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1 Introduction

One of the key factors holding back Africa’s economic development is its inadequate

infrastructure system. Sub-Saharan Africa’s coverage with paved roads is by far the

lowest of any world region, with only 31 total paved road kilometres per 100 square

kilometres of land, compared to 134 in other low-income countries (Foster and Briceño-

Garmendia, 2010). In rural areas, more than two thirds of the population live further than

two kilometres away from any all-season road (Teravaninthorn and Raballand, 2009). As

a result, trade costs in Africa are the highest in the world, stifling interregional trade

(Limao and Venables, 2001; Foster and Briceño-Garmendia, 2010; The Economist, 2015).

The main policy prescription by international development organisations for African

governments has been to drastically expand the current road network. The World Bank

has identified an annual infrastructure gap amounting to 9.6 billion US dollars and urges

countries in Sub-Saharan Africa to spend almost one per cent of GDP on building new

roads (Foster and Briceño-Garmendia, 2010). This reasoning is also reflected in the com-

position of development aid – in 2017, by far the largest share of World Bank lending

to African countries was allocated to transport infrastructure projects (The World Bank,

2017). There is a clear consensus that Africa needs more roads.

In this paper, I investigate a neglected, yet powerful second source of spatial ine�ciency

in Africa’s transport system. I don’t ask if the continent has too few roads, but rather

analyse whether the current infrastructure is in the wrong place. Do Africa’s roads connect

the right areas to promote beneficial trade? How would a social planner design a perfect

transport network which optimises welfare in a given country? Which African country is

closest to its hypothetical optimum? And why are some locations systematically cut o↵

from the national trade system?

I derive the unique optimal trade network for every country in Africa.1 Using rich data

from satellites and online routing services, I first construct an interconnected economic

topography of more than 10,000 rectangular grid cells covering the entire continent. I then

employ a simple network model to simulate trade flows through more than 70,000 links

spanning all of Africa. In a second step, I use a variant of a recently established framework

1I consider every member state of the African Union (which includes Western Sahara) – a total of 55
countries.
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by Fajgelbaum and Schaal (2017) to optimise over the space of networks and find the

optimal transport system given the underlying economic fundamentals for every African

country. An intuitive thought experiment demonstrates this process: suppose the social

planner were to observe the spatial distribution of roads, people, and economic activity in a

given country before being allowed to lift all roads from their current location, freely shu✏e

them around, and then reorganise them in the most e�cient way for mutual trade. She

does not get to build completely new roads, but is only allowed to move infrastructure from

one part of the country to another. In this exercise, she takes into account local incentives

for trade between all sets of neighbours on a complex network graph, regional di↵erences

in trade costs caused by geographical and network characteristics, and heterogeneous costs

to constructing new roads depending on the underlying terrain.

I then compare these optimal networks to the current system. I argue that the degree to

which the optimum di↵ers from the status quo can be interpreted as an intuitive measure

for the ine�ciency of a country’s current road network. I show that potential welfare gains

from reshu✏ing roads are substantial, improving overall welfare on the entire continent

by about 1.15%. I also identify South Sudan as the country with the worst transport

network in Africa. South Sudan, the world’s youngest nation, stands to gain more than

six per cent of total welfare solely through the better reorganisation of its road network.

On the regional level, this scenario creates winners and losers. The model identifies

some areas as having too many roads and decides to put them to better use somewhere

else. These areas were ine�ciently overequipped with transportation infrastructure before

the major reshu✏ing exercise. Other regions, however, did not have enough infrastruc-

ture given their relative position in the network and are now awarded additional roads by

the social planner. I identify these areas as discriminated against by the current trans-

portation network design. By comparing welfare levels before and after the hypothetical

intervention, I create a novel dataset of local infrastructure discrimination for more than

10,000 cells covering the entire African continent.

Why are some regions systematically cut o↵ from the benefits of e�cient trade? I use

a variety of empirical designs to analyse the substantial spatial variation present in my

dataset. Firstly, I investigate the long-run e↵ects of large infrastructure investments from
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the colonial area. Similarly to Jedwab and Moradi (2016), I find a persistent impact of

railway lines constructed by the colonial powers over a century ago. Plausibly exogeneous

variation in the number of kilometres crossing a given area significantly skews the current

trade network towards a suboptimal state today. Even though many of the railway lines

have fallen into disarray since independence, regions close to colonial railroads still have

too much road infrastructure given their relative position in the network. I argue that

the colonial era transport revolution coordinated infrastructure investments towards a

spatial equilibrium that persists until today, even though it has since become ine�cient.

In contrast, proximity to railway lines that were planned, but by historical accident never

built, does not predict any significant departure from the optimal spatial distribution,

bolstering the causal nature of this relationship. I also provide suggestive evidence for

local general equilibrium e↵ects and find that areas bordering a railway might benefit at

the expense of their immediate neighbours.

Secondly, I analyse how spatial ine�ciencies in Africa’s trade system are related to

ethnic power dynamics. I find no evidence that ethnic regions that are politically dis-

criminated against have less than optimal infrastructure stocks. I estimate precise null

e↵ects of ethnicities being excluded from the central government, historically involved in

an ethnic war, or split by arbitrary colonial borders (Michalopoulos and Papaioannou,

2016) on current transport network ine�ciency. However, I do find substantial evidence

for regional favouritism – homelands of national leaders have significantly more infras-

tructure than is nationally e�cient. Finally, I investigate the extent to which foreign aid

projects have succeeded in alleviating the imbalances in Africa’s transport networks. I

present descriptive evidence demonstrating that World Bank funds have not gone towards

the regions most in need of additional infrastructure. Instead, areas that are identified as

having too many roads are associated with more Bank lending. The same patterns hold

for development aid from China.

My study contributes to several strands of literature. In analysing the impact of trans-

port revolutions, I add to the large body of work devoted to identifying the economic

returns to improving infrastructure systems. A series of rigorous studies have gauged the

welfare e↵ects of the expansion of the US railway network in the 19th century (Donaldson

4



and Hornbeck, 2016; Swisher, 2017), colonial railway systems in India (Donaldson, 2018;

Burgess and Donaldson, 2012), or highway systems in China (Faber, 2014; Baum-Snow

et al., 2017). In contrast to these studies, I do not analyse the impact of historical trans-

port revolutions, but rather measure how much a hypothetical first-best transport system

would improve welfare. Methodologically, I harness recent advances bringing insights from

the optimal transport literature into the economics discourse. Most directly, I apply the

framework by Fajgelbaum and Schaal (2017) to construct the optimal trade network for

every African country. They are the first to optimise over the space of networks in order to

find the globally e�cient transport system in an economics context, though the problem

has long featured prominently in the mathematics literature (for a textbook treatment,

see Bernot et al., 2009). To the best of my knowledge, my study is the first to employ their

framework in a development context. Previous studies in economics relied on stepwise

heuristics to eliminate suboptimal counterfactual networks like Alder (2017) in India or

Burgess et al. (2015) in Kenya, but did not include a derivation of the globally optimal

network design. Once constructed, my network features trade on a two-dimensional lattice

geometry and is hence related to the theoretical work of Allen and Arkolakis (2014, 2016).

In using satellite data to construct a spatial representation of the economy, my study also

adds to a vast literature ignited by Henderson et al. (2012) and surveyed in Donaldson

and Storeygard (2016). I also contribute to the literature employing regional trade models

to explain subnational welfare disparities caused by internal geography in a development

context. Coşar and Fajgelbaum (2016) and Atkin and Donaldson (2015) analyse how

exposure to international trade hubs propagates through the local topography in China

and Ethiopia / Nigeria, respectively. In constructing the e�cient network to mitigate

these dispersions over space, I also contribute to new explorations into conditions and

characteristics of optimal spatial policies (Fajgelbaum and Gaubert, 2018). In my three

strands of empirical inquiry, I first add to the literature examining long-run persistence

of colonial transportation revolutions in Africa (Jedwab and Moradi, 2016; Jedwab et al.,

2017). I also contribute to the literature examining how ethnic relations relate to com-

parative development in Africa (Michalopoulos and Papaioannou, 2013, 2014, 2016) and

add to our understanding of how ethnic (De Luca et al., 2018) and regional favouritism
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(Hodler and Raschky, 2014; Burgess et al., 2015) skew public goods spending towards an

ine�cient allocation. Lastly, I contribute to the literature on the distribution and e↵ects

of foreign aid (Clemens et al., 2012; Nunn and Qian, 2014; Dreher and Lohmann, 2015;

Dreher et al., 2017).

This paper will proceed as follows: section 2 presents a network model of trade which

allows for solving for the optimal transport network. In section 3, I calibrate the model

with rich data and derive the e�cient trade network design for every country in Africa.

Section 4 describes and quantifies spatial imbalances in the continent’s current trade

systems. Section 5 then presents empirical strategy and results for investigating three po-

tential sources of spatial ine�ciency: colonial infrastructure investments, ethnic relations,

and foreign aid. Section 6 concludes.

2 A model of optimal transport networks

In this paper, I derive the unique optimal transport network for every country in Africa.

To be able to maximise over the space of networks, I harnesses an altered version of a

framework by Fajgelbaum and Schaal (2017). The model is introduced in the following

paragraphs.

2.1 Geography

Following the set-up and notation of Fajgelbaum and Schaal (2017), I consider a set of

locations I = {1, ..., I}. Each location i 2 I inhabits a number of homogeneous consumers

Li. This number is treated as given and fixed for every location, such that consumers are

not allowed to move between locations. Each consumer has an identical set of preferences

characterised by

u = c↵

where c denotes per capita consumption. Every consumer in location i consumes ci and

Ci = Lici denotes total consumption in location i.

There is a set of goods N denoted by n = {1, ..., N}. Total consumption in each
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location is defined as the CES aggregation of these goods

Ci =

✓ NX

n=1

(Cn
i )

��1
�

◆ �
��1

where � denotes the standard elasticity of substitution and Cn
i denotes the consumption

of good n in location i. Locations specialise in the production of goods such that each

location only supplies one variety n 2 N . Let Yi = Y n
i denote total production in location

i.

2.2 Network topography

Locations I represent nodes of an undirected network graph. Each location i is directly

connected to a set of neighbours N(i) 2 I \ {i}. I consider locations to be arranged on a

two-dimensional square lattice where each node is connected to the locations in its Moore

Neighbourhood (i.e. its eight surrounding nodes to the north, north-east, east, and so on).

Nodes at the border of the network graph might have fewer than eight neighbours. Let E

denote the set of edges connecting neighbouring nodes and note that (I, E) fully describes

the underlying network topography.

All goods can be traded within the network. Let Qn
i,k denote the total flow of good

n travelling between nodes i and k 2 N(i). While goods can only be traded between

neighbouring nodes, nothing prevents them from travelling long distances through the

network by passing multiple locations after each other. Sending goods from location i to

location k 2 N(i) incurs trade costs, which are modelled in the canonical iceberg form. I

follow Fajgelbaum and Schaal and model iceberg trade costs for trading good n between

neighbouring locations i and k as

⌧ni,k(Q
n
i,k, Ii,k) = �⌧i,k

(Qn
i,k)

�

I�i,k
(1)

where Ii,k is defined as the level of infrastructure on the edge between nodes i and k. More

infrastructure on a given link decreases the cost of trading between them. �⌧i,k is a scaling

parameter, which allows trade costs to be flexibly adjusted for any given origin-destination

pair. Trade costs also depend on Qn
i,k, the total flow of goods on the link. Higher existing
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trade volumes on a given edge make sending an additional good more costly, a dynamic

Fajgelbaum and Schaal refer to as congestion externality. Sending one additional unit of

goods from i to k makes all other existing shipments on that link more expensive. The

social planner realises this and takes congestion into account when determining optimal

trade flows.

In equilibrium, each location cannot consume and export more than it produced and

imported. More formally

Cn
i +

X

k2N(i)

Qn
i,k(1 + ⌧ni,k(Q

n
i,k, Ii,k))  Y n

i +
X

j2N(i)

Qn
j,i (2)

must hold for every n and i. equation (2) is a variation of what Fajgelbaum and Schaal

call the Balanced Flows Constraint.

I follow the contribution of the Fajgelbaum and Schaal (2017) framework and pro-

ceed to endogenize infrastructure provision Ii,k in order to facilitate optimal trade flows.

Analytically, this problem nests the static trade flow exercise outlined above. The social

planner chooses an infrastructure network, and given the network proceeds to compute

the optimal trade flows subject to the Balanced Flows Constraint (2). To make the

problem more interesting, I follow Fajgelbaum and Schaal in introducing a constraint on

infrastructure. This is specified in fairly straightforward manner as the Network Building

Constraint
X

i

X

k2N(i)

�Ii,kIi,k  K (3)

where �ii,k denotes the cost of building infrastructure on the edge between nodes i and k.

Total spending on infrastructure is constrained by K, the sum originally spent on building

the existing road network of a country. I observe the current road network of the economy,

infer how much it must have cost to build it, and set K equal to this amount. The social

planner’s task of choosing an optimal network hence amounts to a reallocation exercise.

She gathers all road building material available in the economy and gets to redistribute

it in a more sensible way. Improving infrastructure between two nodes in order to foster

local trade hence comes at the cost of having to take away infrastructure elsewhere. I

argue that the degree to which the social planner has to rearrange existing edges serves
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as a sensible measure of spatial ine�ciency in the existing network.2

2.3 Planner’s problem and equilibrium

In the nested problem, the social planner observes localities, endowments, population,

and preferences and solves for trade flows between nodes that maximise overall welfare.

She also solves for the optimal transport network which induces welfare-maximising trade

flows in the nested problem while respecting the Network Building Constraint (3). The

full planner’s problem can hence be stated as

maxn�
Cn

i ,{Qn
i,k}k2N(i)

 
n
,

ci,{Ii,k}k2N(i)

o

i

X

i

Liu(ci)

subject to Lici 
✓ NX

n=1

(Cn
i )

��1
�

◆ �
��1

, 8i 2 I CES Consumption

Cn
i +

X

k2N(i)

Qn
i,k(1 + ⌧ni,k(Q

n
i,k, Ii,k))

 Y n
i +

X

j2N(i)

Qn
j,i, 8i 2 I, n 2 N Balanced

Flows Constraint

X

i

X

k2N(i)

�Ii,kIi,k  K
Network Building

Constraint

Ii,k = Ik,i, 8i 2 I, k 2 N(i)
Infrastructure

Symmetry

Cn
i , ci, Q

n
i,k, Ii,k � 0, 8i 2 I, n 2 N , k 2 N(i). Non-Negativity3

My version of the planner’s problem follows the baseline Fajgelbaum and Schaal (2017)

model. However, my model has four important di↵erences. First, in my model all goods

are tradeable and no local amenities exist. Second, I do not allow workers to migrate

between places and hence di↵erences in marginal utility might still exist between nodes.

Third, my model remains agnostic about the production function of each location and no

analysis of the optimal use of input factors is undertaken. Fourth, I impose infrastructure

symmetry. All these changes are undertaken with the later calibration and reshu✏ing

2I also impose infrastructure symmetry and restrict Ii,k = Ik,i 8 i, k 2 N(i).
3As will be discussed in chapter 3, I calibrate my version of the model with an even stronger lower

bound to infrastructure Ii,k than mere non-negativity. For reasons discussed below, I simulate the model
while binding Ii,k � 4. For all other variables, merely non-negativity is required.
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exercise in mind.

While optimising over the space of networks might appear daunting, Fajgelbaum and

Schaal (2017) provide conditions under which deriving the unique spatial optimum is both

ensured and feasible. Instead of solving for every single infrastructure link, I follow the

authors and recast the problem in its dual representation as a set of first-order conditions

from the subproblems, which only depend on Lagrange multipliers of each constraint.

There are considerably fewer multipliers than primal control variables, namely one for

every good in every node (interpretable as local prices). I am hence left to only find a

price field from which under the convexity assumptions, all other properties follow.4 As

spelled out more formally in the technical appendix (see section A), I obtain the optimal

network by constructing the Lagrangian corresponding to the planner’s problem, deriving

its first-order conditions, and recasting them as functions of the Lagrange parameters.

Numerical optimisation now yields the solution to the dual problem and inserting the

parameters back into the derived first-order conditions, I can immediately derive the

optimal infrastructure network Ii,k, optimal trade flowsQn
i,k over this network, and ensuing

consumption patterns Cn
i in each location.

3 Deriving optimal trade network designs

To calibrate a topography of economic activity and trade in all African countries, I con-

struct a novel network representation covering the entire continent and enrich its nodes

and edges with data from a variety of sources.

3.1 Network nodes

I first divide the entire continent into grid cells of 0.5 degrees latitude by 0.5 degrees

longitude (roughly 55 by 55 kilometres at the equator). For all of Africa, this amounts

to 10,167 cells. Using GIS, I locate the geometric centroid of each cell and overlap it

with current political borders to assign countries to each centroid. I then aggregate

spatial data on economic and geographic characteristics onto this grid cell level. Raster

4It is still a quite demanding task to solve the ensuing dual problem, even numerically. Invoking
duality reduces the scale of the problem, but I am still left with optimising over I ⇥N variables.
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data on 2015 population totals come from the Gridded Population of the World dataset

(GPW, Socioeconomic Data and Applications Center, 2016). This NASA-funded project

gathers data from hundreds of local census bureaus and statistical agencies in order to

construct a consistent high-resolution spatial dataset of the world’s population. When a

datasource only reports population totals for large, higher-level administrative districts,

the dataset smoothes population uniformly over the entire area.5 Africa is the continent

with the coarsest resolution of administrative input data. However, the average coverage

of (57KM)2 neatly matches the grid cell resolution of my study. I overlay the GPW data

with my 10,000+ grid cells to obtain the total number of people living in each cell. On

average, a cell is home to 110,000 people, with the median much to the left of that (25,000).

The most populous cell contains Cairo and inhabits almost 18 million people. 212 cells

are uninhabited. To proxy for heterogeneities in economic activity over space, I rely on

the established practise of using satellite imagery of light intensity at night (Henderson

et al., 2012). Pre-processed data on 2010 night luminosity come from Henderson et al.

(2018) and are also aggregated onto my study’s 0.5 ⇥ 0.5 degree grid resolution.

3.2 Network edges

To quantify the degree to which network nodes are connected to each other, I make use of

the open source routing service Open Street Map (OSM). For every centroid location,

I scan OSM for the optimal route to each of their respective eight surrounding neighbours.

Since I am interested solely in within-country transport networks, I perform the exercise

for each country separately and do not elicit connections between locations of di↵erent

countries. Hence, centroids located near the coastline or national borders often have less

than eight immediate neighbours. For all of the resulting almost 75,000 routes, I gather

distance travelled, average speed, and step-by-step coordinates of the travel path.6

The OSM routing algorithm is specified for cars and takes into account di↵erential

5GPW does not employ any auxiliary data sources – like satellite data – to weight-adjust population
totals over space (Doxsey-Whitfield et al., 2015).

6Scans of OSM were conducted in November 2017. The service does not allow a retrospective scan
over past road databases, so a time di↵erence between lights (2010), population (2015), and roads (2017)
can not be overcome. If anything, this renders my network ine�ciency measure a lower bound to its
true value since government o�cials will have had time to adjust their network to any spatial economic
imbalances. If the 2017 network only ine�ciently supports 2010-15 trade, chances are it did even worse
in 2015.
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speeds attainable on di↵erent types of roads. However, if either start or destination

location do not directly fall onto a street, the optimal route jumps to the nearest road

and goes from there. To take this into account, I add a walking distance to the travel

path. Agents are assumed to walk in straight lines to the nearest street at a fixed speed

of 4 km/h. They then take the car and drive the route with average speed as specified by

OSM, before they potentially have to walk the last stretch again to their exact centroid

destination. For some particularly remote areas, even the nearest street is very far away,

such that the car routing provided by OSM is not sensible. To counter these cases, I also

calculate for all 70,000+ connections the outside option of walking the entire link in a

straight line at 4 km/h. I then identify cases in which walking directly is actually faster

than using OSM’s proposed route (plus the travel to and from roads). In these cases, I

replace OSM’s route with the walking distance and constant 4 km/h speed.

Figure I presents the resulting road networks for four countries. Figure Ia displays

every optimal route for Nigeria, which appears overall fairly well connected. Commuters

mostly seem to be able to drive relatively direct routes between locations, even though

cases with substantial detours are also evident at second glance. Connections in which

walking were the preferred alternative are displayed in red and fairly rare in Nigeria.

Figure Ib presents the case of Mali, which paints a di↵erent picture: for many connections

through the Sahara desert in the north-east of the country, walking straight lines in the

sand is actually the fastest way to get from A to B. Ethiopia in Figure Ic displays only

a few trails connecting the country’s east to the west. Small Rwanda in Figure Id zooms

in on the actual roads taken and displays the intricacies of the optimal routing provided

by OSM.

Relying on the open source community of OSM does come with some drawbacks. The

most pressing concern is that data on the position and quality of roads are user-generated

and hence subject to reporting bias. Richer areas may appear to be equipped with more

roads if local residents have the time and necessary access to a computer to enter their

neighbourhoods into the database. As soon as inference is conducted on the relationship

between streets and any covariate of development, the resulting estimates will be biased.

While this is certainly troubling, I believe this bias to be much more important on finer
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Figure I: Road networks for di↵erent countries as scanned o↵ OSM

(a) Nigeria (b) Mali

(c) Ethiopia (d) Rwanda

Road networks as scanned o↵ Open Street Map (OSM). Black lines represent optimal routes from each
grid cell centroid to each of its eight surrounding neighbours. These routes may include a portion walked
by foot in order to get to the nearest street. Connections in which walking the entire distance is faster
are printed as red straight lines. Axes denote degrees longitude (x) and latitude (y), respectively. Data
scanned in November 2017.

resolutions than the operating one in this study. Start and destination of the elicited

routes are on average more than 55 kilometres apart and travel will hence take place

mostly on larger roads and national highways. It is unlikely that these major streets are

systematically underreported in OSM, the primary open source routing platform on the

internet. It is nevertheless important to keep this potential flaw of the data in mind when

conducting inference later on.7

7In some rare cases (less than 0.1 per cent of all connections), the OSM algorithm cannot find any route
between two neighbouring centroid locations. This is mostly due to an obvious geographic impossibility
to connect two nodes. In Guinea-Bissau, for instance one location lies on the Bolama Islands just o↵
the shore of mainland Guinea-Bissau. Its neighbouring locations are all on the mainland and hence
unreachable by car. In other cases, both locations to be connected are in deep jungle or swampy regions.
In all these cases, I treat the link as if the two locations were not neighbours in the first place. That
implies I even forgo the backup possibility of walking the entire distance, assuming that agents cannot
walk between islands or through the densest jungle.
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I use the average attainable speed between locations according to the OSM algorithm

as a proxy for the quality of current infrastructure on the edge between them. If two

locations are linked by a faster connection, I assume this to be the result of higher infras-

tructure Ii,k on this edge. I hence set

Ii,k = Average Speedi,k (5)

This measure is naturally bound from below at 4 km/h, as walking the air-line dis-

tance is always available as a backup. Empirically, average speeds range between 6 km/h

(Mauritania, where most routes go through the desert and have to be covered by walking)

and 33 km/h (Swaziland).

To parametise iceberg trade costs defined in equation (1), I follow Fajgelbaum and

Schaal and set � = 1.245 and � = 0.6225. I calibrate �⌧i,k by harnessing a recent con-

tribution by Atkin and Donaldson (2015). They show that trade costs are significantly

increasing in (log) distance between origin and destination, impeding much of mutually

beneficial trade. Directly taking the average of the authors’ two point estimates for

Ethiopia and Nigeria, I calculate

�⌧i,k = 0.0466⇥ ln(Distancei,k) (6)

as the trade cost elasticity to distance travelled.8

�Ii,k from equation (3) denotes the relative constant cost of increasing the average speed

on a given link by one. I follow Fajgelbaum and Schaal who in turn make use of a recent

study by Collier et al. (2015), which estimates infrastructure building costs in developing

countries. Readily applying their specification, I calculate

ln(�Ii,k,c) = �Ic �0.11⇥11Distancei,k,c>50km+0.12⇥ ln(Ruggednessi,k,c)+ ln(Distancei,k,c) (7)

as the constant cost of increasing infrastructure Ii,k on the link between i and k in

country c. Distancei,k,c denotes the road distance travelled between nodes and enters pos-

8Atkin and Donaldson (Table 2, page 44) estimate the coe�cient as 0.0374 for Ethiopia and 0.0558
for Nigeria. My parameter is the simple average of these two point estimates.
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itively, implying that longer roads are costlier to develop as every single road kilometre

will have to be improved. Moreover, the building cost per kilometre falls discretely when

the distance surpasses 50 kilometres, as embodied by the indicator 11Distancei,k,c>50km. Note

that every route in my sample is longer than 50 kilometres and the corresponding dummy

term is hence always equal to 1. Ruggednessi,k,c denotes the average ruggedness between

grid cells i and k and enters positively, highlighting the additional expenses accompanied

with building on uneven terrain.9 �Ic is a country-specific scaling parameter. Its main

purpose it to ensure that equation (3) is satisfied with K = 1. I first appraise the infras-

tructure network Ii,k of all countries and then flexibly alter �Ic for each nation individually

in order to comply with equation (3).

To build incentives for trade, I introduce N = 2 di↵erent goods: an agricultural and

an urban good. To classify grid cells as urban or rural I use an iterative procedure, which

seeks to match each country’s 2016 urbanisation rate as reported by The World Bank

(2017). I start by assuming every location is a city and then gradually proceed to re-

classify the least densely populated locations, until the ratio of people living in urban

areas to total population equals that of the World Development Indicators.10 With this

procedure, seven per cent of grid cells are classified as urban. These cells inhabit 40 per

cent of the continent’s population, matching recent figures from Lall et al. (2017) fairly

well.

After these steps, a discretised network representation exists for every African country.

Nodes in the network are the spaced centroid locations of each grid cell. They combine

the characteristics of the entire grid cell (population, output, etc.) in one point. Edges in

the network are road connections between centroids. Each edge also carries a number of

characteristics (average speed, trade costs, and infrastructure building costs). Figure II

presents this discretised network representation for the four countries from above. Nodes

are printed larger proportional to their population. Edges are drawn thicker proportional

to the initial infrastructure investment.

9Data on local ruggedness come from Henderson et al. (2018) and is described in more detail with
other geographical covariates below.

10For three countries, the WDI do not report urbanisation rates. In these cases, I match the overall
urbanisation rate for the entire African continent of 42 per cent as reported by Lall et al. (2017).
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Figure II: Discretised networks for di↵erent countries

(a) Nigeria (b) Mali

(c) Ethiopia (d) Rwanda

Discretised representation of the infrastructure networks from Figure I. Nodes are drawn with radius
proportional to total population, edges’ thickness correspond to average attainable speed on the route
connecting the nodes.

3.3 Trade network optimisation

For each country, I conduct two simulations. In both exercises, I calibrate the curvature

parameter of the utility function at ↵ = 0.4 and the elasticity of substitution parameter

at � = 4. In the first simulation exercise, infrastructure Ii,k is treated as fixed. This is to

obtain a baseline estimate of the spatial variation of welfare in each country. Locations are

still allowed to trade with each other, but only over the exogeneous current road network.

By construction, the resulting solution will have two properties. Firstly, total output over

the entire country will remain untouched. Inputs are not defined and hence do not shift

to more productive regions. Indeed, any welfare gains will be attained solely by shipping

the right mix of goods to the right regions. Secondly, labor immobility will leave welfare
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di↵erences between regions as agents cannot simply move to more privileged cells. The

social planner would like to overcome these di↵erences, but is confronted with trade costs

which might leave certain remote areas much worse o↵ than well-connected ones.

Following this static exercise, I proceed to the main task of endogenizing the infras-

tructure matrix Ii,k. With the Network Building Constraint binding total infrastructure

investment at the level of the current road network, the social planner is now free to

reshu✏e roads within the country in order to improve connections as she chooses. If she

wants to improve the connection between two given locations, she will have to take away

infrastructure from somewhere else in the country. This reallocation exercise does not

seek to identify where to place the optimal next investment, but rather represents an ut-

terly fictitious scenario in which every road can be lifted from the ground, reshu✏ed, and

eventually located someplace else.11 The procedure does not measure how many roads a

country has, but rather how well they are placed. It does not look at whether the entire

country is full of speedy roads, but rather whether those roads connect the right locations.

I conduct the reallocation scenario for every African country. Six small countries (Cape

Verde, Comoros, The Gambia, Mauritius, São Tomé and Pŕıncipe, and Reunion) are too

small to form a sensible network as they only show up as a single location in the dataset

and are henceforth no longer considered. Optimisations are performed via Matlab’s

fmincon command. When conducting the simulations, I bind the social planner’s set of

permissible roads from below, at 4 km/h (such that Ii,k � 4 8 i 2 I, k 2 N(i)). This is

motivated by the assumption at the beginning that walking straight lines at this speed is

conceived as an outside option and always available to any commuter. The social planner

should not be able to force commuters to travel slower than walking in order to build a

faster road elsewhere.12

Figure III visualises this reallocation exercise for several countries. Subfigure IIIa dis-

11Note that equation (3) only fixes
P

i

P
k2N(i) �

I
i,kIi,k = K. Hence, not the overall sum of infrastruc-

ture is fixed, but more precisely the overall cost of infrastructure. This still allows the social planner to
take away one unit of infrastructure on a very expensive (high �Ii,k) link and exchange it for much more

than one unit on a cheaper (low �Ii,k) link.
12Contrarily, I do not explicitly restrict possible investments from above (at least not in addition to

the sum-restriction imposed by equation 3), as this could violate the strong convexity of the problem.
Not bounding the problem in principle allows the social planner to combine every available infrastructure
from all over the country into one supersonic speed highway on one particular edge. However, the model
is calibrated in a way which makes this very unattractive to the planner anyway. After simulating
reallocation in every African country, less than 0.8% of all 70,000+ built roads were suggested to be over
260 km/h. Still, one outlier of 2007 km/h (in Egypt) and one of 1755 km/h (in South Africa) remain.
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plays the discretised network representation of the Central African Republic, comparable

to Figures IIa – IId. The edges to this network are printed almost evenly thick, implying

that infrastructure is fairly evenly distributed across the country. Subfigure IIIb then dis-

plays the country after the network reshu✏ing exercise. Three patterns stand out. First,

the social planner sees a clear need to connect the populous areas in the south-west of the

country with each other. Some southern nodes are granted extensive, almost highway-

like connections to their immediate neighbours. For that, the social planner is willing to

salvage some of the apparently unnecessary infrastructure in the middle or north of the

country. Second, there still is a benefit to having a few trails connecting the south-west

with the north-east. Some clear north-south and east-west routes spanning multiple re-

gions emerge. Thirdly, nodes are printed in a colour scale corresponding to individual

welfare gains and losses for each location. As can be seen from first-glance, most southern

regions stand to gain between five and ten per cent of total welfare from this scenario.

Hardly any nodes seem to lose welfare, even though on second glance a few instances

become apparent.

Tanzania in Figures IIIc – IIId displays a more decentralised optimal network solution.

The reallocation scenario results in the main urban areas being better connected to their

immediate surroundings, but no clear overarching network emerges. There also does not

appear to be any necessity to better connect hinterland regions with the primal city Dar

es Salaam in the east. Indeed, the largest city slightly loses welfare with the reallocation

at the expense of multiple smaller population centres in the north.13 Small Rwanda in

Figures IIIe – IIIf helps to illustrate some of the forces at hand in a less crowded graph.

Starting from a fairly evenly distributed transport network, the reallocation dynamics lead

to much more variation in infrastructure provision. Some links are deemed superfluous

and hence reduced to the smallest admissible level, while others are scaled to multiple

times their starting infrastructure stock. Furthermore, high welfare gains are reported by

direct neighbours of big production centres and urban grid cells. These are unassuming

grid cells with average population or output levels, merely equipped with the geographical

13On a side note, Tanzania also illustrates an interesting case where a tiny fraction of the country
is fully detached from the rest of the network. Just north of Dar es Salaam, the island of Zanzibar
constitutes a one-node subnetwork of its own. Not surprisingly, it remains completely una↵ected by the
reshu✏ing of roads on the mainland. Instances like these are relatively common in the dataset.
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Figure III: Reallocation scenario for di↵erent countries

(a) Central African Republic, pre realloca-
tion

(b) Central African Republic, post reallo-
cation

(c) Tanzania, pre reallocation (d) Tanzania, post reallocation

(e) Rwanda, pre reallocation (f) Rwanda, post reallocation

Results from optimally reshu✏ing roads in three African countries. In each network graph, every node
represents a grid cell centroid location with radius proportional to the size of its local population. Edges
are drawn thicker depending on their allotted infrastructure Ii,k (i.e. average attainable speed). In the
optimal networks on the right, nodes are coloured based on their relative welfare gains and losses. Note
the slightly di↵erent color scales for each country.
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blessing of being close to a bigger neighbour. This leads to the conclusion that while better

infrastructure combats the welfare costs of geographical distance, proximity to hubs still

matters. Even an optimally designed transport network is ultimately not able to fully

overcome the curse of distance.14

4 A measure of spatial transport network ine�ciency

After successfully reshu✏ing a country’s transport network, overall welfare will necessarily

(weakly) increase. It is the social planner’s objective to maximise overall welfare, and since

the original network composition is always still available, the entire country cannot on

aggregate be worse o↵ than before. Note again that overall production (light output)

will be una↵ected by the entire exercise. Welfare gains are solely caused by enabling

mutual benefits from trade through connecting the right locations. Nevertheless, they are

substantial. The Central African Republic of Figure III, for instance, stands to gain 1.84%

of overall welfare just by reshu✏ing its roads. Tanzania (1.7%) and Rwanda (1.27%) are

slightly closer to their hypothetical optimum.

Figure IV displays all African countries and their hypothetical welfare gain. The

three countries from above perform rather well in comparison. Some nations like South

Africa (0.5% welfare gains) or Tunisia (0.2%) perform even better. Many countries are

leaving much more on the table, like Somalia (4.8%) or Chad (4.3%). No African country,

however, has a more ill advised transport network than South Sudan. Its citizens stand

to gain almost 6.7% of overall welfare if just their roads were better placed. This might

not come as a surprise, as the world’s newest country has largely inherited a road network

that was not conceived to sustain an independent nation, but rather connect it to its

former capital up north. For the entire continent, optimal reallocation of national road

systems would improve overall welfare by 1.15%.

Forgone welfare gains can be conceived as an intuitive measure for overall network

ine�ciency. The closer hypothetical gains to zero (the lighter the country’s colour), the

more e�cient the current allocation of roads. Vice-versa, if a country stands to gain a

lot from reshu✏ing, then the current network is deemed more ine�cient. On a simple

14A term coined by Boulhol and de Serres (2010).
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Figure IV: African countries by network ine�ciency

Hypothetical welfare gain
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Countries coloured according to their welfare gain under the optimal reallocation counterfactual. Scale
from almost 7% (dark red) to < 1% (white) welfare gains. Gains are computed by comparing the
population-weighted sum of utility levels over all grid cells in a country before and after the realloca-
tion exercise.

cross-section, countries with less e�cient networks are significantly correlated with more

corruption (p < 0.01), less property rights (p < 0.01) and less 2010 log GDP (p = 0.07).15

While each country only stands to gain overall welfare from the reallocation procedure,

individual locations might very well lose in the process. Intuitively, some regions might

be equipped with far too many good roads such that the social planner takes these roads

away to use someplace else. Comparing each grid cell’s welfare before and after the major

reshu✏ing can help to identify regions which are currently over or underprovided for.

More formally, I define

⇤i =
Welfare under the optimal Infrastructurei
Welfare under the current Infrastructurei

(8)

as the Local Infrastructure Discrimination Index for grid cell i. Areas with high ⇤i

scores (⇤i > 1) would be gaining under the optimal reallocation scenario and are hence

under provided for in the network’s current state. A score of ⇤i < 1 on the other hand,

15Data from The World Bank (2017). For corruption and property rights, data are only available for 35
countries and correlations are hence performed on this truncated sample. Interestingly, network e�ciency
is not statistically associated with earlier independence years (p = 0.8) or more artificial border designs
(p = 0.3) as reported by Alesina et al. (2011).
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Figure V: Spatial distribution of ⇤i for sample countries

(a) Central African Republic (b) Tanzania (c) Rwanda

(d) Madagascar (e) Kenya (f) Chad

Six African countries by their Local Infrastructure Discrimination Index ⇤i on the grid cell level. Maps
show each country as the 0.5 ⇥ 0.5 degree grid used for the network optimisation. For each map, darker
shaded cells correspond to higher ⇤i levels and hence more infrastructure discrimination compared to the
optimal network. To better visualise within-country variation, colour scale slightly changes from country
to country.

implies that a region is too well o↵ given its position in the network today and hence

should be stripped o↵ some of its infrastructure to increase overall welfare. Figure V

displays the spatial distribution of ⇤i for six countries. The darker a grid cell’s shade,

the more it is disadvantaged by the ine�ciencies of the current network. Figures Va –

Vc display what could already be inferred from the colouring of the nodes in Figure III:

The Central African Republic has not enough fast roads in the south-west and too many

in the east, Tanzania shows no clear spatial pattern, and Rwanda only engages in minor

reshu✏ing. In Figures Vd – Vf it, furthermore, becomes apparent that Madagascar’s

infrastructure network discriminates against the island’s heartland (note how the coastal

areas tend to be much lighter than the hinterland), Kenya would profit from connecting

Nairobi to its surroundings, and Chad’s south is discriminated against compared to the

north.

22



Figure VI: Spatial distribution of ⇤i for entire sample

Africa as represented by 10,158 grid cells of 0.5 ⇥ 0.5 degrees. Cells coloured according to their Local
Infrastructure Discrimination Index ⇤i. Darker cells would benefit from reallocating national infrastruc-
ture networks. Note that the hypothetical reallocation scenario is conducted on the country-level. Cells
from di↵erent countries are hence not immediately comparable. Map’s colouring follows an equal-interval
rule such that every colour in the spectrum has an equal amount of members. This is to visualise the
measure’s variation but leads to unequal bracket-sizes for each colour.

In interpreting ⇤i, keep in mind that this is a measure of di↵erences in welfare. In

this, it need not be a direct mapping of changes in actual infrastructure provision. Indeed,

the highly non-linear nature of the optimal reallocation scenario can lead to situations

in which a certain region substantially profits from the optimal policy, even though it

is not directly granted additional roads. Local changes in welfare can instead be caused

also by fortuitous peculiarities of geography – maybe a neighbouring region emerges as a

local trade hub, or the optimal network leads to improvements in the variety of goods,

all without directly targeting each individual grid cell with additional roads. In my full

dataset, changes in welfare ⇤i are positively correlated with changes in infrastructure, yet

the opposite is also true for some outliers.16 In the remainder of this study, I will refer to

high ⇤i values as implying that a region is being awarded additional infrastructure from

the social planner, even though the two need not necessarily be always equivalent.

Figure VI displays the spatial variation of ⇤i over all 10,000+ grid cells of the entire

continent. When interpreting this map, note that grid cells are undergoing the reshu✏ing

scenario solely within their respective country. National borders hence play a role and

16Infrastructure changes computed as
P

k2N(i) I
opt
i,k /P

k2N(i) I
empirical
i,k

correlate with ⇤i at p < 0.01
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can at times even clearly be inferred from the printed map.17 Keeping this in mind, the

map reveals substantial spatial variation in the index across the African continent. The

luckiest region (in Namibia) stands to loose almost 30% of total welfare if the fictitious

social planner intervened and reshu✏ed roads away from it. On the other extreme of the

spectrum, the residents of one grid cell in Gabon are missing out on a welfare hike of

more than 50%. On average, a grid cell gains 2.8 per cent of welfare, the median cell

gains 1.7%. Figure A.1 in the appendix plots the distribution of ⇤i, which roughly follows

a normal distribution. In Figure VI, abandoned regions are clearly displaying spatial cor-

relation with large neighbouring swaths of land collectively missing out on infrastructure

improvements in certain countries. This begs the conclusion that countries do not just

overlook single grid cells but rather live with vast stretches of disadvantaged regions. The

index is evidently representing more than just haphazard noise. In the following sections,

I analyse patterns behind this heterogeneity of infrastructure discrimination over space.

5 The determinants of Africa’s spatial trade network

imbalances

Why are some African roads not in the right place to promote beneficial trade? To

investigate which areas have too much or too little infrastructure, I employ the Local In-

frastructure Discrimination Index ⇤i as dependent variable in a standard OLS regression

setting. In the base specification, I estimate

⇤i,c = �vi,c +Xi,c� + �c + ✏i,c (9)

17There are two reasons why I conduct the simulation procedure within countries and not over the
entire African continent. One is computational; the requirements for numerically solving the model
increase quadratically in the number of locations I. The largest country in Africa (Algeria) is made up
of almost 900 locations and already strains computing power quite heavily. Simulating all of Africa’s
10,000+ locations at once is then almost unattainable with available technology. The second reason is
interpretational; while lifting a country’s roads from the ground and flexibly reshu✏ing them across the
nation is already a fictitious scenario, it still operates within a government transport authority’s locus
of control. Regions disadvantaged by their own government can reasonably be considered discriminated
against. This is less the case if one were to optimise over the entire continent. Without a central planning
body for all of Africa, it is hard to interpret why a road in e.g. Tunisia should rather be moved into
Namibia.

24



for a variety of di↵erent independent variables vi,c of grid cell i in country c. �c denotes

country fixed e↵ects, X0
i,c is a vector of controls, and � is the coe�cient of interest. The

dependent variable ⇤i,c roughly follows a normal distribution and I hence do not transform

it. As apparent in Figure VI, local infrastructure discrimination displays autocorrelation

over space causing the error term ✏i,c to not be distributed independently. To account for

this problem, I follow Bester et al. (2011) and construct a higher-level spatial grid of 3

degrees latitude by 3 degrees longitude and cluster standard errors within each of these

higher-level grid cells. Errors are allowed to covary within each cluster, but not between

them.18

Including country fixed e↵ects is of particular importance, as ⇤i is constructed by

optimising trade flows within each country separately. Larger, wealthier, or more ur-

banised countries have more flexibility in reallocating their transport network. A grid

cell in Egypt is hence not directly comparable to one in Sierra Leone. Country fixed

e↵ects account for this underlying heterogeneity and make observations comparable in-

ternationally. The vector of controls X0
i,c captures observable characteristics of each grid

cell that plausibly account for some of the variation in ⇤i. Henderson et al. (2018) show

that a surprisingly parsimonious set of geographical and agricultural covariates explains

a substantial part of the global variation in economic activity. Making use of their data,

I include in X each grid cell’s average altitude, average temperature and precipitation,

land suitability for agriculture, length of the annual growing period, and an index for

the stability of malaria transmission. I also include mutually exclusive (and collectively

exhaustive) dummy variables classifying each grid cell into one of twelve predominant veg-

etation regions (or biomes, see Henderson et al., 2018).19 To flexibly control for any broad

geographic trend over the entire continent, I additionally add fourth-order polynomials

of both latitude and longitude for each grid cell. To take into account that some regions

have a natural advantage in conducting trade, I also include indicators for whether a grid

18This technique draws its power from constructing clusters in the most arbitrary manner possible
without relying on potentially endogenous partitions like national borders or administrative units (see
e.g. Michaels and Rauch, 2017). There are 332 such clusters. Since 3 degrees is evenly divisible by the
observation-level grid cell size of 0.5 degrees, each cluster in principle fits 36 observations. The median
cluster does indeed comprise 36 cells, but some border-regions fit fewer observations. On average, there
are 31 observations in a cluster.

19Only eight of the twelve vegetation patterns are actually present on the African continent, the other
indicators (biomes 4, 6, 8, and 11) are dropped from consideration.
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cell’s centroid is within 25 kilometres of a natural harbour, big lake, or navigable river

respectively (again using data from Henderson et al., 2018). Lastly, to account for po-

tential gravitational trade forces from abroad, I create and include a dummy for whether

a cell is at the border of a country’s network and hence has less than eight immediate

neighbours.

I call the set of controls outlined so far “Geographic Controls”. They are in principle

una↵ected by human decisions about the design of trade networks and therefore plausibly

exogeneous. Another set of covariates, however, poses more di�culties. These are the

variables that were already used to calibrate the optimal reallocation simulation from

above, namely a cell’s population, light output, ruggedness, and classification into urban

and rural.20 I call these “Simulation Controls”. It is crucial to be aware that ⇤i is,

among others, already a product of the intricate interplay between these factors. There

is hence a danger for plain OLS to detect a spurious, mechanical relationship between

them, potentially biasing results. On the other hand, not controlling for the spatial

distribution of people and economic activity creates the risk of confounding estimates by

means of omitted variable bias. To confront this dilemma, I always report estimates with

and without the set of simulation controls. As I will demonstrate, results turn out to

be largely similar between the two, hinting at the highly non-linear genesis of ⇤i. Table

A.1 in the appendix prints basic correlations of my various control sets with the outcome

⇤i. On average, my model reallocates roads towards border cells, as well as colder and

more malaria-prone areas, and takes infrastructure away from more illuminated grid cells.

Ruggedness, population, the classification of urban and rural, or fourth-order geographic

trends do not systematically predict variations in ⇤i.

My measure of network ine�ciency only pertains to systems of goods trade. As dis-

cussed above, there are clearly other rational motivations for building roads, mainly facili-

tating the commute of people to large administrative hubs – most immediately, a nation’s

capital. To ensure that my results are not driven by systematic ignorance of these not-for-

trade roads, I re-estimate every model while excluding grid cells containing a country’s

capital. Unless otherwise reported, this leaves results virtually unchanged.

20Recall that population and output were components of the planner’s problem, ruggedness went into
the cost of building new infrastructure �Ii,k, and the urban/rural classification determined which good a
cell produced.
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In this paper, I investigate three potential sources of network ine�ciency in Africa:

colonial era infrastructure investments, ethnic power relations, and foreign aid. Each

individual setting faces di↵erent challenges to identification but they are all based on the

framework outlined above. The following sections present empirical strategies and results

for all three strands of inquiry.

5.1 Colonial infrastructure investments

The colonial powers transformed the landscape of many African regions by devising large

scale infrastructure projects. Starting in the late 19th century, numerous railway lines

were built to facilitate the transport of goods and troops through the vast newly appropri-

ated territories. Between 1890 and 1960, British, French, Belgian, German, Italian, and

Portuguese administrations all undertook e↵orts to permeate their colonies with more or

less sophisticated railway networks (Jedwab and Moradi, 2016). There were two main

motivations for this: supporting the extractive economies and ensuring military domina-

tion (Jedwab et al., 2017). These colonial railroads have been found to have a persistent

impact on the spatial organisation of economic activity today. Jedwab and Moradi (2016)

show how urbanisation started to centre around railway tracks in the decades following

their construction. Even as most railway lines have fallen into disarray and road tra�c

has replaced trains as the most important means of transportation, economic activity

today still clusters in places close to the former rail lines.

Did the transport revolution coordinate the economy on an e�cient spatial equilib-

rium? To investigate whether railways from the colonial period still have an impact on

trade network ine�ciency today, I overlay the 10,000+ grid cells of my data set with every

railway line built by the colonial powers in Sub-Saharan Africa. Figure VII prints in red

237 lines built between 1890 and the various independence dates. Data on railroad posi-

tioning comes from Jedwab and Moradi (2016), with the exception of South Africa, for

which I manually digitise a map from Herranz-Loncán and Fourie (2017). No comparable

data are available for Madagascar, Egypt, and the Maghreb countries, which also saw

some colonial railway construction. As discussed below, findings are robust to excluding

grid cells from these countries.
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Figure VII: Colonial railway network

Maps displaying the network of railway lines (red) and placebo railroads (blue). Data from Jedwab and
Moradi (2016) and Herranz-Loncán and Fourie (2017). Railroads built by the colonial powers between
1890 and 1960 are printed in red. Lines that were initially planned but never actually built are printed
in blue.

For every grid cell, I compute the total number of colonial railway kilometres crossing

the cell. This serves as a tangible measure for the stock of physical transport capital

invested into each region. The majority of cells (91%) are not crossed by a colonial

railway and hence have zero railroad kilometres. Those that are intersected by a line

usually have between 20 and 60 railroad kilometres, while some important rail crossings

or transport hubs have up to 100 kilometres of railroads. This measure captures the

intensive margin of colonial infrastructure investment. I also construct a measure of

extensive margin railroad exposure by computing the distance from a cell’s centroid to

its closest rail line. Every railroad line comes with a classification of being constructed

primarily for military purposes or mining purposes (or neither, or both), allowing for

more nuanced further analysis. Lastly, to account for potential endogeneity concerns,

I also compute the same statistics for a set of railway lines the colonisers planned, but

never built. As Jedwab and Moradi (2016) explain, these projects were not realised only

for a series of arguably random historical events like unforeseeable cuts to financing, the

outbreak of wars, or sudden retirements of administration o�cials. If any e↵ects are to

be attested to the construction of railroads during the colonial era, no impact should be
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found for such placebo railroads. These tracks are printed in blue in Figure VII.21

Table I displays results from OLS estimation of equation (9) with ⇤i on the left hand

side and total rail kilometres as explanatory variable vi. Column (1) displays the plain

cross-sectional relationship without controls and reveals a statistically significant and

negative association between the two variables. Grid cells with high colonial railroad

investment have significantly lower infrastructure discrimination today. Recall that low

values of ⇤i correspond to regions losing welfare if the social planner were to optimally re-

allocate infrastructure. On a merely descriptive level, the negative estimate of column (1)

hence implies that regions with colonial railroads crossing through them would on average

see infrastructure (and welfare) redistributed to those areas without colonial investments.

Columns (2) – (4) gradually extend the set of observable controls. The point estimate

and statistical significance of the persistence of railroads is robust to including country

fixed e↵ects, geographical controls, and simulation controls as described above. In the

richest specification of column (4), every ten kilometres of colonial railway construction

are associated with grid cells losing 0.2 percentage points of welfare at the hand of areas

without any investment.

Columns (5) – (8) repeat the exercise for the set of placebo railroads. If these are

assumed to have undergone the same planning process as actual railways, the regres-

sions reveal the distorting power of site selection. None of the estimates are significantly

di↵erent from zero, suggesting that the link in columns (1) – (4) is a causal one. The

construction of railways by the colonial powers cause a↵ected regions to be too well o↵

today. The results are virtually identical when using only the subsample of 34 countries

for which data on colonial railroad placement are available, or excluding all grid cells

containing a national capital (not reported).

The e↵ects described in Table I are small, yet remarkable. Across the African con-

tinent, areas that received large infrastructure investments a century ago are still too

well o↵ given their position in the national trade network. In contrast, areas that were

not crossed by tracks are ine�ciently short on infrastructure today. To see that this is

a non-trivial finding, note that, firstly, most of the colonial railway lines have been in

21Data for placebo lines also come from Jedwab and Moradi (2016) and Herranz-Loncán and Fourie
(2017).
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Table I: Colonial railroads and local infrastructure discrimination index

Dependent variable: Local Infrastructure Discrimination Index ⇤i

(1) (2) (3) (4) (5) (6) (7) (8)

KM of Colonial Railroads �0.0002 �0.0001 �0.0002 �0.0002
(0.0001) (0.0001) (0.0001) (0.0001)

KM of Colonial Placebo Railroads 0.00004 �0.0002 �0.0002 �0.0003
(0.0003) (0.0003) (0.0003) (0.0003)

Country FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Simulation controls Yes Yes
Observations 10,158 10,158 10,158 10,158 10,158 10,158 10,158 10,158
R2 0.001 0.099 0.124 0.126 0.00000 0.098 0.122 0.124

Results of estimation of equation (9) on the sample of 0.5 ⇥ 0.5 degree grid cells for the entire African
continent (excluding six small countries, see text). Dependent variable is the Local Infrastructure Dis-
crimination Index ⇤i for each grid cell. Columns (1)-(4) estimate the e↵ect of colonial infrastructure
investments as measured by the total number of colonial railroad kilometres crossing a cell. Starting with
a simple univariate cross-section in (1), column (2) adds 49 country fixed e↵ects. Column (3) adds ge-
ographic controls, consisting of altitude, temperature, average land suitability, malaria prevalence, yearly
growing days, average precipitation, indicators for the 12 predominant agricultural biomes, indicators for
whether a cell is within 25 KM of a natural harbour, navigable river, or lake, the fourth-order polyno-
mial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country’s
network. Simulation controls are added in column (4) and are comprised of population, night lights,
ruggedness, and a dummy for whether a cell is classified as urban. These indicators went into the origi-
nal infrastructure reallocation simulation and are hence not orthogonal to ⇤. Columns (5)–(8) repeat the
estimations with railroads that were planned, but never built (“placebo railroads”). Results are robust to
using only the subsample of 33 countries with colonial infrastructure investment as reported by Jedwab
and Moradi (2016), plus South Africa (not reported). Results are also robust to excluding all grid cells
containing a country’s capital (not reported). Heteroskedasticity-robust standard errors are clustered on
the 3 ⇥ 3 degree level and are shown in parentheses.

disrepair for decades and thus do not immediately dictate trade flows today. Secondly,

recall that the optimal network reallocation and construction of ⇤i was based on roads

and cars, not rails and trains. The implication is hence not that colonial railway systems

themselves are inadequate to e�ciently sustain inter-regional trade today. Rather the

transport revolution a century ago coordinated the entire economy into a certain spatial

equilibrium, which persists even though it has become ine�cient. African nations would

benefit from moving to a better equilibrium, but are locked in the current state. The

placement of colonial railroads set in motion a process of spatial sorting with people,

output, and infrastructure clustering in locations which are suboptimal today. The social

planner identifies this, seeks to overcome these misallocations, and move infrastructure

away from regions once considered important by the colonisers. Jedwab and Moradi

show that colonial investments helped the economy to coordinate on one of many spatial

equilibria – my findings suggest that this is not the optimal one.22

22Note that the spatial equilibrium induced by colonial railroads could have still been optimal at
the time. My argument solely concerns the persistent e↵ects of investments a century ago on network
e�ciency today.
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Which railways were responsible for coordinating African economies into a suboptimal

spatial equilibrium? To further understand the forces behind this dynamic, I split the

sample of colonial railways along their initial construction purpose and separately calcu-

late the total number of mining and military railroad kilometres crossing a cell. Table

II repeats the estimations from above for both subsets of railways. As can be inferred,

the e↵ect is exclusively driven by railways built for military purposes. The social planner

seeks to take welfare away from regions which were crossed by lines built for strategic mil-

itary domination. Railroads constructed to support the mining trade are not associated

with areas too well o↵ today. This distinction holds both when including the variables

separately (columns 1 – 4) or jointly (columns 5 – 6). This finding o↵ers an intuitive un-

derstanding of how the current spatial distribution is ine�cient. All colonial infrastructure

investments spurred urbanisation close-by, regardless of their construction purpose. Since

mining lines arguably cross areas that are still important trade routes today, the social

planner sees no need to reorganise infrastructure away from them. Areas surrounding

rails built with military motives in mind, however, have since lost their strategic impor-

tance. As the nature of military domination, state authority, and conflict have changed

since the 19th century, there is no immediate value to clustering economic activity and

infrastructure close to former military lines anymore. It is those sunk investments that

skew the spatial equilibrium towards an ine�cient equilibrium.

Until how far away does the confounding e↵ect of former train lines reach? Table III

displays results from regressing ⇤i on a series of indicators denoting whether a grid cell’s

centroid is within certain distance intervals from its closest colonial rail line. Columns (1)

– (3) jointly estimate the e↵ects of being within [0 – 10], (10 – 20], (20 – 30], (30 – 40],

or (40+) kilometres from the closest passing railroad (with (40+) being the omitted cat-

egory). These analyses uncover general equilibrium e↵ects. Estimates from columns (1)

– (3) suggest that areas close to railroads are better o↵ at the expense of their immediate

neighbours. Grid cells with centroids less than 10 kilometres away from a passing railroad

line are between 1.3 and 1.7 percentage points too well o↵ compared to the omitted cate-

gory. The estimate is significantly di↵erent from zero and robust to gradually introducing

additional controls. The same dynamic also holds for cells within 20 kilometres of a pass-
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Table II: Heterogeneous e↵ects of colonial railroads

Dependent variable: Local Infrastructure Discrimination Index ⇤i

(1) (2) (3) (4) (5) (6)

KM of Rails for Military Purposes �0.0002 �0.0002 �0.0002 �0.0002
(0.0001) (0.0001) (0.0001) (0.0001)

KM of Rails for Mining Purposes �0.0001 �0.0001 �0.0001 �0.0001
(0.0001) (0.0001) (0.0001) (0.0001)

Country FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Simulation controls Yes Yes Yes
Observations 10,158 10,158 10,158 10,158 10,158 10,158
R2 0.123 0.125 0.122 0.124 0.123 0.125

Replication of estimations of Table I in estimating e↵ects of colonial railroads on the Local Infrastructure
Discrimination Index ⇤. Colonial rails are classified as built for military or mining purposes (or neither
or both) by Jedwab and Moradi (2016). Geographic controls consist of altitude, temperature, average
land suitability, malaria prevalence, yearly growing days, average precipitation, indicators for the 12
predominant agricultural biomes, indicators for whether a cell is within 25 KM of a natural harbour,
navigable river, or lake, the fourth-order polynomial of latitude and longitude, and an indicator of whether
the grid cell lies on the border of a country’s network. Simulation controls are comprised of population,
night lights, ruggedness, and a dummy for whether a cell is classified as urban. Results are robust to
using only the subsample of 34 countries with colonial infrastructure investment. Results are also robust
to excluding all grid cells containing a country’s capital (not reported). Heteroskedasticity-robust standard
errors are clustered on the 3 ⇥ 3 degree level and are shown in parentheses.

ing line, and becomes undetectable further out. Moreover, one can even detect an adverse

e↵ect for cells between 30 and 40 kilometres away. Those cells would be granted additional

welfare from redistributive e↵orts by the social planner. Though the estimate becomes

increasingly imprecise and even insignificantly di↵erent from zero as further controls are

introduced, the point estimate does not move by much. This is suggestive evidence that

the confounding e↵ect of colonial infrastructure policies is locally contained. Areas blessed

with a close-by railway line are still too well o↵ today, which comes at the expense of their

neighbouring regions just a few kilometres away. To gain more confidence in the causal

nature of this dynamic, columns (4) – (6) again repeat the same exercise with placebo

railroads. Of the twelve estimates produced, none is significantly di↵erent from zero.23

23Results are virtually identical when restricting the sample to only grid cells from the 34 countries
with data on colonial railway investment. One single coe�cient on placebo railroads turns marginally
significant (p < 0.1). While this is certainly noteworthy, I believe this association to be merely spurious.
In fact, by the law of large numbers, one would even statistically expect at least one of 16 placebo
estimations to be within this significance band.
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Table III: General equilibrium e↵ects of colonial railroads

Dependent variable: Local Infrastructure Discrimination Index ⇤i

Full Sample

(1) (2) (3) (4) (5) (6)

< 10 KM to Colonial Railroad �0.013 �0.015 �0.017
(0.003) (0.004) (0.004)

10� 20 KM to Colonial Railroad �0.013 �0.016 �0.017
(0.003) (0.004) (0.004)

20� 30 KM to Colonial Railroad �0.002 �0.004 �0.005
(0.004) (0.004) (0.004)

30� 40 KM to Colonial Railroad 0.010 0.008 0.007
(0.005) (0.005) (0.005)

< 10 KM to Colonial Placebo Railroad �0.005 �0.006 �0.006
(0.004) (0.004) (0.004)

10� 20 KM to Colonial Placebo Railroad �0.003 �0.004 �0.005
(0.005) (0.005) (0.005)

20� 30 KM to Colonial Placebo Railroad �0.001 �0.001 �0.001
(0.004) (0.004) (0.004)

30� 40 KM to Colonial Placebo Railroad 0.007 0.006 0.005
(0.004) (0.004) (0.004)

Country FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Simulation controls Yes Yes
Observations 10,158 10,158 10,158 10,158 10,158 10,158
R2 0.101 0.126 0.129 0.099 0.123 0.125

E↵ects of various distance-intervals on the Local Infrastructure Discrimination Index ⇤. Explanatory
covariates are dummy-variables indicating whether a cell’s centroid is within X kilometres to its closest
colonial railroad. Distance larger than 40 kilometres is the omitted category. Geographic controls consist
of altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precip-
itation, indicators for the 12 predominant agricultural biomes, indicators for whether a cell is within 25
KM of a natural harbour, navigable river, or lake, the fourth-order polynomial of latitude and longitude,
and an indicator of whether the grid cell lies on the border of a country’s network. Simulation controls
are comprised of population, night lights, ruggedness, and a dummy for whether a cell is classified as ur-
ban. Columns (1)-(3) examine the e↵ect of actually built colonial railroads. Columns (4)-(6) repeat these
calculations with railroads that were planned, but never built (“placebo railroads”). Results are robust to
excluding all grid cells containing a country’s capital (not reported). Heteroskedasticity-robust standard
errors are clustered on the 3 ⇥ 3 degree level and are shown in parentheses.

5.2 Ethnic relations

An ominous legacy of the colonial era is the design of Africa’s national borders. Drawn

without much regard for local circumstances and with European rather than African in-

terests in mind, many territories amalgamated various previously unrelated tribes and

ethnicities under the umbrella of one nationality. After independence, most borders per-

sisted and today African nations are among the most ethnically diverse in the world

(Alesina et al., 2016). A well established literature has investigated the impacts of ethnic

diversity and identity on international comparative development (Easterly and Levine,

1997; Alesina and La Ferrara, 2005; Gennaioli and Rainer, 2007; Alesina et al., 2016).

More recently, a series of new studies has begun to shine light on the causes and e↵ects
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of ethnicity-level heterogeneity within African countries. Ethnic homelands and tribes

have been shown to be better developed when they are represented in national leader-

ship (Franck and Rainer, 2012), have more centralised deep rooted institutional systems

(Michalopoulos and Papaioannou, 2013), or simply are not split in two by artificial na-

tional border designs (Michalopoulos and Papaioannou, 2016).

The political economy of public good provision along ethnic lines presents an interest-

ing case for the spatial imbalances in my dataset. Are ethnic homelands with less political

clout systematically discriminated against in the provision of trade infrastructure? To

analyse spatial patterns in the Local Infrastructure Discrimination Index ⇤ over ethnic

homelands, I follow Michalopoulos and Papaioannou (2013, 2014, 2016) and intersect an

ethnolinguistic map of pre-colonial homelands from Murdock (1959) with current national

borders.24 I spatially aggregate my grid cell measure of network ine�ciency ⇤i onto the

ethnicity-country level by assigning each grid cell an ethnicity based on its centroid loca-

tion and weighing grid cells by their respective population.25 280 ethnic homelands are

too small to overlay with any grid cell centroid, leaving me with 932 observations. Figure

VIII presents the spatial variation of the Local Infrastructure Discrimination Index ⇤h on

the ethnicity-country level.26

I investigate two patterns of infrastructure discrimination along ethnic lines, namely

the preferential treatment of groups sharing the ethnic homeland with the national leader

(ethnic favouritism) and the negative treatment of groups excluded from the government

24Ethnicity data are available for every country but Western Sahara. Ethnicities present in more than
one country count as multiple observations. Of the 835 inhabited homelands identified by Murdock,
314 are split in two or more parts by the current national borders, creating 1,212 ethnicity-country
observations.

25Recall that on the grid cell level ⇤i was defined as

⇤i =
Welfare under the optimal Infrastructurei
Welfare under the current Infrastructurei

=
Liu

optimal Infrastructure
i

Liucurrent Infrastructure
i

To aggregate this onto the ethnic homeland level, I sum over all grid cells i in homeland h

⇤h =

P
i2h Liu

optimal Infrastructure
iP

i2h Liucurrent Infrastructure
i

26The homeland which would benefit most from national reshu✏ing of roads is the tiny Tunisian part of
the Ghadames homeland. This area was identified as an oil basin in the 1990s, stands to gain more than
40% of welfare from reallocating national roads, and hence arguably presents an outlier (Echikh, 1998).
Other ethnicities that are discriminated against mostly by the current network are the Kababish in Sudan
(25%), the Bata in Cameroon (24%), or the Aushi in Congo-Kinshasa (23%). The most disproportionally
advantaged ethnic homelands in Africa are those of the Mober in Nigeria (who stand to lose 8% of welfare
if optimal networks were imposed) and the Sanga (7%) and Kreish (11%) of the Central African Republic.
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Figure VIII: ⇤h over ethnic homelands

Spatial distribution of local infrastructure discrimination index ⇤h, aggregated over ethnic homelands.
Unit of observation is pre-colonial homelands as initially defined in an ethnolinguistic map by Murdock
(1959) intersected by current political borders (following Michalopoulos and Papaioannou, 2016). ⇤h is
from grid cell level and weighted by population. Maps’s colouring follows an equal-interval rule such that
every colour in the spectrum has an equal amount of members. This is to visualise the measure’s variation
but leads to unequal bracket-sizes for each colour.

(ethnic discrimination). I begin with the latter. To measure ethnic discrimination, I

rely on four measures of political relationships between ethnicities. Firstly, I make use

of the Ethnic Power Relations (EPR) database by Vogt et al. (2015), which globally

identifies “politically relevant ethnic groups and their access to state power” (Vogt et al.,

2015, p. 1328) over the past seven decades. Not every ethnic homeland inhabits a

group that is “politically relevant”, significantly truncating the sample by 46%.27 EPR

reports a yearly time series of political discrimination for every group in the sample. In

particular, a group is coded as discriminated against by the central government if there

is “active, intentional, and targeted discrimination by the state against group members

in the domain of public politics” (Vogt et al., 2015, p. 1331). I follow Michalopoulos

and Papaioannou (2016) and analyse e↵ects of a dummy variable taking on the value

one if a group has experienced discrimination in at least one year between 1960 and

2010 and use this measure to investigate whether infrastructure discrimination covaries

with political discrimination. Secondly, I broaden the definition of ethnic discrimination

27Merging EPR observations with ethnic homelands is non-trivial. Thankfully, I am able to rely on
the conversion established by Michalopoulos and Papaioannou (2016).
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and more generally look at groups which are excluded from the central government. As

defined by EPR, this classification entails all groups that are discriminated against (from

above), plus groups that are defined as either powerless or self-excluded (Vogt et al.,

2015, p. 1331).28 Thirdly, I analyse the e↵ects of an EPR indicator denoting whether

an ethnicity was part of a civil war with an explicitly ethnic dimension at some point

between 1960 and 2010. The construction of this indicator is identical to the dummies

described above and is obtained from Michalopoulos and Papaioannou (2016). As a more

indirect measure for ethnic discrimination, I finally analyse whether ethnicities which

were split in two or more parts by the arbitrary border drawings of the colonial powers

get less than optimal infrastructure investment. Michalopoulos and Papaioannou (2016)

show that ethnic homelands of which ten or more per cent are in more than one country

are significantly more prone to violence, have less political clout, and report less overall

well-being.

To analyse patterns of infrastructure discrimination on the ethnic homeland level, I

estimate a slightly di↵erent version of equation (9)

⇤h,c = �vh,c +Xh,c� + �c + ✏h,c (10)

where ⇤h,c is the Local Infrastructure Discrimination Index for homeland h in country

c, X0
h,c and �c again denote controls and country fixed e↵ects respectively, vh,c are the

explanatory covariates discussed above, and � is the coe�cient of interest. The num-

ber of ethnicity observations (about 900) is significantly smaller than the number of grid

cells. In order to avoid overfitting, I slightly truncate the set of controls X0
h,c. I replace

the latitude and longitude polynomials, the classification into urban or rural, as well as

dummies indicating proximity to a natural harbour, river, lake, and national border with

two continuous measures of distance to the nearest border and distance to the coast. As

homelands are much more irregularly shaped than grid cells, I also include the natural

logarithm of each homelands’ area (as in Michalopoulos and Papaioannou, 2016). Apart

from these adjustments, X0
h,c entails all geographical and simulation controls of the mod-

28I again rely on the transformation by Michalopoulos and Papaioannou (2016) who code an indicator
as one if the ethnic group has experienced exclusion from the government at any point between 1960 and
2010.
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els on the grid cell level. As many ethnicities appear more than once, the error term

will reasonably be autocorrelated beyond the country-level. ✏h,c is hence plausibly not

independent even across countries. To account for this, I follow Michalopoulos and Pa-

paioannou (2016) and double-cluster standard errors at both the country level as well as

the ethnic family level using the mechanism proposed by Cameron et al. (2011).

Table IV reports results of estimating equation (10) for each of the four indicators of

ethnic discrimination as independent variable. As before, the table prints estimates both

with and without the set of simulation controls (consisting of population, night lights,

and ruggedness). No estimate is significantly di↵erent from zero, implying that the null

hypothesis of no linear relation between vh and ⇤h cannot be rejected. There is no evidence

suggesting that ine�ciencies of the national trade network systematically covary with

ethnicities that are historically discriminated against (columns 1–2), excluded from the

government (3–4), involved in an ethnic war (5–6), or split by arbitrary colonial borders

(7–8). After the social planner has reshu✏ed a country’s roads, historically victimised

groups are not better o↵ than they were before. These (null) findings do not change when

(a) excluding homelands containing a nation’s capital, (b) including ethnic family fixed

e↵ects (c) controlling for pre-colonial di↵erences in societal structure between ethnicities,

namely complexity of hierarchies, the existence of compact settlement structures, and

existence of a class system (Michalopoulos and Papaioannou, 2013), (d) using a more

lenient definition of split homelands whereby only 5% of the territory has to be in more

than one country (instead of 10%), (e) clustering standard errors along merely (either)

one dimension, and (f) excluding all geographic controls. All estimates hardly move and

remain statistically indistinguishable from zero (not reported).

To ensure that these null results are not merely an artefact of lack of statistical power in

a small sample, Table IV additionally reports the Minimum Detectable E↵ect Size (MDE)

under each estimate in brackets (Haushofer and Shapiro, 2016). This is the smallest

estimate that would have still been detectable with 80% power at the 5% significance

level and can be computed MDE = 2.8 ⇥ SE(�̂) (see Haushofer and Shapiro, 2016).

MDEs in Table IV are all around 0.02. This implies that I was powered to detect at least

a 2% increase (or reduction) in the Local Infrastructure Discrimination Index ⇤h – slightly
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Table IV: Null e↵ect of ethnic discrimination

Dependent variable: Local Infrastructure Discrimination Index ⇤h

(1) (2) (3) (4) (5) (6) (7) (8)

Ethnicity discriminated against 1960–2010 �0.001 �0.001
(SE) (0.008) (0.007)
[MDE] [0.021] [0.021]

Ethnicity excluded from the �0.006 �0.005
central government 1960–2010 (0.005) (0.005)

[0.014] [0.014]

Ethnicity involved in an 0.002 0.002
ethnic war 1960–2010 (0.008) (0.008)

[0.022] [0.022]

Ethnicity split by colonial borders �0.002 �0.002
(0.004) (0.004)
[0.011] [0.012]

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
Simulation controls Yes Yes Yes Yes
Observations 496 496 496 496 496 496 932 932
R2 0.156 0.166 0.158 0.168 0.156 0.167 0.164 0.167

Statistically insignificant e↵ects of various indicators of ethnic discrimination on the Local Infrastructure
Discrimination Index ⇤h. The sample comprises ethnic homelands, projected on current national borders.
Independent variable in columns (1)–(2) is a dummy variable indicating if an ethnicity has experienced
discrimination from the government at some point between 1960-2010. In columns (3)–(4), independent
variable is a dummy indicating if an ethnicity has been excluded from the central government at some
point between 1960-2010. (5)–(6) analyse impacts of ethnicities being involved in a major ethnic war
at some point between 1960–2010. All data gathered by Vogt et al. (2015) and obtained in transformed
form from Michalopoulos and Papaioannou (2016). Explanatory variable in (7) and (8) is an indicator of
ethnicities being split by national borders, defined as having at least 10 per cent of their homeland in more
than one country (from Michalopoulos and Papaioannou, 2016). Data for regressions in (1)–(6) only exist
for politically relevant ethnic groups, truncating the sample by 46%. All observations exclude Western
Sahara, for which no ethnic homeland data exist. Geographic controls consist of altitude, temperature,
average land suitability, malaria prevalence, yearly growing days, average precipitation, indicators for the
12 predominant agricultural biomes, distances to the nearest coast and border, and the natural logarithm of
the homeland area. Simulation controls are comprised of population, night lights, and ruggedness. Results
are robust to excluding homelands containing a country’s capital (not reported). Heteroskedasticity-robust
standard errors are double-clustered on the country level and the ethnic-family level and are reported in
parentheses. All columns also report minimum detectable e↵ect sizes (MDEs) in brackets. This is the
smallest e↵ect that would have still been detectable with 80% power at 5% significance (Haushofer and
Shapiro, 2016).

larger e↵ect sizes than being very close to a colonial railway (see Table III). Considering

the importance of ethnic power relations on subregional development in Africa, I regard

this as a reasonably fine resolution. The reported null e↵ects of Table are hence not

an artefact of underpowered tests, but rather bolster the contention that active ethnic

victimisation and trade network ine�ciency are not systematically linked.

I also analyse ethnic favouritism. Are ethnicities systematically better o↵ when the

country’s leader was born in their homeland? Existing studies have shown that the rise to

power of a new national leader leads to temporarily more consumption and output in the

leader’s birth region (Hodler and Raschky, 2014) and ethnic homeland (De Luca et al.,
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2018). During the leader’s time in o�ce, birth region and ethnic homelands also benefit

from more foreign aid and infrastructure investment being channeled their way (Dreher

et al., 2016; Burgess et al., 2015).

To investigate whether ethnic favouritism accounts for imbalances in trade infrastruc-

ture provision over space, I make use of a dataset of African national leaders provided

by Dreher et al. (2016). The data entail information about the birth region and time in

o�ce of 117 heads of state holding power in 44 African countries dating back to 1969.29

Using Open Street Map, I obtain coordinates for birthplaces and spatially merge them

with my dataset on ethnic homelands. I then use this information to calculate for each

ethnic group the total number of years someone born in the respective homeland has held

high o�ce. This allows me to analyse whether a homeland’s over provision with transport

infrastructure covaries with personal ties to national power.

Table V investigates e↵ects of ethnic and regional favouritism. Panel A, columns (1)

through (4) estimate equation (10) on the full sample of ethnic homelands intersected with

current national borders. In (1) and (2), the explanatory variable is the total number of

years someone born in the ethnic homeland was holding national power. The covariate

enters with a significant and negative coe�cient, implying that for each year one of their

members was in power, an ethnic homeland is about 0.04 percentage points too well o↵

given their relative position in the country’s trade network. If the social planner were to

intervene, she would strip the homeland with ethnic ties to power from some infrastructure

and reallocate it towards areas with no such ties. The e↵ect size is small – with the median

leader staying in power for nine years, ethnic favouritism distorts network e�ciency in the

order of magnitude of less than half a percentage point. Nevertheless, it provides further

evidence for many of the recent findings on ethnic favouritism (De Luca et al., 2018).

After having analysed intensive margin e↵ects of the number of years in power, columns

(3) and (4) extend the inquiry to the extensive margin. The explanatory variable is now

a dummy equalling one if an ethnic homeland has ever had someone represent them as

head of state (regardless of how long). The coe�cient enters significantly and negatively,

29No data on national leaders are reported for Algeria, Western Sahara, South Sudan, Somalia, and
Djibouti. Even for countries with data, coverage is not comprehensive as the dataset excludes leaders
born abroad or with unknown birthplaces. 93.6% of homelands never sent anyone to the highest o�ce in
the country. For those that did, tenures last from merely one year (the Zerma in Niger) to 42 years (the
Duma in Gabon, homeland of long-term head of state Omar Bongo).
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Table V: Ethnic favoritism

Dependent variable: Local Infrastructure Discrimination Index ⇤h

Full Sample Excluding Capitals

(1) (2) (3) (4) (5) (6)

Years in Power �0.0004 �0.0004 �0.0003
(0.0002) (0.0002) (0.0002)

In Power Dummy �0.007 �0.008 �0.007
(0.004) (0.004) (0.004)

Country FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Simulation controls Yes Yes Yes Yes
Observations 932 932 932 932 895 895
R2 0.165 0.169 0.165 0.169 0.177 0.177

Persistent impacts of holding power on Local Infrastructure Discrimination Index ⇤ in leaders’ homelands
and birthplaces. Estimates equation (10) on the sample of ethnic homelands split by current national bor-
ders. Independent variable in columns (1)–(2) is the number of years since 1969 someone born in the
homeland was the country’s leader. In (3)–(4), the independent variable is a dummy indicating whether
the homeland ever held power. Columns (5)–(6) replicate the regressions while excluding observations
containing a country’s capital. Data for leaders’ birthplaces from Dreher et al. (2016). All observa-
tions exclude Western Sahara, for which no ethnic homeland data exist. Geographic controls consist of
altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precipi-
tation, indicators for the 12 predominant agricultural biomes. For ethnic homelands also distances to the
nearest coast and border, and the natural logarithm of the homeland area. For grid cells also indicators
for whether a cell is within 25 KM of a natural harbour, navigable river, or lake, the fourth-order polyno-
mial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country’s
network. Simulation controls are comprised of population, night lights, ruggedness, and whether a cell is
classified urban (for grid cells). Heteroskedasticity-robust standard errors are (double-)clustered on the
country level (and the ethnic-family level for homelands) and are reported in parentheses.

implying that ethnic favouritism is not constrained to a few long-term national leaders.

The regressions of Table V are not perfectly identified. While I do control for an

extensive set of auxiliary variables, unobservable di↵erences between homelands might

still simultaneously impact both their infrastructure provision, as well as their chances

of sending some of their own to be national leader. This bias is particularly evident

for national capitals: leaders disproportionally are born in the capital, and capitals also

have significantly better infrastructure provision. To try to account for this confound, I

re-estimate columns (2) and (4) while excluding all homelands which include a nation’s

capital. Results are printed in columns (5) – (6) and are not qualitatively di↵erent from

the full sample estimates, yet significance becomes slightly weaker. The e↵ect thus prevails

even in homelands not geographically connected to the places of power.30

30Results are robust to replicating these regressions on the grid cell level (using equation 9) rather than
the homeland level (not reported). Together, these findings lend support to both ethnic and regional
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5.3 Foreign aid

Africa is the primary target of international aid. In 2017, no other world region was

awarded more development disbursements from The World Bank – indeed, African coun-

tries received more aid than Europe, Central Asia, Latin America, and the Caribbean

combined (The World Bank, 2017). Of almost 12 billion US dollars worth of lending

commitments, the biggest share was awarded to projects aimed at improving transporta-

tion infrastructure.31 The World Bank is not alone – in the past decade, non-traditional

players have entered and disrupted the international development aid system (Dreher and

Fuchs, 2015). Most notably, China has emerged as a significant donor nation, funding

development projects in at least 50 African countries since the turn of the millennium

(Strange et al., 2017). Yet despite the vast amount of resources involved, foreign aid has

not yet been unequivocally proven to be linked with positive economic outcomes in recip-

ient countries (Burnside and Dollar, 2000; Easterly et al., 2004; Rajan and Subramanian,

2008; Clemens et al., 2012; Clemens and Kremer, 2016; Nunn and Qian, 2014).

To investigate whether international development aid is quantitatively associated to

my measure of trade network ine�ciency, I make use of two recently established datasets

of geo-referenced aid flows to Africa. Firstly, AidData (2017) in cooperation with The

World Bank, tracks over 5,600 lending lines from The World Bank to African nations

and reports precise coordinates of over 60,000 projects financed through these funds,

totalling more than 300 billion US dollars. The sample comprises all projects approved

between 1996–2014. As Strandow et al. (2011) describe, attributing projects to locations

relies on a double-blind coding procedure of various World Bank documents. Secondly, I

explore patterns from a similar database on Chinese aid projects by Strange et al. (2017).

The motivations behind China’s involvement in Africa are opaque and data on aid flows

are much less transparent than from traditional donors, rendering precise, geo-referenced

attribution much more cumbersome. Strange et al. resort to reports from numerous local

and international media outlets to track o�cial and uno�cial financing lines to over 1,500

projects worth 73 billion US dollars in the period 2000–2011. As Strange et al. point

favouritism. My analysis is not able to conclusively distinguish between the two.
31The transport sector made up 18% of total IBRD and IDA lending to African nations, followed by

water and sanitation (14%), energy and extractives (14%), and public administration (12%) (The World
Bank, 2017).
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out, media reports are often based on initial press releases and do not necessarily follow

up on the eventual disbursement of every promised dollar. In that, the dataset is likely

to capture Chinese funding commitments rather than actual disbursements. Insofar as

donors usually commit to more than they eventually deliver, these figures present an upper

bound of realised development assistance. Furthermore, while AidData (2017) claim their

dataset on World Bank projects to be exhaustive, the dataset on Chinese aid will naturally

miss some uno�cial flows, as significant parts of Chinese involvement remain untracked.

For the purpose of this study, I exclude aid projects with no clear-cut geographical

target like unconditional lending lines to the central government or assistance for political

parties. I also exclude flows with unknown or only vague information on eventual project

location.32 I also ignore projects which were still under construction or otherwise not

fully completed by the end of 2017 (when I was scanning the Open Street Map database

for road data). Together, these steps truncate the World Bank sample by 35% and the

China sample by 52%. In Figure IX, I map the spatial distribution of aid projects from

both remaining samples. Each circle represents a project site, with radius proportional

to (log) US dollar disbursement value.33

In order to analyse spatial relationships between foreign aid and my measure of local

network ine�ciency, I aggregate the total value of aid disbursements from the remaining

10,786 World Bank projects and 1,420 Chinese projects onto the grid cell level. Of the

10,158 grid cells of my sample, more than 21% have received some form of assistance from

either source. On average, these cells receive aid volumes of more than 30 million US

dollars. The area receiving the most total World Bank funding is the grid cell containing

Uganda’s capital Kampala. The biggest beneficiary of Chinese development assistance is

a grid cell in the south of Congo-Kinshasa, where Chinese funds of almost 5 billion US

dollars helped construct a vast copper mining infrastructure.

Do donor institutions identify places most in need of additional infrastructure? I

employ various indicators of aid provision in the standard grid cell level framework based

on equation (9). I rely on two measures to quantify the prevalence of foreign aid: the

32Specifically, I exclude all projects with a precision code of more than 3 – this corresponds to projects
only identified at province-level or above. The remaining entries are geo-coded either exactly (61%),
within a 25 kilometre radius (4%), or with municipality-level precision (35%) (Strandow et al., 2011).

33All disbursements are adjusted to 2011 US dollars. For projects with multiple sites, I assume total
disbursement value to be split evenly between sites.
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Figure IX: Spatial distribution of development aid projects to African nations

(a) World Bank aid (b) Chinese aid

Foreign aid projects funded by The World Bank (IXa) and China (IXb). Each dot represents one project
site with radius proportional to the logarithm of total disbursements flowing to each site. World Bank
data comprise all projects approved between 1996–2014. Chinese data include tracked projects between
2000–2011. Map only depicts projects coded with su�cient precision to not be excluded (see text). If
a project has multiple sites, total disbursements are assumed evenly distributed between locations. Data
from AidData (2017) and Strange et al. (2017). Legend denotes disbursement values in million 2011 US
dollars. Note that the legends have di↵erent scales.

total value of aid disbursements to a grid cell in 2011 US dollars and the number of

distinct project sites within a given cell. This distinction is useful to capture e↵ects on

both intensive and extensive margins. I also put additional emphasis on infrastructure

by separately analysing variation in funds going only to infrastructure projects in the

transportation sector.

Table VI reports results. Panel A investigates the spatial distribution of World Bank

assistance. The estimates reveal seemingly opposing objectives between the Bank and the

social planner. Negative estimates in columns (1) and (2) reveal that grid cells receiving

more World Bank assistance score lower on the Local Infrastructure Discrimination Index

⇤i. These are areas the social planner identifies as overly privileged. Indeed, every

additional million US dollar flowing into an area is associated with the grid cell being

about 0.04 percentage points too well o↵, even after adjusting for geography, population,

and economic activity, and only analysing within-country variation (column 2). Were the

social planner to intervene and reallocate infrastructure, she would systematically take

roads and welfare away from cells which received more World Bank funding. Columns
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(3) and (4) zoom in on this dynamic and only analyse funds going to 2,949 transport

infrastructure projects. Results are qualitatively similar, yet much stronger. The average

transport infrastructure project size of around 3 million US dollars goes to grid cells which

stand to lose 0.3 percentage points of welfare under the reallocation exercise. Similar

e↵ects hold on the extensive margin reported in columns (5)–(8). More project sites are

associated with regions judged too well o↵ by the social planner, regardless of whether the

focus lies on assistance in general (5–6), or more specifically transportation infrastructure

projects (7–8).

Panel B replicates the estimations with data from the Chinese aid sample. Results

are very similar, yet two di↵erences in magnitude stand out. Firstly, the association of

Chinese money with network ine�ciency is smaller, but also significantly di↵erent from

zero (columns 1–2). Chinese assistance systematically flows into privileged cells, with

point estimates of the association ranging between a quarter and a third of the World

Bank results in Panel A. Again, the relationship is more pronounced for aid flows towards

projects in the transport sector (columns 3–4). Secondly, on the extensive margin, more

Chinese projects are similarly associated with higher trade network imbalances. For each

new development site financed by China in a certain cell, the social planner intervenes

and allocates 0.4 percentage points of welfare away from the cell (columns 5–6). For

transport-sector projects only, the estimate grows to 1.4 percentage points – almost a

quarter standard deviation in ⇤i per project (7–8). These results are substantially larger

than the respective World Bank estimates, which does not come as a surprise as Chinese

projects in the database are on average much more voluminous (and capture commitments

rather than potentially lower disbursement sums).34

These relationships should by no means be interpreted as clear causal e↵ects. Since the

placement of aid projects is not random, numerous other channels could account for the

patterns depicted in Table VI. And though the evidence in Table VI may seem damning,

34Results from Panel A are fully robust to following Dreher and Lohmann (2015) and taking the natural
logarithm of aid disbursements (plus a small number to include places without aid) as dependent variable,
or removing the upper 1st-percentile of aid receiving cells. Results also stay unchanged when excluding
grid cells containing a nation’s capital or excluding grid cells containing a national leader’s birthplace.
Findings from Panel B are also unchanged by all of these additional specifications, with the exception of
the relationship between transport sector aid volumes and network ine�ciency when excluding capitals.
This estimate remains negative, yet narrowly loses its distinction from zero at the 10% significance level
(p = 0.106).
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Table VI: Foreign aid projects

Dependent variable: Local Infrastructure Discrimination Index ⇤i

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Worldbank Projects

Total disbursements �0.0003 �0.0004
in million 2011 US dollars (0.0001) (0.0001)

Transport-sector disbursements �0.001 �0.001
in million 2011 US dollars (0.0002) (0.0002)

Number of projects �0.002 �0.003
(0.0004) (0.0004)

Number of transport projects �0.003 �0.004
(0.001) (0.001)

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
Simulation controls Yes Yes Yes Yes
Observations 10,158 10,158 10,158 10,158 10,158 10,158 10,158 10,158
R2 0.125 0.128 0.125 0.127 0.127 0.131 0.126 0.129

Panel B: Chinese Development Projects

Total commitments �0.0001 �0.0001
in million 2011 US dollars (0.00004) (0.00004)

Transport-sector commitments �0.0003 �0.0003
in million 2011 US dollars (0.0001) (0.0001)

Number of projects �0.003 �0.004
(0.001) (0.001)

Number of transport projects �0.013 �0.014
(0.004) (0.005)

Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
Simulation controls Yes Yes Yes Yes
Observations 10,158 10,158 10,158 10,158 10,158 10,158 10,158 10,158
R2 0.123 0.125 0.123 0.125 0.124 0.126 0.123 0.125

Grid cell level estimations of equation (9) with local infrastructure discrimination ⇤i as dependent variable
and di↵erent measures of foreign aid flows into grid cells as explanatory covariates. Panel A investigates
World Bank assistance. Columns (1)–(2) analyse total disbursement value from World Bank projects
approved from 1996–2014 in 2011 US dollars, which were completed by 2017. (3)–(4) only use a sub-
set of projects in the transport sector. (5)–(8) use the same data but focus on the number of distinct
project sites within each grid cell. Panel B repeats the same estimations, but with data on Chinese aid
projects between 2000–2011. Geographic controls consist of altitude, temperature, average land suitabil-
ity, malaria prevalence, yearly growing days, average precipitation, indicators for the 12 predominant
agricultural biomes, indicators for whether a cell is within 25 KM of a natural harbour, navigable river,
or lake, the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell
lies on the border of a country’s network. Simulation controls are comprised of population, night lights,
ruggedness, and a dummy for whether a cell is classified as urban. Data from AidData (2017) and Strange
et al. (2017). Chinese aid data are more likely to reflect commitments rather than actual disbursements.
Heteroskedasticity-robust standard errors are clustered on the 3 ⇥ 3 degree level and are shown in paren-
theses.

it might nevertheless be the result of very legitimate transport investment decisions. One

vindication for the observed pattern could come at hand of the distinctively discrete nature

of transformative infrastructure projects. To modernise and economise an overstrained

road system, The World Bank (or China, for that matter) is often faced with the choice
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between devising a large and necessary project like a new highway or modern bridge, which

by means of their discrete nature always slightly overcorrect previous imbalances. This

in turn leads the social planner to again readjust their impact. The donor’s investment

strategies might also be exonerated by way of assuming increasing returns to scale. If

The World Bank believes in an environment with multiple equilibria, where small initial

investments set in motion a dynamic of spillover externalities, labour migration, and

follow-up investments, it is often the right decision to fund projects in places that will

not immediately harness their full capabilities (Krugman, 1991a,b, 1996; Fujita et al.,

1999; Duranton and Venables, 2017). These investments will necessarily appear ine�cient

in promoting optimal trade today, yet spur transformative development tomorrow (see

Michaels et al., 2018). Embedding the reallocation exercise in a New Economic Geography

framework of increasing returns and labour mobility might be a valuable extension to

better evaluate specific place-based policies.

6 Conclusion

In this study, I have identified spatial ine�ciencies in Africa’s trade network. I first

constructed a comprehensive economic topography of the entire continent, bringing to-

gether data from a variety of sources like satellites, census bureaus, and open source

online routing services. I then presented a simple two-sector endowment network trade

model and simulated the flow of goods through the internal geography formed by 10,000

African regions and almost 75,000 network connections. Harnessing the recent theoretical

contribution by Fajgelbaum and Schaal (2017), I proceeded to endogenize the transport

network in order to derive the unique optimally reorganised road network for every country

in Africa.

In the second part of this study, I compared each country’s current network to its

hypothetically optimal one. I ranked countries by overall network e�ciency and presented

a fine-resolution spatial dataset quantifying which sub-national areas are disadvantaged

by the status quo. I empirically investigated patterns of trade network imbalances over

space and linked ine�ciencies to persistent lock-in e↵ects caused by colonial infrastructure

investments and di↵erential treatment on the basis of ethnic favouritism. I found no e↵ect
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of ethnic discrimination. I also documented how development assistance by The World

Bank and China has not targeted the regions identified as most in need of additional

investment.

In contributing a comprehensive spatial measure on the di↵erential provision of a

primary public good covering an entire continent, my study provides the quantitative

foundation for many more research questions pertaining to inequality over space. Future

research designs could employ my dataset to analyse regional roots of conflict, political

activism, social mobility, or subjective overall wellbeing. Another interesting avenue for

inquiry could be to investigate whether infrastructure ine�ciency spatially covaries with

the provision of other public goods like education, health, or security.

Identifying spatial ine�ciencies and understanding their historical, cultural, and polit-

ical roots can be the first step in outlining e↵ective place-based policies. Equipped with an

unparalleled availability of spatial data and computing power, policymakers in Africa and

around the world should feel empowered to combat local imbalances and design powerful

interventions to better connect millions.
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Appendix

A Numerically solving the planner’s problem

The full planner’s problem on page 9 consists of a very large number of choice variables

and hence requires vast computation e↵orts when solved directly. Fortunately, Fajgelbaum

and Schaal (2017) provide guidance on how to transform this primal problem into its much

simpler dual representation. The following section illustrates how to use their derivation

to numerically solve my version of the model.

To show how a unique global optimum exists, first note that every constraint of the

social planner’s problem is convex but potentially for the Balanced Flows Constraint.

However, the introduction of congestion causes even the Balanced Flows Constraint to be

convex if � > �. To see this, note that every part of the lengthy constraint is linear, but

for the interaction term Qn
i,k⌧

n
i,k(Q

n
i,k, Ii,k) representing total trade costs. Since ⌧ni,k was

parameterised as in (1), this expands to

Qn
i,k⌧

n
i,k(Q

n
i,k, Ii,k) = �⌧i,k

(Qn
i,k)

1+�

I�i,k
(A.1)

which is convex if � > �. Under this condition, the social planner’s problem is to maximise

a concave objective over a convex set of constraints, guaranteeing that any local optimum

is indeed a global maximum.A.1 � > � describes a notion of congestion dominance:

increased infrastructure expenditure might alleviate the powers of congestion, but it can

never overpower it. It precludes corner solutions in which all available concrete is spent

on one link, all but washing away trade costs and leading to overwhelming transport flows

on this one edge. If � > �, geography always wins.
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This is a function of the choice variables (Cn
i , Q

n
i,k, ci, Ii,k) in all dimensions hi, k, ni and

the Lagrange multipliers (�C ,�P ,�I , ⇣Q, ⇣C , ⇣c, ⇣I) also in hi, k, ni. Standard optimisa-

A.1This is Fajgelbaum and Schaal Proposition 1.
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tion yields first-order conditions which can be collapsed to the following set of equations
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(A.3)

These directly follow the more general framework outlined in the technical appendix

of Fajgelbaum and Schaal applied to my version of the model. In the final equation

denoting optimal infrastructure supply,  = �(1 + �)�
1+�
� , and the multiplier �I is such

that adherence to the Network Building Constraint is ensured. Note that there is a typo

in the original authors’ paper which prints one of the exponents as (�⌧i,k)
1
� when it should

be (�⌧i,k)
� 1

� . Through these algebraic manipulations, I have expressed all choice variables

as functions of merely the Lagrange parameters �P over dimensions hi, k, ni. I can hence

recast the entire Lagrangian in much simpler form as
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where x(�) denote the choice variables as functions of the Lagrange parameters as de-

rived above. Fajgelbaum and Schaal note that thanks to complementary slackness, all

other constraints can be readily dropped from consideration and only the Balanced Flows

Constraint remains part of the problem.

As Fajgelbaum and Schaal further explain, the dual of this problem can now be con-

ceived as the minimisation of

min
��0

L(�, x(�))

which is an optimisation problem over merely
���P

�� = I ⇥ N variables. Fajgelbaum

and Schaal interpret �P as a field of prices varying over goods and locations. I am left

only to minimise equation (A.4) to obtain the price-field �P . I implement constrained

optimisations within the fmincon environment in Matlab and achieve fairly fast con-
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vergence. Solving for smaller networks (like Rwanda or Djibouti) is a matter of seconds,

yet the largest countries (Algeria, Angola, DRC, and Sudan) each take about a day of

computation time (on a five-year old device, nonetheless). Plugging the derived �P pa-

rameters into the various FOCs in (A.3) yields the optimal transport network Ii,k, trade

flows between locations Qn
i,k, and consumption patterns Cn

i and ci.

B Additional figures and tables

Figure A.1: Histogram of ⇤i

Histogram displaying the frequency distribution of ⇤i over all 10,158 grid cells. Plot also shows the
respective PDF of a normal distribution with mean and standard deviation matching ⇤i.
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Table A.1: Correlations of ⇤i with the various control sets

Dependent variable: ⇤i

Geo + FE + Simulation

Altitude 0.00001 �0.00001 �0.00001
(0.00001) (0.00001) (0.00001)

Average Yearly Temperature 0.001 �0.003 �0.003
(0.001) (0.001) (0.001)

Average Land Suitability 0.008 0.007 0.007
(0.007) (0.007) (0.007)

Malaria Transmission Index 0.001 0.0005 0.0005
(0.0002) (0.0003) (0.0003)

Biome 1 0.018 0.022 0.022
(0.020) (0.011) (0.011)

Biomes 2 & 3 �0.027 �0.020 �0.020
(0.022) (0.014) (0.014)

Biome 5 �0.049 �0.036 �0.036
(0.024) (0.016) (0.016)

Biomes 7 & 9 0.017 0.025 0.025
(0.020) (0.011) (0.011)

Biome 10 0.015 0.022 0.022
(0.020) (0.011) (0.011)

Biome 12 �0.028 �0.026 �0.025
(0.022) (0.013) (0.014)

Biome 13 0.005 0.009 0.008
(0.020) (0.010) (0.011)

Biome 14 �0.005 �0.002 �0.002
(0.035) (0.033) (0.032)

< 25KM to Natural Harbour �0.019 �0.017 �0.014
(0.012) (0.012) (0.013)

< 25KM to Navigable River �0.019 �0.005 �0.001
(0.007) (0.005) (0.005)

< 25KM to Lake �0.001 0.007 0.006
(0.009) (0.009) (0.008)

Yearly Growing Days �0.00001 �0.0001 �0.0001
(0.00003) (0.00004) (0.00004)

Average Precipitation 0.00002 0.00005 0.00004
(0.0001) (0.0001) (0.0001)

Border Cell 0.001 0.001 0.001
(0.001) (0.001) (0.001)

Longitude 0.001 �0.001 �0.001
(0.0003) (0.001) (0.001)

Longitude2 0.00003 �0.00002 �0.00002
(0.00002) (0.00003) (0.00003)

Longitude3 �0.00000 0.00000 0.00000
(0.00000) (0.00000) (0.00000)

Longitude4 0.00000 �0.00000 �0.00000
(0.00000) (0.00000) (0.00000)

Latitude �0.001 �0.001 �0.001
(0.0003) (0.001) (0.001)

Latitude2 0.00001 0.00001 0.00001
(0.00002) (0.00003) (0.00003)

Latitude3 0.00000 0.00000 0.00000
(0.00000) (0.00000) (0.00000)

Latitude4 0.000 �0.000 �0.000
(0.00000) (0.00000) (0.00000)

Terrain Ruggedness �0.00000
(0.00000)

Average Night Lights �0.001
(0.0003)

Total Population 0.000
(0.000)

Urban Grid Cell 0.006
(0.003)

Country FE Yes Yes
Observations 10,158 10,158 10,158
R2 0.062 0.122 0.124
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