarity between this panel and the input, final
share, and influence heat maps. Visually, it does not even appear to be the case that within-country
shock correlations are that much higher than the cross-country ones. As the overall GDP correlation
is built from the shock correlation and the influence matrices, these two panels convey the sources of
variation in these two components and the relative importance of the two. In particular, whereas the
off-block-diagonal (cross-country) elements of the influence matrix by and large are both small and
display limited variation, there is a great deal of variation in the cross-border shock correlation.

Appendix D.3 implements a decomposition similar to Section 2 at the sector level to complement
this analysis and assess whether any sectors are especially influential in overall comovement. It turns
out that services, financial intermediation, and wholesale trade sectors are the most prominent ones
in contributing to comovement.

4.4 Understanding Model Mechanisms

The analytical solution (3.8)-(3.9) makes it transparent that model quantification requires two sets
of objects: (i) the input network (final and intermediate expenditure shares), and (ii) elasticities (of
labor supply and substitution). To better understand the headline result, we perform exercises that
highlight the roles of each of these.
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Figure 4: Input, Influence, and Correlation Heat Maps, G7
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Notes: This figure displays the heat maps of the log intermediate input shares in WIOD (top left), log final spending
shares (top right), the influence matrix (bottom left), and the bilateral shock correlations (bottom right) for the G7
countries.

4.4.1 The Role of Elasticities

The model requires only 3 elasticities: the Frisch elasticity of labor supply 𝜓, and substitution
elasticities between inputs 𝜀 and final goods 𝜌. We re-do the shock extraction and shock correla-
tion/transmission decompositions under a range of 𝜓, 𝜀, and 𝜌, allowing for both very elastic and
inelastic input networks, final goods substitution, and labor supply. By construction, the procedure
matches the data on the overall GDP correlations under each set of elasticities. However, since the
shocks extraction procedure itself relies on these elasticities, the fraction of comovement attributed to
transmission varies with these parameters. Figure 5 plots the results for the G7 and for all 30 countries
in our data.

Lower substitution elasticities in intermediate and final use lead to a stronger dependence of a
country’s output on production in other countries, which increases the strength of transmission in
the model. A higher Frisch elasticity makes the primary factors more sensitive to changes in wages
resulting from changes in foreign prices, which also leads to a bigger implied role of transmission.
Indeed, as evident from equation (3.14), the limiting case of zero Frisch elasticity is the well-known
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Figure 5: Share of Transmission in Model, Alternative Elasticities
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Notes: This figure displays the average share of transmission in alternative calibrations of the baseline model. For each
alternative parameter combination, we re-estimate the shocks to match the observed sectoral value added.

result that a country’s real GDP does not change following a foreign shock, and thus the entirety of
international comovement must be accounted for by correlated shocks in that case.27 Figure 5 shows
that while transmission can generate sizeable comovement under some parameters, even for the most
extreme values considered (𝜀 = 0.5, 𝜌 = 1 and 𝜓 = 2.5), the share of transmission in total comovement
is still only around 50-55% on average. Appendix Tables A7-A8 provide the full decomposition for
alternative elasticities.

4.4.2 The Role of the Input Network

Autarky. To better understand the role of the input network in generating observed comovement,
we first compare the correlations in the baseline model to correlations that would obtain in an autarky
counterfactual. We can write the difference in covariances between autarky and trade as a sum of two
terms:

ΔCov(𝑑 ln𝑉𝑛 , 𝑑 ln𝑉𝑚) =
∑
𝑗

∑
𝑖

(
𝑠𝑛𝑛𝑗𝑠𝑚𝑚𝑖 − 𝑠𝐴𝑛𝑗𝑠𝐴𝑚𝑖

)
Cov(𝑑 ln𝑍𝑛𝑗 , 𝑑 ln𝑍𝑚𝑖)︸                                                            ︷︷                                                            ︸

Δ Shock Correlation

(4.1)

+ Bilateral Transmission + Multilateral Transmission,

where 𝑠𝐴𝑚𝑖 are the elements of the influence vectors in autarky. This expression shows that trade
opening can affect GDP covariance in two ways. First, it will make countries sensitive to foreign

27See e.g. Kehoe and Ruhl (2008).
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Figure 6: Change in GDP Correlation between Trade and Autarky: Decomposition
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Notes: This figure displays the mean change in the GDP correlation going from autarky to trade (blue bars), decomposing
it into the mean Δshock correlation𝑚𝑛 (pink bars) and transmission terms (yellow bars).

shocks, as captured by the bilateral and multilateral transmission terms. Second, and more subtly,
the differences in GDP comovement between autarky and trade will also depend on the changes in
the domestic elements of the influence vectors. Opening to trade can re-weight sectors in the two
economies either towards, or away, from sectors with more correlated fundamental shocks. This is
captured by the Δ Shock Correlation term in the equation above.

Thus, in order to understand the contribution of international trade to international comovement,
we must capture how going from autarky to trade changes the sectoral composition of the economy
(the differences between 𝑠𝑛𝑛𝑗 and 𝑠𝐴𝑛𝑗). A natural way to construct autarky would be to set the
trade costs to infinity. Since the baseline production function is Cobb-Douglas in the factors and all
materials inputs, we conceive of the autarky counterfactual as a limiting case as all 𝜏𝑚𝑛𝑗 → ∞ while
the substitution elasticity between inputs approaches 1 from above: 𝜀 ↓ 1. Using the input and final
consumption shares that obtain as trade costs go to infinity, we build the autarky influence matrix
according to the same formula (Section 3.2). We then apply the recovered shocks to the autarky
influence matrix to compute GDP growth rates in all countries and the resulting GDP correlations.

Figure 6 displays the mean difference between the trade and the autarky correlations for each
country, and decomposes it into the Δ Shock Correlation and transmission terms as in (4.1). Not
surprisingly, moving from autarky to trade tends to increase the overall correlations (the blue bars),
and the transmission terms contribute positively to this increase in comovement (yellow bars). More
unexpected is that the Δ Shock Correlation is actually negative for many countries.

The left panel of Figure 7 plots the average changes in the domestic elements influence vectors 𝑠𝑛𝑛𝑗
in the G7 sample, by sector. On average, under trade 𝑠𝑛𝑛𝑗’s are lower than in autarky. This is sensible,
as domestic shocks should have a smaller influence in an open economy compared to the closed one.
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The figure reveals which sectors fall in influence the most in the baseline model compared to autarky.
The top 3 are Renting of Machinery & Equipment; Mining and Quarrying; and Electrical and Optical
Equipment.

The fact that the Δ Shock Correlation term is negative is already telling us that on average, sectors
with more correlated shocks experience a relative decline in influence when the economy moves
from autarky and trade. The right panel of Figure 7 presents the local polynomial fit between the
two elements of the ΔShock Correlation𝑚𝑛 : the shift in the combined influence of each sector pair
𝑠𝑛𝑛𝑗𝑠𝑚𝑚𝑖 − 𝑠𝐴𝑛𝑗𝑠

𝐴
𝑚𝑖 and the correlation between the combined shocks in that pair, along with a 95%

confidence band. The negative relationship is evident, as expected.

Figure 7: Changes in the Influence Vectors and Shock Correlation
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Notes: This figure displays the mean change, by sector, in the domestic terms of the influence vector under trade relative
to autarky (left panel), and the local polynomial fit between the bilateral sectoral correlation of shocks between pairs of
home and foreign sectors and their change in influence from autarky to trade (right panel). The gray bands are the 95%
confidence intervals.

Input Trade. Our next counterfactual to understand the role of the input network studies whether
trade in intermediate inputs amplifies GDP comovement. To assess this, we compute a version of
the model in which trade in inputs is shut down, but trade in final goods is permitted. This is
accomplished by sending trade costs to infinity for input trade alone. Figure 8 presents the change
in average GDP comovement for the G7 and all countries in this counterfactual model for a range of
elasticities, relative to the baseline model implemented with the same elasticities.

The average correlation in the model with no intermediate input trade is lower under all considered
values of the three elasticities, highlighting that transmission through international trade in the input
network plays an important role in comovement. The quantitative importance of trade in inputs
varies. With a very elastic input and final goods aggregator (𝜌 = 2.75 and 𝜀 = 1.5), comovement is
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Figure 8: Change in Mean Correlation in the “No Input Trade” Model
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Notes: This figure displays the percent decrease in the average correlation in the counterfactual model with no trade
in intermediate inputs relative to our baseline model. For each alternative parameter combination, the shocks are
estimated to match the observed sectoral value added in the baseline model with trade in intermediate inputs.

around 2% (9%) lower for the G7 (all countries) at our baseline Frisch elasticity of 2. Under alternative
elasticities, the difference can be much larger: with highly elastic labor supply, a Cobb-Douglas final
goods aggregator, and inputs that are complements (𝜀 = 0.5), comovement is 17− 22% lower without
intermediate input trade.

Intermediate changes in trade costs and value added-only models. The autarky exercise empha-
sizes one channel through which changes in trade costs can affect international comovement: influence
of the domestic sectors. Changes in trade costs can also affect the strength of transmission forces.
Because the autarky case is too extreme on this point (transmission goes from positive to exactly zero),
Appendix D.2 considers intermediate changes in trade costs. The main finding is that the impact of
changes in trade costs on comovement depends on 𝜀. When 𝜀 = 1 as in our baseline analysis, comove-
ment is not sensitive to intermediate changes in trade costs, as the input revenue shares are constant.
When 𝜀 > 1 we get the expected outcome that correlations fall in the level of trade costs. However,
when 𝜀 < 1 correlations actually rise in trade costs. The explanation for this apparent paradox is
that when 𝜀 < 1, a higher 𝜏𝑚𝑛𝑗 leads to higher foreign input spending shares. Because the influence
of foreign shocks in the domestic economy increases in the foreign input shares, raising trade costs
produces more transmission and higher correlations when inputs are complements.

It is common to use value added-only economies to study comovement, so comparing our bench-
mark model to a value added-only model where all trade is in final goods could also help understand
the role of the input-output network. However, our benchmark model cannot easily be collapsed
to such a structure. As discussed in the autarky exercise, shutting down input networks will en-
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dogenously change sectoral sizes, which could impact aggregate comovement in unexpected ways.
To assess whether the input network plays a crucial role relative to a simple value added-only final
goods trade model, we must therefore ensure that the relative sector sizes remain the same in both
models. We implemented a counterfactual with no production network that matches sectoral output
in each country to the data, ensuring that (i) the ranking of relative sectoral sizes is constant, and (ii)
the sectoral trade to output ratios are the same as in the data in both models. This counterfactual
matches the volume of trade, but implies that the trade/GDP ratio will be lower in the model with
no production networks than in our baseline. The average correlation in the value added-only model
is lower for all values of the three elasticities we consider, highlighting that transmission through the
input network is not easily approximated by final goods trade alone. The results are available upon
request.

5. Dynamics and Multiple Shocks

5.1 Motivation

The analysis above explores in detail the contemporaneous impact of shocks on comovement. Those
exercises emphasize the role of the input-output structure of the world economy in amplifying or
dampening the underlying correlations of the sectoral shocks, but leave several unanswered questions:

Nature of Static Shocks. The sectoral shock extracted by inversion of the influence matrix subsumes
changes in productivity, labor, and capital inputs that the model cannot produce endogenously. This
composite shock has two potential limitations. The first is that it is by construction not especially
informative on the underlying drivers of business cycles in general, and of international comovement
in particular. Second, at a more technical level, only the shocks to primary factor supplies can be
made isomorphic to TFP, Z. Shocks to frictions in the intermediate input market are not isomorphic
to TFP. Thus, if shocks to the intermediate input market are non-trivial, this procedure would recover
a supply shock that is in part a linear combination of all countries’ and sectors’ intermediate input
market shocks.

Dynamics. Shocks can affect aggregate outcomes via a contemporaneous impact – their correlation
and the intratemporal transmission through the network – as well as a dynamic impact driven by the
response of capital accumulation. The analysis above is silent on dynamic propagation and delayed
responses of economies to shocks.

Intertemporal Shocks. Finally, connecting the two points above, by construction intertemporal
shocks cannot be extracted using the static influence matrix.

This section considers two extensions to the analysis in Section 3. First, we introduce dynamics
and allow endogenous capital accumulation. And second, we enrich the model to allow for several
distinct shocks. One benefit of these extensions is that we can now perfectly match multiple series:
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value added, labor, capital, and intermediate inputs. Another benefit is that a dynamic model can
accommodate intertemporal as well as intratemporal shocks, and thus we can quantify their relative
importance.

In our framework, the impact response of GDP in the dynamic model to intratemporal shocks
is characterized by the global influence matrix, and thus coincides with the GDP response of the
static world economy studied in Section 3.28 In addition, as emphasized in Section 2 the static and
the dynamic components of the total covariance are simply additive. Thus the static and dynamic
comovement are separable, and adding dynamics does not discard the lessons learned in the static
network model.

5.2 Model

Let 𝑡 index time. Households are infinitely-lived, and choose consumption 𝐶𝑛𝑡 , investment 𝐼𝑛𝑗𝑡 , and
labor supply 𝐻𝑛𝑗𝑡 to solve

max
𝐶𝑛𝑡 ,{𝐼𝑛𝑗𝑡 },{𝐻𝑛𝑗𝑡 }

E0

∞∑
𝑡=0

𝛽𝑡 𝑈
©­«𝐶𝑛𝑡 −

∑
𝑗

𝐻
1+ 1

𝜓

𝑛𝑗𝑡
ª®¬ (5.1)
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©­«𝐶𝑛𝑡 +
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(
1 + 𝜉𝐼𝑛 𝑗𝑡

)
𝐼𝑛𝑗𝑡

ª®¬ =
∑
𝑗

(
1 − 𝜉𝐻𝑛𝑗𝑡

)
𝑊𝑛𝑗𝑡𝐻𝑛𝑗𝑡 +

∑
𝑗

𝑅𝑛𝑗𝑡𝐾𝑛𝑗𝑡 + 𝑇𝑛𝑡

𝐾𝑛𝑗𝑡+1 = (1 − 𝛿 𝑗)𝐾𝑛𝑗𝑡 + 𝐼𝑛𝑗𝑡 .

As is customary, it takes one period for investment to become capital, and thus the capital stock in
each sector is predetermined by one period. While capital accumulation does not feature explicit
adjustment costs, Chari, Kehoe, and McGrattan (2007) point out that the investment wedge plays
much of the same role as adjustment costs.29 Households now decide to split the final bundle into
consumption and investment: ℱ𝑛𝑡 ≡ 𝐶𝑛𝑡 +

(
1 + 𝜉𝐼𝑛 𝑗𝑡

)
𝐼𝑛𝑗𝑡 , where ℱ𝑛𝑡 is still an Armington aggregate

of all sectors and source countries, as in (3.2).
The household decision problem is now subject to two shocks: labor 𝜉𝐻𝑛𝑗𝑡 and investment 𝜉𝐼𝑛 𝑗𝑡 ,

which we interpret as distortive taxes following Chari, Kehoe, and McGrattan (2007). 𝑇𝑛𝑡 is a lump-
sum transfer that rebates to the households all the within-country taxes. In particular, the labor

28This statement is of course conditional on the vector of capital stocks and all the expenditure shares that enter the
influence matrix being the same.

29Another form of sluggishness that we do not consider is price stickiness. Our application is to annual data throughout,
and virtually all available estimates imply that much of price stickiness is resolved in a matter of months if not weeks
(Nakamura and Steinsson, 2013).
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supply and Euler equations now read:30

𝐻
1
𝜓

𝑛𝑗𝑡 =
(
1 − 𝜉𝐻𝑛𝑗𝑡

) 𝑊𝑛𝑗𝑡

𝑃𝑛𝑡
, (5.2)

and
𝑈′
𝑛𝑡

(
1 + 𝜉𝐼𝑛 𝑗𝑡

)
= 𝛽E𝑡

[
𝑈′
𝑛𝑡+1

(
𝑅𝑛𝑗𝑡+1

𝑃𝑛𝑡+1
+ (1 − 𝛿)

(
1 + 𝜉𝐼𝑛 𝑗𝑡+1

))]
. (5.3)

Our benchmark model assumes financial autarky. There are two reasons behind this assumption.
First, as highlighted by Heathcote and Perri (2002), models featuring financial autarky outperform
complete and incomplete markets models in accounting for business cycle comovement.31 Second,
under financial autarky the contemporaneous response of output to shocks in the dynamic model is
still given by the influence matrix (3.9), and can be constructed using only observed export and import
shares, the elasticities of substitution among intermediate and final goods, and the Frisch elasticity.
Adding endogenous capital flows would come at a cost of both tractability and transparency. We
would lose both the analytical solution for the contemporaneous effect of shocks, and the clean
separability between the impact effects coinciding with the static model and delayed dynamic effects.
We therefore assume that there are only goods flows across countries, and further, there are no
endogenous current account deficits.32

Production is subject to a TFP shock, which we relabel 𝜉𝑍𝑛𝑗𝑡 in this section,33 and a shock to the
intermediate input market 𝜉𝑋𝑛𝑗𝑡 . The firm thus solves:

max
{
𝑃𝑛𝑗𝑡𝑌𝑛𝑗𝑡 −𝑊𝑛𝑗𝑡𝐻𝑛𝑗𝑡 − 𝑅𝑛𝑗𝑡𝐾𝑛𝑗𝑡 − (1 + 𝜉𝑋𝑛𝑗𝑡)𝑃𝑥𝑛𝑗𝑡𝑋𝑛𝑗𝑡

}
where

𝑌𝑛𝑗𝑡 = 𝜉𝑍𝑛𝑗𝑡

(
𝐾

1−𝛼 𝑗
𝑛𝑗𝑡 𝐻

𝛼 𝑗
𝑛𝑗𝑡

)𝜂𝑗
𝑋

1−𝜂𝑗
𝑛𝑗𝑡 . (5.4)

30The labor shocks can have a literal interpretation as exogenous shifts in intra-temporal factor supply curves. Alterna-
tively, news shocks (e.g. Beaudry and Portier, 2006), or sentiment shocks (e.g. Angeletos and La’O, 2013; Huo and Takayama,
2015) would manifest themselves as shocks to 𝜉𝐻𝑛𝑗𝑡 , as agents react to a positive innovation in sentiment by supplying more
labor. Straightforward manipulation shows that 𝜉𝐻𝑛𝑗𝑡 can also be viewed as a shifter in the optimality condition for factor
usage. The literature has explored the aggregate labor version of this shifter, labeling it alternatively a “preference shifter”
(Hall, 1997), “inefficiency gap” (Galí, Gertler, and López-Salido, 2007), or “labor wedge” (Chari, Kehoe, and McGrattan,
2007). While this object is treated as a reduced-form residual in much of this literature, we know that monetary policy
shocks under sticky wages (Galí, Gertler, and López-Salido, 2007; Chari, Kehoe, and McGrattan, 2007), or shocks to working
capital constraints (e.g. Neumeyer and Perri, 2005; Mendoza, 2010) manifest themselves as shocks to 𝜉𝐻𝑛𝑗𝑡 .

31The financial autarky assumption is also adopted in Corsetti, Dedola, and Leduc (2008), Ruhl (2008), and many others.
Kose and Yi (2006) show that when it comes to accounting for the trade-comovement relationship, the benchmarks of
complete markets and financial autarky deliver similar results. We acknowledge that the financial autarky assumption
excludes transmission mechanisms that operate through international capital flows. While this paper focuses on shock
transmission through goods trade and production linkages, we leave the evaluation of other transmission mechanisms for
future research.

32We can easily accommodate a sequence of exogenous trade imbalances as in Dekle, Eaton, and Kortum (2008).
33The TFP shocks in this section match the measured Solow residual, and differ from the 𝑍 shock recovered in Section 3.
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The intermediate goods wedge affects the input choice decision:

(1 − 𝜂 𝑗)𝑃𝑛𝑗𝑡𝑌𝑛𝑗𝑡 = (1 + 𝜉𝑋𝑛𝑗𝑡)𝑃𝑋𝑛𝑗𝑡𝑋𝑛𝑗𝑡 . (5.5)

The market clearing conditions are unchanged, and still given by (3.6). To examine the dynamic
responses of the model and how it affects the international comovement, we proceed by solving the
log-linearized model.

5.3 Calibration and Recovery of Shocks

As mentioned above, with 4 shocks instead of 1, we match multiple data series: value added, labor
input, capital input, and intermediate input. Three of the 4 shocks can be recovered by applying
data for 𝑌𝑛𝑗𝑡 , 𝐻𝑛𝑗𝑡 , 𝐾𝑛𝑗𝑡 , and 𝑋𝑛𝑗𝑡 to intratemporal optimality conditions, and thus do not rely on the
dynamic structure of the model. The TFP shock is read simply as the Solow residual from (5.4). The
labor shock is recovered from the labor supply (5.2), after expressing𝑊𝑛𝑗𝑡 and 𝑃𝑛𝑡 as functions of 𝑌𝑛𝑗𝑡
and model parameters. The intermediate wedge 𝜉𝑋𝑛𝑗𝑡 comes from (5.5), after expressing the prices as
functions of 𝑌𝑛𝑗𝑡 .

The TFP shock is the least reliant on model parameters, as it needs information only on factor
shares 𝛼 𝑗 and 𝜂 𝑗 . The intermediate market shock requires in addition substitution elasticities 𝜌 and
𝜀, plus the global matrix of input and final good shares. Recovery of the labor shocks relies on all of
those plus the Frisch elasticity, that is, all the parameters of the static model.

The investment shock 𝜉𝐼𝑛 𝑗𝑡 enters the Euler equation, and thus requires solving the full dynamic
model. There is a small set of additional parameters relative to the static model, for which we adopt
values standard in the business cycle literature. The model period is a year; we set the discount rate to
𝛽 = 0.96. The period utility is𝑈(·) = ln(·), and the depreciation rates 𝛿 𝑗 are set to match sector-specific
depreciation rates obtained from the BEA for 2001.34 , 35

The most demanding task in the calibration is choosing shock processes for different countries and
sectors, as policy functions depend on the perceived stochastic processes of all shocks. In exercises
similar to ours, Chari, Kehoe, and McGrattan (2007) and Ohanian, Restrepo-Echavarria, and Wright
(2018) use maximum likelihood and Bayesian estimation respectively to obtain the shock processes.
However, the number of parameters to be estimated in our exercise is an order of magnitude larger
because all shocks are at the sectoral level, which makes either maximum likelihood or Bayesian
estimation intractable.

Instead, we apply an iterative algorithm to recover the shock processes. Rational expectations

34The BEA provides depreciation rates for 1995-2007 that can be mapped to NAICS codes. We concord these to the sectors
in the WIOD. As the depreciation rates are relatively stable over time, we use the mid-point year of 2001.

35See Appendix B.4 for more details on solving the dynamic model and recovering the shocks. In the linearized model, the
taste parameters 𝜗𝑚𝑛𝑗 and 𝜇𝑚𝑖,𝑛 𝑗 and the trade costs 𝜏𝑚𝑛𝑖 affect the dynamics only via the the final use and the intermediate
use trade shares. Once we match the trade shares as in the data, there is no need to pin down the trade costs and taste
parameters separately.
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impose the cross-equation restriction that perceived shock processes need to be consistent with
actual shock processes. In our implementation, the estimation strategy is the following: given some
perceived shock processes, the policy functions can be computed. Under these candidate policy
functions, we can recover the time series for the realizations of shocks that rationalize the data. These
candidate shock realizations can in turn be used to estimate the stochastic shock processes, which
become the perceived processes in the next iteration. We iterate until the perceived and estimated
shock processes coincide.

For non-G7 countries, the panel is too short to obtain reliable estimates of the shock processes.
Therefore in this section we narrow the focus to the G7 countries. We assume that the country-sector
shocks follow a vector autoregressive process. However, due to the large number of countries and
sectors, it is not feasible to estimate the fully unrestricted VAR. We impose parsimonious functional
forms on the shock processes due to the large number of countries and sectors in the model:

ln 𝜉𝑥𝑛𝑗𝑡 = 𝜌𝑛𝑗 ln 𝜉𝑥𝑛𝑗𝑡−1 + 𝜁𝑛1
(
𝑚 = 𝑛, 𝑘 ≠ 𝑗

)
ln 𝜉𝑥𝑚𝑘𝑡−1 + 𝜀𝑥𝑛𝑗𝑡 (5.6)

for 𝑥 = 𝑍, 𝑋, 𝐻, 𝐼. These processes allow for own autocorrelation and a within-country lagged
spillover of a sectoral shock. In addition, innovations 𝜀𝑥𝑛𝑗𝑡 can have an arbitrary contemporaneous
cross-border, cross-sector and cross-shock covariance structure. On the other hand, (5.6) does not
allow for lagged cross-border spillovers.36 Appendix Table A5 summarizes the parameter estimates
for the processes. The estimated processes are persistent, with mean own-lag parameter estimates
ranging from 0.85 for ln 𝜉𝑋𝑛𝑗𝑡 to 0.93 for ln 𝜉𝐼𝑛 𝑗𝑡 . Lagged cross-sector within-country spillovers are very
small and close to zero on average for all series.

5.4 Impulse Responses

We begin by revisiting the impulse response exercise in Section 4.2. The left panel of Figure 9 displays
the response of other countries to a 1% US productivity shock. Similar to the static model, Canada
experiences the largest response as it has the largest trade linkages to the US. Note that the model
features rich propagation, as the responses of all the countries are quite persistent over time. The
hump-shaped IRF indicates that there is nontrivial endogenous propagation. Meanwhile, all the
countries co-move quite closely in response to the US shock. The right panel of Figure 9 displays
the response to a hypothetical rest-of-the-world shock in all sectors from the perspective of each
country. Again, we observe significant persistence. Similar to the static model, the responses are
heterogeneous across countries. Japan, US, and Italy respond little, while Canada and UK are quite
sensitive to foreign global shocks.

36We have also experimented with shock processes that include lagged within-sector cross-border spillovers, and the
quantitative results remain similar. Further details of the estimation are in Appendix C.2.
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Figure 9: Impulse Responses to US and Rest-of-World Shocks
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(b) response to rest-of-the-world technology shocks

Notes: This figure displays the impulse responses of log real GDP of each G7 country following a 1% US TFP shock
(left panel), and following a 1% TFP shock in the rest of the world excluding the country (right panel).

5.5 Dynamic Comovement Decomposition

We next explore the quantitative importance of the intertemporal propagation relative to the con-
temporaneous response for international comovement. As emphasized in Section 2, in the dynamic
model the GDP growth rate can be expressed as a function of current and past shocks:

𝑑 ln𝑉𝑛𝑡 ≈
∞∑
𝑘=0

∑
𝑚

∑
𝑖

s𝑚𝑛𝑖,𝑘ε𝑚𝑖,𝑡−𝑘 .

where ε𝑚𝑖,𝑡−𝑘 ≡
{
𝜀𝑍𝑚𝑖𝑡 , 𝜀

𝐻
𝑚𝑖𝑡 , 𝜀

𝑋
𝑚𝑖𝑡 , 𝜀

𝐼
𝑚𝑖𝑡

}
is the vector of the innovations with covariance matrix 𝚺. This

leads to the following correlation decomposition:

𝜚(𝑑 ln𝑉𝑛𝑡 , 𝑑 ln𝑉𝑚𝑡) =
∞∑
𝑘=0

𝜔𝑛𝑚,𝑘 𝜚𝑛𝑚,𝑘 , (5.7)

where𝜚𝑛𝑚,𝑘 is the correlation between componentss𝑛,𝑘ε𝑡−𝑘 ands𝑚,𝑘ε𝑡−𝑘 and𝜔𝑛𝑚,𝑘 is its corresponding
weight:

𝜚𝑛𝑚,𝑘 =
s𝑛,𝑘𝚺s′𝑚,𝑘√

s𝑛,𝑘𝚺s′𝑛,𝑘
√
s𝑚,𝑘𝚺s′𝑚,𝑘

with 𝜔𝑛𝑚,𝑘 =

√
s𝑛,𝑘𝚺s′𝑛,𝑘

√
s𝑚,𝑘𝚺s′𝑚,𝑘√∑∞

𝑖=0 s𝑛,𝑖𝚺s
′
𝑛,𝑖

√∑∞
𝑖=0 s𝑚,𝑖𝚺s

′
𝑚,𝑖

.

Decomposition (5.7) is just (2.8) from Section 2, expressed in correlations.
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Figure 10: Correlation Decomposition

Notes: This figure displays the elements of the dynamic
decomposition of the overall correlation into the com-
ponents accounted for by elements at horizon 𝑘, as in
(5.7).
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Figure 11: IRF of US to Technology Shock

Notes: This figure displays the impulse responses of
US GDP following a 1% US TFP shock, and following a
1% TFP shock in the rest of the world excluding the US.

Figure 10 plots 𝜚𝑛𝑚,𝑘𝜔𝑛𝑚,𝑘 across horizons 𝑘, averaging over country pairs. The correlation of
contemporaneous responses corresponds to 𝑘 = 0. It turns out that the contemporaneous component
is dominant, accounting for over 80% of the total correlation. That is, adding dynamics does not
substantially raise the GDP correlations.

The model features rich intertemporal propagation patterns, as evidenced by Figure 9. The small
contribution of dynamics to overall comovement is mainly due to the fact that the timing of the
response to the same shock is not sufficiently similar across countries to induce substantial delayed
correlation. To illustrate this pattern, Figure 11 compares the response of US GDP to its own and
rest-of-the-world shocks. While the country responds positively and persistently to positive foreign
shocks, both the shape and the magnitude of the responses are different. The response to its own shock
is high on impact, and gradually dies out. In contrast, the response to other countries’ shocks continues
to build slowly and peaks after over twenty periods. In addition, the response to a country’s own
shock is far larger than the response to other countries’ shocks, both on impact and at most horizons.

Table 3 decomposes overall comovement into shock correlation and transmission terms in the
dynamic model. The row labeled “Data” reports the correlations in the data. The row “Dynamic
model with actual shocks” presents the correlations when the actual path of recovered shocks is
fed into the dynamic model. The row “Dynamic model with simulated shocks” reports instead the
correlations resulting from simulating the estimated shock process (5.6), and feeding it into the model.
The average correlation from the simulated model is somewhat lower than that with actual shocks.
This is partly due to the fact that when feeding the actual shocks into the model, there is already
some amount of correlation inherited from the initial capital from the data, which help yield a higher
correlation in a relatively short sample.
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Table 3: GDP Growth Correlations in the Dynamic Model

Mean Median 25th pctile 75th pctile

Data 0.358 0.337 0.242 0.565
Dynamic model with actual shocks 0.350 0.356 0.124 0.558
Dynamic model with simulated shocks 0.263 0.285 0.076 0.433

Decomposition

shock correlation 0.183 0.226 -0.028 0.352
bilateral correlation 0.017 0.011 0.005 0.021
multilateral correlation 0.064 0.063 0.031 0.091

Notes: This table presents the summary statistics of the correlations of 𝑑 ln𝑉𝑛𝑡 in the sample of G7 countries, and the
decomposition into the shock correlation and transmission components.

In the dynamic model, the decomposition of GDP comovement into shock correlation and trans-
mission must rely on the simulated model where innovations to shocks are well defined. The de-
composition into shock correlation and transmission terms in the dynamic model requires a straight-
forward combination of (2.5) and (2.8). The bottom panel of Table 3 reports the results. The shock
correlation term is the most important component, accounting for around three quarters of the ob-
served GDP growth correlation. The correlation decomposition is similar to static network model
findings in Section 4.

Appendix D.5 provides additional results on the GDP comovement in the dynamic model, includ-
ing those under different parameters, in autarky, and without intermediate input trade, mirroring the
exercises in Section 4.4. These results in the dynamic model further validate the findings of Section 4.

5.6 The Role of Individual Shocks

A well-known feature of this type of business cycle accounting exercise is that the 4 extracted shocks
are not mutually uncorrelated (see, among others, Chari, Kehoe, and McGrattan, 2007; Eaton et al.,
2016). Hence there is no additive decomposition of overall comovement into the components driven
by each of the 4 shocks. Instead, part of the GDP correlation will come from cross-shock covariance
terms, for instance comovement driven by correlation of TFP in country 𝑗 with the labor shock in
country 𝑖.37 In that sense, there is no unique answer to the question of which single shock is responsible
for the most comovement.

37As in other business cycle accounting analyses, different types shocks within the same country are correlated among
themselves. With a small number of aggregate shocks in a single country, one can in principle orthogonalize them. Our
object is international correlations, and there are 4 shocks in each sector in each country. There is no practical way to
transform them in such a way that a given type of shocks in one country is only correlated with the same type of shocks in
the other countries, but orthogonal to all other categories of foreign shocks.
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We proceed by presenting two polar exercises. In the first, we take out one shock at a time, keeping
the other 3. In terms of shock correlation, removing a shock gets rid of both the correlations of that
shock with the same shock in other countries (e.g., TFP in country 𝑗 with TFP in country 𝑖), and the
correlation of that shock with other shocks in other countries (e.g., TFP in country 𝑗 with labor in
country 𝑖). In the second exercise, we feed in one shock at a time. This exercise generates comovement
only through correlation of a shock with the same shock abroad (in addition to transmission). Needless
to say, in both types of exercises, the transmission terms change as well. Note that shocks can have
a negative correlation, and thus it is not necessarily the case that the first exercise leads to a larger
contribution of a single shock to comovement compared to the second exercise.

Table 4: GDP Growth Correlations Conditional on Subsets of Shocks

Cross-country correlation
Mean Median St.dev.(GDP) Corr w/data

Data 0.358 0.337 1.745 1.000
All shocks 0.350 0.356 1.663 1.000

No TFP shock 0.241 0.253 1.393 0.285
No labor shock 0.153 0.158 1.955 0.815
No intermediate input shock 0.328 0.336 1.763 0.945
No investment shock 0.311 0.317 0.938 0.408

Only TFP shock 0.108 0.119 1.908 0.672
Only labor shock 0.111 0.064 1.094 0.043
Only intermediate input shock 0.158 0.096 0.577 -0.021
Only investment shock 0.565 0.567 0.856 0.547

TFP and labor shock 0.235 0.307 1.579 0.818

Notes: This table presents the summary statistics of the correlations of 𝑑 ln𝑉𝑛𝑡 in the sample of G7 countries driven by
various shocks.

Table 4 reports the resulting correlations. The first two rows present the data and the correlations
conditional on all four shocks, which by definition match the data perfectly. The next 4 rows remove
one shock at a time. The largest impact on correlation is due to the labor shock: removing it lowers
the mean correlation by nearly 60%. The second-most important shock is TFP, whose removal lowers
the correlations by 30%. The intermediate inputs and investment shocks have much less impact,
conditional on the other shocks operating.

The bottom four rows report instead the correlations conditional on a single shock. Here, the
correlation generated by the labor shock, 0.11, is not that different from the correlations generated
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Table 5: Correlations Among GDP Growth Rates Driven by Single Shocks

TFP Labor Intermediate Investment

TFP 0.108 -0.004 0.167 -0.045
Labor 0.080 0.111 -0.056 0.156
Intermediate 0.094 0.004 0.158 -0.123
Investment -0.015 0.113 -0.104 0.565

Notes: This table reports the average GDP correlations that result when GDP growth in one country is driven by the
shock in the row of the table, and the GDP growth in the other country is driven by the shock in the column.

by the TFP and intermediate shocks. The outlier is the investment shock, which by itself generates
the highest correlations. The two rightmost columns of Table 4 report two additional diagnostics on
the alternative shock models: the standard deviation of GDP growth, and the correlation between
GDP growth generated by each subset of shocks and the data GDP growth. The intermediate and
investment shocks do not generate sufficient volatility. Alone, the intermediate input and investment
shocks produce standard deviations of GDP growth that are one-third to one-half of the data values.
GDP growth driven by intermediate, and more surprisingly by labor shocks, is uncorrelated with the
data. By contrast, while the TFP shock by itself does not produce a lot of international comovement,
the GDP growth rates generated by TFP are more correlated with the data than those generated by
other shocks, as evidenced by the last column of Table 4.

It may appear puzzling that the labor shock comes out as the most important in the first exercise,
but much less so in the second one. The discrepancy in the conclusions from the two exercises is
resolved by the fact that the labor shock is positively correlated with other shocks abroad, whereas
the investment shock is negatively correlated with other shocks abroad. Table 5 illustrates this
by reporting the mean GDP correlations when GDP in country 𝑗 is driven by a shock in the row
of the table, and GDP in country 𝑖 is driven by a shock in the column. The labor shock-driven
GDP is positively correlated with the TFP-driven GDP (0.08), and with the investment shock-driven
GDP (0.16). By contrast, the investment shock-driven GDP has negative correlations with TFP- and
intermediate shock-driven GDP.

We synthesize these results as follows. First, no single shock has a dominant role in international
comovement. Individually, the labor and the TFP shocks appear most promising, but for different
reasons. The labor shock has the highest synchronizing impact, with the qualification that much of
its overall effect appears to come from its correlation with other shocks rather than with itself. Taken
alone, the TFP and labor shocks generate similar amounts of GDP comovement, but the TFP shock
also produces GDP series closer to the data.

Second, a model that combines labor and TFP shocks strikes a good balance between parsimony
and fit to the data. The bottom row of Table 4 reports the statistics for the model performance
with these two shocks. The two shocks together generate more than two-thirds of the observed
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international correlation. At the same time, they reproduce the observed GDP volatility and generate
a GDP series with an 0.82 correlation with the data. The model is parsimonious both in the sense that
it relies on only two shocks, and in the sense that these shocks themselves are relatively simple, and
would work in the same way in both static and dynamic models.

Third, the next shock in order of importance is the investment shock. Adding it to TFP and labor
essentially reproduces the data (see row “No intermediate input shock” in Table 4). However, adding
this shock comes at a cost of parsimony, especially because both extracting and using this shock
requires solving and iterating on the full dynamic model. While the baseline model abstracts from
modeling financial shocks explicitly, as shown by Chari, Kehoe, and McGrattan (2007) some types
of financial frictions will manifest themselves as investment shocks. Our results can be viewed as
suggestive that financial shocks may play a non-trivial role in international comovement, but perhaps
a less important one than the TFP and labor shocks.

Finally, the intermediate input shock is the least important, either by itself or in conjunction with
other shocks. A quantification is not missing much by omitting it.

5.7 Correlates of Recovered Shocks

We stress that the 4 shocks recovered in our procedure use no external information or exogenous
variation. Thus, they are consistent with a variety of microfoundations. To understand whether these
recovered shocks correspond closely to existing independently identified shocks, we collect a number
of shocks from earlier studies, and correlate them with each of our 4 recovered shocks. We make use
of the following standard shock series: (i) the Fernald (2014) utilization-adjusted TFP; (ii) the Barsky
and Sims (2011) news of future TFP; (iii) the Levchenko and Pandalai-Nayar (2020) sentiment shocks;
(iv) the Romer and Romer (2004) monetary policy shocks, updated by Coibion et al. (2017); (v) federal
spending (Ramey, 2011) and tax (Romer and Romer, 2010) shocks; (vi) oil price increases (Hamilton,
2003) and identified oil supply shocks (Baumeister and Hamilton, 2019); (vii) financial shocks proxied
by excess bond premia (Gilchrist and Zakrajšek, 2012), and (viii) uncertainty shocks in the form of
innovations to VIX (Bloom, 2009) and to the Baker-Bloom-Davis index of policy uncertainty. Many
of these shocks come at monthly or quarterly frequency, and we convert them to annual frequency to
match with our data.

Unfortunately, most of these identified shocks are specific to the US. The ideal exercise here would
collect all possible independently identified shocks for all countries to determine which shocks are the
most promising for explaining the patterns of comovement. To our knowledge, however, collections
of these shocks do not exist for multiple countries. Thus, we can only compare these identified shocks
to the annual series of shocks for the US recovered from our model. We have 30 years of observations.
While this exercise will not speak directly to sources of cross-country comovement, it can at least tell
us whether our recovered shocks correlate closely with externally identified shocks for one country.

We begin with regressing each model-recovered shock on an individual category of identified
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Table 6: Projecting Recovered Shocks on Identified Shocks

TFP Labor Intermediate Investment
𝑅2 Sig. 𝑅2 Sig. 𝑅2 Sig. 𝑅2 Sig.

Fernald TFP 0.08 0.00 0.02 0.01
News 0.22 * 0.23 ** 0.00 0.04 *
Sentiment 0.08 0.06 0.09 ** 0.18 **
Monetary 0.04 0.03 0.04 ** 0.06
Fiscal 0.03 0.05 * 0.03 0.01
Oil 0.08 0.00 0.01 0.15 ***
Financial 0.05 0.06 0.05 0.26
Uncertainty 0.20 * 0.08 0.07 0.19

All together 0.54 0.43 0.36 0.60

Notes: The columns labeled “𝑅2” report, for each recovered shock in the column, the 𝑅2 from a bivariate regression of
the growth in that shock on identified shocks in the row. The column labeled “Sig.” reports the level of significance
of the category of identified shocks when all the identified shocks are used as regressors together in a multivariate
regression. ***: significant at the 1% level; **: significant at the 5% level; *: significant at the 10% level. Variable
definitions and sources are described in detail in the text.

shocks. Table 6 reports the resulting 𝑅2’s. For TFP and labor market shocks, the Barsky-Sims news
shocks have the highest bivariate explanatory power. Least explainable is the intermediate input
shock, with the lowest overall 𝑅2 and no set of identified shocks having an 𝑅2 of over 0.1. By contrast,
the investment shock appears to be the most correlated with other identified shocks, with sentiment,
oil, financial, and uncertainty shocks having an 𝑅2 of 15% or more.

Of course, the externally identified shocks themselves can be mutually correlated. To see which
identified shocks have the strongest conditional correlations with our recovered shocks, we regress the
recovered shocks on all the identified shocks together. Note that with only 30 annual observations and
10 regressors, there are not that many degrees of freedom left. Nonetheless, columns labeled “Sig.”
report the level of significance of individual shocks when all are included in the same regression.
There is some variation in which shocks are most important. Overall, news and sentiment shocks
appear most correlated with our shocks, but their relative importance also varies across shocks. Fiscal,
monetary, and oil shocks appear with varying levels of significance for individual series.

All in all, there is no clear pattern of correlation, whereby a recovered shock can be convincingly
attributed predominantly to a particular externally identified shock. Nonetheless, this exercise sug-
gests that at least for the US, our shocks bear some resemblance to prominent identified sources of
business cycle fluctuations.

6. Conclusion

We set out to provide a comprehensive account of international comovement in real GDP. Using
a simple accounting framework, we decomposed the GDP covariance into additive components
representing correlated shocks and cross-border transmission. The relative importance of these two
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terms is determined jointly by the correlations of the primitive shocks and the strength of domestic
and international input-output linkages. The accounting framework also clarifies the role of dynamic
propagation: the total GDP covariance is the sum of the covariance due to the instantaneous responses
to shock innovations, and dynamic terms that capture the lagged responses to shocks.

Our main quantitative findings are fourfold. First, while transmission of shocks has an economi-
cally meaningful role, most of the observed GDP comovement is accounted for by correlated shocks.
Second, the structure of the global production and trade network matters for GDP comovement.
Going from autarky to trade increases the domestic influence of sectors whose primitive shocks are
relatively less correlated, which reduces GDP comovement all else equal. Third, the majority of the
observed overall correlation is due to the instantaneous response of the economy to shocks, rather
than dynamic propagation of past shocks. And finally, while no single shock is predominantly re-
sponsible for international comovement, a relatively parsimonious model with two shocks – TFP and
labor – appears to generate the bulk of the observed GDP correlations. Our results suggest that when
searching for correlated shocks that synchronize GDP, TFP shocks are not sufficient, and that we
should instead focus on non-technology shocks that have a labor wedge representation in a prototype
model. Structural estimates of various candidate shocks that might explain the correlation in these
“labor wedges” across countries are not yet available, and identifying them is a promising avenue for
future research.

Beyond the specific substantive focus of this paper, we have provided a conceptual and quantitative
framework to study international shock transmission through input networks. The basic framework
presented here remains tractable under various extensions, for instance to variable factor utilization
(Huo, Levchenko, and Pandalai-Nayar, 2020), more sophisticated labor markets (Bonadio et al., 2020),
or more involved production structures (Bonadio et al., 2021). Thus, it can readily be used in a variety
of further applications by future researchers.
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A. Sample Description
Tables A1 and A2 list the countries and sectors in our analysis. Figure A1 illustrates the average imported input
intensity by sector in our data.

Table A1: Country Sample

Australia Denmark Hungary Latvia Slovak Republic
Austria Estonia India Lithuania Slovenia
Belgium Finland Ireland Netherlands Spain
Canada France Italy Poland Sweden
Cyprus Germany Japan Portugal UK
Czech Republic Greece Republic of Korea Russian Federation USA

Table A2: Sector Sample

agriculture hunting forestry and fishing basic metals and fabricated metal
financial intermediation mining and quarrying
machinery nec real estate activities
food beverages and tobacco electrical and optical equipment
renting of m&eq and other business activities textiles textile leather and footwear
transport equipment public admin and defense; compulsory social security
wood and of wood and cork manufacturing nec; recycling
education pulp paper paper printing and publishing
electricity gas and water supply health and social work
coke refined petroleum and nuclear fuel construction
other community social and personal services chemicals and chemical products
hotels and restaurants sale maintenance and repair of motor vehicles
rubber and plastics transport and storage
wholesale trade and commission trade other nonmetallic mineral
post and telecommunications retail trade except of motor vehicles

Figure A1: Average Sectoral Imported Input Intensity
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B. Model and Quantitative Results
Throughout this appendix, variables without a 𝑡-subscript denote steady-state values, and variables with a
𝑡-subscript denote their realizations. We introduce the 𝑡-subscripts in the proofs of the network model results
to streamline the transition to the dynamic model derivations.

B.1 Proofs
Proof of Theorem 1:. The market clearing condition for the sales in country 𝑛 sector 𝑗 in levels is

𝑃𝑛𝑗𝑡𝑌𝑛𝑗𝑡 =
∑
𝑚

𝑃𝑚𝑡ℱ𝑚𝑡𝜋 𝑓
𝑛𝑚𝑗𝑡 +

∑
𝑚

∑
𝑖

(1 − 𝜂𝑖)𝑃𝑚𝑖𝑡𝑌𝑚𝑖𝑡𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 .

Note that with financial autarky, the total sales of final goods is the same as the value added across sectors

𝑃𝑚𝑡ℱ𝑚𝑡 =
∑
𝑖

𝜂𝑖𝑃𝑚𝑖𝑡𝑌𝑚𝑖𝑡 .

The market clearing condition is then

𝑃𝑛𝑗𝑡𝑌𝑛𝑗𝑡 =
∑
𝑚

∑
𝑖

𝜂𝑖𝑃𝑚𝑖𝑡𝑌𝑚𝑖𝑡𝜋
𝑓
𝑛𝑚𝑗𝑡 +

∑
𝑚

∑
𝑖

(1 − 𝜂𝑖)𝑃𝑚𝑖𝑡𝑌𝑚𝑖𝑡𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 .

Log-linearizing:

ln𝑃𝑛𝑗𝑡 + ln𝑌𝑛𝑗𝑡 =
∑
𝑚

∑
𝑖

𝜋
𝑓
𝑛𝑚𝑗𝑃𝑚ℱ𝑚
𝑃𝑛𝑗𝑌𝑛𝑗

𝜂𝑖𝑃𝑚𝑖𝑌𝑚𝑖
𝑃𝑚ℱ𝑚

(
ln𝑃𝑚𝑖𝑡 + ln𝑌𝑚𝑖𝑡 + ln𝜋

𝑓
𝑛𝑚𝑗𝑡

)
+

∑
𝑚

∑
𝑖

(1 − 𝜂𝑖)𝜋𝑥𝑛𝑗,𝑚𝑖𝑃𝑚𝑖𝑌𝑚𝑖
𝑃𝑛𝑗𝑌𝑛𝑗

(ln𝑃𝑚𝑖𝑡 + ln𝑌𝑚𝑖𝑡 + ln𝜋𝑥𝑛𝑗,𝑚𝑖𝑡) (B.1)

and the log-deviation of import shares are given by

ln𝜋
𝑓
𝑛𝑚𝑗𝑡 =(1 − 𝜌)

∑
𝑘,𝑙

𝜋
𝑓
𝑘𝑚ℓ

(
ln𝑃𝑛𝑗𝑡 − ln𝑃𝑘ℓ 𝑡

)
ln𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 =(1 − 𝜀)

∑
𝑘,ℓ

𝜋𝑥𝑘𝑙,𝑚𝑖
(
ln𝑃𝑛𝑗𝑡 − ln𝑃𝑘ℓ 𝑡

)
.

Define the following share matrices:

1. 𝚿 𝑓 is an 𝑁𝐽 × 𝑁 matrix whose (𝑛𝑗, 𝑚)th element is
𝜋
𝑓
𝑛𝑚𝑗𝑃𝑚ℱ𝑚
𝑃𝑛𝑗𝑌𝑛𝑗

. That is, this matrix stores the share of total
revenue in the country-sector in the row that comes from final spending in the country in the column.

2. 𝚿𝑥 is an 𝑁𝐽 × 𝑁𝐽 matrix whose (𝑛𝑗, 𝑚𝑖)th element is
(1−𝜂𝑖 )𝜋𝑥𝑛𝑗,𝑚𝑖𝑃𝑚𝑖𝑌𝑚𝑖

𝑃𝑛𝑗𝑌𝑛𝑗
. That is, this matrix stores the

share of total revenue in the country-sector in the row that comes from intermediate spending in the
country-sector in the column.

3. 𝚼 is an 𝑁 × 𝑁𝐽 matrix whose (𝑛, 𝑚𝑖)th element is 𝜂𝑖𝑃𝑚𝑖𝑌𝑚𝑖
𝑃𝑛ℱ𝑛 . That is, this matrix stores the share of value

added in the country-sector in the column in total GDP of the country in the row. Note that these are
zero whenever 𝑚 ≠ 𝑛.

4. 𝚷 𝑓 is an 𝑁 ×𝑁𝐽 matrix whose (𝑚, 𝑘ℓ )th element is 𝜋 𝑓
𝑘𝑚ℓ . That is, this matrix stores the final expenditure

share on goods coming from the column in the country in the row.

5. 𝚷𝑥 is an 𝑁𝐽 × 𝑁𝐽 matrix whose (𝑘ℓ , 𝑚𝑖)th element is 𝜋𝑥𝑚𝑖,𝑘ℓ . That is, this matrix stores the intermediate
expenditure share on goods coming from the column in the country-sector in the row.
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Then, equation (B.1) can be stated in matrix form:

ln P𝑡 + ln Y𝑡 =
(
𝚿 𝑓𝚼 +𝚿𝑥

)
(ln P𝑡 + ln Y𝑡) + (1 − 𝜌)

(
diag

(
𝚿 𝑓 1

)
−𝚿 𝑓𝚷 𝑓

)
ln P𝑡

+ (1 − 𝜀)
(
diag (𝚿𝑥1) −𝚿𝑥𝚷𝑥

)
ln P𝑡 .

This allows us to express prices as a function of quantities as in (3.11), where38

𝒫 = −
(
I −ℳ

)+ (
I −𝚿 𝑓𝚼 −𝚿𝑥

)
ℳ = 𝚿 𝑓𝚼 +𝚿𝑥 + (1 − 𝜌)

(
diag

(
𝚿 𝑓 1

)
−𝚿 𝑓𝚷 𝑓

)
+ (1 − 𝜀)

(
diag (𝚿𝑥1) −𝚿𝑥𝚷𝑥

)
.

Turning to the supply side, the labor demand (3.4) stacked into an 𝑁𝐽 × 1 vector is:

ln W𝑡 − ln P𝑡 = ln Y𝑡 − ln H𝑡 .

The labor supply in vector notation is:
ln H𝑡 = 𝜓(ln W𝑡 − ln P 𝑓

𝑡 ),
where ln P 𝑓

𝑡 denotes the consumption price index (3.2) that prevails at each sector in log-deviations and matrix
notation:

ln P 𝑓
𝑡 =

(
𝚷 𝑓 ⊗ 1

)
ln P𝑡 .

Here, 1 is a vector of one with length 𝐽 and the Kronecker product transforms the dimension of the consumption
price index at country level to the country-sector level.

These three conditions imply the following equilibrium relationship for hours:

ln H𝑡 =
𝜓

1 + 𝜓
ln Y + 𝜓

1 + 𝜓

(
I −𝚷 𝑓 ⊗ 1

)
ln P𝑡 . (B.2)

Similarly, market clearing for intermediate inputs is:

ln P𝑥𝑡 − ln P𝑡 = ln Y𝑡 − ln X𝑡 ,

where ln P𝑥𝑡 is the vector of intermediate input price indices for all countries and sectors:

ln P𝑥𝑡 = 𝚷𝑥 ln P𝑡 .

Jointly, these imply
ln X𝑡 = ln Y𝑡 + (I −𝚷𝑥) ln P𝑡 .

Plugging these into the production function

ln Y𝑡 = ln Z𝑡 + ηα ln H𝑡 + (I − η) ln X𝑡 .

= ln Z𝑡 + ηα

(
𝜓

1 + 𝜓
ln Y + 𝜓

1 + 𝜓

(
I −𝚷 𝑓 ⊗ 1

)
ln P𝑡

)
+ (I − η) (ln Y𝑡 + (I −𝚷𝑥) ln P𝑡) .

= ln Z𝑡 +
[

𝜓

1 + 𝜓
ηα

(
I +

(
I −𝚷 𝑓 ⊗ 1

)
𝒫

)
+ (I − η) (I + (I −𝚷𝑥) 𝒫)

]
ln Y𝑡 .

38The + sign stands for the Moore-Penrose inverse as I −ℳ is not invertible. The non-invertibility is a consequence of
the fact that the vector of prices is only defined up to a numeraire.
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where in the last step we use (3.11) for ln P𝑡 . Inverting for ln Y𝑡 completes the proof:

ln Y𝑡 =
(
I − 𝜓

1 + 𝜓
ηα

(
I +

(
I −𝚷 𝑓 ⊗ 1

)
𝒫

)
− (I − η) (I + (I −𝚷𝑥) 𝒫)

)−1

ln Z𝑡 .

Derivation of (3.12). We can also write the production function as

ln Y𝑡 = ln Z𝑡 + ηα (ln H𝑡) + (I − η) (ln X𝑡) ,
= ln Z𝑡 + ηα (ln Y𝑡 + ln P𝑡 − ln W𝑡) + (I − η) (ln Y𝑡 + ln P𝑡 − ln P𝑥𝑡

)
,

= ln Z𝑡 + (I − (I −α)η) ln Y𝑡 + ηα (ln P𝑡 − ln W𝑡) + (I − η) (ln P𝑡 − ln P𝑥𝑡
)
.

In partial equilibrium, prices and wages are fixed, and firms only respond to their own fundamental (ln Z𝑡)
change. If this is the case, the output response is given by

ln Y𝑡 = ln Z𝑡 + (I − (I −α)η) ln Y𝑡 ⇒ ln Y𝑡 = (I −α)−1η−1 ln Z𝑡 .

In general equilibrium, prices and wages also change. When these prices are expressed as a function of output,
it follows that

ln Y𝑡 =(I −α)−1η−1 ln Z𝑡 + γ ln Y𝑡 = (I −α)−1η−1 ln Z𝑡 +
(
γ + γ2 + γ3 + . . .

)
(I −α)−1η−1 ln Z𝑡 .

where 𝚲 = (I − γ)−1(I −α)−1η−1.

Proof of Corollary 1:. The log-deviation of country 𝑛’s real GDP from steady state can be expressed as

ln𝑉𝑛𝑡 =
∑
𝑗

(
𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛

ln𝑌𝑛𝑗𝑡 −
𝑃𝑥𝑛𝑗𝑋𝑛𝑗

𝑉𝑛
ln𝑋𝑛𝑗𝑡

)
=

∑
𝑗

𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛

(
ln𝑌𝑛𝑗𝑡 −

𝑃𝑥𝑛𝑗𝑋𝑛𝑗

𝑃𝑛𝑗𝑌𝑛𝑗
ln𝑋𝑛𝑗𝑡

)
=

∑
𝑗

𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛

(
ln𝑍𝑛𝑗𝑡 + 𝜂 𝑗𝛼 𝑗 ln𝐻𝑛𝑗𝑡 + (1 − 𝜂 𝑗) ln𝑋𝑛𝑗𝑡 −

𝑃𝑥𝑛𝑗𝑋𝑛𝑗

𝑃𝑛𝑗𝑌𝑛𝑗
ln𝑋𝑛𝑗𝑡

)
,

which leads directly to (3.13), since in equilibrium
𝑃𝑥𝑛𝑗𝑋𝑛𝑗
𝑃𝑛𝑗𝑌𝑛𝑗

= (1 − 𝜂 𝑗).
The derivation of (3.14) plugs (3.11) and (3.8)-(3.9) into (B.2).

B.2 Extracting Supply Shocks
The log-deviation of the value added in country 𝑛 sector 𝑗 from steady state can be expressed as

ln𝑉𝑛𝑗𝑡 =
𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛𝑗

ln𝑌𝑛𝑗𝑡 −
𝑃𝑥𝑛𝑗𝑋𝑛𝑗

𝑉𝑛𝑗
ln𝑋𝑛𝑗𝑡 ,

=
1
𝜂 𝑗

(ln𝑍𝑛𝑗𝑡 + 𝛼 𝑗𝜂 𝑗 ln𝐻𝑛𝑗𝑡 + (1 − 𝜂 𝑗) ln𝑋𝑛𝑗𝑡) −
1 − 𝜂 𝑗

𝜂 𝑗
ln𝑋𝑛𝑗𝑡 ,

=
1
𝜂 𝑗

ln𝑍𝑛𝑗𝑡 + 𝛼 𝑗 ln𝐻𝑛𝑗𝑡 ,

where we have used the property that in equilibrium 𝑃𝑛𝑗𝑌𝑛𝑗
𝑉𝑛𝑗

= 1/𝜂 𝑗 and
𝑃𝑥𝑛𝑗𝑋𝑛𝑗
𝑃𝑛𝑗𝑌𝑛𝑗

= (1 − 𝜂 𝑗). Stacking these into
vectors and inverting for ln Z gives (3.15).
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B.3 Exact Solution to the Network Model
This section sets up the exact solution to the static network model, in changes, following the methodology of
Dekle, Eaton, and Kortum (2008). In this section, denote by a “hat” the gross proportional change in any variable
between the steady state 𝑥 and a counterfactual 𝑥𝑡 : 𝑥̂ ≡ 𝑥𝑡/𝑥. To streamline notation, define Υ𝑛𝑗𝑡 ≡ 𝑃𝑛𝑗𝑡𝑌𝑛𝑗𝑡 to
be the gross revenue in sector 𝑗, country 𝑛. Following a set of supply shocks 𝑍𝑛𝑗𝑡 , the price in sector 𝑗, country
𝑛 experiences the change:

𝑃𝑛𝑗𝑡 = 𝑍−1
𝑛𝑗𝑡Υ̂

(1−𝛼 𝑗 )𝜂𝑗− 1
𝜓+1 𝛼 𝑗𝜂𝑗

𝑛𝑗𝑡 𝑃
𝛼 𝑗𝜂𝑗

𝜓+1
𝜓

𝑛𝑡

(∑
𝑚,𝑖

𝜋𝑚𝑖,𝑛 𝑗𝑃1−𝜀
𝑚𝑖𝑡

) 1−𝜂𝑗
1−𝜀

. (B.3)

This, together with the dependence of 𝑃𝑛𝑡 on the constituent 𝑃𝑛𝑗𝑡 :

𝑃𝑛𝑡 =


∑
𝑗

∑
𝑚

𝑃1−𝜌
𝑚𝑗𝑡 𝜋

𝑓
𝑚𝑛𝑗


1

1−𝜌

(B.4)

defines a system of 𝐽 ×𝑁 equations in prices, conditional on known steady-state data quantities (such as 𝜋 𝑓
𝑚𝑛𝑗),

and a vector of Υ̂𝑛𝑗𝑡 ’s. The price changes in turn determine the counterfactual shares (denoted by a 𝑡-subscript):

𝜋
𝑓
𝑛𝑚𝑗𝑡 =

𝑃1−𝜌
𝑛𝑗𝑡 𝜋

𝑓
𝑛𝑚𝑗∑

𝑘 𝑃
1−𝜌
𝑘 𝑗𝑡 𝜋

𝑓
𝑘𝑚𝑗

, (B.5)

𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 =
𝑃1−𝜀
𝑛𝑗𝑡 𝜋

𝑥
𝑛𝑗,𝑚𝑖∑

𝑘,𝑙 𝑃
1−𝜀
𝑘𝑙𝑡 𝜋

𝑥
𝑘𝑙,𝑚𝑖

. (B.6)

These trade shares have to be consistent with market clearing at the counterfactual 𝑡, expressed using propor-
tional changes as:

Υ̂𝑛𝑗𝑡Υ𝑛𝑗 =
∑
𝑚

[
𝜋
𝑓
𝑛𝑚𝑗𝑡𝜔 𝑗𝑚

(∑
𝑖

𝜂𝑖Υ̂𝑚𝑖𝑡Υ𝑚𝑖

)
(B.7)

+
∑
𝑖

𝜋𝑥𝑛𝑗,𝑚𝑖𝑡
(
1 − 𝜂𝑖

)
Υ̂𝑚𝑖𝑡Υ𝑚𝑖

]
.

The sets of equations (B.3)-(B.7) represent a system of 2 × 𝑁 × 𝐽 + 𝑁2 × 𝐽 + 𝑁2 × 𝐽2 unknowns, 𝑃𝑛𝑗𝑡 ∀𝑛, 𝑗, Υ̂𝑛𝑗𝑡

∀𝑛, 𝑗, 𝜋 𝑓
𝑛𝑚𝑗𝑡 ∀𝑛, 𝑚, 𝑗, and 𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 ∀𝑛, 𝑗, 𝑚, 𝑖 that is solved under given parameter values and under a set of shocks

𝑍𝑛𝑗𝑡 .

B.3.1 Algorithm for Exact Solution to the Static Model

To solve the model, we use an initial guess for Υ̂𝑛𝑗𝑡 together with data on 𝜋
𝑓
𝑚𝑛𝑗 and 𝜋𝑥𝑛𝑗,𝑚𝑖 . Given these variables,

the algorithm is as follows:

1. Solve for 𝑃𝑛𝑗𝑡 given the guess of Υ̂𝑛𝑗 and the data on 𝜋
𝑓
𝑚𝑛𝑗 and 𝜋𝑥𝑛𝑗,𝑚𝑖 . This step uses equations (B.3) and

(B.4) .

2. Update 𝜋
𝑓
𝑚𝑛𝑗𝑡 and 𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 given the solution to step 1 using equations (B.5) and (B.6).

3. Solve for the new guess Υ̂′
𝑛𝑗𝑡 using equation (B.7) given the prices 𝑃𝑛𝑗𝑡 obtained in step 1 and the updated
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shares 𝜋 𝑓
𝑚𝑛𝑗𝑡 and 𝜋𝑥𝑛𝑗,𝑚𝑖𝑡 from step 2.

4. Check if max|(Υ̂′
𝑛𝑗𝑡 − Υ̂𝑛𝑗𝑡)| < 𝛿, where 𝛿 is a tolerance parameter that is arbitrarily small. If not, update

the guess of Υ̂𝑛𝑗𝑡 and repeat steps 1-4 until convergence.

B.3.2 Comparison of the Exact and First-Order Solutions

Figure A2 presents a scatterplot of GDP growth rates obtained under the first-order analytical solution to the
global influence matrix in Section 3.2 against the exact solution computed as in this appendix. The line through
the data is the 45-degree line. The GDP growth rates are computed under the observed shocks, and pooled
across countries and years. It is clear that the first-order approximation is very good in the large majority
of instances. The correlation between the two sets of growth rates is 0.999. Table A3 summarizes the GDP
correlations obtained using GDP growth rates in the linear and exact solutions. The correlations are very close
to each other.

Figure A2: Comparison of GDP Growth Rates between First-Order and Exact Solutions
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Notes: This figure displays a scatterplot of the GDP growth rates obtained using the first-order approximation against
the GDP growth rates in the exact solution to the model, pooling countries and years. The line through the data is the
45-degree line.

B.3.3 When is the First-Order Solution Reasonable?

We next turn to the question of when using the first-order approximation of the model provides a reasonable
assessment. As highlighted by Baqaee and Farhi (2019a), higher-order effects can be quantitatively relevant
in non-linear network economies, particularly when the shock size is large. Figure A2 illustrated that for our
actual recovered shocks, the exact and first-order solution are nearly identical. To explore the size of shocks
where our influence matrix solution would provide a worse approximation, Figure A3 plots the deviations
between first-order and exact GDP changes for all countries following 4 shocks. In each case, the size of the
shocks, in logs, is on the x-axis. The first is a “Global” shock, where all country-sectors receive a shock of
the same size. This is an extreme example of a perfectly correlated shock. The second is a scenario in which
the “Rest-of-the-World” receives a shock, but the domestic country in question is not shocked. The third is
a purely domestic shock, while all trade partners receive no shock. Finally, we consider the responses of all
countries to a US shock. In all exercises, the size of the shock is symmetric across sectors within a country that
is shocked, and across countries in the instance where several countries are shocked. In the Rest-of-the-World
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Table A3: First-Order and Exact Solutions: Correlations of 𝑑 ln𝑉𝑛𝑡

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Baseline (approx.) 0.381 0.435 0.232 0.619
Exact solution 0.382 0.437 0.235 0.610

All countries (N. obs. = 406)

Baseline (approx.) 0.188 0.193 -0.110 0.498
Exact solution 0.181 0.192 -0.132 0.488

Notes: This table presents the summary statistics of the correlations of the model 𝑑 ln𝑉𝑛𝑡 in the sample of G7 countries
(top panel) and full sample (bottom panel) computed using the linear approximation and the exact solution. Variable
definitions and sources are described in detail in the text.

and Domestic scenarios, we solve the exact model country by country. For reference, we also include lines
illustrating the 5th and 95th percentile of the sectoral shocks recovered in the data.

It is immediate that non-linearities increase in importance for larger shock sizes. This is true for all four
types of shocks. However, there are a number of interesting nuances. First, in the case of the Global shock, even
for extremely large shocks (a 50-95% increase or decrease in 𝑑 ln𝑍), the difference in the exact and linearized
solution is small. The largest difference in GDP growth is less than around 0.4 percentage points. Intuitively,
in the case of a common shock, there is little relative change in sectoral sizes across countries, which decreases
the size of the higher-order terms missed by the linear approximation. In the context of even large correlated
shocks such as the Covid-19 pandemic, this suggests that our influence-matrix analytical solution is useful.
Second, the difference between the exact and linearized model can be large (10-20 percentage points) but only
in when the shock sizes are very large (90-95%) and inducing larger changes in relative sector sizes, as is true
in panels B and C when either the rest-of-the world is shocked or there is a very large domestic shock. In the
case of a shock arising in a single country, even one as large as the US, only its closest trading partner Canada
sees a noticeable discrepancy between the exact and first-order solution, and that is still around 10 percentage
points for a US shock of 95% in all sectors.

This discussion suggests that, while non-linearities can be quantitatively important in some extreme cases,
in the empirically relevant range of shocks observed in the data using the linearized model is reasonable.
Additionally, the shocks recovered in Section 4 were found to be very correlated. Our analysis illustrates that
this is precisely the instance where, even if the shocks are larger, the linearized model is a good approximation
of the exact solution.

B.4 Dynamic Model Solution Details
With the labor shock, the optimality condition for the labor supply becomes

1
𝜓

ln𝐻𝑛𝑗𝑡 = − ln 𝜉𝐻𝑛𝑗𝑡 + ln𝑊𝑛𝑗𝑡 − ln𝑃𝑛𝑡 .

With the intermediate input shock, the demand for intermediate input is

ln𝑃𝑥𝑛𝑗𝑡 + ln 𝜉𝑋𝑛𝑗𝑡 + ln𝑋𝑛𝑗𝑡 = ln𝑌𝑛𝑗𝑡 + ln𝑃𝑛𝑗𝑡 .

The output changes become

ln Y𝑡 = 𝚲
(

ln ξ𝑍𝑡 + 𝜓

1 + 𝜓
ηα ln ξ𝐻𝑡 − (I − η) ln ξ𝑋𝑡 + η(I −α) ln K𝑡

)
.
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Figure A3: Comparison of GDP Growth Rates between First-Order and Exact Solutions for Varied
Shock Sizes
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(c) Domestic Shock (d) US Shock

Notes: This figure displays the difference between the GDP growth rates obtained using the exact solution and the the
first-order approximation to the model for varied shock sizes under different scenarios. Panel (a) shows the differences
for all countries when every country and sector has the same sized shock. Panel (b) shows the differences when every
country and sector except the country in question has a same sized shock (“rest-of-the world shock”). Panel (c) shows the
differences when only the country in question has the same sized shock in all sectors (“domestic shock”) and Panel (d)
shows the results when only the US has a shock in every sector (“US Shock”). The figures also show a local polynomial
approximation. The vertical dashed lines show the 5th and 95th percentiles of the actual, quantitatively relevant, shocks
recovered in the data.

Let ln𝑚𝑛𝑡 denote the vector of log-deviation of marginal utility of consumption from its steady state in country
𝑛:

ln𝑚𝑛𝑡 = − ©­­«
𝐶𝑛 ln𝐶𝑛𝑡 −∑

𝑗 𝐻
1+ 1

𝜓

𝑛𝑗

(
1 + 1

𝜓

)
ln𝐻𝑛𝑗𝑡

𝐶𝑛 −∑
𝑗 𝐻

1+ 1
𝜓

𝑛𝑗

ª®®¬ . (B.8)
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The linearized Euler equation for investment in country 𝑛 sector 𝑗 is

ln𝑚𝑛𝑡 + ln 𝜉𝐼𝑛 𝑗𝑡 =E𝑡

[
ln𝑚𝑛𝑡+1 + (1 − 𝛽 + 𝛽𝛿 𝑗)(ln𝑃𝑛𝑗𝑡+1 − ln𝑃𝑛𝑡+1 + ln𝑌𝑛𝑗𝑡+1 − ln𝐾𝑛𝑗𝑡+1)

+ 𝛽(1 − 𝛿 𝑗) ln 𝜉𝐼𝑛 𝑗𝑡+1

]
.

The linearized resource constraint is

ln𝐶𝑛𝑡 +
∑
𝑗

𝛿 𝑗𝐾𝑛𝑗
𝐶𝑛

(
1
𝛿

ln𝐾𝑛𝑡+1 − 1 − 𝛿
𝛿

ln𝐾𝑛𝑗𝑡
)
=

∑
𝑗

𝜂 𝑗𝑃𝑛𝑗𝑌𝑛𝑗
𝑃𝑛𝐶𝑛

(ln𝑃𝑛𝑗𝑡 − ln𝑃𝑛𝑡 + ln𝑌𝑛𝑗𝑡).

Using the resource constraint and the static equilibrium, we can substitute ln C𝑡 , lnH𝑡 , and ln P𝑡 by lnK𝑡 , lnK𝑡+1
and all the shocks ln ξ𝑡 = [ln ξ𝑍𝑡 , ln ξ𝐻𝑡 , ln ξ𝑋𝑡 , ln ξ𝐼𝑡 ]. The Euler equation in matrix form becomes

A0 ln K𝑡 + A1 ln K𝑡+1 + B0 ln ξ𝑡 = E𝑡[A3 ln K𝑡+2 + B1 ln ξ𝑡+1],
where the matrices only depend on parameters and steady-state values.

We proceed by a guess-and-verify approach. Assume that the policy function of capital is

ln K𝑡+1 = M𝜉 ln ξ𝑡 + M𝑘 ln K𝑡 .

Also assume that we already know the process for the shocks

ln ξ𝑡 = D ln ξ𝑡−1 + ε𝑡 .

The Euler equation then becomes

(A0 + A1M𝑘) ln K𝑡 + (A1M𝜉 + B0) ln ξ𝑡 = A3M2
𝑘 ln K𝑡 + (A3(M𝜉D + M𝑘M𝜉) + B1D) ln ξ𝑡 . (B.9)

By method of undetermined coefficients, we can solve for M𝑘 and M𝜉.
Note that ln ξ𝑍𝑡 , ln ξ𝐻𝑡 , and ln ξ𝑋𝑡 can be obtained from the static equilibrium conditions. To recover the

investment shock, we can use equation (B.9) and the data on capital to calculate the implied ln ξ𝐼𝑡 .
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C. Estimation

C.1 Estimating Model Elasticities
We use model-implied relationships to estimate 𝜌 and 𝜀. In this section, redefine a “hat” to mean the gross
proportional change in any variable between time 𝑡 and the previous year: 𝑥̂𝑡 ≡ 𝑥𝑡/𝑥𝑡−1. To introduce an error
term in the estimating equations, assume that iceberg trade costs, final consumer taste shocks, and input share
shocks have a stochastic element, and denote their gross proportional changes by 𝜏̂𝑚𝑛𝑗𝑡 , 𝜗𝑚𝑛𝑗𝑡 , and 𝜇̂𝑚𝑗,𝑛𝑖𝑡 ,
respectively. Straightforward manipulation of CES consumption shares yields the following relationships
between shares and prices:

ln ©­«
𝜋
𝑓
𝑚𝑛𝑗𝑡

𝜋
𝑓
𝑚′𝑛𝑗𝑡

ª®¬ =
(
1 − 𝜌

)
ln

(
𝑃𝑚𝑗𝑡

𝑃𝑚′ 𝑗𝑡

)
+ ln ©­«

𝜗𝑚𝑛𝑗𝑡 𝜏̂
1−𝜌
𝑚𝑛𝑗𝑡

𝜗𝑚′𝑛𝑗𝑡 𝜏̂
1−𝜌
𝑚′𝑛𝑗𝑡

ª®¬ (C.1)

and

ln

(
𝜋𝑥𝑚𝑗,𝑛𝑖𝑡

𝜋𝑥𝑚′ 𝑗,𝑛𝑖𝑡

)
= (1 − 𝜀) ln

(
𝑃𝑚𝑗𝑡

𝑃𝑚′ 𝑗𝑡

)
+ ln

(
𝜇̂𝑚𝑗,𝑛𝑖,𝑡 𝜏̂1−𝜀

𝑚𝑛𝑗𝑡

𝜇̂𝑚′ 𝑗 ,𝑛𝑖,𝑡 𝜏̂1−𝜀
𝑚′𝑛𝑗𝑡

)
. (C.2)

We express the final consumption share change 𝜋
𝑓
𝑚𝑛𝑗𝑡 relative to the final consumption share change in a

reference country 𝑚′. This reference country is chosen separately for each importing country-sector 𝑛, 𝑗 as the
country with the largest average expenditure share in that country-sector. (Thus, strictly speaking, the identity
of the reference country 𝑚′ is distinct for each importing country-sector, but we suppress the dependence of 𝑚′

on 𝑛, 𝑗 to streamline notation.) Furthermore, we drop the own expenditure shares 𝜋
𝑓
𝑛𝑛 𝑗𝑡 from the estimation

sample, as those are computed as residuals in WIOD, whereas import shares from other countries are taken
directly from the international trade data. Dropping the own expenditure shares has the added benefit of
making the regressions less endogenous, as the domestic taste shocks are much more likely to affect domestic
prices.

We use two estimation approaches for (C.1)-(C.2). We first show the results with OLS. To absorb as
much of the error term as possible, we include source-destination-reference country-time (𝑛 × 𝑚 × 𝑚′ × 𝑡)
fixed effects. These absorb any common components occurring at the country 3-tuple-time level, such as
exchange rate changes and other taste and transport cost changes, and thus the coefficient is estimated from
the variation in the relative sectoral price indices and relative sectoral share movements within that cell. The
identifying assumption is then that price change ratio 𝑃𝑚𝑗𝑡/𝑃𝑚′ 𝑗𝑡 is uncorrelated with the residual net of the
𝑛 × 𝑚 × 𝑚′ × 𝑡 fixed effects. The remaining errors would be largely measurement error. If this measurement
error is uncorrelated with the price change ratios, then the OLS estimates are unbiased, and if not, we would
expect a bias towards zero. In the latter case, the IV estimates (described below) should be larger than the OLS
estimates, assuming the measurement error in (C.1) and (C.2) is independent of the measurement error in the
technology shock ratios.

The estimation amounts to regressing relative share changes on relative price changes. A threat to identi-
fication would be that relative price changes are affected by demand shocks (e.g. 𝜗𝑚𝑛𝑗𝑡), and thus correlated
with the residual. As a way to mitigate this concern, we also report estimates based on the subsample in which
destination countries are all non-G7, and the source and reference countries are all G7 countries. In this sample
it is less likely that taste shocks in the (smaller) destination countries will affect relative price changes in the
larger G7 source countries. Finally, to reduce the impact of small shares on the estimates, we report results
weighting by the size of the initial shares (𝜋 𝑓

𝑚𝑛𝑗,𝑡−1 and 𝜋𝑥𝑚𝑗,𝑛𝑖,𝑡−1).
We also implement IV estimation. We use the TFP shocks 𝑍𝑚𝑗𝑡/𝑍𝑚′ 𝑗𝑡 as instruments for changes in relative

prices. The exclusion restriction is that the technology shocks are uncorrelated with taste and trade cost shocks,
and thus only affect the share ratios through changing the prices. Even if the shock ratio 𝑍𝑚𝑗𝑡/𝑍𝑚′ 𝑗𝑡 is a valid
instrument for observed prices, it does not include the general-equilibrium effects on prices in the model. To
use all of the information –both the direct and indirect GE effects –incorporated in the model, we also use the
model-optimal IV approach to construct the instrument. In our context this simply involves computing the
model using only the estimated technology shocks, and solving for the sequence of equilibrium prices in all
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countries and sectors. The model-implied prices are then the optimal instrument for the prices observed in the
data.

Table A4 presents the results of estimating equations (C.1) and (C.2). Columns 1-3 report the OLS estimates
of 𝜌 (top panel) and 𝜀 (bottom panel). The OLS estimates of 𝜌 are all significantly larger than zero, and we cannot
rule out a Cobb-Douglas final demand elasticity. The OLS estimates for 𝜌 are also not very sensitive to restricting
the sample to non-G7 destinations and G7 sources, or to weighting by the initial share. The IV estimates in
columns 4-6 are substantially larger than the OLS coefficients, ranging from 1.77 to 2.74, and significantly
different from 1 in most cases. This difference between OLS and IV could suggest either measurement error in
(C.1), or greater noise in the IV estimator (Young, 2017). Given the substantial disagreement between OLS and
IV estimates of 𝜌, we use 𝜌 = 2.75 based on the IV as our baseline calibration, but report the results for 𝜌 = 1,
corresponding to the OLS estimates, in robustness exercises.

The OLS and IV estimates of 𝜀 display somewhat greater consensus. The OLS point estimates are in the
range 0.9, and not sensitive to the sample restriction or weighting. The IV estimates are less stable. While the
full sample (column 4) yields an elasticity of 2.6, either restricting to the non-G7 destinations/G7 sources, or
weighting by size reduces the coefficient dramatically and renders it not statistically different from 1. Such
evidence for the low substitutability of intermediate inputs is consistent with the recent estimates by Atalay
(2017) and Boehm, Flaaen, and Pandalai-Nayar (2019), who find even stronger complementarity. We therefore
set 𝜀 = 1 for all implementations of the model.

Table A4: Elasticity Estimates

(1) (2) (3) (4) (5) (6)
OLS OLS OLS IV IV IV

(G7 𝑚, 𝑚′, (weighted) (G7 𝑚, 𝑚′, (weighted)
non-G7 𝑛) non-G7 𝑛)

𝜌 0.869 0.937 1.011 2.723 1.768 2.743
SE (0.022) (0.027) (0.024) (0.525) (0.733) (0.538)

First stage K-P F 76.33 35.37 86.72
FE Yes Yes Yes Yes Yes Yes

𝜀 0.884 0.941 0.917 2.613 0.283 1.896
SE (0.019) (0.022) (0.039) (0.381) (0.847) (0.495)

First stage K-P F 66.07 47.58 111.41
FE Yes Yes Yes Yes Yes Yes

Notes: Standard errors clustered at the destination-source-reference country level in parentheses. This table presents
results from the OLS and IV estimation of (C.1) and (C.2). The fixed effects used in each regression are 𝑛×𝑚×𝑚′× 𝑡. The
instruments are the relative productivity shocks 𝑍𝑚𝑗𝑡/𝑍𝑚′ 𝑗𝑡 , with the Kleibergen-Papp first stage F-statistic reported.
The weights in columns 3 and 6 are lagged share ratios 𝜋 𝑓𝑚𝑛𝑗𝑡−1 and 𝜋𝑥𝑚𝑗,𝑛𝑖𝑡−1.

C.2 Estimating Shock Processes
As discussed in Section 5, estimating an unrestricted process for shocks is not possible due to the short panel
of measured shocks and the large number of parameters to be estimated. We restrict the estimation to the
G7 countries, for which we have the longest panel of shocks. While we still cannot estimate a completely
unrestricted VAR, we impose minimal restrictions that allow the shocks to be correlated (as the measured
shocks are), and further, allow for spillovers between country-sectors.

In particular, our specification allows for contemporaneous shock correlations between country-sectors, but
restricts the structure of lagged spillovers. We permit a country-sector specific lagged autoregressive parameter,
so country-sector shocks can be persistent. We restrict lagged spillovers to be common within a country (across
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sectors), and zero otherwise. We allow for a full variance-covariance matrix of the error terms, which amounts
to assuming completely unrestricted contemporaneous spillovers. The sample variance-covariance matrix of
the residuals serves as an estimate of the covariance matrix of the error term. Equation (5.6) describes the
estimating equation for the VAR process.

The choice of restrictions strikes a balance between relative parsimony, which improves the precision of the
parameters estimated, and sufficient flexibility to replicate the measured shock correlations in the data. We
experimented with other processes using methods such as LASSO regressions to estimate the process for the
intertemporal shocks without much change to the simulated shock correlations. In particular, we have modified
the estimating equations to also include a sector-specific lagged spillover term, but these coefficients were all
insignificant, and so we use the more parsimonious process in the baseline analysis. Table A5 summarizes the
estimation results.

Table A5: Shock Processes: Autoregressive Parameters

Mean Median 25th pctile 75th pctile

ln 𝜉𝑍𝑛𝑗𝑡

Own lag (𝜌𝑛𝑗) 0.877 0.876 0.856 0.882
Spillover lag (𝛿𝑛) -0.002 -0.002 -0.003 -0.002

ln 𝜉𝑋𝑛𝑗𝑡

Own lag (𝜌𝑛𝑗) 0.853 0.848 0.839 0.870
Spillover lag (𝛿𝑛) 0.002 0.002 0.001 0.002

ln 𝜉𝐻𝑛𝑗𝑡

Own lag (𝜌𝑛𝑗) 0.896 0.894 0.882 0.916
Spillover lag (𝛿𝑛) -0.000 -0.001 -0.001 -0.000

ln 𝜉𝐼𝑛 𝑗𝑡

Own lag (𝜌𝑛𝑗) 0.931 0.945 0.915 0.965
Spillover lag (𝛿𝑛) -0.004 -0.005 -0.006 -0.002

Notes: This table presents results from estimating the shock stochastic processes (5.6). The measures are summary
statistics of the coefficients in the sample of sectors and countries. The shock processes are estimated on shocks obtained
from the baseline dynamic model in section 5.
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D. Sensitivity and Additional Exercises

D.1 Sensitivity
This subsection reports various sensitivity exercises for the network model results in Sections 3-4.

Alternative Elasticities, Models, and Samples. Table A6 presents the GDP correlations and volatilities
for GDP growth rates and HP-filtered series for the G7. The two detrending methods deliver similar results.

Table A6: GDP Growth and HP-Filtered GDP Correlation in G7 Countries

Mean Median 25th pctile 75th pctile St.dev. (GDP)

GDP growth rate 0.358 0.337 0.242 0.565 1.745
HP-Filtered GDP 0.395 0.460 0.040 0.585 1.736

Notes: This table presents the summary statistics of the correlations of GDP growth rates and HP-filtered GDP in the
sample of G7 countries. We use 𝜆 = 100 for the HP-filter parameter, as the data are annual.

Tables A7-A8 present the results of the shock correlation-transmission decomposition (2.5) under alternative
elasticities for G7 countries and all countries, respectively. Transmission in the baseline model is higher with
lower production elasticities and with a higher labor supply elasticity, as would be expected. The table also
presents results from alternative models without input trade and in autarky. Comovement is on average slightly
lower in autarky, and without input trade, for most parameter combinations.

Table A9 reports the results from a G7 only version of our model (using the time period 1978-2007, the
longest available time period for these countries). Table A10 reports the results from our baseline model with
trade deficits evolving as they do in the data, solved using the method in Dekle, Eaton, and Kortum (2008). In
both cases the results are similar to the baseline.

Comparison of the GDP Correlations Under Data and Model Domar Weights. Because the model
is simulated in log-deviations from steady state, it uses fixed Domar weights, set to period averages for each
country and sector. In the data, Domar weights change from year to year. As a result, country GDP growth
rates differ in the data and the model. Figure A4 plots the GDP growth correlations in the model under fixed
Domar weights against those in the data, along with the 45-degree line. The two sets of correlations are quite
similar.

Figure A4: GDP Correlations Under Data and Model Domar Weights
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Notes: This figure displays a scatter plot of the GDP growth correlation, when GDP growth is computed by aggregating
sectoral growth using the data Domar weights against the model Domar weights.
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Table A7: GDP Growth Correlations in the Static Model, G7 Countries

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.381 0.435 0.232 0.610

shock correlation 0.301 0.328 0.183 0.459
bilateral transmission 0.019 0.015 0.007 0.019
multilateral transmission 0.060 0.058 0.032 0.092

autarky 0.361 0.422 0.177 0.634
w/o cross-border intermediate input trade 0.167 0.174 -0.138 0.482

parameters: 𝜌 = 1, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.381 0.435 0.209 0.646

shock correlation 0.257 0.299 0.120 0.455
bilateral transmission 0.033 0.027 0.017 0.037
multilateral transmission 0.090 0.095 0.042 0.132

autarky 0.341 0.395 0.152 0.637
w/o cross-border intermediate input trade 0.167 0.168 -0.127 0.481

parameters: 𝜌 = 2.75, 𝜀 = 0.5,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.381 0.435 0.209 0.646

shock correlation 0.284 0.327 0.161 0.490
bilateral transmission 0.025 0.018 0.008 0.025
multilateral transmission 0.072 0.067 0.033 0.111

autarky 0.350 0.427 0.163 0.604
w/o cross-border intermediate input trade 0.163 0.169 -0.132 0.478

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 0.5 mean median 25 pctile 75 pctile

static model with actual shocks 0.381 0.435 0.209 0.646

shock correlation 0.349 0.379 0.192 0.587
bilateral transmission 0.007 0.005 0.002 0.007
multilateral transmission 0.025 0.024 0.011 0.038

autarky 0.380 0.446 0.181 0.657
w/o cross-border intermediate input trade 0.175 0.176 -0.124 0.492

Notes: This table presents the decomposition of the GDP correlations into the shock correlation, the direct transmission,
and the multilateral transmission terms as in equation (2.5), under alternative values for elasticities. The table also
reports the average correlations in autarky, and in the model without input trade (Section 4.4).
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Table A8: GDP Growth Correlations in the Static Model, All Countries

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.188 0.193 -0.110 0.498

shock correlation 0.139 0.164 -0.125 0.427
bilateral transmission 0.007 0.004 0.002 0.008
multilateral transmission 0.043 0.034 0.011 0.074

autarky 0.152 0.141 -0.132 0.462
w/o cross-border intermediate input trade 0.167 0.174 -0.138 0.482

parameters: 𝜌 = 1, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.188 0.190 -0.110 0.498

shock correlation 0.114 0.137 -0.131 0.396
bilateral transmission 0.011 0.006 0.003 0.014
multilateral transmission 0.064 0.046 0.018 0.089

autarky 0.141 0.137 -0.147 0.440
w/o cross-border intermediate input trade 0.167 0.168 -0.127 0.481

parameters: 𝜌 = 2.75, 𝜀 = 0.5,𝜓 = 2 mean median 25 pctile 75 pctile

static model with actual shocks 0.188 0.190 -0.110 0.498

shock correlation 0.131 0.148 -0.125 0.412
bilateral transmission 0.008 0.004 0.002 0.009
multilateral transmission 0.049 0.038 0.013 0.077

autarky 0.148 0.135 -0.130 0.454
w/o cross-border intermediate input trade 0.163 0.169 -0.132 0.478

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 0.5 mean median 25 pctile 75 pctile

static model with actual shocks 0.188 0.190 -0.110 0.498

shock correlation 0.168 0.181 -0.111 0.466
bilateral transmission 0.003 0.001 0.001 0.003
multilateral transmission 0.018 0.007 0.000 0.029

autarky 0.165 0.159 -0.132 0.480
w/o cross-border intermediate input trade 0.175 0.176 -0.124 0.492

Notes: This table presents the decomposition of the GDP correlations into the shock correlation, the direct transmission,
and the multilateral transmission terms as in equation (2.5), under alternative values for elasticities. The table also
reports the average correlations in autarky, and in the model without input trade (Section 4.4).
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Table A9: Correlated Shocks vs. Transmission Decomposition, G7+RoW sample, 1978 to 2007

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Model correlation: 0.350 0.356 0.230 0.558

Decomposition:
Shock Correlation 0.282 0.271 0.131 0.484
Bilateral Transmission 0.016 0.011 0.005 0.019
Multilateral Transmission 0.052 0.056 0.028 0.067

Notes: This table presents the summary statistics of the correlations of 𝑑 ln𝑉𝑛𝑡 in the sample of G7 countries, for data
from 1978 to 2007, in a model with G7 countries only and a rest of the world composite. Variable definitions and sources
are described in detail in the text.

Table A10: Correlated Shocks vs. Transmission Decomposition, with Trade Imbalances

Mean Median 25th pctile 75th pctile

G-7 countries (N. obs. = 21)

Baseline (approx. w/o deficits) 0.381 0.435 0.232 0.619
Exact solution with deficits 0.380 0.431 0.231 0.626

All countries (N. obs. = 406)

Baseline (approx. w/o deficits) 0.188 0.193 -0.110 0.498
Exact solution with deficits 0.181 0.192 -0.132 0.488

Notes: This table presents the summary statistics of the correlations of the model 𝑑 ln𝑉𝑛𝑡 in the sample of G7 countries
(top panel) and full sample (bottom panel) computed using the linear approximation and the exact solution where
aggregate trade deficits are allowed to move as in the data.
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D.2 The Role of Trade Costs
Starting from the observed world equilibrium, we simulate gross changes in iceberg costs 𝜏̂𝑚𝑛𝑗 , 𝑚 ≠ 𝑛 ranging
from 0.5 to 1.5. Because our baseline of 𝜀 = 1 keeps intermediate expenditure shares constant, we also report
results with a higher (𝜀 = 1.5) and a lower (𝜀 = 0.5) value of input substitution elasticity.

The top-most (blue) lines in Figure A5 plot the average GDP correlation in the G7 sample for this range of
trade cost changes. By construction, all three lines coincide at 𝜏̂𝑚𝑛𝑗 = 1 (no change in trade costs), as the models
reproduce the same GDP correlation at that point. Under 𝜀 = 1 the GDP correlation changes only imperceptibly
as trade costs vary. This is because all input revenue shares are constant, and these input revenue shares are
the ingredients of the influence matrix.39

Figure A5: Comparative Statics: Trade Costs
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Notes: This figure displays the change in average correlation between the G7 countries, decomposed into shock
correlation, direct and multilateral transmission, as trade costs increase/decrease relative to the baseline. The solid
lines illustrate changes in the baseline model calibration with 𝜀 = 1. The dashed lines use an alternative calibration of
𝜀 = 0.5 and the dotted lines 𝜀 = 1.5.

Upward and downward deviations from 𝜀 = 1 produce the opposite results. When 𝜀 = 1.5 (short dashed
line), we get the expected outcome that correlations fall in the level of trade costs, albeit modestly. However,
when 𝜀 = 0.5 (long dashed line), correlations actually rise in trade costs. To understand this better, the
middle (red) lines depict the shock correlation components, and the green lines at the bottom the transmission
components. Though the level of the shock correlation components differs somewhat across 𝜀’s, there is little
if any difference in the slopes with respect to trade costs. So the shock correlation components are not the ones
responsible for the finding that different 𝜀’s produce the opposite sign relationship between trade costs and
comovement.

Instead, this result is driven by the transmission terms. Transmission’s contribution to comovement actually
rises as trade costs increase for 𝜀 = 0.5, while the opposite is true for 𝜀 = 1.5. The explanation for this apparent
paradox is that when 𝜀 < 1, a higher 𝜏𝑚𝑛𝑗 actually leads to higher foreign input spending shares. Because the
influence of foreign shocks in the domestic economy increases in the foreign input shares, raising trade costs
actually leads to more transmission and higher correlations when inputs are complements.

These results are informative for the debate regarding the role of the Armington elasticity in international
business cycles. A number of papers point out that lowering this elasticity below 1 improves the ability of these
models to generate positive correlations in the macro aggregates (Heathcote and Perri, 2002; Burstein, Kurz,
and Tesar, 2008; Johnson, 2014). These papers do not typically perform the experiment of changing trade costs

39The reason GDP correlation is not literally constant across all trade costs is that final goods trade is still governed by a
non-unitary elasticity of 𝜌 = 2.75. The Figure makes it clear that the final goods trade shares are not an important force in
GDP correlations, at least for this range of trade cost changes.
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starting from the observed equilibrium. We show here that assuming complementarity in inputs comes along
with the prediction that higher trade costs actually generate more comovement.

D.3 The Role of Individual Sectors in Comovement
We next address the question of whether some sectors systematically contribute more to aggregate comovement
than others. Equation (2.3) can be written as 𝑑 ln𝑉𝑛 =

∑
𝑖 𝑑 ln𝒱𝑛𝑖 , where 𝒱𝑛𝑖 ≡ ∑

𝑘 𝑠𝑘𝑛𝑖𝜃𝑘𝑖 is the contribution of
shocks in sector 𝑖 anywhere in the world to GDP growth of country 𝑛 (not to be confused with value added in
sector 𝑖 country 𝑛). The GDP covariance is simply additive in the covariances of sectoral 𝑑 ln𝒱𝑛𝑖 with foreign
GDP:

Cov(𝑑 ln𝑉𝑛 , 𝑑 ln𝑉𝑚) =
∑
𝑖

Cov(𝑑 ln𝒱𝑛𝑖 , 𝑑 ln𝑉𝑚). (D.1)

Thus, we can decompose the overall GDP covariance into components due to shocks in individual sectors.
Further, we can treat 𝑑 ln𝒱𝑛𝑖 as its own “economy,” and decompose its covariance with foreign GDP into shock
correlation and transmission:

𝑑 ln𝒱𝑛𝑖 = 𝑠𝑛𝑛𝑖𝜃𝑛𝑖︸  ︷︷  ︸
𝒟𝑛𝑖

+ 𝑠𝑚𝑛𝑖𝜃𝑚𝑖︸   ︷︷   ︸
𝒫𝑛𝑖

+
∑

𝑛′≠𝑛,𝑚
𝑠𝑛′𝑛𝑖𝜃𝑛′𝑖︸           ︷︷           ︸
𝒯𝑛𝑖

. (D.2)

Cov(𝑑 ln𝒱𝑛𝑖 , 𝑑 ln𝑉𝑚) = Cov(𝒟𝑛𝑖 ,𝒟𝑚)︸            ︷︷            ︸
Shock Correlation due to 𝑖

+ Cov(𝒟𝑛𝑖 ,𝒫𝑚) + Cov(𝒫𝑛𝑖 ,𝒟𝑚) + Cov(𝒫𝑛𝑖 ,𝒫𝑚)︸                                                         ︷︷                                                         ︸
Bilateral Transmission due to 𝑖

(D.3)

+ Cov(𝒟𝑛𝑖 + 𝒫𝑛 + 𝒯𝑛𝑖 ,𝒯𝑚) + Cov(𝒯𝑛𝑖 ,𝒟𝑚 + 𝒫𝑚)︸                                                        ︷︷                                                        ︸
Multilateral Transmission due to 𝑖

.

This way, we can evaluate whether the contribution of sector 𝑖 to GDP comovement is due primarily to sector 𝑖
shocks being correlated across countries, or to the fact that shocks to 𝑖 transmit across countries.

Figure A6 plots the results of this approach in our baseline model, averaging across countries for each
sector. As above, we convert the expressions into correlations as they have a more natural scale. We also
express the terms in equation (D.3) relative to the aggregate correlation between countries 𝑛 and 𝑚 to interpret
the results as shares. There is substantial heterogeneity the average contributions of individual sectors to GDP
comovement. Across all countries, services sectors are prominent. In the G7, the Financial Intermediation sector
and Wholesale Trade are among the most important sectors, while in the all countries sample Construction
and Electrical and Optical Equipment are most prominent. Sectors like Health and Social Work contribute
negatively to aggregate comovement. Even more so than our aggregate findings, the shock correlation term is
predominant at sector level, and transmission is a small minority.

D.4 The Trade-Comovement Relation
Table A11 reports the results of running the “standard” trade-comovement regression in our data and the
network model. This is a regression of bilateral real GDP correlation on a measure of bilateral trade intensity.
A long literature following Frankel and Rose (1998) tries to understand why economies that trade more display
higher GDP comovement in the data. Input linkages have been suggested as an explanation for the trade-
comovement puzzle in a number of papers (see for instance Kose and Yi, 2006; di Giovanni and Levchenko, 2010;
Johnson, 2014). Quantitatively, however, models have trouble generating even the same order of magnitude as
the empirical relationship (model coefficients are often <10% of their empirical counterparts).

When it comes to GDP correlations, our model matches perfectly the trade-comovement relationship found
in the data, by virtue of matching GDP growth rates for each country-year. Columns (1)-(2) run the trade-
comovement regression in the data, while columns (3)-(4) do the same in the model. Since each GDP correlation
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Figure A6: Mean Sectoral Shares in Aggregate GDP Correlations
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Mean Sector Share Direct Correlation Transmission

G7 All Countries

Notes: This figure displays the average share of total bilateral correlation accounted for by each sector (blue bars),
as well as the decomposition in equation (D.3) into the component due to the shock correlation (white bars) and
bilateral+multilateral transmission (red bars), for G7 country pairs (left panel) and all pairs (right panel).

can be additively decomposed into the Shock Correlation and Transmission components, we can also run the
trade comovement regressions with those as dependent variables. This is done in columns (5)-(8). It turns
out that trade intensity is correlated with both components of total GDP comovement. However, the bulk
of the overall slope (0.7 out of 0.87) is accounted for by the positive relationship between trade intensity and
shock correlation. This underscores the relevance of the Imbs (2004) critique of trade-comovement regressions:
bilateral trade intensity can be a proxy of country similarity, and thus of correlated shocks.

Table A11: The Trade-Comovement Relation

(1) (2) (3) (4) (5) (6) (7) (8)
Data Model

Dep. Var: Bilateral GDP growth correlation Shock correlation Transmission

Trade intensity 0.085***
(avg) (0.012)

Trade intensity 0.086***
(1995) (0.011)

Trade intensity 0.087*** 0.070*** 0.016***
(model, avg) (0.012) (0.011) (0.001)

Trade intensity 0.087*** 0.071*** 0.016***
(model, 1995) (0.012) (0.011) (0.001)

N 406 406 406 406 406 406 406 406

Notes: This table presents the results of a regression of bilateral GDP growth correlation on trade intensity for the data
(first panel), the baseline static model (second panel) and the static model with employment and capital growth from
the data (third panel). Trade intensity is defined as the sum of bilateral flows over the sum of the two countries’ GDPs.
The first row uses the average trade intensity over the 1995-2007 period, while the second row uses the initial intensity.
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D.5 Additional Results on Comovement in the Dynamic Model
Table A12 displays additional results of the comovement decomposition and the role of input network in the
dynamic model. The role of transmission in accounting for comovements is increases in the Frisch elasticity
and decreases in the substitution elasticities for final and intermediate goods, consistent with our findings in
Section 4.4.1. In the autarky model and the model without intermediate goods trade across borders, the mean
correlations across countries are lower, and the reduction in comovement is more pronounced when the the
Frisch elasticity is larger or the elasticity of substitution is smaller, consistent with our findings in Section 4.4.2.
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Table A12: GDP Growth Correlations in the Dynamic Model and Counterfactuals

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

dynamic model with actual shocks 0.350 0.356 0.124 0.558
dynamic model with simulated shocks 0.263 0.285 0.076 0.433

shock correlation 0.183 0.226 -0.028 0.352
bilateral transmission 0.017 0.011 0.005 0.021
multilateral transmission 0.064 0.063 0.031 0.091

autarky 0.307 0.308 0.093 0.544
w/o cross-border intermediate input trade 0.319 0.322 0.104 0.548

parameters: 𝜌 = 1, 𝜀 = 1,𝜓 = 2 mean median 25 pctile 75 pctile

dynamic model with actual shocks 0.350 0.356 0.124 0.558
dynamic model with simulated shocks 0.270 0.290 0.083 0.446

shock correlation 0.140 0.189 -0.061 0.286
bilateral transmission 0.034 0.031 0.017 0.040
multilateral transmission 0.096 0.093 0.052 0.135

autarky 0.260 0.258 0.031 0.525
w/o cross-border intermediate input trade 0.309 0.308 0.092 0.547

parameters: 𝜌 = 2.75, 𝜀 = 0.5,𝜓 = 2 mean median 25 pctile 75 pctile

dynamic model with actual shocks 0.350 0.356 0.124 0.558
dynamic model with simulated shocks 0.265 0.288 0.094 0.438

shock correlation 0.158 0.193 -0.039 0.301
bilateral transmission 0.022 0.016 0.006 0.025
multilateral transmission 0.085 0.088 0.045 0.125

autarky 0.288 0.275 0.087 0.529
w/o cross-border intermediate input trade 0.300 0.290 0.098 0.529

parameters: 𝜌 = 2.75, 𝜀 = 1,𝜓 = 0.5 mean median 25 pctile 75 pctile

dynamic model with actual shocks 0.350 0.356 0.124 0.558
dynamic model with simulated shocks 0.265 0.295 0.093 0.460

shock correlation 0.233 0.268 0.051 0.435
bilateral transmission 0.006 0.004 0.002 0.008
multilateral transmission 0.025 0.026 0.011 0.037

autarky 0.333 0.342 0.101 0.564
w/o cross-border intermediate input trade 0.338 0.345 0.109 0.562

Notes: This table presents the decomposition of the GDP correlations into the shock correlation, the direct transmission,
and the multilateral transmission terms as in equation (2.5), under alternative values for elasticities, in the dynamic
model. The table also reports the average correlations in autarky, and in the model without input trade (Section 4.4).
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