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1 Introduction

A popular method to estimate the effect of a treatment on an outcome is to compare over time
groups experiencing different evolutions of their exposure to treatment. In practice, this idea is
implemented by estimating regressions that control for group and time fixed effects. Hereafter, we
refer to those as two-way fixed effects (FE) regressions. We conducted a survey, and found that
20% of all empirical articles published by the American Economic Review (AER) between 2010
and 2012 have used a two-way FE regression to estimate the effect of a treatment on an outcome.
When the treatment effect is constant across groups and over time, such regressions identify that
effect under the standard “common trends” assumption. However, it is often implausible that
the treatment effect is constant. For instance, the effect of the minimum wage on employment
may vary across US counties, and may change over time. The goal of this paper is to examine
the properties of two-way FE regressions when the constant effect assumption is violated.

We start by assuming that all observations in the same (g, t) cell have the same treatment, as
is for instance the case when the treatment is a county- or a state-level law. We consider the
regression of Yi,g,t, the outcome of unit i in group g at period t on group fixed effects, period
fixed effects, and Dg,t, the value of the treatment in group g at period t. Let βfe denote the
expectation of the coefficient of Dg,t. Then, under the common trends assumption, we show that
if the treatment is binary, βfe identifies a weighted sum of the treatment effect in each group
and at each period:

βfe =
∑

(g,t):Dg,t=1

Wg,t∆g,t. (1)

∆g,t is the average treatment effect (ATE) in group g and period t and the weights Wg,ts sum
to one but may be negative. Negative weights arise because βfe is a weighted average of several
difference-in-differences (DID), which compare the evolution of the outcome between consecutive
time periods across pairs of groups. However, the “control group” in some of those comparisons
may be treated at both periods. Then, its treatment effect at the second period gets differenced
out by the DID, hence the negative weights.

The negative weights are an issue when the ATEs are heterogeneous across groups or periods.
Then, one could have that βfe is negative while all the ATEs are positive. For instance, 1.5 ×
1− 0.5× 4, a weighted sum of 1 and 4, is strictly negative. We revisit Enikolopov et al. (2011)
and Gentzkow et al. (2011), two articles that have estimated two-way FE regressions. In both
cases, negative weights are extremely prevalent: around 50% of the weights attached to βfe are
negative, so βfe is not robust to heterogeneous effects in those applications.

Researchers may want to know how serious that issue is in the application they consider. We
show that the absolute value of βfe divided by the standard deviation of the weights is equal
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to the minimal value of the standard deviation of the ATEs across the treated (g, t) cells under
which the average treatment on the treated (ATT) may actually have the opposite sign than
βfe. One can estimate that ratio to assess the robustness of βfe. If that ratio is close to 0, βfe
and the ATT can be of opposite signs even under a small and plausible amount of treatment
effect heterogeneity. In that case, treatment effect heterogeneity would be a serious concern for
the validity of βfe. On the contrary, if that ratio is very large, βfe and the ATT can only be of
opposite signs under a very large and implausible amount of treatment effect heterogeneity.

Finally, we propose a new estimand that is valid even if the treatment effect is heterogeneous
over time or across groups. This estimand identifies the average treatment effect across all the
(g, t) cells whose treatment changes from t−1 to t. It relies on a variant of the standard common
trends assumption. That condition is partly testable, and we propose a test that amounts to
looking at pre-trends, as in a standard DID analysis. We propose a simple plug-in estimator
of our estimand, and we show that it is asymptotically normal. In Gentzkow et al. (2011), our
estimator is of a different sign than, and significantly different from, the estimator of βfe.1 Our
estimator can be used in applications where, for each pair of consecutive dates, there are groups
whose treatment does not change. We estimate that this condition is satisfied for around 80%
of the papers using two-way fixed effects regressions found in our survey of the AER.

Overall, our paper has implications for applied researchers estimating two-way fixed effects
regressions. First, we recommend that they estimate the weights attached to their regression
and the ratio of βfe divided by the standard deviation of the weights. To do so, they can use the
twowayfeweights Stata package that is available from the SSC repository. If many weights are
negative, and if the ratio is not very large, we recommend that they compute our new estimator,
using the fuzzydid and did_multipleGT Stata packages that can also be downloaded from the
SSC repository (for more explanations on how to use the former package, see de Chaisemartin
et al., 2019).

We extend our results in several important directions. First, another commonly-used regression
is the first-difference regression of Yg,t − Yg,t−1, the change in the mean outcome in group g, on
period fixed effects and on Dg,t − Dg,t−1, the change in the treatment. We let βfd denote the
expectation of the coefficient of Dg,t − Dg,t−1. We show that under common trends, βfd also
identifies a weighted sum of treatment effects, with potentially some negative weights. Second,
we show that our results extend to fuzzy designs, where the treatment varies within (g, t) cells.
Finally, in our Web Appendix, we show that our results also extend to two-way fixed effects
regressions with a non-binary treatment and with covariates in the regression.

Our paper is related to the DID literature. Our main result generalizes Theorem 1 in de Chaise-
martin and D’Haultfœuille (2018). When the data has two groups and two periods, the Wald-

1Note that the authors do not estimate βfe, but βfd defined below. Our estimator is of the same sign as
theirs, but 66% larger and significantly different.
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DID estimand considered therein is equal to βfe and βfd. Our results on βfe and βfd are thus
extensions of that theorem to the case with multiple periods and groups.2 Moreover, our Wald-
TC estimand is related to the Wald-TC estimand with many groups and periods proposed in
de Chaisemartin and D’Haultfœuille (2018), and to the multi-period DID estimand proposed by
Imai and Kim (2018). In Section 3.3, we explain the differences between those three estimands.

More recently, Borusyak and Jaravel (2017), Abraham and Sun (2018), Athey and Imbens (2018),
Callaway and Sant’Anna (2018), and Goodman-Bacon (2018) study the special case of staggered
adoption designs, where the treatment of a group is weakly increasing over time. Those papers
derive some important results specific to that design that we do not consider here. Still, some
of the results in those papers are related to ours, and we describe precisely those connections
later in the paper. The most important dimension on which our paper differs from those is
that our results apply to any two-way fixed effects regressions, not only to those with staggered
adoption. In our survey of the AER papers estimating two-way fixed effects regressions, less
than 10% have a staggered adoption design. This suggests that while staggered adoptions are
an important research design, they may account for a relatively small minority of the applications
where two-way fixed effects regressions have been used.

The paper is organized as follows. Section 2 introduces the set-up. Section 3 presents our results
in sharp designs where all observations in the same (g, t) cell have the same treatment. Section
4 extends those results to fuzzy designs. Section 5 presents some other extensions. Section 6
discusses inference. Section 7 presents our survey of the articles published in the AER, and our
two empirical applications.

2 Set up

One considers observations that can be divided into g + 1 groups and t + 1 periods. For every
(g, t) ∈ {0, ..., g} × {0, ..., t}, let Ng,t denote the number of observations in group g at period
t, and let N =

∑
g,tNg,t be the total number of observations. The data may for instance be

an individual-level panel or repeated cross-section data set where groups are, say, individuals’
county of birth. The data could also be a cross-section data set where cohort of birth plays the
role of time. It is also possible that for all (g, t), Ng,t = 1, e.g. a group is one individual or firm.
All of the above are special cases of the data structure we consider.

One is interested in measuring the effect of a treatment on some outcome. Throughout the paper
we assume that treatment is binary, but our results apply to any ordered treatment, as we show in
Section 2.2 of the Web Appendix. Then, for every (i, g, t) ∈ {1, ..., Ng,t}×{0, ..., g}×{0, ..., t}, let

2In fact, a preliminary version of our main result appeared in a working paper version of de Chaisemartin and
D’Haultfœuille (2018) (see Theorems S1 and S2 in de Chaisemartin and D’Haultfoeuille, 2015).
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Di,g,t and (Yi,g,t(0), Yi,g,t(1)) respectively denote the treatment status and the potential outcomes
without and with treatment of observation i in group g at period t.

The outcome of observation i in group g and period t is Yi,g,t = Yi,g,t(Di,g,t). For all (g, t), let

Dg,t =
1

Ng,t

Ng,t∑
i=1

Di,g,t, Yg,t(0) =
1

Ng,t

Ng,t∑
i=1

Yi,g,t(0), Yg,t(1) =
1

Ng,t

Ng,t∑
i=1

Yi,g,t(1), and Yg,t =
1

Ng,t

Ng,t∑
i=1

Yi,g,t.

Dg,t denotes the average treatment in group g at period t, while Yg,t(0), Yg,t(1), and Yg,t re-
spectively denote the average potential outcomes without and with treatment and the average
observed outcome in group g at period t.

We now define the FE regression described in the introduction.3

Regression 1 (Fixed-effects regression)

Let β̂fe denote the coefficient of Dg,t in an OLS regression of Yi,g,t on group fixed effects, period
fixed effects, and Dg,t. Let βfe = E

(
β̂fe

)
.4

Throughout the paper, we maintain the following assumption.

Assumption 1 (Balanced panel of groups) For all (g, t) ∈ {0, ..., g} × {0, ..., t}, Ng,t > 0.

Assumption 1 requires that no group appears or disappears over time. This assumption is often
satisfied. Without it, our results still hold but the notation becomes more complicated as the
denominators of some of the fractions below may then be equal to zero.

Finally, for all g, let Ng,. =
∑t

t=0Ng,t denote the total number of observations in group g. For
all t, let N.,t =

∑g
g=0Ng,t denote the total number of observations in period t. For any variable

Xg,t defined in each (g, t) cell, let Xg,. =
∑t

t=0(Ng,t/Ng,.)Xg,t denote the average value of Xg,t

in group g, let X.,t =
∑g

g=0(Ng,t/N.,t)Xg,t denote the average value of Xg,t in period t, and let
X.,. =

∑
g,t(Ng,t/N)Xg,t denote the average value of Xg,t. For instance, D3,. and D.,2 respectively

denote the average treatment in group 3 across time and in period 2 across groups, whereas Y.,.
denotes the average value of the outcome across groups and time.

3 Throughout the paper, we assume that the regressors in Regression 1 and Regression 2 below are not
perfectly collinear, so the coefficients of these regressions are well-defined.

4As the independent variables in Regression 1 are constant within each (g, t) cell, Regression 1 is equivalent to
a (g, t)-level regression of Yg,t on group and period fixed effects and Dg,t, weighted by Ng,t. In fuzzy designs, using
Dg,t rather than the individual treatment ensures that βfe is identified out of comparisons of groups experiencing
different evolutions of their mean treatment over time, and not out of comparisons of observations with different
treatments within the same (g, t) cell, as such comparisons may be plagued by selection bias.
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3 Results in sharp designs

In this section, we focus on sharp designs with a non-stochastic treatment, as defined by the
following assumption:

Assumption 2 (Sharp designs with a non-stochastic treatment)

1. For all (g, t) ∈ {0, ..., g} × {0, ..., t}, Di,g,t = Dg,t for all i ∈ {1, ..., Ng,t}.

2. For all (g, t) ∈ {0, ..., g} × {0, ..., t}, Dg,t = E(Dg,t).

Point 1 of Assumption 2 requires that units’ treatments do not vary within each (g, t) cell, a
situation we refer to as a sharp design. This is for instance satisfied when the treatment is a
group-level variable, for instance a county- or a state-law. This is also mechanically satisfied
when Ng,t = 1 for all (g, t). In our literature review in Section 7.1, we find that almost 80%
of the papers using two-way fixed effects regressions and published in the AER between 2010
and 2012 consider sharp designs. We first focus on this special case given its prevalence, before
turning to fuzzy designs in the next section.

Point 2 of Assumption 2 requires that the treatment status of each (g, t) cell be non-stochastic.
This assumption fails when the treatment is randomly assigned. However, two-way fixed effects
regressions are more often used in observational than in experimental studies, as in the latter
case one can use simpler regressions to estimate the treatment effect. In observational settings,
whether the treatment should be considered as fixed or stochastic is less clear. Point 2 of
Assumption 2 is in line with the modelling framework adopted in some articles studying DID,
see e.g. Abadie (2005). And most importantly, we relax that assumption in Section 4 and in
Section 3.1 of the Web Appendix. We just maintain it for now to ease the exposition.

3.1 A decomposition of βfe as a weighted sum of ATEs under common trends

In this section, we study βfe under the following common trends assumption.

Assumption 3 (Common trends) For t ≥ 1, E(Yg,t(0))− E(Yg,t−1(0)) does not vary across g.

The common trends assumption requires that the expectation of the outcome without the treat-
ment follow the same evolution over time in every group. This assumption is sufficient for the
DID estimand to identify the ATT in designs with two groups and two periods, and where only
units in group 1 and period 1 get treated (see, e.g., Abadie, 2005).

For any (g, t) ∈ {0, ..., g} × {0, ..., t}, we denote the ATE in cell (g, t) as

∆g,t = E

(
1

Ng,t

Ng,t∑
i=1

(Yi,g,t(1)− Yi,g,t(0))

)
.
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Let ∆TR denote the ATT. ∆TR is a weighted average of the ATEs of the treated (g, t) cells:

∆TR =
∑

(g,t):Dg,t=1

Ng,t

N1

∆g,t, (2)

where N1 =
∑

i,g,tDi,g,t is the number of treated observations. We now show that under common
trends, βfe is also equal to a weighted sum of the ∆g,ts, with potentially some negative weights.

Let εg,t denote the residual of observations in cell (g, t) in the regression of Dg,t on group and
period fixed effects:5

Dg,t = α + γg + λt + εg,t.

One can show that if the regressors in Regression 1 are not collinear, the average value of εg,t
across all treated (g, t) cells differs from 0:

∑
(g,t):Dg,t=1(Ng,t/N1)εg,t 6= 0. Then we let wg,t denote

εg,t divided by that average:
wg,t =

εg,t∑
(g,t):Dg,t=1

Ng,t

N1
εg,t

.

Theorem 1 Suppose that Assumptions 1-3 hold. Then,

βfe =
∑

(g,t):Dg,t=1

Ng,t

N1

wg,t∆g,t.

To illustrate this theorem, we consider a simple example of a staggered adoption design with
two groups and three periods, and where group 0 is only treated at period 2, while group 1 is
treated both at periods 1 and 2. We also assume that Ng,t/Ng,t−1 does not vary across g: all
groups experience the same growth of their number of observations from t−1 to t, a requirement
that is for instance satisfied when the data is a balanced panel. Then, one can show that

εg,t = Dg,t −Dg,. −D.,t +D.,.,

thus implying that

ε0,2 = 1− 1/3− 1 + 1/2 = 1/6,

ε1,1 = 1− 2/3− 1/2 + 1/2 = 1/3,

ε1,2 = 1− 2/3− 1 + 1/2 = −1/6.

The residual is negative in group 1 and period 2, because the regression predicts a treatment
probability larger than one in that cell, a classic extrapolation problem with linear regressions.
Then, it follows from Theorem 1 and some algebra that under the common trends assumption,

βfe = 1/2∆0,2 + ∆1,1 − 1/2∆1,2.

5εg,t arises from a regression where the dependent and independent variables only vary at the (g, t) level.
Therefore, all the units in the same (g, t) cell have the same value of εg,t.
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βfe is equal to a weighted sum of the ATEs in group 0 at period 2, group 1 at period 1, and
group 1 at period 2, the three treated (g, t) cells.

However, the weight assigned to each ATE differs from the proportion that the corresponding
cell accounts for in the population of treated observations. Therefore, βfe is not equal to ∆TR,
the average treatment effect across all treated observations.

Perhaps more worryingly, not all the weights are positive: the weight assigned to the ATE in
group 1 period 2 is strictly negative. Consequently, βfe may be a very misleading measure of the
treatment effect. Assume for instance that ∆0,2 = ∆1,1 = 1 and ∆1,2 = 4. At the period when
they start receiving the treatment, both groups experience a modest positive ATE. But this
effect builds over time and in period 2, one period after it has started receiving the treatment,
group 1 now experiences a large ATE. Then,

βfe = 1/2× 1 + 1− 1/2× 4 = −1/2.

βfe is strictly negative, while ∆0,2, ∆1,1, and ∆1,2 are all positive. More generally, the negative
weights are an issue if the ∆g,ts are heterogeneous, across groups or over time.6 if ∆0,2 = ∆1,1 =

∆1,2 = 1, then βfe = 1, the average treatment effect across all treated observations.

Here is some intuition as to why one weight is negative in this example. It follows from Equation
(8) in the proof of Theorem 1 (see also Theorem 1 in Goodman-Bacon, 2018) that in this simple
example, βfe = (DID1 +DID2)/2, with

DID1 = E(Y1,1)− E(Y1,0)− (E(Y0,1)− E(Y0,0)) ,

DID2 = E(Y0,2)− E(Y0,1)− (E(Y1,2)− E(Y1,1)) .

The first DID compares the evolution of the mean outcome from period 0 to 1 in group 1 and
in group 0. The second one compares the evolution of the mean outcome from period 1 to 2 in
group 0 and in group 1. The control group in the second DID, group 1, is treated both in the
pre and in the post period. Therefore, under the common trends assumption, it follows from
Lemma 1 in Appendix A (a similar result appears in Lemma 1 of de Chaisemartin (2011), and
in Equation (13) of Goodman-Bacon (2018)) that DID1 = ∆1,1, but

DID2 = ∆0,2 − (∆1,2 −∆1,1).

DID2 is equal to the average treatment effect in group 0 period 2, minus the change in the
average treatment effect of group 1 between periods 2 and 1. Intuitively, the mean outcome of
groups 0 and 1 may follow different trends from period 1 to 2 either because group 0 becomes
treated, or because the treatment effect changes in group 1.

6 On the other hand, βfe does not rule out heterogeneous treatment effects within (g, t) cells, as it is identified
by variations across (g, t) cells, and does not leverage any within-cell variation.
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We now generalize the previous illustration by characterizing the (g, t) cells whose ATEs are
weighted negatively by βfe.

Proposition 1 Suppose that Assumptions 1-2 hold and for all t ≥ 1 Ng,t/Ng,t−1 does not vary
across g. Then, for all (g, t) such that Dg,t = 1, wg,t is decreasing in D.,t and Dg,..

Proposition 1 shows that βfe is more likely to assign a negative weight to periods where a large
fraction of groups are treated, and to groups treated for many periods. Then, negative weights
are a concern when treatment effects differ between periods with many versus few treated groups,
or between groups treated for many versus few periods.

Proposition 1 has interesting implications in staggered adoption designs, a special case of sharp
designs defined as follows.

Assumption 4 (Staggered adoption designs) For all g, Dg,t ≥ Dg,t−1 for all t ≥ 1.

Assumption 4 is satisfied in applications where groups adopt a treatment at heterogeneous dates
(see e.g. Athey and Stern, 2002). In that design, Borusyak and Jaravel (2017) show that βfe is
more likely to assign a negative weight to treatment effects at the last periods of the panel. This
result is a special case of Proposition 1. In staggered adoption designs, D.,t is increasing in t, so
Proposition 1 implies that wg,t is decreasing in t.7 Proposition 1 also implies that in that design,
groups that adopt the treatment earlier are more likely to receive some negative weights.

3.2 Assessing the robustness of βfe to heterogeneous treatment effects

Theorem 1 shows that in sharp designs with many groups and periods, βfe may be a misleading
measure of the treatment effect under the standard common trends assumption, if the ∆g,ts are
heterogeneous. In the corollary below, we propose two summary measures that can be used to
assess how serious that concern is. For any variable Xg,t defined in each (g, t) cell we let X

denote the vector (Xg,t)(g,t)∈{0,...,g}×{0,...,t} collecting the values of that variable in each (g, t) cell.
For instance, ∆ denotes the vector (∆g,t)(g,t)∈{0,...,g}×{0,...,t} collecting the ATE in each of the
(g, t) cells. Let

σ(∆) =

 ∑
(g,t):Dg,t=1

Ng,t

N1

(
∆g,t −∆TR

)2

1/2

,

σ(w) =

 ∑
(g,t):Dg,t=1

Ng,t

N1

(wg,t − 1)2

1/2

.

7Borusyak and Jaravel (2017) assume that the treatment effect of cell (g, t) only depends on the number of
periods since group g has started receiving the treatment, whereas Proposition 1 does not rely on that assumption.
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σ(∆) is the standard deviation of the ATEs, and σ(w) is the standard deviation of the w-
weights,8 across the treated (g, t) cells. Let n = #{(g, t) : Dg,t = 1} denote the number of
treated cells. For every i ∈ {1, ..., n}, let w(i) denote the ith largest of the weights of the
treated cells: w(1) ≥ w(2) ≥ ... ≥ w(n), and let N(i) and ∆(i) be the number of observations
and the ATE of the corresponding cell. Then, for any k ∈ {1, ..., n}, let Pk =

∑
i≥kN(i)/N1,

Sk =
∑

i≥k(N(i)/N1)w(i) and Tk =
∑

i≥k(N(i)/N1)w2
(i).

Corollary 1 Suppose that Assumptions 1-3 hold.

1. If σ(w) > 0, the minimal value of σ(∆) compatible with βfe and ∆TR = 0 is

σfe =
|βfe|
σ(w)

.

2. If βfe 6= 0 and at least one of the wg,t weights is strictly negative, the minimal value of
σ(∆) compatible with βfe and with ∆g,t of a different sign than βfe for all (g, t) is

σ
fe

=
|βfe|

[Ts + S2
s/(1− Ps)]

1/2
,

where s = min{i ∈ {1, ..., n} : w(i) < −S(i)/(1− P(i))}.

An estimator of σfe can be used to assess the robustness of βfe to treatment effect heterogeneity
across groups and periods. If σfe is close to 0, βfe and ∆TR can be of opposite signs even under
a small and plausible amount of treatment effect heterogeneity. In that case, treatment effect
heterogeneity would be a serious concern for the validity of βfe. On the contrary, if σfe is very
large, βfe and ∆TR can only be of opposite signs under a very large and implausible amount of
treatment effect heterogeneity. Then, treatment effect heterogeneity is less of a concern.

Similarly, if σ
fe

is close to 0, one may have, say, βfe > 0, while ∆g,t ≤ 0 for all (g, t), even if the
dispersion of the ∆g,ts across (g, t) cells is relatively small. Notice that σ

fe
is only defined if at

least one of the weights is strictly negative: if all the weights are positive, then one cannot have
that βfe is of a different sign than all the ∆g,ts.

When some of the weights wg,t are negative, βfe may still be robust to heterogeneous treatment
effects across groups and periods, provided the assumption below is satisfied.

Assumption 5 (w uncorrelated with ∆)
∑

(g,t):Dg,t=1(Ng,t/N1)(wg,t − 1)(∆g,t −∆TR) = 0.

Corollary 2 If Assumptions 1-3 and 5 hold, then βfe = ∆TR.

8 One can show that
∑

(g,t):Dg,t=1(Ng,t/N1)wg,t = 1.
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Assumption 5 requires that the weights attached to βfe be uncorrelated with the ∆g,ts. This
is often implausible. For instance, periods with the highest proportion of treated units are also
those with the lowest value of wg,t, as shown in Proposition 1. But those periods may also be
those with the largest treatment effect: more groups may choose to get treated at periods where
the treatment effect is the highest. This would then induce a negative correlation between w

and ∆. The plausibility of Assumption 5 can be assessed, by looking at whether w is correlated
with a predictor of the treatment effect in each (g, t) cell. In the two applications we revisit in
Section 7, this test is rejected.

3.3 An alternative estimand

In this section, we propose a new estimand that identifies a causal effect even if treatment effects
are heterogeneous, across groups or over time. That causal effect is

∆S =
∑

(g,t):Dg,t 6=Dg,t−1,t≥1

Ng,t

NS

∆g,t,

where NS =
∑

(g,t):t≥1,Dg,t 6=Dg,t−1
Ng,t. ∆S is the average ATE of all switching cells. In staggered

adoption designs, ∆S is the average of the instantaneous treatment effect at the time when a
group starts receiving the treatment, across all groups that become treated at some point.

We now show that ∆S is identified by a weighted average of DID estimands. This result holds
under Assumptions 6 and 7 below.

Assumption 6 (Common trends for groups with the same treatment at t− 1)

1. For all t ≥ 1 and g such that Dg,t−1 = 0, E(Yg,t(0))−E(Yg,t−1(0)) does not vary across g.

2. For all t ≥ 1 and g such that Dg,t−1 = 1, E(Yg,t(1))−E(Yg,t−1(1)) does not vary across g.

Assumption 6 requires that between each pair of consecutive periods, the expectation of the
outcome without treatment follow the same evolution over time in every group untreated at
t−1, and that the expectation of the outcome with treatment follow the same evolution in every
group treated at t− 1. In staggered adoption designs, only Point 1 of Assumption 6 is necessary
for Theorem 2 below to hold, and Point 1 of Assumption 6 is weaker than Assumption 3, the
standard common trends assumption. Outside of staggered adoption designs, both Points 1 and
2 are necessary, so Assumptions 3 and 6 are non-nested. However, Points 1 and 2 are arguably
a natural generalization of the identifying assumption in standard two-groups two-periods sharp
DID designs (see Abadie, 2005): they require that groups sharing the same treatment at time
t− 1 would experience the same evolution of their mean outcome from t− 1 to t if they did not
change their treatment from t − 1 to t. Importantly, Points 1 and 2 do not restrict treatment
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effect heterogeneity for any group or period, as they only put restriction on one of the two
potential outcomes.9

Assumption 7 (Existence of “stable” groups) For all t ∈ {1, ..., t}:

1. If there is at least one g ∈ {0, ..., g} such that Dg,t−1 = 0 and Dg,t = 1, then there exists at
least one g′ 6= g, g′ ∈ {0, ..., g} such that Dg′,t−1 = Dg′,t = 0.

2. If there is at least one g ∈ {0, ..., g} such that Dg,t−1 = 1, Dg,t = 0, then there exists at
least one g′ 6= g, g′ ∈ {0, ..., g} such that Dg′,t−1 = Dg′,t = 1.

The first point of the stable groups assumption requires that between each pair of consecutive
time periods, if there is a group that switches from being untreated to treated, then there should
be another group that remains untreated at both dates. The second point requires that between
each pair of consecutive time periods, if there is a group that switches from being treated to
untreated, then there should be another group that remains treated at both dates.

We can now define our estimand. For all t ∈ {1, ..., t} and for all (d, d′) ∈ {0, 1}2, let

Nd,d′,t =
∑

g:Dg,t=d,Dg,t−1=d′

Ng,t (3)

denote the number of observations with treatment d′ at period t− 1 and d at period t. Let

DID+,t =
∑

g:Dg,t=1,Dg,t−1=0

Ng,t

N1,0,t

(E(Yg,t)− E(Yg,t−1))−
∑

g:Dg,t=Dg,t−1=0

Ng,t

N0,0,t

(E(Yg,t)− E(Yg,t−1)) ,

DID−,t =
∑

g:Dg,t=Dg,t−1=1

Ng,t

N1,1,t

(E(Yg,t)− E(Yg,t−1))−
∑

g:Dg,t=0,Dg,t−1=1

Ng,t

N0,1,t

(E(Yg,t)− E(Yg,t−1)) .

Note that DID+,t is not defined when there is no group such that Dg,t = 1, Dg,t−1 = 0. In
such instances, we let DID+,t = 0. Similarly, let DID−,t = 0 when there is no group such that
Dg,t = 0, Dg,t−1 = 1. Finally, let

WTC =
t∑
t=1

(
N1,0,t

NS

DID+,t +
N0,1,t

NS

DID−,t

)
.

Theorem 2 If Assumptions 1, 2, 6, and 7 hold, then WTC = ∆S.

Here is the intuition underlying our identification result. DID+,t compares the evolution of the
mean outcome in two sets of groups: those switching from no treatment to treatment between

9Such restrictions would only arise if we imposed common trends on Y (0) and Y (1) for all groups and periods
of time. In such a case, ∆g,t would have to be additively separable in g and t, which still allows for heterogeneous
treatment effects across groups and over time.
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t− 1 and t, and those remaining untreated. Because the groups in these two sets have the same
treatment in t−1, under Assumption 6 DID+,t identifies the treatment effect in groups switching
from no treatment to treatment. Similarly, DID−,t compares the evolution of the outcome in two
sets of groups: those remaining treated between t−1 and t, and those switching from treatment
to no treatment. Under Assumption 6, it identifies the treatment effect in groups switching
from treatment to no treatment. Finally, WTC is a weighted average of those DID estimands.
Note that in staggered adoption designs, there are no groups whose treatment decreases over
time, so WTC is only a weighted average of the DID+,t estimands. The corresponding Wald-TC
estimator is computed by the fuzzydid and did_multipleGT Stata packages.

WTC is related to two other estimands. First, it is related to the Wald-TC estimand in point
2 of Theorem S1 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2018), but
the weighting of the DID+,t and DID−,t estimands differ. As a result, WTC identifies ∆S

under weaker assumptions. WTC is also related to the multi-period DID estimand proposed by
Imai and Kim (2018). There are two differences between those estimands. First, the multi-
period DID estimand is a weighted average of the DID+,t estimands, so it does not identify
the treatment effect in the groups switching out of treatment. Second, Imai and Kim (2018)
do not generalize their estimand to fuzzy designs, something we do in the next section, and to
non-binary treatments, something we do in the Web Appendix (see Section 3.2 therein).

The Wald-TC uses groups whose treatment is stable to infer the trends that would have affected
the groups whose treatment changes if their treatment had not changed. This strategy could
fail, if groups whose treatment changes experience different trends than groups whose treatment
is stable. To assess if this is a serious concern, we propose to use the following placebo estimand,
that essentially compares the outcome’s evolution from t− 2 to t− 1, in groups that switch and
do not switch treatment between t− 1 and t. This placebo estimand is defined under a modified
version of Assumption 7.

Assumption 8 (Existence of “stable” groups for placebo tests) For all t ∈ {2, ..., t}:

1. If there is at least one g ∈ {0, ..., g} such that Dg,t−2 = Dg,t−1 = 0 and Dg,t = 1, then there
exists at least one g′ 6= g, g′ ∈ {0, ..., g} such that Dg′,t−2 = Dg′,t−1 = Dg′,t = 0.

2. If there is at least one g ∈ {0, ..., g} such that Dg,t−2 = Dg,t−1 = 1, Dg,t = 0, then there
exists at least one g′ 6= g, g′ ∈ {0, ..., g} such that Dg′,t−2 = Dg′,t−1 = Dg′,t = 1.

For all t ∈ {2, ..., t} and for all (d, d′, d′′) ∈ {0, 1}3, let

Nd,d′,d′′,t =
∑

g:Dg,t=d,Dg,t−1=d′,Dg,t−2=d′′

Ng,t
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denote the number of observations with treatment status d′′ at period t− 2, d′ at period t− 1,
and d at period t. Let

Npl
S =

∑
(g,t):t≥2,Dg,t 6=Dg,t−1=Dg,t−2

Ng,t,

DIDpl
+,t =

∑
g:Dg,t=1,Dg,t−1=Dg,t−2=0

Ng,t

N1,0,0,t
(E(Yg,t−1)− E(Yg,t−2))−

∑
g:Dg,t=Dg,t−1=Dg,t−2=0

Ng,t

N0,0,0,t
(E(Yg,t−1)− E(Yg,t−2)) ,

DIDpl
−,t =

∑
g:Dg,t=Dg,t−1=Dg,t−2=1

Ng,t

N1,1,1,t
(E(Yg,t−1)− E(Yg,t−2))−

∑
g:Dg,t=0,Dg,t−1=Dg,t−2=1

Ng,t

N0,1,1,t
(E(Yg,t−1)− E(Yg,t−2)) .

Note that DIDpl
+,t is not defined when there is no group such that Dg,t = 1, Dg,t−1 = Dg,t−2 = 0.

In such instances, we let DIDpl
+,t = 0. Similarly, let DIDpl

−,t = 0 when there is no group such
that Dg,t = 0, Dg,t−1 = Dg,t−2 = 1. Then, let

W pl
TC =

t∑
t=2

(
N1,0,0,t

Npl
S

DIDpl
+,t +

N0,1,1,t

Npl
S

DIDpl
−,t

)
.

Theorem 3 If Assumptions 1, 2, 6, and 8 hold, then W pl
TC = 0.

DIDpl
+,t compares the evolution of the mean outcome from t− 2 to t− 1 in two sets of groups:

those untreated at t − 2 and t − 1 but treated at t, and those untreated at t − 2, t − 1, and
t. If Assumption 6 holds, then DIDpl

+,t = 0. Similarly, if Assumption 6 holds, DIDpl
−,t = 0.

Then, W pl
TC = 0 is a testable implication of Assumption 6, so finding W pl

TC 6= 0 would imply that
Assumption 6 is violated: groups that switch treatment experience different trends before that
switch than the groups used to reconstruct their counterfactual trends when they switch.10

In staggered adoption designs, we have, for all t ≥ 2,

Dg,t > Dg,t−1 ⇔ Dg,t > Dg,t−1 = Dg,t−2,

Dg,t = Dg,t−1 = 0⇔ Dg,t = Dg,t−1 = Dg,t−2 = 0.

Groups whose treatment increases from t − 1 to t must have a stable treatment from t − 2 to
t− 1, and groups untreated at t and t− 1 must also be untreated at t− 2. Then, Assumptions
7 and 8 are equivalent, and W pl

TC closely mimicks WTC : W pl
TC is equal to WTC , after replacing

the mean outcome in group g and at period t by its lagged value. Outside of staggered adoption
designs, some of the (g, t) cells that are used in the computation of WTC are excluded from
that of W pl

TC , because their treatment changes from t − 2 to t − 1. Finally, W pl
TC compares the

trends of switching and stable groups one period before the switch. It is easy to define other
placebo estimands comparing those trends, say, two or three periods before the switch. The
corresponding placebo estimators are computed by the fuzzydid and did_multipleGT Stata
package.

10See also Callaway and Sant’Anna (2018), who propose another placebo test in staggered adoption designs.
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4 Results in fuzzy designs

In this section, the research design may be fuzzy: the treatment may vary within (g, t) cells.
For instance, Enikolopov et al. (2011) study the effect of having access to an independent TV
channel in Russia, and in each Russian region some people have access to that channel while
other people do not. The treatment may also be stochastic.

As the numbers 1,...,Ng,t assigned to the observations of a (g, t) cell play no role, one can
always assume that those numbers are randomly assigned. Therefore, we assume hereafter that
conditional on D, the vector stacking together all the Dg,ts, all the variables indexed by i (e.g.,
Di,g,t or Yi,g,t(0)) are identically distributed within each (g, t) cell.

4.1 Generalizing the decomposition of βfe to fuzzy designs

With a stochastic treatment, we study βfe under a modified common trends assumption.

Assumption 9 (Common trends when the treatment is stochastic) For all t ≥ 1, E(Yg,t(0)|D)−

E(Yg,t−1(0)|D) almost surely does not vary across g.

Assumption 9 requires that conditional on any realization of D, the expectation of the outcome
without the treatment follow the same evolution over time in every group. Assuming common
trends conditional on the Dg,ts is necessary for identification due to the stochastic nature of the
treatment, as we explain in further detail in Section 3.1 of the Web Appendix. Other articles
that have studied DID with a stochastic treatment have also imposed conditional common trends
assumptions similar to Assumption 9, see e.g. Assumption 1 in Conley and Taber (2011). Finally,
note that under Assumption 2 (sharp designs with a non-stochastic treatment), Assumption 9
reduces to Assumption 3.

For any (g, t) ∈ {0, ..., g} × {0, ..., t}, let

∆TR
g,t (D) =

1

Ng,t

Ng,t∑
i=1

E (Yi,g,t(1)− Yi,g,t(0)|Di,g,t = 1,D)

denote the average treatment effect on the treated (ATT) in cell (g, t), conditional on D. Then

∆TR = E

(∑
g,t

Ng,tDg,t

N1

∆TR
g,t (D)

)
,

which generalizes (2) when treatments are stochastic. Theorem 4 shows that βfe is also equal
to the expectation of a weighted sum of the ∆TR

g,t (D)s. Let

wTRg,t =
εg,t∑

g,t
Ng,tDg,t

N1
εg,t

.

15



Theorem 4 Suppose that Assumptions 1 and 9 hold. Then,

βfe = E

(∑
g,t

Ng,tDg,t

N1

wTRg,t ∆TR
g,t (D)

)
.

Theorem 4 shows that in fuzzy designs, βfe is equal to the expectation of a weighted sum of the
ATTs in each (g, t) cell. Again, some of the weights may be strictly negative. Note that under
Assumption 2, Theorem 4 reduces to Theorem 1 in the previous section. One can also show
that in sharp designs with a stochastic treatment, Theorem 1 still holds, conditional on any
realization of D. Overall, Theorem 4 generalizes Theorem 1 to situations where Assumption 3
fails, either because the design is not sharp, or because the treatment is stochastic. In staggered
adoption designs, Athey and Imbens (2018) derive a decomposition of βfe that resembles to, but
differs from, that in Theorem 4. They derive their decomposition under the assumption that
the dates at which each group starts receiving the treatment are randomly assigned, while we
derive ours under a common trends assumption.

The weights have a simple expression in the following special case.

Assumption 10 (Heterogenous adoption) t = 1 and for all g ∈ {0, ..., g}, Dg,1 > Dg,0 = 0.

Assumption 10 is satisfied in applications with two time periods, and where all groups are fully
untreated at t = 0 and partly treated at t = 1. This type of design often arises in practice, for
instance when an innovation is heterogeneously adopted by various groups.

Proposition 2 If Assumptions 1, 9, and 10 hold and Ng,1/Ng,0 does not vary across g, then11

wTRg,1 =
Dg,1 −D.,1∑g

g=0
Ng,1

N1
(Dg,1 −D.,1)2

.

Proposition 2 shows that in the heterogeneous adoption design, βfe assigns negative weights to
the period-one ATT of groups with a mean treatment lower than the mean treatment in the
full population. The reason why negative weights arise is intuitive. With two periods, the FE
regression is equivalent to a regression of the first difference of the outcome on the period-one
treatment in each group. This regression compares the evolution of the outcome in more- and
less-treated groups. Doing so, it subtracts the treatment effect of the less-treated groups, hence
the negative weights. Negative weights are a concern if the ATTs of the less- and more-treated
groups systematically differ. This could be the case if treatment is determined by a Roy selection
model. Then, the groups with the highest proportion of treated units could also be those where
the ATT is the highest. On the other hand, if the proportion of treated units is randomly
assigned to each group, negative weights are not a concern.12

11Under Assumption 10, Dg,0 = 0, so wTR
g,0 does not enter in the decomposition in Theorem 4.

12Corollary 2 extends directly to fuzzy settings. Corollary 1 also extends to such cases, though the sensitivity
measure we propose is now a random variable, as it is a function of D. We discuss this issue in more details in
Section 4.1 of the Web Appendix.
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4.2 Generalizing the Wald-TC estimand to fuzzy designs

In this section, we show that in fuzzy designs, a causal effect similar to the causal effect ∆S

defined above is identified by an estimand similar to the Wald-TC estimand defined above. In
other words, we generalize Theorem 2 to fuzzy designs.

We start by introducing some new notation. For all (i, g, t) ∈ {1, ..., Ng,t}× {0, ..., g}× {0, ..., t}
and for every t′ ∈ {0, ..., t}, let Di,g,t(t

′) denote the period-t′ treatment of unit i in group
g and period t. When the data are an individual-level panel, those variables are observed:
Di,g,t(t

′) = Di,g,t′ , Di,g,t(t
′) is just the treatment of unit i in group g at time t′. In sharp designs,

those variables are also observed. As the treatment is assigned at the (g, t)-level, the period-t′

treatment of unit i in group g and period t is the same as the treatment status of units in
group g at period t′: Di,g,t(t

′) = Dg,t′ . On the other hand, in fuzzy designs, and when the data
are repeated cross-sections or a cross-section where cohort of birth plays the role of time, only
Di,g,t(t) = Di,g,t is observed. In the latter case, the Di,g,t(t

′)s are potential treatments: Di,g,t(t
′)

is the treatment status of individual i in group g and cohort t if she had been born in cohort t′.

As we assume that the random variables attached to each observation are identically distributed
within each (g, t) cell,

(
(D1,g,t(t

′))t′∈{0,...,t}, Y1,g,t(0), Y1,g,t(1)
)
, the treatments and potential out-

comes of the first observation in cell (g, t) have the same distribution as the treatments and
potential outcomes of all observations in the same cell. We make the following assumptions.

Assumption 11 (Treatment monotonicity) For all (g, t) ∈ {1, ..., g} × {1, ..., t},

1. P (D1,g,t(t− 1) = 1) = P (D1,g,t−1(t− 1) = 1).

2. Either P (D1,g,t(t) ≥ D1,g,t(t− 1)) = 1, or P (D1,g,t(t) ≤ D1,g,t(t− 1)) = 1.

First, Point 1 requires that in each group, the probability of getting treated at time t − 1 is
the same among units observed at periods t and t − 1. If the data is a balanced panel, the
units observed at different periods are the same, so this requirement is automatically satisfied:
P (D1,g,t(t − 1) = 1) = P (D1,g,t−1 = 1). With cohort-of-birth data, this requirement could fail:
for instance, the treatment probability of units born in year t− 1 may differ from the treatment
probability of the cohort born in t if it had been born in t−1. This requirement is plausible when
consecutive cohorts have similar propensities for treatment. Then, Point 2 requires that in each
group, either the treatments of all units observed at period t weakly increase from period t−1 to
t, or their treatments weakly decrease. This is similar in spirit to the monotonicity assumption in
Imbens and Angrist (1994), with time as the instrument. With panel data, one can assess from
the data whether Point 2 holds or not.13 With repeated-cross-sections or cohort-of-birth data,

13This test may reveal that Point 2 fails, but our results still hold if the treatments satisfy the threshold crossing
Equation (3.2) in de Chaisemartin and D’Haultfœuille (2018), which is weaker than Point 2 of Assumption 11.
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Point 2 is untestable. Note that Assumption 11 is automatically satisfied under Assumption 2
(sharp designs with a non-stochastic treatment).

Assumption 12 (Conditional common trends) For all t ≥ 1,

1. E (Y1,g,t(0)|D1,g,t(t− 1) = 0)− E (Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0) does not vary across g.

2. E (Y1,g,t(1)|D1,g,t(t− 1) = 1)− E (Y1,g,t−1(1)|D1,g,t−1(t− 1) = 1) does not vary across g.

Point 1 requires that for all t ≥ 1, the evolution from t− 1 to t of the mean Y (0) among units
untreated at t− 1 be the same in every group. Similarly, Point 2 requires that for all t ≥ 1, the
evolution from t− 1 to t of the mean Y (1) of units treated at t− 1 be the same in every group.
Note that under Assumption 2, Assumption 12 reduces to Assumption 6.

Assumption 13 (Existence of “stable” groups) For all t ∈ {1, ..., t}:

1. If there is at least one g ∈ {0, ..., g} such that 0 < E(Dg,t−1) 6= E(Dg,t), then there is at
least one g′ 6= g, g′ ∈ {0, ..., g} such that 0 < E(Dg′,t−1) = E(Dg′,t).

2. If there is at least one g ∈ {0, ..., g} such that 1 > E(Dg,t−1) 6= E(Dg,t), then there is at
least one g′ 6= g, g′ ∈ {0, ..., g} such that 1 > E(Dg′,t−1) = E(Dg′,t).

Point 1 requires that between each pair of consecutive time periods, if there is a group with
some treated units at t − 1 whose mean treatment changes from t − 1 to t, then there should
be another group with some treated units at t − 1 whose mean treatment remains stable from
t− 1 to t. Similarly, Point 2 requires that if there is a group with some untreated units at t− 1

whose mean treatment changes from t − 1 to t, then there should be another group with some
untreated units at t − 1 whose mean treatment remains stable from t − 1 to t. Again, under
Assumption 2, Assumption 13 reduces to Assumption 7.

In fuzzy designs, the causal effect identified by our estimand is

∆̃S =
∑

(g,t),t≥1

Ng,t(P (D1,g,t(t) 6= D1,g,t(t− 1))

PS
E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t) 6= D1,g,t(t− 1)),

where PS =
∑

(g,t),t≥1 Ng,t(P (D1,g,t(t) 6= D1,g,t(t− 1))). ∆̃S is a weighted average of the LATE of
switchers in each (g, t) cell, where each (g, t) cell receives a weight proportional to its expected
number of switchers. It is also the probability limit of switchers’ LATE,

1

#{(i, g, t) : t ≥ 1, Di,g,t(t) 6= Di,g,t(t− 1)}
∑

(i,g,t):Di,g,t(t)6=Di,g,t(t−1),t≥1

(Yi,g,t(1)− Yi,g,t(0)),

if all the (g, t) cells grow large and units are independent within cells.
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We can now define our Wald-TC estimand in fuzzy designs. First, for any t ≥ 1, let

N+,t =
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,t,

N−,t =
∑

g:E(Dg,t)<E(Dg,t−1)

Ng,t,

N=,t =
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,t

denote the number of observations at period t in groups whose mean treatment respectively
increases, decreases, and remains stable between periods t− 1 and t. Let also

N1,=,t =
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,tE(Dg,t)

denote the expected number of treated observations at period t in groups whose mean treatment
remains stable between periods t− 1 and t. Then, let

δ0,t =
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,t(1− E(Dg,t))

N=,t −N1,=,t

(E(Y1,g,t|D1,g,t = 0)− E(Y1,g,t−1|D1,g,t−1 = 0)) ,

δ1,t =
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,tE(Dg,t)

N1,=,t

(E(Y1,g,t|D1,g,t = 1)− E(Y1,g,t−1|D1,g,t−1 = 1))

respectively denote the change of the mean outcome of untreated and treated observations from
t− 1 to t, in groups whose mean treatment remains stable between t− 1 and t. Then, let

p+,t−1 =
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,tE(Dg,t−1)

N+,t

,

p−,t−1 =
∑

g:E(Dg,t)<E(Dg,t−1)

Ng,tE(Dg,t−1)

N−,t
.

p+,t−1 (resp. p−,t−1) is the weighted average of the treatment probabilities at period t − 1 of
groups whose mean treatment increases (resp. decreases) between periods t − 1 and t, where
groups are weighted by their number of observations at period t.

Our estimand is a weighted average of the following estimands:

WTC,+,t =

∑
g:E(Dg,t)>E(Dg,t−1)

Ng,t

N+,t
(E(Yg,t)− (E(Yg,t−1) + (1− p+,t−1)δ0,t + p+,t−1δ1,t))∑

g:E(Dg,t)>E(Dg,t−1)
Ng,t

N+,t
(E(Dg,t)− E(Dg,t−1))

,

WTC,−,t =

∑
g:E(Dg,t)<E(Dg,t−1)

Ng,t

N−,t
(E(Yg,t)− (E(Yg,t−1) + (1− p−,t−1)δ0,t + p−,t−1δ1,t))∑

g:E(Dg,t)<E(Dg,t−1)
Ng,t

N−,t
(E(Dg,t−1)− E(Dg,t))

.
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Under Assumption 2, WTC,+,t = DID+,t. Indeed, one then has p+,t−1 = 0, as all groups whose
treatment increases between t− 1 and t are fully untreated at period t− 1. Moreover,

δ0,t =
∑

g:Dg,t=Dg,t−1=0

Ng,t

N0,0,t

(E(Yg,t)− E(Yg,t−1)) ,

as the groups whose mean treatment is stable from t− 1 to t are fully untreated or fully treated
at both dates, and the latter groups do not have untreated units. Likewise, WTC,−,t = DID−,t.

Finally, let

w+,t =

∑
g:E(Dg,t)>E(Dg,t−1) Ng,t (E(Dg,t)− E(Dg,t−1))∑t

t=1

∑
g:E(Dg,t)6=E(Dg,t−1)Ng,t |E(Dg,t)− E(Dg,t−1)|

,

w−,t =

∑
g:E(Dg,t)<E(Dg,t−1) Ng,t (E(Dg,t−1)− E(Dg,t))∑t

t=1

∑
g:E(Dg,t)6=E(Dg,t−1)Ng,t |E(Dg,t)− E(Dg,t−1)|

,

WTC =
t∑
t=1

(w+,tWTC,+,t + w−,tWTC,−,t) . (4)

Under Assumption 2, the Wald-TC estimand above is equal to that defined in Section 3.

Theorem 5 Suppose that Assumption 1 and Assumptions 11-13 hold, then WTC = ∆̃S.

Theorem 5 generalizes Theorem 2 to fuzzy designs. Here is the reasoning underlying that result.
First, in all the groups where the mean treatment is stable between t− 1 and t,

E(Y1,g,t|D1,g,t = 0)− E(Y1,g,t−1|D1,g,t−1 = 0)

=E(Y1,g,t(0)|D1,g,t(t) = 0)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0)

=E(Y1,g,t(0)|D1,g,t(t− 1) = 0)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0).

Indeed, treatment monotonicity implies that in those groups, D1,g,t(t) = D1,g,t(t − 1). The
previous display and Assumption 12 then imply that δ0,t identifies the evolution of Y1,g,t that
units untreated at t−1 would have experienced from t−1 to t if they had remained untreated at
t. Similarly, δ1,t identifies the evolution of Y1,g,t that units treated at t−1 would have experienced
if they had remained treated. Then, in groups where the proportion of treated units increases,

E(Yg,t−1) + (1− p+,t−1)δ0,t + p+,t−1δ1,t

identifies the mean outcome one would have observed at period t if the proportion of treated units
had not increased. Consequently, the numerator of WTC,+,t compares the period-t outcome in
those groups to what this outcome would have been if some switchers had not become treated.
The denominator of WTC,+,t identifies the proportion of switchers, so WTC,+,t identifies their
LATE. Similarly, WTC,−,t identifies the LATE of switchers in groups where the proportion of
treated units diminishes from t− 1 to t. Eventually, WTC averages those LATEs across periods.
Finally, Assumption 12 can be tested by computing a placebo estimand generalizing W pl

TC to
fuzzy designs, if for any t ≥ 2 there are groups whose mean treatment is stable from t− 2 to t.
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5 Extensions

5.1 A decomposition of βfd as a weighted sum of ATEs under common trends

Instead of Regression 1, many articles have estimated the first-difference regression defined below:

Regression 2 (First-difference regression)

Let β̂fd denote the coefficient of Dg,t−Dg,t−1 in an OLS regression of Yg,t−Yg,t−1 on period fixed
effects and Dg,t −Dg,t−1, among observations for which t ≥ 1. Let βfd = E

(
β̂fd

)
.

When t = 1 and Ng,1/Ng,0 does not vary across g, meaning that all groups experience the same
growth of their number of units from period 0 to 1, one can show that βfe = βfd. βfe differs
from βfd if t > 1 or Ng,1/Ng,0 varies across g.

We start by showing that a result similar to Theorem 1 also applies to βfd. For any (g, t) ∈
{0, ..., g} × {1, ..., t}, let εfd,g,t denote the residual of observations in group g and at period t in
the regression of Dg,t − Dg,t−1 on a constant and period fixed effects, among observations for
which t ≥ 1. For any g ∈ {0, ..., g}, let εfd,g,0 = 0, εfd,g,t+1 = 0. One can show that if the
regressors in Regression 2 are not perfectly collinear,∑

(g,t):Dg,t=1

Ng,t

N1

(
εfd,g,t −

Ng,t+1

Ng,t

εfd,g,t+1

)
6= 0.

Then we define

wfd,g,t =
εfd,g,t − Ng,t+1

Ng,t
εfd,g,t+1∑

(g,t):Dg,t=1
Ng,t

N1

(
εfd,g,t − Ng,t+1

Ng,t
εfd,g,t+1

) .
Theorem 6 Suppose that Assumptions 1-3 hold. Then,

βfd =
∑

(g,t):Dg,t=1

Ng,t

N1

wfd,g,t∆g,t.

Theorem 6 shows that under Assumption 3, βfd is equal to a weighted sum of the ATEs in
each treated (g, t) cell with potentially some strictly negative weights, just as βfe. We now
characterize the (g, t) cells whose ATEs are weighted negatively by βfd. To do so, we focus
on staggered adoption designs, as outside of this case it is more difficult to characterize those
cells. Our characterization relies on the fact that for every t ∈ {1, ..., t}, εfd,g,t = Dg,t−Dg,t−1−
(D.,t −D.,t−1). εfd,g,t is the difference between the change of the treatment in group g between
t− 1 and t, and the average change of the treatment across all groups.

Proposition 3 Suppose that Assumptions 1-2 and 4 hold and for all g, Ng,t does not depend on
t. Then, for all (g, t) such that Dg,t = 1, wfd,g,t < 0 if and only if Dg,t−1 = 1 and D.,t−D.,t−1 >

D.,t+1 −D.,t (with the convention that D.,t+1 = D.,t).
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Proposition 3 shows that for all t ∈ {1, ..., t − 1} such that the increase in the proportion of
treated units is larger from t− 1 to t than from t to t + 1, the period-t ATE of groups already
treated in t− 1 receives a negative weight. Moreover, if the proportion of treated units increases
from t − 1 to t, the period-t ATE of groups already treated in t − 1 also receives a negative
weight. Therefore, the treatment effect arising at the date when a group starts receiving the
treatment does not receive a negative weight, only long-run treatment effects do. Then, negative
weights are a concern when instantaneous and long-run treatment effects may differ. Proposition
3 also shows that the prevalence of negative weights depends on how the number of groups that
start receiving the treatment at date t evolves with t. Assume for instance that this number
decreases with t: many groups start receiving the treatment at date 1, a bit less start at date
2, etc., a case hereafter referred to as the “more early adopters” case. Then, if Ng,t is constant
across (g, t), D.,t−D.,t−1 is decreasing in t, and all the long-run treatment effects receive negative
weights, except maybe those of period t if D.,t = D.,t−1. Conversely, assume that the number of
groups that start receiving the treatment at date t increases with t: few groups start receiving
the treatment at date 1, a bit more start at date 2, etc., a case hereafter referred to as the “more
late adopters” case. Then, if Ng,t is constant across (g, t), D.,t − D.,t−1 is increasing in t, and
only the period-t long-run treatment effects receive negative weights. Overall, negative weights
are much more prevalent in the “more early adopters” than in the “more late adopters” case.

Just as for βfe, one can show that the minimal value of σ(∆) compatible with βfd and ∆TR = 0

is σfd = |βfd|/σ(wfd), where

σ(wfd) =

 ∑
(g,t):Dg,t=1

Ng,t

N1

(wfd,g,t − 1)2

1/2

is the standard deviation of the weights attached to βfd. One can also show that σ
fd
, the minimal

value of σ(∆) compatible with βfd and ∆g,t of a different sign than βfd for all (g, t), has the same
expression as σ

fe
, except that one needs to replace the weights wg,t by the weights wfd,g,t in its

definition. Estimators of σfe and σfd (or σ
fe

and σ
fd
) can then be used to determine which of

βfe or βfd is more robust to heterogeneous treatment effects.

Finally, and similarly to the result shown in Corollary 2 for βfe, βfd is equal to ∆TR under
common trends and the following assumption:

Assumption 14 (wfd uncorrelated with ∆)
∑

(g,t):Dg,t=1(Ng,t/N1)(wfd,g,t−1)(∆g,t−∆TR) = 0.

Note that under the common trends assumption, one can jointly test Assumption 14 and As-
sumption 5, the assumption that the weights attached to βfe are uncorrelated with the ∆g,ts: if
β̂fe and β̂fd are significantly different, at least one of these two assumptions must fail. In the
second application we revisit in Section 7, β̂fe and β̂fd are significantly different.
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5.2 Dynamic treatment effects

With panel data, one may want to allow for the possibility that a unit’s contemporaneous out-
come also depends on her past values of the treatment. To do so, one just needs to replace, in all of
the above, Yi,g,t(0) (resp. Yi,g,t(1))) by Yi,g,t(0, Di,t−1,g, ..., Di,0,g) (resp. Yi,t,g(1, Di,t−1,g, ..., Di,0,g)),
the counterfactual outcome of unit i in group g at period t if she is untreated (resp. treated)
at that period, and her past treatments are equal to their actual values. Then, βfe and βfd still
identify uninterpretable parameters: unsurprisingly, allowing for dynamic treatment effects does
not make those estimands more robust to heterogeneous treatment effects. We do not use the
Yi,g,t(0, Di,t−1,g, ..., Di,0,g) and Yi,t,g(1, Di,t−1,g, ..., Di,0,g) notation throughout the paper because
it does not apply to cross-section data sets where cohort of birth plays the role of time.

On the other hand, allowing for dynamic treatment effects may alter the plausibility of the
common trends assumption underlying our Wald-TC estimand. To simplify the discussion,
let us focus on sharp designs and let us assume that the treatment is not stochastic. Then,
Assumption 6 can be rewritten as:

Assumption 15 (Common trends for groups with the same treatment at t− 1)

1. For all t ≥ 1 and g such that Dg,t−1 = 0, E(Yg,t(0, 0, Dg,t−2, ..., Dg,0))−E(Yg,t−1(0, Dg,t−2, ..., Dg,0))

does not vary across g.

2. For all t ≥ 1 and g such that Dg,t−1 = 1, E(Yg,t(1, 1, Dg,t−2, ..., Dg,0))−E(Yg,t−1(1, Dg,t−2, ..., Dg,0))

does not vary across g.

Assumption 15 may not be plausible if past treatments can affect the outcome at time t. For
instance, two groups g and g′ that were both untreated at t−1 may have had different treatments
at t− 2, and then their outcome could follow different trends from t− 1 to t.

Note that this issue is absent in staggered adoption designs. Then, only Point 1 of Assumption
15 is necessary for Theorem 2 to hold. Moreover, Dg,t−1 = 0 implies Dg,t−2 = ... = Dg,0 = 0.
Therefore, Point 1 of Assumption 15 requires that E(Yg,t(0, 0, 0, ..., 0)) − E(Yg,t−1(0, 0, ..., 0))

be independent of g for all untreated groups at t − 1. This requirement does not impose any
restriction on dynamic treatment effects. Therefore, our Wald-TC estimand is fully robust to
dynamic treatment effects in that design.

Outside of that special case, one can identify ∆S under assumptions that restrict dynamic
treatment effects less than Assumption 15. For instance, we consider the following assumption.

Assumption 16 (Common trends for groups with the same treatments at t− 1 and t− 2)

1. For all t ≥ 2, (d, d′) ∈ {0, 1}2, and g, Yg,t(d, d′, Dg,t−2, ..., Dg,0) does not depend on
(Dg,t−2, Dg,t−3, ..., Dg,0) and is denoted Yg,t(d, d′).
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2. For all t ≥ 2 and (d, d′) ∈ {0, 1}2, for all g such that Dt−1,g = d,Dt−2,g = d′, E(Yg,t(d, d))−
E(Yg,t−1(d, d′)) does not vary across g.

3. For t = 1, Assumption 15 holds.

Under Point 1 of Assumption 16, Dg,t−2 or earlier treatments cannot have an effect on the period-
t outcome, but Dg,t−1 may have an effect. Point 2 requires that the mean outcome would have
followed the same evolution from period t−1 to t in all the groups sharing the same treatments at
periods t−2 and t−1, if those groups had kept the same treatment in period t as in period t−1.
Under Assumption 16, ∆S is identified by an estimand that differs from, but is similar in spirit
to, our Wald-TC estimand. That estimand is a weighted average of four type of DID estimands:
DID estimands comparing groups with Dg,t = 1, Dg,t−1 = 0, Dg,t−2 = 0 to groups with Dg,t =

0, Dg,t−1 = 0, Dg,t−2 = 0, DID estimands comparing groups with Dg,t = 1, Dg,t−1 = 0, Dg,t−2 = 1

to groups with Dg,t = 0, Dg,t−1 = 0, Dg,t−2 = 1, etc. Finally, note that one can identify ∆S under
assumptions that restrict dynamic treatment effects even less than Assumption 16, for instance
by assuming that Dg,t−1 and Dg,t−2 may have an effect on the period-t outcome, and that groups
with the same treatments at t− 1, t− 2, and t− 3 experience the same trends.

Finally, one may also be interested in estimating dynamic treatment effects. Let us focus here-
after on staggered adoption designs. Abraham and Sun (2018) show that the event-study regres-
sion with groups and periods fixed effects and lags of the treatment is not robust to heterogeneous
treatment effects, just as the FE regression we study. On the other hand, the Wald-TC estimand
identifies the average instantaneous effect arising at the time when a group starts receiving the
treatment, across all groups that become treated at some point. It is easy to show that the
average dynamic effect arising, say, one period after those groups have started receiving the
treatment, is also identified, by an estimand closely related to the Wald-TC and under a modi-
fied version of Assumption 15. That estimand is a weighted average of DID estimands comparing
the evolution of the outcome from t − 1 to t + 1, between groups becoming treated at period
t, and groups that are still untreated at period t + 1. That estimand differs from other es-
timands of dynamic treatment effects that have been proposed in staggered adoption designs.
The estimand in Callaway and Sant’Anna (2018) uses groups that never become treated as their
control group, that in Abraham and Sun (2018) uses the groups that become treated at the last
period, while ours uses all groups not yet treated at period t+ 1. Our control group is larger, so
the corresponding estimator may be more precise than those other estimators. The estimators
of dynamic treatment effects we propose in staggered adoption designs are computed by the
fuzzydid and did_multipleGT Stata packages. Outside of staggered adoption designs, estimat-
ing dynamic effects is still feasible but more challenging, and deserves more than an informal
discussion. This question is therefore left for future work.
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5.3 Other extensions

In Section 2 of the Web Appendix, we consider some other important extensions. We sketch
the four most important here. First, in sharp designs, we show that under common trends
and the supplementary assumption that the treatment effect is stable over time, βfe and βfd

identify weighted sums of the ATEs of switching cells. All the weights attached to βfd are
positive. Some of the weights attached to βfe may still be negative, but in the special case
with staggered adoption and Ng,t/Ng,t−1 independent of g, all the weights are positive. Second,
our decompositions of βfe and βfd as weighted sums of the treatment effect in each (g, t) cell
extend to two-way fixed effects regressions with some controls, under a modified version of
the common trends assumption accounting for the controls. Importantly, the weights in the
decompositions remain the same. Third, our decompositions of βfe and βfd also extend to
two-way fixed effects regressions with a non-binary treatment. Here again, the weights remain
almost the same. Finally, the Wald-TC estimand can be extended to have some controls, or a
non-binary treatment.

6 Estimation and inference

In this section, we assume that Assumption 2 (sharp designs with a non-stochastic treatment)
holds. We discuss estimation and inference outside of that case in Section 4 of the Web Appendix.

First, we consider estimation of, and inference on, σfe, σfe, σfd, and σfd. Under Assumption 2,
the weights do not have to be estimated. Then, σfe is simply estimated by:

σ̂fe =
|β̂fe|
σ(w)

.

σ
fe
, σfd, and σfd are estimated similarly. To draw inference on σfe, let sefe denote the standard

error of β̂fe clustered at the group level. We then consider confidence intervals of the form

CI1−α(σfe) =

[
σ̂fe − z1−α/2

sefe
σ(w)

, σ̂fe + z1−α/2
sefe
σ(w)

]
,

where zβ denotes the quantile of order β of a standard normal variable.

Second, we consider estimation of, and inference on, ∆S. Let

D̂ID+,t =
∑

g:Dg,t=1,Dg,t−1=0

Ng,t

N1,0,t

(Yg,t − Yg,t−1)−
∑

g:Dg,t=Dg,t−1=0

Ng,t

N0,0,t

(Yg,t − Yg,t−1) ,

D̂ID−,t =
∑

g:Dg,t=Dg,t−1=1

Ng,t

N1,1,t

(Yg,t − Yg,t−1)−
∑

g:Dg,t=0,Dg,t−1=1

Ng,t

N0,1,t

(Yg,t − Yg,t−1) .
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Then the Wald-TC estimator is given by

ŴTC =
t∑
t=1

(
N1,0,t

NS

D̂ID+,t +
N0,1,t

NS

D̂ID−,t

)
.

Here, we take the convention that D̂ID+,t = 0 if min(N1,0,t, N0,0,t) = 0, and similarly for
D̂ID−,t = 0. If Assumption 7 holds, let

Zg,g =
g + 1

NS

t∑
t=1

Ng,t

{
−N1,0,t

N0,0,t

I1,g,t − I2,g,t + I3,g,t +
N0,1,t

N1,1,t

I4,g,t

}
(Yg,t − Yg,t−1) ,

where Ik,g,t = 1{Dg,t−1 + 2Dg,t = k − 1}, with the convention that 0/0 = 0. Let us also define
Zg =

∑g
g=0 Zg,g/(g + 1) and σ̂2 =

∑g
g=0(Zg,g − Zg)

2/(g + 1). We then consider confidence
intervals of the form

CI1−α(∆S) =

[
ŴTC − z1−α/2

σ̂√
g
, ŴTC + z1−α/2

σ̂√
g

]
.

We now establish the asymptotic properties of σ̂fe, ŴTC and the corresponding confidence
intervals. We consider an asymptotic framework where the number of groups g tends to infinity.
Let Ỹg,g =

∑t
t=0Ng,tεg,tYg,t.14 We make the following assumptions.

Assumption 17 The vectors (Yg,0, ..., Yg,t)g≥0 are mutually independent.

Assumption 18 We have supg:0≤g≤g
∑t

t=0 Ng,tε
2
g,t < +∞ and there exists δ > 0 such that

supg:0≤g≤g E(Ỹ 2+δ
g,g ) < +∞. Moreover, as g tends to infinity,

∑g
g=0

∑t
t=0Ng,tεg,tE[Yg,t]/(g + 1),∑g

g=0

∑t
t=0Ng,tε

2
g,t/(g+1),

∑g
g=0 V (Ỹg,g)/(g+1) and σ(w) converge respectively to B 6= 0, J > 0,

H > 0 and σ∞(w) > 0.

Assumption 19 There exists δ > 0 such that supg:0≤g≤g E
(
|Zg,g|2+δ

)
< +∞. Moreover, as g

tends to infinity,
∑g

g=0 V (Zg,g)/(g + 1) converges to σ2 > 0.

Assumption 17 requires the outcome to be independent across groups, but it allows for serial
correlation within groups (see, e.g. Bertrand et al., 2004). Note that this assumption does not
require that the outcome be identically distributed across groups. This is important, to allow
the ∆g,t to vary across g. Assumptions 18 and 19 respectively impose the (uniform) existence of
moments of order 2+ δ of Ỹg,g and Zg,g, and that some non-random averages converge as g tends
to infinity. These assumptions ensure that we can apply a law of large number and a central
limit theorem to (Ỹg,g)g≥0 and (Zg,g)g≥0, which are independent but not identically distributed.

14Ỹg,g depends on g because εg,t depends on g, though we have let this dependency implicit before.
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Theorem 7 Suppose that Assumptions 1-3 and 17-18 hold. Then, as g tends to infinity,√
g
(
σ̂fe − σfe

) d−→ N
(

0,
H

J2σ2
∞(w)

)
.

Moreover, lim supg→∞ Pr
(
σfe ∈ CI1−α(σfe)

)
≥ 1− α.

Theorem 8 Suppose that Assumptions 1, 2, 6-7, 17 and 19 hold. Then, as g tends to infinity,√
g
(
ŴTC −∆S

)
d−→ N (0, σ2).

Moreover, lim supg→∞ Pr
(
∆S ∈ CI1−α(∆S)

)
≥ 1− α.

Theorems 7 and 8 show that σ̂fe and ŴTC are asymptotically normal estimators of σfe and
∆S when the number of groups tends to infinity, provided the outcome is independent across
groups. As is usually the case for estimators constructed using independent but not identically
distributed random variables (see e.g. Liu and Singh, 1995), the asymptotic variances of σ̂fe and
ŴTC can only be conservatively estimated. As a result, the confidence intervals we propose are
asymptotically conservative.

7 Applicability, and applications

7.1 Applicability

We conducted a review of all papers published in the American Economic Review (AER) between
2010 and 2012 to assess the importance of two-way fixed effects regressions in economics. Over
these three years, the AER published 337 papers. Out of these 337 papers, 33 or 9.8% of them
estimate the FE or FD Regression, or other regressions resembling closely those regressions.
When one withdraws from the denominator theory papers and lab experiments, the proportion
of papers using these regressions raises to 19.1%.

Table 1: Papers using two-way fixed effects regressions published in the AER

2010 2011 2012 Total
Papers using two-way fixed effects regressions 5 14 14 33
% of published papers 5.2% 12.2% 11.2% 9.8%
% of empirical papers, excluding lab experiments 12.8% 23.0% 19.2% 19.1%

Notes. This table reports the number of papers using two-way fixed effects regressions published in the AER
from 2010 to 2012.
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Table 2 shows descriptive statistics about the 33 2010-2012 AER papers estimating two-way
fixed effects regressions. Panel A shows that 13 use the FE regression; six use the FD regression;
six use regressions the FE or FD regression with several treatment variables; three use the FE
or FD 2SLS regression discussed in Section 2.4 of the Web Appendix; five use other regressions
that we deemed sufficiently close to the FE or FD regression to include them in our count.15

Panel B shows that more than three fourths of those papers consider sharp designs, while less
than one fourth consider fuzzy designs. Finally, Panel C assesses whether there are groups
whose exposure to the treatment remains stable between each pair of consecutive time periods
in those applications, implying that the Wald-TC estimator can be computed. For about a half
of the papers, reading the paper was not enough to assess this with certainty. We then assessed
whether they presumably have stable groups or not. Overall, 12 papers have stable groups, 14
presumably have stable groups, five presumably do not have stable groups, and two do not have
stable groups.

In Section 5 of the Web Appendix, we review each of the 33 papers. We explain where two-way
fixed effects regressions are used in the paper, and we detail our assessment of whether the design
is a sharp or a fuzzy design, and of whether the stable groups assumption holds or not.

15For instance, two papers use regressions with three-way fixed-effects instead of two-way fixed effects.
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Table 2: Descriptive statistics on two-way fixed effects papers

# Papers
Panel A. Estimation method
Fixed-effects OLS regression 13
First-difference OLS regression 6
Fixed-effects or first-difference OLS regression, with several treatment variables 6
Fixed-effects or first-difference 2LS regression 3
Other regression 5

Panel B. Research design
Sharp design 26
Fuzzy design 7

Panel C. Are there stable groups?
Yes 12
Presumably yes 14
Presumably no 5
No 2

Notes. This table reports the estimation method and the research design used in the 33 papers using two-way
fixed effects regressions published in the AER from 2010 to 2012, and whether those papers have stable groups.

7.2 Applications

Enikolopov et al. (2011)

Enikolopov et al. (2011) study the effect of NTV, an independent TV channel introduced in
1996 in Russia, on the share of the electorate voting for opposition parties. NTV’s coverage
rate was heterogeneous across subregions: while a large fraction of the population received NTV
in urbanized subregions, a smaller fraction received it in more rural subregions. The authors
estimate the FE regression: they regress the share of votes for opposition parties in the 1995
and 1999 elections in Russian subregions on subregion fixed effects, an indicator for the 1999
election, and on the share of the population having access to NTV in each subregion at the time
of the election. In 1995, the share of the population having access to NTV was equal to 0 in
all subregions, while in 1999 it was strictly greater than 0 everywhere. Therefore, the authors’
research design corresponds exactly to the heterogenous adoption design discussed in Section
4. Enikolopov et al. (2011) find that β̂fe = 6.65 (s.e.= 1.40). According to this regression,
increasing the share of the population having access to NTV from 0 to 100% increases the share
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of votes for the opposition parties by 6.65 percentage points. Because there are only two time
periods in the data and the regression is not weighted by subregions’ populations, β̂fe = β̂fd.

We use the twowayfeweights Stata package, downloadable with its help file from the SSC
repository, to estimate the weights attached to β̂fe. In 1995, all the weights are equal to zero
because NTV does not exist yet. In 1999, 918 weights (47.4%) are strictly positive, while
1,020 (52.6%) are strictly negative. The negative weights sum to -2.26. σ̂fe = 0.91 (95%
level confidence interval=[0.49, 1.28]):16 βfe and ∆TR may be of opposite signs if the standard
deviation of the effect of NTV across subregions is above 0.91 percentage point. σ̂

fe
= 1.23 (95%

level confidence interval=[0.67, 1.72]): βfe may be of a different sign than all the ∆TR
g,1999s if the

standard deviation of the effect of NTV across subregions is above 1.23 percentage point, which
does not seem to be an implausible amount of treatment effect heterogeneity.

Therefore, βfe can only receive a causal interpretation if the effect of NTV is constant across
subregions, or if the weights attached to it are uncorrelated with the intensity of that effect
in each subregion (Assumption 5). These assumptions are not warranted. First, we estimate
β̂fe again, weighting the regression by subregions’ populations. We obtain β̂fe = 14.89, more
than twice its value in the unweighted regression, and the difference between the coefficients is
significant (t-stat=2.46). Therefore, we can reject the null that the treatment effect is constant:
if the treatment effect was constant across subregions, the weighting would not matter so both
the unweighted and the weighted regressions would estimate the same parameter. Second, the
weights attached to β̂fe are correlated with variables that are likely to be themselves associated
with the intensity of the effect in each subregion. For instance, the correlation between the
weights and subregions’ populations is equal to 0.35 (t-stat=14.01). The effect of NTV may be
higher in less populated subregions, as those regions are more rural and fewer other sources of
information may be available there. This would lead to a violation of Assumption 5.

Finally, note that the share of people having access to NTV is strictly positive in every subregion
in 1999, implying that there are no subregions where the mean treatment remains constant from
1995 to 1999. Hence, we cannot compute the Wald-TC estimator in this application.

Gentzkow et al. (2011)

Gentzkow et al. (2011) study the effect of newspapers on voters’ turnout in US presidential
elections between 1868 and 1928. They regress the first-difference of the turnout rate in county
g between election years t and t − 1 on state-year fixed effects and on the first difference of
the number of newspapers available in that county. This regression corresponds to the first-
difference regression, with state-year fixed effects as controls. As reproduced in Table 3 below,
Gentzkow et al. (2011) find that β̂fd = 0.0026 (s.e.= 9 × 10−4). According to this regression,

16The confidence intervals of σfe and σ
fe

are computed using the bootstrap, clustered at the subregion level.
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one more newspaper increased voters’ turnout by 0.26 percentage points. On the other hand,
β̂fe = −0.0011 (s.e.= 0.0011). β̂fe and β̂fd are significantly different (t-stat=2.86).

We estimate the weights attached to β̂fe. 6,180 are strictly positive, 4,198 are strictly nega-
tive. The negative weights sum to -0.47. σ̂fe = 4 × 10−4 (95% level confidence interval=[2 ×
10−5, 0.0012]),17 meaning that βfe and the ATT may be of opposite signs if the standard de-
viation of the ATTs across groups and time periods is equal to 0.0004.18 σ̂

fe
= 7 × 10−4

(95% level confidence interval=[3 × 10−5, 0.0026]), meaning that βfe may be of a different
sign than all the ATTs if the standard deviation of the ATTs across groups and time peri-
ods is equal to 0.0007. We also estimate the weights attached to β̂fd. 4,790 are strictly pos-
itive, and 5,588 are strictly negative. The negative weights sum to -1.30. σ̂fd = 5 × 10−4

(95% level confidence interval=[1 × 10−4, 8 × 10−4]), and σ̂
fd

= 7 × 10−4 (95% level confidence
interval=[1× 10−4, 0.0012]).

Therefore, βfe and βfd can only receive a causal interpretation if the weights attached to them
are uncorrelated with the intensity of the treatment effect in each county×election-year cell
(Assumptions 5 and 14, respectively). This is not warranted. First, as β̂fe and β̂fd significantly
differ, Assumptions 5 and 14 cannot jointly hold. Moreover, the weights attached to β̂fe and
β̂fd are correlated with variables that are likely to be themselves associated with the intensity
of the treatment effect in each cell. For instance, the correlation between the weights attached
to β̂fd and t, the year variable, is equal to −0.07 (t-stat=-3.33). The effect of newspapers
may be different in the last than in the first years of the panel. For instance, new means of
communication, like the radio, appear in the end of the period under consideration, and may
diminish the effect of newspapers. This would lead to a violation of Assumption 14.

The stable groups assumption holds: between each pair of consecutive elections, there are coun-
ties where the number of newspapers does not change. We use the fuzzydid Stata package,
downloadable with its help file from the SSC repository, to estimate a modified version of our
Wald-TC estimand, that accounts for the fact that the number of newspapers is not binary (see
section 2.2 of our Web Appendix, where we define this modified estimand). We include state-
year fixed effects as controls in our estimation. We find that ŴTC = 0.0043, with a standard
error of 0.0015. ŴTC is 66% larger than β̂fd, and the two estimators are significantly different
at the 10% level (t-stat=1.69). ŴTC is also of a different sign than β̂fe.

Our Wald-TC estimand only relies on a common trends assumption. To assess its plausibility,
we estimate W pl

TC , the placebo estimand introduced in Section 3.3.19 As shown in Table 3 below,
our placebo estimator is small and not significantly different from 0, meaning that counties

17The confidence intervals of σfe, σfe
, σfd, and σfd

are derived using a bootstrap clustered at the county level.
18The number of newspapers is not binary, so strictly speaking, in this application the parameter of interest is

the average causal response parameter introduced in Section 2.2 of our Web Appendix, rather than the ATT.
19Again, we need to slightly modify W pl

TC to account for the fact that the number of newspapers is not binary.

31



where the number of newspapers increased or decreased between t− 1 and t did not experience
significantly different trends in turnout from t− 2 to t− 1 than counties where that number was
stable. Our placebo estimator is estimated on a subset of the data: for each pair of consecutive
time periods t− 1 and t, we only keep counties where the number of newspapers did not change
between t− 2 and t− 1. Still, almost 80% of the county × election-year observations are used in
the computation of the placebo estimator. Moreover, when reestimated on this subsample, the
Wald-TC estimator is very close to the Wald-TC estimator in the full sample.

Table 3: Estimates of the effect of one additional newspaper on turnout

Estimate Standard error N
β̂fd 0.0026 0.0009 15,627
β̂fe -0.0011 0.0011 16,872
ŴTC 0.0043 0.0015 16,872
Ŵ pl
TC -0.0009 0.0016 13,221

ŴTC , on placebo subsample 0.0045 0.0019 13,221

Notes. This table reports estimates of the effect of one additional newspaper on turnout, as well as a placebo
estimate of the common trends assumption underlyingWTC . Estimators are computed using the data of Gentzkow
et al. (2011), with state-year fixed effects as controls. Standard errors are clustered by county. To compute the
Wald-TC estimators, the number of newspapers is grouped into 4 categories: 0, 1, 2, and more than 3.

8 Conclusion

Almost 20% of empirical articles published in the AER between 2010 and 2012 use regressions
with groups and period fixed effects to estimate treatment effects. In this paper, we show that
under a common trends assumption, those regressions identify weighted sums of the treatment
effect in each group and at each period. The weights may be negative: in two empirical ap-
plications, we find that more than 50% of the weights are negative. The negative weights are
an issue when the treatment effect is heterogeneous, between groups or over time. Then, one
could have that the coefficient of the treatment variable in those regressions is negative while
the treatment effect is positive in every group and time period. We therefore propose a new
estimand to address this problem. This estimand identifies the effect of the treatment in the
groups that switch treatment, at the time when they switch. It does not rely on any treatment
effect homogeneity condition. It is computed by the fuzzydid Stata package, and can be used in
applications where there are groups whose exposure to the treatment does not change between
each pair of consecutive time periods. In one of the two applications we revisit, the corresponding
estimator is significantly and economically different from the two-way fixed effects estimators.
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A Proofs

Two useful lemmas

In the sharp designs considered in Section 3, our results rely on the following lemma.

Lemma 1 If Assumptions 1-3 hold, for all (g, g′, t, t′) ∈ {0, ..., g}2 × {0, ..., t}2,

E(Yg,t)− E(Yg,t′)− (E(Yg′,t)− E(Yg′,t′)) = Dg,t∆g,t −Dg,t′∆g,t′ − (Dg′,t∆g′,t −Dg′,t′∆g′,t′) .

In the fuzzy designs considered in Section 4, our results rely on the following lemma.

Lemma 2 If Assumptions 1 and 9 hold, for all (g, g′, t, t′) ∈ {0, ..., g}2 × {0, ..., t}2,

E(Yg,t|D)− E(Yg,t′ |D)− (E(Yg′,t|D)− E(Yg′,t′|D))

=Dg,t∆
TR
g,t (D)−Dg,t′∆

TR
g,t′(D)−

(
Dg′,t∆

TR
g′,t(D)−Dg′,t′∆

TR
g′,t′(D)

)
.

Proof of Lemma 1

For all (g, t) ∈ {0, ..., g} × {0, ..., t},

E(Yg,t) =E

(
1

Ng,t

Ng,t∑
i=1

Yi,g,t

)

=E

(
1

Ng,t

Ng,t∑
i=1

(Yi,g,t(0) +Di,g,t(Yi,g,t(1)− Yi,g,t(0)))

)
=E (Yg,t(0)) +Dg,t∆g,t,

where the second equality follows from Assumption 2. Therefore,

E(Yg,t)− E(Yg,t′)− (E(Yg′,t)− E(Yg′,t′))

=E (Yg,t(0))− E (Yg,t′(0))− (E (Yg′,t(0))− E (Yg′,t′(0)))

+Dg,t∆g,t −Dg,t′∆g,t′ − (Dg′,t∆g′,t −Dg′,t′∆g′,t′)

=Dg,t∆g,t −Dg,t′∆g,t′ − (Dg′,t∆g′,t −Dg′,t′∆g′,t′) ,

where the second equality follows from Assumption 3.
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Proof of Lemma 2

For all (g, t) ∈ {0, ..., g} × {0, ..., t},

E(Yg,t|D) =E

(
1

Ng,t

Ng,t∑
i=1

(Yi,g,t(0) +Di,g,t(Yi,g,t(1)− Yi,g,t(0)))

∣∣∣∣∣D
)

=E (Yg,t(0)|D) +
1

Ng,t

Ng,t∑
i=1

E (Yi,g,t(1)− Yi,g,t(0)|Di,g,t = 1,D)E(Di,g,t|D)

=E (Yg,t(0)|D) + E(D1,g,t|D)∆TR
g,t (D)

=E (Yg,t(0)|D) + E(Dg,t|D)∆TR
g,t (D)

=E (Yg,t(0)|D) +Dg,t∆
TR
g,t (D),

where the second and third equalities follow from the fact that the treatment of observations in
the same cell are identically distributed. The end of the proof is very similar to that of Lemma
1, except that one needs to invoke Assumption 9 instead of Assumption 3.

Proof of Theorem 1

It follows from the Frisch-Waugh theorem, the definition of εg,t, and Assumption 2 that

βfe =

∑
g,tNg,tεg,tE(Yg,t)∑
g,tNg,tεg,tDg,t

. (5)

Now, by definition of εg,t again,

t∑
t=0

Ng,tεg,t = 0 for all g ∈ {0, ..., g}, (6)

g∑
g=0

Ng,tεg,t = 0 for all t ∈ {0, ..., t}. (7)

Then, ∑
g,t

Ng,tεg,tE(Yg,t)

=
∑
g,t

Ng,tεg,t (E(Yg,t)− E(Yg,0)− E(Y0,t) + E(Y0,0)) (8)

=
∑
g,t

Ng,tεg,t (Dg,t∆g,t −Dg,0∆g,0 −D0,t∆0,t +D0,0∆0,0)

=
∑
g,t

Ng,tεg,tDg,t∆g,t

=
∑

(g,t):Dg,t=1

Ng,tεg,t∆g,t. (9)
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The first and third equalities follow from Equations (6) and (7). The second equality follows
from Lemma 1. The fourth equality follows from Assumption 2. Finally, Assumption 2 implies
that ∑

g,t

Ng,tεg,tDg,t =
∑

(g,t):Dg,t=1

Ng,tεg,t. (10)

Combining (5), (9), and (10) yields the result.

Proof of Proposition 1

If for all t ≥ 1 Ng,t/Ng,t−1 does not depend on t, then it follows from the first order conditions
attached to Regression 1 and a few lines of algebra that εg,t = Dg,t−Dg,.−D.,t+D.,.. Therefore,
one has that for all (g, t) such that Dg,t = 1, wg,t is proportional to 1−Dg,. −D.,t +D.,.. Using
the fact that

D.,. =

g∑
g=0

Ng,.

N
Dg,. =

t∑
t=0

N.,t

N
D.,t,

it is easy to see that 1−Dg,. −D.,t +D.,. is decreasing in Dg,. and D.,t for all (g, t).

Proof of Corollary 1

Proof of the first point

We start by proving the first point. If the assumptions of the corollary hold and ∆TR = 0, then βfe =
∑

(g,t):Dg,t=1
Ng,t

N1
wg,t∆g,t,

0 =
∑

(g,t):Dg,t=1
Ng,t

N1
∆g,t.

These two conditions and the Cauchy-Schwarz inequality imply

|βfe| =

∣∣∣∣∣∣
∑

(g,t):Dg,t=1

Ng,t

N1

(wg,t − 1)(∆g,t −∆TR)

∣∣∣∣∣∣ ≤ σ(w)σ(∆).

Hence, σ(∆) ≥ σfe.

Now, we prove that we can rationalize this lower bound. Let us define

∆TR
g,t =

βfe (wg,t − 1)

σ2(w)
.

Then,

∆TR =
∑

(g,t):Dg,t=1

Ng,t

N1

βfe (wg,t − 1)

σ2(w)
=

βfe
σ2(w)

 ∑
(g,t):Dg,t=1

Ng,t

N1

wg,t − 1

 = 0,
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as it follows from the definition of wg,t that
∑

(g,t):Dg,t=1
Ng,t

N1
wg,t = 1.

Similarly, ∑
(g,t):Dg,t=1

Ng,t

N1

wg,t
βfe (wg,t − 1)

σ2(w)
=

βfe
σ2(w)

∑
(g,t):Dg,t=1

Ng,t

N1

wg,t (wg,t − 1)

=
βfe
σ2(w)

∑
(g,t):Dg,t=1

Ng,t

N1

(wg,t − 1)2

= βfe,

where the second equality follows again from the fact that
∑

(g,t):Dg,t=1
Ng,t

N1
wg,t = 1.

Proof of the second point

We first suppose that βfe > 0. We seek to solve:

min
∆(1),...,∆(n)

n∑
i=1

N(i)

N1

(
∆(i) −∆TR

)2 s.t. βfe =
n∑
i=1

N(i)

N1

w(i)∆(i),

∆(i) ≤ 0 for all i ∈ {1, ..., n}.

This is a quadratic programming problem, with a matrix that is symmetric positive but not
definite. Hence, by Frank and Wolfe (1956) and the fact that the linear term in the quadratic
problem is 0, the solution exists if and only if the set of constraints is not empty. If w(n) ≥ 0, the
set of constraints is empty because

∑n
i=1

N(i)

N1
w(i)∆(i) ≤ 0 < βfe. On the other hand, if w(n) < 0,

this set is non-empty since it includes (0, ..., 0, βfe/(P(n)w(n))).

We now derive the corresponding bound. For that purpose, remark that

n∑
i=1

N(i)

N1

(
∆(i) −

n∑
i=1

N(i)

N1

∆(i)

)2

=
n∑
i=1

N(i)

N1

∆2
(i) −

(
n∑
i=1

N(i)

N1

∆(i)

)2

.

The Karush–Kuhn–Tucker necessary conditions for optimality are that for all i:

∆(i) = ∆TR + λw(i) − γ(i),
n∑
i=1

N(i)

N1

w(i)∆(i) = βfe,

γ(i) ≥ 0,

γ(i)∆(i) = 0,

where ∆TR =
∑n

i=1

N(i)

N1
∆(i), 2λ is the Lagrange multiplier of the constraint

∑n
i=1

N(i)

N1
w(i)∆(i) =

βfe and 2
N(i)

N1
γ(i) is the Lagrange multiplier of the constraint ∆(i) ≤ 0.
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These constraints imply that ∆(i) = 0 if and only if ∆TR+λw(i) ≥ 0. Therefore, if ∆TR+λw(i) <

0, ∆(i) 6= 0 so γ(i) = 0, and ∆(i) = ∆TR + λw(i). Therefore,

∆(i) = min(∆TR + λw(i), 0). (11)

This equation implies that ∆(i) ≤ ∆TR + λw(i), which in turn implies that ∆TR ≤ ∆TR + λ, so
λ ≥ 0.

As a result, ∆TR + λw(i) is decreasing in i, and because x 7→ min(x, 0) is increasing, ∆(i) is also
decreasing in i. Then ∆(n) < 0: otherwise one would have ∆(i) = 0 for all i which would imply
βfe = 0, a contradiction. Let s = min{i ∈ {1, ..., n} : ∆(i) < 0}. Using again (11), we get

∆TR =
∑
i≥s

N(i)

N1

∆(i) = Ps∆
TR + λSs.

Therefore,

∆TR =
λSs

1− Ps
. (12)

Hence, plugging ∆ in (11), we obtain that for all i ≥ s,

∆(i) = λ

{
Ss

1− Ps
+ w(i)

}
.

Finally, using again (11), we obtain

βfe =
∑
i≥s

N(i)

N1

w(i)∆(i) = λ

{
S2
s

1− Ps
+ Ts

}
.

Thus,

λ =
βfe

Ts + S2
s/(1− Ps)

.

Then, using what precedes,

σ2

fe
=
∑
i≥s

N(i)

N1

(
λw(i)

)2
+
∑
i<s

N(i)

N1

(
∆TR

)2

=λ2Ts + (1− Ps)
(

λSs
1− Ps

)2

=λ2

[
Ts +

S2
s

1− Ps

]
=

β2
fe

Ts + S2
s/(1− Ps)

.

The result follows, once noted that Equations (11) and (12) imply that s = min{i ∈ {1, ..., n} :

w(i) < −S(i)/(1− P(i))}.

39



Finally, consider the case βfe < 0. By letting ∆′(i) = −∆(i) and β′fe = −βfe, we have

σ
fe

= min
∆′

(1)
≤0,...,∆′

(n)
≤0

n∑
i=1

N(i)

N1

∆′(i)
2 −

(
n∑
i=1

N(i)

N1

∆′(i)

)2

s.t.
n∑
i=1

N(i)

N1

w(i)∆
′
(i) = β′fe.

This is the same program as before, with β′fe instead of βfe. Therefore, by the same reasoning
as before, we obtain

σ2

fe
=

(β′fe)
2

Ts + S2
s/(1− Ps)

=
β2
fe

Ts + S2
s/(1− Ps)

.

Proof of Corollary 2

We have

βfe =
∑

(g,t):Dg,t=1

Ng,t

N1

wg,t∆g,t

=

 ∑
(g,t):Dg,t=1

Ng,t

N1

wg,t

∆TR

= ∆TR.

Under the assumptions of the corollary, Theorem 1 holds, hence the first equality. The second
equality follows from Assumption 5. By the definition of wg,t,

∑
(g,t):Dg,t=1

Ng,t

N1
wg,t = 1, hence

the third equality.

Proof of Theorem 2

Let t be greater than 1, and let us assume for now that there exists at least one g1 such that
Dg1,t−1 = 0 and Dg1,t = 1. Then Assumption 7 ensures that there is a least another group g2

such that Dg2,t−1 = Dg2,t = 0. For every g such that Dg,t−1 = 0 and Dg,t = 1, we have

E[Yg,t − Yg,t−1] =E[Yg,t(1)− Yg,t(0)] + E[Yg,t(0)− Yg,t−1(0)]

=∆g,t + E[Yg,t(0)− Yg,t−1(0)]. (13)
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Under Assumption 6, for all t ≥ 1 there exists a real number ψ0,t such that for all g such that
Dg,t−1 = 0, E(Yg,t(0)− Yg,t−1(0)) = ψ0,t. Then,

N1,0,tDID+,t =
∑

g:Dg,t=1,Dg,t−1=0

Ng,t∆g,t +
∑

g:Dg,t=1,Dg,t−1=0

Ng,tE[Yg,t(0)− Yg,t−1(0)]

− N1,0,t

N0,0,t

∑
g:Dg,t=Dg,t−1=0

Ng,tE[Yg,t(0)− Yg,t−1(0)]

=
∑

g:Dg,t=1,Dg,t−1=0

Ng,t∆g,t + ψ0,t

∑
g:Dg,t=1,Dg,t−1=0

Ng,t

− ψ0,t
N1,0,t

N0,0,t

∑
g:Dg,t=Dg,t−1=0

Ng,t

=
∑

g:Dg,t=1,Dg,t−1=0

Ng,t∆g,t, (14)

where the first equality follows by (13), the second by Assumption 6 and the third by the fact
that ∑

g:Dg,t=1,Dg,t−1=0

Ng,t =
N1,0,t

N0,0,t

∑
g:Dg,t=Dg,t−1=0

Ng,t = N1,0,t.

If there exists no g such that Dg,t−1 = 0 and Dg,t = 1, (14) still holds, as we have let DID+,t = 0

in this case.

A similar reasoning yields

N0,1,tDID−,t =
∑

g:Dg,t=0,Dg,t−1=1

Ng,t∆g,t.

As a result,

WTC =
1

NS

t∑
t=1

 ∑
g:Dg,t=1,Dg,t−1=0

Ng,t∆g,t +
∑

g:Dg,t=0,Dg,t−1=1

Ng,t∆g,t


=∆S.

Proof of Theorem 3

Let t be greater than 2, and let us assume for now that there exists at least one g1 such that
Dg1,t−2 = Dg1,t−1 = 0 and Dg1,t = 1. Then Assumption 8 ensures that there is a least another

41



group g2 such that Dg2,t−2 = Dg2,t−1 = Dg2,t = 0. Then,

N1,0,0,tDID
pl
+,t =

∑
g:Dg,t=1,Dg,t−1=Dg,t−2=0

Ng,tE[Yg,t−1(0)− Yg,t−2(0)]

− N1,0,0,t

N0,0,0,t

∑
g:Dg,t=Dg,t−1=Dg,t−2=0

Ng,tE[Yg,t−1(0)− Yg,t−2(0)]

=ψ0,t−1

∑
g:Dg,t=1,Dg,t−1=Dg,t−2=0

Ng,t − ψ0,t−1
N1,0,0,t

N0,0,0,t

∑
g:Dg,t=Dg,t−1=Dg,t−2=0

Ng,t

=0. (15)

The second equality follows by Assumption 6, where ψ0,t−1 is defined in the proof of Theorem
2. The third equality follows from the fact that∑

g:Dg,t=1,Dg,t−1=Dg,t−2=0

Ng,t =
N1,0,0,t

N0,0,0,t

∑
g:Dg,t=Dg,t−1=Dg,t−2=0

Ng,t = N1,0,0,t.

If there exists no g such that Dg,t−2 = Dg,t−1 = 0 and Dg,t = 1, (15) still holds, as we have let
DIDpl

+,t = 0 in this case.

A similar reasoning yields N0,1,1,tDID−,t = 0. As a result, W pl
TC = 0.

Proof of Theorem 4

The proof of that result is very similar to the proof of Theorem 1.

βfe = E

(∑
g,tNg,tεg,tYg,t∑
g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,tE(Yg,t|D)∑

g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,t (E(Yg,t|D)− E(Yg,0|D)− E(Y0,t|D) + E(Y0,0|D))∑

g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,t

(
Dg,t∆

TR
g,t (D)−Dg,0∆TR

g,0 (D)−D0,t∆
TR
0,t (D) +D0,0∆TR

0,0 (D)
)∑

g,tNg,tεg,tDg,t

)

= E

(∑
g,tNg,tεg,tDg,t∆

TR
g,t (D)∑

g,tNg,tεg,tDg,t

)
.

The second equality follows from the law of iterated expectations. The third and fifth equalities
follow from Equations (6) and (7). The fourth equality follows from Lemma 2.
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Proof of Proposition 2

Assuming that Ng,1/Ng,0 does not vary across g ensures that there exists a strictly positive real
number φ such that Ng,1/Ng,0 = φ. Then,

εg,1 =Dg,1 −Dg,. −D.,1 +D.,.

=Dg,1 −
(
Ng,0

Ng,.

Dg,0 +
Ng,1

Ng,.

Dg,1

)
−D.,1 +

(
N.,0

N
D.,0 +

N.,1

N
D.,1

)
=Dg,1 −

(
1

1 + φ
Dg,0 +

φ

1 + φ
Dg,1

)
−D.,1 +

(
1

1 + φ
D.,0 +

φ

1 + φ
D.,1

)
=

1

1 + φ
(Dg,1 −Dg,0 −D.,1 +D.,0) , (16)

where the first and third equalities follow from the fact Ng,1/Ng,0 does not vary across g.

Then, the definition of wTRg,1 , Equation (16) and Assumption 10 imply that

wTRg,1 =
(Dg,1 −D.,1)∑g

g=0
Ng,1

N1
(Dg,1 −D.,1)Dg,1

=
(Dg,1 −D.,1)∑g

g=0
Ng,1

N1
(Dg,1 −D.,1)2

.

Proof of Theorem 5

In what follows, we consider a t greater than 1.

We first show that for all (g, t) such that E(Dg,t) > E(Dg,t−1), P (D1,g,t(t) ≥ D1,g,t(t−1)) = 1. We
prove the result by contradiction. If P (D1,g,t(t) ≥ D1,g,t(t− 1)) 6= 1 then Point 2 of Assumption
11 implies that P (D1,g,t(t) ≤ D1,g,t(t−1)) = 1, which implies that E(D1,g,t(t)) ≤ E(D1,g,t(t−1)).
Point 1 of Assumption 11 then implies that E(D1,g,t(t)) ≤ E(D1,g,t−1(t−1)), which is equivalent
to having E(Dg,t) ≤ E(Dg,t−1), a contradiction. Similarly, one can show that for all (g, t) such
that E(Dg,t) = E(Dg,t−1), P (D1,g,t(t) = D1,g,t(t− 1)) = 1.

Then, for all (g, t) such that E(Dg,t) > E(Dg,t−1),

E(Dg,t)− E(Dg,t−1) =P (D1,g,t(t) = 1)− P (D1,g,t−1(t− 1) = 1)

=P (D1,g,t(t) = 1)− P (D1,g,t(t− 1) = 1)

=P (D1,g,t(t) = 1, D1,g,t(t− 1) = 0). (17)

The second equality follows from Point 1 of Assumption 11. The third follows from the fact that
as shown above, E(Dg,t) > E(Dg,t−1) implies that P (D1,g,t(t) ≥ D1,g,t(t− 1)) = 1.
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Then, under Assumption 12, for all t ≥ 1 and d ∈ {0, 1}, there exist real numbers αd,t such that

E(Y1,g,t(d)|D1,g,t(t− 1) = d)− E(Y1,g,t−1(d)|D1,g,t−1(t− 1) = d) = αd,t (18)

Now, for all (g, t) such that E(Dg,t) > E(Dg,t−1),

E(Yg,t)− E(Yg,t−1)

=E(Y1,g,t)− E(Y1,g,t−1)

=E(Y1,g,t(1)|D1,g,t(t− 1) = 1)P (D1,g,t(t− 1) = 1) + E(Y1,g,t(0)|D1,g,t(t) = 0)P (D1,g,t(t) = 0)

+E(Y1,g,t(1)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1)

−E(Y1,g,t−1(1)|D1,g,t−1(t− 1) = 1)P (D1,g,t−1(t− 1) = 1)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0)P (D1,g,t−1(t− 1) = 0)

=E(Y1,g,t(1)|D1,g,t(t− 1) = 1)P (D1,g,t(t− 1) = 1) + E(Y1,g,t(0)|D1,g,t(t− 1) = 0)P (D1,g,t(t− 1) = 0)

−E(Y1,g,t−1(1)|D1,g,t−1(t− 1) = 1)P (D1,g,t−1(t− 1) = 1)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0)P (D1,g,t−1(t− 1) = 0)

+E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1)

=E(Y1,g,t(1)|D1,g,t(t− 1) = 1)P (D1,g,t−1(t− 1) = 1) + E(Y1,g,t(0)|D1,g,t(t− 1) = 0)P (D1,g,t−1(t− 1) = 0)

−E(Y1,g,t−1(1)|D1,g,t−1(t− 1) = 1)P (D1,g,t−1(t− 1) = 1)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0)P (D1,g,t−1(t− 1) = 0)

+E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1)

=α1,tE(Dg,t−1) + α0,t(1− E(Dg,t−1))

+E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1). (19)

The first equality follows from the fact that observations are identically distributed within each
(g, t) cell. The second equality follows from the law of iterated expectations, and from the
fact that as shown above, E(Dg,t) > E(Dg,t−1) implies that P (D1,g,t(t) ≥ D1,g,t(t − 1)) = 1.
The third equality follows after adding and subtracting E(Y1,g,t(0)|D1,g,t(t − 1) = 0, D1,g,t(t) =

1)P (D1,g,t(t−1) = 0, D1,g,t(t) = 1), and using again the fact that P (D1,g,t(t) ≥ D1,g,t(t−1)) = 1.
The fourth equality follows from Point 1 of Assumption 11. The fifth equality follows from (18).

Then,

δ0,t

=
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,t(1− E(Dg,t))

N=,t −N1,=,t
(E(Y1,g,t(0)|D1,g,t(t) = 0)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0))

=
∑

g:E(Dg,t)=E(Dg,t−1)

Ng,t(1− E(Dg,t))

N=,t −N1,=,t
(E(Y1,g,t(0)|D1,g,t(t− 1) = 0)− E(Y1,g,t−1(0)|D1,g,t−1(t− 1) = 0))

=α0,t. (20)

The second equality follows from the fact that E(Dg,t) = E(Dg,t−1) implies that P (D1,g,t(t) =

D1,g,t(t − 1)) = 1. The third equality follows from (18) and the definitions of N=,t and N1,=,t.
Similarly,

δ1,t =α1,t. (21)
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Therefore,
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,t

N+,t
(E(Yg,t)− (E(Yg,t−1) + (1− p+,t−1)δ0,t + p+,t−1δ1,t))

=
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,t

N+,t
(α1,tE(Dg,t−1) + α0,t(1− E(Dg,t−1)))− p+,t−1α1,t − (1− p+,t−1)α0,t

+
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,t

N+,t
E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1)

=
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,t

N+,t
E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1)P (D1,g,t(t− 1) = 0, D1,g,t(t) = 1). (22)

The first equality follows from (19), (20), and (21). The second equality follows from the
definition of p+,t−1.

Then, it follows from (22), (17) and the definition of WTC,+,t that

WTC,+,t

=
∑

g:E(Dg,t)>E(Dg,t−1)

Ng,tP (D1,g,t(t− 1) = 0, D1,g,t(t) = 1)

PS,+,t
E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1), (23)

where PS,+,t =
∑

g:E(Dg,t)>E(Dg,t−1) Ng,tP (D1,g,t(t− 1) = 0, D1,g,t(t) = 1).

Similarly, one can show that

WTC,−,t

=
∑

g:E(Dg,t)<E(Dg,t−1)

Ng,tP (D1,g,t(t− 1) = 1, D1,g,t(t) = 0)

PS,−,t
E(Y1,g,t(1)− Y1,g,t(0)|D1,g,t(t− 1) = 0, D1,g,t(t) = 1), (24)

where PS,−,t =
∑

g:E(Dg,t)<E(Dg,t−1) Ng,tP (D1,g,t(t− 1) = 1, D1,g,t(t) = 0).

Finally, the result follows after summing (23) and (24) over t ≥ 1, once noted that

t∑
t=1

∑
g:E(Dg,t)6=E(Dg,t−1)

Ng,t|E(Dg,t)− E(Dg,t−1)| = PS.

Proof of Theorem 6

It follows from the Frisch-Waugh theorem, the definition of εfd,g,t, and Assumption 2 that

βfd =

∑
(g,t):t≥1 Ng,tεfd,g,t (E(Yg,t)− E(Yg,t−1))∑

(g,t):t≥1 Ng,tεfd,g,t (Dg,t −Dg,t−1)
. (25)

Now, by definition of εfd,g,t again,

g∑
g=0

Ng,tεfd,g,t = 0 for all t ∈ {1, ..., t}. (26)
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Then, ∑
(g,t):t≥1

Ng,tεfd,g,t (E(Yg,t)− E(Yg,t−1))

=
∑

(g,t):t≥1

Ng,tεfd,g,t (E(Yg,t)− E(Yg,t−1)− E(Y0,t) + E(Y0,t−1))

=
∑

(g,t):t≥1

Ng,tεfd,g,t (Dg,t∆g,t −Dg,t−1∆g,t−1 −D0,t∆0,t +D0,t−1∆0,t−1)

=
∑

(g,t):t≥1

Ng,tεfd,g,t (Dg,t∆g,t −Dg,t−1∆g,t−1)

=
∑
g,t

(Ng,tεfd,g,t −Ng,t+1εfd,g,t+1)Dg,t∆g,t

=
∑

(g,t):Dg,t=1

Ng,t

(
εfd,g,t −

Ng,t+1

Ng,t

εfd,g,t+1

)
∆g,t. (27)

The first and third equalities follow from (26). The second equality follows from Lemma 1. The
fourth equality follows from a summation by part, and from the fact εfd,g,0 = εfd,g,t+1 = 0. The
fifth equality follows from Assumption 2.

A similar reasoning yields∑
(g,t):t≥1

Ng,tεfd,g,t (Dg,t −Dg,t−1) =
∑

(g,t):Dg,t=1

Ng,t

(
εfd,g,t −

Ng,t+1

Ng,t

εfd,g,t+1

)
. (28)

Combining (25), (27), and (28) yields the result.

Proof of Proposition 3

It follows from the first order conditions attached to Regression 2 and a few lines of algebra that
εfd,g,t = Dg,t −Dg,t−1 −D.,t + D.,t−1. Therefore, under Assumption 4 and if Ng,t does not vary
across t, one has that for all (g, t) such that Dg,t = 1, 1 ≤ t ≤ t − 1, wfd,g,t is proportional to
1−Dg,t−1−(2D.,t −D.,t−1 −D.,t+1). D.,t−D.,t−1 ≤ 1, and under Assumption 4 D.,t−D.,t+1 ≤ 0,
so 1−Dg,t−1 − (2D.,t −D.,t−1 −D.,t+1) can only be strictly negative if Dg,t−1 = 1. Then, for all
(g, t) such that Dg,t = 1, 1 ≤ t ≤ t − 1, wfd,g,t is strictly negative if and only if Dg,t−1 = 1 and
2D.,t −D.,t−1 −D.,t+1 > 0.

Similarly, when t = t, under the same assumptions as above, one has that for all g such that
Dg,t = 1, wfd,g,t is proportional to 1−Dg,t−1 − (D.,t −D.,t−1). D.,t −D.,t−1 ≤ 1, so 1−Dg,t−1 −
(D.,t−D.,t−1) can only be strictly negative if Dg,t−1 = 1. Then, wfd,g,t is strictly negative if and
only if Dg,t−1 = 1 and D.,t −D.,t−1 > 0.

Finally, when t = 0, one has that for all g such that Dg,0 = 1, wfd,g,0 is proportional to D.,1−D.,0,

which is greater than 0 under Assumption 4.
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Proof of Theorem 7

Remark, as in the proof of Theorem 1, that

β̂fe − βfe =

∑
g,tNg,tεg,t(Yg,t − E(Yg,t))∑

g,tNg,tεg,tDg,t

=

1
g+1

∑g
g=0(Ỹg,g − E(Ỹg,g))
1
g+1

∑
g,tNg,tε2

g,t

. (29)

By Assumption 18, the denominator tends to J . Now, by the triangular inequality, convexity of
x 7→ x2+δ on R+ and Jensen’s inequality,

|Ỹg,g − E(Ỹg,g)|2+δ ≤ 21+δ
(
|Ỹg,g|2+δ + E(|Ỹg,g|2+δ)

)
. (30)

Thus,
g∑
g=0

E[|Ỹg,g − E(Ỹg,g)|2+δ]/(g + 1)2+δ ≤ 22+δ

(g + 1)1+δ
sup

g:0≤g≤g
E(|Ỹg,g|2+δ).

Therefore, letting Ṽg = (1/(g + 1))
∑g

g=0 V (Ỹg,g),∑g
g=0 E[|Ỹg,g − E(Ỹg,g)|2+δ]/(g + 1)2+δ

V
(∑g

g=0 Ỹg,g/(g + 1)
)1+δ/2

≤ 22+δ

(g + 1)δ/2
supg:0≤g≤g E(|Ỹg,g|2+δ)

Ṽ
1+δ/2
g

.

By Assumption 18, the last term on the right-hand side converges to a finite value. Thus, the
right-hand side tends to zero as g tends to infinity, and by the Lyapunov central limit theorem
for triangular arrays (see,e.g. Billingsley, 1986, Theorem 27.3),∑g

g=0(Ỹg,g − E(Ỹg,g)/
√
g + 1)

Ṽ
1/2
g

d−→ N (0, 1).

By Assumption 18, Ṽg tends to H. Then, using (29), we obtain√
g + 1

(
β̂fe − βfe

)
d−→ N (0, H/J2). (31)

Moreover, by Assumption 18 and in view of (5), βfe → B/J 6= 0. Then, by the uniform delta
method (see, e.g. van der Vaart, 2000, Theorem 3.8), (31) still holds if we replace β̂fe − βfe by
|β̂fe| − |βfe|. The first result follows by definition of σ̂fe and σfe and the convergence of σ(w)

to σ∞(w) > 0.

To prove the result on the confidence interval, first remark that (g + 1)se2
fe = Hg/J

2
g , with

Hg =
1

g + 1

g∑
g=0

[
t∑
t=0

Ng,t(Yg,t − β̂feεg,t)εg,t

]2

,

Jg =
1

g + 1

∑
g,t

Ng,tε
2
g,t.
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Moreover, letting ug,g =
∑t

t=0 Ng,tε
2
g,t, we have

Hg =
1

g + 1

g∑
g=0

[
Ỹg,g − β̂feug,g

]2

=
1

g + 1

g∑
g=0

(Ỹg,g − E(Ỹg,g))
2 +

2

g + 1

g∑
g=0

(Ỹg,g − E(Ỹg,g))(E(Ỹg,g)− β̂feug,g)

+
1

g + 1

g∑
g=0

(E(Ỹg,g)− β̂feug,g)2

=T1g + T2g + T3g. (32)

This implies that ∣∣∣∣ σ̂fe − σfesefe/σ(w)

∣∣∣∣ ≤√g + 1

∣∣∣∣∣∣∣
σ̂fe − σfe√

T1g+T2g

Jgσ(w)

∣∣∣∣∣∣∣ . (33)

By Assumption 18, we have

sup
g:0≤g≤g

E

[(
Ỹg,gE(Ỹg,g)

)2
]
≤
(

sup
g:0≤g≤g

|E(Ỹg,g)|
)2

sup
g:0≤g≤g

E
[
Ỹ 2
g,g

]
< +∞

Then, by the weak law of large numbers for triangular arrays (see, e.g. Gut, 1992),

2

g + 1

g∑
g=0

(Ỹg,g − E(Ỹg,g))E(Ỹg,g)
P−→ 0.

By the same law of large numbers, and since supg:0≤g≤g |ug,g| < +∞, by Assumption 18,
2
∑g

g=0(Ỹg,g − E(Ỹg,g))ug,g/(g + 1)
P−→ 0 Then, by definition of T2g and because β̂fe = Op(1),

T2g
P−→ 0.

Next, using (30) and Assumption 18,

sup
g:0≤g≤g

E
∣∣∣Ỹg,g − E(Ỹg,g)

∣∣∣2+δ

< +∞.

Again, this implies by the weak law of large numbers for triangular arrays that T1g − Ṽg
P−→ 0.

Moreover, by Assumption 18, Ṽg → H. Next, Jg is equal to
∑

g,tNg,tDg,tεg,t/(g + 1) and thus
converges to J . Combining all the previous results, we obtain√

T1g + T2g

Jgσ(w)

P−→ H1/2

Jσ∞(w)
.

Thus, by the first result of the theorem and Slutsky’s theorem,

lim
g→∞

Pr


∣∣∣∣∣∣∣
σ̂fe − σfe√

T1g+T2g

Jgσ(w)

∣∣∣∣∣∣∣ ≤ z1−α/2

 = 1− α.

The result follows by (33).
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Proof of Theorem 8

Some algebra and the definition of ŴTC show that

ŴTC − ∆̃S =
1

g + 1

g∑
g=0

(Zg,g − E(Zg,g)). (34)

Using the same reasoning as in Theorem 7 and Assumption 19, we obtain∑g
g=0(Zg,g − E(Zg,g))/

√
g + 1

V
1/2
g

d−→ N (0, 1),

where Vg = (1/(g + 1))
∑g

g=0 V (Zg,g). The first result then follows by (34) and Assumption 19.

To prove the second part, let us first define

σ2
g =

1

g + 1

g∑
g=0

E(Z2
g,g)− E(Zg)

2.

By the same reasoning as in Theorem 7, E
[
|Z2

g,g − E(Z2
g,g)|1+δ/2

]
≤ 21+δ/2E

[
|Zg,g|2+δ

]
. Hence,

by Assumption 19 and the weak law of large numbers for triangular arrays,

1

g + 1

g∑
g=0

(Z2
g,g − E(Z2

g,g))
P−→ 0. (35)

Reasoning similarly on Zg,g instead of Z2
g,g, we also get that Zg − E(Zg) → 0 in probability.

Furthermore, by Assumption 19 again, |E(Zg)| ≤ supg E(|Zg,g|) < +∞. This and Zg−E(Zg)→
0 imply that Zg +E(Zg) = Op(1). Hence, Z2

g−E(Zg)
2 = op(1). Together with (35), this implies

σ̂2 − σ2
g

P−→ 0. (36)

Moreover, by convexity, (
1

g + 1

g∑
g=0

E(Zg,g)

)2

≤ 1

g + 1

g∑
g=0

E(Zg,g)
2,

and thus σ2
g ≥ Vg. Hence, σ̂2 ≥ Vg

(
1 + (σ̂2 − σ2

g)/σ
2
g

)
, which implies that

∣∣∣∣∣ŴTC −∆S

σ̂

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑g

g=0(Zg,g − E(Zg,g))/
√
g + 1√

Vg

(
1 +

σ̂2−σ2
g

σ2
g

)
∣∣∣∣∣∣∣∣ . (37)
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Because Vg → σ2 > 0, σ2
g ≥ Vg implies that lim inf σ2

g > 0. Combined with (36), we obtain
(σ̂2− σ2

g)/σ
2
g = op(1). Hence, by Sluski’s lemma, the right-hand side of (37) tends to a standard

normal variable. As a result,

lim sup
g

Pr
(
∆S ∈ CI1−α

)
≥ lim sup

g
Pr


∣∣∣∣∣∣∣∣

ŴTC −∆S√
Vg

(
1 +

σ̂2−σ2
g

σ2
g

)
∣∣∣∣∣∣∣∣ ≤ z1−α/2

 = 1− α.
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