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1. Introduction  

To minimize their transaction costs, buy-side institutions, such as mutual funds and pension funds, 

use computer algorithms extensively to execute their trades (Frazzini, Israel, and Moskowitz 2014; 

O’Hara 2015). These buy-side algorithmic traders (B-Algos) differ from high-frequency traders 

(HFTs) in two fundamental ways (Hasbrouck and Saar 2013; Jones 2013; O’Hara 2015). First, B-

Algos may use limit orders to provide liquidity, but their goal is to minimize transaction costs 

rather than to profit from the bid–ask spread. Second, B-Algos are faster than humans but slower 

than HFTs (O’Hara 2015). Although buy-side institutions are major players in financial markets, 

their trading algorithms have no independent identity in existing models. From one point of view, 

financial markets include HFTs and everyone else, where the latter includes both sophisticated 

institutions and unsophisticated retail traders (see the survey by O’Hara [2015]). From the other 

point of view, algorithmic traders and HFTs are interchangeable (see the survey by Biais and 

Foucault [2014]). In this paper, we offer the first theoretical study of B-Algos by examining how 

they interact with HFTs and humans. 

In an environment populated by HFTs, B-Algos, and humans, who provides liquidity? Who 

demands liquidity, and when? Answering these questions is important because traditional liquidity 

providers, such as New York Stock Exchange (NYSE) specialists and NASDAQ dealers, almost 

disappear in modern electronic markets (Clark-Joseph, Ye, and Zi 2017). Everyone can provide 

liquidity, but no one is obligated to provide liquidity. We examine how this new environment of 

voluntary liquidity provision and demand reaches equilibrium. 

In our model, HFTs and two types of non-HFTs (B-Algos and humans) trade a security in 

a dynamic limit-order book (LOB). All traders are risk-neutral. A liquidity provider in the LOB 

submits limit orders (offers to buy or sell a stock at a specified price and quantity), and a liquidity 
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demander accepts a limit order using a market order. HFTs have no private value to trade, as they 

simply provide or demand liquidity to maximize their expected profits from trading. Non-HFTs 

arrive at the market following a Poisson process, bringing inelastic demand to buy or sell one unit 

of a security. Some of the non-HFTs are B-Algos, and they can choose between limit and market 

orders to minimize transaction costs; the remaining traders are humans, who use only market 

orders. 

 Our model includes one security whose fundamental value is public information. However, 

liquidity providers are subject to sniping risks (Budish, Cramton, and Shim 2015; BCS hereafter), 

because they may fail to cancel stale quotes during value jumps. B-Algos are always sniped during 

value jumps, and HFTs can reduce the probability of being sniped by 
1

𝑁
, where 𝑁 is the number of 

equally fast HFTs. HFTs in our model, like those in BCS, quote a positive bid–ask spread because 

of the sniping risk. Surprisingly, we find that B-Algos always quote better prices than HFTs as 

long as the price in a given trade is continuous enough, even though B-Algos face greater exposure 

to sniping risks. 

 Opportunity cost explains why B-Algos can afford more aggressive limit orders than HFTs. 

In our model, B-Algos have an inelastic need to trade. If they do not use limit orders to provide 

liquidity, they must use market orders and pay the bid–ask spread. Therefore, B-Algos incur a 

negative opportunity cost for providing liquidity, and they choose limit orders as long as their 

expected costs are lower in value than their market orders.  HFTs, on the other hand, do not have 

to trade, and their speed advantage leads to a positive opportunity cost for providing liquidity. An 

HFT who posts a limit order surrenders the profit from sniping the share once it becomes stale. 

Interestingly, although higher speed reduces HFTs’ sniping costs, it increases their opportunity 

costs by the same amount. Adding the sniping and opportunity costs together, B-Algos incur lower 
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overall costs for liquidity provision, and they always choose to provide liquidity when the price 

grid is continuous enough. Our prediction is consistent with that of Brogaard et al. (2015), who 

find that non-HFTs quote tighter bid–ask spreads than HFTs (Table A1), but non-HFTs usually 

quote only on one side of the market. 

 In the equilibrium under continuous pricing, B-Algos place limit orders at fundamental 

values. These limit orders execute immediately at zero transaction cost, because they immediately 

stimulate market orders from HFTs. Therefore, B-Algos can achieve minimum possible 

transaction costs even though the bid–ask spread is positive. This surprising result is driven by the 

following mechanism. Because HFTs can provide and demand liquidity at any time, they have one 

price they are willing to offer and another they are willing to accept. For example, an HFT offers 

an ask price to sell above the fundamental value, because the ask price is subject to sniping risk. 

The same HFT accepts an offer to buy at the fundamental value, because demanding liquidity 

entails no sniping risk. A B-Algo buyer never pays HFTs’ ask price, because she can induce HFTs 

to respond to her offer immediately with a price at or above the fundamental value. 

 In BCS, non-HFTs can use only market orders, and the sniping risk leads to a positive bid–

ask spread, motivating BCS to recommend frequent batch auctions as an alternative market design. 

Our model with continuous pricing shows that when all non-HFTs can choose between limit and 

market orders, transaction costs drop to zero despite the sniping risk. Also, when all traders can 

provide liquidity, the bid–ask spread can move in the direction that runs opposite to the true level 

of liquidity. When we increase the fraction of B-Algos, the bid–ask spread widens, because fewer 

non-HFTs bear the sniping risk. The transaction cost decreases, however, because more non-HFTs 

enjoy zero transaction costs. The market becomes infinitely liquid when all non-HFTs are B-Algos, 

but the bid–ask spread reaches its widest magnitude. 
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 Under continuous pricing, our model results in only one type of equilibrium for any 

parameter value, in which B-Algos provide liquidity to HFTs at the fundamental value while HFTs 

provide liquidity to humans. Next, we add discrete pricing to our model to reflect the tick size 

(minimum price variation) of one cent imposed by the U.S. Securities and Exchange Commission’s 

(SEC’s) Regulation National Market Systems (Reg NMS) Rule 612, and to evaluate the recent 

policy initiative that has increased the tick size from one cent to five cents. We find that discrete 

pricing generates rents for both providing and demanding liquidity. Such rents lead in turn to four 

types of equilibria, depending on the sniping risk and the fraction of B-Algos, thereby generating 

cross-sectional and time-series predictions regarding who provides and who demands liquidity. 

 First, discrete pricing generates rents for liquidity provision because it prevents the bid–

ask spread from reaching its break-even level. Such rents are most apparent when sniping risk is 

low relative to the tick size. In that case, the break-even bid–ask spread drops below one tick and 

the difference between a one-tick mandated bid–ask spread and the break-even bid–ask spread 

drives a speed race to capture the rents. In our first type of equilibrium, queuing equilibrium, B-

Algos cannot undercut the price for HFTs because of the binding tick size, and HFTs dominate 

liquidity provision through time priority. Yao and Ye (2018) find empirically that HFTs dominate 

liquidity provision when either the adverse selection risk is too low or the tick size is too large, 

which is consistent with the queuing equilibrium. 

 Second, discrete pricing also creates rents for liquidity demand. As sniping risk increases, 

the break-even spread for HFTs becomes wider than one tick, allowing B-Algos to submit limit 

orders at more aggressive prices. In that case, however, B-Algos can no longer submit limit orders 

at precisely the fundamental value unless it coincides with a price tick. To stimulate market orders 

from HFTs, B-Algos have to cross the fundamental value, and the difference between the price of 
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a stimulated order and the fundamental value then generates a speed race between HFTs to demand 

liquidity. In this type of equilibrium, stimulating equilibrium, B-Algos provide liquidity to HFTs; 

HFTs provide liquidity to humans because limit orders from B-Algos do not stay in the LOB. Also, 

because discrete pricing destroys the possibility of stimulating HFTs at a minimum possible cost 

of zero, under certain parameter ranges B-Algos may find it is less costly to submit limit orders 

that do not cross the midpoint.4 In our third type of equilibrium, undercutting equilibrium, B-Algos 

choose to provide liquidity to other non-HFTs instead of stimulating HFTs. 

 In the final type of equilibrium, crash equilibrium, HFTs submit orders outside the 

maximum value of the jump when the sniping risk or the fraction of non-HFTs who are B-Algos 

is too high. In the crash equilibrium, HFTs effectively quit liquidity provision through limit orders, 

because most liquidity demand for their quotes comes from sniping. Despite a dramatic increase 

in HFTs’ bid–ask spreads, the transaction costs for B-Algos do not increase relative to the 

stimulating equilibrium, because a B-Algo can still use stimulating orders to attract market orders 

from HFTs. A crash equilibrium, however, imposes a threat to traders who use only market orders. 

The concern is most severe following value jumps. For example, an upward jump may remove all 

quotes from B-Algos on the ask side. If a human submits a market order after the jump, her order 

would hit the price quoted by HFTs and lead to an extreme transaction price. A crash equilibrium 

provides a possible interpretation of flash crashes, which are sharp price movements in one 

direction followed by quick reversion (Biais and Foucault, 2014). There are certainly other drivers 

of flash crashes (Kirilenko et al. 2017; Kyle and Obizhaeva 2016), but our mechanism offers the 

following unique predictions: 1) Flash crashes are as likely to make prices go up as they are to 

                                                           
4 The phrase “certain parameter ranges” refers to a level of sniping risk that just forces HFTs to quit liquidity provision 

at a given price. Such price level, however, may still attract limit orders from B-Algos as long as they lose less money 

than stimulating limit orders. We analytically solve for the range in Proposition 4. 
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make prices go down, 2) sophisticated traders can avoid extreme execution price by using limit 

orders during flash crashes, 3) flash crashes are more likely to occur when an initial value jump 

clears the limit order book, and 4) flash crashes are less likely to occur when the share of trading 

by B-Algos is either too low or too high. When there are too few B-Algos, most non-HFTs demand 

liquidity from HFTs, so HFTs do not need to quote very wide spreads. When there are too many 

B-Algos, HFTs need to quote very wide spreads but B-Algos never hit such spreads. 

In the existing literature, information drives arms races in speed.5 Speed competition driven 

by discrete pricing works in the opposite direction. In the absence of information, the break-even 

spread is zero, which generates maximum rents for racing to the top of the liquidity provision 

queue. This new channel of speed competition reconciles the contradiction between existing 

channels of speed competition and the empirical facts. Carrion (2013), Hoffmann (2014), and 

Brogaard et al. (2015) show that speed reduces HFTs’ intermediation costs, particularly adverse-

selection costs. Such reduced costs should give HFTs a competitive advantage in providing 

liquidity for stocks that are subject to a higher adverse-selection risk (Han, Khapko and Kyle 2014). 

In turn, HFTs should dominate liquidity provision when the tick size is small because constraints 

that prevent them from offering better prices are less binding (Chordia et al. 2013). Yao and Ye 

(2018) find, however, that an increase in the adverse-selection risk reduces HFTs’ share in liquidity 

provision. Yao and Ye (2018) and O’Hara, Saar, and Zhong (2018) find that a reduction in the tick 

size reduces HFTs’ share in liquidity provision. Our model helps us to reconcile these 

contradictions. First, lower adverse-selection risk reduces the break-even spread below one tick 

and drives speed competition at constrained prices. Second, a large tick size drives speed 

                                                           
5 On the one hand, speed can reduce adverse-selection costs for liquidity providers and improve liquidity; on the other 

hand, speed can allow HFTs to adversely select other traders, which has a detrimental effect on liquidity (see Jones 

[2013], Biais and Foucault [2014], and Menkveld [2016] for surveys). Our model also incorporates these two types of 

speed competition, but the main driver of speed competition in our model is discrete pricing.   
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competition because it raises the spread above the break-even level. 

The closest paper to ours is BCS. We relax two assumptions made in BCS. First, we allow 

non-HFTs to use limit orders. By taking the initial step of modeling sophisticated non-HFTs, we 

not only develop new predictions but also generate new perceptions. Liquidity demand from HFTs 

once had a negative connotation because, in existing models, HFTs typically adversely select 

liquidity providers when they demand liquidity (BCS; Foucault, Kozhan, and Tham, 2017; 

Menkveld and Zoican, 2017). In our model, B-Algos can use aggressive limit orders to prompt 

HFTs to demand liquidity, which involves no adverse-selection costs. Instead, B-Algos reduce 

their transaction costs by stimulating HFTs to demand liquidity. This may help to explain why 

Latza, Marsh, and Payne (2014) find that limit orders executed within 50 milliseconds after 

submission incur no adverse-selection costs. 

Second, BCS consider continuous pricing, arguing for a more discrete market with respect 

to time, with frequent batch auctions. We consider discrete pricing and argue for a more continuous 

market with a lower tick size. We question the rationale for increasing the tick size to five cents, 

as proposed by the 2012 U.S. Jumpstart Our Business Startups (JOBS) Act. Proponents of 

increasing the tick size argue that a larger tick size increases liquidity, discourages HFTs, increases 

market-making profits, supports sell-side equity research and, eventually, increases the number of 

initial public offerings (IPOs) (Weild, Kim, and Newport 2012). Our results show that an increase 

in the tick size reduces liquidity, encourages speed racing between HFTs, and allocates resources 

to latency reduction. 

 

2. The Benchmark Model 

In this section, we set up and solve a model similar to that utilized in BCS. This section serves as 



9 

 

a benchmark against which to evaluate the impact of allowing non-HFTs to provide liquidity. 

2.1 Setup of the Benchmark Model   

We consider a continuous-time model with an infinite horizon. All the random variables in our 

model are mutually independent. Our model has one security, whose fundamental value, 𝑣𝑡 , 

evolves as a compound Poisson jump process at arrival rate 𝜆𝐽 , where 𝑡 runs continuously on 

[0,∞). 𝑣0 = 0 and jumps by 𝐽 = 𝑑 or −𝑑 with equal probability, where 𝑑 > 0. 𝑣𝑡  is common 

knowledge. 

Limit-Order Book with Continuous Pricing. The stock exchange operates as a continuous LOB. 

As in BCS, pricing is continuous in the benchmark model, and we consider the impact of discrete 

pricing in Section 4. Each trade in the LOB requires a liquidity provider and a liquidity demander. 

The liquidity provider submits a limit order, which is an offer to buy or sell at a specified price 

and quantity. The liquidity demander accepts the price and quantity of a limit order. Following 

value jumps, liquidity providers are subject to an adverse-selection risk if they fail to update stale 

quotes before liquidity demanders snipe them. Execution precedence for liquidity providers 

follows the price–time priority. Limit orders with higher buy or lower sell prices execute before 

less aggressive limit orders. For limit orders queuing at the same price, orders arriving earlier 

execute before later orders. The LOB contains all outstanding limit orders. Outstanding orders to 

buy are called bids, and outstanding orders to sell are called asks. The highest bid and lowest ask 

are called the best bid and ask (offer) (BBO), and the difference between them is the bid–ask 

spread. 

Two Types of Traders. The benchmark model includes two types of traders: HFTs and non-HFTs. 

All traders are risk-neutral and there is no time-discounting. Non-HFTs arrive at the market at 
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Poisson intensity 𝜆𝐼. Each Non-HFT has an inelastic need to buy or sell one unit of the security at 

equal probability. As in BCS, we assume non-HFTs can use only market orders, and we relax this 

assumption in sections 3 and 4. 𝑁 (2 ≤ 𝑁 ≤ ∞) HFTs receive no private value from trading. They 

always present at the market with the goal of maximizing profits from trading, and they can place 

or take limit orders at any time t. We assume that a HFT’s ability to place additional orders is not 

affected by her exiting orders. For example, all HFTs can snipe stale quotes following value jumps 

and sniping one’s own share is economically equivalent to order cancellation. HFTs are all equally 

fast, and when multiple HFT order messages (limit orders, market orders, or cancellations) reach 

the exchange at the same time, they are processed serially in a random order. 

Comments. Our benchmark model is essentially the same as that utilized in BCS, except that we 

simplify the jump size to 𝑑 or –𝑑 so that we can solve our model analytically when the price is 

discrete. This simplification leads to a trivial strategy of quoting a bid–ask spread around any 

possible future fundamental value 𝑣𝑡 ± 𝐾𝑑  where 𝐾 ∈ ℕ+ . We rule out such a possibility by 

focusing on the BBO around the current fundamental value 𝑣𝑡. Specifically, throughout the paper 

we assume that a limit order is cancelled if it has no chance to trade with a non-HFT before next 

jump occurs.6 As in BCS, to focus exclusively on the sniping risk we also assume that there is no 

inventory cost for HFTs to hold an asset and there is no asymmetric information on the asset’s 

fundamental value. 

2.2 Solution to the Benchmark Model  

                                                           
6 A trader can certainly submit a limit order far away from the current price and wait for the price to approach it. We 

argue that the trader’s transaction cost depends only on the market condition when the price approaches the limit order. 

For example, consider a $50 buy order for a security trading at $100. Conditional on the order’s execution, the expected 

fundamental value would be around $50, and the transaction cost would be a matter of a few ticks. When discrete 

pricing kicks in and execution priority matters, “allowing all traders to submit orders far away from the market” is 

equivalent to “letting all traders compete on execution priority once the market jumps to the price,” but the latter 

allows us to track fewer orders. In other words, slow traders lose execution priority with or without this assumption. 
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As in BCS, the benchmark model needs to characterize only the HFTs’ strategy. Let 𝑠 be the bid-

ask spread. We consider, without loss of generality, the expected payoff for an HFT’s limit sell 

order at 𝑣𝑡 +
𝑠

2
, 𝐿𝑃 (

𝑠

2
). 

   𝐿𝑃 (
𝑠

2
) =

 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
⋅
𝑠

2
+

 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
⋅ 𝐿𝑃 (

𝑠

2
) +

𝑁−1

𝑁

 𝜆𝐽/2

𝜆𝐼+𝜆𝐽
⋅ (

𝑠

2
− 𝑑) +

 𝜆𝐽/2

𝜆𝐼+𝜆𝐽
⋅ 0                (1) 

When non-HFTs demand liquidity only, a sell limit order from an HFT faces four types of 

events. At probability 
 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
, the next event is a buy order from a non-HFT, which leads to a profit 

of 
𝑠

2
 to the liquidity provider. At probability 

 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
, a non-HFT sell order arrives, which does not 

affect 𝐿𝑃 (
𝑠

2
) on the ask side, because HFTs immediately restore the previous state of the LOB by 

refilling the bid side. At probability 
 𝜆𝐽/2

𝜆𝐼+𝜆𝐽
, 𝑣𝑡 jumps upward by 𝑑, and all HFTs race to snipe stale 

quotes on the ask side. The conditional probability of being sniped by other HFTs is 
𝑁−1

𝑁
. The 

payoff of being sniped by other traders is (𝑣𝑡 +
𝑠

2
)  − (𝑣𝑡 + 𝑑) =

𝑠

2
− 𝑑. When 𝑣𝑡 jumps downward, 

the liquidity provider cancels the order, and the payoff is zero. 

The solution for equation (1) is: 

 𝐿𝑃 (
𝑠

2
) =

𝜆𝐼

𝜆𝐼+2𝜆𝐽

𝑠

2
−

𝜆𝐽

𝜆𝐼+2𝜆𝐽

𝑁−1

𝑁
(𝑑 −

𝑠

2
)                                         (2) 

Equation (2) reveals an additional intuition regarding the expected payoff for providing 

liquidity. With probability 
𝜆𝐼

𝜆𝐼+2𝜆𝐽
, a non-HFT takes the limit order, and the payoff is 

𝑠

2
; with 

probability 
𝜆𝐽

𝜆𝐼+2𝜆𝐽

𝑁−1

𝑁
, the limit order is sniped by other HFTs, and the payoff is (

𝑠

2
− 𝑑); with the 

remaining probability of 
𝜆𝐽

𝜆𝐼+2𝜆𝐽
(1 +

1

𝑁
), the limit order is cancelled, and the payoff is zero. 
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The outside option to provide liquidity at 𝑣𝑡 +
𝑠

2
 for one share is to potentially snipe the 

share when 𝑣𝑡 jumps. The value for this outside option, 𝑆𝑁 (
𝑠

2
), is zero when a non-HFT takes the 

share, and it remains 𝑆𝑁 (
𝑠

2
) when a non-HFT seller takes liquidity on the opposite side. Each 

sniper has a 
1

𝑁
 chance of sniping the share when 𝑣𝑡 jumps upward, and the payoff for the successful 

sniper is 𝑑 −
𝑠

2
. When 𝑣𝑡  jumps downward, the value to the sniper becomes zero because we 

assume that the liquidity provider cancels the order. Therefore,  

𝑆𝑁 (
𝑠

2
) =

 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
⋅ 0 +

 𝜆𝐼/2

𝜆𝐼+𝜆𝐽
⋅ 𝑆𝑁 (

𝑠

2
) +

1

𝑁

 𝜆𝐽/2

𝜆𝐼+𝜆𝐽
⋅ (𝑑 −

𝑠

2
) +

 𝜆𝐽/2

𝜆𝐼+𝜆𝐽
⋅ 0                  (3) 

The solution for equation (3) is: 

𝑆𝑁 (
𝑠

2
) =

𝜆𝐽

𝜆𝐼+2𝜆𝐽

1

𝑁
(𝑑 −

𝑠

2
)                        (4) 

In equilibrium, HFTs should be indifferent between liquidity provision and stale-quote 

sniping. Thus, equating (2) and (4) solves the equilibrium bid–ask spread 𝑠1
∗. As in BCS, the best 

bid and ask prices contain only one share, because undercutting 𝑠1
∗ or quoting a second share at 𝑠1

∗ 

loses money. We summarize the equilibrium as follows: 

Proposition 1 (BCS 2015). With a zero tick size and with non-HFTs demanding liquidity 

only), the equilibrium bid–ask spread is 𝑠1
∗ =

2𝜆𝐽

𝜆𝐼+𝜆𝐽
𝑑. 7  

(i) At almost all times 𝑡, 8 HFTs always maintain one unit in the LOB at the ask price 𝑣𝑡 +

                                                           
7 If we reduce the lot size to 

1

𝑙
 and allow B-Algos to slice their orders to 𝑙 consecutive child orders, HFTs can quote 

tighter bid–ask spreads with reduced lot sizes. 𝑠 → 0 when 𝑙 → ∞. 
8 HFTs’ stale quotes may be sniped during value jumps, but the status of the LOB restores immediately around the 

new fundamental value. 
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𝑠1
∗

2
 and one unit at the bid price 𝑣𝑡 −

𝑠1
∗

2
. The bid and ask prices may belong to different 

HFTs. 

(ii) Upon arrival, non-HFTs take liquidity from HFTs and pay 
𝑠1
∗

2
 as transaction costs. 

(iii) When 𝑣𝑡 jumps up (down), all HFTs race to take stale limit orders at the ask (bid) 

price.  

The key result in Proposition 1 is that 𝑠1
∗ > 0  and thus all non-HFTs pay a positive 

transaction cost even without fundamental uncertainty or inventory costs to HFTs for providing 

liquidity. This is essentially why BCS suggest frequent batch auctions to curb sniping. In the next 

section, we show non-HFTs are able to use limit orders to completely avoid the sniping cost.  

 

3. Continuous Pricing Model with B-Algos 

In this section, we relax only one assumption that is made in BCS. We allow a fraction of 𝛽 > 0 

non-HFTs to provide liquidity, but this seemingly small variation significantly changes the results 

reported in BCS. 

3.1 First Extension: Three Types of Traders 

From this section forward, we assume a fraction 𝛽 of non-HFTs can choose between limit 

orders and market orders. We call them B-Algos. We call the remaining fraction of 1 − 𝛽 non-

HFTs as humans. Our model allows 𝛽 to equal one, in which case our model includes only HFTs 

and B-Algos. When 𝛽 = 0, our model degenerates into the benchmark model. We consider B-

Algos to be execution desks of mutual funds or hedge funds, or brokers who represent the funds’ 

order flows. According to O’Hara (2015), B-Algos are slower than HFTs in reality, and B-Algos 
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are also slower than HFTs in our model. B-Algos’ object function is to minimize the expected 

transaction costs of fulfilling their trading needs. As our paper focuses on costs led by the sniping 

risk, we assume away the delay cost (Parlour 1998; Foucault 1999; Foucault, Kadan, and Kandel 

2005) for B-Algos. We allow B-Algos to update their orders at any time, although we require a B-

Algo to maintain her order within 𝑣𝑡 ± 𝑑 before her trading need is satisfied. 

When non-HFTs can provide liquidity, the four types of possible upcoming events in BCS 

expand to six types of events with corresponding possibilities: 

{
 
 
 
 
 

 
 
 
 
 

  

𝛽𝜆𝐼/2

𝜆𝐼+𝜆𝐽
 New B-Algo sells (BS)

𝛽𝜆𝐼/2

𝜆𝐼+𝜆𝐽
New B-Algo buys (BB)

(1−𝛽)𝜆𝐼/2

𝜆𝐼+𝜆𝐽
 New human sells (HS)

(1−𝛽)𝜆𝐼/2

𝜆𝐼+𝜆𝐽
 New human buys (HB)

𝜆𝐽/2

𝜆𝐼+𝜆𝐽
Value jumps up (UJ)

𝜆𝐽/2

𝜆𝐼+𝜆𝐽
Value jumps down (DJ)

                                      (5) 

As in BCS, only the ratio between the arrival intensity of the security’s value jumping over 

non-HFTs matters, and an order’s liquidity-provision revenue does not depend on the market 

velocity (Kyle and Obizhaeva, 2016). Therefore, we define  𝜅 ≡
𝜆𝐽

𝜆𝐼
 and the six probabilities 

become 
𝛽/2

𝜅+1
, 
𝛽/2

𝜅+1
, 
(1−𝛽)/2

𝜅+1
, 
(1−𝛽)/2

𝜅+1
, 
𝜅/2

𝜅+1
, and 

𝜅/2

𝜅+1
, respectively. 

3.2 Solution with Liquidity-providing non-HFTs 

BCS assume that non-HFTs demand liquidity only. We find that non-HFTs never demand liquidity 

if they are not forced to do so. We show this result by contradiction. 

 Suppose that B-Algos demand liquidity from HFTs and that HFTs quote a sell price of 
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𝑣𝑡 +
𝑠

2
. Then 

𝑠

2
 must be strictly greater than 0; otherwise, HFTs lose money by providing liquidity. 

A B-Algo who wants to buy then pays 𝑣𝑡 +
𝑠

2
 by demanding liquidity from HFTs. A strictly 

dominant strategy for B-Algos is to submit a buy limit order at price 𝑣𝑡 + 𝜀, where 𝜀 > 0 and can 

be arbitrarily small. Because the price of this buy limit order is above the fundamental value 𝑣𝑡, 

the order immediately stimulates HFTs to demand liquidity. The HFT who successfully takes the 

liquidity gains 𝜀; the B-Algo loses 𝜀 by providing liquidity, but the cost is lower if 𝜀 <
𝑠

2
. Therefore, 

we prove that B-Algos never demand liquidity from HFTs. 

The previous proof uncovers two economic mechanisms that are new to the literature. The 

first mechanism, the make–take spread, captures the difference in prices between a trader’s 

willingness to post and her willingness to accept an offer. Most market microstructure models do 

not include make–take spreads because liquidity providers and liquidity demanders cannot switch 

roles. Models with market makers, such as those used in Kyle (1985) and Glosten and Migrom 

(1985), exogenously assign the liquidity provider and liquidity demander roles. In studies on LOB 

(Foucault et al. [2005] among others), traders can choose a limit order or a market order upon 

arrival, but they can no longer update their roles after the initial decision. When traders are free to 

use limit and market orders at every point in time, our model shows that they have one price level 

that they are willing to offer and another price level that they are willing to accept. The divergence 

of these two price levels comes from the sniping risk. For example, a trader accepts a lower price 

to sell than the price at which she offers to sell because a sell limit order is subject to the sniping 

risk, whereas a sell market order is not. Because sniping is the only source of adverse selection in 

our model, the make–take spread for HFTs happens to be half of the bid–ask spread.9 An HFT 

                                                           
9 If B-Algos’ orders contain private information or if HFTs incur inventory costs, HFTs may not take liquidity from 

limit orders priced at 𝑣𝑡 and the make–take spread would be less than half of the bid–ask spread. 
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quoting an ask price of 𝑣𝑡 +
𝑠

2
 would accept a limit buy price of 𝑣𝑡. Therefore, a B-Algo buyer can 

use an aggressive limit order at price 𝑣𝑡 + 𝜀 (𝜀 → 0) to save the half-spread. The limit order at 

𝑣𝑡 + 𝜀 executes like a market order because of immediate execution. 

 The second mechanism, the opportunity cost of liquidity provision, explains why B-Algos 

can afford more aggressive limit order prices than HFTs. HFTs incur lower adverse selection costs 

for providing liquidity. During value jumps, an HFT is sniped at a probability of 
𝑁−1

𝑁
, whereas a 

B-Algo is sniped at a probability of one. An HFT, however, incurs a positive opportunity cost for 

liquidity provision. An HFT cannot profit from sniping a share once she provides liquidity for the 

share, and the probability of sniping conditional on a value jump is 
1

𝑁
. The positive opportunity 

cost exactly offsets the reduced sniping cost. B-Algos, on the other hand, enjoy negative 

opportunity costs for liquidity provision. B-Algos have to execute their trades. The outside option 

of providing liquidity is to demand liquidity by paying 
𝑠

2
. Therefore, B-Algos can afford a buy limit 

order at price 𝑣𝑡 + 𝜀 but HFTs cannot. 

 Proposition 2 characterizes the equilibrium. In the equilibrium, B-Algos always choose 

limit-order prices at 𝑣𝑡 and HFTs always immediately demand liquidity from B-Algos. The LOB 

effectively contains only one state: HFTs quote one share at 𝑣𝑡 +
𝑠2
∗

2
 and one share at 𝑣𝑡 −

𝑠2
∗

2
, and 

the LOB contains no limit order from B-Algos. In summary, B-Algos provide liquidity to HFTs, 

and HFTs provide liquidity to humans. 𝑠2
∗ equalizes the payoff of liquidity provision and stale-

quote sniping for HFTs. 

Proposition 2 (Stimulating Equilibrium). With zero tick size and a positive fraction of 

B-Algos (𝛽 > 0), the equilibrium bid–ask spread 𝑠2
∗ =

2𝜆𝐽

(1−𝛽)𝜆𝐼+𝜆𝐽
𝑑. 
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(i) At almost all times 𝑡, HFTs always maintain one unit in the LOB at ask price 𝑣𝑡 +

𝑠2
∗

2
 and one unit at bid price 𝑣𝑡 −

𝑠2
∗

2
. 

(ii) B-Algos submit limit orders at 𝑣𝑡 when they arrive, and all HFTs immediately take 

liquidity from B-Algos. 

(iii) When 𝑣𝑡 jumps up (down), all HFTs race to take stale limit orders at the ask (bid) 

price. 

 We call Proposition 2 the “Stimulating Equilibrium” because B-Algos, who have an 

internal need to trade, can “stimulate” HFTs to trade with them. Proposition 2 uncovers the 

existence of liquidity beyond that contained in displayed limit orders, in the sense that 

sophisticated traders can attract market makers by submitting aggressive limit orders. From an 

HFT’s perspective, providing liquidity with limit orders is costly because sniping risks must be 

priced in. Market orders, on the other hand, are not subject to sniping risks. 

In the existing literature, when HFTs demand liquidity, they usually adversely select other 

traders (BCS; Menkveld and Zoican 2017; Foucault, Kozhan, and Tham 2017). Consequently, 

HFTs’ liquidity demands often have negative connotations. Our model shows that HFTs can 

demand liquidity without adversely selecting other traders. Instead, the transaction cost is lower 

for B-Algos when HFTs demand liquidity than when B-Algos demand liquidity from HFTs. 

Therefore, researchers and policymakers should not evaluate the welfare impact of HFTs simply 

based on whether they provide or demand liquidity.  

The equilibrium spread 𝑠2
∗ has two interesting features. First, like 𝑠1

∗, 𝑠2
∗ is independent of 

the number of HFTs. This result is a consequence of the opportunity cost of providing liquidity. 

An increase in 𝑁 reduces the value of providing liquidity, because it increases the probability of 
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being sniped. An increase in 𝑁, however, reduces the value of sniping stale quotes by the same 

amount, because each sniper is less likely to be successful. Therefore, 𝑁  can affect adverse 

selection costs and opportunity costs, but it cannot affect the sum of these two costs. In turn, the 

equilibrium bid–ask spread does not depend on 𝑁 as long as there is more than one HFT. 

 Second, 𝑠2
∗ > 𝑠1

∗ > 0, which means that humans pay more when B-Algos can use limit 

orders. When more non-HFTs use limit orders, HFTs have to quote wider bid–ask spreads for the 

remaining market orders. In this sense, B-Algos reduce their transaction costs at the expense of 

humans. Corollary 1 shows that the total transaction costs for non-HFTs decreases as 𝛽 increases. 

That is, transaction costs for B-Algos decrease more than transaction costs for humans increase. 

Therefore, an increase in 𝛽 increases overall market liquidity and benefits B-Algos while reducing 

liquidity for humans. We denote 𝐶̅(𝛽) as the weighted average transaction cost for B-Algos and 

humans. 

Corollary 1. 𝑠2
∗ strictly increases in 𝛽 and 𝐶̅(𝛽) strictly decrease in 𝛽. When 𝛽 → 1, 𝑠2

∗ →

2𝑑 and 𝐶̅(𝛽) → 0. 

The quoted bid–ask spread is a common measure of liquidity. Corollary 1 shows that this 

measure can be misleading when every trader can provide liquidity. As 𝛽 increases, the quoted 

bid–ask spread widens, but transaction costs fall. When all non-HFTs are B-Algos, HFTs’ bid–ask 

spreads widen to 2𝑑 but transaction costs zero out.  

BCS show that continuous trading creates sniping risks and positive transaction costs for 

non-HFTs. Corollary 1 shows that their results no longer hold when all traders can provide liquidity. 

When 𝛽 = 1 , however, HFTs make zero profits in equilibrium, and they have no economic 
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incentive to invest in speed. In the next section, we show that discrete pricing generates rents for 

both providing and demanding liquidity, thereby triggering arms races for speed. 

 

4. Discrete Pricing 

In this section we add another realistic feature to our model: discrete pricing. In Section 4.1 we 

show that discrete pricing creates rents for providing liquidity. In Section 4.2 we show that discrete 

pricing also creates rents for demanding liquidity. These rents, in turn, destroy the unique type of 

equilibrium outlined in Section 3, in which B-Algos always provide liquidity to HFTs and HFTs 

always provide liquidity to humans. Discrete pricing generates four types of equilibrium depending 

on parameter values, which then leads to cross-sectional and time-series predictions regarding who 

provides liquidity to whom. 

 For illustration purposes, we set the pricing grid as {. . . , −
𝟑𝒅

𝟒
, −

𝒅

𝟒
,
𝒅

𝟒
,
𝟑𝒅

𝟒
, . . . }. Therefore, 

the tick size is 
𝑑

2
 and 𝑣𝑡 remains at the midpoint of the two nearest ticks after the fundamental value 

jumps. The intuition applied in this section, however, holds for any discrete tick size as long as B-

Algos are not always able to achieve zero transaction costs by submitting limit orders at 𝑣𝑡. Then, 

B-Algos may choose limit orders that reside in the LOB and the state of the LOB can explode as 

infinitely many B-Algos arrive. To reduce the number of states, we make the following 

assumptions that are common in the LOB literature with discrete pricing. It is worth noticing that 

none of these assumptions is binding when pricing is continuous. Therefore, we are able to 

compare the results under discrete pricing as well as under continuous pricing based on these 

assumptions. 
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Assumption 1: Limit orders must be price-improving, that is, they must narrow the spread 

by at least one tick. 

 Assumption 1 implies that no traders can queue after existing orders at the same price. 

Assumption 1 does not offer a binding constraint for equilibrium under continuous pricing, in 

which the best bid and offer contains only one share. We introduce Assumption 1 here to reduce 

the state of the LOB to 2𝑛, where 𝑛 is the number of price levels within the bid–ask spread. If we 

relax the assumption that traders can queue up to 𝑞 shares, we need to track (𝑞 + 1)𝑛 states of 

the LOB. The case for 𝑞 > 1  only increases mathematical complexity without offering any 

additional intuitions.10 We assume limit orders must be price-improving because we are tracking 

the best price. Assumption 1 is common in the LOB literature. For instance, Foucault, Kadan, 

and Kandel (2005) make the same assumption to reduce number of states of the LOB.11  

Assumption 2: 𝑁 = ∞ 

In Sections 2 and 3 we show that the number of HFTs does not affect the equilibrium bid–

ask spread quoted by HFTs. To simplify the analysis, we assume that the number of HFTs is 

infinite to drop 
𝑁−1

𝑁
 from our exposition and proofs. Consequently, the ex-ante expected sniping 

profit for any share is zero, and an HFT provides liquidity as long as its expected profit is greater 

than zero. 

Assumption 3: Non-spoofing: A trader cannot submit limit orders that they aim to cancel 

                                                           
10 The queue of B-Algos is finite because the execution probability associated with later queue positions is so low, 

and the sniping risk is so high, that B-Algos prefer using market orders or limit orders with better prices. Tracking the 

finite queue, however, can be complex as the state of the LOB depends on the random arrival of previous B-Algos. 

11 Goettler, Parlour, and Rajan (2005) allow limit orders to queue at the same price, but they have to rely on numerical 

solutions. 
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before executing them. 

We prevent both HFTs and B-Algos from spoofing, defined by the Dodd-Frank Act of 

2010 as “bidding or offering with the intent to cancel the bid or offer before execution.”12 Without 

this assumption, spoofing arises endogenously in our model because the tick size creates rents for 

resting limit orders. However, such rents may turn negative if an incumbent order loses execution 

priority to an undercutting order. Thus, the spoofer can submit a non-profitable undercutting order 

to force an incumbent’s profitable limit order to cancel, occupy the incumbent’s position, and then 

cancel the spoofing order. We rule out spoofing because it is illegal, and it is also not the focus of 

our paper.  

4.1. Rents for Providing Liquidity and Queuing Equilibrium  

Consider the extreme case when 𝜅 ≡
𝜆𝐽

𝜆𝐼
= 0, where the break-even spread in Propositions 1 and 2 

are both zero. Then, the bid–ask spread is binding at one tick, and the tick size becomes pure rent 

for providing liquidity. These rents generate speed races for providing liquidity. A similar intuition 

holds when the break-even bid–ask spread is smaller than one tick. The difference between the 

mandated one-tick minimum spread and the break-even spread creates rents for providing liquidity, 

and the time-priority rule allocates such rents to HFTs. B-Algos are not able to provide liquidity 

because they can neither win time priority nor place limit orders within the bid–ask spread. 

Therefore, a low sniping risk relative to the tick size leads to the queuing equilibrium, in which 

HFTs provide liquidity to both B-Algos and humans. 

                                                           
12 7 U.S.C.A. § 6c(a)(5)(C) 
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The key to characterizing the queuing equilibrium is to find the parameter value when the 

tick size is binding. Because of symmetry, we illustrate only the ask side of the LOB. Consider 

HFTs’ expected profits for providing liquidity at 𝑣𝑡 +
𝑑

4
, 𝐿𝑃 (𝜅,

𝑑

4
): 

𝐿𝑃 (𝜅,
𝑑

4
) =

 1

2𝜅+2
⋅
𝑑

4
+

 1

2𝜅+2
⋅ 𝐿𝑃 (𝜅,

𝑑

4
) +

 𝜅

2𝜅+2
⋅ (

𝑑

4
− 𝑑) +

 𝜅

2𝜅+2
⋅ 0                 (6) 

Because B-Algos do not provide liquidity under Assumption 1, four types of events can change 

the status of the LOB: 1) At probability 
 1

2𝜅+2
, the next event is a non-HFT buy order, and it leads 

to a profit of (𝑣𝑡 +
𝑑

4
)  − 𝑣𝑡 =

𝑑

4
 ; 2) at probability 

 1

2𝜅+2
, a non-HFT sell order arrives, and it does 

not affect 𝐿𝑃(𝜅,
𝑑

4
) on the ask side, because HFTs immediately refill the bid side and restore the 

previous state of the LOB; 3) at probability 
 𝜅

2𝜅+2
, the fundamental value 𝑣𝑡 jumps upward to 𝑣𝑡 +

𝑑, and the HFT sell limit order is sniped; the payoff from being sniped is (𝑣𝑡 +
𝑑

4
)  − (𝑣𝑡 + 𝑑) =

−
3𝑑

4
 and we no longer have the term 

𝑁−1

𝑁
 here because we assume 𝑁 = ∞; and 4) when 𝑣𝑡 jumps 

downward, the liquidity supplier cancels the order and joins the race to provide liquidity at a new 

BBO and the payoff is zero. Also, we write liquidity provision revenue as a function of both the 

half-spread and 𝜅 because what really matters for HFTs’ liquidity provision revenue is the arrival 

intensity of the security’s value-jumping over non-HFTs. The former imposes costs on liquidity 

provision, while HFTs make profits from the latter. The solution for equation (6) is: 

𝐿𝑃 (𝜅,
𝑑

4
) =

1

2𝜅+1

𝑑

4
−

𝜅

2𝜅+1

3𝑑

4
                                             (7) 

𝐿𝑃 (𝜅,
𝑑

4
) ≥ 0 when 𝜅 ≤

1

3
, which is the region in which HFTs sustain a one-tick bid–ask spread. 

Proposition 3. (Queuing Equilibrium) When Tick Size is 
𝑑

2
 and 𝜅 ≤

1

3
: 
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(i) At almost all times 𝑡, HFTs maintain one share at the ask price 𝑣𝑡 +
𝑑

4
 and one share 

at the bid price 𝑣𝑡 −
𝑑

4
. 

(ii) HFTs participate in two speed races: (a) the race to fill the queue when the depth at 

𝑣𝑡 ±
𝑑

4
 becomes zero; (b) the race to pick off all stale quotes following a value jump. 

(iii) All non-HFTs use market orders to trade upon arrival. 

 

The new feature of the queuing equilibrium is the race to provide liquidity at 𝑣𝑡 ±
𝑑

4
. When 

the market opens, each HFT sends two limit orders: one sell limit order at 𝑣0 +
𝑑

4
 and one buy limit 

order at 𝑣0 −
𝑑

4
. When a non-HFT arrives and takes the order at 𝑣𝑡 +

𝑑

4
 or 𝑣𝑡 −

𝑑

4
, HFTs race to 

refill the order. Following value jumps, HFTs race to provide liquidity at a half-spread of 
𝑑

4
 around 

the new fundamental value.  

4.2. Rents for Demanding Liquidity and Stimulating, Undercutting, and Crash Equilibriums 

When 𝜅 >
1

3
, the value of providing liquidity at 𝑣𝑡 ±

𝑑

4
 becomes negative. Therefore, HFTs no 

longer quote a bid–ask spread at one binding tick. Once B-Algos are able to place limit orders 

within HFTs’ BBO, one result immediately emerges following a similar intuition expressed in 

Proposition 2. B-Algos would never use market orders, because a stimulating buy limit order at 

𝑣𝑡 +
𝑑

4
 or a stimulating sell limit order at 𝑣𝑡 −

𝑑

4
 strictly dominates market orders. Discrete pricing, 

however, creates two new features that are not present with continuous pricing. 

First, the tick size generates rents for demanding liquidity. When pricing is continuous, B-

Algos can place limit orders at 𝑣𝑡. When pricing is discrete, B-Algos have to place buy limit orders 

at 𝑣𝑡 +
𝑑

4
 and sell limit orders at 𝑣𝑡 −

𝑑

4
 to attract HFTs. A rent of 

𝑑

4
 for market orders drives speed 

competitions for demanding liquidity. 
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Second, when pricing is continuous, B-Algos can achieve a minimum possible transaction 

cost by stimulating HFTs to demand liquidity. When pricing is discrete, a stimulating limit order 

incurs a transaction cost of 
𝑑

4
. Therefore, B-Algos may find it optimal to submit limit orders that 

do not cross the midpoint. 

These two new features generate three types of equilibria depending on the parameter 

values. Figure 1 illustrates the intuition underlying these three types of equilibria, and we will 

characterize the exact boundary that divides them in this subsection. Intuitively, when 𝜅 rises 

slightly above 
1

3
, HFTs retreat to 𝑣𝑡 ±

3𝑑

4
 because 𝑣𝑡 ±

𝑑

4
 loses money. B-Algos, however, are 

willing to submit limit orders at 𝑣𝑡 ±
𝑑

4
 as long as they lose less than 

𝑑

4
 in value, the cost of 

stimulating limit orders. We call this type of equilibrium undercutting equilibrium, in which B-

Algos provide liquidity to non-HFTs. As 𝜅 further increases, the cost of using limit orders at 𝑣𝑡 ±

𝑑

4
 increases but the cost of using stimulating limit orders remains at 

𝑑

4
. Thus, B-Algos submit limit 

orders at 𝑣𝑡 +
𝑑

4
 to buy or at 𝑣𝑡 −

𝑑

4
 to sell to stimulate HFTs to demand liquidity when 𝜅 is higher 

than the undercutting equilibrium but below the short-dashed line. As 𝜅 increases above the short-

dashed line, HFTs lose money even when they quote at 𝑣𝑡 ±
3𝑑

4
. Therefore, they choose to quote 

at 𝑣𝑡 ±
5𝑑

4
. We call this type of equilibrium the crash equilibrium because HFTs effectively quit 

liquidity provision by quoting a spread outside the jump size 𝑑. The share in traders of B-Algos, 

𝛽, plays a role that is similar to that played by 𝜅, because an increase in 𝛽 effectively reduces 

future market order flows and thereby increases the probability of being sniped for limit orders. 

[Insert Figure 1 about here] 

We present the three types of equilibrium in the order of their complexity. In Subsection 
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4.2.1 we present the stimulating equilibrium under discrete pricing, in Subsection 4.2.2 we present 

the undercutting equilibrium, and in Subsection 4.2.3 we present the crash equilibrium. 

4.2.1 Stimulating Equilibrium under Discrete Pricing   

In this subsection, we characterize the stimulating equilibrium, in which B-Algos use buy (sell) 

limit orders at 𝑣𝑡 +
𝑑

4
 (𝑣𝑡 −

𝑑

4
) to stimulate market orders from HFTs, and HFTs choose to submit 

limit orders at 𝑣𝑡 ±
3𝑑

4
 to provide liquidity to humans. Proposition 4 summarizes the stimulating 

equilibrium. 

Proposition 4. (Stimulating Equilibrium under Discrete Pricing) When the tick size is 

𝑑

2
 and 

−3𝛽+√9𝛽2−8𝛽+16

4
≤ 𝜅 ≤ 3(1 − 𝛽): 

(i) At almost all times 𝑡, HFTs maintain one share at the ask price 𝑣𝑡 +
3𝑑

4
 and one share 

at the bid price 𝑣𝑡 −
3𝑑

4
. 

(ii) B-Algo buyers submit limit orders at 𝑣𝑡 +
𝑑

4
 and B-Algo sellers submit limit orders at 

𝑣𝑡 −
𝑑

4
. 

(iii)  HFTs participate in three speed races: (a) the race to pick off all stale quotes following 

value jumps, (b) the race to fill the queue when the depth at 𝑣𝑡 ±
3𝑑

4
 becomes zero, and 

(c) the race to take the liquidity offered by B-Algos. 

Part 3 of Proposition 4 reveals a new type of speed competition: racing to be the first to 

take the liquidity offered by stimulating limit orders. This race does not exist under continuous 

pricing, because B-Algos leave no rents for HFTs. This race also does not exist under queuing 

equilibrium, because there is no price level at which to submit stimulating limit orders. Stimulating 
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equilibrium retains the two speed races discussed above. As occurs under queuing equilibrium, 

HFTs still race for the top queue positions. Even if the tick size is not binding, discrete pricing still 

creates rents for liquidity provision, because the bid–ask spread quoted by HFTs would be wider 

than the break-even spread, unless in the knife-edge case they happen to be identical. Finally, under 

stimulating equilibrium and all the equilibria in our model, HFTs always race to snipe stale quotes. 

4.2.2 Undercutting Equilibrium  

In this subsection, we characterize the undercutting equilibrium, in which HFTs quote 𝑣𝑡 +
3𝑑

4
 to 

sell and 𝑣𝑡 −
3𝑑

4
 to buy, and B-Algos quote 𝑣𝑡 +

𝑑

4
 to sell and 𝑣𝑡 −

𝑑

4
 to buy when these price levels 

contain no other limit orders. An undercutting equilibrium occurs when 
1

3
< 𝜅 <

−3β+√9β2−8β+16

4
. 

If 𝜅 ≤
1

3
, the sniping risk is so low that HFTs will find it profitable to quote a binding one tick. If 

𝜅 ≥
−3β+√9β2−8β+16

4
, the sniping risk is so high that B-Algos will find it optimal to use stimulating 

limit orders at a cost of 
𝑑

4
. 

 The undercutting equilibrium includes an additional feature that is not present under the 

previously presented equilibria. Because B-Algos leave no resting limit orders under any of those 

equilibria, the LOB as referenced in previous sections effectively contains only one state and HFTs 

immediately restore the unique equilibrium state after any event. After B-Algos leave limit orders 

on the book, the LOB contains four states under simplifying Assumption 1. We define the state of 

the LOB as (𝑖, 𝑗), where 𝑖 represents the number of B-Algos’ limit orders on the same side of the 

LOB, and 𝑗 denotes the number of B-Algos’ limit orders on the opposite side of the LOB. For 

example, for a trader who wants to buy, 𝑖 represents the number of B-Algos’ limit orders on the 

bid side, and 𝑗 represents the number of B-Algos’ limit orders on the ask side. Then,   
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(0,0) No limit order from B-Algos
(1,0) A B-Algo limit order on the same side

(0,1) A B-Algo limit order on the opposite side

(1,1) B-Algo limit orders on both sides

 

The core of Proposition 5 characterizes HFTs’ strategies in each state and for each event. 

Denote the payoff of an HFT who supply liquidity at state (𝑖, 𝑗) as 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
). HFTs will 

quote a price at 𝑣𝑡 ±
3𝑑

4
 if 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,

3𝑑

4
) ≥ 0 . 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,

3𝑑

4
) , in turn, depends on all the 

payoffs of all other states in the book, because the six types of events outlined in equation (5) 

transit the LOB from one state to the other. Figure 2 illustrates the dynamics of such transitions. 

To take one example, consider 𝐿𝑃(0,0) (𝜅, 𝛽,
3𝑑

4
) for an HFT on the ask side of the LOB:13 

1) A B-Algo buyer undercuts the bid side at 𝑣𝑡 −
𝑑

4
 and changes 𝐿𝑃(0,0) (𝜅, 𝛽,

3𝑑

4
)  to 

𝐿𝑃(0,1) (𝜅, 𝛽,
3𝑑

4
). 

2) A B-Algo seller undercuts the ask side at 𝑣𝑡 +
𝑑

4
 and changes 𝐿𝑃(0,0) (𝜅, 𝛽,

3𝑑

4
)  to 

𝐿𝑃(1,0) (𝜅, 𝛽,
3𝑑

4
). 

3) A human buyer submits a market buy order and the HFT gains 
3𝑑

4
. 

4) A human seller submits a sell market order, HFTs race to fill the bid side immediately, and 

𝐿𝑃(0,0) (𝜅, 𝛽,
3𝑑

4
) remains the same. 

5) In an upward value jump, the limit order on the ask side loses 
𝑑

4
. 

6) In a downward value jump, the liquidity provider cancels the limit order, thereby changing 

𝐿𝑃(0,0) (𝜅, 𝛽,
3𝑑

4
) to zero. 

                                                           
13 HFTs make independent decisions on bid and ask sides. The state (𝑖, 𝑗) for one side is state (𝑗, 𝑖) for the other side. 
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[Insert Figure 2 about here] 

The following equation system summarizes the dynamics described above: 

{
 
 
 
 

 
 
 
 𝐿𝑃(0,0) (𝜅, 𝛽,

3𝑑

4
) = 𝑝1𝐿𝑃̅̅̅̅

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1𝐿𝑃̅̅̅̅

(1,0) (𝜅, 𝛽,
3𝑑

4
) +              𝑝2

3𝑑

4
            + 𝑝2𝐿𝑃

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ⋅ 0

𝐿𝑃(1,0) (𝜅, 𝛽,
3𝑑

4
) = 𝑝1𝐿𝑃̅̅̅̅

(1,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1𝐿𝑃

(1,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃̅̅̅̅

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃

(1,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ⋅ 0

𝐿𝑃(0,1) (𝜅, 𝛽,
3𝑑

4
) = 𝑝1𝐿𝑃

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1𝐿𝑃̅̅̅̅

(1,1) (𝜅, 𝛽,
3𝑑

4
) +              𝑝2

3𝑑

4
             + 𝑝2𝐿𝑃̅̅̅̅

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ⋅ 0

𝐿𝑃(1,1) (𝜅, 𝛽,
3𝑑

4
) = 𝑝1𝐿𝑃̅̅̅̅

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1𝐿𝑃̅̅̅̅

(1,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃̅̅̅̅

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃̅̅̅̅

(1,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ⋅ 0

(8) 

where 𝑝1 =
𝛽𝜆𝐼/2

𝜆𝐼+𝜆𝐽
=

𝛽

2+2𝜅
, 𝑝2 =

(1−𝛽)𝜆𝐼/2

𝜆𝐼+𝜆𝐽
=

1−𝛽

2+2𝜅
, and 𝑝3 =

𝜆𝐽/2

𝜆𝐼+𝜆𝐽
=

𝜅

2+2𝜅
 are the probabilities that 

the next event is the arrival of a B-Algo buyer (seller), the arrival of a human buyer (seller), and 

the upward (downward) jump of the fundamental value, respectively. 𝐿𝑃̅̅̅̅ (𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) =

max{0, 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
)}  reflects the fact that HFTs can simply choose not to submit a limit order 

or cancel an existing limit order once the payoff becomes negative. 

Equation system (8) comprises four equations. Each equation shows the payoff for HFTs’ 

liquidity provision under each state (𝑖, 𝑗), which depends on the payoffs of other states. Depending 

on the next arrival event, the state of the LOB will change, as will the HFT’s liquidity-provision 

profits, at 𝑣𝑡 ±
3𝑑

4
. 

Proposition 5. (Undercutting Equilibrium): When the tick size is 
𝑑

2
 and  

1

3
< 𝜅 <

−3𝛽+√9𝛽2−8𝛽+16

4
, the equilibrium is characterized as follows: 

1. B-Algos who intend to buy (sell) submit limit orders at price 𝑣𝑡 −
𝑑

4
 (𝑣𝑡 +

𝑑

4
 ) if no existing 

limit orders sit at that price level, or buy (sell) limit orders at price 𝑣𝑡 +
𝑑

4
 (𝑣𝑡 −

𝑑

4
 ) 

otherwise.  

2. HFTs’ strategy: 
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a. HFTs provide liquidity at 𝑣𝑡 +
3𝑑

4
 or 𝑣𝑡 −

3𝑑

4
 if 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,

3𝑑

4
) ≥ 0 at state (𝑖, 𝑗). 

𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) is determined by the transition matrix (8). 

b. HFTs race to snipe stale quotes from HFTs and B-Algos during value jumps. 

c. HFTs race to take stimulating limit orders from B-Algos. 

In undercutting equilibrium, B-Algos submit undercutting limit orders that rest in the LOB. 

Their goal is to provide liquidity to other non-HFTs, though HFTs may snipe the undercutting 

limit orders following during value jumps. Though B-Algos have higher sniping costs, they incur 

lower opportunity costs than HFTs when providing liquidity. Therefore, their resting limit orders 

can have more aggressive price than the quotes from HFTs.  

The undercutting equilibrium offers one new feature relative to previous equilibria. In 

undercutting equilibrium, HFTs’ depth at their best quotes is not constant, because they need to 

respond to B-Algos’ undercutting orders. Therefore, HFTs may update their quotes even if the 

fundamental value does not change at all. For example, when 𝜅 = 0.5, 𝛽 = 0.6 , we have 

𝐿𝑃(0,𝑗) (𝜅, 𝛽,
3𝑑

4
) > 0  and 𝐿𝑃(1,𝑗) (𝜅, 𝛽,

3𝑑

4
) < 0 . 14  HFTs provide liquidity at a half spread of 

3𝑑

4
 when there is no undercutting order, but the depth at a half spread of 

3𝑑

4
 becomes zero once an 

undercutting order changes the book state to (1, 𝑗) . If a market order executes against the 

undercutting order from the B-Algo, the state of the LOB change back to (0, 𝑗). HFTs again find 

that providing liquidity at a half spread of 
3𝑑

4
 profitable and races to provide liquidity at such spread.  

Therefore, the undercutting equilibrium provide one channel to explain the frequent addition and 

cancellation of HFTs’ quotes (Biais and Foucault [2014]; Hasbrouck and Saar [2013]). 

4.2.3 Crash Equilibrium  

                                                           
14 We analytically solve them in the proof of Proposition 5. 
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In this subsection, we show that when the sniping risk is high or when the share of trading by B-

Algos is large, HFTs cannot make profits at any price level within the jump size. They must then 

quote a bid–ask spread that is wider than the jump size and thus effectively quit providing liquidity. 

Proposition 6 shows that HFTs retreat to 𝑣𝑡 ±
5𝑑

4
 when the jump size is 𝑑. Corollary 2 generalizes 

the intuition of Proposition 6 by allowing larger jump sizes. We call this equilibrium the crash 

equilibrium because it provides an intuition for flash crashes, defined by Biais and Foucault (2014) 

as sharp price movements in one direction followed by quick reversion. 

 Proposition 6 shows that, when the jump size is 𝑑, HFTs quote 𝑣𝑡 ±
5𝑑

4
 when 𝜅 is greater 

than max {3(1 − 𝛽),
1

3
}. Therefore, a B-Algo seller can choose from four price levels: 𝑣𝑡 +

3𝑑

4
, 

𝑣𝑡 +
𝑑

4
, 𝑣𝑡 −

𝑑

4
, or 𝑣𝑡 −

3𝑑

4
. The proof of Proposition 6 shows that a B-Algo seller uses only two 

price levels: 𝑣𝑡 +
3𝑑

4
 and 𝑣𝑡 −

𝑑

4
. Here we offer the intuition underlying this result. 

Selling at 𝑣𝑡 −
𝑑

4
 strictly dominates 𝑣𝑡 −

3𝑑

4
 because both price levels immediately prompt 

HFTs to demand liquidity, and 𝑣𝑡 −
𝑑

4
 has a lower cost of 

𝑑

4
. Selling at 𝑣𝑡 −

𝑑

4
 also strictly 

dominates 𝑣𝑡 +
𝑑

4
 because we show in Proposition 4 that B-Algos prefer 𝑣𝑡 −

𝑑

4
 to 𝑣𝑡 +

𝑑

4
 when 

𝜅 >
−3β+√9β2−8β+16

4
, and the sniping risk is 𝜅 > max {3(1 − 𝛽),

1

3
} >

−3β+√9β2−8β+16

4
 in the 

crash equilibrium.  In summary, a stimulating limit order at price 𝑣𝑡 −
𝑑

4
 strictly dominates both a 

more aggressive stimulating limit order at 𝑣𝑡 −
3𝑑

4
 and a regular limit order at 𝑣𝑡 +

𝑑

4
 for a B-Algo 

seller. 

Finally, sell limit orders at 𝑣𝑡 +
3𝑑

4
 dominate stimulating limit orders at 𝑣𝑡 −

𝑑

4
. Quotes at 
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𝑣𝑡 +
3𝑑

4
 lose 

𝑑

4
 in value jumps but have strictly positive profits when a human takes the quote, so 

its expected transaction cost is lower than 
𝑑

4
. Therefore, B-Algo sellers start with a quote at 𝑣𝑡 +

3𝑑

4
 

when the price level does not contain an order; otherwise, they use stimulating limit orders. We 

summarize these results in Proposition 6. 

Proposition 6 (Crash Equilibrium). When tick size is 
𝑑

2
 and 𝜅 > max {3(1 − 𝛽),

1

3
} : 

(i) At almost all times 𝑡, HFTs maintain one share at the ask price 𝑣𝑡 +
5𝑑

4
 and one share at 

the bid price 𝑣𝑡 −
5𝑑

4
. 

(ii) A B-Algo buyer submits a buy limit order at price 𝑣𝑡 −
3𝑑

4
 and a B-Algo seller submits a 

sell limit order at price 𝑣𝑡 +
3𝑑

4
 if the price levels have no limit orders. Otherwise, B-Algo 

buyers submit stimulating buy limit orders at price 𝑣𝑡 +
𝑑

4
, and B-Algo sellers submit 

stimulating sell limit orders at price 𝑣𝑡 −
𝑑

4
. 

(iii) HFTs participate in three speed races: (a) the race to pick off all stale quotes following 

value jumps; (b) the race to fill the order at 𝑣𝑡 ±
5𝑑

4
; (c) the race to take the stimulating 

liquidity offered by B-Algos at 𝑣𝑡 ±
𝑑

4
; 

One main feature of a crash equilibrium is large variations in transaction prices. A human 

buyer may pay 𝑣𝑡 +
5𝑑

4
 if she hits the quote given by HFTs. A B-Algo buyer, however, pays at 

most 𝑣𝑡 +
𝑑

4
, which is the same price she pays under the stimulating equilibrium. Therefore, an 

increase in sniping risk 𝜅 has a much smaller impact on B-Algos than on humans. Corollary 2 

shows that the size of a jump also has a very limited impact on a transaction price for B-Algos. 
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Corollary 2. (Crash Equilibrium with Wider Jump Sizes) For any jump size 𝐽 = 𝑚𝑑 

where 𝑚 ∈ ℕ+, when 𝜅 > 𝑚𝑎𝑥{
1

4𝑚−1
, (4𝑚 − 1)(1 − 𝛽)}, HFTs quote one share at 𝑣𝑡 ± (𝑚 +

1

4
) 𝑑. B-Algos submit regular buy limit orders at 𝑣𝑡 − (𝑚 −

1

4
) 𝑑 and sell limit orders at 𝑣𝑡 +

(𝑚 −
1

4
)𝑑  when the price level is available. Otherwise B-Algos submit stimulating buy limit 

orders at 𝑣𝑡 +
𝑑

4
 and sell limit orders at 𝑣𝑡 −

𝑑

4
. 

An increase in the potential jump size further increases the buy price for a human, but the 

buy price for B-Algos remains bounded by 𝑣𝑡 +
𝑑

4
. Therefore, a flash crash occurs when a (naïve) 

market order hits the quotes of an HFT. In our model, we use flash crashes to refer to both the 

market wide flash crashes such as the flash crash on May 6, 2010, in which Dow Jones plunged 

998.5 points, and the 18,520 individual stock mini-flash crashes (Johnson et al. 2013). Flash 

crashes led by the mechanism outlined in Proposition 6 and Corollary 2 have the following two 

features. First, Flash crashes are equally likely to go up than to go down. Second, B-Algos can still 

trade at low transaction costs around flash crashes, although they are more likely to use stimulating 

limit orders to attract HFTs. 

 Regarding the first prediction, Nanex, the firm that invented the concept of the mini-flash 

crash, finds that mini-flash crashes are equally likely to be upward or downward. Indeed, even 

during the flash crash on May 6, 2010, in which the Dow Jones plunged 998.5 points, some stocks, 

including Sotheby's, Apple Inc., and Hewlett-Packard, increased in value to over $100,000 in price 

(SEC, 2010). More broadly, although the stock market experienced a market-wide flash crash, the 

https://en.wikipedia.org/wiki/Sotheby%27s
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Hewlett-Packard
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treasury market experienced a flash rally on October 15, 2014.15 Therefore, traditional theories 

explaining market crashes, such as that posited by Huang and Wang (2009), cannot explain this 

symmetric pattern, because these theories work well for crashes but not for rallies. 

 The second prediction implies that sophisticated traders can still trade in both directions 

during flash crashes and flash rallies without incurring large transaction costs, because such flash 

crashes and flash rallies are driven by naïve market orders. This prediction, which is also unique 

for our model, has not been tested. However, Federal Reverse Board Governor Lael Brainard 

mentioned a contradictory dynamic in market-turmoil episodes: 16  trading activity continues 

despite a wider spread and lower depth. She then points out that “the dynamic nature of liquidity 

provision by high-speed market makers makes static measures of liquidity, such as posted bid–ask 

spreads and market depth, less useful.” Our model provides one possible way to reconcile this 

contradiction: when market turmoil occurs, sophisticated traders’ trading costs can be much lower 

than the displayed bid–ask spread. 

The time-series patterns of mini-flash crashes reported in Brogaard et al. (2018) support 

our mechanism. They show the following pattern. Ten seconds before a mini-flash crash, HFTs 

demand liquidity from non-HFTs. At the time of a mini-flash crash, HFTs supply liquidity to non-

HFTs, but at a much wider bid–ask spread. The authors also find that liquidity provision during 

the mini-flash crash is profitable. This evidence is consistent with the theoretical mechanism for 

mini-flash crashes in our model: (1) slightly before a mini-flash crash, HFTs snipe limit orders 

                                                           
15 On July 13, 2015 a joint staff report was released on the findings of the Treasury flash rally by the U.S. Department 

of the Treasury, the Board of Governors of the Federal Reserve System, the Federal Reserve Bank of New York, the 

U.S. Securities and Exchange Commission, and the U.S. Commodity Futures Trading Commission. 
16 Brainard, L. (2018). “The Structure of the Treasury Market: What Are We Learning?” The Evolving Structure of 

the U.S. Treasury Market Fourth Annual Conference Hosted by the Federal Reserve Bank of New York, New York, 

New York. 
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from other traders; (2) a mini-flash crash occurs when a market order hits HFTs’ quotes that are 

away from the market; thus, HFTs profit when a mini-flash crash occurs. 

An increase in 𝛽 creates two competing economic forces that might drive flash crashes. An 

increase in the fraction of B-Algos increases the probability that HFTs will provide quotes far 

away from the market, but sophisticated B-Algos never hit these quotes. When all non-HFTs are 

humans, or when all non-HFTs are B-Algos, flash crashes do not occur. Therefore, flash crashes 

result from interactions between the three types of traders. 

 

5. Predictions and Policy Implications  

By adding liquidity-providing non-HFTs and discrete pricing, our model not only rationalizes a 

number of puzzles in the literature, it also generates new testable predictions. In Subsection 5.1, 

we summarize the predictions that are driven mainly by liquidity-providing non-HFTs. In 

Subsection 5.2, we summarize the predictions that are driven by discrete pricing. In Subsection 

5.3, we discuss the policy implications of our paper. 

5.1 Predictions Driven by Liquidity-providing Non-HFTs  

In Prediction 1, we posit that B-Algos tend to quote more aggressive prices than HFTs. 

Prediction 1 (Price Priority): Non-HFTs are more likely to establish price priority in 

liquidity provision. 

Brogaard et al. (2015) and Yao and Ye (2018) find that non-HFTs are more likely than HFTs to 

establish price priority. Their results are puzzling because existing channels suggest that HFTs 

should quote more aggressive prices, as they incur lower adverse-selection costs (see Jones [2013] 

and Menkveld [2016]) surveys), lower inventory costs (Brogaard et al. 2015) and lower operational 
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costs (Carrion 2013). Our model shows that the opportunity cost of providing liquidity can 

reconcile this contradiction. B-Algos incur lower opportunity costs when providing liquidity, and 

they can afford more aggressive limit orders as long as they cost less to execute than market orders. 

Prediction 2 (Negative Correlation between the Bid–Ask Spread and Liquidity): 

Technology shocks that increase the fraction of B-Algos widen the bid–ask spread but reduce the 

overall transaction cost. 

Black (1971) describes a liquid market intuitively in the following manner:  

“The market for a stock is liquid if the following conditions hold:  

(1) There are always bid and asked prices for the investor who wants to buy or sell small amounts 

of stock immediately. 

(2) The difference between the bid and asked prices (the spread) is always small. 

(3) An investor who is buying or selling a large amount of stock, in the absence of special 

information, can expect to do so over a long period of time at a price not very different, on average, 

from the current market price . . .”  

Conditions (1) through (3) were internally consistent when Black (1971) was first 

published. At that time most traders executed trades by paying the bid–ask spread to dealers or 

market makers. In the current market, every trader can use limit orders, and conditions (1) through 

(3) may be internally inconsistent. In Proposition 2, an increase in 𝛽 will widen the bid–ask spread 

because HFT market makers receive less non-HFT order flows. On the other hand, the average 

transaction cost for non-HFTs drops. In the extreme case in which 𝛽 = 1, a market is infinitely 

liquid when all non-HFTs are B-Algos, because every trader pays zero transaction costs. At the 

same time, the bid–ask spread is at its widest. Proposition 2 and Corollary 1 suggest that we should 
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update the definition of liquidity and the measure of liquidity for modern electronic markets. 

Corollary 1 also leads to Prediction 2, which can be tested by examining whether technology 

shocks that support B-Algos reduce transaction costs for institutional traders (such as 

implementation shortfalls measured by Acerno data) while increasing the bid–ask spread. 

5.2 Predictions Driven by a Discrete Tick Size  

When pricing is continuous, B-Algos always provide liquidity to HFTs, and HFTs always provide 

liquidity to humans for any parameter value. When pricing is discrete, who provides liquidity to 

whom depends on the parameter value, and such dependence generates cross-sectional and time-

series predictions regarding liquidity provision and liquidity demand. 

Prediction 3 (Time Priority versus Price Priority): HFTs crowd out non-HFTs’ liquidity 

provision when the tick size is large. 

Prediction 3 works against the grain of arguments advanced in Chordia et al. (2013), who 

worry that “HFTs use their speed advantage to crowd out liquidity supply when the tick size is 

small and stepping in front of standing limit orders is inexpensive.” Their concern would be valid 

if HFTs quote more aggressive prices than non-HFTs when pricing is more continuous. Yet 

Brogaard et al. (2015) and Yao and Ye (2018) find that non-HFTs are more likely than HFTs to 

establish price priority, and our paper provides the theoretical foundation for this finding. In our 

model, B-Algos can quote tighter bid–ask spreads than HFTs because B-Algos face worse outside 

options. HFTs place no private value in trade. B-Algos have an internal need to trade, and they use 

limit orders as long as their costs are lower than the costs of using market orders. A large tick size, 

however, imposes a constraint that prevents non-HFTs from establishing price priority over HFTs 

while helping HFTs establish time priority over non-HFTs. Yao and Ye (2018) find that the tick 

size is more likely to be binding for low-priced securities, for which a one-cent uniform tick size 
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leads to larger relative tick size. They also find that HFTs provide a larger share of liquidity for 

low-priced securities. These results are consistent with Prediction 3. 

Prediction 4 (Adverse Selection and Liquidity Provision): An increase in adverse-

selection risk decreases the share of liquidity provided by HFTs. 

 Prediction 4 differs significantly from findings reported in the existing literature on HFTs. 

Prior studies typically model HFTs as traders who can access information more rapidly than other 

traders. In this framework, speed competition should be more active when there is more 

information. In particular, Hoffmann (2014), Han, Khapko, and Kyle (2014), Bernales (2016), and 

Bongaerts and Van Achter (2016) find that HFTs incur lower adverse-selection costs than non-

HFTs. Therefore, an increase in the level of information should give HFTs a comparative 

advantage in liquidity provision. 

 Prediction 4, however, implies that less information drives speed competition. Compare 

Proposition 3 with Propositions 4, 5, and 6: when the level of sniping risk is low, the binding bid–

ask spread drives speed competition at a constrained spread because liquidity provision is highly 

profitable. If the incidence of sniping rises high enough, the spread is wider than one tick, allowing 

non-HFTs to undercut HFTs and decreasing liquidity provision on the part of HFTs. One limitation 

of our model is that we model only adverse selection led by sniping, but other types of adverse 

selection should provide the same economic mechanism. Generally, the break-even bid–ask spread 

should be lower when adverse-selection risk is low. Once the break-even spread falls below one 

tick, speed competition to achieve time priority should be more critical. Yao and Ye (2018) provide 

cross-sectional evidence consistent with Prediction 4: stocks with higher adverse-selection risk 

have a lower fraction of liquidity provided by HFTs. It would be interesting to test whether 

Prediction 4 holds in time series, that is whether, for a given security, HFTs provide less fraction 
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of liquidity when adverse-selection risk is high. 

Prediction 5 addresses the question of who provides liquidity during flash crashes. 

Prediction 5. (Flash Crashes): A flash crash is more likely to occur when the sniping risk 

is high. Limit orders from non-HFTs, however, incur much lower transaction costs. 

 Again, here we do not distinguish market wide flash crashes from mini-flash crashes at 

individual security level.  HFTs’ limit orders are less likely to be executed and the sniping cost is 

likely to be higher when 𝜅 is high. Moreover, higher sniping risk widens the break-even bid–ask 

spread; a wider break-even bid–ask spread also allows B-Algos to undercut HFTs, further 

increasing the adverse-selection costs for HFTs. When 𝜅 is high enough, HFTs effectively stop 

providing liquidity by placing quotes far away from the market. Because B-Algos do not 

continuously provide liquidity in the market, humans’ market orders can hit HFTs’ quotes and 

cause flash crashes. 

Our interpretations of flash crashes are consistent with both negative and positive evidence 

of the role of HFTs in flash crashes. Brogaard et al. (2018) suggest that HFTs provide liquidity in 

extreme price movements, while Ait-Sahalia and Sağlam (2017) suggest that HFTs withdraw 

liquidity when it is most needed. Both views suggest, however, that flash crashes occur when the 

market orders of non-HFTs hit quotes from HFTs that are placed away from the market. 

If mini-flash crashes are preceded or signaled by high sniping risk, our model predicts that 

transaction costs for non-HFTs are much lower if they use limit orders. At least non-HFTs can use 

stimulating limit orders to encourage HFTs to demand liquidity. This unique prediction can be 

tested to see whether our model captures the main driver of flash crashes. 

Prediction 6. (Speed Competition over Taking Liquidity): Non-HFTs are more likely to 

provide liquidity at price levels that cross the midpoint (stimulating limit orders) than HFTs. HFTs 
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are also more likely to demand liquidity from stimulating limit orders, but they do not adversely 

select these orders. 

Latza, Marsh, and Payne (2014) find evidence consistent with Prediction 6. They classify 

a market order as “fast” if it executes against a standing limit order that is less than 50 milliseconds 

old. These fast market orders should come from HFTs. They also find that fast market orders often 

execute against limit orders that cross the midpoint, and they lead to virtually no permanent price 

impacts. It will be interesting to test Prediction 6 more directly using data that include account 

information of traders.    

5.3 Policy Implications   

Our paper offers policy implications for both HFTs and the tick size. For HFTs, BCS argue for a 

more discrete market in time, whereas we argue for a more continuous market in price. Particularly, 

we show that, when all non-HFTs are B-Algos, transaction costs are zero and there is no incentive 

for HFTs to engage in speed competition even if time is continuous. In this sense, our paper 

supports Kyle and Lee’s (2017) vision of a fully continuous market. 

On April 5, 2012, President Barack Obama signed the Jumpstart Our Business Startups 

(JOBS) Act. Section 106 (b) of the Act requires the SEC to examine the effects of tick size on 

initial public offerings (IPOs). On October 3, 2016, the SEC implemented a pilot program to 

increase the tick size from one cent to five cents for 1,200 common stocks that have a market 

capitalization of $3 billion or less, a closing price of at least $2.00, and a consolidated average 

daily volume of one million shares or fewer. Proponents of the proposal argue that a larger tick 

size can improve liquidity (Weild, Kim, and Newport, 2012). In Prediction 7, however, we posit 

that an increase in the tick size decreases liquidity. 

Prediction 7. A larger tick size increases transaction costs.  
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Discrete pricing can create rents for HFTs and push up non-HFTs’ execution costs in two 

ways. First, when the tick size is binding and non-HFTs have to rely more on market orders, they 

pay higher than the break-even spread to HFTs. Second, when non-HFTs use limit orders to trigger 

HFTs, they have to pay beyond the marginal valuation of HFTs. 17  Yao and Ye (2018) and 

Albuquerque, Song, and Yao (2018) find evidence consistent with Prediction 7. Our model’s 

prediction along with their empirical evidence shows that an increase in the tick size would not 

improve liquidity. 

 

6. Conclusion 

This paper contributes to the literature by including two salient features that are found in 

financial markets: algorithmic traders who are not HFTs and discrete pricing. B-Algos incur lower 

opportunity costs than HFTs when providing liquidity, because providing liquidity is always less 

costly than demanding liquidity from HFTs. When prices are continuous enough, B-Algos can 

establish price priority over HFTs. A large tick size constrains price competition, creates rents for 

liquidity provision, and encourages speed competition to capture such rents through the time-

priority rule. A higher sniping risk increases the break-even bid–ask spread relative to the tick size, 

which allows B-Algos to establish price priority over HFTs and reduces the share of liquidity 

provided by HFTs. All these predictions are consistent with the empirical findings of Yao and Ye 

(2018). 

Our model also provides several new testable predictions. 1) Non-HFTs are more likely 

than HFTs to provide liquidity at price levels that cross the midpoint, and these limit orders are 

                                                           
17 Certainly, when two non-HFTs trade with each other, one side may benefit from discrete pricing while the other 

side may lose, but such gains and losses zero out between them.     
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more likely to be taken by HFTs almost immediately. 2) A flash crash is more likely to occur for 

stocks subject to higher sniping risk, but transaction costs for B-Algos do not change much during 

flash crashes. 3) The bid–ask spread widens when technological shocks increase the proportion of 

B-Algos, but overall transaction costs decrease. Therefore, the bid–ask spread can move in the 

opposite direction to the true liquidity when all traders can use limit orders. 

Our model also shows that a larger tick size increases transaction costs and drives an arms 

race in speed. These results challenge the rationale for the recent policy proposal that has increased 

the tick size to five cents.  

By adding trading algorithms designed by sophisticated non-HFTs, our model adds 

significant new insight to the understanding of how HFTs affect financial markets. For example, 

we find that B-Algos can prompt HFTs to demand liquidity using stimulating limit orders to reduce 

transaction costs. Therefore, we should not evaluate the impact of HFTs on liquidity and social 

welfare based on whether they demand or provide liquidity. 
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Figure 1: Four Types of Equilibrium 

This figure demonstrates four types of equilibrium depending on 𝜅 ≡
𝜆𝐽

𝜆𝐼
 and 𝛽, given 𝑑 = 2∆. When 𝜅 ≤

1

3
, HFTs queue at the one-tick bid–ask spread at 𝑣𝑡 ±

𝑑

4
 (Proposition 3). When 

1

3
< 𝜅 ≤ 3(1 − 𝛽), HFTs 

quote the three-tick bid–ask spread at 𝑣𝑡 ±
3𝑑

4
, and B-Algo buyers can choose to submit limit orders at either 

𝑣𝑡 +
𝑑

4
 or 𝑣𝑡 −

𝑑

4
. B-Algos use stimulating buy (sell) limit orders at 𝑣𝑡 +

𝑑

4
 (𝑣𝑡 −

𝑑

4
) when the sniping risk is 

relatively high (
−3𝛽+√9𝛽2−8𝛽+16

4
≤ 𝜅 ≤ 3(1 − 𝛽)), and HFTs immediately take liquidity from B-Algos 

(Proposition 4). B-Algos choose to undercut HFTs when the sniping risk is relatively low (
1

3
< 𝜅 <

−3𝛽+√9𝛽2−8𝛽+16

4
), and they wait to provide liquidity to humans (Proposition 5). When the sniping risk is 

very high (𝜅 > 3(1 − 𝛽)), the liquidity provision profit from the three-tick spread 𝐿𝑃(𝜅, 𝛽; 𝑠 = 3∆) is 

negative, and HFTs quote at 𝑣𝑡 ±
5𝑑

4
 (Proposition 6). Boundary conditions are defined in the propositions. 
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Figure 2. States and Payoffs for the HFT Liquidity Supplier on the Ask-Side  

This figure illustrates the transition between LOB states and payoffs from the point of view of HFT liquidity 

providers on the ask side. In undercutting equilibrium, HFTs quote 𝑣𝑡 ±
3𝑑

4
 and B-Algos can submit 

undercutting orders at 𝑣𝑡 ±
𝑑

4
. In state (i, j), the number of undercutting B-Algo sell orders at 𝑣𝑡 +

𝑑

4
 is i, 

and the number of buy orders at 𝑣𝑡 −
𝑑

4
 is j. BB and BS represent the arrival of B-Algos’ buy and sell limit 

orders, HB and HS represent the arrival of human traders’ buy and sell market orders, and UJ and DJ denote 

upward and downward value jumps. The arrows between states represent state transitions, while arrows 

pointing toward the outside represent either order executions or cancellations. The number next to each 

event is the payoff of the event. 
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Appendix. Proofs 

Proof of Proposition 1 

We verify that the strategies described in Proposition 1 for non-HFTs and HFTs are their best 

responses: 

First, it is optimal for non-HFTs to trade immediately upon arrival. Although we do not impose a 

delay cost on non-HFTs, there is no benefit for non-HFTs who delay trades because the bid–ask 

spread 𝑠1
∗ is a constant and 𝑣𝑡 is martingale. 

Second, no HFT would deviate from the quoted bid–ask spread at 𝑣𝑡 ±
𝑠1
∗

2
: 

1. Any HFT who crosses the midpoint (sells below 𝑣𝑡 or buys above 𝑣𝑡) always loses money 

instantly. 

2. Liquidity provider(s) and snipers earn the same expected profit for each share in the LOB. 

Any HFT who narrows the bid–ask spread will (1) earn less than the original liquidity 

provider when she executed with a non-HFT, and (2) lose more than the original liquidity 

provider when being sniped during a value jump. Thus, there is no profitable deviation 

strategy for HFTs to narrow the spread. 

3. Any HFT who quotes at 𝑣𝑡 ±
𝑠1
∗

2
 after an existing limit order will be less likely to trade with 

a non-HFT because the second share has less execution priority. She has to wait longer in 

expectation and is more likely to be sniped. Thus, the liquidity provision revenue from the 

second share is lower than the sniping profits from the second share. All HFTs prefer to be 

snipers for the second share; no HFT is willing to submit the second share at 𝑣𝑡 ±
𝑠1
∗

2
. 

4. No HFT who quotes a spread wider than 𝑣𝑡 ±
𝑠1
∗

2
 but within 𝑣𝑡 ± 𝑑 can trade with a non-
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HFT, because each non-HFT trades only one share, and other HFTs will refill the liquidity-

provision share after it has been consumed by a non-HFT. Thus, liquidity-provision 

revenue is negative if one quotes a half-spread that is between (
𝑠1
∗

2
, 𝑑). 

5. Quoting outside 𝑣𝑡 ± 𝑑, though, is possible because we have restricted our value jump size 

to 𝑑. It is also possible, in the analysis of BCS, that HFTs can submit “orders that trade 

with probability zero.” To simplify the state space of our model, we assumed in the main 

text that no traders can submit limit orders far away from the book. Even if we were to 

allow HFTs to quote far away from the market, the equilibrium bid–ask spread and 

transaction costs for B-Algos both remain the same. ■ 

 

Proof of Proposition 2 

The difference between Proposition 2 and Proposition 1 is that a fraction 𝛽 of non-HFT, buy-side 

algorithmic traders (B-Algos) can use limit orders to minimize their transaction costs.  

First, the equilibrium bid–ask spread 𝑠2
∗ is given by: 

(1−𝛽)𝜆𝐼

(1−𝛽)𝜆𝐼+2𝜆𝐽

𝑠

2
−

𝜆𝐽

(1−𝛽)𝜆𝐼+2𝜆𝐽

𝑁−1

𝑁
(𝑑 −

𝑠

2
) =

𝜆𝐽

(1−𝛽)𝜆𝐼+2𝜆𝐽

1

𝑁
(𝑑 −

𝑠

2
)               (A.1) 

The left-hand side of A.1 is the HFT’s liquidity-provision profit, and the right-hand side is 

a sniper’s profit. Compared with the equations (2) and (3), the only difference is the factor (1 − 𝛽), 

reflecting that now only humans, with an arrival rate of (1 − 𝛽)𝜆𝐼, take liquidity from HFTs. 

Secondly, submitting limit orders at 𝑣𝑡 (stimulating orders) and facing zero transaction costs is the 

best outcome for B-Algos. All other execution strategies would lead to positive transaction costs. 

B-Algos who cross the midpoint always incur an instant positive transaction cost. B-Algos who 
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narrow the 𝑣𝑡 ±
𝑠2
∗

2
 bid–ask spread by posting sell limit orders at 𝑣𝑡 +

𝑠

2
 or buy limit orders at 𝑣𝑡 −

𝑠

2
, where 𝑠 < 𝑠2

∗, have expected transaction costs:  

𝐶(𝜅,
𝑠

2
) = −𝐿𝑃𝐵−𝐴𝑙𝑔𝑜𝑠(𝜅,

𝑠

2
) = −[

(1−𝛽)

(1−𝛽)+2𝜅

𝑠

2
−

𝜅

(1−𝛽)+2𝜅
(𝑑 −

𝑠

2
)]            (A.2) 

where 𝜅 ≡
𝜆𝐽

𝜆𝐼
 and we denote a B-Algo’s liquidity-provision revenue at spread 𝑠  as 

𝐿𝑃𝐵−𝐴𝑙𝑔𝑜𝑠 (𝜅,
𝑠

2
). When B-Algos provide liquidity and earn positive liquidity-provision revenue, 

they incur negative transaction costs to execute their trades; thus, we have 𝐶 (𝜅,
𝑠

2
) =

−𝐿𝑃𝐵−𝐴𝑙𝑔𝑜𝑠(𝜅,
𝑠

2
). Comparing a B-Algo’s liquidity-provision revenue with an HFT’s liquidity-

provision revue (the left-hand side of A.1) demonstrates the following difference: during value 

jumps B-Algos are sniped at a probability of one because they are slower than HFTs. 𝐶(𝜅,
𝑠

2
) is 

monotonically decreasing in 𝑠, and 𝐶 (𝜅,
𝑠

2
) = 0 when 𝑠 = 𝑠2

∗ (from A.1). Thus, we have 𝐶 > 0 

when 𝑠 < 𝑠2
∗. Moreover, 𝐶 (𝜅,

𝑠2
∗

2
) = 0 means B-Algos have zero transaction costs if they provide 

the first unit at 𝑣𝑡 ±
𝑠2
∗

2
. Therefore, they will incur positive transaction costs if they add orders at 

𝑣𝑡 ±
𝑠2
∗

2
 after the existing limit order because they do not have execution priority and face a higher 

sniping risk.18 B-Algos who quote limit orders wider than 𝑣𝑡 ±
𝑠2
∗

2
 can trade only with snipers, 

because each non-HFT trades only one share, and other HFTs will refill the liquidity-provision 

share after the share has been consumed by a non-HFT. A quote outside 𝑣𝑡 ± 𝑑 is ruled out by 

assumption.19  

                                                           
18 When pricing is discrete, our Assumption 1 requires all limit orders to be price-improving, which is not a binding 

constraint here. 
19 Without the assumption, B-Algos still cannot quote outside 𝑣𝑡 ± 𝑑 because HFTs will undercut B-Algos’ quotes 
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Third, HFTs who accept a B-Algo’s order at 𝑣𝑡 receive zero payoffs. No HFT can receive 

a payoff from a B-Algo that is greater than zero by deviating to the strategy in virtue of which she 

does not accept the B-Algo’s order, because other HFTs immediately accept the B-Algo’s order. 

Thus, the deviator cannot extract a sniping profit from the B-Algo’s order if she does not attempt 

to take the B-Algo’s order immediately. Also, for the same reason in Proposition 1, no HFT can 

earn a greater payoff than 𝐿𝑃 (𝜅,
𝑠2
∗

2
) = 𝑆𝑁 (𝜅,

𝑠2
∗

2
) on the shares quoted by HFT(s) at 𝑣𝑡 ±

𝑠2
∗

2
. 

To summarize, no market participant can receive a higher payoff by deviating from the 

strategy defined in Proposition 2. Thus, Proposition 2 is an equilibrium. ■ 

 

Proof of Corollary 1 

All the results follow directly by taking the derivative of 𝑠2
∗ and 𝐶̅(𝛽) with respect to 𝛽: 

𝑑𝑠2
∗

𝑑𝛽
=

2𝜆𝐼𝜆𝐽

((1−𝛽)𝜆𝐼+𝜆𝐽)2
𝑑 > 0                                             (A.3) 

𝐶̅(𝛽) = 𝛽 ∙ 0 + (1 − 𝛽) ∙
𝑠2
∗

2
=

(1−𝛽)𝜆𝐽

(1−𝛽)𝜆𝐼+𝜆𝐽
𝑑                                    (A.4) 

𝑑�̅�(𝛽)

𝑑𝛽
=

−𝜆𝐽
2

((1−𝛽)𝜆𝐼+𝜆𝐽)2
𝑑 < 0                                           (A.5) 

Thus, the quoted spread 𝑠2
∗ increases in 𝛽 and the average transaction cost 𝐶̅(𝛽) decreases in 𝛽.■ 

                                                           
when the market moves to B-Algos’ limit orders. In particular, HFTs undercut B-Algos if they observe −𝐶(𝜆𝐼 , 𝜆𝐽,

𝑠

2
) =

𝐿𝑃𝐵−𝐴𝑙𝑔𝑜𝑠 (𝜆𝐼 , 𝜆𝐽,
𝑠

2
) =

(1−𝛽)𝜆𝐼

(1−𝛽)𝜆𝐼+2𝜆𝐽

𝑠

2
−

𝜆𝐽

(1−𝛽)𝜆𝐼+2𝜆𝐽
(𝑑 −

𝑠

2
) > 0 at any time 𝑡. In other words, HFTs allow B-Algos to 

be at the top of the LOB only when −𝐶(𝜆𝐼 , 𝜆𝐽,
𝑠

2
) ≤ 0 ⇔ 𝐶(𝜆𝐼 , 𝜆𝐽,

𝑠

2
) ≥ 0. Therefore, there is no way that B-Algos can 

attain negative transaction costs. 
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Proof of Proposition 3 

HFTs provide liquidity at 𝑣𝑡 ±
𝑑

4
 if: 

𝐿𝑃 (𝜅,
𝑑

4
) =

1

2𝜅+1

𝑑

4
−

𝜅

2𝜅+1

3𝑑

4
≥ 0,                                  (A.6) 

which is equivalent, as 𝜅 ≤
1

3
 . No HFT wants to cancel her order and give up 𝐿𝑃 (𝜅,

𝑑

4
) ≥ 0 =

𝑆𝑁 (𝜅,
𝑑

4
), except when a fundamental value jump occurs. No HFT can quote a spread narrower 

than 
𝑑

2
 because of the tick-size constraint. No HFT wants to quote a spread wider than 

𝑑

2
 because 

she can never trade with non-HFTs while she still faces sniping risks. All HFTs want to snipe a 

stale quote during value jumps; otherwise, the quote would be immediately sniped by other HFTs. 

Thus, Proposition 3 is an equilibrium. ■ 

 

Proof of Proposition 4 

We present the proof in the following three parts. First, we calculate the bid–ask spread 

quoted by HFTs. Second, we calculate the boundary at which B-Algos are indifferent between 

using stimulating orders (Proposition 4) and undercutting limit orders (Proposition 5). Third, we 

check for the off-equilibrium path and formally pin down the subgame perfect equilibrium. 

First, we show that HFTs quote at 𝑣𝑡 ±
3𝑑

4
 when 

1

3
< 𝜅 ≤ 3(1 − 𝛽). From A.6, when 𝜅 >

1

3
, we have 𝐿𝑃 (𝜅, 𝛽,

𝑑

4
) < 0 and the liquidity-provision profit also depends on 𝛽. This implies that 

when 𝜅 >
1

3
, HFTs lose money if they provide liquidity at 𝑣𝑡 ±

𝑑

4
 even if all non-HFTs take 

liquidity from HFTs. Therefore, HFTs will widen the spread to the next available prices that are 

𝑣𝑡 ±
3𝑑

4
. We show that when 𝜅 ≤ 3(1 − 𝛽), HFTs can make non-negative liquidity-provision 
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profits at 𝑣𝑡 ±
3𝑑

4
. 

 Note that when HFTs provide liquidity at 𝑣𝑡 ±
3𝑑

4
, B-Algos will never take liquidity from 

HFTs, because B-Algos always have a better option: buy at 𝑣𝑡 +
𝑑

4
 or sell at 𝑣𝑡 −

𝑑

4
. Those orders 

will be immediately taken by HFTs, as in Proposition 2, and B-Algos will incur transaction cost 

of 
𝑑

4
, which is lower than the transaction cost of taking liquidity from HFTs (

3𝑑

4
). Therefore, if 

HFTs provide liquidity at 𝑣𝑡 ±
3𝑑

4
, only humans will take HFTs’ orders. When quoting at 𝑣𝑡 ±

3𝑑

4
 

and there is no B-Algo undercutting the order, the HFT seller who provides the first share of 

liquidity at 𝑣𝑡 +
3𝑑

4
 reaps the following expected profit: 

𝐿𝑃 (𝜅, 𝛽,
3𝑑

4
) =

1−𝛽

2𝜅+2

3𝑑

4
+

1−𝛽

2𝜅+2
𝐿𝑃 (𝜅, 𝛽,

3𝑑

4
) +

𝛽

2𝜅+2
∙ 𝐿𝑃 (𝜅, 𝛽,

3𝑑

4
) +

𝛽

2𝜅+2
∙ 𝐿𝑃 (𝜅, 𝛽,

3𝑑

4
) −

𝜅

2𝜅+2

𝑑

4
+

𝜅

2𝜅+2
∙ 0   (A.7) 

The right-hand side terms are: A human buyer arrives and trades with the HFT seller; a 

human seller arrives on the contra side and the LOB does not change; a B-Algo buyer arrives and 

uses a stimulating order,20 which does not change the LOB state; a B-Algo seller arrives and uses 

a stimulating order, which does not change the LOB state; an upward jump occurs and loses 
𝑑

4
; a 

downward jump occurs and cancels the order, respectively. The solution to 𝐿𝑃 (𝜅, 𝛽,
3𝑑

4
) ≥ 0 is:  

𝜅 ≤ 3(1 − 𝛽)                                                      (A.8) 

Secondly, when HFTs quote at 𝑣𝑡 ±
3𝑑

4
, B-Algos can undercut HFTs to sell at 𝑣𝑡 +

𝑑

4
 or 

buy at 𝑣𝑡 −
𝑑

4
 (undercutting equilibrium) or cross the midpoint to buy at 𝑣𝑡 +

𝑑

4
 or sell at 𝑣𝑡 −

𝑑

4
 

(stimulating equilibrium). B-Algos choose orders that minimize their transaction costs.  

Now we determine the boundary between the stimulating equilibrium and the undercutting 

                                                           
20 Later we show that, at the boundary where HFTs quote 𝑣𝑡 ±

3𝑑

4
 and 𝑣𝑡 ±

5𝑑

4
, i.e., 𝐿𝑃 (𝜅, 𝛽,

3𝑑

4
) = 0 and 𝜅 = 3(1 −

𝛽), the sniping risk is too high for B-Algos to use undercutting orders (Short-dashed line in Figure 1). 
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equilibrium. In an undercutting equilibrium, a B-Algo submits a limit order to an empty LOB (0,0) 

and changes the state to (1,0); a B-Algo submits a limit order to (0,1) and changes the state to 

(1,1). We denote the B-Algo’s transaction cost for the first case as 𝐶(1,0) and for the second case 

as 𝐶(1,1).21 Then  

{
𝐶(1,0) =

1−𝛽

2𝜅+2
(−

𝑑

4
) +

1−𝛽

2𝜅+2
∙ 𝐶(1,0) +

𝛽

2𝜅+2
∙ 𝐶(1,1) +

𝛽

2𝜅+2
∙ 𝐶(1,0) +

𝜅

2𝜅+2
∙
3𝑑

4
+

𝜅

2𝜅+2
∙ 𝐶(1,0)

𝐶(1,1) =
1−𝛽

2𝜅+2
(−

𝑑

4
) +

1−𝛽

2𝜅+2
∙ 𝐶(1,0) +

𝛽

2𝜅+2
∙ (−

𝑑

4
) +

𝛽

2𝜅+2
∙ 𝐶(1,0) +

𝜅

2𝜅+2
∙
3𝑑

4
+

𝜅

2𝜅+2
∙ 𝐶(1,0)

   (A.9) 

 

Figure A.1 

In equation (A.9) and Figure A.1, we describe six event types that can change the LOB in 

an undercutting equilibrium. Consider 𝐶(1,0) on the ask side. A human buyer and a human seller 

each arrive at probability 
1−𝛽

2𝜅+2
. The B-Algo seller enjoys a negative transaction cost of −

𝑑

4
 when 

the human buyer takes his liquidity; the human seller hits an HFT’s quote on the bid side and does 

not change the state on the ask side. A B-Algo buyer and a B-Algo seller arrive, each at 

                                                           
21 Note that 𝐶(1, 𝑗) is the B-Algo’s cost of execution using regular limit orders at 𝑣𝑡 ±

𝑑

4
. Formally, it is 𝐶(1,𝑗) (𝜅, 𝛽,

𝑑

4
). 

There is no 𝐶(0, 𝑗) because the undercutting B-Algo herself becomes the “1.” 𝐶(𝑖,𝑗) (𝜅, 𝛽,
𝑑

4
) is not the same with 

𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
), which is an HFT’s liquidity provision profit at 𝑣𝑡 ±

3𝑑

4
 under state (𝑖, 𝑗). 
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probability 
𝛽

2𝜅+2
. A B-Algo buyer posts a limit order on the bid side and changes the state to (1,1); 

a B-Algo seller uses a stimulating limit order, so the state remains at (1,0). Upward and downward 

value jumps occur at probability 
𝜅

2𝜅+2
. An upward jump leads to a sniping cost of 

3𝑑

4
, whereas a 

downward jump does not change the state of the LOB because the undercutting B-Algo updates 

her order accordingly. 𝐶(1,1) differs from 𝐶(1,0) in the sense that the arrival of a B-Algo buyer 

leads to the execution of a sell limit order from a B-Algo.22 

From Proposition 3 we know that, when 𝜅 >
1

3
, HFTs suffer negative liquidity-provision 

profits at 𝑣𝑡 ±
𝑑

4
.  Thus, when B-Algos provide liquidity at 𝑣𝑡 ±

𝑑

4
, they will suffer negative 

liquidity-provision profits as well. Therefore, 𝐶(1,0) > 0 and 𝐶(1,1) > 0, because the transaction 

costs in A.9 is the negative of B-Algos’ liquidity-provision profits. 

It is easy to see that 𝐶(1,0) − 𝐶(1,1) =
𝛽

2𝜅+2
(𝐶(1,1) +

𝑑

4
) > 0 , i.e., a B-Algo’s 

undercutting order-execution cost will be lower if the contra side has another undercutting order. 

The solution for equation (A.9) is:  

𝐶(1,0) =  
𝜅(2𝜅 + 2 + 𝛽)𝑑

(𝜅 + 1)(2𝜅 + 2 − 𝛽)
−
𝑑

4
 

𝐶(1,1) =
𝜅(2𝜅 + 2)𝑑 

(𝜅 + 1)(2𝜅 + 2 − 𝛽)
−
𝑑

4
 

Thus, 𝐶(1,0) <
𝑑

4  
⇔

𝜅(2𝜅+2+𝛽)

(𝜅+1)(2𝜅+2−𝛽)
<

1

2  
⇔2𝜅2 + 3𝜅𝛽 + 𝛽 − 2 < 0, where 𝐶(1,0) <

𝑑

4
 is 

the condition for B-Algos to use regular limit orders at 𝑣𝑡 ±
𝑑

4
 when the price level is availiable. 

Equation 2𝜅2 + 3𝜅𝛽 + 𝛽 − 2 = 0 has two roots: 𝜅1,2 =
−3β±√9β2−8β+16

4
： 

                                                           
22 The execution of this order results from Assumption 1, but the intuition that a longer queue on the bid side increases 

the execution probability on the ask side holds true generally (Parlour 1998). 
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𝜅2 < 0, 𝜅1 =
−3β+√9β2−8β+16

4
. 

Thus, B-Algos choose to undercut when 𝜅 < 𝜅1, because 𝐶(1,1) < 𝐶(1,0) <
d

4
; B-Algos choose 

to stimulate when 𝜅 ≥ 𝜅1 and trade immediately at a transaction cost of 
𝑑

4
.  

Third, we check whether a B-Algo has an incentive to deviate when all other B-Algos use 

stimulating limit orders, and we construct off-equilibrium path strategies. We consider the deviator 

on the ask side of the LOB. When a B-Algo seller arrives, if she uses a stimulating limit order to 

sell at 𝑣𝑡 −
𝑑

4
, her transaction cost is 

𝑑

4
. Now suppose she wants to deviate and sell at 𝑣𝑡 +

𝑑

4
; in that 

case we denote �̃�(1,0) as her transaction cost. Then we have: 

�̃�(1,0) =
1

2+2𝜅
(−

𝑑

4
) +

1

2+2𝜅
�̃�(1,0) +

𝜅

2+2𝜅
(
3𝑑

4
) +

𝜅

2+2𝜅
�̃�(1,0)                (A.10) 

Similarly, the four terms on the right-hand side of A.10 indicate the transaction cost for our 

B-Algo seller with the arrival of a human or B-Algo buyer, a human or B-Algo seller, an upward 

jump, and a downward jump. Note that the difference between A.10 and 𝐶(1,0) in A.9 is that a B-

Algo buyer will take liquidity at 𝑣𝑡 +
𝑑

4
 in A.10, because all late-arriving B-Algos are supposed to 

use stimulating orders. Therefore if �̃�(1,0) ≥
𝑑

4
, no B-Algos will deviate from the stimulating 

equilibrium, because they can always use stimulating orders at transaction cost 
𝑑

4
. From A.10, it is 

easy to see that �̃�(1,0) =
3𝜅−1

𝜅+1

𝑑

4
. Thus, 

�̃�(1,0) ≥
𝑑

4
⇔ 𝜅 ≥ 1. 

Therefore, when 1 ≤ 𝜅 ≤ 3(1 − 𝛽), all B-Algos will use stimulating limit orders, and no 

one has an incentive to deviate from her current strategy. Before moving forward, we summarize 

the results thus far: 
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1. When 
1

3
< 𝜅 <

−3β+√9β2−8β+16

4
, B-Algos will buy at 𝑣𝑡 −

𝑑

4
 and sell at 𝑣𝑡 +

𝑑

4
 when the 

price level is available (reflecting the need to satisfy the price-improving assumption). 

Thus, the equilibrium outcome is the undercutting equilibrium. 

2. When 1 ≤ 𝜅 ≤ 3(1 − 𝛽) all B-Algos will use stimulating limit orders to buy at 𝑣𝑡 +
𝑑

4
 

and sell at 𝑣𝑡 −
𝑑

4
. Thus, the equilibrium outcome is the stimulating equilibrium.  

Now we analyze the last case, where 
−3β+√9β2−8β+16

4
≤ 𝜅 < 1. In this case, B-Algos’ 

order-placement strategies cannot be as simple as they are in the two abovementioned cases. If all 

B-Algos use stimulating limit orders regardless of the status of the LOB, then a B-Algo has an 

incentive to deviate and she undercuts HFTs’ quotes because when 𝜅 < 1, then �̃�(1,0) <
𝑑

4
, an 

outcome that is better than stimulating. Similarly, if all B-Algos regularly use limit orders as in the 

undercutting equilibrium, then when a B-Algo arrives, and if there are no other B-Algos’ orders in 

the LOB, the arriving B-Algo has an incentive to use a stimulating order because 𝐶(1,0) ≥
𝑑

4
 

when 𝜅 ≥
−3β+√9β2−8β+16

4
. Thus, it is better to use a stimulating limit order at cost 

𝑑

4
.  

Therefore, when 
−3β+√9β2−8β+16

4
≤ 𝜅 < 1, a B-Algo’s order-placement strategy depends 

on the status of the LOB to be able to punish potential deviators. Specifically, the following order-

placement strategy for B-Algos constructs an equilibrium: 

• A B-Algo buyer will buy at 𝑣𝑡 −
𝑑

4
 only when there is an order at 𝑣𝑡 +

𝑑

4
 and no 

order at 𝑣𝑡 −
𝑑

4
. Otherwise, she will use a stimulating order to buy at 𝑣𝑡 +

𝑑

4
; 

• A B-Algo seller will sell at 𝑣𝑡 +
𝑑

4
 only when there is an order at 𝑣𝑡 −

𝑑

4
 and no 

order at 𝑣𝑡 +
𝑑

4
. Otherwise, she will use a stimulating order to sell at 𝑣𝑡 −

𝑑

4
. 
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Intuitively, under this strategy, all B-Algos use stimulating orders to trade. But if they find 

a B-Algo’s limit order on the contra of the LOB (deviator), they will switch to a regular limit order. 

For instance, when a B-Algo seller arrives and there is a buy limit order at 𝑣𝑡 −
𝑑

4
, then the B-Algo 

seller will submit a limit order to sell at 𝑣𝑡 +
𝑑

4
. Now we show why this is optimal for the B-Algo 

seller. Denote �̃�(1,1) as the B-Algo seller’s transaction cost; then: 

�̃�(1,1)  =
1−𝛽

2𝜅+2
(−

𝑑

4
) +

1−𝛽

2𝜅+2
∙
𝑑

4
+

𝛽

2𝜅+2
(−

𝑑

4
) +

𝛽

2𝜅+2
∙
𝑑

4
+

𝜅

2𝜅+2
∙
3𝑑

4
+

𝜅

2𝜅+2
∙
𝑑

4
     (A.11) 

Note that the difference between A.11 and 𝐶(1,1) in A.9 is that whenever a human or B-Algo 

seller takes an order at 𝑣𝑡 −
𝑑

4
, according to the above strategy, our B-Algo seller (punisher) will 

immediately cancel her sell order at 𝑣𝑡 −
𝑑

4
 and use a stimulating order to complete her trade. In 

A.9, though, the B-Algo seller keeps her order at 𝑣𝑡 +
𝑑

4
 and, thus, the state transits to 𝐶(1,0). 

From A.11 we have: 

�̃�(1,1)  =
𝜅

2𝜅 + 2
𝑑 

 All B-Algos have incentives to follow the above strategy only when �̃�(1,1) <
𝑑

4
⇔ 𝜅 <

1, because B-Algos use only regular limit orders when the expected transaction cost is below 
𝑑

4
, 

the cost of using stimulating orders. Therefore, when 
−3β+√9β2−8β+16

4
≤ 𝜅 < 1, the above strategy 

for B-Algos defines an equilibrium, because all B-Algos have an incentive to follow the strategy. 

In other words, B-Algos use regular limit orders only when the state is (1,1) , i.e., when 

−3β+√9β2−8β+16

4
≤ 𝜅 < 1.  Because the first-arriving B-Algo uses stimulating orders, all late-

arriving B-Algos use stimulating orders to trade. As a result, the equilibrium outcome is still 

stimulating equilibrium when 
−3β+√9β2−8β+16

4
≤ 𝜅 < 1. This completes our proof. ■ 
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Proof of Proposition 5 

In the proof of Proposition 4, we have shown in (A.7) – (A.8) that, when the undercutting order is 

absent, 𝐿𝑃(0,𝑗) (𝜅, 𝛽,
3𝑑

4
) ≥ 0 when 𝜅 ≤ 3(1 − 𝛽). Also, we solved the undercutting equilibrium 

regime 
1

3
< 𝜅 <

−3β+√9β2−8β+16

4
  in virtue of which a B-Algo’s order-placement strategy is to use 

regular limit orders whenever possible. Possible deviations by B-Algos, as well as the deviation-

punishers’ strategy, have also been discussed in the proof of Proposition 4. We need only to 

determine 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) and whether an HFT wants to supply liquidity at price 𝑣𝑡 ±

3𝑑

4
, given 

the existence of an undercutting order, i.e. 𝐿𝑃(1,𝑗) (𝜅, 𝛽,
3𝑑

4
). 

Here we give an example for 𝜅 = 0.5, 𝛽 = 0.6.  We analytically solve the four linear 

formulas assuming 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) > 0 without truncation, and we insert 𝜅 = 0.5, 𝛽 = 0.6: 23 

𝐿𝑃(0,0) (𝜅, 𝛽,
3𝑑

4
) = 0.0711 

𝐿𝑃(1,0) (𝜅, 𝛽,
3𝑑

4
) = −0.0591 

𝐿𝑃(0,1) (𝜅, 𝛽,
3𝑑

4
) = 0.0757 

𝐿𝑃(1,1) (𝜅, 𝛽,
3𝑑

4
) = −0.0361 

Now, 𝐿𝑃(1,𝑗) (𝜅, 𝛽,
3𝑑

4
) < 0 and liquidity provision is profitable only when there is no undercutting 

order, i.e., the state (0, 𝑗). The HFT supplying liquidity in state (0, 𝑗) will cancel her order when a 

                                                           
23 The solution has tens of terms in its denominator, because the denominator is the determinant of a 4 by 4 matrix 

with 𝑝1, 𝑝2, 𝑝3 as its elements. We have solved it analytically, and we believe both HFTs and B-Algos have the ability 

to solve it numerically at a minimum. 
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B-Algo arrives and undercuts her. In other words, the truncation is in effect, and we solve the 

following equations instead,24 where 𝟎 = 𝐿𝑃̅̅̅̅ (1,𝑗) (𝜅, 𝛽,
3𝑑

4
): 

{
𝐿𝑃(0,0) (𝜅, 𝛽,

3𝑑

4
) = 𝑝1𝐿𝑃

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1 ∙ 𝟎+𝑝2𝐿𝑃

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ∙ 0

𝐿𝑃(0,1) (𝜅, 𝛽,
3𝑑

4
) = 𝑝1𝐿𝑃

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝1 ∙ 𝟎+𝑝2𝐿𝑃

(0,1) (𝜅, 𝛽,
3𝑑

4
) + 𝑝2𝐿𝑃

(0,0) (𝜅, 𝛽,
3𝑑

4
) + 𝑝3 (−

𝑑

4
) + 𝑝3 ∙ 0

     (A.12) 

We have:  

𝐿𝑃(0,0) (𝜅, 𝛽,
3𝑑

4
) = 𝐿𝑃(0,1) (𝜅, 𝛽,

3𝑑

4
) = 0.0875 > 0 

Neither supplying liquidity when 𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) < 0 nor cancelling the limit order when 

𝐿𝑃(𝑖,𝑗) (𝜅, 𝛽,
3𝑑

4
) > 0 is a profitable deviation. ■ 

 

Proof of Proposition 6 

We have shown in the proof of Proposition 4 that HFTs quote 𝑣𝑡 ±
5𝑑

4
 when 𝜅 > 3(1 − 𝛽) , 

because 𝑣𝑡 ±
3𝑑

4
 is no longer profitable for liquidity provision. We will construct the equilibrium 

as well as the off-equilibrium path strategies in the spirit of Proposition 4.  

Without loss of generality, consider the B-Algo seller’s problem. A B-Algo seller can 

submit an order at 𝑣𝑡 +
3𝑑

4
, 𝑣𝑡 +

𝑑

4
, 𝑣𝑡 −

𝑑

4
, 𝑣𝑡 −

3𝑑

4
. It is easy to see that a B-Algo seller never sells 

at 𝑣𝑡 −
3𝑑

4
, because selling at 𝑣𝑡 −

𝑑

4
 (a stimulating order) strictly dominates it. Also, a B-Algo 

                                                           
24 In some cases, we might have 𝐿𝑃(1,0) (𝜅, 𝛽,

3𝑑

4
) < 0 and 𝐿𝑃(1,1) (𝜅, 𝛽,

3𝑑

4
) > 0, which means the HFT supplying 

liquidity in state (1,1) will cancel her order when the B-Algo on the contra side trades with a non-HFT. This is because, 

in the absence of the B-Algo on the contra side, the undercutting order on the same side is less likely to be consumed, 

and the HFT has lower expected profit in state (1,0) than in state (1,1).  
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seller would not use a stimulating order at 𝑣𝑡 −
𝑑

4
 when 𝑣𝑡 +

3𝑑

4
 is empty, because the first pays 

𝑑

4
, 

and the second pays less than 
𝑑

4
.25 When 𝑣𝑡 +

3𝑑

4
 is occupied, the B-Algo should choose between 

𝑣𝑡 +
𝑑

4
 and 𝑣𝑡 −

𝑑

4
, and we show a perfect equilibrium in which B-Algo sellers never sell at 𝑣𝑡 +

𝑑

4
. 

A B-Algo’s equilibrium strategy depends on 𝜅. Specifically: 

When 𝜅 ≥ 1, the order-placement strategy is as follows: 

1. A B-Algo will sell at 𝑣𝑡 +
3𝑑

4
 or buy at 𝑣𝑡 −

3𝑑

4
 whenever possible (reflecting the need 

to satisfy the price-improving assumption). 

2. A B-Algo seller will sell at 𝑣𝑡 −
𝑑

4
 when there is already a sell limit order at 𝑣𝑡 +

3𝑑

4
. 

Similarly, a B-Algo buyer will buy at 𝑣𝑡 +
𝑑

4
 when there is already a buy limit order at 

𝑣𝑡 −
3𝑑

4
. 

When 3(1 − 𝛽) < 𝜅 < 1, the strategy is as follows: 

1. A B-Algo will sell at 𝑣𝑡 +
3𝑑

4
 or buy at 𝑣𝑡 −

3𝑑

4
 whenever the price level is available. 

2. For B-Algo sellers: When there is already an order at 𝑣𝑡 +
3𝑑

4
, a B-Algo seller will sell 

at 𝑣𝑡 −
𝑑

4
 when there is no buy limit order at 𝑣𝑡 −

𝑑

4
. Otherwise (the off-equilibrium 

path), the B-Algo seller will sell at 𝑣𝑡 +
𝑑

4
. Symmetrically for B-Algo buyers: When 

there is already an order at 𝑣𝑡 −
3𝑑

4
, a B-Algo buyer will buy at 𝑣𝑡 +

𝑑

4
 when there is no 

                                                           
25 If the order at 𝑣𝑡 +

3𝑑

4
 has been sniped, the B-Algo seller pays 

𝑑

4
; it is also possible, however, that the B-Algo seller 

trades with a non-HFT and incurs transaction cost −
3𝑑

4
. Thus, the expected cost should be between 0 and 

𝑑

4
 , strictly 

less than 
𝑑

4
, the cost of using stimulating orders. 
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sell limit order at 𝑣𝑡 +
𝑑

4
. Otherwise (the off-equilibrium path), the B-Algo buyer will 

buy at 𝑣𝑡 −
𝑑

4
. 

We illustrate the above strategies when the B-Algo is a seller. The B-Algo seller prefers to 

sell at 𝑣𝑡 +
3𝑑

4
. When there is already an order at 𝑣𝑡 +

3𝑑

4
, the B-Algo seller needs to choose 

between a regular limit order at 𝑣𝑡 +
𝑑

4
 or a stimulating limit order at 𝑣𝑡 −

𝑑

4
. When the sniping risk 

is high enough (𝜅 ≥ 1), the B-Algo seller always uses a stimulating limit order at 𝑣𝑡 −
𝑑

4
. When 

the sniping risk is moderate (3(1 − 𝛽) < 𝜅 < 1), the B-Algo seller will still use a stimulating 

order at 𝑣𝑡 −
𝑑

4
 in equilibrium. If there are buy limit orders at 𝑣𝑡 −

𝑑

4
, the B-Algo seller (a deviation 

punisher) will post a limit order at 𝑣𝑡 +
𝑑

4
. 

Now we verify that there is no profitable deviation for B-Algos. In the first case, when 𝜅 ≥

1, and there is already a sell limit order at 𝑣𝑡 +
3𝑑

4
, if the B-Algo seller wants to sell at 𝑣𝑡 +

𝑑

4
 

instead of using a stimulating limit order, we denote her transaction cost as 𝐶1. 𝐶1 is smaller when 

there is a B-Algo buyer order at 𝑣𝑡 −
3𝑑

4
, because the next arriving B-Algo buyer will use a 

stimulating limit order. Thus, 

𝐶1 >
1−𝛽

2𝜅+2
(−

𝑑

4
) +

1−𝛽

2𝜅+2
∙ 𝐶1 +

𝛽

2𝜅+2
(−

𝑑

4
) +

𝛽

2𝜅+2
∙ 𝐶1 +

𝜅

2𝜅+2
∙
3𝑑

4
+

𝜅

2𝜅+2
∙ 𝐶1          (A.13) 

We have: 

𝐶1 >
1

𝜅+1

𝑑

2
≥

𝑑

4
 when 𝜅 ≥ 1 

Therefore, when using a regular limit order at 𝑣𝑡 +
𝑑

4
, the B-Algo seller incurs higher transaction 

costs than when using a stimulating limit order at 𝑣𝑡 −
𝑑

4
. A.13 offers similar explanations to those 
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offered by the first equation in A.9. There is an inequality in A.13 because, whenever a human 

seller arrives, a B-Algo seller arrives, or the asset’s value jumps downward (the second, fourth, 

and sixth terms on the right-hand side of A.13), which clears the order at 𝑣𝑡 −
3𝑑

4
. The B-Algo 

seller who has an order at 𝑣𝑡 +
𝑑

4
 incurs higher transaction costs than 𝐶1, because the next-arriving 

B-Algo buyer will submit a buy order at 𝑣𝑡 −
3𝑑

4
 but will not take an order at 𝑣𝑡 +

𝑑

4
.  

We then check that the deviating B-Algo seller at 𝑣𝑡 +
𝑑

4
 is indeed losing no less than 

𝑑

4
 

when 3(1 − 𝛽) <  𝜅 < 1 . In this case, all B-Algo buyers who observe the deviator will use 

undercutting limit orders; thus, the deviator will incur an execution cost of 𝐶1 > 𝐶(1,0) >
d

4
. In 

this case, the counter-deviating B-Algo still realizes �̃�(1,1), as in Proposition 4. Also, the regular 

undercutting B-Algo sell order at 𝑣𝑡 +
3𝑑

4
 would not cancel, because cancelling and using a 

stimulating order would incur a cost of 
d

4
, while waiting always incurs a lower cost. Therefore, B-

Algo sellers never jumpstart the off-equilibrium path by quoting 𝑣𝑡 +
𝑑

4
. 

Finally, we check whether the deviation-punisher’s strategy is subgame perfect. As in the 

proof of Proposition 4, the punisher receives all non-HFT stimulating sell order flows when the 

selling deviator is present; she can therefore pay an execution cost lower than 
𝑑

4
 when 3(1 − 𝛽) <

 𝜅 < 1. When an upward fundamental value jump occurs, the deviator has been sniped and the 

punisher switches her limit buy order at 𝑣𝑡 −
𝑑

4
 to a stimulating order at 𝑣𝑡 +

5𝑑

4
 (a half-tick higher 

than the new fundamental value 𝑣𝑡 + 𝑑). The update enables the punisher to avoid becoming a 

deviator herself, because stimulating is less costly than deviating, i.e., she keeps posting a limit 

order at 𝑣𝑡 −
𝑑

4
. Thus, the punisher’s strategy is subgame perfect, as in Proposition 4, preventing 
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deviators from realizing lower execution costs. 

HFTs also have no profitable deviation strategy, for the same reason in the previous 

propositions. They will lose money if they narrow the spread or cross the midpoint, and they can 

never profit from not satisfying the trading need of any stimulating order because other HFTs 

immediately trade with the stimulating order. 

The off-equilibrium-path strategies we describe above, together with the equilibrium path, 

will generate the equilibrium outcome sketched in Proposition 6. ■ 

 

Proof of Corollary 2 

When 𝑚 = 1, the problem degenerates to Proposition 6. For 𝐽 = 𝑚𝑑 where 𝑚 ∈ 𝑁+, the 

HFT liquidity provider at 𝑣𝑡 + (𝑚 −
1

4
) 𝑑 will receive a profit of (𝑚 −

1

4
) 𝑑 from human buys at 

arrival intensity 
1

2
(1 − 𝛽)𝜆𝐼 , and incur a loss of 

𝑑

4
 from upward jumps at intensity 

1

2
𝜆𝐽 . Then 

𝐿𝑃(𝜅, 𝛽, (𝑚 −
1

4
)𝑑) = 0 if and only if 

𝜅

1−𝛽
= 4𝑚 − 1.  

For any symmetric jump size distribution 𝐽(∙) without a tick size constraint, HFTs set the 

equilibrium bid–ask spread as the smallest spread at which they break even, i.e. 𝐿𝑃(𝜅, 𝛽,
𝑠

2
) = 0. 

𝐿𝑃(𝜅, 𝛽,
𝑠

2
) =

(1−𝛽)

2𝜅+1

𝑠

2
−
𝜅∙𝑃𝑟(|𝐽|>

𝑠

2
)

2𝜅+1
𝐸 (|𝐽| −

𝑠

2
||𝐽| >

𝑠

2
)                           (A.14) 

(1−𝛽)

2𝜅+1
 is the probability of a limit-order trade with a human, and 

𝜅∙𝑃𝑟(|𝐽|>
𝑠

2
)

2𝜅+1
 is the probability that 

the order is sniped. Thus, the spread 𝑠∗ at which the HFT breaks even satisfies: 

𝜅

1 − 𝛽
=

𝑠/2

𝑃𝑟(|𝐽| >
𝑠
2)𝐸 (

|𝐽| −
𝑠
2 |
|𝐽| >

𝑠
2)
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Right-hand side (RHS) is a continuous function and monotonically increases in 𝑠. We have 

𝑅𝐻𝑆(𝑠 = 0) = 0 and 𝑅𝐻𝑆(𝑠 = ∞) = ∞. If 𝐽(∙) is massless, there exist a unique 𝑠∗ that makes 

𝐿𝑃(𝜅, 𝛽,
𝑠∗

2
) = 0. Otherwise, 𝑠∗ = 𝑚𝑖𝑛 {𝑠|𝐿𝑃(𝜅, 𝛽,

𝑠

2
) ≥ 0}. When 𝛽 → 1, we have 

𝜅

1−𝛽
→ ∞ and 

𝑠∗ → 𝑚𝑎𝑥|𝐽|. 

 When pricing is discrete, competitive HFTs simply choose the narrowest possible spread 

that guarantees 𝐿𝑃(𝜅, 𝛽,
𝑠

2
) ≥ 0. Formally speaking, 

𝑠∆
∗ = min

Φ∈𝑁+
{𝑠 = (2Φ − 1)∆ |

𝜅
1 − 𝛽

≤
𝑠/2

𝑃𝑟(|𝐽| >
𝑠
2)𝐸 (

|𝐽| −
𝑠
2 |
|𝐽| >

𝑠
2)
} 

where ∆ is the tick size. ■ 

 




