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1 Introduction

The seminal work of Chamley (1986) shows that when the social planner raises revenues for government

expenditures, optimal capital tax rates may remain positive in transition, but at steady-states they

must be set to zero. In other words, at the steady-state, the social planner commits to zero capital

taxes and raises revenues by taxing labor earnings instead. Judd (1985) demonstrates that the same

optimal tax policy applies in an economy where taxes are chosen for redistributive purposes, solely

according to preferences of hand-to-mouth workers whose income is composed of labor earnings and

government transfers. The reason is that positive capital taxes distort savings, which in the limit

shrink the capital tax base too much, while also depressing the marginal product of labor. The

general conclusion from these studies is that committing to positive capital taxes forever is a bad idea.

An initial counterexample to Judd (1985) was given by Lansing (1999) showing that with log

preferences, optimal capital taxes could be positive forever in some equilibria.1 As later established

by Reinhorn (2019), however, this example turned out to be a knife-edge case. Later, Bassetto and

Benhabib (2006) studied a model with a continuum of agents that differed in their initial capital stocks,

but are otherwise all allowed to choose their savings optimally. Assuming inelastic labor supply, they

established a condition under which a sufficiently wealth-poor household would choose to tax capital

at the maximally allowed rate forever, and would redistribute taxes lump-sum and equally to all.2

More recently, Straub and Werning (2018) obtained very similar results in the frameworks of Chamley

(1986) and Judd (1985). In particular, they showed that under certain conditions, optimal capital

taxes can remain positive forever for capital trajectories that converge to extremes, but not those that

converge to an interior steady-state.

In this paper, we show that when the government raises revenue via capital and labor taxes

optimally in a model with infinitely lived agents, who are heterogenous only with respect to their

initial capital holdings, taxing capital forever for redistributive purposes can in fact be consistent

with equilibrium trajectories of consumption, leisure and capital converging to interior steady-states,

while the steady-state optimal tax rate τ∗ ∈ [0, τ̄ ] is set at its maximum τ∗ = τ̄ . First, we generalize

the Bassetto and Benhabib (2006) condition for maximal capital taxes to a neoclassical growth model

with endogenous labor-leisure choice and Gorman aggregable balanced growth preferences. Under this

condition, if the sequence of tax rates is optimally chosen according to the preferences of the median

household that is sufficiently wealth-poor relative to the average household, or alternatively, if the

planner assigns relatively more weight to wealth-poor households, the implemented policy will feature

capital tax rates that are kept at their upper bounds forever.

The Bassetto-Benhabib condition, however, involves the equilibrium value function of the house-

hold with mean wealth, so it is not immediately obvious how to generate examples satisfying this

condition at interior steady-states. The example that Bassetto and Benhabib (2006) gave is for an AK

1While capital, consumption, and the net return to capital converge to an interior steady state in the example of
Lansing (1999), multipliers do not converge, thereby violating the assumptions of Judd (1985). The multipliers diverge,
but they satisfy transversality (see Reinhorn (2019), pages 9-10).

2Bassetto and Benhabib (2006) also showed that if preferences are Gorman aggregable, a Condorcet winner exists, so
the median household’s preferred policy gets implemented if the sequence of tax rates is chosen by majority voting.
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model where the equilibrium capital stock, depending on parameters, perpetually contracts or grows.3

To demonstrate that this outcome is just a special case, we define a class of models with constant

relative risk-averse (CRRA) preferences and constant elasticity of substitution (CES) production func-

tions for which closed form solutions exist. This allows us to provide examples with positive long-run

capital taxation and interior steady-states. To show that this finding does not depend on stringent

parametric assumptions, we complement our examples with more standard model calibrations requir-

ing numerical solutions. We then provide an interpretation of our sufficient condition implying that

optimal capital taxes will remain at their upper bound forever for equilibria generated under arbitrary

constant returns neoclassical production functions. Finally, we investigate the empirical validity of

the Bassetto-Benhabib condition by using recent data from Wolff (2017) on the wealth distribution in

the United States and find that the sufficient condition is empirically plausible.

We should note that our model, where optimal capital taxes finance lump-sum redistribution and

are maximal forever at interior steady states differs from the model of Judd (1985) or Straub and

Werning (2018) where workers are not allowed to save. Our wealth-poor agents are not required to

immediately consume the wages and transfers they receive. Therefore, even though everyone dislikes

having to pay capital taxes, wealth-poor households find the implied redistributive transfers more

valuable in our setting, where they have the option to save them either fully or in part, than in an

economy where they are constrained to be hand-to-mouth consumers.

There are also a number of studies that deviate from the original Chamley or Judd models in

which optimal capital taxes can remain positive forever. For example in OLG models with realistic

life cycle profiles having non-constant labor endowments, if labor taxes cannot depend on age, they

may not be able provide an optimal intertemporal redistribution across households that maximizes

the social welfare function of a newborn, especially if labor supply is endogenous. Then a positive

capital income tax that mimics a labor income tax rate that can vary with age can be optimal despite

its intertemporal distortion of accumulation (see Erosa and Gervais (2002)). Similarly, in incomplete

market models with endogenous labor, borrowing constraints, and idiosyncratic earnings risk, if labor

taxes are restricted to be proportional and cannot be progressive, relying on labor income taxes alone

translates directly into low consumption for poor households at the constraint. Such labor taxes may

not be optimal, and require instead a redistributive positive capital tax forever if progressive labor

taxes are ruled out (see Hubbard and Judd (1987)). Comprehensive theoretical and quantitative

analyses of such cases are studied and illustrated in detail by Conesa, Kitao, and Krueger (2009). On

the other hand, Atkeson, Chari, and Kehoe (1999) and Chari, Teles, and Nicolini (2016) show that

in such macroeconomic models with an enlarged tax system that also includes consumption taxes,

capital should not be taxed in steady-state, either in representative agent models, or in models with

heterogeneous agents differing in their initial wealth.

In the next section we describe the model environment and derive the value functions of households

in competitive equilibria. Using these value functions, section 3 discusses how different households

rank the available tax policies. Theorem 4 contains our main result providing a sufficient condition

3In their explicit example, Bassetto and Benhabib (2006) have linear production y = rk and CRRA preferences, and
they set the discount factor β so that βr = 1 and the capital stock contracts to zero. Nevertheless, it is easy to see that
if we increased r slightly, the capital stock would grow forever.
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under which certain households prefer to keep capital taxes at their upper bounds forever. Proposition

5 shows that positive optimal long-run capital tax rate can be consistent with an interior steady-state.

Section 4 computes our sufficient condition under various functional assumptions that allow us to derive

key equilibrium objects in terms of model primitives. Section 4.2 then presents a rough calibration

illustrating that our sufficient condition is empirically plausible. Section 5 concludes.

2 The model

Consider a deterministic neoclassical growth model with a continuum of households of unit measure,

indexed by i, who differ only in their initial wealth level. Household preferences are given by

∞∑
t=0

βtu
(
cit, 1− nit

)
=
∞∑
t=0

βt

[(
cit
)ξ (

1− nit
)1−ξ]1−σ

1− σ
ξ ∈ [0, 1], σ > 0 (1)

where cit and nit are period t consumption and labor supply by agent i, respectively.4 This functional

form is a popular choice in the business cycle literature (see e.g. Kydland and Prescott (1982)) and it

has been used by Chari, Christiano, and Kehoe (1994) to study optimal fiscal policy in an economy

with homogeneous households. That u is a homogeneous function ensures that Gorman aggregation

holds,5 that is, there exists a representative agent endowed with the average initial wealth level and

preferences of the form (1) over average consumption and leisure plans {(ct, 1−nt)}∞t=0. An important

special case of u, associated with ξ = 1, is CRRA preferences with inelastic labor supply.

Output yt at time t is produced by competitive firms using capital kt and labor nt according to

the linearly homogeneous production function

yt = F (kt, nt)

with partial derivatives Fk > 0, Fn ≥ 0, Fkn ≥ 0, Fnn ≤ 0, and Fkk ≤ 0. Firms rent capital and labor

from the competitive factor markets at rates rt and wt, respectively.

In each period t, the government levies proportional taxes on labor income νt ∈ [0, 1)6 and capital

income τt, subject to exogenous bounds τt ∈ [0, τ̄ ],7,8 and provides lump-sum transfers (or taxes) trt

4Appealing to the Inada conditions we abstract from the nonnegativity constraints on consumption and leisure.
5An alternative (separable) form satisfying this condition would be ui = (1 − σ)−1

[
(cit)

1−σ + (1− nit)1−σ
]
, where

Gorman aggregation is ensured by assuming identical elasticities of consumption and labor.
6With endogenous labor supply, if ν = 1, households choose not to work, hence output is zero. We rule out this case.
7The upper bound can be justified by the fact that households can avoid renting out their capital stock, or by the

presence of a “black market technology” that allows households to hide their capital income from the tax collector at a
proportional cost τ̄ . The zero lower bound will not be binding for the wealth distributions that we will consider.

8The upper bound on capital income tax rates, τ̄ , can be unrestricted, and in principle capital taxes paid can exceed
capital income. However, we later impose τ̄ < 1 to permit the existence of an interior steady state with positive capital
stocks and with capital income taxes set at their upper bound forever. For this result τ̄ has to be less than unity because
with positive discounting the steady state after-tax return on capital has to be positive. See Proposition 5 and the
discussion in section 3.4.
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to all households. The period-by-period government budget constraint is

Rtbt + gt + trt = τtrtkt + νtwtnt + bt+1, t ≥ 0 (2)

where Rt is the gross rate of return on one-period bonds held from t−1 to t. In general, the government

uses {τt, νt, trt}∞t=0 and one-period debt {bt+1}∞t=0 for the following purposes: (i) to pay for spending

on a public good at an exogenous rate {gt}∞t=0, (ii) to redistribute wealth among households, and (iii)

to pay back its initial debt b0.

To simplify algebra, we impose the no arbitrage condition by stipulating that the gross return on

bonds and capital are equal:

Rt = 1 + (1− τt)rt − δ,

where δ is the rate of depreciation. That said, we reformulate the constraints for τt in terms of bounds

on the gross after-tax rate of return on capital:

Rt := 1 + (1− τ̄)rt − δ ≤ Rt ≤ 1 + rt − δ =: Rt (3)

For convenience, we also define time 0 after-tax prices qt :=
∏t
s=1R

−1
s for all t ≥ 1 with q0 being

normalized to one. Moreover, let ait be the wealth of household i at time t, consisting of capital kit and

maturing government bonds bit. The average wealth level is then at =
∫
aitdi. The period-by-period

budget constraint of household i is

cit + ait+1 ≤ Rtait + (1− νt)wtnit + trt, t ≥ 0, i ∈ [0, 1], (4)

and we assume that households cannot run Ponzi schemes:

lim
T→∞

qTa
i
T+1 ≥ 0 i ∈ [0, 1].

Optimality requires that the limit cannot be positive, so the household budget constraints in present

discounted value form can be written as

∞∑
t=0

qtc
i
t ≤ R0a

i
0 +

∞∑
t=0

qt
(
trt + (1− νt)wtnit

)
i ∈ [0, 1]. (5)

Importantly, trt is lump-sum and it is independent of the household’s type i. For simplicity, let Str

denote the present discounted value of all transfers, Str :=
∑∞

t=0 qttrt. The standard representative-

agent optimal tax problem—the so called Ramsey problem—rules out lump-sum components from

tax policy, because they allow the government to always achieve the first best rendering the problem

uninteresting. In contrast, in our heterogeneous agent setting, as stressed by Werning (2007), lump-

sum transfers allow for redistributive effects of the tax system, so it is important to include them as

a possible policy tool.
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2.1 Competitive equilibria

When designing an optimal policy, we consider only those allocations and prices that constitute com-

petitive equilibria for given budget-feasible government policies.

Definition 1. A budget feasible policy is an expenditure plan {gt}∞t=0, a tax plan {τt, νt, trt}∞t=0, and

a debt issuance plan {bt}∞t=0 that satisfy (2) and (3) for all t ≥ 0, with given b0 and

lim
T→∞

qT bT+1 = 0.

Definition 2. A competitive equilibrium consists of a budget-feasible policy {τs, νs, trs, bs, gs}∞s=0, an

allocation
{
cs, ns, ks,

{
cis, n

i
s, a

i
s

}
i∈[0,1]

}∞
s=0

, and a price system {rs, ws}∞s=0 that satisfy

1. For ∀i ∈ [0, 1], the sequences
{(
cis, n

i
s

)}∞
s=0

maximize household utilities (1) subject to (5) and

given ai0. The sequence {ais}∞s=0 can be recovered from (4) satisfied with equality.

2. Factor prices equal their marginal products:

rt = Fk (kt, nt) , wt = Fn (kt, nt) t ≥ 0

3. Markets clear ∫
citdi = ct,

∫
nitdi = nt t ≥ 0

ct + gt + kt+1 = F (kt, nt) + (1− δ)kt t ≥ 0. (6)

Let C be the set of all competitive equilibria indexed by alternative budget-feasible government policies.

Without extra restrictions on the sequence {gs}∞s=0, however, it is possible that the aggregate feasibility

condition (6) cannot be satisfied for some period t, in which case C is empty. To avoid this, we require

that the sequence {gs}∞s=0 is not “too high”:

Assumption 1. The upper bound τ̄ , government expenditure plan {gt}∞t=0, and initial government debt

b0 are such that setting νt = 0 and τt = τ̄ , for all t ≥ 0 gives rise to an equilibrium with non-negative

transfers Str ≥ 0 through the government budget constraint. This implies

R0b0 +

∞∑
t=0

qtgt ≤
∞∑
t=0

τ̄ qtrtkt.

In other words, taxing only capital at the maximum rate forever generates enough revenue to fully

cover the exogenous expenditure plan. Assumption 1 guarantees that the set C is nonempty.

2.2 Household i’s utility in competitive equilibria

The form of the utility function allows us to express the present discounted value of each household for

any given competitive equilibrium as a function of the representative agent’s value function. Naturally,
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features of this function inform us about how household i values the different tax policies and implied

competitive equilibria. To derive this function, we start with household i’s first-order conditions:

qt = βt
uc
(
cit, 1− nit

)
uc
(
ci0, 1− ni0

) and (1− νt)wt =
u1−n

(
cit, 1− nit

)
uc
(
cit, 1− nit

) . (7)

Due to the aggregable utility function, the same necessary conditions hold for aggregate consumption,

ct, and aggregate labor, nt, implying that in any competitive equilibrium, household i’s marginal

utilities are proportional to the representative household’s marginal utilities. As a result,

cit = αict and 1− nit = αi (1− nt) t ≥ 0, (8)

where the nonnegativity restrictions on consumption and labor imply that the endogenous constant

αi must satisfy 0 < αi ≤ 1/(1− nt) for all t and for almost all i. Using the aggregate versions of (7),

we derive household i’s implementability condition (IC) from its budget constraint (5):

∞∑
t=0

βt
[
uc (ct, 1− nt) cit − u1−n (ct, 1− nt)nit

]
= uc (c0, 1− n0)

(
R0a

i
0 + Str

)
. (9)

We define the value of the average household’s after-tax initial wealth measured in units of utility:

A(c0, n0, τ0) := uc(c0, 1− n0) [1 + (1− τ0)Fk(k0, n0)− δ] a0. (10)

This variable turns out to summarize completely how each household’s equilibrium utility is affected

by the triple (c0, n0, τ0). To see this, derive the equilibrium value of αi by subtracting the average

household’s IC from (9) and using the equilibrium relationships in (8) to substitute out (cit − ct) and

(nit − nt). In an equilibrium indexed by the pair (V,A), the value of αi is

αi =

 1 + A(c0,n0,τ0)
V (1−σ)

(
ai0
a0
− 1
)

, if σ 6= 1

1 + A(c0,n0,τ0)
(1−β)−1

(
ai0
a0
− 1
)

, if σ = 1
(11)

where V :=
∑∞

t=0 β
tu (ct, 1− nt) is the present discounted utility of the agent with average initial

wealth a0. Upon substituting (8) into (1), the present discounted utility of household i is

V i
(
V,A; ∆ai0

)
:=

{ (
αi
)1−σ

V , if σ 6= 1
logαi

1−β + V , if σ = 1
(12)

where we define the term entering αi as

∆ai0 :=
ai0 − a0
a0

=
ai0
a0
− 1 (13)

measures the relative position (relative to the average) of household i in the initial wealth distribution.

Function V i represents household i’s equilibrium utility in a remarkably compact way. In particular,
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the V i-relevant features of any equilibrium can be summarized by two variables: the average house-

hold’s value V and the utility value of the average household’s after-tax wealth A. These variables

embody a rich set of possible tax policies, allocations, and prices.9 Given that households are indif-

ferent between equilibria that lead to the same (V,A), we will henceforth denote the elements of C by

simply using the induced pairs (V,A).

2.3 Subsets of C

We define two subsets of the set of competitive equilibria C that will prove to be useful. The first

subset C∗ ⊂ C includes those equilibria that are induced by “eventually time-invariant” policies:

C∗ := { (V,A) ∈ C : ∃tF ≥ 0, s.t. gt = g∗, νt = ν∗, τt = τ∗ ≤ τ̄ , ∀t ≥ tF } .

The second subset T ⊂ C includes those equilibria that feature maximal capital taxation forever:

T := { (V,A) ∈ C : τt = τ̄ , ∀t ≥ 0 } .

In addition, we will be interested in capital tax policies with the “bang-bang” property:

Definition 3. The capital tax sequence {τt}∞t=0 has the bang-bang property if τt < τ̄ implies τs = 0

for s > t. That is, there exists a time T, s.t. τt = τ̄ for t < T and τt = 0 for t > T.

Figure 1 illustrates these objects for a particular example economy.10 The green and orange areas

represent the set C∗ and the intersection of C∗ and T in the (V,A)-space, respectively. That is, the

orange set contains equilibria induced by policies with indefinite maximal capital taxes and “eventually

time-invariant” labor taxes. Certain policies can be readily identified in Figure 1: (i) equilibria induced

by eventually zero labor taxes (and no capital taxes) are denoted by the dashed blue line, (ii) those with

bang-bang capital tax policies (without labor taxes) for different T values are denoted by the dotted

blue line.11 In addition, the big colored circles represent two equilbria of particular importance: the

black dot,
(
V ,A

)
, shows the allocation induced by the policy using only lump-sum taxes, whereas the

red dot, (V ,A), represents the equilibrium induced by the policy in Assumption 1, i.e., (τt, νt) = (τ̄ , 0),

t ≥ 0. Since in our example government expenditures are positive, the equilibrium
(
V ,A

)
is supported

by lump-sum taxes, that is, the present discounted value of transfers Str is negative. The grey dots

represent other equilibria where this property holds even if distorting taxes are also used. Loosely

speaking, while capital taxes tend to decrease both V and A, labor taxes have an opposite effect on

the two equilibrium objects: they increase A and decrease V .

That the boundary of the set C consists of equilibria with well-defined tax policies holds true more

generally. To show these properties formally, we first define iso-A sets in the space of competitive

9It might be surprising that Str (transfer) does not appear in V i. This follows from the fact that Str is independent
of i, so its effect on household i can be captured by the average household’s value function and choices.

10 We set the preference parameters (β, σ, ξ) = (0.96, 5, 0.8). Suppose that b0 = 0 and the government expenditure
plan is time invariant, gt = g∗, t ≥ 0, with the values (τ̄ , g∗) = (0.25, 0.05) being chosen to make Assumption 1 hold.
The production function is Cobb-Douglas with captial share ρ = 1/3 and depreciation rate δ = 0.

11The definition of a “bang-bang” capital tax policy is silent about the value of τT. For simplicity, we set τT = 0 in
Figure 1 and confirm numerically that “bang-bang” policies with τT > 0 lie in the interior of the plotted set.
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1.5
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A

positive labor tax 
(zero capital tax)

bang-bang capital tax 
(zero labor tax)

maximal capital tax 
(positive labor tax)

Sets of competitive equlibria
*

*

(V, A)
(V, A)

Figure 1: Subsets of competitive equilibria in the (V,A)-space. Light green region represents equilibria
induced by eventually time-invariant policies, while the orange region shows those equilibria among
these that are induced by a policy with maximal capital taxes forever (for an arbitrary labor tax
sequence). Transparent green dots show equilibria induced by eventually time-invariant, random tax
paths {(τt, νt)}t≥0 for various (τ∗, ν∗) and tF -values. Grey dots denote equilibria with lump-sum taxes,
i.e. Str ≤ 0. The horizontal and vertical dashed gray lines represent the lowest attainable A and the
highest attainable V , respectively.

equilibria. An iso-A set of value Ã, denoted by C(Ã), consists of all (V,A) ∈ C with A = Ã.12 That

said, Lemma 1 shows that policies with maximal capital taxes forever tend to induce (V,A) pairs in

the “bottom left” corner of C (orange region). More precisely, the “western boundary” of C consists

of equilibria featured by τt = τ̄ forever irrespective of labor tax policy.

Lemma 1. If σ > 1 and ξ < 1,13 the equilibrium (V ,A), induced by the policy (τt, νt) = (τ̄ , 0) for

all t ≥ 0, is associated with the lowest attainable A value. Moreover, for all feasible A ≥ A such that

C(A) 6= ∅, the V -minimizing equilibrium over C(A) belongs to T .

Proof. See Appendix A.1.

In addition, by mimicking the argument of Bassetto and Benhabib (2006), Lemma 2 shows that the

“eastern boundary” of C must consist of equilibria that are induced by bang-bang capital tax policies.

Lemma 2. For all feasible A ≥ A such that C(A) 6= ∅, the V -maximizing equilibrium over C(A) is

induced by a tax policy with bang-bang capital taxes and eventually zero labor taxes, i.e., if τt < τ̄ then

τs = νs = 0 for s > t.

Proof. See Appendix A.2.

12Clearly, these sets can be represented by horizontal slices in Figure 1.
13The case ξ = 1 was treated in Bassetto and Benhabib (2006). See their Theorem 3.
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3 Preferences over tax policies

When faced with the choice, household i prefers to implement the equilibrium that maximizes V i.14

Remarkably, the only i-dependent term in the V i function is ∆ai0, so for any given relative wealth

position, household i’s attitude toward the alternative tax policies can be represented by indifference

curves in the (V,A)-space. The way in which these curves are positioned relative to the C-set in Figure

1 determines the relationship between the interests of household i and those of the average household.

In this section we show that in our economy, households’ interests are not necessarily aligned, in fact,

agents with different initial wealth levels prefer very different tax policies. For ease of reference, in

what follows, we call household i “wealth-poor” if ∆ai0 < 0 and “wealth-rich” if ∆ai0 ≥ 0.

Preferences over tax policies are shaped by a tension between two effects of taxation. First,

capital taxes distort prices, thereby altering all households’ optimal decisions. In a world without

utility-enhancing government purchases, this distortion has a negative effect on everyone’s welfare. In

fact, because our economy features Gorman aggregation and a common discount factor, this effect

is proportional, independent of the initial wealth levels. This does not mean, however, that every

household prefers the same tax policy. With the availability of transfers, wealth inequality among

households brings about a second role of taxation: redistribution. One can see this by combining the

government’s budget constraint with those of household i’s:

∞∑
t=0

q̄tc
i
t = R0(a

i
0 − b0) +

∞∑
t=0

q̄t
[
wtn

i
t − gt

]
−
∞∑
t=0

q̄tνtwt(n
i
t − nt)︸ ︷︷ ︸

redistribution through νt

+
∞∑
t=0

q̄tτtrt(at − ait)︸ ︷︷ ︸
redistribution through τt

where q̄t :=
∏t
s=1R

−1
s denotes before-tax time 0 prices. The redistributive effect of capital taxation

is captured by the last term on the right hand side: when τt > 0, wealth is being redistributed from

wealth-rich households with ait > at to the wealth-poor households with ait < at. Evidently, labor

taxation also has a redistributive effect, captured by the third term on the right hand side, because

households who work more pay more labor tax as well. Notice, however, that if leisure is a normal

good, it is the wealth-poor households who work relatively more, thus labor taxes induce redistribution

from the wealth-poor to the wealth-rich households.

Households determine their preferred tax policy by trading-off these two effects of capital taxa-

tion: (1) the inefficiency caused by the distorted inter-temporal margins and (2) the induced wealth

redistribution. There is consensus on the harmfulness of the former, but households with different

initial wealth levels naturally disagree on the latter. In Theorem 4 we provide a condition under which

the benefits from redistribution for household i are so large that the household’s preferred tax policy

features maximum capital taxation forever.

14To reiterate, we restrict the choice set of household i to competitive equilibria as in Definitions 1 and 2 above, con-
sistent with optimizing agents, competitive market clearing, and the intertemporal budget constraint of the government.
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3.1 Indifference curves

We want to maximize V i with respect to (V,A) over the “budget set” C. Similar to standard optimal

choice problems, this constitutes finding a point of tangency between the indifference curves of V i

and the boundary of the set C. Appendix B shows that V i is a (weakly) concave function of its two

arguments. Moreover, by using the implicit function theorem, the slope of the indifference curve of V i

in our (V,A)-space can be written as

−∂V
i

∂V
/
∂V i

∂A
.

Appendix B shows that the sign of the denominator hinges only on the relative wealth level:

sign

(
∂V i

∂A

)
= sign

(
∆ai0

)
∀(V,A) ∈ C. (14)

Intuitively, for a given level of V , a wealth-poor household wants to shrink the spread of the cross-

sectional distribution of utilities, thereby bringing its own equilibrium utility closer to V . Since the

initial wealth level is the only source of heterogeneity, the reduction of the spread ∆ai0 can be achieved

by making the utility value of the after-tax return on initial wealth lower. A similar argument applies

for the wealth-rich households, but with opposite signs.

As for the derivative with respect to V , we obtain the following formula for σ 6= 1:

∂V i

∂V
=
(
αi
)−σ

1 + σ
A(c0, n0, τ0)

V (1− σ)︸ ︷︷ ︸
=:D

∆ai0

 =
1 + σD∆ai0(
1 + D∆ai0

)σ . (15)

Evidently, the sign of this function depends on parameters and the competitive equilibrium in which

the partial derivative is being evaluated. Nonetheless, Lemma 3 discusses two cases in which the

sign is unambiguously positive: (i) household i is wealth-rich, or (ii) preferences are such that the

substitution effect dominates the income effect.

Lemma 3. The partial derivative ∂V i

∂V is positive, if σ ≤ 1 or ∆ai0 ≥ 0.

Proof. Since (1 − σ)V > 0, the term D is positive, so for ai0 ≥ a0 the partial derivative is always

positive regardless of the equilibrium allocation. Likewise, from αi = 1 + D∆ai0 > 0 it follows that as

long as σ < 1, we have ∂V i

∂V > 0. The log case, σ = 1, trivially follows from (12).

Tax policy preferred by the average household

Before turning to our main case, we briefly discuss the average household’s problem, which, due to

Gorman aggregation, can be viewed as a standard representative-agent optimal tax problem. The

existence of lump-sum taxes, however, renders this problem trivial, because the first best (from the

representative agent’s point of view) is always achievable. Nonetheless, even if lump-sum taxes were

not allowed, the well-known result by Chamley (1986) for a representative agent would hold in our

10



setting for the average household, that is, the capital tax sequence {τt}∞t=0 that maximizes the average

household’s welfare would have the bang-bang property. While the finiteness of T could be non-

trivial,15 in our setting the average household clearly prefers to set capital taxes to zero as soon as

possible, hence T = 0.

Tax policy preferred by wealth-rich households

Lemma 3 implies that for wealth-rich households, the slope of the indifference curves is unambiguously

negative and they prefer high V and high A values. As a result, their preferred tax policies lie on

the “northern boundary” of C, so from Lemma 2 it follows that they want capital tax policies with

the bang-bang property. In fact, since their preferred equilibrium (V ∗,A∗) must feature V ∗ ≤ V , the

corresponding after-tax return on capital must be A∗ ≥ A. As Figure 1 illustrates, such equilibria are

featured by Ti = 0.

Figure 2 shows the set C∗ along with indifference curves (thin grey curves) for households with

various initial wealth levels. For each panel, the grey arrows in the bottom right corner shows the

direction in which V i increases. The top right panel displays the case of a wealth-rich household with

the blue filled dot denoting its preferred equilibrium pair (V ∗,A∗). While we provide no formal proof,

Figure 1 and 2 clearly support the intuition that because labor taxes redistribute resources from poor

to rich households, wealth-rich households tend to prefer policies that use distorting labor taxes, at

least for some periods.

Tax policy preferred by wealth-poor households

Our main case of interest is when household i’s preferred tax policy features maximal capital taxation

forever, that is, when some household i prefers a competitive equilibrium (V,A) that belongs to T .

As we saw above, a necessary condition for this result is that household i is wealth-poor. In an

environment similar to ours, but with inelastic labor supply, Bassetto and Benhabib (2006) provided

a sufficient condition for indefinite maximal capital taxation, namely, that V i is decreasing in V

at the allocation preferred by household i. Theorem 4 shows that a slightly altered version of the

Bassetto-Benhabib-condition applies in our setting as well.

Theorem 4. If at the equilibrium induced by (τt, νt) = (τ̄ , 0) for all t ≥ 0 the partial derivative is

non-positive, ∂V i

∂V ≤ 0, then the capital tax sequence preferred by household i features Ti =∞.

Proof. From the property ∂V i

∂V ≤ 0 and Lemma 3, we can conclude that σ > 1 and ∆ai0 < 0. (14) in

section 3.1 then implies that the slope of the indifference curves of household i in the (V,A)-space is

non-positive (recall that V is negative when σ > 1). Therefore, the preferred equilibrium must be on

the “western boundary” of the set C. Then, if ξ < 1, Lemma 1 implies Ti = ∞. The case ξ = 1 is

covered by Theorem 3 in Bassetto and Benhabib (2006).

15Indeed, abstracting from lump-sum transfers or taxes, Straub and Werning (2018) show that if the initial government
debt b0 > 0 is sufficiently large and σ > 1, the representative household could find it optimal to set T =∞. They argue
that in this case no interior steady state exists; both capital and consumption must converge to zero asymptotically.
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Figure 2: Effect of initial wealth on the preferred tax policy. Thin gray curves represent indifference
(iso-V i) curves of household i with initial wealth position indicated in the top right corner of each
panels. The arrows in the bottom right corner of the four panels show the direction in which V i

increases. In each panel, the filled dot denotes the equilibrium preferred by the respective household.
Parameters are as described in footnote 10.

The two bottom panels of Figure 2 illustrate how the preferences of wealth-poor households are shaped

by their relative wealth position. The bottom left panel displays the case of a household that is not

significantly worse-off than the average household. The partial derivative is ∂V i/∂V > 0 and as the

filled blue dot suggests, the preferred tax policy features a finite stopping time for capital taxes. In

contrast, the bottom right panel shows the case of a household whose wealth is so much lower than

the average that the partial derivative ∂V i/∂V becomes negative over large part of the set C. As a

result, the household would want to implement a policy with maximal capital taxation forever.

3.2 Interior steady-state

Because of Gorman aggregation, we can view every (V,A) ∈ C as an equilibrium induced by a

representative-agent neoclassical growth model for a particular—not necessarily optimal—feasible gov-

ernment policy. As such, the analysis of the long-run properties of aggregate consumption, capital and

labor is standard, provided that the given equilibrium has a steady-state. Recent findings of Straub

and Werning (2018) render the question of “interiority” of such steady-states non-trivial. By revisiting

the setting of Judd (1985), they show that if positive long-run capital taxation is optimal and the cor-
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responding allocation converges, then consumption must converge to zero, i.e. the steady-state cannot

be interior. In our context, however, where everyone can save, we obtain the following proposition:

Proposition 5. Consider an equilibrium in the set T ∩ C∗ induced by an eventually time-invariant

government policy with maximal capital taxation forever. The steady-state consumption, c∗, capital,

k∗ and labor, n∗, are all positive as long as τ̄ < 1 and ν∗ < 1.

Proof. Let c∗, k∗, and n∗ denote the steady-state value of consumption, capital, and labor. Using the

linear homogeneity of F and the average household’s Euler equation in the steady-state, we obtain

the following condition for the net return on capital:

Fk

(
k∗

n∗
, 1

)
=
β−1 − 1 + δ

1− τ̄
(16)

Equation (16) determines the steady-state capital-labor ratio, which is positive as long as τ̄ < 1. Using

the capital-labor ratio we can then use the steady-state intratemporal first-order condition

c∗

1− n∗
1− ξ
ξ

= (1− ν∗)Fn
(
k∗

n∗
, 1

)
and the resource constraint

c∗ + g∗ + δk∗ = F (k∗, n∗)

to solve for c∗, k∗, and n∗ separately, which are nonzero as long as the long-run labor tax is ν∗ < 1.

In our economy, positive long-run capital taxation can be both optimal and lead to a steady-state

where consumption, capital, and labor are all nonzero while the capital tax remains at its upper

bound, τ̄ .16 The apparent difference of this result from those in Judd (1985) and Straub and Werning

(2018) is due to the fact that the latter papers analyze a setting in which some agents (“workers”)

cannot save, so redistribution is valuable to them only to the extent that it adds to their consumption

streams. The possibility of savings in our setting makes redistribution relatively more valuable, because

poor households can decide how to allocate the extra resources over time. In fact, they may value

redistribution so much more so as to prefer maximal capital taxes at a steady-state with positive

capital stock.

3.3 Inelastic labor supply

Interestingly, if labor supply is inelastic, Theorem 4 can be strengthened. In this case, the condition

is not only sufficient, but also necessary.

Theorem 6. Suppose that ξ = 1, that is, the period utility function is u(cit, 1 − nit) =
(cit)

1−σ

1−σ for all

i. The capital tax sequence preferred by household i features Ti =∞ if and only if at the equilibrium

induced by (τt, νt) = (τ̄ , 0) for all t ≥ 0 the partial derivative is non-positive, ∂V i

∂V ≤ 0.
16Importantly, we are not looking at steady states induced by policies preferred by the average household. Indeed,

because lump-sum taxes are available, equilibria in T cannot be optimal for the average household.
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Proof. For the if part see case 2 and 3 of Theorem 3 in Bassetto and Benhabib (2006).17 For the

other direction, note that if labor supply is inelastic, taxing labor is non-distortionary. Moreover, it

is straightforward to see that labor taxes and government transfers cancel each other in the average

household’s budget constraint. Because the average household’s decisions and disposable income are

both independent of νt, the values V and A do not depend on the particular {νt}∞t=0 sequence either.

As a result, all elements of T induce (V ,A) with the lowest attainable V and A. Appendix B shows

that the function V i is concave, implying that in order for V i to be maximized at (V ,A), we need

downward sloping indifference curves that increase in the direction of lower V and A. As we saw in

section 3.1, this requires ∂V i

∂V ≤ 0 at (V ,A).
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Sets of competitive equlibria
*
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Figure 3: Subsets of competitive equilibria in the (V,A)-space with inelastic labor supply. Light green
region represents equilibria induced by eventually time-invariant policies. Transparent green dots
show equilibria induced by (τt, νt) = (τ∗, 0), t ≥ 0 for various τ∗ ≤ τ̄ values. The horizontal and
vertical dashed gray lines represent the lowest attainable A and the highest attainable V , respectively.
Parameters are as described in footnote 10, except for ξ = 1.

Figure 3 illustrates how the case with inelastic labor supply differs from our general setup. The key

difference is that labor taxes cease to have any effect on the equilibrium objects V and A, so the set T
becomes a singleton consisting only of (V ,A). In addition, the set C∗ is now bounded with its upper

boundary being made up of equilibria such that the capital tax rate is zero up to a certain period tI ,

then it is set at its maximum value forever. The dash-dotted blue line represents such equilibria for

various tI values with tI increasing as we move from (V ,A) to (V ,A). Just like in Figure 1 the lower

boundary of the set is determined by bang-bang capital tax policies. The dotted blue line represents

such equilibria for various T values with T increasing as we move from (V ,A) to (V ,A). The particular

shape of C∗ implies that the wealth-rich households’ preferred equilibrium coincides with that of the

17There are two offsetting inconsequential typos in Bassetto and Benhabib (2006) that can be corrected as follows: i)
the second inequality on the top of page 220 should be reversed, and ii) in the 7th line of page 220 the whole expression
for the change in the utility index preceeding the inequality sign on the right should be multiplied by a negative sign.
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average household: because labor taxes have no redistributive effect, wealth-rich households have no

reason to tolerate distortionary taxes.

3.4 Discussion

At first glance, our finding that wealth-poor households can prefer equilibria with positive steady-state

capital tax rates seems to be at odds with some results in Judd (1985). Notice, however, that our

economy differs from the model in Judd (1985) in which: (i) some households are excluded from the

capital market, (ii) government is not allowed to issue debt.

Point (i) turns out to be the critical difference. Without the option to save, households have no

choice but to consume their wages and transfers every period. Because both sources of their disposable

income depend positively on the aggregate capital stock, the non-saving households’ interests are

naturally aligned with those of the wealth-rich “capitalists”. The situation is different when everyone

can save. In this case, wealth-poor households’ can save their transfers with the aim of bootstrapping

themselves out of poverty. A necessary condition for this channel to be operative is that savings respond

negatively to permanent increases in future interest rates, that is, the income effect dominates the

substitution effect because the intertemporal elasticity of substitution is lower than one, i.e., σ > 1.18

In this case, households react to lower after-tax interest rates by choosing a steeper consumption

path that implies faster capital accumulation and relatively more redistribution as the faster capital

accumulation results in a larger tax base.19

As for point (ii), the lack of government debt in Judd (1985) implies that tax revenues cannot

be saved, so the government is not tempted to impose a huge capital levy at the beginning of time.

As a result, in Judd’s model the upper bound on capital taxes does not play any critical role. When

heterogeneity among households arise from differential capital holdings, however, the upper bound on

capital taxes becomes essential to keep the problem nontrivial. For instance, if τ0 were unrestricted,

wealth-poor households would all prefer to confiscate the aggregate initial capital stock and redistribute

it equally, thereby eliminating wealth inequality completely at the initial period.

Unlike us, Straub and Werning (2018) revisit the model in Judd (1985), in which some households

are prohibited from saving, but similar to us, they find that if σ > 1, the optimal long-run capital tax

can be positive. In this case, however, the non-saving household’s consumption must converge to zero,

so the steady-state cannot be interior. In contrast, Proposition 5 shows that if no one is excluded from

the financial markets, taxing capital at the maximum rate forever does not rule out the possibility of

an interior steady-state.

As we saw above, however, this interior steady-state result requires that τ̄ < 1. This follows

from the fact that with positive discounting, a steady-state cannot be compatible with a nonpositive

after-tax interest rate, (1 − τ̄)r (see (16)). While in principle our main finding does not depend on

the exact value of τ̄ < 1, low τ̄ values tend to make our condition in Theorem 4 easier to be satisfied.

Intuitively, the higher the upper bound the easier it is for the planner to concentrate all redistribution

18More precisely, the intertemporal elasticity of substitution associated with (1) is IES = [1 − ξ(1 − σ)]−1. For any
ξ ∈ (0, 1], IES is lower (larger) than one if and only if σ > 1 (σ < 1).

19Faster capital accumulation also benefits the wealth-poor households by increasing the marginal product of labor.
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at the early periods. The desirability of capital taxation is independent of τ̄ , but with a more relaxed

upper bound, the necessary amount of redistribution might be achieved with a lower Ti.

Because preferences over capital tax policies are directly linked to the household’s initial wealth

level, our model predicts that the implemented capital tax policy hinges on the wealth inequality in

the economy. A simple measure of wealth inequality, or more precisely, the skewness of the wealth

distribution, is the difference between the median and the average households’ wealth levels. This

difference is captured by (13) being applied to the median household. Denote this with ∆am0 .20 The

partial derivative in our sufficient condition for Tm =∞ is a function of ∆am0 : the higher the level of

wealth inequality, the more likely it is that positive long-run capital taxation is optimal. Using recent

Census Bureau data in section 4.2.2, we will show that U.S. wealth inequality seems to be high enough

so that the sufficient condition for Tm =∞ is satisfied for a wide range of parameter values.

4 Quantitative examples

In general, the condition in Theorem 4 is hard to check, because it depends on the value function

and optimal policies of the average household. To help us understand its content better, in Section

4.1 we provide a simple parametric example for which closed form solution exists, and therefore the

condition can be expressed in terms of primitives. Moreover, to investigate the condition’s empirical

plausibility, Section 4.2 presents an alternative approach exploiting the fact that in equilibrium the

value function of the representative agent in a neoclassical economy can be represented by a linear

intertemporal budget constraint using time varying return and wage sequences consistent with the

existence of interior steady-state equilibria. In a simplified version of our Section 2 economy, it is

possible to express the value function V in terms of initial values and primitive parameters. That

said, the condition in Theorem 4 can be evaluated using recent estimates of US wealth data. Finally,

in Section 4.3 we solve the equilibrium objects numerically with standard functional forms and provide

parameter ranges for which the condition is satisfied.

4.1 Special cases

CRRA utility with CES production

To obtain closed form solutions for the equilibrium objects (V,A) we follow Benhabib and Rustichini

(1994) and assume that (i) the production function is of the CES form with parameter η, (ii) labor

supply is inelastic (ξ = 1), and (iii) the households’ intertemporal elasticity of substitution (IES) is

reciprocal to the CES parameter of production. These assumptions give rise to saving policies that

are linear in current income, hence, the average household’s value function V can be solved in closed

form. In more detail, let the production function be

F (kt, nt) = z
(
ρk1−ηt + (1− ρ)n1−ηt

) 1
1−η

20While the tail of the U.S. wealth distribution can be approximated by a Pareto distribution with tail index 1.5, the
full distribution is certainly not Pareto. Nevertheless, if we were to use a full Pareto distribution with tail index ϕ = 1.5,
we would get ∆am0 = 21/ϕ(ϕ− 1)/ϕ− 1 ≈ −0.47. For a very rough calibration to the U.S. economy, see section 4.2.2.
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with z > 0, η > 0, and ρ ∈ [0, 1], and suppose that η = σ > 1. To simplify algebra, we assume that

(gt, bt) = (0, 0) for all t ≥ 0, implying a0 = k0 and a balanced government budget every period:

trt = τtrtkt + νtwt

In Appendix C.1 we show that with full depreciation, δ = 1,21 the tax policy with constant rates

(τt, νt) = (τ̄ , 0) ∀t ≥ 0, induces an equilibrium in which the optimal consumption is ct = λF (kt, nt)

with the marginal propensity to consume being:

λ = 1−
[
β(1− τ̄)z1−σρ

] 1
σ .

Plugging in the implied functions V , c0, and n0 into (12), taking the partial derivate with respect to

V , and rearranging terms yield the following sufficient condition for Tm =∞:

1

σ
≤ D (−∆am0 ) =

(
1− τ̄

λ

) ρk1−σ0

ρk1−σ0 + 1−ρ
1−β

(
a0 − am0
a0

)

where m denotes the household with median income, am0 ≤ a0. Intuitively, in order for this condition

to be satisfied, the following objects should be relatively large: (1) wealth inequality measured by

∆am0 < 0, (2) capital share in production technology, ρ ∈ [0, 1], and (3) marginal propensity to

consumption, λ. With these objects at hand, computing the evolution of the growth rate of average

capital is straightforward:

kt+1

kt
= (1− λ)z

(
ρ+ (1− ρ)

(
1

kt

)1−σ
) 1

1−σ

One can obtain the corresponding steady-state value k∗ by setting the growth rate equal to one. Figure

4 represents a particular example such that the (i) the sufficient condition for Tm = ∞ is satisfied

and (ii) the steady-state is interior, that is 0 < k∗ < ∞, 0 < c∗ < ∞. In addition, dashed lines

(computed numerically) in Figure 4 illustrate that the steady state values change continuously with

small perturbations of the parameters. In particular, even if we deviate from the case σ = η for which

closed form solution exists, the steady-state is still interior.

Linear production – sustained growth with time consistency

Another example of interest is when the production function is linear implying an endogenously grow-

ing economy. This involves setting ξ = 1 and ρ = 1, i.e., the production function is yt := F (kt, nt) =

zkt. Households do not work, nt = 0, and the optimal consumption becomes

ct =
(

1−
[
β(1− τ̄)z1−σ

] 1
σ

)
yt.

21A depreciation scheme can easily be introduced into this formulation as in Benhabib and Rustichini (1994) if current
and past investments, depreciated over their lifetime according to a general depreciation profile, are aggregated within a
CES production function.
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Figure 4: Equilibrium paths of capital and consumption induced by the policy (τt, νt) = (τ̄ , 0) for
all t ≥ 0. Black solid lines show the knife-edge case σ = η for which closed form solution exists.
Dashed lines illustrate how the equilibrium paths change when σ 6= η. As we move η from 2 to 3.05,
the corresponding values of the partial derivative, ∂V i/∂V , are: −6.87, −1.57, −0.11, and −0.04.
Parameter values are: β = .96, σ = 3, ξ = 1, z = 2.5, ρ = 0.95, δ = 1, τ̄ = 0.1, ∆am0 = −1, k0 = 1.

The sufficient condition in Theorem 4 simplifies to

1

σ
≤
(

1− τ̄

λ

)(a0 − am0
a0

)
whereas the constant growth rate of the economy is

kt+1

kt
=
yt+1

yt
=
ct+1

ct
= (1− λ)z = (βz)

1
σ (1− τ̄)

1
σ .

Clearly, there is nothing in this specification that would prevent kt+1

kt
> 1. For given values of (β, τ̄),

different z values can lead to either perpetual growth or perpetual contraction. This example illustrates

that even if there is no interior steady-state, this does not imply that aggregate capital must converge

to zero. Indeed, taxing capital at its maximum rate is consistent with sustained growth.

In this paper we follow the standard approach to studying optimal taxation by assuming full

commitment. With linear production function, however, this is not necessary. With capital taxes being

fixed at their upper bound, both the interest rate and the wealth shares, and thus our key sufficient

condition dV i/dV < 0, are invariant through time. As a result, the solution is time consistent. No

commitment is required, the wealth-poor household chooses to stick with its initial plan.

4.2 Alternative characterization

In the examples of Section 4.1 we imposed strict parametric restrictions and focused on simple special

cases in order to derive a condition—expressed in terms of primitives—under which Ti = ∞. In this

subsection we follow an alternative strategy. Using a simplified version of our Section 2 economy, we

assume a general constant return to scale neoclassical production function with the existence of an
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equilibrium characterized by returns {rs}∞s=0 and wages {ws}∞s=0, such that the function V is well-

behaved. By manipulation the average household’s budget constraint, we derive a formula for V and

express our condition in terms of {rs}∞s=0 and {ws}∞s=0. To obtain a slight generalization of our previous

findings, this subsection uses a hyperbolic absolute risk aversion (HARA) utility specification:22

u
(
cit
)

=

(
σ

1− σ

)[
ψ

σ
cit + ū

]1−σ
(17)

4.2.1 Simplified setting

There are N households, each owning a share ωit of the period-t aggregate capital stock, at, such that∑N
i=1 ωi = 1 and ait = ωitat, for t ≥ 0. Suppose that labor is inelastically supplied (ξ = 1) and all

households receive ‘labor income’ {et}t≥0 irrespective of their wealth level. To guarantee finite budget

as t→∞, we restrict the growth rate of labor income as

χt := et +

∞∑
j=t+1

ej∏j
s=t+1Rs

<∞.

For simplicity, we assume that νt = 0 and gt = 0, but given that labor supply is inelastic and lump-

sum taxes are allowed, this is without much loss of generality. More importantly, we assume balanced

government budget every period, that is, bt = 0, t ≥ 0. As a result the only motive for using distorting

capital taxes is wealth redistribution yielding the transfer: trt = τtrtat.

With these simplifications, household i’s period budget constraint becomes

ait+1 = Rta
i
t + et + trt − cit =: Rta

i
t − (cit − dt) (18)

where dt denotes the non-capital income agent i receives at time t. Iterating this constraint forward

and combining it with the Euler equation,
(
ψ
σ c

i
t+1 + ū

)
=
(
ψ
σ c

i
t + ū

)
(βRt+1)

1
σ , and the transversality

condition, we can solve for

cit = λt

Rtait + dt +
∞∑

j=t+1

dj∏j
s=t+1Rs

− σ

ψ
ūζt

 (19)

where

ζt :=
∞∑

j=t+1

j∏
s=t+1

(βRs)
1
σ − 1

Rs
and λt :=

1 +

∞∑
j=t+1

j∏
s=t+1

(
βR1−σ

s

) 1
σ

−1 .
The following assumption assures that there are λl, λr ∈ R, such that 0 < λl ≤ λt ≤ λh < 1 for all

t ≥ 0. Note that the assumption places no further restrictions on the tax rate in the initial period.

Assumption 2. β < Rσ−1t for all t ≥ 1. (Sufficient but not necessary for λt > 0)

22The specification used throughout the paper is a special subclass associated with ū = 0 and ψ = σ.
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Using the Euler equation and (19), the value function of household i can be written as

V i =
σ

1− σ

[ ∞∑
t=0

βt
(
ψ

σ
cit + ū

)1−σ
]

=
σ

1− σ

(
ψ

σ
ci0 + ū

)1−σ
λ−10 (20)

We then postulate the law of motion of aggregate capital as

at+1 = εt+1at + γt+1 (21)

and using this transition rule, we derive an expression for dt and plug it into (19) to obtain

cit = λt

Rtωit
rt

+ τt
1

N
+

1

N

∞∑
j=t+1

τj

j∏
s=t+1

εs
Rs

 rtat + λt
ft
N

+ λtζt.

Appendix C.2 contains formulas for the equilibrium processes {εt}t≥0, {γt}t≥0, and {ft}t≥0, but they

will not be needed for our purposes.

4.2.2 Condition for Tm =∞

Let a0 and am0 denote the average and median initial wealth levels, respectively. Using the above

formulas, we can write the derivative of the median household’s value function with respect to V as

∂V m

∂V
= 1 + σ

uc(0)R0

(1− σ)V
(am0 − a0) = 1 + ψ

R0(
ψ
σ c0 + ū

)
λ−10

(am0 − a0). (22)

In the isoelastic case, ū = 0 and ψ = σ, this becomes

∂V m

∂V
= 1− σ R0(a0 − am0 )

R0a0 +N−1
(
τ0 +

∑∞
j=1 τj

∏j
s=1

εs
Rs

)
r0a0 +N−1f0

,

where the denominator is the lifetime wealth of the household with average initial wealth level. It

is the sum of the value of the after-tax return on average capital, the discounted transfers due to

growth factor of capital, the discounted present value of labor income (via the term N−1f0), and the

discounted value transfers accruing through the additive growth in capital.

To get a rough idea about what this partial derivative would be in the data, we use information

from Table 1 in Wolff (2017) for the year 2016 to obtain:

∂V i

∂V
= 1− σ

(
[1 + r(1− τ̄)] ($667, 600− $78, 100)

[1 + r(1− τ̄)] $667, 600 + $1, 662, 000

)
where $1, 662, 000 in the denominator is lifetime individual mean earnings plus transfers (mean income

of $83, 100 capitalized at 5%). The mean and median physical wealth levels are given by $667, 600

and $78, 100, respectively. These values allow us to compute σmin: the minimum σ that makes the
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partial derivative equal to 0. Using the above expression with r = 0.06 and τ̄ = 0.323 we obtain

σmin ≈ 3.9. Although the exact number depends on the interest rate and the upper bound on capital

taxes, σmin changes only slightly due to the high observed inequality in the data.24 As a result, as long

as σ ≥ σmin, the sufficient condition in Theorem 4—applied to the median household—is satisfied.25

While this calibration assumes isoelastic utility and we derive a bound on σ, (22) shows that the

sufficient condition for maximal capital taxation forever does not require constant IES.

4.3 Numerical example

To get a sense of how our sufficient condition for Ti =∞ depends on key model parameters, we turn

to numerical methods and compute the equilibrium pair (V ,A) for a range of parameter values that

is deemed plausible in the literature. In particular, we specify F (kt, nt) to be Cobb-Douglas with

capital share parameter ρ and use our isoelastic utility specification (1) parametrized by (σ, ξ). We

then combine the computed equilibrium pairs with wealth inequality measured by Wolff (2017):

∆am0 =
$78, 100− $667, 600

$667, 600
≈ −0.88

to obtain estimates for the partial derivative ∂V i/∂V .

As default parameterization, we use ξ = 0.357 to make the representative household work one-third

of its time and ρ = 1/3 to get the standard capital income share. In addition, we set σ = 4 implying

IES= 0.5. Regarding the other parameters, we use β = 0.96, τ̄ = 0.25, and δ = 0.02. Table 1 shows

how the value of ∂V i/∂V changes as we deviate from this default parametrization by varying σ (first

column), ξ (second column), or ρ (third column). Recall that the condition in Theorem 4 is satisfied

when the the partial derivative is nonpositive.

(σ, ξ, ρ) ∂V i/∂V (σ, ξ, ρ) ∂V i/∂V (σ, ξ, ρ) ∂V i/∂V

(3, 0.4, 0.3) 0.471 (4, 0.2, 0.3) 0.714 (4, 0.4, 0.2) -0.211
(4, 0.4, 0.3) -0.045 (4, 0.4, 0.3) -0.045 (4, 0.4, 0.3) -0.045
(5, 0.4, 0.3) -0.613 (4, 0.7, 0.3) -1.904 (4, 0.4, 0.7) 0.736

Table 1: Sensitivity of the sufficient condition with respect to some key parameters. First column varies
σ, second column varies ξ, third column varies ρ. Second row shows the default parametrization.

5 Concluding Remarks

We showed that in our heterogeneous agent economy preferred capital tax policies can be ranked

according to the households’ initial wealth level. Why does this matter? At the very least, depending

23Recall that τ̄ is the tax on capital income. The corresponding value if the tax rate applies to both capital and its
income would be around 2%.

24In fact σmin is an overestimate, because mean earnings is lower than mean income.
25These computations assume that the median agent is decisive. If the decisive agent were poorer than the median,

the required minimum σ would be lower.
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on the social welfare function, we can obtain quite different optimal capital tax policies. In general, the

more weight the planner assigns to wealth-poor households, the longer the capital tax should remain

at its maximum level, and under the condition of Theorem 4, it remains at its maximum forever.

Our results on interior steady-states with maximal capital taxes stem from redistributive consider-

ations arising from heterogeneous capital holdings, and therefore differ from the representative agent

model considered in Chamley (1986), in which the key motive for taxation is government-spending.

In addition, we use Gorman aggregagable preferences where all agents, irrespective of their initial

wealth, are allowed to save, so we also differ from the model of Judd (1985), in which the workers

are not allowed to save. Finally, our model also differs from Werning (2007), who studies a similar

economy except that households differ in their labor productivity (but not in their initial wealth) and

finds that the optimal capital tax is always zero, while labor taxation is used to reduce inequality by

channeling wealth from the more productive to the less productive households. In contrast, in our

setting with identical labor productivities, taxing labor increases wealth inequality because leisure is

a normal good.
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Appendices

A Proofs

A.1 Proof of Lemma 1

Proof. We prove the lemma in two steps:

Part I: The equilibrium associated with the lowest A value must be induced by (τt, νt) = (τ̄ , 0) for all

t ≥ 0. The proof is by contradiction. Consider an equilibrium (V ∗,A∗) induced by tax policies such

that for some N ≥ 0 either τN < τ̄ or νN > 0 (or both). We show that this equilibrium cannot have

the lowest A value by constructing a feasible perturbation (V ∗∗,A∗∗) with A∗∗ < A∗.

Let N be the first period in which either νN > 0 or τN < τ̄ (or both) and let M be the first period

after N with τM+1 > 0. Using the intratemporal FOC in (7), the Euler equation between period N−1

and N can be written as

uc (cN−1, 1− nN−1) =
β[1 + (1− τN )Fk(kN , nN )− δ]

(1− νN )Fn(kN , nN )︸ ︷︷ ︸
↘ in k ↗ in n

u1−n(cN , 1− nN ) (23)

where the arrows below the underbrace indicate that for a given pair (τN , νN ), the first term on the

right hand side is decreasing in kN and increasing in nN . Moreover, using the intratemporal FOC

ct =

(
ξ

1− ξ

)
(1− νt)Fn(kt, nt)(1− nt)

accompanied with the fact that if σ > 1 and ξ < 1 then uc(1−n) < 0 implies that for given kt value,

both marginal utilities uc and u1−n are increasing in nt.

Note that N > 0, because otherwise we can easily decrease A by setting (τ0, ν0) = (τ̄ , 0). Now

consider the following perturbation to the candidate equilibrium: in period N = 0, decrease uc(0)

by decreasing n0 (and increasing c0) so that it leads to lesser capital accumulation, i.e., dkt < 0, for

t ≤ N . This is possible, because (τt, νt) = (τ̄ , 0) for all t < N and the reduced kt necessarily reduces

the first term on the right hand side of (23), so in order to keep the Euler equation satisfied u1−n(t)

must decrease. The source of this perturbation is the increase in τN or the decreasing in νN (or both),

which is feasible by assumption. To undo the effect on capital accumulation, we increase uc in periods

N, . . . ,M , by decreasing τM > 0. The household reacts to this change in tax policy by decreasing

capital accumulation before N leading to a first-order decrease in A∗ which is a contradiction.

Part II: Within the set of equilibria with a particular A ≥ A, the one that minimizes the average

household’s value features maximum capital taxation forever. The proof is by contradiction. Consider

an equilibrium (V ∗,A∗) induced by a tax policy with τN < τ̄ for some N > 0. We show that this

equilibrium cannot minimize V over C(A∗) by constructing a feasible perturbation (V ∗∗,A∗∗) such that

A∗∗ = A∗ and V ∗∗ < V ∗.

Let N be the first period in which τN < τ̄ . Then reduce uc(N − 1) proportionately by a factor
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dΨ and increase uc(N), . . . , uc(M) by a corresponding (constant) factor dΘ so that feasibility remains

satisfied, where M is the first period after N such that τM > 0. This perturbation entails raising τN

and reducing τM . Using the functional form assumptions, the required adjustments are

dΨ =
uccdcN−1 + uc(1−n)d(1− nN−1)

uc
= − [1− ξ(1− σ)]

dcN−1
cN−1

+ (1− ξ)(1− σ)
d(1− nN−1)

1− nN−1

dΘ = − [1− ξ(1− σ)]
dct
ct

+ (1− ξ)(1− σ)
d(1− nt)

1− nt
N ≤ t ≤M.

Because the perturbed allocation must be an equilibrium, the intratemporal FOC requires

dct
ct

=
Fnk
Fn

dkt +

[
1− Fnn(1− nt)

Fn

](
d(1− nt)

1− nt

)
−
(

dνt
1− νt

)
∀t ≥ 0 (24)

with dkN−1 = 0. As a result, dΨ < 0 implies dcN−1 > 0 and d(1 − nN−1) > 0, hence dkN < 0.

Moreover, we choose dΘ so that the perturbation leads to dkM+1 = 0. To this end, we pick dct and

d(1− nt) such that for all N ≤ t ≤M

(i) Fn(t)d(1− nt) + dct < 0 [positive capital accumulation]

(ii) dct < 0, d(1− nt) > 0 [lower labor supply due to reduced wages]

The latter is feasible due to dkt < 0, or alternatively, we can increase labor taxes (see (24)) to ensure

that both properties hold. In more detail, the implied change in capital is

dkN = dF (N − 1) + (1− δ)dkN−1 − dcN−1 = − [Fn(N − 1)d(1− nN−1) + dcN−1]

dkt+1 = −
t∑

j=N−1

 t∏
s=j+1

[1 + Fk(s)− δ]

 [Fn(j)d(1− nj) + dcj ] N ≤ t ≤M

Therefore, dkM+1 = 0 requires

0 = [Fn(N − 1)d(1− nN−1) + dcN−1] +
M∑
j=N

(
j∏

s=N

[1 + Fk(s)− δ]−1
)

[Fn(j)d(1− nj) + dcj ] .

Using the Euler equation between period N − 1 and N :

1

1 + Fk(N)− δ
≤ 1

1 + (1− τN )Fk(N)− δ
=

βuc(N)

uc(N − 1)

along with (i), we obtain

0 ≥ [Fn(N − 1)d(1− nN−1) + dcN−1] +

M∑
j=N

(
βjuc(j)

βN−1uc(N − 1)

)
[Fn(j)d(1− nj) + dcj ] (25)

with the right hand side being strictly negative unless τN = 0.
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The effect of the perturbation on the average household’s value is:

dV =

M∑
j=N−1

βj [uc(j)dcj + u1−n(j)d(1− nj)] =

M∑
j=N−1

βjuc(j) [dcj + (1− νj)Fn(j)d(1− nj)]

=
M∑

j=N−1
βjuc(j) [dcj + Fn(j)d(1− nj)]︸ ︷︷ ︸

≤0

−
M∑

j=N−1
βj
(

νj
1− νj

)
u1−n(j)d(1− nj)︸ ︷︷ ︸

≥0

where for the second equality we use the intratemporal FOC. The first term in the last line is non-

positive due to (25), while the second term is non-negative because d(1−nt) > 0 for all N−1 ≤ t ≤M
by construction and it is strictly positive unless νt = 0 for N − 1 ≤ t ≤ M . As a result, the only

case when dV is not strictly negative is when τN = 0 and νt = 0 for N − 1 ≤ t ≤ M , i.e. when the

unperturbed allocation maximizes
∑M

t=N−1 β
tu(ct) subject to the resource constraint and the initial

and terminal values of capital, kN−1 and kM+1. In this case, by strict concavity of utility, the perturbed

allocation has a negative second-order effect on V ∗, hence V ∗∗ < V ∗.

By construction, the proposed perturbation keeps the intratemporal FOC and the resource con-

straint satisfied in all periods. The Euler equation is also satisfied, since the perturbation changes

marginal utilities, in a way that leaves the marginal rate of substitution (MRS) between period j and

j + 1 unaffected when N ≤ j ≤ M . The change in the MRS between N − 1 and N is achieved by

raising τN , while the change between M and M+1 is achieved by reducting τM . Then, from Bellman’s

optimality principle it follows that with k0, kN−1, and kM+1 unchanged, the segment between 0 and

N and the segment after M (with fixed tax policies) remain unperturbed. The only case when this

does not imply A∗∗ = A∗ is when N = 1. Nonetheless, in this case we can increase ν0 to ensure dA = 0:

dν0
1− ν0

=

[
1− Fnn(1− n0)

Fn
+

(1− ξ)(σ − 1)

[1− ξ(1− σ)]
+

(1− τ0)(1− n0)Fkn(0)

[1 + (1− τ0)Fk(0)− δ] [1− ξ(1− σ)]

]
︸ ︷︷ ︸

>0

(
d(1− n0)

1− n0

)

so that the conclusion dV < 0 does not change. This is because the labor taxes that the average agent

pays are exactly and fully returned as transfers, so the distortion induced by higher ν0 further reduces

V ∗. As a result, we have A∗∗ = A∗ and V ∗∗ < V ∗ which is a contradiction.

A.2 Proof of Lemma 2

Proof. Consider first the equilibrium sequences of consumption, labor, and capital that maximize V

and determine (V ,A). The solution must solve the first order conditions and resource constraint

uc(ct, 1− nt) = βuc(ct+1, 1− nt+1)[1 + Fk(kt+1, nt+1)− δ] (26)

u1−n(ct, 1− nt) = uc(ct, 1− nt)Fn(kt, nt) (27)

F (kt, nt) = ct + gt + kt+1 − (1− δ)kt (28)
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and hence involves setting (τt, νt) = (0, 0) for all t ≥ 0. Absent concern for redistribution, the average

household has no incentive to distort the economy since lump-sum taxes are available.

For given (feasible) A∗, let {c∗t , n∗t , k∗t }t≥0 be a sequence such that (i) A(c∗0, n
∗
0, τ0) = A∗ and (ii) it

maximizes V over C(A∗). An equivalent statement of the lemma is

if uc(c
∗
t , 1− n∗t ) > βRt+1uc(c

∗
t+1, 1− n∗t+1) then

uc(c
∗
s, 1− n∗s) = βRs+1uc(c

∗
s+1, 1− n∗s+1), and

u1−n(c∗s, 1− n∗s) = Fn(k∗s , n
∗
s)uc(c

∗
s, 1− n∗s) ∀s > t.

Suppose this were not true. Then the sequence {c∗s, n∗s}∞s=t+1 does not satisfy the necessary first-order

conditions of maximizing
∑∞

s=t+1 β
su(cs, 1−ns) subject to k∗t+1. Because the proposed sequence makes

the upper bound constraint for τt+1 slack, this implies the existence of an alternative {c∗∗s , n∗∗s }∞s=t+1,

such that
(
{c∗s, n∗s}ts=0, {c∗∗s , n∗∗s }∞s=t+1

)
is a competitive equilibrium (V ∗∗,A∗∗), but such that, for a

sufficiently small ε > 0,

∞∑
s=t+1

βsu(c∗∗s , 1− n∗∗s ) =
∞∑

s=t+1

βsu(c∗s, 1− n∗s) + ε

This implies that the new equilibrium has A∗∗ = A∗, but V ∗∗ > V ∗ which is a contradiction.

B Properties of V i

Clearly, if σ 6= 1 and ai0 6= a0, the function V i is smooth. The first derivatives are:

∂V i

∂V
= (1− σ)

(
αi
)−σ

(−∆ai0D) +
(
αi
)1−σ

=

=
(
αi
)−σ [−(1− σ)∆ai0D + αi

]
=
(
αi
)−σ [

1 + σD∆ai0
]

and

∂V i

∂A
= (1− σ)

(
αi
)−σ ∆ai0

(1− σ)V
V =

(
αi
)−σ

∆ai0 ⇒ sign

(
∂V i

∂A

)
= sign

(
∆ai0

)
.

The second derivatives are

∂2V i

∂V 2
= (−σ)

(
αi
)−σ−1(−D∆ai0

V

)
(1 + σD∆ai0) + σ

(
αi
)−σ (−D∆ai0

V

)
=

=
(
αi
)−σ−1

σ
[
−(1 + σD∆ai0) + αi

](−D∆ai0
V

)
=

= −
(
αi
)−σ−1

σ(1− σ)2
D2
(
∆ai0

)2
(1− σ)V

< 0,
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and

∂2V i

∂A2
= −

(
αi
)−σ−1(σ (∆ai0)2

(1− σ)V

)
< 0,

and

∂2V i

∂V ∂A
= (−σ)

(
αi
)−σ−1( ∆ai0

(1− σ)V

)
(1 + σD∆ai0) + σ

(
αi
)−σ ( ∆ai0

(1− σ)V

)
=

=
(
αi
)−σ−1

σ
[
−(1 + σD∆ai0) + αi

]( ∆ai0
(1− σ)V

)
=

=
(
αi
)−σ−1(σ (∆ai0)2

(1− σ)V

)
(1− σ)D ⇒ sign

(
∂2V i

∂V ∂A

)
= sign (1− σ) .

To show that the Hessian of V i is negative semi-definite, we compute

(
∂2V i

∂V 2

)(
∂2V i

∂A2

)
−
(
∂2V i

∂V ∂A

)2

=
[(
αi
)−σ−1]2(σ (∆ai0)2

(1− σ)V

)2 [
(1− σ)2D2 − (1− σ)2D2

]
= 0

C Derivations for Section 4

C.1 CES production function with CRRA utility

The production function is

F (kt, nt) = z
(
ρk1−ηt + (1− ρ)n1−ηt

) 1
1−η

with z, η > 0 and ρ > 0 and suppose that η = σ > 1. This production function implies the following

competitive factor prices

rt = Fk(kt, nt) = zρk−ηt

(
ρk1−ηt + (1− ρ)n1−ηt

) η
1−η

= ρz1−η
(
yt
kt

)η
wt = Fl(kt, nt) = z(1− ρ)n−ηt

(
ρk1−ηt + (1− ρ)n1−ηt

) η
1−η

= (1− ρ)z1−η
(
yt
nt

)η
It is well-known that the CES production function satisfies the Inada conditions if σ = η = 1 which

corresponds to the case of Cobb-Douglas production function with logarithmic utility. We require

σ > 1, which implies

lim
k→0

Fk(k, n) = zρ
1

1−η > 0 lim
k→∞

Fk(k, n) = 0.

For simplicity, let δ = 1 and suppose that gt = 0 and bt = 0 for t ≥ 0, implying that a0 = k0, so that

the only motive for taxing is wealth redistribution. As a result, the government must keep balanced

budget every period:

trt = τtrtkt + νtwt
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Consider the tax policy with constant rates τt = τ̄ and νt = 0, ∀t ≥ 0. Guess that the optimal

consumption is linear ct = λyt. In this case, kt+1 = (1 − δ)kt + (1 − λ)yt. Substituting this into the

Euler equation implies

c−σt = βc−σt+1 (1 + (1− τ̄)Fk(kt+1, nt+1)− δ)

λ−σy−σt = β(λyt+1)
−σ(1− τ̄)ρz1−η

(
yt+1

kt+1

)η
y−σt = β(1− τ̄)ρz1−ηyη−σt+1 ((1− λ)yt)

−η

λ = 1−
[
β(1− τ̄)ρz1−σ

] 1
σ

This leads to the following form of the value function

V (k0) =
z1−σ

(
υ1k

1−σ
0 + υ2n

1−σ
0

)
1− σ

.

We find υ1 and υ2 by plugging the guesses for ct, nt, and V into the Bellman equation

z1−σ(υ1k
1−σ
t + υ2) = (λyt)

1−σ + βz1−σ
(
υ1[(1− λ)yt]

1−σ + υ2
)

υ1k
1−σ
t + υ2 = λ1−σ(ρk1−σt + (1− ρ)) + β

[
υ1(1− λ)1−σz1−σ(ρk1−σt + (1− ρ)) + υ2

]
and matching coefficients to obtain:

υ1 =
λ1−σρ

1− (βρ) [(1− λ)z]1−σ

υ2 =
1

1− β
(
λ1−σ(1− ρ) + βυ1(1− ρ)[(1− λ)z]1−σ

)
Plugging in V , c0, and n0 into the partial derivative formula

∂V i

∂V
≤ 0 ⇔ 1 + σ

A

(1− σ)V
∆ai0 = 1 + σ

c−σ0 (1− τ̄)Fka0

z1−σ
(
υ1k

1−σ
0 + υ2

)∆ai0 ≤ 0

so the sufficient condition for Tm =∞ becomes

1

σ
≤ D (−∆am0 ) =

(1− τ̄)

λ
(1− βρ[(1− λ)z]1−σ)

ρk1−σ0

ρk1−σ0 + 1−ρ
1−β

(−∆am0 )

=
(

1− τ̄

λ

) ρk1−σ0

ρk1−σ0 + 1−ρ
1−β

(
a0 − am0
a0

)

where m denotes the household with median income, am0 ≤ a0.
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C.2 Alternative characterization

We postulate the law of motion of aggregate capital as

at+1 = εt+1at + γt+1. (29)

Using this transition rule, we derive a formula for dt and plug it into (19) to get

cit = λt

Rtωit
rt

+ τt
1

N
+

1

N

∞∑
j=t+1

τj

j∏
s=t+1

εs
Rs

 rtat + λt
ft
N

where

ft = et +
∞∑

j=t+1

[
ej + τjrj

j∑
s=t+1

γs

(
j∏

k=s+1

εk

)]
j∏

s=t+1

R−1s (30)

is discounted present value of labor income plus transfers accruing through the additive accumulation

in capital. Plugging cit into (18) and summing over all agents imply

at+1 =

(1− λt)
Rt
rt
− λt

 ∞∑
j=t+1

τj

j∏
s=t+1

εs
Rs

 rtat + et − λtft

Therefore, the equilibrium relation describing growth rates for our economy is:

εt+1 = (1− λt)(1 + Fk(kt, 1)− δ)− λtrt

 ∞∑
j=t+1

τj

j∏
s=t+1

εs
Rs

 (31)

and given {εt}t≥0 in principle we could solve for {γt}t≥0 and {ft}t≥0,26 but their explicit solutions are

not needed for out purposes.

26The analytical solution requires to use continued fractions. See Benhabib (2007)
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