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DISTRIBUTIONAL EFFECTS OF EDUCATION ON HEALTH 

Silvia H. Barcellos, Leandro S. Carvalho, and Patrick Turley* 

This paper studies distributional effects of education on health. 

In 1972, England, Scotland, and Wales raised their minimum 

school-leaving age from 15 to 16 for students born after 9/1/1957. 

Using a regression discontinuity design and objective health 

measures for 0.27 million individuals, we find that education 

reduced body size and increased blood pressure in middle age. 

The reduction in body size was concentrated at the upper tail of 

the distribution with a 7.5 percentage point reduction in obesity. 

The increase in blood pressure was concentrated at the lower tail 

of the distribution with no effect on stage 2 hypertension.  JEL 

codes: I10, I20.  

There is broad disagreement about whether education has a causal effect 

on health (Grossman 2015). Some studies find that more education causes better 

health (e.g. Lleras-Muney 2005) while others find little to no effect (e.g. Clark 

and Royer 2013). Galama, Lleras-Muney, and Kippersluis (2018) argue that 

heterogeneity in these effects may underlie these conflicting results. Their 

model lays out conditions for such heterogeneity to exist, and evidence 

indicates that such conditions are met: (i) heterogeneity in the labor market 

returns to education (Card 2001); (ii) heterogeneity in the non-market returns 

to education (Barcellos, Carvalho, and Turley 2018); and (iii) heterogeneity in 

skill formation as a result of education (Grenet 2013). 
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mailto:leandro.carvalho@usc.edu
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 This paper investigates whether the effects of education on health are 

heterogeneous by studying how education affects the distribution of health.1 If 

education affects different parts of the health distribution differently, then the 

effect of education on health must vary across individuals. In particular, the 

effect may be larger for individuals with poorer health. In a Grossman-type 

model, education will cause the unhealthy to invest more in their health than 

the healthy because of the diminishing marginal utility of health (Kippersluis 

and Galama 2014).2  

Since little is known ex-ante about the dimensions along which such 

effect may vary, a distributional approach allows for an unsupervised 

investigation of heterogeneity, avoiding multiple hypotheses testing and 

concerns about the lack of good measures of relevant dimensions. Moreover, if 

the effects are concentrated at particular parts of the distribution, a distributional 

test may be better powered than a test of difference in means—see Appendix F.   

For this purpose, we exploit a well-known schooling reform in the 

United Kingdom using a regression discontinuity design. In 1972, England, 

Scotland, and Wales raised their minimum school-leaving age from 15 to 16 for 

students born on or after September 1, 1957 (students born before this date 

could drop out at age 15), generating a discontinuity in the relationship between 

education and date of birth at the September 1, 1957 “cutoff.” We estimate the 

distributional effects of education on health from discontinuities in the 

cumulative distribution function (CDF) of health at the birthdate cutoff. 

We use data from the UK Biobank, a study that collected multiple 

objective and continuous measures of health between 2006 and 2010; 34-38 

years after the policy change. Using standardized protocols, healthcare 

technicians and nurses measured the BMI, body fat percentage, waist and hip 

                                                           
1 Previous studies have analyzed the effects of education on particular points of the 
distribution of a health outcome (e.g., a BMI above 30), but these clinical cutoffs are arguably 
arbitrary (Komaroff 2016) and the approach may overlook changes in other parts of the 
distribution. 
2 Consistent with this hypothesis, in related work we show that the additional schooling had 
larger effects on the BMI of those with greater genetic risk of obesity (Barcellos et al. 2018).    
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circumferences, lung function, and blood pressure of more than a quarter 

million people born in England, Scotland, and Wales between September 1, 

1947 and August 31, 1967. The unprecedented availability of objective health 

measures for such a large sample permits well-powered estimation of 

distributional treatment effects. To ease concerns about multiple hypotheses 

testing, we focus our analysis on three health indices constructed from the 

multiple measures available: body size, lung function, and blood pressure. 

There are three main takeaways from the distributional analysis. First, 

staying in school until age 16 improves one dimension of health—there is a 

reduction in body size—and worsens another: there is an increase in blood 

pressure.3 Second, it reveals that these effects vary considerably along the 

health distribution. To give a sense of how effects are concentrated, staying in 

school until age 16 reduces the 90th percentile of the body size distribution by 

0.38 of a standard deviation—that is equal to 2.5 times the effect on average 

body size. Third, the effects on body size and on blood pressure occur in 

different parts of their respective distributions: while the effect on body size is 

concentrated at the upper tail (i.e., among the least healthy), the effect on blood 

pressure is concentrated at the lower tail (i.e., among the most healthy).4  

We conduct a distributional test based on Shen and Zhang (2016) to 

formally investigate whether these changes are statistically significant, testing 

differences in the bottom and top halves of the CDFs of our three health indices. 

The test rejects at the 5% significance level the null of equality for the top half 

of the body size distribution (p-value of 0.013) and for the bottom half of the 

blood pressure distribution (p-value of 0.010). We only find suggestive 

evidence of a positive effect on lung function. 

                                                           
3 In our sample, there are very few participants with low blood pressure or who are 
underweight.  
4 We do not have the power to test whether some people experienced both a reduction in body 
size and an increase in blood pressure. However, given that there is a moderate positive 
correlation between these two outcomes (𝜌𝜌 = 0.3), it is unlikely (though possible) that those 
who experienced reductions in body size were the same individuals experiencing increases in 
blood pressure. See Appendix Figure D3. 
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We also conduct an exploratory analysis to investigate possible channels 

through which education may affect health. While improvements in SES and 

diet may explain the reduction in body size, we are not able to uncover in our 

data channels through which education increases blood pressure. We speculate 

that, by changing the types of occupations and careers individuals have, 

education might have an effect on job responsibilities, expectations, and work-

related stress.  

For the sake of comparison, we also estimate the effects of education on 

average health. A number of studies have exploited changes in compulsory 

schooling laws to study such effects (e.g., Lleras-Muney 2005; Albouy and 

Lequien 2009; Silles 2009; Powdthavee 2010; Kemptner et al. 2011; Clark & 

Royer 2013; Jürges et al. 2013; Davies et al. 2017; Janke et al. 2018; Meghir et 

al. forthcoming). We find that staying in school until age 16 reduces body size 

by 0.15 of a standard deviation and increases blood pressure by 0.15 of a 

standard deviation, but these estimates are only significant at the 10% level.5 

Our point estimates lie within the 95% confidence intervals of the estimates in 

Clark and Royer (2010, 2013), who also study the 1972 schooling-leaving age 

reform—but this comparison should be interpreted with caution because the UK 

Biobank is a selected sample.  

While the main take-away from Clark and Royer (2013) is that education 

does not affect health, our results suggest a more nuanced story. The 

distributional analysis shows that education can affect the health of some 

subpopulations. The heterogeneity of the effects of education on health may 

explain the conflicting findings in the literature (Galama et al. 2018). First, 

education affects different parts of the health distribution differently, implying 

that the effects vary across individuals. Second, the effects also vary across 

outcomes: the additional schooling caused a reduction in body size and an 

increase in blood pressure.  

                                                           
5 We also find an improvement in lung function that is marginally significant at 10% but that 
goes away once controls are added. 
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The paper is structured as follows. Section 1 discusses the 1972 raising of 

the school leaving-age reform and the data. In Section 2 we present the effects 

of the reform on education and the effects on average health. Section 3 discusses 

the methods used to estimate the distributional effects with results shown in 

Section 4. Section 5 presents suggestive evidence on mechanisms and Section 

6 concludes. 

1. Background and Data 

A. The 1972 Raising of the School Leaving Age 

The British compulsory schooling laws specify the maximum age by which 

children must start school and the minimum age at which they can leave school. 

In this paper, we exploit the 1972 Raising of School Leaving Age (ROSLA) 

legislation, which increased the minimum school-leaving age from 15 to 16 

years of age in England, Scotland, and Wales. These laws and their 

implementation have been extensively documented in other studies (see Clark 

and Royer 2010, 2013) so we only include a brief summary of its main features 

here.  

The UK’s 1944 Education Act raised the minimum school-leaving age from 

14 to 15 years of age in England, Wales, and Scotland and gave the Minister of 

Education the power to further raise it to 16 years when conditions allowed. 

The Minister did so in January 1972 for Scotland (Statutory Instrument No. 59)6 

and in March 1972 for England and Wales (Statutory Instrument No. 444)7. 

Both changes took effect in September 1, 1972, implying that those who were 

15 or younger before that date (born on September 1, 1957 or later) had to stay 

in school until at least age 16 in the three countries (hereafter, we use the term 

“stayed in school until age 16” to refer to those who stayed in school until at 

least age 16). Infrastructure investments, such as school building to absorb the 

                                                           
6 http://www.legislation.gov.uk/uksi/1972/59/pdfs/uksi_19720059_en.pdf 
7 http://www.legislation.gov.uk/uksi/1972/444/pdfs/uksi_19720444_en.pdf 

http://www.legislation.gov.uk/uksi/1972/59/pdfs/uksi_19720059_en.pdf
http://www.legislation.gov.uk/uksi/1972/444/pdfs/uksi_19720444_en.pdf
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additional students, preceded the 1972 ROSLA but key elements of the school 

system did not change with the policy. 

Figure 1, which displays the fraction of study participants who stayed in 

school until age 16 (y-axis) by quarter of birth (x-axis), shows that the policy 

generated a discontinuous relationship between these two variables. There is a 

large jump at the September 1, 1957 cutoff marked by the vertical dashed line. 

Those born during the summer months could in practice drop out at age 15 even 

after the 1972 ROSLA, since the law required students to be 16 by the start of 

the next school year. We estimate that the policy increased the fraction of UK 

Biobank participants who stayed in school until age 16 by 15 percentage points 

– see Table 1.    

 

Figure 1: Fraction Staying in School until Age 16 by Quarter of Birth 

Notes: The figure shows the fraction of study participants who stayed in school until age 16 by quarter of birth. The 
dashed vertical line marks the first birth cohort affected by the 1972 school-leaving age reform. Cohorts born to the 
right of the line had to stay in school until age 16 while cohorts born before could leave at age 15. The curves show 
quadratic polynomials in quarter of birth that capture birth cohort trends. The circumference of each circle reflects the 
number of participants born in that quarter. N = 271,082.   
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Notice there is a cyclical drop in the fraction of students staying in school 

until age 16, corresponding to those born between June and August. This 

phenomenon is not specific to our data and has been noted by others. According 

to Clark and Royer (2013), “when the minimum leaving age became age 16, 

students had to stay until part way through grade 10. Grade 10 finishes with the 

“O level” exam period and, technically, students finish when they complete 

their last exam. Since the exam period starts in late May and finishes in mid-

June, starting in 1972, students born in late June, July, and August could leave 

at 15, technically younger than the minimum leaving age (16)” (pg. 2 of Online 

Appendix). We include calendar month of birth dummies in our regressions to 

control for this seasonality. 

B. Data 

We use data from the UK Biobank, a large, population-based prospective 

study initiated by the UK National Health Service (NHS) (Sudlow et al. 2015). 

Between 2006 and 2010, invitations were mailed to 9.2 million people between 

the ages of 40 and 69 who were registered with the NHS and lived up to about 

25 miles from one of 22 study assessment centers distributed throughout the 

UK (Allen et al. 2012) – see Appendix Figure D1.8 The sample is formed by 

503,325 individuals who agreed to participate (i.e. a response rate of 5.47%). 

Although the sample is not nationally representative, our estimates have 

internal validity because there is no differential selection on the two sides of the 

September 1, 1957 cutoff – see Appendix A.9  

Physical measures, such as anthropometrics, spirometry, and blood 

pressure, were collected of survey participants. The collection was standardized 

across centers and was conducted by trained nurses or healthcare practitioners. 

Every participant was genotyped.  

                                                           
8 The NHS has contact details for an estimated 98% of the UK population.  
9 When the predetermined variable is continuous, we test whether the pre- and post-reforms 
distributions are different. When the predetermined variable is dichotomous, we conduct a test 
of difference in means. 
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In this paper, we focus on objective and continuous measures of health. 

Continuous measures because we are interested in studying how education 

affects the distribution of health. Objective measures because research shows 

that discrepancies between subjective (e.g. self-reported hypertension) and 

objective measures of health (e.g. objectively measured hypertension) vary with 

socioeconomic status (e.g. Johnston et al. 2009).  

We restrict ourselves to three dimensions of health (that satisfy the two 

criteria above and) that can be arguably affected by education: body size, lung 

function, and blood pressure.10 Weight and body size can be affected by 

education through diet and physical exercise. Lung function can be affected by 

education through smoking and pollution. Blood pressure may be affected by 

education through diet, physical exercise, medication, and stress. Moreover, 

these health dimensions are risk factors for high-prevalence diseases such as 

diabetes (Chan et al. 1994), lung cancer (Tockman et al. 1987) and 

cardiovascular disease (Kannel 1996). The UK Biobank has multiple measures 

of each of these health dimensions.  

Next, we describe how each of these health dimensions is measured in the 

data.  

Body Size  

We use three measures of body size: BMI, body fat percentage, and waist-

hip ratio.11 A bioimpedance analyzer was used to calculate body fat percentage. 

This device passes a low electrical current through the body. Water conducts 

electricity. While fat contains very little water, muscle contains 70% water. The 

                                                           
10 The other objective and continuous measures of health currently available in the UK 
Biobank are either available for just a subsample (e.g., arterial stiffness, bone densitometry of 
heel, ECG) or there is no clear hypothesis on how they could be affected by education (e.g., 
hand grip strength).    
11 The UK Biobank provides two measures of BMI: one calculated as weight in kilograms 
divided by height squared (in meters) and one using height and electrical impedance to 
quantify mass. We take the average of these two measures. We can get very similar results if 
we use exclusively the first measure of BMI (i.e., the weight in kilograms divided by height in 
meters squared). The waist-hip ratio is equal to the waist circumference divided by the hip 
circumference. 
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bioimpedance analyzer calculates body fat from the speed of the current: The 

slower the signal travels, the greater the fat content.  

Lung Function 

A spirometry test was conducted to measure participants’ lung function. 

The spirometer is a small machine attached to a mouthpiece by a cable that 

measures the volume and speed of air after a forced exhale. Participants were 

asked to fill their lungs as much as possible and to blow air out as hard and as 

fast as possible in the mouthpiece.12 Three parameters were measured: 1) forced 

expiratory volume in the first second is the amount of air exhaled during the 

first second; 2) forced vital capacity is the total amount of air exhaled during 

the forced breath; and 3) peak expiratory flow is the fastest rate of exhalation. 

These parameters are used to assess pulmonary conditions, such as chronic 

obstructive pulmonary disease and asthma. We follow DeMateis et al. (2016)’s 

criteria to identify acceptable expiratory maneuvers in the UK Biobank data. 

Valid spirometry measures are available for 79% of our sample.13  

Blood Pressure  

Two measurements were taken of the diastolic and systolic blood pressures 

of each study participant. We use the average of these two measurements.  

Summary Indices 

In order to reduce the number of outcomes and partly address concerns 

about multiple hypothesis testing, we construct for each health dimension a 

summary index that is a weighted average of the different outcomes measuring 

that dimension:   

1. Body size: body mass index, waist-to-hip ratio, and body fat 

percentage; 

                                                           
12 They were instructed to continue blowing until no more air came out of their lungs. Up to 
three attempts were allowed. The participant was allowed a third attempt if the first two blows 
did not satisfy the reproducibility criteria of the spirometry protocol. 
13 Appendix Figure C5 and Appendix Table C1 show that participants born before and after 
September 1957 are equally likely to have valid spirometry measures. 
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2. Lung function: forced expiratory volume in the first second, forced 

vital capacity, and peak expiratory flow; 

3. Blood pressure: diastolic and systolic blood pressures. 

First, each measure is standardized separately by gender, using as a reference 

those born in the 12 months before September 1, 1957. We then follow the 

procedure proposed by Anderson (2008), weighting the measures by their 

variance-covariance matrix. The weights are calculated to maximize the amount 

of information captured in the index. Finally, we construct a fourth “summary 

index” that is a summary of the body size, the lung function, and the blood 

pressure indices, using the same weighting procedure. We construct all four 

indices so that a higher number corresponds to worse health.   

The correlation between the body size and lung function indices is 0.20. The 

correlation between the body size and the blood pressure indices is 0.30. The 

correlation between the lung function and the blood pressure indices is 0.10. 

The correlations between the summary index and the body size, lung function, 

and blood pressure indices are respectively 0.69, 0.67, and 0.68. 

2.  Mean Effects  

A. Effects of the Compulsory Schooling Change on Education 

We use a regression discontinuity design (RDD) to estimate the “first 

stage”, i.e., the effect of the 1972 ROSLA on education. In particular, we 

estimate the following regression: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝑓𝑓(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝒂𝒂2 + 𝜀𝜀𝑖𝑖,  (1) 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is a measure of the educational attainment of individual 𝑖𝑖; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 

is 1 if individual 𝑖𝑖 was born on or after September 1, 1957 (and 0 otherwise); 

𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 is individual 𝑖𝑖’s date of birth; and the vector 𝒙𝒙𝑖𝑖 contains predetermined 

characteristics. Date of birth is measured in days relative to the cutoff, such that 
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𝐷𝐷𝑃𝑃𝐷𝐷 = 0 for someone born on September 1, 1957. The function 𝑓𝑓(∙) captures 

birth cohort trends in educational attainment, which are allowed to differ on 

either side of the September 1, 1957 cutoff. The coefficient 𝑎𝑎1 gives the effect 

of the 1972 ROSLA on educational attainment.14 

We restrict the data to study participants born in England, Scotland, or 

Wales within 10 years of September 1957 – that is, born between September 1, 

1947 and August 31, 1967 – and use a quadratic polynomial in date of birth to 

capture cohort trends (i.e., function 𝑓𝑓(∙) in equation (1)). In Appendix B we 

show our main results are robust to the choice of bandwidth and to the use of 

linear trends.15 We use triangular kernel weights that give greater weight to 

study participants born closer to the cutoff. The set of predetermined 

characteristics include gender, age in days (at the time of the baseline 

assessment) and age squared, dummies for ethnicity, dummies for country of 

birth, and dummies for calendar month of birth (to control for seasonality).16 

Notice that even though previous work studying the 1972 ROSLA 

clustered standard errors by month-year of birth (e.g., Clark and Royer 2013; 

Davies et al. 2017), we do not need to cluster our standard errors because our 

data include exact date of birth. As Card and Lee (2008) discuss, in applications 

where the running variable is only reported in coarse intervals (e.g., month-year 

of birth), researchers have to choose a particular functional form for the model 

relating the outcomes of interest to the running variable. The deviation between 

the expected value of the outcome and the predicted value from a given 

functional form is modeled as a random specification error, which is 

incorporated in inference by clustering the standard errors for different values 

of the running variable. This specification error should be negligible in our 

context because our data include day-month-year of birth. Appendix Table D4 

                                                           
14 The inclusion of predetermined controls in equation (1) is not needed for identification but 
can improve the precision of estimates. 
15 Gelman and Imbens (2016) caution against the use of higher order polynomials (higher than 
2) in RDD.  
16 Because participants were surveyed for the baseline assessment between 2006 and 2010, 
date of birth and age are not perfectly collinear. 



 12 

shows that we get virtually identical standard errors estimates irrespective of 

whether we cluster by date of birth or not.  

Table 1 shows estimates of effects of the 1972 ROSLA on education. Each 

cell reports results from a separate ordinary least squares estimation of (1), 

where we vary the dependent variable (listed in the column) and whether the 

predetermined characteristics are included as controls. The table shows the 

coefficient on the indicator variable for being born on or after September 1, 

1957, 𝑎𝑎1, and the mean of the dependent variable among those born in the 12 

months before September 1, 1957. Robust standard errors are reported between 

brackets. 

We estimate that the 1972 ROSLA increased the fraction of study 

participants staying in school until age 16 by 14-15 percentage points, an 

estimate significant at the 1% significance level.17 Studies using nationally 

representative data, such as Clark and Royer (2013), estimate this figure to be 

closer to 25 percentage points. This difference is likely due to the composition 

of the UK Biobank sample, which is more educated than the overall population 

(despite the selectivity of the UK Biobank sample, our estimates have internal 

validity because there is no differential selection on the two sides of the 

September 1, 1957 cutoff – see Appendix A). One consequence is that the 

standard errors of our two stages least squares (2SLS) estimates will be ceteris 

paribus larger than of studies with nationally representative data, something 

that is compensated by the larger sample size of the UK Biobank.  

 

 

 

 

 

                                                           
17 Estimates of the effect of the 1972 school-leaving age reform on staying in school until age 
17 or later are an order of magnitude smaller than the effect on staying in school till age 16 
and are generally not robust to the inclusion of controls – see Appendix Figure D2 and 
Appendix Table D1. 
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Table 1: Effects on Education 

 
Notes: The table shows the effects of the school reform on education. Each cell corresponds to a separate regression. 
We report the coefficient on the indicator variable for being born on or after September 1, 1957 (i.e., “Post”). The 
dependent variable mean in the bottom row is the weighted mean among those born in the 12 months before September 
1, 1957. Controls include male, age in days and age squared, dummies for calendar month of birth, dummies for 
ethnicity, and dummies for country of birth. Robust standard errors. N = 271,082 for “Stayed in school until 16” and N 
= 268,551 for all other outcomes.   

 

One may worry that these students forced to stay in school an extra year 

did not learn much if they did not put effort into it. The evidence does not 

support this hypothesis. By the 70’s high schools offered a series of two-year 

courses that ran through grades nine and ten and required students to take exams 

at the end of grade ten (the grade they are typically in by age 16): Certificate of 

Secondary Education (CSE) or a General Certificate of Education (GCE) 

Ordinary Level (also known as an O-level). By compelling students to stay in 

school until grade ten, the 1972 ROSLA gave students an incentive to complete 

these courses and get these qualifications, which are valued in the labor market 

(Dickson and Smith 2011). 
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Figure 2: Fraction with a CSE or O-level by Quarter of Birth 

Notes: The figure shows the fraction of study participants with a CSE or O-level qualification by quarter of birth. The 
dashed vertical line marks the introduction of the policy. Cohorts born to the right of the line had to stay in school until 
age 16 while cohorts born before could leave at age 15. The curves show quadratic polynomials in quarter of birth that 
capture birth cohort trends. The circumference of each circle reflects the number of participants born in that quarter. N 
= 268,551.   
 

Figure 2 shows that the policy generated a discontinuous increase in the 

fraction of study participants with these qualifications. In Table 1 we estimate 

that the policy increased the fraction of study participants with a CSE by 6-7 

percentage points and the fraction with an O-level by 3-4 percentage points. 

Interestingly, the fraction with an A-level, an exam typically taken at age 18 

and used for college admissions, increased by 1-2 percentage points. The 

fraction without any formal qualification dropped by 5 percentage points. All 

of these reduced-form estimates are statistically significant at 1%. We find no 

effect of the policy on having a college degree. Consistent with these results, 

we document that the policy increased household income18, especially at lower 

income levels, and enabled workers to get “better jobs”, that is, to have 

                                                           
18 These results are broadly consistent with Grenet (2013) that finds that the extra year of 
schooling induced by the 1972 ROSLA increased wages. 
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occupations with higher socioeconomic status19– see Appendix Table E1 and 

Appendix Table E2. 

B. Effects on Average Health 

We now turn to the effects of the 1972 ROSLA on average health. We are 

interested in the relationship between health and education: 

𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 + 𝑔𝑔(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜷𝜷2 + 𝐸𝐸𝑖𝑖, (2) 

where 𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 is a health measure for individual 𝑖𝑖. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖 , an indicator for 

whether individual 𝑖𝑖 stayed in school until age 16, is our endogenous measure 

of education. The function 𝑔𝑔(∙) captures birth cohort trends in health and is 

allowed to differ on either side of the September 1, 1957 cutoff. We substitute 

(1) into (2) to get the “reduced-form” effect of the 1972 ROSLA on average 

health: 

𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝑗𝑗(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖) + 𝒙𝒙𝑖𝑖′𝜸𝜸2 + 𝑣𝑣𝑖𝑖.  (3) 

The coefficient 𝛾𝛾1 gives the effect of the school leaving-age reform on average 

health. The RDD identifying assumption is that, in the absence of the reform, 

our outcomes of interest would have been smooth across the September 1, 1957 

threshold. This assumption is violated if determinants of health are 

discontinuous at the cutoff (Lee 2008). In Appendix A we partially test for such 

violations by investigating whether the average (or the cumulative distribution 

function) of predetermined characteristics, such as gender and place of birth, 

are discontinuous around September 1, 1957. Since the UK Biobank genotyped 

the full sample, we also test for the smoothness of a pair of genetic variables, 

                                                           
19 Respondents who were employed or self-employed were asked in a verbal interview to 
describe their jobs. Respondent’s answers were coded following the Standard Occupation 
Classification 2000. We classify the socioeconomic status of the occupations using the 2000 
National Statistics Socio-economic Classification (NS-SEC), the primary social classification 
in the United Kingdom. See Appendix Table D2. 
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which are determined at conception and are objectively measured.20 Our 

analyses indicate that these characteristics are smooth across the September 1 

1957 threshold, which strengthens our confidence that the RDD results provide 

unbiased estimates of the causal effects of education on the health of UK 

Biobank participants.  

We estimate the causal effect of staying in school until age 16 on average 

health, 𝛽𝛽1, through two stages least squares (2SLS), using the indicator for 

being born on or after September 1, 1957 (i.e., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) to instrument for staying 

in school until age 16 (i.e., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸16𝑖𝑖) in equation (2). We adopt the same 

specifications used to estimate the effects on education (see section 2.A), 

namely: 10-year bandwidths, quadratic polynomials to capture birth cohort 

trends, triangular kernel weights, and the same set of controls. Appendix B 

shows our results are robust to linear cohort trends and smaller bandwidths. 

Figure 3 examines the effects of the 1972 compulsory schooling change 

on average health. The graphs show average health (y-axis) by quarter of birth 

(x-axis), where health is measured by the four health indices: the body size 

index (top left); the lung function index (top right); the blood pressure index 

(bottom left); and the summary index (bottom right).  

Table 2 shows regression estimates of the effects of the 1972 compulsory 

schooling change on average health.21 The first rows show the coefficients on 

the indicator variable for being born on or after September 1, 1957, 𝛾𝛾1 in 

equation (3), from reduced-form estimates. The third row shows the coefficients 

on staying in school until age 16 from 2SLS estimates, 𝛽𝛽1 in equation (2), where 

the indicator variable for being born on or after September 1, 1957 is used to 

instrument for staying in school until age 16. Again, the health indices were 

constructed such that higher values correspond to worse health. 

                                                           
20 See Online Appendix of Barcellos, Carvalho and Turley (2018) for details about the 
construction of genetic variables. 
21 Notice that while Figure 3 uses quarter of birth Table 2 uses day of birth (e.g., September 1, 
1957). The same distinction applies to Figure 1 and Table 1. 
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Overall Figure 3 suggests education may lead to small average 

improvements in health, with minor discontinuous decreases in the body size, 

lung function, and summary indices at the cutoff. One noteworthy exception is 

blood pressure. There is a discontinuous increase in the blood pressure index at 

the cutoff, suggesting that education may worsen this particular dimension of 

health. Appendix Figures B1-B4 assess the sensitivity of Figure 3 to changes in 

the bandwidth and to using linear trends. 

Table 2 shows that the effects on body size and blood pressure are 

statistically significant at the 10% significance level. The 2SLS point estimates 

imply that staying in school until age 16 decreases the body size, the lung 

function, and the summary indices respectively by 0.15-0.16, 0.17, and 0.12 of 

a standard deviation. At the same time, staying in school until age 16 increases 

the blood pressure index by 0.15 of a standard deviation. 

 The p-value of a test of the difference between the effects on the body 

size and the blood pressure indices is 0.004.  The difference between the effects 

on the lung function and the blood pressure indices has a p-value of 0.069.  The 

difference between the effects on the body size and the lung function indices 

has a p-value of 0.906. These results, notably the difference between blood 

pressure and body size, point to the importance of treating health as multi-

dimensional and considering the effects of education on different dimensions 

separately. Focusing on the analysis of summary measures of health can lead to 

misleading conclusions of no health impact if effects going on opposite 

directions cancel out, as is the case in Table 2. 

Our estimates lie within the 95% confidence intervals of Clark and Royer 

(2010) – see Appendix Table D3 and Appendix Figure D7.22 Clark and Royer 

(2010) do not estimate the effects on systolic blood pressure or on lung function. 

As discussed above, even though we have a larger sample than Clark and Royer 

                                                           
22 In contrast, our results lie outside the confidence intervals of Davies et al. (2017), which 
study the same reform and data (UK Biobank). We believe this is due to differences in the 
weighting procedure they use, their specification (bandwidth and polynomial choice) and 
sample selection (they do not include Wales and Scotland). 
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(2010), we have a smaller first stage, which explains why our standard errors 

are not substantially smaller than theirs. 

This comparison should, however, be interpreted with caution because 

the UK Biobank is not a nationally representative sample. It recruited only 

individuals living within 25 miles of one of the 22 assessment centers, all of 

which were located in urban areas. Fry et al. (2017) also document that younger, 

males living in socioeconomically deprived areas and in particular regions of 

the UK were less likely to accept the invitation to join the study. 

In Appendix H, we compare compliers in the UK Biobank to compliers 

in the Health Survey for England – a nationally representative sample – in terms 

of objectively-measured health outcomes, namely BMI, waist-hip ratio, and 

diastolic and systolic blood pressures.23 We find that compliers in the UK 

Biobank have lower BMIs and waist-hip ratios, but that they also have higher 

diastolic and systolic blood pressures.24 Thus, we do not find unequivocal 

evidence that the UK Biobank sample is healthier than the average population. 

 

Table 2: Effects on Average Health 

 
Notes: The table shows the effects on average health. The first two rows show reduced-form effects of the 1972 Raising 
of the School Leaving Age. The last two rows show two stages least squares estimates of the effect of staying in school 
until age 16 obtained by using an indicator for being born on or after September 1, 1957 to instrument for staying in 
school until age 16.  Robust standard errors. Controls include male, age in days and age squared, dummies for calendar 
month of birth, dummies for ethnicity, and dummies for country of birth. 
 

                                                           
23 We approximate compliers as those born before September 1957 who dropped out of 
school at age 15 or younger. The UK Biobank sample is restricted to respondents living in 
England. We focus on objectively-measured health outcomes to avoid concerns that 
differences in self-reported measures may be partly due to differences in question wording.  
24 Fry et al. (2017) also find that the UK Biobank sample has lower BMI than the Health 
Survey for England sample. Notice, however, that they are not comparing compliers. They 
also do not compare the two samples in terms of blood pressure. 
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observations.  
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We used genetic data and a nationally representative sample, the English 

Longitudinal Survey of Ageing (ELSA), in an attempt to correct our estimates 

for possible selection. Genetic data may be useful in this regard because it is 

fixed at conception. We first calculated the distribution of the polygenic score 

for educational attainment—an index created from millions of genetic 

markers—in the ELSA and the UK Biobank samples. There is substantial 

overlap in the supports of the two distributions. We then re-weighted the UK 

Biobank sample to reproduce ELSA’s distribution. Unfortunately, the re-

weighting produces first-stage estimates which are nearly identical to the 

unweighted estimates – see Appendix H. This indicates that there are other 

unobserved differences that are not captured by the polygenic score. 

Nevertheless, our results retain their internal validity.   

3. Methods for Distributional Effects Estimates 

Even though the effects on average health are informative, they may 

conceal larger effects on particular parts of the health distribution with 

important policy implications. Moreover, the average effects documented here 

are suggestive at best, being only significant at the 10% level. As illustrated in 

Appendix F, if the effects of education on health are concentrated at particular 

parts of the health distribution, a distributional test may be better powered than 

a test of difference in means. In the next section, we describe the methods we 

use to estimate how education affects the distribution of health. 

In Section 2.B, we estimated the effect of education on average health (of 

compliers) by investigating if there was a discontinuity in the relationship 

between average health and date of birth at the September 1, 1957 cutoff. Here 

we estimate the effect of education on the health distribution (of compliers) by 

investigating if, at the September 1, 1957 cutoff, there is a discontinuity in the 
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relationship between the cumulative distribution function (CDF) of health and 

date of birth.25 

The assumptions of our proposed method are similar to those of a 

traditional RDD (Imbens and Lemieux 2008). The key difference is that, while 

a traditional RDD requires that the expectations of the potential outcomes are 

continuous in the running variable at the threshold, our method requires that the 

distributions of potential outcomes are continuous in the running variable at that 

point (Shen and Zheng 2015). While we cannot test this assumption formally, 

we find no significant discontinuity in the distributions of several 

predetermined variables, strengthening our confidence that this assumption 

holds—see Appendix A.  

We want to estimate the local distributional treatment effect (LDTE) for 

compliers. Let the pre-reform CDF be the CDF for compliers in the limit when 

date of birth is converging to September 1, 1957 from the left (i.e., 𝐷𝐷𝑃𝑃𝐷𝐷 < 0): 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) = lim
𝐷𝐷𝐷𝐷𝐷𝐷→0−

Pr (𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ ≤ ℎ|𝐷𝐷𝑃𝑃𝐷𝐷). 

Similarly, the post-reform CDF is defined as the CDF for compliers in the limit 

when date of birth is converging to September 1, 1957 from the right (i.e., 

𝐷𝐷𝑃𝑃𝐷𝐷 > 0): 

𝐹𝐹𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) = lim
𝐷𝐷𝐷𝐷𝐷𝐷→0+

Pr (𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ ≤ ℎ|𝐷𝐷𝑃𝑃𝐷𝐷). 

The LDTE, which is the discontinuity in the CDF at September 1, 1957 (i.e., 

𝐷𝐷𝑃𝑃𝐷𝐷 = 0), is estimated as the difference between 𝐹𝐹𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) and 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) at a 

given ℎ: 

𝜇𝜇(ℎ) = 𝐹𝐹𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) − 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(ℎ).    (4) 

                                                           
25 The RDD identifies differences in the marginal distributions of cohorts affected and 
unaffected by the reform. Stronger assumptions (such as rank preservation) would be needed 
to estimate the distribution of treatment effects. 
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To estimate 𝜇𝜇(ℎ), in practice we discretize the support of the 

distribution of health and then estimate (5) for each grid point ℎ:26 

I(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) = 𝜃𝜃0(ℎ) + 𝜃𝜃1(ℎ)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝐻𝐻(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖;ℎ) + 𝒙𝒙𝑖𝑖′𝜽𝜽2(ℎ) + 𝜀𝜀𝑖𝑖(ℎ),  (5) 

where I(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) is an indicator variable for whether the health index of 

individual 𝑖𝑖 is smaller or equal to ℎ. The function 𝐻𝐻(∙ ;ℎ) capture birth cohort 

trends, which are allowed to differ on either side of the cutoff date and to vary 

with ℎ. It is approximated by a quadratic polynomial of date of birth in days.27 

We estimate (5) through 2SLS using the indicator variable for being born on or 

after September 1, 1957 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) to instrument for staying in school until age 16 

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖). The coefficient on the latter, 𝜃𝜃1(ℎ), estimates the discontinuity in 

Pr(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) at 𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 = 0 and thus provides an estimate of 𝜇𝜇(ℎ).28 

We find it easier to visualize �̂�𝜇(∙) by plotting in the same graph the pre-

reform CDF 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(∙) and the post-reform CDF 𝐹𝐹𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(∙).29 For a given grid point 

ℎ, we proceed in three steps. First, we estimate 𝜇𝜇(ℎ). Second, we estimate 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) – see next paragraph. Third, we estimate 𝐹𝐹𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) as the sum of 𝐹𝐹�𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) 

                                                           
26 For each one of the three health indices, we first calculate the 1st and the 99th percentiles 
among those born before September 1, 1957:  

0.01 = Pr(𝐷𝐷𝑃𝑃𝐸𝐸𝐵𝐵 𝑆𝑆𝑖𝑖𝑆𝑆𝐻𝐻𝑖𝑖 ≤ 𝑞𝑞1𝑏𝑏𝑝𝑝�𝐷𝐷𝑃𝑃𝐷𝐷 < 0) = Pr�𝐿𝐿𝐸𝐸𝐿𝐿𝑔𝑔 𝐹𝐹𝐸𝐸𝐿𝐿𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃𝐿𝐿𝑖𝑖 ≤ 𝑞𝑞1
𝑙𝑙𝑙𝑙�𝐷𝐷𝑃𝑃𝐷𝐷 < 0�      

= Pr�𝐷𝐷𝐻𝐻𝑃𝑃𝑃𝑃𝐸𝐸 𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝐻𝐻𝑖𝑖 ≤ 𝑞𝑞1
𝑏𝑏𝑝𝑝�𝐷𝐷𝑃𝑃𝐷𝐷 < 0�                                                            

0.99 = Pr(𝐷𝐷𝑃𝑃𝐸𝐸𝐵𝐵 𝑆𝑆𝑖𝑖𝑆𝑆𝐻𝐻𝑖𝑖 ≤ 𝑞𝑞99𝑏𝑏𝑝𝑝�𝐷𝐷𝑃𝑃𝐷𝐷 < 0) = Pr�𝐿𝐿𝐸𝐸𝐿𝐿𝑔𝑔 𝐹𝐹𝐸𝐸𝐿𝐿𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃𝐿𝐿𝑖𝑖 ≤ 𝑞𝑞99
𝑙𝑙𝑙𝑙�𝐷𝐷𝑃𝑃𝐷𝐷 < 0�      

= Pr�𝐷𝐷𝐻𝐻𝑃𝑃𝑃𝑃𝐸𝐸 𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝐻𝐻𝑖𝑖 ≤ 𝑞𝑞99
𝑏𝑏𝑝𝑝�𝐷𝐷𝑃𝑃𝐷𝐷 < 0�                                                             

 Next, we define the starting point of the grid as the minimum of the 1st percentiles among the 
health indices and the endpoint as the maximum of the 99th percentiles among the health 
indices: 

ℎ1 = 𝑚𝑚𝑖𝑖𝐿𝐿�𝑞𝑞1𝑏𝑏𝑝𝑝, 𝑞𝑞1
𝑙𝑙𝑙𝑙 , 𝑞𝑞1

𝑏𝑏𝑝𝑝� 
ℎ21 = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑞𝑞99𝑏𝑏𝑝𝑝, 𝑞𝑞99

𝑙𝑙𝑙𝑙 , 𝑞𝑞99
𝑏𝑏𝑝𝑝� 

The grid consists of 21 points uniformly distributed between ℎ1 and ℎ21. 
27 In our main specification with a quadratic polynomial: 
𝐻𝐻(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 ;ℎ) = 𝜆𝜆1(ℎ)𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 + 𝜆𝜆2(ℎ)[𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖]2 + 𝜆𝜆3(ℎ)𝐼𝐼{𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 ≥ 0}𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 + 𝜆𝜆4(ℎ)𝐼𝐼{𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 ≥

0}[𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖]2. 
28 Consider (7), which is the reduced-form version of (5). There is an RD graph for each grid 
point ℎ for a total of 21 graphs (per health index). In Appendix Figures B11-B13, we show 
corresponding graphs for the 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the distribution 
of those born between September 1, 1956 and August 31, 1957. 
29 In the bottom panel of Appendix Figures B14-B16 we plot �̂�𝜇(ℎ) against ℎ. 
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and �̂�𝜇(ℎ). We repeat this procedure for each one of the 21 grid points. Finally, 

we draw the estimated pre-reform and post-reform CDFs by drawing 𝐹𝐹�𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) 

and 𝐹𝐹�𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) against ℎ. For any given ℎ, the vertical distance between 𝐹𝐹�𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝(ℎ) 

and 𝐹𝐹�𝑝𝑝𝑝𝑝𝑝𝑝(ℎ) is equal to �̂�𝜇(ℎ). 

To estimate the pre-reform CDF 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(∙), we restrict the sample to 

respondents born before September 1, 1957 and who left school at age 15 or 

younger (i.e., “the compliers”) and estimate equation (6) for each grid point ℎ:  

I(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) = 𝛿𝛿0(ℎ) + 𝑘𝑘(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖;ℎ) + 𝜉𝜉𝑖𝑖(ℎ),  (6) 

where the function 𝑘𝑘(∙ ;ℎ) captures pre-reform birth cohort trends.30 We can 

closely represent compliers born before September 1, 1957 by making this 

sample restriction because there are very few never-takers in our sample (i.e., 

individuals who would leave school before age 16 whether they were born 

before or after September 1, 1957).  The coefficient on the constant, 𝛿𝛿0(ℎ), 

estimates Pr(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) as 𝐷𝐷𝑃𝑃𝐷𝐷 → 0− and thus provides an estimate of 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(ℎ). 

Inference based on the standard errors generated by 2SLS estimates of (5) 

is problematic because it leads to a large number of highly correlated statistical 

tests, raising concerns about multiple hypothesis testing. We, therefore, use a 

single distributional test based on Shen and Zhang (2016) to formally 

investigate whether education changes the distribution of health. Our test 

compares the pre- and post-reform CDFs of the whole population. Under the 

assumptions of Shen and Zhang (2016), however, any discontinuity in the CDF 

of the population necessarily implies that there is a discontinuity in the CDF of 

compliers. This test is therefore based on the reduced-form specification: 

                                                           
30 In our main specification with a quadratic polynomial: 𝑘𝑘(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖; ℎ) = 𝜙𝜙1(ℎ)𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖 +
𝜙𝜙2(ℎ)[𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖]2. 
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I(𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖 ≤ ℎ) = 𝜅𝜅0(ℎ) + 𝜅𝜅1(ℎ)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐻𝐻(𝐷𝐷𝑃𝑃𝐷𝐷𝑖𝑖|ℎ) + 𝒙𝒙𝑖𝑖′𝜿𝜿2(ℎ) + 𝜂𝜂𝑖𝑖(ℎ). (7) 

The basis of our test is that—under the null hypothesis of no effect on the 

health distribution—the function of estimates �̂�𝜅1[ℎ(𝜏𝜏)], where ℎ(𝜏𝜏) is the value 

corresponding to the 𝜏𝜏th quantile of 𝐻𝐻𝐻𝐻𝑎𝑎𝐻𝐻𝑃𝑃ℎ𝑖𝑖, is a Brownian bridge (Shen and 

Zhang 2016).31 In contrast to Shen and Zhang (2016), which implements a 

Kolmogorov-Smirnov test, we perform an Anderson-Darling test (Anderson 

and Darling 1952) using the following weighted integral as our test statistic:32 

𝑇𝑇 = ∫ 𝜅𝜅�1[ℎ(𝜏𝜏)]2

𝜏𝜏(1−𝜏𝜏) 𝐸𝐸𝜏𝜏.1
0     (8)  

Average treatment effects may not be well-powered to detect effects of 

education on health that are concentrated on the tails of the health distribution 

(see Appendix F). We chose the Anderson-Darling test because it is uniformly 

powered for the whole range 𝜏𝜏 ∈ [0, 1] (Stephens 1974). In contrast, the 

Kolmogorov-Smirnov test is better powered to detect deviations of the 

distribution near the median. To test for differences in the bottom half of the 

health distribution, we use a modified version of (8), integrating only from zero 

to 0.5. Similarly, we test differences in the top half by integrating from 0.5 to 

1.33 

The p-values for the test are calculated by simulation. Specifically, we 

generate an independent, standard normally distributed outcome for each 

individual (such that there is no discontinuous change in distribution at the 

                                                           
31 More precisely, the difference in the empirical CDFs estimated in this way is a standard 
Brownian bridge times a scalar. See Shen and Zhang (2016) for details on calculating the 
scalar which allows us to transform the difference into a standard Brownian bridge. 
32 Shen and Zhang (2016) use max

𝜏𝜏
|�̂�𝜅1[ℎ(𝜏𝜏)]| as their test statistic, which corresponds to a 

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test has been shown to be well-
powered for deviations in the distribution near the median of the distribution, but is poorly 
powered to detect differences in the distribution in the tails (Stephens 1974). 
33 In practice, we calculate the integral 𝑇𝑇 numerically, using the approximation 

𝑇𝑇 ≈�
1

100
�̂�𝜅1�ℎ�𝜏𝜏𝑗𝑗��

2

𝜏𝜏𝑗𝑗�1 − 𝜏𝜏𝑗𝑗�𝑗𝑗

 

where �𝜏𝜏𝑗𝑗� is a set of discrete points in 0.01 unit increments. When testing the full distribution 
we sum from 0.01 to 0.99, inclusive. For the lower or upper portion of the distribution, we 
sum from 0.01 to 0.50 or 0.50 to 0.99 inclusive, respectively. 
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discontinuity), and evaluate 𝑇𝑇 (or the upper and lower distribution analogue) 

for this simulated variable. By Shen and Zhang (2016), this is equivalent to 

drawing from the test statistic distribution under the null. This is repeated 5,000 

times. As the p-value, we report the fraction of times our simulated values of 𝑇𝑇 

are greater than our estimated value of 𝑇𝑇. 

The CDF approach described above is closely related to a quantile IV 

approach. The CDF approach is based on the vertical distance between the pre- 

and post-reform CDFs whereas a quantile approach is based on the horizontal 

distance between these two CDFs. Therefore, either approach would lead us to 

the same substantive conclusions. We opted to present the CDF approach 

because it is the framework used by Shen and Zhang (2016), whose results we 

use in our distributional tests. Nevertheless, when we present our results, we 

also discuss the effects on some particular quantiles of interest. 

4. Distributional Effects of Education on Health 

Figure 4 shows the distributional treatment effects of education on body 

size. It shows the pre- and post-reform CDFs of the body size index for 

compliers. As explained in Section 3, the pre-reform CDF is obtained by 

estimating (6) for each grid point ℎ and then plotting 𝛿𝛿0(ℎ)  against ℎ.34 The 

discontinuity in the CDF, 𝜇𝜇(ℎ), is obtained by estimating (5) through 2SLS for 

each grid point ℎ. The post-reform CDF at a given grid point ℎ is obtained by 

adding �̂�𝜇(ℎ) “vertically” to 𝛿𝛿0(ℎ). 

Figure 4 shows that education reduces body size: The post-reform CDF is 

shifted to the left relative to the pre-reform CDF. Importantly, the shift is not 

parallel; the gains are concentrated at the top of the distribution, among the least 

healthy. This result is consistent with a Grossman-type model with diminishing 

marginal utility of health (Kippersluis and Galama 2014). Staying in school 

                                                           
34 Compliers are less healthy than always takers but not dramatically so. Appendix Figures 
D4, D5, and D6 compare the pre-reform CDFs for compliers and the whole population (both 
estimated using equation (5)) for our 3 indices.  
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until age 16 increases the fraction of study participants with a body size index 

smaller than 1 standard deviation from 77.5% to 84.4%. Similarly, the 90th 

percentile of the body size distribution decreases from 1.58 to 1.2 standard 

deviations. This effect is 2.5 times the average treatment effect (on the treated) 

of -0.15 standard deviations estimated in Table 2.  

  
Figure 4: Distributional Effects on Body Size Index 

Notes: The figure shows the pre- and post-reform CDFs of the body size index for compliers. N = 266,525. 
 
 

While Figure 4 has the advantage of graphically displaying the 

distributional treatment effects in just one figure, it lacks the transparency of 

traditional RDD graphs. In Appendix Figure B11, we present traditional RDD 

graphs for the 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the 

distribution of the body size index (of those born between September 1, 1956 

and August 31, 1957). Appendix Figures B12 and B13 present corresponding 

graphs for the lung function and blood pressure indices. 
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Figure 5: Distributional Effects on Lung Function Index 

Notes: The figure shows the pre- and post-reform CDFs of the lung function index for compliers. N = 215,366. 
Figure 5 shows that education also improves lung function: The post-

reform CDF is shifted to the left relative to the pre-reform CDF. Staying in 

school until age 16 increases the fraction of study participants with a lung 

function index smaller than 1 standard deviation from 78.1% to 87.6%. 

Similarly, the 90th percentile of the lung function distribution decreases from 

1.48 to 1.14 standard deviations. This effect is 2 times the average treatment 

effect (on the treated) of -0.17 standard deviations estimated in Table 2. 
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Figure 6: Distributional Effects on Blood Pressure Index 

Notes: The figure shows the pre- and post-reform CDFs of the blood pressure index for compliers. N = 270,647. 
 

While Figures 4 and 5 show that education improves body size and lung 

function, Figure 6 shows that education worsens one dimension of health: it 

increases blood pressure.35 The post-reform CDF lies to the right of the pre-

reform CDF. Staying in school until age 16 decreases the fraction of study 

participants with a blood pressure index smaller than 0 from 49.4% to 39.3%. 

Similarly, the 30th percentile of the blood pressure index distribution increases 

from -0.49 to -0.16 standard deviations. This effect is 2.2 times the average 

treatment effect (on the treated) of 0.15 standard deviations estimated in Table 

2. This result is particularly striking because blood pressure can be controlled 

through medication, diet, and exercise (Chobanian et al. 2003), and there is a 

positive association between education and these healthy behaviors (Park and 

Kang 2008; Conti, Heckman, and Urzua 2010; Cutler and Lleras-Muney 2010).  

                                                           
35 The fraction of people with low blood pressure in our sample is negligible; in contrast, 30% 
are hypertensive (see Figure 8). Therefore we interpret an increase in blood pressure as a 
worsening of health.   
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A comparison of Figures 4 and 6 shows that not only the effect on the 

body size and blood pressure indices have different signs, but the effects also 

happen in different parts of the respective distributions. While the effects on 

body size occur in the upper part of the body size distribution, the effects on 

blood pressure occur in the lower part of the blood pressure distribution among 

the healthiest. Appendix Figures B5-B10 assess the sensitivity of Figures 5-7 

to changing the bandwidth, using linear trends, and the inclusion of controls. 

To test whether these shifts in our health indices CDFs are significant and 

where they are concentrated, we use distributional tests as described in section 

3 above. The first row in Table 3 shows p-values of tests of the equality of the 

pre- and post-reform CDFs. The middle and bottom rows show p-values of tests 

of the equality of the bottom half (i.e., the healthiest) and the top half (i.e., the 

least healthy) of pre- and post-reform CDFs. 

We can reject the null for the top half of the body size distribution and for 

the bottom half of the blood pressure distribution (at the 5% significance level). 

The p-value for the top half of the lung function distribution is 0.0618. 

Appendix Tables B1-B3 assess the sensitivity of these results to changing the 

bandwidth, using linear trends, and including controls. While the p-values 

change across specifications, the main patterns remain: in most cases, we can 

reject the null of equality for the top half of the body size distribution and for 

the bottom half of the blood pressure distribution.  

 

Table 3: P-values of Distributional Tests 

  
Notes: The table shows the p-values of tests of the equality of the full distribution, the bottom and top halves of the pre- 
and post-reform CDFs. 
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Figures 7 and 8 shed light on these findings by plotting results for 

measures with clinical thresholds. Figure 7 shows the pre- and post-reform 

CDFs of body mass index (for compliers). Figure 8 shows the pre- and post-

reform CDFs of diastolic blood pressure (for compliers).36 

Figure 7 shows that the reductions in BMI caused by more education 

occur where they matter the most: Staying in school until age 16 reduces obesity 

rates (i.e., the fraction of study participants with a BMI below 30) by 7.5 

percentage points. In contrast, Figure 8 shows that the increase in blood 

pressure does not affect the prevalence of stage 2 hypertension (classified as 

having a diastolic blood pressure above 90 mmHg). Staying in school until age 

16 increases the probability of stage 1 hypertension (defined as having diastolic 

blood pressure between 80 mmHg and 90 mmHg; known as “prehypertension” 

before the 2017 redefinition) by 7.9 percentage points.37  

 

                                                           
36 Results for systolic blood pressure, omitted due to space constraints, are similar.  
37 Despite no change in stage 2 hypertension, the increase in the fraction of people in the stage 
1 (formerly pre-high) range might still mean a worsening of health, as observational studies 
indicate that death from both ischemic heart disease (IHD) and stroke increases progressively 
and linearly from levels as low as 75mmHg DBP (Lewington et al. 2002). In addition, 
longitudinal data have indicated that DBP between 85 and 89 mmHg are associated with a 
more than twofold increase in relative risk from cardiovascular disease as compared to those 
with DBP below 80mmHg (Vasan et al. 2001). However, stage 2 hypertension is more serious 
than stage 1: while medications are the main treatment for stage 2 hypertension, for stage 1 
the focus is on lifestyle changes (Bakris and Sorrentino 2018).     
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Figure 7: Distributional Effects on Body Mass Index 

Notes: The figure shows the pre- and post-reform CDFs of body mass index for compliers. N = 270,019. 

 

Figure 8: Distributional Effects on Diastolic Blood Pressure 

Notes: The figure shows the pre- and post-reform CDFs of diastolic blood pressure for compliers. N = 270,647. 
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These results illustrate the importance of studying distributional effects. 

While the average treatment effects show improvements in body size and 

deterioration in blood pressure, the distributional effects reveal in which part of 

the distributions these changes occur. The deterioration of blood pressure 

occurs with no observed consequences for the prevalence of stage 2 

hypertension. In contrast, the improvements in anthropometrics are 

concentrated at the right tail, with a large reduction in obesity rates. These 

effects offer important information that policy-makers might wish to trade-off 

when considering the health consequences of educational policies. 

5. Channels 

One of the channels through which education may affect health is health 

behaviors. Correlational evidence shows that the more educated are more likely 

to use preventive care, that they manage chronic conditions more effectively, 

and that they are less likely to smoke and drink heavily (Cutler and Lleras-

Muney 2008; Goldman and Smith 2002). 

Taking advantage of the richness of the UK Biobank data, we investigate 

whether education has a causal effect on three types of health behaviors: diet, 

smoking, and physical activity. Diet was measured using a 24-h dietary 

assessment tool self-completed through the Internet (Galante et al. 2016).38 

Accelerometers worn for 7 days were used to measure physical activity.39 

Smoking was self-reported. 

                                                           
38 The Oxford WebQ collects information on the quantities of all foods and beverages 
consumed over the previous day. Respondents are asked whether they consumed any of 21 
food groups over the previous day. A positive response results in the screen expanding to 
reveal a list of commonly consumed foods in the corresponding category. Respondents then 
select the amount of each food consumed using standard categories to indicate the amount 
consumed. Energy and nutrient values are generated by multiplying the quantity of each food 
or drink consumed by its nutrient composition. The Oxford WebQ was included at the 
assessment visit of the baseline measures for the last 70,724 participants and administered 
over the Internet to all UK Biobanks participants with a known email address, who were 
invited to complete the Oxford WebQ on four separate occasions over a 16-month period. 
39 Accelerometer data were collected from May 2013 until December 2015 from 103,720 UK 
Biobank participants. Our outcome of interest is the average acceleration adjusted for no-wear 
bias (UKB field 90087):  http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=90087 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=90087
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Appendix Table E4 shows the effects on diet. Staying in school until age 

16 reduces the intake of fat and saturated fat (as a fraction of total energy 

intake). There are, however, no effects on total caloric intake, sugars, or 

carbohydrates. Appendix Table E5 shows no effects on the measures of 

smoking and physical activity we have available.40  

This analysis suggests that improved diet is an important channel 

through which education reduces body size. Those who stayed in school until 

age 16 had better diets in middle age – about 10% lower in fat and 15% lower 

in saturated fat. Even if the energy content of one’s diet is held constant, 

changes in diet composition can affect body weight (Hall et al. 2012).  

The pathways are less clear for the harmful effect of education on blood 

pressure. We find no effects on a (self-reported) measure of hypertension 

diagnosis41 and on (current) blood pressure medication (Appendix Table E5). 

One alternative hypothesis is that, by changing the types of occupations and 

careers individuals have, education might have an effect on job responsibilities, 

expectations, and work-related stress with negative implications for blood 

pressure.42 In the U.S. context, for example, academically successful African 

Americans have higher biomarkers related to cardiometabolic risk (i.e. blood 

pressure and stress hormones) than other groups (Brody et al. 2013, Miller et 

al. 2015, Chen et al. 2015). This is potentially driven by stressors related to 

upward mobility, which could also be playing a role in the U.K context. We 

have no credible data to test this hypothesis in the UK Biobank so we leave it 

for future work.  

  

                                                           
40 These are consistent with Clark and Royer (2013), who also find no effects of the 1972 
ROSLA on self-reported smoking or physical activity. 
41 The wording of the question was “Have you been told by a doctor that you have high blood 
pressure”? 
42 Appendix Table E2 presents evidence that education increases the socioeconomic class of 
occupations participants hold in middle age. They are less likely to work on semi-routine and 
lower supervisory occupations, for example. 
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6. Conclusions 

In this paper, we investigate how education affects the distribution of 

health along three dimensions: body size, lung function, and blood pressure. 

While the main take-away from Clark and Royer (2013) is that education does 

not affect health, our results suggest a more nuanced story. The distributional 

analysis shows that education does affect the health of some subpopulations. 

We find, for example, that the school-leaving age reform shifted part of the 

body size distribution to the left—i.e., it caused reductions in body size. 

The distributional analysis implies that the effect of education on body 

size must vary across people. Indeed, in related work we show that the effect 

varies with one’s genetic predisposition to obesity: the reductions in body size 

were larger for individuals at greater genetic risk of obesity (Barcellos, 

Carvalho, and Turley 2018). These findings support Galama et al. (2018)’s 

hypothesis that heterogeneity in the effects of education on health explain why 

some studies find that more education causes better health while others find no 

effect. 

We conduct a back-of-envelope calculation to illustrate the importance 

of accounting for the heterogeneity in the effects of education when evaluating 

its estimated impacts (Heckman et al. 2016). Take, for example, the relationship 

between BMI and mortality. It is U-shaped (Fogel 1994; Aune et al. 2016), 

suggesting that the reduction in mortality caused by a given reduction in BMI 

is larger for someone obese than for someone with normal weight. A reduction 

in average BMI of 0.4 caused by staying in school until age 16 (i.e., the average 

treatment effect on the treated) implies a reduction in the relative risk of death 

of 0.85%—see Appendix G for details. In contrast, the local distributional 

treatment effects yield a much larger reduction of 3.27%. That is because of the 

U-shaped relationship between BMI and mortality and because the effects on 

BMI were concentrated at the upper tail of the BMI distribution. 

The effects of education on health may vary not only across people but 

also across different health dimensions. Besides reducing body size, the school-
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leaving age reform increased blood pressure. Education seems to have reduced 

body size through improvements in SES and diet, but it is not clear the channels 

through which education increased blood pressure. Interestingly, the 

improvement in body size was concentrated at the top half of the body size 

distribution (among the least healthy) while the worsening in blood pressure 

was concentrated at the bottom half of the blood pressure distribution (among 

the most healthy). 

These results underscore the policy relevance of studying distributional 

effects. Even though the average treatment effects show a reduction in body 

size and an increase in blood pressure of identical magnitudes (0.15 of a 

standard deviation), a policy maker may wish to trade-off these effects based 

on which parts of the respective distributions are affected. Because the 

reductions in BMI occurred at the upper tail of the BMI distribution, staying in 

school until age 16 reduced obesity rates (i.e., BMI above 30) by 7.5 percentage 

points. In contrast, the increase in blood pressure was concentrated below the 

clinical threshold for stage 2 hypertension (i.e., diastolic blood pressure above 

90 mmHg or systolic blood pressure above 140) with no statistically significant 

consequences for prevalence.  
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