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1 Introduction

People increasingly face decisions about complex financial products that have important implications for their

health and financial stability. These types of decisions, which affect households across the income distribution,

include, but are not limited to, products such as payday loans, mortgages, mobile phone plans, credit cards, life

and health insurance, and investment vehicles. Participation in publicly subsidized benefits, such as Medicare,

social security and tax-favored retirement arrangements, has evolved in similar ways, increasingly requiring

relatively sophisticated financial decision making.

A large literature examining the quality of consumer choices in a variety of areas of household finance,

however, suggests that these types of decision are challenging for many people. While many studies have

documented that decision-making appears to be costly to consumers and that consumers display many types

of behavioral biases that can lead to efficiency losses, there is less evidence on how to help consumers make

better decisions. In their review of the household finance literature, Beshears et al. (forthcoming) conclude

that many types of interventions designed to influence behavior, such as education and information, have had

limited impact.

The emergence of large-scale data over the past decade and the corresponding development of techniques to

analyze these data, such as machine learning, have the potential to dramatically change the process of consumer

decision making in these environments (Einav and Levin, 2014). By lowering the costs of prediction, algorithms

could help consumers make complex decisions by serving as either substitutes for or complements to human

decision-making (Agrawal et al., 2019). While the literature on the methods of machine learning and artificial

intelligence is expanding rapidly (Liu et al., 2018), there is very little evidence on how consumers incorporate

algorithmic assistance into their decision making.

In this paper, we begin to close this gap by reporting on the results of a randomized controlled trial in

which we offered older adults access to a decision-support tool incorporating personalized cost estimates and

algorithmic expert recommendations for choosing among insurance plans. Our study makes three types of

contributions to our understanding of how consumers interact with algorithmic-based recommendations. First,

in contrast to most studies on the effects of informational interventions, our experimental results demonstrate -

in a non-laboratory setting - that consumers are responsive to personalized information when making decisions.

We find that people change their choices of insurance plans in response to our treatment and that the response

is more pronounced when personalized information is combined with an “expert recommendation” feature that

combines different types of information into a one-dimensional metric, simplifying the choice for consumers.

Second, the experimental set-up, combined with novel, machine-learning methods for estimating heteroge-

neous treatment effects, allows us to shed light on which types of consumers self-select into the use of electronic

decision-support. We find evidence of substantial positive selection into the use of the on-line tool - more “active

shoppers” are more likely to use the decision-making support tool, conditional on signing up for the experiment.

Using our estimates of the treatment effects function, we also are able to analyze the likely response to the

intervention of the people who did not take up the offer to participate in the experiment. We find that the
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people who were the least likely to sign up for the experiment were those for whom the effects of our intervention

on decision-making would have likely been the greatest.

Finally, we develop a theoretical framework to elucidate the mechanisms by which information affects con-

sumer decision making in our setting and then use our trial data to estimate a structural model of choice to

quantify the relative importance of each mechanism. We propose that providing information to consumers can

have two conceptually distinct effects: it can change consumers’ beliefs about the mapping of product charac-

teristics into utility (“interpretation”), and it can also change consumer beliefs about product characteristics

per se (“learning”). We find evidence that both channels are important in this setting and quantify how each

one affects consumer welfare.

We examine consumer decision-making in the context of publicly subsidized prescription drug insurance

for older adults in the US. Medicare Part D is a social insurance program for aged and disabled Medicare

beneficiaries in which private plans compete for subsidized enrollees. The program is heavily subsidized and

has high participation rates - insuring over 43 million older adults and accounting for over $88 billion in annual

public spending (Kaiser Family Foundation, 2018). Older adults may choose between two types of private

plans - a stand-alone prescription drug plan (PDP) or a Medicare Advantage (MA) plan in which coverage for

prescription drugs and medical care are bundled in a single plan. In this project, we focus on stand-alone PDPs.

Each year during a pre-specified open enrollment period, older adults covered by Medicare may choose a plan

from among the approximately 25 stand-alone insurance plans offered in their geographic area (Kaiser Family

Foundation, 2018).

Our study builds on a large and active economics literature examining health insurance choice more generally,

with many studies focusing specifically on Medicare Part D (Keane and Thorp, 2016). While people with

Medicare prescription drug plans are allowed to change their plans during an annual open enrollment period,

switching rates are very low, with fewer than 10% of consumers changing their plans each year (Ericson, 2014;

Polyakova, 2016; Ho et al., 2017), consistent with the literature documenting inertial behavior in this type of

context beginning with Samuelson and Zeckhauser (1988). Estimates of switching costs are generally relatively

large - ranging from 20 to 45 percent of annual spending (Handel, 2013; Ericson, 2014; Ho et al., 2017; Polyakova,

2016; Heiss et al., 2016). Several studies have documented that people often do not understand the basic features

of their coverage (Cafferata, 1984; Harris and Keane, 1999; Kling et al., 2012; Loewenstein et al., 2013; Handel

and Kolstad, 2015) and that their misperceptions influence their plan choices (Harris and Keane, 1999; Handel

and Kolstad, 2015). Moreover, many people, when given a choice of plans, often choose a dominated option

(Sinaiko and Hirth, 2011; Bhargava et al., 2017). Further, Ericson and Starc (2016) find that consumer choices

and inferred utility weights change when health insurance products become standardized.

Other studies draw stronger, normative conclusions about consumer decision making (Abaluck and Gruber,

2011; Heiss et al., 2010; Heiss et al., 2013, 2016). For example, using a structural model of choice, Abaluck

and Gruber (2011) find that older adults choosing among prescription drug plans weight premiums more highly

than out-of-pocket costs; value plan characteristics, such as deductibles, beyond their effect on OOP spending;

and place almost no value on the variance reducing aspects of plans. Ketcham et al. (2016) argue, however, that
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these results may be driven at least in part by omitted variable bias - in particular, characteristics of plans such

as customer service that are more difficult for econometricians to observe. Other research provides support for

these concerns (Harris and Keane, 1999; Handel and Kolstad, 2015). For example, Harris and Keane (1999),

adding attitudinal data to a structural model of choice, demonstrate that failing to control for these latent

attributes leads to severe bias in estimates of the effects of observed attributes. Ketcham et al. (2015) also find

that consumer decision-making improves over time, suggesting that choice inconsistencies may be short-lived.

In our theoretical framework and its empirical mapping, we argue that these results can be reconciled if we

allow for the possibility of “mistakes” both in consumers’ information about product features, as well as in

their interpretation of how much (known) product features matter for their utility. Consumer may learn about

product features over time and yet not be interpreting this knowledge accurately.

Some recent studies have examined the importance of in-person advice relative to personalized information,

but not algorithms, in the context of college funding and the SNAP program (Bettinger et al., 2012; Finkel-

stein and Notowidigdo, 2019). Few have examined the development and effects of products intended to help

consumers choose among health insurance plans. Our paper relates most closely to the randomized field exper-

iment conducted in the second year of Medicare Part D program by Kling et al. (2012). In this experiment,

the authors sent Medicare Part D beneficiaries letters with personalized calculations of out-of-pocket costs that

they would face in each insurance plan if they continued taking their existing medications. The personalized

calculations were based on an out-of-pocket cost calculator made publicly available by the Medicare program.

The experimental intervention increased plan switching rates. The authors interpret their findings as demon-

strating the existence of “comparison friction” - that people often do not use potentially helpful information that

appears readily accessible to them (Kling et al., 2012). Our findings emphasize the importance of these results

by providing more direct evidence of the potential benefits of these types of tools for people who are unlikely

to use them. We also demonstrate that how personalized information is presented has important implications

for its use.

Our randomized field trial ran during the 2017 open enrollment period (November-December 2016). We

conducted the project in collaboration with the Palo Alto Medical Foundation (PAMF), a large multi-specialty

physician group in California. As part of the project, we designed and developed a software tool with the

objective of helping older adults choose among Medicare part D prescription drug plans. Patient and provider

stakeholders at PAMF participated in the design and development stages.

In addition to incorporating many aspects of user-centric design specific to this population, the tool in-

corporated three main features. First, the tool automatically imported a user’s prescription drug information

from their electronic medical record at PAMF. Second, the tool provided personalized information on expected

spending in each available plan, including both the premium and the individual’s likely spending on prescription

drugs. Finally, the tool incorporated algorithmic expert recommendations. From a third-party vendor, we also

obtained a personalized “expert score” for each insurance plan that summarized multi-dimensional plan features

into a one-dimensional metric. Our trial population were PAMF patients eligible for Medicare Part D plans.

The experiment had two treatment arms and one control arm. People in the control arm did not receive
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access to the decision-support software. Instead, when they logged into the study website, they saw a reminder

about the timing of the open enrollment period and information about how to access publicly available resources

to help them choose a plan. In the “Information Only” treatment arm patients received access to software that

provided a list of all available plans with the individualized cost estimate and information about other plan

features. The plans were ordered by the one-dimensional “expert” score, but the score itself was not displayed.

The tool provided in the other treatment arm, “Information + Expert,” was identical with the exception that

the expert score for each plan was displayed and the three plans with the highest personalized score were marked

as “Plans recommended for you.”

We report three main findings. First, we find that providing consumers with access to a decision-support tool

incorporating personalized cost estimates changes their choice behavior. While the effects of the interventions

were qualitatively similar in the two arms, the “Information + Expert” arm had more pronounced effects on

all outcomes. For our main outcome - switching of plans - exposure to the “Information + Expert” version

of the software increased plan switching rates by 10 percentage points, a 36% increase relative to the control

arm. We also find that treated individuals were more likely to be highly satisfied with the choice process,

spend more time on the choice process, and choose plans anticipated to provide greater cost-savings. Using the

generalized random forest analysis (Athey et al., 2019), we find evidence pointing towards heterogeneity (on

observables) in treatment effects. The heterogeneity analysis suggests that treatment effects on the probability

of plan switching are larger among individuals that are older and have less IT affinity.

Second, we find that selection into software use is quantitatively important. Many people who signed up for

the trial and subsequently chose to use the tool if given access, were planning to switch their insurance plan

independently of treatment. Those who chose to take up the software were inherently at least 7 percentage

points more likely to switch plans, suggesting that the selection effect is nearly as large as the treatment effect

and pointing to a strong complementarity in willingness to shop actively for financial products and interest in

decision support tools. Using the individual-level prediction of treatment effects from the generalized random

forest algorithm and the administrative data on all individuals that were invited to participate in the trial, we

can also examine selection into the trial. We find that among individuals that were invited to participate in

the trial, people who would have responded the most to the intervention were the least likely to sign up. These

findings have important policy implications - they suggest that merely offering access to decision support (which

is current Medicare policy) is unlikely to reach individuals who would be most affected by such decision-making

support. Hence, policies with more targeted and intensive interventions may be required to reach consumers

who could benefit from algorithmic expert recommendations.

Finally, we offer a conceptual insight for understanding the nature of the complementarity between machine-

based algorithms and human decision making. Algorithms can influence decision making by changing either

consumers’ beliefs about product features, or how they value those features. This distinction has important

implications for what types of information consumers need in order to make decisions. If consumer choices

are inconsistent with rationality because of “behavioral” utility weights, then a policy of providing information

about plan features will not lead to any behavioral responses. In contrast, if consumers know exactly how
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to evaluate product features, but have a hard time simply observing the features of different products, then

policies that attempt to educate consumers about the meaning of various features of financial products may not

be necessary or effective.

Estimating an empirical version of this conceptual model, we find that the behavioral responses that we

observe in the data are driven by both the learning and interpretation mechanisms we propose. These results

offer one way to reconcile the debate in the literature on whether consumers’ choices are inconsistent with

the neo-classical preferences, or whether individuals are learning over time. Both of these mechanisms are

likely to be taking place, as consumers may be learning about either features of their choice set or the utility

weights, which could generate both choice inconsistency and learning at the same time. The model allows us

to quantify the normative implications of the information and interpretation effects. We find that on average,

the consumers that have "noisy" preferences would choose plans that result in 7% of surplus loss relative to

“informed” consumers. This loss is extremely unevenly distributed: while for most consumers the noise in

their beliefs about plan features and utility weights does not lead them to select suboptimal plans, for some

consumers the losses can be quite significant.

The remainder of the paper is structured as follows. In Sections 2 and 3, we describe the key facts about the

economic environment in Medicare Part D and our experimental design, respectively. In Section 4, we report

the estimates of the causal effects of our intervention on consumer behavior. In Section 5, we analyze several

aspects of selection in our setting. In Section 6, we present our conceptual framework and map our experimental

results to an empirical version of the model. We then briefly conclude.

2 Background and Study Setting

Medicare is the public health insurance program in the U.S. for people age 65 and over and those eligible for social

security benefits through disability. The program covers over 50 million people with 85% qualifying based on age

(Centers for Medicare & Medicaid Services, 2019). Prescription drugs for Medicare beneficiaries are covered by

Medicare Part D. In contrast to Medicare-financed medical benefits, prescription coverage is provided exclusively

by private plans which compete for highly subsidized enrollees in a tightly regulated market (Duggan et al.,

2008). In 2018, approximately 43 million individuals benefited from the program (Kaiser Family Foundation,

2018). Enrolling in Medicare Part D is voluntary for beneficiaries and requires an active enrollment decision

in the form of choosing among the private plans offered in the beneficiary’s market and paying a premium.

Medicare beneficiaries can choose to enroll in either a stand-alone prescription drug plan (PDP) or a plan that

bundles their medical and prescription benefits (Medicare Advantage). Fifty-eight percent of people enrolled in

Medicare Part D choose a stand-alone plan (Kaiser Family Foundation, 2018).

Medicare beneficiaries who decide to enroll in a PDP typically choose from over 20 plans available in their

market and can change their plan each year during the open enrollment period (October 15–December 7).

Plans are differentiated along a variety of dimensions. First, premiums vary substantially. In addition, while

the program has a statutorily-defined benefit package, insurers are allowed to deviate from that package as long
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as the coverage they offer is actuarially equivalent or exceeds the statutory minimum. The statutorily-defined

benefit, and as result, most offered benefits are non-linear insurance contracts. During 2017, the time period

of our study, the statutorily-defined benefit had an initial deductible of $400 during which enrollees paid 100%

of drug spending. After reaching the deductible, the beneficiary paid 25% coinsurance until reaching an initial

coverage limit of $3,700. At that point, the enrollee fell into the “donut hole,” paying 40% coinsurance for

branded drugs and 51% for generics until spending reached a catastrophic threshold of $4,950 after which the

beneficiary paid a lower coinsurance rate or a relatively small copayment for each drug (Centers for Medicare

& Medicaid Services, 2015; Cubanski et al., 2018). A plan innovating within the statutorily-defined benefit

package may, for example, either lower or eliminate the initial deductible while increasing cost sharing on some

drugs. Plans are also differentiated along other dimensions such as the composition of pharmacy networks,

the availability of mail order, formulary design and customer service. To capture the latter, the Centers for

Medicare and Medicaid Services (CMS) has developed a measure of quality based on consumer assessments and

annually publishes the “star rating” of plans on a 5-point scale.1 A consumer enrolled in a plan in a given year

who does not actively cancel or change her plan is automatically re-enrolled into the same plan for following

year.

Our study focuses on aged beneficiaries enrolled in PDPs. During the 2017 open enrollment period (November-

December 2016), we conducted a randomized field trial of a software tool designed to help consumers choose

among Medicare Part D plans. Study participants lived in California during the 2017 open enrollment period.

They were eligible to enroll in one of 22 plans offered by 10 insurers in California at an average monthly premium

of $66 (standard deviation of $39). All but one plan offered either a standard deductible of $400, or lowered

the deductible to zero, for an average deductible of $216, with a standard deviation of $202. Thirty percent of

plans offered some coverage in the “donut hole,” and plans covered on average 3,291 drugs, and varied in their

formulary breadth (standard deviation of 257 drugs). The average CMS rating of plan quality in California was

3.4 out of 5 stars (s.d. 0.6).

3 Experimental Design and Data

3.1 Intervention

The trial was part of a larger research project funded by the Patient Centered Outcomes Research Institute in

which we developed and evaluated a software tool intended to help Medicare beneficiaries choose among Medi-

care Part D prescription drug plans. The research was conducted in collaboration with patient and provider

stakeholders affiliated with the Palo Alto Medical Foundation. Our focus group and qualitative research preced-

ing tool development identified three key features that we incorporated into the software: automatic importation

of the user’s prescription drug information, user-centric design interface, and the availability of expert recom-

mendations (Stults et al., 2018b,a). In the trial, we examined how two versions of the tool, one with and
1More information about the “star rating” measures is available on CMS Part C and D Performance Data page:

https://www.cms.gov/medicare/prescription-drug-coverage/prescriptiondrugcovgenin/performancedata.html.
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one without explicit algorithmic expert recommendations, performed relative to directing beneficiaries to exist-

ing, publicly available resources. Figure 1 provides screen shots of the intervention’s user interface in the two

treatment and the control arms.

The two versions of the tool were identical with the exception of whether the user interface included in-

formation on the expert score. In both versions, when people logged in, they viewed a list of their current

prescription drugs based on the drugs recorded in their electronic medical record as of June 30, 2016 and had

the opportunity to update the list as needed. They could then proceed to a screen listing all the plans available

to them. In both arms, the plan list included the name of the plan, the individual’s total estimated spending in

each plan based on the entered drugs, and the star rating for each plan. The total estimated spending included

the plan premium and out-of-pocket spending for the list of entered drugs based on information about drug-level

coverage rules and pricing that Medicare Part D plans annually report to CMS. This computation was based

on the user’s current drugs and only incorporated drugs that consumers may need in the future if consumers

actively entered them into the tool. The star rating is a plan-level measure primarily of service quality developed

and disseminated by CMS. The plan in which the user was currently enrolled was highlighted and labeled as

“My Current Plan”. Users were able to select a subset of plans (up to three) for more detailed comparison. The

detailed comparison screens provided information on an extensive list of plan features. Consumers were also

able to obtain more information about each plan feature by clicking on a "question mark" icon.

The tool also incorporated algorithmic “expert” recommendations. Using proprietary scoring technology

from a third-party provider, each plan available to the beneficiary was assigned an expert score. The expert

score was based on the consumer’s total spending in the plan for the set of drugs listed in the tool given the

plan’s benefit design (spending included each plan’s premium) and the plan’s “star rating”. The expert score

combined these plan features into a one-dimensional metric. Plans with lower expected spending for a given

individual and higher quality scores received higher expert scores. The expert score was not based on any

additional information about the individual or the plan other than total cost and the plan’s star rating.

The two treatment arms differed only based on how they incorporated the expert recommendation. In both

treatment arms, the plans were initially ordered by the expert score with the highest ranking plan at the top of

the list. In the “Information Only” arm, although the list was ordered by the expert score, users did not see the

score itself. In the “Information + Expert” arm, the three plans at the top of the list with the highest scores

were highlighted and labeled as “recommended for you”, and the plan information included each plan’s expert

score. As Panel A and Panel B of Figure 1 illustrate, the user interface for the treatment arms was very similar

with the exception of the expert score column and the highlighting of the top three plans in the “Information

+ Expert” arm.2

When participants in the control arm logged into the study website, they received access to information on

plan enrollment including a reminder about the open enrollment period in Medicare Part D, some information

about the benefits of reviewing their coverage, links to publicly available resources that they could use to
2Panel A and Panel B are screenshots for different patients, which explains the different ordering of plans. For the same patient

or for two different patients with identical lists of drugs, the ordering of plans would have been the same. Both arms highlighted
the incumbent plan, even though it is not visible on B.
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evaluate their options, including the Medicare.gov plan finder and Health Insurance Counseling and Advocacy

Program counselors, and information about how to access a list of their current prescribed drugs from their

electronic medical record. People in the control arm did not receive access to the decision-support software.

The control arm is illustrated in Panel C of Figure 1.

3.2 Study Population

We recruited trial participants from patients who receive care at the Palo Alto Medical Foundation (PAMF)

to focus on people for whom we had access to electronic information on their use of prescription drugs. Using

administrative data from PAMF, we identified a cohort of patients likely to be eligible for the trial based on

their age (66 to 85 years), residence (lived in the 4-county primary PAMF service area) and indication of active

medication orders (to ensure they were active PAMF patients and thus would have updated medication lists).

The administrative data did not allow us to identify people currently enrolled in a Part D plan, our target

population. Instead, we excluded people who were unlikely to be enrolled in stand-alone Part D, because they

either had a Medicare Advantage or a Medi-Cal (California’s Medicaid program) plan. After these and several

other minor exclusions primarily for missing or inaccurate data, we identified 29,451 patients potentially eligible

to participate in the trial.

During the fall of 2016, we mailed the 29,451 potentially eligible patients invitations to participate in the

trial. The invitation provided some basic information about the trial and informed individuals that they would

receive a $50 gift certificate for participating in the study following the completion of a questionnaire at the

end of the open enrollment period. We sent a follow-up letter approximately two weeks later to those who

did not respond to the initial invitation. In the letter, patients received a log-in ID and were directed to an

enrollment portal in which they could check their eligibility, provide informed consent and respond to a survey

from which we collected baseline data to supplement administrative records (Baseline Survey). Patients also

provided information that we used to verify their identity subsequent to their on-line enrollment. We considered

those who completed the enrollment portal steps and whose identity was successfully authenticated shortly after

their on-line enrollment as enrolled in the trial.

At the point of enrollment into the study, participants were randomized to one of the three arms using a

random number generator. After subjects enrolled, we sent them a confirmation e-mail with information on how

to access the study website and telling them the website would be available shortly after the open enrollment

period began. They then received another email reminder once open enrollment began and the tool was active.

In both cases, participants received the same standardized e-mail independent of the arm to which they had

been randomized. The subjects thus received no information on their assigned study arm until they accessed

the study website during the open enrollment period. When participants logged in to the study website, they

accessed content specific to the study arm to which they had been randomized. Just before the open enrollment

period ended, we e-mailed another reminder to participate. The day after the open enrollment period ended, we

e-mailed those enrolled in the study an invitation to participate in the final survey; we sent a survey reminder

in early January. The invitation to complete the final survey was sent to all trial participants, independently of
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whether they actually accessed the study website during the open enrollment period. We included people who

completed the final survey by January 20th in the final study sample. Figure 2 summarizes this process.

Figure 3 describes the enrollment flow. We invited 29,451 PAMF patients to participate. 1,185 ultimately

enrolled in the study and were randomized to one of three arms. Among those randomized to each arm, some

entered the study website and some did not. Because we sent the final survey to those enrolled in the trial

whether or not they entered the study website, within each arm, the final survey includes both those who entered

the study website and those who did not. Table 1 provides descriptive statistics for the sample of people invited

to participate in the trial and compares the characteristics of those who did and did not choose to enroll in the

trial using administrative data from PAMF. The mean and standard deviation of each dependent variable in the

table represents summary statistics for the full sample of 29,451 invited individuals. Invited individuals were

on average 74 years of age (s.d. of 5 years), 54 percent were female, 35 percent were non-white,3 and 54 percent

were married. We matched each individual to their census tract based on their address and developed measures

of socioeconomic status based on census tract characteristics including median household income and percent

of individuals with a college degree. The average (median) household income in our sample was 107 thousand

dollars (standard deviation of 46 thousand) and the average percent of the census tract with a college degree

was 54 (standard deviation of 0.2), both reflecting the relatively high socioeconomic status of the geographic

area from which we recruited patients.

Invited individuals had on average 4.5 active medication orders for prescription drugs (measured from

PAMF records prior to the intervention). Drug use varied considerably, with a standard deviation of 3.2 drugs.

Column (8) reports the statistics on Charlson score, a common measure of comorbidities based on diagnosis

codes (Charlson et al., 1987). The measure counts how many of 22 conditions an individual has, assigning

higher weights (weights range from 1 to 6) to more severe conditions. A higher Charlson score reflects an

individual in poorer health. In our sample, the score ranges from 0 (no chronic conditions) to 13, with an

average of 1.16 and a standard deviation of 1.53. Finally, we measure individuals’ IT-affinity at baseline, by

recording whether they had logged in to their PAMF electronic medical record over the 3-year period prior to

the trial; and if so, how often they communicated with care providers via this system (Tai-Seale et al., 2019).

Our measure of communication frequency is based on conversation strand metric which groups individual e-

mails into conversations (Tai-Seale et al., 2014). In the full sample of invited participants, 69 percent had

accessed their personal medical record within the prior three years. Intensity of use, measured by the number

of communication strands, averaged at 3.3 strands but varied considerably, with a standard deviation of 6. The

average number of strands was 4.7 among those individuals who ever logged into the electronic medical record

and ranged from zero to 174 strands, with significantly more strands (although not a higher probability of using

the system) for individuals with a higher Charlson score or more drugs on their record, as would be expected

if patients in poorer health are more likely to communicate frequently with their physicians.

Overall, the sample of individuals who were invited to participate in the experiment were higher income,

more educated, and likely more IT-savvy than an average Medicare beneficiary. This difference is important to
3Includes those who did not have a record of their race or reported “other” in electronic medical records.
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keep in mind when interpreting our results and considering the external validity of the experiment. The high

average income of our participants makes them unrepresentative of the broader population of older Americans;

however, this sample provides us with the opportunity to test whether offering decision support software - in

one of the wealthiest and technologically most attuned areas of the country - affects individuals’ behavior. Our

results likely provide an upper bound for the effects - particularly with respect to take-up - in the general

population.

Table 1 demonstrates that there was significant selection into trial participation. The row labelled "ran-

domized" provides estimates of how those who enrolled in the trial differ from those who did not, by reporting

the results of a regression of each characteristic specified in columns (1)-(8) on a dummy for whether or not

the individual agreed to participate in the trial. Those 1,185 individuals that responded to our invitation and

chose to enroll in the trial were on average a year and 8 months younger (column 1), 4 percentage points less

likely to be women (column 2), 13 percentage points more likely to be white (column 3), 7 percentage points

more likely to be married (column 4), had 5.8 thousand dollar higher (measured at census tract level) household

income (column 5), and lived in areas in which residents were 4 percentage points more likely to have a college

degree (column 6). All of these differences were highly statistically significant and some were also economically

significant - the gender difference of 4 percentage points corresponds to women being 7 percent (relative to

the mean) less likely to participate, the difference in race suggests that participants were 37% less likely to be

non-white and 13% more likely to be married. Those enrolling in the trial did not have a statistically differ-

ent number of drugs in their records (column 7), but were significantly healthier with a 16 basis points lower

Charlson score (column 8), which is 14% lower than the sample mean. The population taking up the treatment

offer was substantially more likely to have used PAMF’s patient portal to the electronic medical records - 27

percentage points or almost 40% more likely relative to the mean (column 9) - with 96 percent of individuals

in the enrolled population having used the PAMF’s electronic health records within the last three years. The

enrollees also used these systems more intensively, having sent more than twice as many online messages to

their care team relative to the general pool (column 10), despite being in better health on average.

3.3 Randomization

Out of 1,185 individuals, 410 were randomized into the “Information + Expert” arm, 391 into “Information

Only” arm, and 384 into the control arm. Randomization was done in real time: just after the participant

enrolled in the trial through the enrollment portal, he or she was randomized into one of three arms. We

performed a Monte Carlo simulation to confirm that the unequal distribution of individuals within each group

is consistent with randomization. Importantly, at the point of randomization, the individual did not learn

to which arm they had been randomized - so that when they later received notice that open enrollment had

begun and they could access the study website, they did not know whether they were going to have access to the

treatment intervention. Tables 2 through 5 examine the quality of randomization, compliance with experimental

treatment, and attrition. We discuss each in turn.

Table 2 reports our randomization balance checks. We test whether there are differences in means of
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observable characteristic by experimental arm assignment. The table reports the results of regressions for each

observable characteristics as the outcome variable on the indicators for being randomized into “Information

Only” or “Information + Expert” treatment arms. The constant in this regression captures the mean in the

control arm. Two out of ten observable characteristics exhibit differences between the control and treatment

arms at conventional levels of statistical significance. We observe that individuals randomized into the control

arm were 8 months older (1 percent relative to the sample mean) than individuals randomized into either of the

treatment arms. We also observe that individuals randomized into the “Information + Expert” treatment arm

were more intensive users of the electronic communication with their physicians. The point estimates for this

characteristic are not statistically different from zero for the “Information Only” arm. We do not observe any

significant differences between the two treatment arms, as suggested by the F-test, reported in the last row of the

table. Differences in two out of ten characteristics are possible by chance and the magnitude of the statistically

significant differences, as well as the lack of differences in other outcomes suggests that randomization was not

compromised and worked as intended. To account for the realized differences in age and intensity of EMR use,

as well as to generally reduce the noise in our estimates, we will control for observable characteristics in our

analysis of treatment effects in Section 4.3.

We next examine whether there was systematic attrition in response to the endline survey, which is our

key source of outcome measures. After individuals (electronically, through the enrollment portal) agreed to

participate in the experiment, they were randomized into one of the study arms and given information about

how to access the online tool. At the end of the open enrollment period, we sent a survey to all individuals

that were originally randomized (independent of whether they participated in the trial by accessing the study

website). 928 individuals responded to at least one question in the survey by a pre-specified cutoff date. Table

3 examines whether, relative to 1,185 randomized individuals, the 928 who responded to the survey differed on

their observable characteristics. The table reports the results of a regression of each characteristic on a dummy

indicating an individual responded to the endline survey. Eight out of ten characteristics do not differ between

those who responded to the survey and those who did not. Race and college education, in contrast, do differ.

Individuals who responded to the survey were substantially (9 percentage points relative to 22 percent in the

randomized sample) less likely to have their race recorded as white (which includes those who did not agree to

their race being recorded in EMR) and were slightly more likely to have a college degree as measured at the

census tract level (4 percentage points relative to the sample mean of 59 percent). The lower probability of

non-white participants responding to the survey is consistent with the growing literature that documents racial

gradients in trust in interactions with government and institutions (e.g. Alsan and Wanamaker, 2018).

Table 4 presents the same analysis of attrition into the endline survey, but separately for each experimental

arm. Within each arm, we run a regression of the observable characteristic recorded in each column title on

the indicator variable for responding to the endline survey. The results across arms are broadly consistent

with the overall attrition results, suggesting no pronounced differential patterns of attrition across arms. We

do not observe differential attrition based on race in the control arm, although it is present in both treatment

arms. Individuals responding to the survey in the control arm are slightly more likely to have a college degree
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(at the census tract level), but are otherwise not different from other individuals in the control arm. In

the “Information Only” arm, we observe significant differences in the probability of being non-white. In the

“Information + Expert” arm we observe both the race effect as well as the difference in the EMR use intensity

- individuals responding to the survey in this arm were slightly more likely to be more intensive EMR users -

this difference, however, is not suggesting differential attrition in this arm, since individuals randomized into

this arm were higher intensity EMR users at the original randomization stage (as can be seen in column 10 of

Table 2).

Finally, in Table 5 we repeat the balance on observable comparison of Table 2 for our main analytic sample

of 928 individuals who responded to the endline survey. In column (1), we document that there were no

statistically distinguishable differences in survey response rates across three experimental arms. In columns (2)

to (11), we report the coefficients of specifications that regress the observable characteristics on the indicator

variables for being randomized into two treatment arms. We conclude that randomization was largely preserved

at the endline survey stage. We observe that individuals randomized into arm “Information + Expert” are more

intensive users of EMR, but this effect was already present at the original randomization. Unlike in the original

randomization, we do not estimate statistically significant differences in age across arms, although the point

estimates of differences are close to those at the original randomization, suggesting that the differences persist

but cannot be detected due to reduced sample size. We detect a slightly more pronounced - relative to the

original randomization - coefficient on the probability of being married, suggesting that those who responded

to the survey in the “Information + Expert” arm were slightly more likely to be married. In sum, attrition

into the endline survey overall appears to be limited; importantly we do not find much evidence for differential

attrition across arms above and beyond the differences observed across arms at the original randomization stage.

Hence, we proceed to the analysis of outcomes from the endline survey. In all of these analyses, we control

for observable characteristics to improve power and to account for any realized differences in observables at

randomization and endline survey stages.

3.4 Outcomes

We consider six outcomes across different domains in our baseline specifications, four of which we pre-specified

as primary outcomes and two which we pre-specified as secondary outcomes. First, we test whether individuals

switched their Medicare Part D plan. We construct our measure of switching using two self-reported measures

obtained from the baseline and endline surveys. We are unable to use a measure based on administrative data

since PAMF does not have information on the patient’s Medicare Part D plan in its administrative records.

In both surveys we asked participants to report their Part D plan - the participants were given the list of

available plans and could select one of the plans, or choose “None of the above.” Our first measure of switch

is then an indicator that takes the value of one if the Part D plan reported in the endline survey differs from

the plan reported in the baseline survey. Further, in the endline survey we directly ask participants whether

they switched their plan, which generates the second measure of switching. To reduce the measurement error

in the switching metric, we classify an individual as having switched plans only if both indicators indicate a
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plan switch. We use this interacted measure of switching as our outcome variable.

The next two outcomes measure different types of consumers’ perceived experience. First, we use a self-

reported measure of how satisfied individuals were with the choice process. We construct an indicator outcome

variable that takes a value of 1 if an individual reported being “Very Satisfied” (other options included: somewhat

satisfied, somewhat dissatisfied, and very dissatisfied) with the process of choosing their plan in the endline

survey. Second, we measure the degree of decision conflict that an individual experienced around their Medicare

Part D plan choices using a validated scale (O’Connor, 1995; Linder et al., 2011). The score is constructed

based on individuals’ replies to 9 questions about their confidence in their choice, availability of support, and

understanding of risks and benefits. A higher score value indicates more decision conflict.

Our fourth outcome is a measure of changes in consumers’ expected total (premium + out of pocket) monthly

costs. For each consumer, we compute the difference between two levels of expected total costs. One is the level

of total cost that consumers would face under the plan they chose in 2017 (as reported in the endline survey).

The second is the level of total cost that consumers would have faced in 2017 if they had stayed in their 2016

plan. In both cases, we use the 2016 baseline drug list and the 2017 plan characteristics. Thus, if consumers

did not change plans, the difference in total cost would by construction be zero.4 For consumers who changed

plans, this variable measures the difference between expected 2017 costs in the plan chosen in 2017 to what the

expected costs would have been if a consumer stayed in her 2016 plan. The comparison of the expected out of

pocket costs in the two plans in the same year captures any common trend in costs.

The fifth outcome is the amount of time individuals spent on their choice. The cost of time and effort is

frequently considered to be the main barrier to improving individuals’ choices, so it is important to understand

how much the use of software “cost” individuals who chose to take it up. We create an indicator variable that

takes the value of 1 if individuals report spending more than 1 hour on their choice of Medicare Part D plans.

Finally, our sixth outcome is the probability that an individual chooses one of the three plans with the

highest algorithmic score (“expert recommended” plans). These plans appeared as the first three plans in each

treatment plans, but were highlighted for the participants only in the “Information + Expert” treatment arm.

4 Effects of the Intervention

4.1 Effect of Offering Algorithmic Decision Support

We start by estimating the effect of offering algorithmic decision support to participants using an intent-to-

treat analysis (ITT). Let the assignment to experimental arm “Information Only” be denoted with an indicator

variable I, while the assignment to experimental arm “Information + Expert” be denoted with an indicator

variable E. For outcome variable Yi, we estimate:

Yi = α0 + α1Ei + α2Ii + δXi + εi (1)
4This does not strictly hold true for the interacted switch measure. The difference in costs is measured based on plans that

individuals reported at the baseline and endline. While some individuals report different plans and hence we compute a non-zero
change in cost, we do not count these individuals as switchers in the more conservative interacted switching measure.
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The coefficients of interest, α1 and α2, measure whether being randomized into treatment arm “Information

+ Expert” or treatment arm “Information Only,” on average, changed the outcomes of interest. We consider

heterogeneity in the treatment effects in detail below. Xi is a vector of individual observable characteristics that

were analyzed in Sections 3.2 and 3.3. As these controls are to a large extend balanced through randomization,

their primary role is to reduce the standard errors of the point estimates, as our sample size is relatively small.

As we would expect, including or excluding control variables has very little effect on the point estimates.

Table 6 reports the ITT results for all six outcome variables of interest. For each regression we report the

mean of the outcome variable in the control group, as well as the estimates of α1 and α2. The number of

observations across different outcome variables varies, since some individuals did not fill out all questions in the

endline survey. We report the mean and the standard deviation of each outcome variable for the entire sample

at the bottom of the table. The last row of the table reports the p-value of an F-test for whether the estimates

of α1 and α2 differ from each other.

Column (1) presents the results for the measure of plan switching. We find that a high fraction of people -

28 percent as compared to the national switching rate of approximately 10 percent (Polyakova, 2016) - in our

control group switched plans, suggesting that the trial already attracted relatively active shoppers (we explore

this point in more detail in Section 5). Being randomized to the “Information Only” treatment increased the

switching rate by 1 percentage point, but the estimate is noisy and we cannot reject that the effect of offering

decision-making support was zero in this arm. Being randomized into the “Information + Expert” intervention,

in contrast, increased the switching probability by 8 percentage points. The estimate is precise and we can

reject a zero effect of offering algorithmic decision support at the 95 percent confidence level. The estimate is

also economically significant, suggesting a increase in the switching rate of 28 percent relative to the control

group. The difference between two intervention arms is economically large and statistically significant at 10%

level.

In column (2) we observe that only 39 percent of individuals in the control arm report being very satisfied with

the choice process of the Part D plans. Individuals assigned to “Information Only” arm report a 6 percentage

point higher satisfaction rate, although we again cannot reject that the effect was zero. Satisfaction with the

choice process appears to be improved more by the algorithmic recommendation intervention, with 8 percentage

points more people (or 20 percent more) report being very satisfied with the process in the “Information +

Expert” arm. As we observe in Column (3), satisfaction with the choice process does not appear to result in a

decreased feeling of decision conflict. We cannot reject zero effects of the intervention at any conventional levels

on the degree of decision conflict.

In column (4) we note that 75 percent of individuals in the control arm spent more than an hour choosing

their Medicare Part D plan. We estimate that individuals assigned to the “Information + Expert” arm were

8 percentage points more likely to spend more than one hour choosing their Part D plan, and yet they also

report more satisfaction with the decision process. This suggests that individuals may be willing to invest time

in their choices if this time can be spent productively.

In column (5) we effectively get a measure of the return on time investment, estimating how much individuals
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save in expected costs by changing their plans. We observe a $112 reduction in expected costs at the baseline

in the control group.5 This is consistent with both a relatively high switching rate in the control group, as well

as with either selection or “reminder” effects in the control group, as we discuss below. Relative to the control

group, savings are much more pronounced in the group exposed to the “Information + Expert” treatment.

Individuals choose plans that have $94 larger decline in expected cost - in other words, individuals choose plans

that in expectation would save them 80% more. The point estimate for the “Information Only” arm suggests

a magnitude of the effect that is about half the size, but we cannot reject that the effect is zero.

Finally, in column (6) we measure the likelihood that consumers reported choosing one of the “expert

recommended” plans - i.e. plans with the highest algorithmic scores. These plans were relatively popular

among consumers prior to the intervention.6 39 percent of individuals in the control group enrolled in (what

would have been) an expert recommended plan for them in 2017. The probability of enrolling in an expert-

recommended plan increased 5 to 6 percentage points (15 percent) from the exposure to either treatment. Both

coefficients, however, are noisy and we cannot reject a zero effect at 95% confidence level. The effect appears

to be slightly more pronounced in the “Information + Expert” arm, both in absolute levels and in statistical

precision, relative to the “Information Only” arm.

4.2 Effect of Using Algorithmic Decision Support

We next proceed to estimate the average causal effect of using the decision support software among treatment

compliers. We estimate a 2SLS model, in which being randomized into either the “Information Only” or

“Information + Expert” arms serve as instruments for using the corresponding version of software. Let the use

of “Information Only” version of software be denoted with an indicator variable UI, while using the software

in “Information + Expert” arm be denoted with an indicator variable UE. For outcome variable Yi (same

outcomes as above), we estimate:

Yi = γ0 + γ1UEi + γ2UIi + φ0Xi + εi0 (2)

UEi = π10 + π11Ei + π12Ii + φ1Xi + εi1 (3)

UIi = π20 + π21Ei + π22Ii + φ2Xi + εi2 (4)

Here, variables UEi and UIi take the value of 1 if the individual logged-in into the software, which we can

track through individualized login information linked to encoded patient id. π11, π12, π21, and π21 measure the

take-up of the software across experimental arms. The coefficients of interest are the 2SLS estimates of γ1 and

γ2. These coefficients measure the impact of using the algorithmic decision support (or at least logging into the

software) on individuals’ behavior.
5As the cost estimates are extremely skewed, we trim the regression to only include cost changes between the 1st and 99th

percentile of changes.
6This decreases our power to detect changes in the probability of enrolling in an expert recommended plan. To increase power,

in this regression specification we control for the whether individuals were enrolled in a plan that would have been one of three top
plans for the at the baseline
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Table 7 reports the first stage coefficients and the 2SLS estimates for the six outcome variables of interest.

As we observe in Column (1), the take up of the software tool conditional on being randomized into a treatment

arm was very high. Being randomized into “Information + Expert” arm increased the take up of the “expert

recommendation” version of software from zero (by construction, individuals in the control arm did not have

access to the software) to 81 percent. Similarly, being randomized into “Information Only” arm increased the

take up of the individualized information version of the software from zero to 80 percent.

The estimates reported in columns (2) to (8) of Table 7 are the same as coefficients in Table 6, but re-scaled

by the first stage (with the exception of column 6). Hence, the direction of the effects is the same and we

observe only a change in the magnitude that reflects the imperfect treatment take up. The LATE (or in this

case, treatment on the treated) estimates suggest that using the algorithmic expert software increases plan

switching rates by 10 percentage points relative to the baseline rate of 28 percent in the control group (36%

increase). We do not observe a significant increase in average switching rates relative to the control group from

the use of the “individualized information” version of the software (column 2). As in the intent-to-treat results,

we see a notable increase in the probability that individuals using software report being more likely to be highly

satisfied with the choice process. The effect of the “expert recommendation” version of the software has a

slightly more pronounced effect, increasing the subjective choice process satisfaction by 23 percent (column 3).

We also observe that individuals that use software are 10 percentage points more likely to spend more than an

hour on choosing their Part D plans (column 5).

In column 6, we introduce a new outcome - an index that measures the intensity of software use. The

index outcome measure comprises five underlying outcomes: whether the consumer viewed explanation buttons

within the software, how often these buttons were clicked, the total number of actions within the software, the

number of actions per login, and the total time that the individual spent within the software tool as measured

by clicks and login behavior. The index is defined to be an unweighted average of z-scores of each component

outcome, where all of the outcomes are oriented such that a positive sign implies more intensive website use.

The z-scores are in turn computed by subtracting the mean in “Information Only” group and dividing by the

standard deviation in “Information Only” group. All underlying outcomes can only be defined for individuals

that were assigned to either of the treatment arms; they are further only defined for individuals that used the

software. Hence, for this measure we can only compare individuals that used the “Information Only” version of

software to those who used the “Information + Expert” version, excluding all individuals in the control arm.

We estimate that individuals assigned to the “Information + Expert” version of the software were using the

decision-support tool much more intensely than those in the “Information Only” group. This is an interesting

finding, as it suggests that algorithmic advice serves as a complement to human decision making, inducing more

consumer engagement (Agrawal et al., 2019).

The reduction in expected costs as reported in column 7 becomes more pronounced relative to the ITT

results, as we now focus on compliers, who we know were more likely to switch their plans. Individuals using

“Information + Expert” version of the software choose a plan with $116 lower expected cost. As the reduction in

the cost is driven by individuals that actually switch plans, we analyzed the reduction of costs among switchers
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further. Among those who switch in the “Information + Expert” arm, expected spending in the plan chosen

post-intervention was $595 lower than if the consumer stayed in the incumbent plan. For the “Information

Only” arm, the decline was $485. In both treatment arms, consumers were 7 percentage points (imprecisely

measured) more likely to have one (of three) “expert-recommended” plans relative to the control arm.

Overall, we conclude that being exposed to the algorithmic recommendation increased the propensity of

consumers to shop for plans and decreased their costs. Being exposed to individualized information had effects

in the same qualitative direction but quantitatively, the effects on switching and costs were less pronounced,

although, except for plan switching, we cannot formally reject the equivalence of the effects. Using both versions

of the decision support software increased consumers’ search time, but also their subjective satisfaction with

the process. The intensity (including time) of software use was significantly more pronounced among consumers

exposed to the treatment arm with the “algorithmic expert advice” feature.

Two issues are important to keep in mind when interpreting our LATE estimates. First, we feel reasonably

confident in interpreting these results as treatment on the treated, since we do not believe that individuals

outside of treatment groups had access to the treatment software. The trial enrollment process insured that

no two individuals in the same household were participating in the experiment. In addition, PAMF patients

who participated in the experiment are not concentrated in a small geographic area and are unlikely to be

acquainted. Hence, it is not very likely that the control group including always-takers - people who used the

software even though they were not randomized to a treatment arm. Second, in theory, being randomized into

a treatment arm could affect individuals in ways other than through software use or through information about

Part D within the software. One plausible alternative hypothesis is that being randomized to a treatment arm

reminded people about the prescription drugs they were taking (after those were imported from the electronic

medical records). This reminder could have changed individual behaviors relative to the control group, who

were informed about the possibility of seeing their drug lists in the electronic medical records, but were not

shown their list of drugs explicitly. While this channel may affect our estimates of behavioral responses when

comparing the treated individuals to the control group, this difference does not exist in the comparison of

“Information Only” and “Information + Expert” treatments - individuals were shown their drugs in both

treatment arms. Hence, the differences in behavior between treatment arms provide compelling estimates for

the effects of exposure to different types of information rather than other channels.

4.3 Heterogeneity of Treatment Effects

We next examine heterogeneity in the estimated treatment effects. We focus on the intent-to-treat analysis,

as being offered decision support algorithms is most relevant for policy. Given the small sample size of the

intervention, estimates of treatment effects among subgroups in our population are unlikely to be precise;

however, the estimates may still be informative about the degree and direction of heterogeneity.

We use generalized random forests to systematically analyze heterogeneity in treatment effects in the sample

of people enrolled in the trial along the same ten observable demographic and health-related characteristics that

we examined in Sections 3.2 and 3.3. These include: age, gender, race, marital status, income at the census
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tract level, share of college-educated individuals at the census tract level, the number of prescription drugs, the

Charlson score, the use of online patient records, and the intensity of its use as measured by message strands.

The generalized random forest methods are discussed in detail in the emerging literature on the use of machine

learning methods for causal inference (Wager and Athey, 2018; Athey et al., 2019; Davis and Heller, 2017; Hitsch

and Misra, 2018; Asher et al., 2018). The basic idea is to create - under the assumption of unconfoundedness

- a decision tree that identifies splits in observable demographics in a way that maximizes differences in the

treatment effect along the split line. As there are many possible permutations of such trees, the random forest

algorithm bootstraps the tree, generating a more robust prediction (aggregated through an adaptive weighting

function across individual draws of trees) of treatment effects as a function of observables.

For each of our six outcomes we use the estimates of the generalized random forest algorithm to compute

the predicted treatment effect (separately for the “Information Only” and “Information + Expert”) for each

individual that participated in the trial, based on observable characteristics. We observe pronounced hetero-

geneity in point estimates of the predicted treatment effects across individuals. While we cannot formally reject

a uniform treatment effect due to the limited number of individuals in-sample, two suggestive patterns emerge

when comparing the two treatment arms in the context of plan switching outcome.7 For the “Information Only”

arm, the treatment appears to have induced some consumers to be more likely to stay in their incumbent plans.

This evidence of asymmetry in treatment effects may explain the small average intent to treat effect that we

estimated in Table 6, as this average combines a positive treatment effect for some individuals and a negative

treatment effect for others. “Information + Expert" recommendation treatment effects have little mass at zero,

with the majority of individuals having a positive treatment effect on plan switching from algorithmic expert

recommendation.

In addition to providing a sense of the degree of heterogeneity in treatment effects in the estimation sample,

the same method allows us to predict treatment effects out of sample. Table 8 summarizes the results of this

prediction exercise. We compute a treatment effect for each individual that was invited to participate in the trial

(i.e. for 29,451 individuals). We split these individuals into five equal-size groups, by quintiles of the treatment

effect distribution. Within each quintile, we then report the average value of the observed demographic. This

allows us to qualitatively characterize the outcome of the generalized random forest procedure. We observe

several clear patterns. Treatment effects are greater among older individuals; they are also more pronounced

among women and non-white beneficiaries. The starkest differences emerge on the IT affinity dimension.

Individuals who are less likely to have ever used the electronic medical records and use it much less intensively

have much larger estimated behavioral responses to the intervention. While this analysis provides initial insights

into what types of people were likely to enroll in a trial providing access to a web-based tool, we return to this
7To test the quality of our causal forest estimates and our ability to formally reject the null of no heterogeneity in the treat-

ment effects, we implement a calibration test motivated by Chernozhukov et al. (2018) as described in detail in Athey and Wager
(forthcoming). The calibration test produces two coefficients. The first coefficient (α) tests the accuracy of the average predictions
produced by the generalized random forest, while the second (β) is a measure of the quality of the estimates of treatment hetero-
geneity. If α = 1, then we can generally say our forest is well-calibrated, while if β is statistically significant and positive, we are
able to reject the null of no heterogeneity. Our estimates of α are close to 1 for both treatment arms, although the estimate is very
noisy for the “Information Only” arm - α=0.98 (s.e. 0.45) for “Information + Expert” arm and α=1.04 (s.e. 2.6) for “Information
Only” arm. These results suggest that our forest is well-calibrated. For both arms our estimates of βs, however, are too noisy to
interpret, suggesting that we cannot formally reject the null of no heterogeneity in treatment effects.
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idea in more detail in the context of selection discussion in the next Section.

5 Selection

We use three empirical strategies to quantify the importance of selection in the take up of the decision support

software. Understanding who chose to take up the intervention is crucial for interpreting the external validity

of the experiment and for understanding how to target policies offering consumers algorithmic decision-making

support tools.

5.1 Lower Bound of Selection

Our first strategy exploits the simple idea that the IV estimates in our setting correct selection bias. Hence,

the difference between the IV and OLS estimates are informative about the degree of selection into the use of

software among those who signed up for the trial. OLS estimates of the effects of using software on outcomes

among those enrolled in the trial capture both treatment and selection effects in the treatment group relative to

the control group. For example, trial participants who are more active shoppers and are considering changing

their plan even in the absence of our intervention are likely to disproportionately select into using the software.

To quantify this selection bias, we first estimate the following OLS relationship:

Yi = τ0 + τ1UEi + τ2UIi + κ0Xi + εi (5)

In this equation, τ1 and τ2 are biased estimates of the treatment effects, as the exposure to software con-

ditional on being randomized into a treatment arm is determined by the individual’s decision to take up the

intervention, which, for example, could be correlated with the latent propensity of switching plans. We use this

omitted variable bias to learn about the magnitude of selection. Panel A of Table 9 reports OLS results for our

six outcome variables of interest. These estimates of the effects of the intervention are much larger than the IV

estimates for both treatment arms. We estimate that in the “Information + Expert” arm, using the software

was associated with a 17 percentage point increase (9 percent in “Information Only” arm) in the probability of

switching plans (column 1). For both arms, this is 7 percentage points larger than the IV estimates (reported

again in the second section of Panel A in the same table for convenience). We conclude that out of 17 percent-

age point increase (9 for the “Information Only” treatment arm) in switching rates as suggested by OLS, 10

percentage points (2 for “Information Only”) was the treatment effect and 7 percentage points was selection.

In other words, individuals that took up the experimental software were inherently 7 percentage points more

likely to switch their plans than those individuals who were assigned to treatment arms, but chose not to use

the software (or those assigned to the control arm).

The comparison of OLS and IV estimates in column (2) suggests little selection on the satisfaction with the

Part D shopping process, although the emerging direction of selection appears to be negative. In other words,

individuals that were inherently less likely to be satisfied with the selection process were possibly more likely to
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take up the decision support tool. We observe only very noisy estimates of differences in decision conflict score

(column 3) and no selection on the time search dimension (column 4).

Individuals choosing to use the software appear to be those who would have experienced greater savings ab-

sent the intervention (column 5) and would have been more likely to choose one of the three expert recommended

plans (column 6).

Overall, the evidence is consistent with the idea that, even among those who chose to participate in the

trial, individuals who actively accessed algorithmic advice were inherently more likely to revise their plan choices

towards lower cost plans absent the intervention. The magnitude of selective take up is substantial relative to

the treatment effect, especially with respect to the inherent propensity to switch plans. Notably, these results

are estimated relative to the average outcome among those assigned to the control group. In this exercise,

outcomes in the control group serve as a control for selection into the intervention. The average outcome of

the control group could itself, however, are potentially comprised of both selection and treatment effects. In

particular, simply entering the study website could have generated a “reminder effect.” On the other hand, the

reminder effect may be either very small or non-existent suggesting that selection into software is even larger

than the difference between the OLS and the IV estimates. In this sense, this difference between the OLS and

the IV represents a lower bound for the degree of selection captured in the OLS estimate. We next estimate

the upper bound.

5.2 Upper Bound of Selection

We take advantage of our two-step experimental design that allows us to directly observe the selection mechanism

in the control group to estimate the upper bound of the selection effect. Consumers who were randomized to

the control group did not know that they were in the control group until they logged into the experimental

website. Since we can observe who in the control group logged into the website, we can measure the difference

in outcomes between those who chose to access the software and those who did not. As discussed above,

this difference represents a combination of selection and treatment effects in the control group. Under the

assumption that the reminder screen did not generate a treatment effect among those individuals in the control

group who chose to log in, the difference between those who did and those who did not log in to the website in

the control group would represent the pure selection effect. Since in practice some of this difference may be due

to the treatment effect of the reminder screen, this comparison gives us the upper bound of selection. Given

the low impact of generic reminders that has been found in the broader literature, we believe the selection

interpretation plays an important role (Ericson et al., 2017), but the difference likely includes some of both. To

measure this upper bound, We estimate the following OLS regression among the control group individuals only:

Yi = ξ1LOGINi + ξ2Xi + εi (6)

Panel B of table 9 reports the estimates. Individuals that logged into the software website - before knowing

whether they were assigned to the treatment or the control arm - were 21 percentage points more likely to
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switch plans than those that did not log in (column 1). They also had a 15 percentage point higher probability

of choosing an expert recommended plan (column 6), and were saving $169 in expected total cost of their Part

D plan (column 5). We did not observe differences in the choice process satisfaction, decision conflict score, or

search time (columns 2, 3, 4).

Our results on the selective take-up of intervention software indicate that caution is warranted when in-

terpreting the positive effects of algorithmic decision support software for the development of policy. While

offering people algorithmic decision support affects their choices, it is also much more likely to attract “active

shoppers” and thus could be a poorly targeted policy instrument for rolling out in the general population.

Without additional targeted interventions encouraging those who are not active shoppers to use such a tool,

algorithms may not reach those who would benefit most from them.

5.3 Selection on Treatment Effects

We next examine the importance of self selection into decision-support tools by comparing the likely benefits

of algorithmic recommendations among those who enrolled in the trial relative to those who did not.

We use the results of the generalized random forest algorithm - as discussed in 4.3 - to predict (intent-

to-treat) treatment effects on the full sample of individuals who were originally invited to participate in the

experiment. Recall that we originally invited 29,451 individuals to participate in the study and that 4% took up

the invitation and were randomized into three arms. While we do not have survey data for the original 29,451

individuals, we observe their administrative records which we used to analyze the selection into the experiment

on observables in Table 1. We now use the same observables to predict treatment effects (for each treatment

type) among all invited individuals. In Table 8 and Section 4.3 we have already characterized the heterogeneity

in treatment effects. Here we examine whether there were systematic differences in predicted treatment effects

between those who decided to participate in the experiment and those who did not.

Table 10 reports the results of a regression of the predicted treatment effect for each outcome of interest on

an indicator that takes a value of one if the individual was not among those who participated in the experiment.

We estimate these regressions separately for “Information + Expert” (Panel A) and “Information Only” (Panel

B) treatment arms. We observe pronounced selection on treatment effects. Individuals who did not participate

in the trial would have overall responded more to either type of intervention than those individuals who did.

Individuals that chose not to participate would have been 3-4 percentage points more likely to switch plans than

those who did participate (column 1). They would have also been slightly more satisfied with the choice process

as the result of using the tool (column 2), would have saved approximately 10% more under the algorithmic

recommendation treatment (column 5), and would have been up to 50% more likely to enroll in one of the

expert recommended plans (column 6). At the same time, they would have been less likely to increase their

search time beyond one hour as compared to those who did choose to participate in the experiment (column 4).

Figure 4 documents the non-linearity of the experimental take up as a function of predicted treatment effects.

This figure plots the take-up rate of the experiment for each ventile of the predicted treatment effect. For the

probability of switching plans, we observe that the take-up rate declines sharply with the estimated treatment
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effect, suggesting that individuals that would have responded most to the software intervention (in terms of

switching their plans), were least likely to participate in the experiment. The same holds true for cost savings

(those who would have saved more are less likely to participate), although the pattern is slightly noisier.

5.4 Implications of Selection

Overall, our analyses provide strong evidence of selective take-up. As in many other settings, we document

that more sophisticated consumers are more likely to shop for coverage and demand more information, in this

case, in the form of accessing information tools. A main contribution of our study is to demonstrate that the

expected benefits of algorithmic recommendations, in particular, appear to have the greatest benefits for those

who are least likely to use them.

Our analyses provide some insight into the potential barriers to greater use of algorithms in the setting

we study. We demonstrate empirically that the expected benefits of personalized information are negatively

correlated with participation in the trial. Because consumers access information when the expected benefits of

information exceed the costs of obtaining it (Stigler, 1961), our finding implies that, for those with relatively

high estimated treatment effects, either the expected benefits of accessing information were low or the costs of

search were high. In our empirical work, we find some evidence supporting the potential importance of the costs

of search. In particular, those with relatively large estimated treatment effects had the lowest rates of EMR use,

suggesting relatively low familiarity with information technology. In other words, consumers may have rationally

chosen not to enroll in the trial because they correctly expected that for them the costs to them of using the on-

line tool exceeded the benefit. Alternatively, consumers for whom the estimated treatment effects were largest

may have systematically underestimated the benefits of information. For example, those with high estimated

treatment effects may have underestimated the likelihood that an alternative plan would have covered their

drugs more generously. A different version of this mechanism is that consumers observe the expected benefits

with noise. If the variance in perceived benefits increases with the mean, then it is more likely that consumers

with high benefits on average will underestimate their expected benefit relative to the cost. This interpretation

is consistent with evidence on noise in consumer beliefs that we present in the next section. In sum, our results

suggest that offering decision-support software without additional targeting efforts or even a requirement to go

through algorithmic decision-support when enrolling into a plan, is unlikely to reach individuals who would have

benefited most from having access to such software. We speculate that reducing the noise in perceived benefits

of algorithmic support (for example, through mailings that first highlight individualized potential savings, as in

Kling et al., 2012, and encourage consumers to seek out algorithmic support), may provide a way to improve

targeting.

6 Theory and Welfare

In this section we develop a simple theoretical framework that allows us to conceptually differentiate between

two related ideas: information versus (non-strategic) advice. While the former allows consumers to learn about
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product features, the latter also helps consumers interpret these features. We map this framework into our trial

data. We use the estimates to quantify the welfare effects of offering consumers an algorithm that provides

them with information and/or advice.8

We argue that consumer choices may deviate from a full-information benchmark due to two conceptually

distinct reasons. First, consumers may have imperfect information about the features of the products among

which they are choosing. Second, consumers may have only noisy signals about the mapping of each product

feature into utility. Uncertainty about utility weights is one way to capture the idea that consumers may not

understand contract features even if they have perfect information about these features (Bhargava et al., 2017).

Allowing for two sources of uncertainty implies that there are two types of information a consumer may acquire:

(i) information about features that allows the consumer to learn about the good, and (ii) advice about the

valuation of features that allows the consumer to interpret the value of the good. This conceptual distinction

between information and non-strategic advice is related to several ideas in the prior literature. For example,

Çelen et al. (2010) asked, in a laboratory experiment, whether the subjects would like to get advice or the

underlying information. Further, a literature on advertising has made a related distinction between informative

versus persuasive advertising (Braithwaite, 1928; Ackerberg, 2001). The general idea that external advice and

information may alter preferences relates closely to the rich literature on persuasion (DellaVigna and Gentzkow,

2010), except in our setting advice transmission is non-strategic. The idea that consumers are unsure about

their payoffs or may overvalue more salient characteristics of goods is common in the models with rational

inattention (e.g., Steiner et al., 2017; Sallee, 2014; Matejka and McKay, 2015), salience and context-dependent

choice (Bordalo et al., 2013), as well as experience goods (Riordan, 1986). In these frameworks, however, one

usually does not distinguish between the uncertainty about product features and the uncertainty about the

relative importance of these features for utility, which we argue is an important distinction in our setting.

6.1 Model

Consider consumer i who faces a choice set J of insurance contracts. Each contract j is characterized by a vector

of characteristics φij that can be individual-specific. Let Uij(φij ;βi) be the utility that consumer i gets from

choosing plan j with characteristics φij . This utility depends on plan characteristics φij and the parameters of

the utility function for consumer i, βi. Under perfect information about both φij and βi, consumer i chooses

contract j∗ such that Uij∗ is greater than Uij for all other j ∈ J .

In practice, the consumer may only have a noisy prior about the characteristics of each plan. In other

words, the elements of φij may be observed imprecisely. Further, the consumer may be uncertain about how to

aggregate the elements of φij into utility-relevant objects. In other words, the elements of βi may be observed

imprecisely. For example, figuring out which drugs are covered by any given insurance plan is costly, as that
8Our goal here is to provide one potential framework that allows us to think about the systematic differences in behavior

we observe across experimental arms. Alternative explanations for the differences in behavior exist and are equally plausible.
For example, the differences in consumer behavior when they face the “expert” recommendation could stem from the framing
effects, anchoring, or other ways of “coherent arbitrariness” in which the presentation of expert scores and highlighting of plans as
“recommended” could change individual choice behavior and hence the preferences that we estimate (John G. Lynch, 1985; Ariely
et al., 2003; DellaVigna, 2009, 2018).
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information is frequently complicated and difficult to find. At the same time, obtaining information about

which drugs are covered by a plan - i.e. obtaining a document from an insurer that lists all covered drugs - may

not resolve consumer’s uncertainty about how to interpret this information and consequently how much utility

weight to assign to this feature of the product.

Denote consumer beliefs about vectors φij and βi with φ̃ij and β̃i. The consumer maximizes her utility

given these beliefs and chooses a plan j̃ such that:

j̃ = argmax
j

β̃iφ̃ij (7)

The welfare loss L from noisy beliefs is given by the differences in the underlying utility from plan j∗ relative

to plan j̃:

L = Uij̃ − Uij∗ (8)

Let the wedge between beliefs about plan features and true features be ξφ, and the wedge between true

utility weights and beliefs about weights be ξβ . We can then re-write the decision utility as being (omitting

individual-specific subscripts):

Ũj = (β + ξββ)(φj + ξφφj) (9)

Exposure to pure information about produce features can reduce the wedge in consumer beliefs about plan

features, ξφ, but should not affect utility weights. Advice, on the other hand, is different from information,

as it provides a way to interpret information in addition to information itself. We model non-strategic advice

as a reduction in ξβ , which improves consumer’s signal about the mapping of features into utility. Let 1 − κ

denote the “strength” of a decision-support intervention that exposes consumers to information or information

and advice. κ measures the share of ξφ and ξβ that remain despite the intervention. Consumer’s decision utility

with a decision support intervention then becomes:

Ũj =

(β + ξββ)(φj + κξφφj) if exposed to information

(β + κξββ)(φj + κξφφj) if exposed to information and advice
(10)

where κ ∈ [0, 1]. If κ = 0, the decision support intervention completely eliminates the noise in beliefs,

meaning that j̃ = j∗ and L = 0. If κ = 1, the intervention has no effect on consumer beliefs and consumer

choices.

To summarize, this simple framework provides us with a key basic insight. Any intervention aimed at

helping consumers make choices can change their choices through two mechanisms: by either changing their

beliefs about the features of the products, or by changing their utility weights for these features. The two

mechanisms generate very different policy implications. If consumer choices are affected by noisy priors about

how product features map into utility, then a policy of providing information about plan features will not

generate any behavioral responses. In contrast, if consumers know exactly how to evaluate product features,
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but have a hard time accessing that information, policies that improve information access may be effective. For

example, because cost-sharing can be complex and vary by drug and plan, consumers may not have perfect

knowledge of the cost-sharing features of their plans are. In contrast, they may be aware that their plan has

a very high deductible, but not able to evaluate the implications of a high deductible for their utility. The

distinction between the two mechanisms is of central practical relevance for complex financial products, where

the knowledge of product features may not be enough for consumers to make informed decisions.

Our framework accommodates multiple types of consumer behaviors that have been documented in the

literature. In particular, it offers a way to reconcile the divergent conclusions of two strains of work that have

explored consumer choices in Medicare Part D specifically. The first set of papers (Abaluck and Gruber, 2011;

Abaluck and Gruber, 2016) argues that consumers make choices that are inconsistent with rational decision-

making. The second argues that consumers are behaving rationally and learn over time (Ketcham et al., 2012).

Our framework demonstrates that both behaviors could in fact be taking place at the same time. The idea

of choice inconsistencies in (Abaluck and Gruber, 2011; Abaluck and Gruber, 2016) can be thought of as a

non-zero ξβ - consumers observe deductibles, coverage in the gap, and other features of the plans, but have

biased utility weights for these features. Ketcham et al. (2012); Ketcham et al. (2015), on the other hand, argue

that consumer choices are improving over time. This could be true if original choices are affected by the noise

in the knowledge about plan characteristics - ξφ - that decrease over time as consumers learn about product

features. Learning about characteristics, however, doesn’t preclude that the wedge in utility weights - ξβ - and

hence “inconsistent” choices continue to exist.

6.2 Estimation

Set-up The conceptual model outlined above can be directly mapped to an empirical discrete choice problem

with random utility. We start with a standard discrete choice framework, in which consumer i is choosing a

product j from the set of available products J . The consumer picks j that maximizes her decision utility that

we empirically specify as follows:

uij = βiφij + εij (11)

Here, φij is a vector of characteristics of product j that are allowed to be individual-specific. Vector βi
maps product characteristics into utility. An entry in vector βi that multiplies a dollar-denominated feature,

such as the expected out of pocket spending gives us the marginal utility of income that “translates” monetary

objects into utils. This marginal utility of income can vary across individuals i. When re-normalized to the

marginal utility of income, other entries in vector βi, provide the measure of individual’s willingness to pay

for the corresponding product feature. εij captures any consumer-product specific parts of utility that are not

observable to the researcher, but are observable to the consumer and affect consumer choices.

In most applications, when estimating a discrete choice model of demand, researchers include product

features φij as they are observed to the researcher, which is usually an “objective” measure of these product

features. This, however, may not be the φij that enters consumer decision-making if consumers observe φij
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with some noise. Further, when estimating βi from revealed preferences for product features, we would typically

capture the utility weights that entered the decision utility function. The weights in the utility function, however,

reflect only consumer’s current information set and may be a noisy signal of the underlying welfare-relevant

weights.

Following the argument in Section 6.1, consider the following reformulation of the standard utility specifi-

cation that includes noise in features and utility weights. Adding multiplicative friction terms to Equation 11,

we get:

uij = (βi + ξβi βi)(φij + ξφi φij) + εij (12)

or re-arranging,

uij = (1 + ξβi )(1 + ξφi )βiφij + εij (13)

Is it possible to separate ξβi and ξφi empirically? Conceptually, to do that we need an intervention that

plausibly affects only ξβi or ξφi . We argue that our two treatment arms provide us exactly with that type of

variation. Arm “Information Only” provides individuals with personalized information about expected costs,

CMS plan quality rating, and plan brands. Hence, in this arm, individuals receive information about expected

out of pocket costs, but they do not receive any further guidance about how to combine different plan features

into a utility function. In other words, for individuals enrolled in the “Information Only” arm, the treatment

affects only ξφi .

Individuals in the “Information + Expert” arm receive the same information as those in “Information Only”

arm, but they also receive the personalized expert scores and a recommendation to choose one of three plans

with the highest expert scores. The expert score does not provide additional information about plan features,

as it is a combination of out of pocket cost prediction and the star rating. However, it provides a suggestion to

the consumer of how to weight plan features by combining the personalized cost estimate with the plan-level

star rating into a one-dimensional metric. Hence, we can interpret arm “Information + Expert” as changing

both the information about features and the utility weights that consumers ought to place on these features, i.e.

changing both ξφi and ξ
β
i . This implies that by comparing the choice behavior across control arm and treatment

arm “Information Only,” and then treatment arm “Information + Expert” we can quantify the presence of ξφi
and ξβi in consumer’s decision utility.

To illustrate our approach, consider an example with κ = 0, so that an informational intervention completely

removes noise terms. The decision utility of individual i from choosing plan j in the control arm is then given

by:

uij = (1 + ξβi )(1 + ξφi )βiφij + εij (14)

While for individual i choosing plan j in the “Information Only” arm, utility is:

uij = (1 + ξβi )βiφij + εij (15)
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And similarly, utility for an individual in the “Information + Expert” arm becomes:

uij = βiφij + εij (16)

The latter corresponds to the standard discrete choice utility that we started with in Equation 11, as it

“restores” the case of complete information.

We can now proceed to estimate Equations 14 to 16. Our goal is to estimate βi, ξβi and ξφi . We achieve this

by estimating how revealed preferences for φij vary across experimental arms. Assuming that, by the virtue

of randomization, there should be no latent differences in utility weights across the experimental arms (i.e. no

differences in underlying βi), we will attribute any variation in estimated preferences across arms to differences

in beliefs.9 Comparing utility weight estimates between the “Information Only” and “Information + Expert”

arms allows us to measure how much of the behavioral change in response to the intervention is coming from

changes in ξβi versus changes in ξφi .

We estimate the following specification for consumer i in year t (recall that we observe consumer plan choices

at the baseline and endline of the experiment, which spans two years of choices):

uijt = β̃iφijt + εij , εijt ∼ iid EV Type I (17)

We allow for unobserved heterogeneity in consumer preferences that is assumed to have a normal distribution.

We also assume that the part of utility not observed by the researcher is distributed iid with Type 1 extreme

value distribution. We let φij include the expected total cost of the plan, CMS star rating and indicators for

one of three most popular insurer brands. This is the full set of plan features that study participants observe

on the main page of the experimental software in the two treatment arms (see Figure 1). This information is

also in principle readily available to participants in the control arm from the government-run online Medicare

Part D calculator. To increase the precision of our estimates given the small sample size, we pool observations

from all three experimental arms and years 2016 and 2017 choices of plans. The specification then becomes:

uijt = µ1Costijt + µ2CMSStarjt + µ3AARPjt + µ4Humanajt + µ5Silverscriptjt + εijt (18)

µn = ψn + λnI + ηnE ∀n ∈ [1, 5] (19)

Estimating this model allows us to quantify the wedges in beliefs for each plan feature. First, we aggregate

our estimates to derive one revealed preference parameter for each plan feature in each experimental arm.

Consider the expected costs. For this feature, the estimate of revealed preferences in the control arm β̂1
C

is

equal to ψ̂1. For treatment arm “Information Only”, β̂1
I

= ψ̂1+λ̂1. For treatment arm “Information + Expert,”

β̂1
E

= ψ̂1 + η̂1.

Now we map the three estimates of revealed preferences in each arm into the underlying model parameters.
9We verify this assumption empirically by estimating the differences in revealed preference parameters at the baseline, prior to

the intervention. We find no differences in estimated βi:s across experimental arms.
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For control arm:

β̂1
C

= (1 + ξβi )(1 + ξφi )βi (20)

For treatment arm “Information Only”:

β̂1
I

= (1 + ξβi )βi (21)

And finally, for treatment arm “Information + Expert”:

β̂1
E

= βi (22)

These are three equation in three unknowns that give us β, ξβi , and ξ
φ
i once we have β̂1

C
, β̂1

I
, and β̂1

E
.

Estimation results Panel A of Table 11 reports model estimates. Column (1) reports ψ1, τ1, and η1

- coefficients on the “cost” feature of the plans. We estimate τ1 to be negative and large (relative to the

control group) in absolute value, suggesting that “Information Only” intervention makes consumers appear more

sensitive to costs. The change in the sensitivity to cost is substantially less pronounced under the “Information +

Expert” treatment. Column (2) in turn suggests that consumers become more sensitive to CMS star rating under

“Information Only” intervention, while columns (3) to (5) suggest that the intervention changes consumers’

ranking of brands. We observe similar patterns for the “Information + Expert” arm, except that it makes

AARP-branded plans appear less desirable to consumers.

To interpret these estimates in the context of our conceptual framework, we substitute the point estimates

into Equations 20 to 22 to get (for the cost feature as an example):

− 0.13 = (1 + ξβi )(1 + ξφi )βi (23)

− 0.21 = (1 + ξβi )βi (24)

− 0.17 = βi (25)

It follows that 1+ξβi =1.27 and 1+ξφi =0.62, as we report in Panel B.1. This in turn suggests that consumers

tend to underestimate the expected costs of plans, but have a higher willingness to pay for each $100 reduction

in the out of pocket costs than they would under full information. Panel B of Table 11 also reports similar

computations for other plan features. Except for the Silverscript brand indicator, we find a similar qualitative

pattern across all features - that consumers have a negative ξφ, underestimating the features of available plans

(for the brand indicators, this can be interpreted as noisy signal about the probability that any given plan has

a particular brand), and yet have a positive ξβ , suggesting a higher - than under full information - willingness

to pay for each feature.

In Panel B.2 we examine how our results change when we assume that the exposure to either treatment arm

only “corrects” 80% of noise in beliefs. The magnitude of noise estimates change accordingly, but provide very
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similar qualitative take away. For example, we still find that individuals underestimate the total costs they are

likely to face in a plan, and overestimate how the costs map into the utility function.

Taken together these estimates illustrate that changes in utility weights that could be impacted by advice

may have a substantial effect on consumers’ behavioral response. We also conclude that the experimental data

is consistent with a hypothesis that consumers may have noisy priors about both the product features and their

interpretation, or utility weights, on these features.

6.3 Welfare

We next use our estimates to shed light on how the provision of information may affect consumer welfare. To

accomplish this, we simulate consumer choices and the corresponding welfare loss function from equation 8

under four scenarios Recall that we defined the welfare loss as the difference between the “true” utility the

consumer experiences from the plan chosen under noisy beliefs (j̃) and the plan that would have been chosen

under perfect information (j∗).

The first scenario simulates consumer choices using the preferences as estimated under the “Information +

Expert” treatment arm. Put differently, this scenario switches off both 1 + ξβi and 1 + ξφi . We take consumer

choices and their utility in this scenario as our normative benchmark, Uij∗ . In the other three simulation

scenarios we switch on 1 + ξβi , or 1 + ξφi , or both, respectively. Each of these simulations with wedges in beliefs

switched on gives us a j̃, allowing us to compute Uij̃ and L = Uij̃ −Uij∗ . In essence, this exercise measures how

much 1 + ξβi and 1 + ξφi alter the ordinal ranking of plans in utility terms. If consumers have noisy beliefs, but

these beliefs lead them to choose the same product as they would have under perfectly informed beliefs, then

there is no welfare loss from the noise in beliefs and informational interventions would be an unnecessary cost.

Table 12 reports our simulation results. We simulate our model for all 29,451 individuals who were invited

to participate in the trial. In Panel A we report several moments of the distribution of surplus loss (L) from

relying on “noisy” beliefs. On average, the welfare loss is relatively modest. We estimate the average loss to

vary between $48 to $68 depending on which wedges in beliefs we allow for. This represents a 4.1% to 6.8% loss

in utility. The relative loss is the highest when we allow for wedges in both types of beliefs, which is intuitive,

as that increases the likelihood that the wedges change the ordinal raking of plans.

The modest average loss masks a substantial amount of heterogeneity in how much the noise in beliefs

about product characteristics or the mapping of characteristics into the utility function affects consumer utility.

For half of the consumers, the noise in the utility function does not in fact lead to any surplus losses. These

consumers end up choosing the same plan across all specifications of the utility function. For some consumers,

however, the noise in beliefs lead to significant welfare losses, both in absolute and relative terms. For these

consumers, noise in beliefs lead them to choose a plan that is far from the optimum. At the 95th percentile

of the distribution, individuals that choose plans according to preferences as estimated from the control group

(i.e. those that allow for both sources of noise in beliefs), would lose nearly $300 or 15% of their benchmark

normative utility. This is a significant loss, equal to nearly six monthly premiums.

This analysis suggests that while for many consumers misconceptions in their beliefs about plan features

29



or the mapping of features into the utility function is inconsequential, some consumers experience significant

losses and choose sub-optimal plans when they don’t have perfect information. An cost-effective informational

intervention would want to target consumers that experience the highest welfare losses. Panel B of Table 12,

however, reveals that offering consumers a decision-support software - i.e. self-targeting - would not lead to

optimal targeting. Among consumers who were offered to participate in the trial, those who we predict would

have benefited the most, were not more likely (and if anything were slightly less likely) to participate. This

finding is consistent with our earlier results on selection outlined in Section 5 and once again underscores the

challenge of targeting an informational intervention in this domain.

7 Conclusion

Personalized decision support software providing consumers with varying levels of decision autonomy is in-

creasingly prevalent in many markets. In theory, delegating consumer decisions to individualized predictive

algorithms could significantly alter consumption patterns, especially in complex decision environments. The

rise of algorithms could thus substantially alter market allocations across a range of settings. In practice, we

know little about how consumers interact with algorithms or which type of consumers choose to engage in such

interactions in the first place. Much of the research on algorithms to date has focused on examining the poten-

tial for strategic or unintended biases of algorithmic decision support, while little evidence exists on consumer

responses to this new technology.

In this paper, we provide novel evidence from a randomized-controlled study in which older adults were

offered individualized decision support software for the choice of prescription drug insurance plans. The treated

groups received two versions of the software. One version offered a more intensive intervention by providing

consumers with “expert” machine-generated one-dimensional scores for each choice option. The other treated

group received personalized information about the expected total cost in each plan and a plan-level quality

assessment, but was not given the expert score summarizing this information. The control group was offered a

reminder.

We draw three main conclusions from our experimental results. First, exposure to the decision support

tool changed consumer behavior. More specifically, providing (individualized) information coupled with a one-

dimensional algorithmic recommendation significantly increased the probability of plan switching, the time spent

on the choice process, the expected cost-savings and self-reported satisfaction with the choice process. While

providing individuals with individualized information without the one-dimensional algorithmic recommendation

moved the outcomes in a similar direction, the magnitudes of the effects were less pronounced economically and

statistically.

Second, there is strong selection into the use of decision support software. We document two types of

selection. We find that individuals who actually used the softward conditional on having access to it were

inherently more active shoppers who likely would have changed their plan and chosen a lower cost plan without

an intervention. Quantitatively, this selection effect is close in magnitude to the treatment effect, allowing us
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to conclude that there is strong complementarity in the willingness to shop actively for financial products and

the interest in decision support algorithms. Further, we find that individuals whom we predict would have

responded most strongly to the treatment intervention, were the least likely to enroll in the trial. While the

findings of strong selection do not invalidate the idea that intuitive tools with clear, simplified, algorithmic

recommendations could improve choices if rolled out in a general population, they do suggest that a policy

of merely offering algorithmic recommendations within a software tool is unlikely to reach those who would

respond the most to them. Hence, more targeted and intensive interventions may be required for populations

who are unlikely to take-up algorithmic advice but are likely to benefit from it.

Finally, using a simple model of consumer decision-making that offers a lens through which to interpret our

findings, we find that the behavioral responses that we observe in the data are driven by both the (i) updating

of consumers’ signals about the features of the products, and (ii) adjustments in consumers’ utility weights

- or mapping - of these features into utility. The noise in consumer beliefs leads to relatively small welfare

losses, on average; however, a small set of consumers experience significant losses in utility of up to 15%. The

distinction between consumer’s misconception about the characteristics of a financial object versus the mapping

of object features into utility is important for interpreting the findings on consumer “mistakes” in a variety of

financial settings. This distinction is also crucial for policy-making in the realm of algorithmic advice. Existing

algorithmic recommendations not only allow consumers to learn about product features, but usually also aim to

change how consumers interpret the value of these features. Our results indicate that the interpretation channel

is quantitatively important in the setting we examine. While the ability of algorithms to change individual

preferences creates opportunities to improve consumer choices, it also raises concerns over the possibility that

algorithms may influence decision-making in ways that have poorly understood or unintended consequence

for consumers. Algorithms may generate biases in decision making, either strategic or inadvertent, that have

important downstream consequences. Because consumers are responsive to algorithmic recommendations, it will

be increasingly important not only to understand how consumers respond to algorithms but also the implications

of those responses for societal welfare.
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Figures and Tables

Figure 1: User Interface by Experimental Arm

A. Information + Expert Arm B. Information Only Arm

C. Control Arm
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Figure 2: Experimental Design
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Figure 3: Enrollment Flow
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Figure 4: Take-up of Experiment by Predicted Treatment Effect

A. Switched Plans: Info + Expert B. Switched Plans: Info Only

C. Change in expected cost: Info + Expert D. Change in expected cost: Info Only

The figures plot the relationship between the probability of participating in the experiment and predicted
treatment effects in the full sample of 29,451 individuals that were invited to participate. For these in-
dividuals we observe the demographics that are recorded in administrative data, allowing us to estimate
treatment effects for this sample. Individual-level treatment effects of offering decision-support software are
estimated using the generalized random forest (GRF) algorithm (Wager and Athey, 2018) as described in the
text. Panels A and C report the results for “Information + Expert" arm; Panels B and D for “Information
Only" arm. Panels A and B plot the probability of signing up for the experiment as a function of treatment
effects for the outcome that is an indicator for whether an individual changed plans (outcome in column 1
of Table 6). Panels C and D plot the probability of signing up for the experiment as a function of predicted
treatment effects for the change in expected total cost of the plan (outcome in column 5 of Table 6). Each
figure is a binned scatterplot, where the outcome on the y-axis is computed within each ventile-sized bin of
the treatment effect recorded on the x-axis.
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Table 1: Selection into Experiment

Age Female
Non‐
White‡

Married
Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Randomized ‐1.68*** ‐0.04** ‐0.13*** 0.07*** 5.83*** 0.04*** 0.08 ‐0.16*** 0.27*** 3.74***
(0.14) (0.01) (0.01) (0.01) (1.34) (0.01) (0.09) (0.04) (0.01) (0.23)

No. of Obs. 29451 29451 29451 29451 29451 29451 29451 29451 29451 29451

Mean of Dep. Var. 73.96 0.54 0.35 0.54 106.81 0.54 4.45 1.16 0.69 3.30
Std. Dev. Of Dep. Var. 5.21 0.50 0.48 0.50 45.85 0.20 3.17 1.53 0.46 6.01

Table shows the relationship between baseline demographic characteristics of individuals and their take‐up of the offer to participate in the 
experiment. 29,451 individuals were invited to participate. 1,185 entered the on‐line enrollment portal, verified that they were eligible to participate, 
participated in a pre‐enrollment survey and authenticated their identity. These individuals were randomized across three experimental arms.  In 
columns (1) through (10) we report the results of separate regressions of each baseline demographic characteristic as the dependent variable on the 
indicator variable for whether an individual was a part of the 1,185 people that were randomized across arms. The unit of observation is individuals. 
Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** p<0.01;  *** p<0.001. 
‡ Non‐white includes "other" and missing responses
† Computed at census tract level
§ Measured within 3 years prior to the intervention
~ Number of strands of electronic conversations 
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Table 2: Randomization - Balance on Observables

Age Female
Non‐
White‡

Married
Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Information + Expert ‐0.68* ‐0.04 ‐0.03 0.06 ‐1.29 0.01 0.18 0.12 0.00 1.28*
(0.33) (0.04) (0.03) (0.03) (3.23) (0.01) (0.23) (0.10) (0.02) (0.55)

Information Only ‐0.70* ‐0.04 0.00 0.04 ‐3.57 ‐0.01 ‐0.00 0.01 0.01 0.91
(0.33) (0.04) (0.03) (0.04) (3.30) (0.01) (0.21) (0.10) (0.01) (0.51)

Mean of Dep. Var. in Control 72.81 0.53 0.23 0.57 114.02 0.59 4.46 0.96 0.95 6.15

No. of Obs. 1185 1185 1185 1185 1185 1185 1185 1185 1185 1185

Mean of Dep. Var. 72.35 0.50 0.22 0.60 112.40 0.59 4.52 1.01 0.96 6.89
Std. Dev. Of Dep. Var. 4.56 0.50 0.41 0.49 45.18 0.19 3.07 1.36 0.21 7.91
F‐test across Arms, p‐value 0.95 0.98 0.34 0.65 0.47 0.14 0.40 0.28 0.58 0.54

Table shows the relationship between baseline demographic characteristics of individuals who participated in the experiment (1,185 individuals) and 
their experimental arm assignment. Individuals were randomized across three experimental arms. In columns (1) through (10) we report the results of 
separate regressions of each baseline demographic characteristic as the dependent variable on two indicator variables representing the treatment arms, 
and a constant that captures the average value of the dependent variable in the control arm. We report the coefficients on the indicators for being 
randomized into treatment arms. The last row reports the F‐test for the difference in the coefficients on the two treatment arm indicators. The unit of 
observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** p<0.01;  *** p<0.001. 

‡ Non‐white includes "other" and missing responses
† Computed at census tract level
§ Measured within 3 years prior to the intervention
~ Number of strands of electronic conversations 
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Table 3: Attrition at Endline Survey

Age Female
Non‐
White‡

Married
Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Responded to endline survey ‐0.32 0.00 ‐0.09** 0.03 3.32 0.04* ‐0.16 0.04 0.03 0.57
(0.32) (0.04) (0.03) (0.03) (3.26) (0.01) (0.22) (0.09) (0.02) (0.55)

No. of Obs. 1185 1185 1185 1185 1185 1185 1185 1185 1185 1185

Mean of Dep. Var. 72.35 0.50 0.22 0.60 112.40 0.59 4.52 1.01 0.96 6.89
Std. Dev. Of Dep. Var. 4.56 0.50 0.41 0.49 45.18 0.19 3.07 1.36 0.21 7.91

Table shows the relationship between baseline demographic characteristics of randomized individuals and their participation in the endline survey, defined 
as responding to at least one endline survey question by the pre‐specified cutoff date. 1,185 individuals were invited to complete the endline survey; 928 
individuals responded to at least one question by the cutoff date.  In columns (1) through (10) we report the results of separate regressions of each baseline 
demographic characteristic as the dependent variable on the indicator variable for whether an individual responded to at least one endline survey question. 
The unit of observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** p<0.01;  *** p<0.001. 

‡ Non‐white includes "other" and missing responses
† Computed at census tract level
§ Measured within 3 years prior to the intervention
~ Number of strands of electronic conversations 
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Table 4: Attrition at Endline Survey by Experimental Arm

Age Female
Non‐
White‡

Married
Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Responded to endline survey ‐0.45 ‐0.06 ‐0.13* 0.09 ‐1.95 0.00 ‐0.22 0.09 0.04 2.09*
(0.54) (0.06) (0.05) (0.06) (5.23) (0.02) (0.36) (0.13) (0.03) (0.90)

No. of Obs. 410 410 410 410 410 410 410 410 410 410

Mean of Dep. Var. 72.13 0.49 0.20 0.62 112.73 0.60 4.64 1.08 0.95 7.43
Std. Dev. Of Dep. Var. 4.58 0.50 0.40 0.48 43.79 0.19 3.22 1.39 0.21 9.25

Responded to endline survey 0.01 0.06 ‐0.13* 0.06 7.08 0.04 0.10 ‐0.14 0.02 0.16
(0.50) (0.06) (0.05) (0.06) (5.31) (0.02) (0.34) (0.17) (0.03) (1.00)

No. of Obs. 391 391 391 391 391 391 391 391 391 391

Mean of Dep. Var. 72.11 0.49 0.23 0.61 110.45 0.58 4.46 0.98 0.96 7.06
Std. Dev. Of Dep. Var. 4.41 0.50 0.42 0.49 44.76 0.19 2.77 1.34 0.19 8.07

Responded to endline survey ‐0.70 ‐0.00 ‐0.02 ‐0.07 4.82 0.06* ‐0.38 0.20 0.04 ‐0.61
(0.62) (0.07) (0.06) (0.06) (6.65) (0.03) (0.44) (0.15) (0.03) (0.95)

No. of Obs. 384 384 384 384 384 384 384 384 384 384

Mean of Dep. Var. 72.81 0.53 0.23 0.57 114.02 0.59 4.46 0.96 0.95 6.15
Std. Dev. Of Dep. Var. 4.67 0.50 0.42 0.50 47.08 0.19 3.19 1.34 0.22 5.93

† Computed at census tract level
§ Measured within 3 years prior to the intervention
~ Number of strands of electronic conversations 

Table shows the relationship between baseline demographic characteristics of randomized individuals  and their participation in the endline survey, defined 
as responding to at least one endline survey question by the pre‐specified cutoff date. The relationship is estimated separately by experimental arm in Panels 
A, B, and C. Out of 928 individuals that responded to at least one question in the endline survey by the cutoff date, 316 were in arm "Information + Expert"; 
299 were in arm "Information Only"; and 313 were in the control arm.  In columns (1) through (10) we report the results of separate regressions of each 
baseline demographic characteristic as the dependent variable on the indicator variable for whether an individual responded to at least one endline survey 
question. The unit of observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** p<0.01;  *** p<0.001. 

Panel A: Information + Expert Recommendation Arm

Panel B: Information Only Arm

Panel C: Control Arm

‡ Non‐white includes "other" and missing responses
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Table 5: Balance on Observables at Endline Survey

Responded 
to endline 
survey

Age Female
Non‐
White‡

Married
Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Information + Expert ‐0.04 ‐0.65 ‐0.06 ‐0.05 0.09* ‐2.62 ‐0.00 0.20 0.10 0.00 1.87**
(0.03) (0.37) (0.04) (0.03) (0.04) (3.57) (0.01) (0.26) (0.11) (0.02) (0.63)

Information Only ‐0.05 ‐0.57 ‐0.03 ‐0.03 0.07 ‐2.79 ‐0.01 0.10 ‐0.06 0.01 1.05
(0.03) (0.37) (0.04) (0.03) (0.04) (3.67) (0.01) (0.24) (0.11) (0.02) (0.55)

Mean of Dep. Var. in Control 0.82 72.68 0.53 0.22 0.55 114.91 0.60 4.39 1.00 0.96 6.04

No. of Obs. 1185 928 928 928 928 928 928 928 928 928 928

Mean of Dep. Var. 0.78 72.28 0.50 0.20 0.61 113.12 0.59 4.49 1.02 0.96 7.01
Std. Dev. Of Dep. Var. 0.41 4.57 0.50 0.40 0.49 44.73 0.18 3.07 1.40 0.19 7.97
F‐test, p‐value 0.84 0.82 0.50 0.40 0.55 0.96 0.51 0.67 0.16 0.76 0.26

Table shows the relationship between the probability of responding to the endline survey (column 1) and baseline demographic characteristics (columns 2‐11) of 
individuals who responded to at least one question on the endline survey and their experimental arm assignment. Individuals were randomized across three 
experimental arms. In colum (1) we report the results of a regression of an indicator variable for whether an individual responded to the endline survey on the 
indicator variables for experimental arms. In columns (2) through (11) we report the results of separate regressions of each baseline demographic characteristic as the 
dependent variable on the indicators for experimental arms, and a constant that captures the average value of the dependent variable in the control arm. We report 
the coefficients on the indicators for being randomized into treatment arms. The last row reports the F‐test for the difference in the coefficients on the two treatment 
arm indicators. The unit of observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** p<0.01;  *** p<0.001. 

‡ Non‐white includes "other" and missing responses
† Computed at census tract level
§ Measured within 3 years prior to the intervention
~ Number of strands of electronic conversations 
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Table 6: Intent-to-Treat Effect of Offering Algorithmic Decision Support

Switched 
plans

Very 
satisfied 

w/  
process

Decision 
conflict 
score

Search 
time > 1 
hour

Change in 
expected 
OOP cost

Chose an 
"expert" 
plan

(1) (2) (3) (4) (5) (6)

Information + Expert 0.08* 0.08* ‐0.14 0.08* ‐94.27* 0.06
(0.04) (0.04) (1.86) (0.03) (38.84) (0.03)

Information Only 0.01 0.06 ‐1.46 0.06 ‐58.67 0.05
(0.04) (0.04) (1.87) (0.03) (36.22) (0.03)

Mean of Dep. Var. in Control 0.28 0.39 21.06 0.75 ‐111.55 0.39

No. of Obs. 896 928 883 918 880 898

Mean of Dep. Var. 0.31 0.44 20.51 0.80 ‐160.23 0.41
Std. Dev. Of Dep. Var. 0.46 0.50 22.22 0.40 462.67 0.49
F‐test between arms (p‐value) 0.10 0.60 0.48 0.58 0.34 0.83

Table shows the intent to treat estimates. Columns (1) through (6) report the results of separate 
regressions for six outcome variables as reported by participants in the endline survey. We report 
coefficients of a regression of the dependent variable as specified in the column headers on the 
indicator variables for whether an individual was assigned to one of the two treatment arms, as well as 
control variables. The dependent variables are defined as follows. Column (1) uses a variable that 
interacts the response to the question (in endline survey) of whether the consumer switched her plan 
with a variable that was constructed by comparing which plans individuals reported having in the 
baseline and endline surveys. Column (2) outcome is an indicator for whether the individual chose "very 
satisfied" on a 5‐point scale satisfaction with the choice process question. Column (3) dependent 
variable is a decision conflict score constructed from underlying responses as described in the 
manuscript. Column (4) is a self‐reported assessment of how much time the individual spent choosing a 
Medicare Part D Plan.  Column (5) measures the savings in expected out of pocket costs between the 
plan that the individual had before the trial and the plan chosen after the intervention. This column 
restricts the regression to observations with cost changes within the 1st and 99th percentile of the 
distribution of cost change as this variable is highly skewed. Column (6) dependent variable is an 
indicator that take a value of one if the individual  choose one of the plans with top 3 algorithmic expert 
scores in the endline survey. All regressions include the following controls: age, indicator for being 
female, non‐white, married; median household income in census tract, percent of college graduates in 
census tract, count of prescription drugs in electronic medical records, Charlson score, indicator for 
using electronic medical records, number of message strands in electronic medical record system. In 
column 6 we in addition control for the baseline value of the outcome variable to reduce the noise. The 
unit of observation is individuals. Standard errors in parentheses are robust to heteroskedasticity.  * 
p<0.05; ** p<0.01;  *** p<0.001. 
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Table 7: Treatment-on-the-Treated Effect of Algorithmic Decision Support

Used 
software

Switched 
plans

Very 
satisfied 

w/  
process

Decision 
conflict 
score

Search 
time > 1 
hour

Index:  
software 

use  
intensity†

Change in 
expected 
OOP cost

Chose an 
"expert" 
plan

(1) (2) (3) (4) (5) (6) (7) (8)

Information + Expert 0.81*** 0.10* 0.10* ‐0.18 0.10* 0.14* ‐115.98* 0.07
(0.02) (0.05) (0.05) (2.27) (0.04) (0.07) (47.06) (0.04)

Information Only 0.80*** 0.02 0.08 ‐1.82 0.08 ‐ ‐73.11 0.07
(0.02) (0.05) (0.05) (2.32) (0.04) 0.00 (44.66) (0.04)

Mean of Dep. Var. in Control 0.00 0.28 0.39 21.06 0.75 ‐ ‐111.55 0.39

No. of Obs. 928 896 928 883 918 497 880 898

Mean of Dep. Var. 0.54 0.31 0.44 20.51 0.80 0.08 ‐160.23 0.41
Std. Dev. Of Dep. Var. 0.50 0.46 0.50 22.22 0.40 0.79 462.67 0.49
F‐test between arms (p‐value) 0.74 0.10 0.62 0.47 0.59 ‐ 0.35 0.84

Table shows the 2SLS estimates. Column (1) reports the first stage: difference in the probability of using the online tool by 
treatment arm assignment. By construction, individuals randomized into the control group had zero use of the software tool. 
The coefficients on the indicator variables for treatment arms thus measure compliance with assigned treatment. Columns (2) 
through (6) report the results of separate regressions for six outcome variables as reported by participants in the endline 
survey. We report coefficients of a regression of the dependent variable as specified in the column headers on the indicator 
variables for  whether an individual was assigned to one of the two treatment arms, as well as control variables. The 
dependent variables are defined as follows. Column (2) uses a variable that interacts the response to the question (in endline 
survey) of whether the consumer switched her plan with a variable that was constructed by comparing which plans individuals 
reported having in the baseline and endline surveys. Column (3) outcome is an indicator for whether the individual chose 
"very satisfied" in a 5‐point scale satisfaction with the choice process question. Column (4) dependent variable is a decision 
conflict score constructed from underlying responses as described in the manuscript. Column (5) is a self‐reported assessment 
of how much time the individual spent choosing a Medicare Part D Plan. Column (6) is an index measure that combines the 
five outcomes: whether the consumer viewed explanaiton buttons within the software, how often these buttons were clicked, 
the total number of actions within the software, the number of actions per login, and the total time that the individual spent 
within the software tool. Column (7) measures the savings in expected out of pocket costs between the plan that the 
individual had before the trial and the plan chosen after the intervention. This column restricts the regression to observations 
with cost changes in between the 1st and 99th percentile of the cost change variables that is highly skewed. Column (8) 
dependent variable is an indicator that take a value of one if the individual  choose one of the plans with top 3 algorithmic 
expert scores in the endline survey. All regressions include the following controls: age, indicator for being female, non‐white, 
married; median household income in census tract, percent of college graduates in census tract, count of prescription drugs in 
electronic medical records, Charlson score, indicator for using electronic medical records, number of message strands in 
electronic medical record system. In column 6 we in addition control for the baseline value of the outcome variable to reduce 
the noise. The unit of observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** 
p<0.01;  *** p<0.001. 

† Comparison between "InformaƟon Only" and "InformaƟon + Expert," since the outcome is not defined for the control group 
that did not have access to the software
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Table 8: Out-of-Sample Treatment Effect Heterogeneity - Plan Switching

Age Female
Non‐

White‡
Married

Income, 
$'000†

Share 
College†

Number 
Drugs

Charlson 
Score

Any EMR 
Use§

Intensity of 
EMR Use§~

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 72.77 0.51 0.27 0.61 89.64 0.47 3.86 1.06 0.99 4.07
2 73.32 0.53 0.28 0.60 121.48 0.62 5.20 1.20 0.99 6.39
3 73.30 0.50 0.36 0.61 110.09 0.53 3.99 1.27 0.67 3.06
4 75.02 0.55 0.42 0.48 104.66 0.52 4.25 1.23 0.42 1.10
5 75.38 0.60 0.40 0.37 108.17 0.58 4.93 1.02 0.40 1.88

1 73.88 0.51 0.24 0.60 111.78 0.58 5.41 1.41 0.99 8.70
2 74.14 0.56 0.31 0.66 145.65 0.68 5.09 1.16 0.83 5.97
3 73.15 0.56 0.39 0.55 113.78 0.59 2.91 0.59 0.67 1.05
4 73.96 0.56 0.38 0.46 87.89 0.50 3.40 0.78 0.55 0.53
5 74.66 0.50 0.41 0.41 74.93 0.38 5.41 1.85 0.43 0.25

Plan switch 
treatment 

effect quintile

~ Number of strands of electronic conversations 

Panel A: Information + Expert Recommendation Arm

Panel B: Information Only Arm

Table shows the mean of baseline demographic characteristics of the full sample of individuals that were invited to participate in the trial 
(29,451 individuals), by the quintile of their predicted indiviudal‐level treatment effect (ITT; Arm Information + Expert in Panel A and Arm 
Information Only in Panel B) on the probability of switching plans. In columns (1) through (10) we report the within quintile average of each 
baseline demographic characteristic as recorded in column headers. The unit of observation is individuals. 
‡ Non‐white includes "other" and missing responses
† Computed at census tract level
§ Measured within 3 years prior to the intervention
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Table 9: Selection into Software Use Conditional on Trial Participation

Switched 
plans

Very 
satisfied 

w/  
process

Decision 
conflict 
score

Search 
time > 1 
hour

Change in 
expected 
OOP cost

Chose an 
"expert" 
plan

(1) (2) (3) (4) (5) (6)

OLS

Information + Expert 0.17*** 0.07 ‐1.68 0.10** ‐158.12*** 0.11***
(0.04) (0.04) (1.81) (0.03) (39.16) (0.03)

Information Only 0.09* 0.06 ‐3.34 0.08* ‐91.72** 0.08*
(0.04) (0.04) (1.84) (0.03) (35.08) (0.03)

2SLS (Treatment on the Treated)

Information + Expert 0.10* 0.10* ‐0.18 0.10* ‐115.98* 0.07
(0.05) (0.05) (2.27) (0.04) (47.06) (0.04)

Information Only 0.02 0.08 ‐1.82 0.08 ‐73.11 0.07
(0.05) (0.05) (2.32) (0.04) (44.66) (0.04)

Implied Magnitude of Selection

Magnitude of Selection ‐ Arm A 0.07 ‐0.03 ‐1.50 0.00 ‐42.14 0.04
Magnitude of Selection ‐ Arm B 0.07 ‐0.02 ‐1.52 0.00 ‐18.61 0.01

No. of Obs. 896 928 883 918 880 898

Mean of Dep. Var. 0.31 0.44 20.51 0.80 ‐160.23 0.41
Std. Dev. Of Dep. Var. 0.46 0.50 22.22 0.40 462.67 0.49

Logged‐in into trial web page 0.21*** ‐0.014 ‐4.53 0.12 ‐168.7** 0.15**
(0.05) (0.09) (4.80) (0.08) (64.20) (0.06)

No. of Obs. 301 313 302 310 295 302
Mean of Dep. Var. 0.28 0.39 21.06 0.75 ‐111.55 0.39
Std. Dev. Of Dep. Var. 0.45 0.49 22.56 0.44 458.34 0.49

Table quantifies how much selection is present in the take‐up of treatment. Panel A reports OLS estimates 
of the association between software use and outcomes. Software use is set to zero for the control group 
that is not given access to software. Columns (1) through (5) report the results of separate regressions for 
six outcome variables as reported by participants in the endline survey. We report coefficients of a 
regression of the dependent variable as specified in the column headers on the indicator variables for  
whether an individual used software as provided in each treatment arm, as well as control variables. The 
dependent variables are defined in the same way as in the main ITT and LATE result tables.  We also repeat 
the results of 2SLS regressions to make the comparison convenient. The implied magnitude of selection in 
each arm is the difference between OLS and 2SLS coefficients. Panel B restricts the sample for individuals 
assigned to the control group. For these individuals, we report coefficients of a regression of the 
dependent variable as specified in the column headers and an indicator for whether an individual logged in 
the software page to receive the "control group" message that reminded individuals to choose their Part D 
plans, as well as control variables. All regressions include the following controls: age, indicator for being 
female, non‐white, married; median household income in census tract, percent of college graduates in 
census tract, count of prescription drugs in electronic medical records, Charlson score, indicator for using 
electronic medical records, number of message strands in electronic medical record system.  In column 6 
we in addition control for the baseline value of the outcome variable to reduce the noise. The unit of 
observation is individuals. Standard errors in parentheses are robust to heteroskedasticity. * p<0.05; ** 
p<0.01;  *** p<0.001. 

Panel A: Lower bound of selection; OLS versus 2SLS

Panel B: Upper bound of selection: Outcomes among those who take up treatment in control
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Table 10: Selection into Trial Participation and Predicted Treatment Effects

Switched 
plans

Very 
satisfied 

w/  
process

Decision 
conflict 
score

Search 
time > 1 
hour

Change in 
expected 
OOP cost

Chose an 
"expert" 
plan

(1) (2) (3) (4) (5) (6)

Not randomized 0.03*** 0.00* 0.87*** ‐0.02*** ‐6.68** 0.01***
(0.00) (0.00) (0.05) (0.00) (2.03) (0.00)

Mean among randomized 0.09 0.05 0.82 0.08 ‐59.96 0.02
Std. dev. among randomized 0.05 0.04 1.61 0.07 68.85 0.06

No. of Obs. 29451 29451 29451 29451 29451 29451

Mean of Dep. Var. 0.11 0.05 1.66 0.07 ‐66.37 0.03
Std. Dev. Of Dep. Var. 0.05 0.03 1.59 0.07 63.86 0.05

Not randomized 0.04*** 0.02*** 0.08 ‐0.03*** ‐3.92 0.01***
(0.00) (0.00) (0.08) (0.00) (2.33) (0.00)

Mean among randomized 0.02 0.05 ‐1.36 0.07 ‐24.00 0.03
Std. dev. among randomized 0.06 0.07 2.83 0.07 78.64 0.04

No. of Obs. 29451 29451 29451 29451 29451 29451

Mean of Dep. Var. 0.06 0.06 ‐1.28 0.05 ‐27.76 0.05
Std. Dev. Of Dep. Var. 0.06 0.06 2.56 0.07 78.74 0.03

Table shows the difference in predicted treatment effects between individuals who responded to the 
invitation to participate in the experiment and those who did not. Columns (1) through (6) report the 
results of separate regressions where the left hand side variable is the individual‐level prediction of 
the treatment effect form "Information + Expert" intervention (Panel A) or "Information Only" 
intervention (Panel B). We report coefficients on the indicator variable for whether an individual was 
in the randomized sample. 29,451 individuals were invited to participate. 1,185 entered the on‐line 
enrollment portal, verified that they were eligible to participate, participated in a pre‐enrollment 
survey and authenticated their identity. These individuals were randomized across three experimental 
arms.  Individual‐level treatment effects for each treatment arm are computed based on the 
generalized random forest algorithm (Wager and Athey 2018) as described in the text. The GRF 
algorithm was estimated using ten observables about individuals that are available in PAMF's 
administrative data and can hence be observed for the full starting sample of 29,451 individuals. The 
unit of observation in the regressions is individuals. Standard errors in parentheses are robust to 
heteroskedasticity.  * p<0.05; ** p<0.01;  *** p<0.001. 

Panel A: Information + Expert Treatment Effects

Panel B: Information Only Treatment Effects
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Table 11: Utility Model and Estimates of Noise in Beliefs

OOP Cost
CMS Star 
Rating

AARP 
Brand

Humana 
Brand

Silverscript 
Brand

(1) (2) (3) (4) (5)

ψ (Control Arm) ‐0.13 0.66 2.46 1.45 1.19
(0.01) (0.10) (0.08) (0.08) (0.12)

Interaction: λ (Info Only Arm) ‐0.08 0.90 0.53 0.70 ‐0.10
(0.02) (0.25) (0.23) (0.24) (0.25)

Interaction: η (Info+Expert Arm) ‐0.03 0.14 ‐0.38 0.36 ‐0.35
(0.01) (0.21) (0.20) (0.20) (0.25)

Panel B.1 ‐ assume treatment corrects 100% of noise

Utility weight under algorithmic treatment ‐0.17 0.80 2.08 1.81 0.84
0 27 0 95 0 44 0 19 0 29

Noise in beliefs about utility weight, 1+ξβ 1.27 1.95 1.44 1.19 1.29
‐0 38 ‐0 58 ‐0 18 ‐0 33 0 09

Noise‡ in beliefs about characteristic, 1+ξφ 0.62 0.42 0.82 0.67 1.09

Panel B.2 ‐ assume treatment corrects 80% of noise

Utility weight under algorithmic treatment ‐0.17 0.70 1.93 1.86 0.76
0 37 1 56 0 62 0 25 0 39

Noise‡ in beliefs about utility weight, 1+ξβ 1.37 2.56 1.62 1.25 1.39
‐0 43 ‐0 63 ‐0 21 ‐0 38 0 12

Noise‡ in beliefs about characteristic, 1+ξφ 0.57 0.37 0.79 0.62 1.12

Panel B ‐ estimates of noise

Panel A ‐ model estimates

Tables reports the estimates of empirical utility model and implied size of wedges in consumer's 
assessment of utility weights and product features. Panel A reports model. Each column corresponds to a 
plan feature included in the utility function. The model is restricted to plan features that consumers can 
observe on the first screen of experimental software. The model includes but we do not report a random 
coefficient on the OOP Cost parameter. Standard errors are reported in parentheses. Panel B translates 
coefficient estimates in Panel A into the estimates of the magnitude of noise wedges that can explain the 
differences in consumer choices across consumers that are exposed to treatment and consumers that are 
not exposed to treatment. Panel B.1 reports the estimates of wedges under the assumption that 
informational treatment completely eliminates the wedge in the perception of product features, and 
information + expert treatment completely eliminates the wedge in both the perception of product 
features and utility weights. In Panel B.2 we report the wedge estimates under the assumption that each 
treatment intervention eliminates only half of each wedge. 

‡ Noise terms are assumed to be mulƟplicaƟve relaƟve to the underlying uƟlity parameters, as in the 
following:                                                                
 A noise in beliefs about utility weights > 1, suggests that consumers put too much weight on the 
characteristic. A noise in beliefs about characteristics <1, suggests that consumers have a downward biased 
beliefs about the level of the characteristic or the probability that a particular product has a certain 
characteristic.

ݑ ൌ 1  ఉߦ ߚ 1  ఝߦ ߮.
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Table 12: Normative Implications of Noise in Beliefs

Mean
5th 

percentile‡
25th 

percentile

50th 

percentile

75th 

percentile

95th 

percentile

(1) (2) (3) (4) (5) (6)

Allow for 1+ξβ 48.0 0 0 0 57.6 237.6

           as % of Uij*  4.1 0 0 0 2.4 10.7

Allow for 1+ξ
φ

68.1 0 0 0 92.4 259.0

           as % of Uij*  4.8 0 0 0 3.9 11.6

Allow for both (1+ξ
β 
) and (1+ξ

φ
 )  65.4 0 0 0 100.6 296.6

           as % of Uij*  6.8 0 0 0 4.3 15.0

Probability of trial participation 0.040 0.041 0.041 0.041 0.038 0.039

Panel A ‐ welfare loss (L ), in $/year‡‡

The table reports the outcomes of utility model simulations on the sample of all 29,451 individuals that were 

originally invited to participate in the trial. For each individual we compute the level of the utility function for 

each plan under four scenarios: (1) using "true" utility as implied by the estimates of utility parameters under 

algorithmic treatment; (2) allowing for the noise in beliefs about utility weights as estimated in the model; 

(3) allowing for the noise in the beliefs about product characteristics as estimated in the model; (4) allowing 

for both sources of noise. To compute utility, for each individual we draw one random draw of a random 

coefficient and add the term that captures unobserved part of utility (εij ) computed as an average of 100 

random draws from Type II extreme value distribution for each individual. Each utility simulation generates a 

ranking of insurance plans. In Panel A, we report, for simulations 2, 3, and 4, how much consumers loose in 

"true" utility (as measured in simulation 1) when they choose a plan guided by plan ranking generated in 

simulations 2‐4. Utility loss is reported in dollars. The dollar value is obtained by diving the utility value by the 

absolute value of the coefficient on the out of pocket cost as estimated for the "true" utility model. For each 

dollar‐value of welfare loss, we also report the relative loss, as a percent of utility in simulation 1. For each 

simulation, we report the average loss or percent loss across the whole population (column 1), as well as the 

quintiles of the loss distribution (columns 2‐6). Pancel B reports the rate of trial participation for the whole 

sample (column 1), as well as within each  moment of the loss distribution as specified in columns 2‐6 from 

simulation #4 that allows for both wedges in beliefs.

‡ PercenƟles computed across 29, 451 individuals that were invited to parƟcipate in the trial

‡‡ See equaƟon (8) in the manuscript for the definiƟon of the welfare loss funcƟon

Panel B ‐ probability of trial take‐up
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