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The majority of the world’s poor reside in rural areas. A salient feature of rural populations in
low-income countries is that population density is low even in densely-populated countries. A major
consequence is that service delivery to the poor is expensive, especially for services that require
monitoring. For example, given that most rural residents in low-income countries are engaged in small-
scale agriculture, one of the major issues they face is variability in incomes due in large part to
fluctuations in rainfall (Rosenzweig and Udry, forthcoming; Cole and Xiong, 2017). Risk mitigation is thus
a key desideratum for assisting the poor. Yet, while research has shown that index-based insurance
contracts (Karlan et al., 2016) effectively mitigate the consequences of riskiness, improve farm
profitability, and can reduce income risk for the landless (Mobarak and Rosenzweig, 2014), loading costs
associated with marketing, payment disbursement and weather station construction and maintenance,
given the number of small farms, render such contracts, if priced to incorporate such costs, out of reach
for most rural inhabitants (Carter et al., 2017). Similarly, the disbursement of loans to households, small-
scale enterprises and farms entail high administration costs (Banerjee et al., 2015). Even seemingly less
costly measures such as providing low-cost, safe and effective access to saving technologies has proven
difficult in many developing countries (Dupas and Robinson, 2013).

Technology gives hope, however, that the costs of service or information delivery can be
reduced or bypassed relatively cheaply. A key example of exploiting new technology to overcome
administrative costs is cell phone technology. Once a network is established, the marginal cost of
information delivery is close to zero — the network is like a public good. Jensen (2007), for example, has
demonstrated that the delivery of pricing information via cell phones substantially improved market
efficiency in the fisheries sector and Suri and Jack (2016) show that the availability of cell-phone based
monetary transaction apps enabled households to better cope ex post with income variability and
facilitated savings.

An alternative means of mitigating the consequences of weather fluctuations for poor
populations in the absence of markets for unsubsidized insurance contracts is to harness technology to
directly reduce weather risk. Long-term weather forecasting is an example of a technology-intensive
public good that has minimal delivery costs and can reduce the principle source of income risk for the
poor.! Like actuarially fair insurance, a perfectly accurate forecast of this year’s weather pattern,
provided before a farmer makes his or her production decisions for the season, eliminates weather risk.
However, a perfect forecast also permits the farmer to make optimal production choices conditional on
the realized weather and thus achieve higher profits on average compared with even a perfectly-insured
farmer. Similarly, the rural landless can make better choices about migration if informed about future
rainfall. Most importantly, a forecast is information that can be delivered via cell phone networks or by
broadcast. The returns to enhancing individual-farmer risk reduction by improving the accuracy of inter-
annual weather forecasts are thus potentially high, given the small costs of delivery compared with
those associated with traditional contractual services (credit, insurance), however well-designed to
facilitate coping with the consequences of rainfall realizations.

Long-term — seasonal or inter-annual - rainfall forecast skill has benefitted from recent advances
in technology, from improved computational power, from better models that exploit the El Nino

! Additionally, agricultural scientists have exploited advances in molecular genetics to improve the ex ante options
available to farmers faced with uninsured weather risk, most prominently by developing drought-tolerant varieties
of important crops. These advances benefit all farmers and do not entail extra delivery expenses.
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southern oscillations (ENSO), and from increases in observational capacity for the key elements feeding
weather models — snow cover, polar ice caps (cryosphere), and sea surface temperature (SST) anomalies
- via increases in the number and sophistication of satellites and buoys (e.g., Stockdale et al., 2010;
Balmaseda et al., 2009). And it is expected that forecast skill will continue to improve in the foreseeable
future (National Research Council, Division on Earth and Life Studies, Board on Atmospheric Sciences
and Climate, Committee on Assessment of Intra-seasonal to Inter-annual Climate Prediction and
Predictability, 2010). Governments are aware of and responding to this opportunity. In India the
national Monsoon Mission was launched in 2012 with a budget of $48 million for five years to support
research on improving forecast skill, with a special focus on seasonal weather forecasting.? There is
nothing new about this; in India the India Meteorological Department (IMD) has been issuing annual
forecasts of the monsoon across the subcontinent since 1895, and it is widely reported in the Indian
media that farmers’ livelihoods depend upon the accuracy of the forecast.?

While, as we discuss below, the accuracy of the IMD monsoon forecast is on average marginal,
the forecasts are evidently taken very seriously among all sectors of the Indian economy. The NIFTY 50
index is the National Stock Exchange of India's index for the Indian equity market. None of the sectors
represented in the index is directly affected by rainfall, as neither farms nor agricultural processing
enterprises are included, and only eight percent of the stocks are in the consumer sector. Nevertheless,
the index responds significantly to the announcements by the IMD of monsoon rainfall, both the
preliminary announcement in April and the final prediction at the end of June. Figure 1 displays the
average percent change in the index the day after the announcement by the IMD of a pessimistic
forecast and the average percent rise when the forecast was optimistic for the ten forecasts issued over
the period 2013-2017 relative to two major consequential events that also occurred during that time —
the UK BREXIT vote and the demonetization of the Indian rupee. While these latter events had major
impacts on the equity market, the response to the IMD forecasts was also significant — the index rising
0.8 percent when the forecast was positive and falling 0.6 percent when negative, the 1.4 percent
difference (64 percent of the BREXIT decline) being statistically significant at the 0.02 level (t=2.87).

Although Figure 1 suggests the importance of both weather outcomes and the existence of
direct forecast effects on the overall economy in India, there is as of yet no rigorous assessments of the
impact of long-term weather forecasts and improvements in weather forecast skill on the rural poor.
There is a substantial literature dedicated to ex-ante simulations of the value of improved weather
forecasts that employs simulations of dynamic crop models to estimate the potential effect of forecast
information of farm profits and crop prices (Meza et al., 2008). There is also work based on survey and
ethnographic evidence exploring farmers’ use (or not) of information from weather forecasts in their
farming decisions (Roncoli, 2006; Mase and Prokopy, 2013). The crop model simulations yield varied
results, but typically predict a large economic value for long-term forecast information (e.g., $5-15 per

2 The annual budget for the US National Oceanic and Atmospheric Administration, which is responsible for
forecasting research (among other responsibilities) in the US, was approximately $5 billion in 2010.

3 For example, “Laxman Vishwanath Wadale, a 40-year-old farmer from Maharashtra’s Jalna district, spent nearly
25,000 on fertilisers and seeds for his 60-acre plot after the Indian Meteorological Department (IMD) said in June
that it stands by its earlier prediction of normal monsoon. Today, like lakhs of farmers, Wadale helplessly stares at
parched fields and is furious with the weather office that got it wrong — once again. So far, rainfall has been 22%
below normal if you include the torrential rains in the northeast while Punjab and Haryana are being baked in one
of the driest summers ever with rainfall 42% below normal” (Ghosal and Kokata 2012).
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hectare per year in US and Argentinian agriculture, Jones et al., 2000). The survey and ethnographic
evidence shows great interest on the part of farmers in forecast information. Nesheim et al. (2017) show
that fifty percent of farmers in three case study villages in Maharashtra rely on broadcast weather
information when making sowing decisions. We have found no research, however, that evaluates the
impact of long-term weather forecasts on the incomes or welfare of the rural poor using data measuring
actual behavior, agricultural outcomes and earnings.*

In this paper, we use information on the IMD forecasts and rainfall to quantify the effects of the
forecasts and forecast skill on the incomes of the rural population, both cultivators and agricultural
wage workers, using a variety of panel data sets. To do that we need to employ an equilibrium model,
because the forecast simultaneously affects all agents in the economy. We also need to recognize the
sequential nature of agricultural production and that temporary migration is a major factor in
determining the supply of workers to agricultural production in a given locale. We thus set out a
parsimonious dynamic equilibrium model of the local rural economy. The model incorporates a number
of important features of an agricultural setting. First, the model recognizes the necessity of making (ex
ante) agricultural investments prior to the resolution of uncertainty (rainfall realizations). Second, the
model incorporates two types of ex ante investment decisions by farmers that can be influenced by the
forecasts: the level of inputs (labor) to employ; and the choice of production technology, characterized
by the sensitivity of output to rainfall (riskiness). Third, the model includes two migration (labor supply)
decisions by landless workers, who can choose to migrate ex ante out of their home village in response
to the forecast but prior to the realization of rainfall and/or ex post in response to the realization of
weather. An important property of the model is that initial-period investment and migration decisions
affect outcomes (farm profits, wages) in later periods because of the dynamic elements of the model
and thus incomes (wages) vary within a season due to the interactions of aggregate demand and supply.

There are three novel features of the model. First, the model incorporates both migration (labor
supply) and production (labor demand) decisions. Prior studies of rural temporary migration that
examine the impacts of interventions that raise the returns to migration have not examined how such
interventions affect local farmers’ (employer’s) decisions. Typically, even in structural models of
migration (Morten, 2019; Meghir et al., 2017), the parameters of the income process, while allowed to
change due to the specific counter-factual intervention considered, are not the products of optimizing
behavior and thus are not invariant to alternative policies. A second novel feature of the model is that it
examines both ex ante and ex post migration and their dynamic interactions. Studies of temporary
migration have looked at only one type of migration at a time — either off-season migration, when
demand is predictably low, (e.g., Bryan et al., 2014) or ex post migration within a growing season that
responds to realized weather shocks (Morten, 2019). In our model, within the growing season there is
both ex ante (anticipatory) and ex post migration.

As far as we know, there are no studies of temporary migration in the early stages of the
growing season in India. Yet, such anticipatory migration appears to be important and to vary across
years. Figure 2 reports the fraction of male rural workers age 19-49 employed in urban areas by month
from the 18 villages in the International Crop Research Institute of the Semi-Arid Tropics (ICRISAT)

4 “Resolving the uncertainty about the value of seasonal climate prediction to agriculture requires rigorous ex-post
impact studies, after forecasts have been widely communicated and supported adequately for a long enough
period to allow learning, adaptation and wide-spread adoption” (Meza et al., 2008, p.1283).
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village survey over the period 2010-2014. As can be seen, migration rates sharply increase at the start of
the kharif growing season, which begins in July and ends in late Fall, and immediately after the final IMD
monsoon forecast, with six percent of men migrating out. As seen in Figure 3, monthly data on rural
workers away from home, by duration, from the National Social Surveys (NSS) for the same
demographic group show a similar pattern across all of India, with out-migration peaking in July, at 10
percent for those away at least one day. Finally, the ICRISAT data, as displayed in Figure 4, also show
that the July rates of migration varied substantially across years, peaking at over 11 percent in 2010 and
reaching a low of three percent in the middle of the survey period. This intertemporal variation in out-
migration could be due to variation in the forecast, which we will test more rigorously.

We believe the dynamic equilibrium model is useful for examining the impact in rural areas of
any large-scale program or policy. Besides considering the consequences of forecasts, we also use the
model to assess how investments, profits, the two types of migration, and equilibrium wages are
affected by variation in the statutory minimum wages associated with the National Rural Employment
Guarantee Act (NREGA) of 2005 and, importantly, how changes in minimum wages interact with the
forecasts in affecting outcomes. We examine the effects of the minimum wages because over the period
in which we look at forecast effects there was substantial intertemporal variation in nominal statutory
minimum wages, with such (nominal) wages changing as much as seven times over the period 2005-
2012 in some states, and such variation, as we show, can affect the impacts of forecasts.> While recent
work evaluating NREGA on equilibrium wages has shown that NREGA statutory wage effects depend on
rainfall realizations (Santangelo, 2019), no evaluations of NREGA on equilibrium wages (e.g., Berg et al.,
2013; Imbert and Papp, 2015) examine both the effects of the IMD forecasts and of rainfall on program
wage effects during the period and in the areas studied. Our framework and empirical findings call into
guestion the external validity of these estimates, as we show that the equilibrium wage effects of
NREGA statutory minimum wages differ significantly across stages of agricultural production, by the IMD
forecast as well as by rainfall.

In section 2 we set out the model. The model delivers predictions for how forecasts affect
planting-stage farmer investments and technology choice and the planting-stage migration decisions of
workers, and how forecasts and rainfall and their interactions affect farm profits, migration and
equilibrium wages in the harvest stage. The model also indicates that increases in the minimum wage
blunt the effects of forecasts on both farm decisions and on migration. As a consequence, while
increases in minimum wages can never lower the welfare of workers, we show that they can reduce
equilibrium wages in the planting stage or in the harvest period (but not both in the same season). In
section 3, we begin the empirical work by assessing the skill of the IMD forecasts over the period 1999-
2011 using ground-based information on growing-season monthly rainfall at the village level from the
ICRISAT survey and from a national survey. We find that overall the forecasts have little skill, but we
identify contiguous areas of India in which forecast skill is significant. We explore how skill is related to a
variety of agro-climatic attributes, showing that such attributes predict which areas have skill, but not
skill variation within the areas with skill.

5 Variation in the forecasts and in rainfall amounts and their timing are orthogonal to agents’ behavior and
characteristics, net of fixed effects, so that empirically they allow us to assess the model predictions and evaluate
their effects, with confidence in their internal validity. Variation in statutory minimum wages is less pristine, and
empirical identification of their effects should be interpreted with more caution.
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In section 4, we use ICRISAT panel data and panel data from the national Rural Economic
Development Survey (REDS) and the Additional Rural Income Survey (ARIS) to estimate the effects of the
forecasts and forecast skill on planting-stage investments and on the planting of risky high-yielding
variety crops at the onset of the Indian green revolution. We find that, consistent with the model, a
forecast of poor weather lowers planting-stage investments and lowers risk-taking, and the more so the
higher the skill level of forecasts in the area. For example, we find using the ICRISAT panel data that a
pessimistic forecast lowers planting-stage investments by 15.8 percent overall, but by over 18 percent in
the villages located where forecasts have skill, compared with only 4.4 percent in the villages where
forecasts have little skill.

We next quantify the gains to farmers in terms of profitability from receiving accurate forecasts.
Consider a one standard deviation change in seasonal total rainfall (from one-half standard deviation
above average in a “good” season to one-half standard deviation below average in a “bad” season). We
find that over the period 2009-2014 in the ICRISAT villages in which the forecasts have skill that profits
are increased by 11.5 percent when forecasts are correct. Of course, if the forecasts are incorrect, this is
the loss. The net gain from the availability of forecasts stems from the forecasts being correct more than
half the time — thus, the greater the forecast skill the greater the gain, even ignoring that increases in
forecast skill also amplify farmers’ responses, which enhances the net gain.

In section 5 we use both the ICRISAT and NSS data and find, again consistent with the model,
that a pessimistic forecast increases outmigration in the planting period. In particular, we find using the
ICRISAT panel of agricultural workers that a pessimistic forecast increases out-migration by 2.4
percentage points, a 37 percent increase at the sample mean out-migration rate. As implied by the
model, the forecast effect on out-migration is also reduced significantly where real statutory minimum
wages are higher — when the forecast is pessimistic, a one-standard deviation increase in the minimum
wage lowers the positive effect of the forecast on out-migration by 64 percent. While the net effect of a
pessimistic forecast on equilibrium planting-stage wages, given its negative effect on worker demand
and risk-taking, is theoretically ambiguous, we find in section 6 that on net a forecast of below normal
rainfall increases wages in the planting stage, suggesting the out-migration effect dominates. Consistent
with the model, however, we also find from both data sets that an increase in the minimum wage when
the forecast is pessimistic lowers the equilibrium wage - a one-standard deviation in the real minimum
wage decreases the planting-stage equilibrium wage by almost 3.7 percent when the forecast suggests a
low-rainfall kharif season.

In section 7, we estimate how the monsoon forecast, rainfall and minimum wages affect
harvest-stage migration and harvest-stage equilibrium wages using the ICRISAT panel and its village-
level rainfall information. In alignment with the model, we find that out-migration at the harvest stage is
lower when rainfall and the minimum wage are higher, but out-migration is higher when the planting-
stage forecast was pessimistic. We also find that higher rainfall and a forecast of a poor monsoon raise
harvest wages as do higher minimum wages on average. The interactions between rainfall, the forecasts
and minimum wages are also significant, however. In accordance with the model, real harvest-stage
wages rise less with rainfall in areas where minimum wages are higher and if there was a pessimistic
forecast. And the positive effect of a rise in the minimum wage on equilibrium harvest wages is less
when the forecast predicted a bad monsoon, with again a higher minimum wage actually lowering the
equilibrium harvest wage in a state of the world in which the forecast was pessimistic and incorrect.
Given our estimates, and model, we find that the gains to workers from accurate forecasts are modest,
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since they accrue from migration out of bad-weather areas and migration rates are relatively low and
respond weakly to the forecast. Specifically, we find that an accurate forecast only increases a migrant’s
income by 25 rupees. This again is a lower bound estimate, since our results show that the
responsiveness to forecast rises sharply with forecast skill. Still, even given the relatively low level of
temporary migration, the total gain at this lower bound, given the number of rural wage workers, is Rs.
61 million, on top of our lower-bound estimate of the total gains to cultivators of Rs. 29.1 billion. Section
8 contains our conclusion.

2. The Model

Seasonality and risk shape the economic lives of the rural population of India, both landed and
landless. We provide a simple model to describe decision-making by landowning farmers and landless
workers and their interactions in rural labor markets over the course of the agricultural cycle as
information about the likelihood of future shocks is revealed and shocks themselves are realized. The
decisions at the heart of the model are the magnitudes and riskiness of the planting season investments
made by farmers, and the seasonal migration choices of the landless.

a. Environment We model a single farming season, during which there are two periods, which
we call stages: planting (1) and harvesting (2). In the empirical work we will allow for the reality that the
resources available to a farmer at the start of stage 1 reflect prior decisions, forecasts and realization of
shocks, but the model abstracts from these considerations in order to focus on the intra-season
allocation across stages and states of nature.

Before stage 1, a forecast F € {B, () of the harvest-stage state is announced. The harvest stage
realized state is s € {b, g}. Let ¢ = prob(s = b|F = B) = prob(s = g|F = G) be the forecast skill.
This assumption implies that forecast error probabilities are symmetric, but this simplification has little
consequence in the analysis of the model and in fact describes the actual performance of the IMD
forecast. Consumption occurs in both the planting and harvest stage, so there are six stages/realized
states to consider. Consumption in stage one, which may depend upon the forecast F is denoted by ¢,
and c¢; 5. Consumption in stage two, which may depend upon both the forecast F and the realized state
in the harvest stage, s, is csr (so, for example, consumption in the good state of the harvest stage in a
season that had been forecast to be bad is ch). We abstract from labor/leisure choices and assume that
each individual inelastically supplies one unit of labor in each stage. All agents have constant relative risk
aversion preferences:

1
1-y

[cir” +prob(S = bIF)c,;” + prob(S = glF)cy;” )

b. Cultivators. There is a mass 1 of landed cultivators each with a fixed land endowment. Each
cultivator works full time on his own plot. Farm output is generated by the cultivator combining his own
land and labor with some amount of hired labor (x; ) used during the planting stage of the season and
hired labor (x4r, x,r) used in the good or bad state realized during the harvest stage of the season. The
cultivators also choose in the first stage the riskiness of the portfolio of crops that they plant (R €
[0,1]). After forecast F, farm output in state s of the harvest stage is Qpf.

Qpr = min (fo(l - Rp),x%) (2)



X
Qgr = min (exfpm + RF),%F>

This is a conventional Cobb Douglas production function with diminishing returns to labor in the
planting stage, except that the choice of R affects the gap between output in the good and bad states.
6 > 1 represents the additional output that is received in the good state when a farmer takes on
additional risk.

Harvest stage production is Leontief in labor use: xgr = pQgr. We assume that farmers have no
access to insurance, nor to financial savings or borrowing. Therefore, farmers shift resources across
stages and states of nature through their decisions regarding the extent and riskiness of their cultivation
activities. A farmer wishing to consume more in the planting stage reduces the amount of planting stage
labor; a farmer wishing to consume more in the bad state of the harvest stage reduces planting season
labor expenditure and reduces the riskiness of the mix of his farming activities.® In the absence of a safe
asset or credit market, the choice of planting stage labor is the primary tool for moving resources across
stages, while the choice of the riskiness of the technology is the first order tool for calibrating risk across
harvest stage states of nature. But the absence of complete asset markets implies that these two
decisions cannot fully be separated.

The budget constraints of a farmer after forecast F in stage 1 and in state s of stage 2 are:

Cip = Yo — WipXyp

Csr = QsF(l - pWsF) )

At the time the farmer chooses x; and R, the forecast is known, as is the planting stage wage
(wqr). The farmer also knows the forecast skill (q) and thus the probability that the good or bad state
will be realized in the harvest stage. In addition, the farmer knows the harvest stage wage that will
prevail if state s is realized in the harvest stage (Wyr, Wpr), given the forecast.

Given a forecast (F) and the vector of state- and forecast-specific wages wg = (W1p, Wyp, Whr),
a farmer chooses planting stage labor (x;) and the level of risk (Rz) to maximize (1) subject to (2) and

(3).

c. Landless workers. Landless workers have the same preferences as farmers, but they are
endowed only with labor. Their only choice in each stage is to work for a wage in the village, or to
migrate to the city and work there. Simultaneous with the revelation of the forecast before the planting
stage, each landless individual receives an urban wage offer for the planting stage (w;,,). This offer is
drawn from a common distribution F; (w).” After this wage offer is revealed, the worker decides
whether to migrate to the urban area or not. We denote the worker’s decision to migrate or not in the

5 n this simple model with two states of nature, and only two periods, access to a safe asset would permit each
farmer to separate his decisions regarding cultivation and risk-bearing, choosing R to maximize returns and the
investment in the safe asset versus cultivation to adjust the extent of risk borne. More generally, this separation
property will fail to hold and Rpdepends upon the extent of risk aversion whenever the financial assets available to
the farmer fail to span the state space.

7 We assume that the distribution of urban wage offers F; (w) (and later, F,(w)) are independent of the forecast.
This simplification permits us to focus on changes in rural wages without a full model of equilibrium in urban labor
markets, thus abstracting from the possible indirect effects of rural weather forecasts and realizations on the
urban labor market.



planting stage after a forecast of F as my € {0,1}. Similarly, before the harvest stage, simultaneously
with the revelation of the realized state for the harvest stage in the village, each landless worker
receives another urban wage offer for the harvest stage (w,,,). After this wage offer is received, the
worker again decides whether to work in the urban area (migrate) or to work in the village.

Therefore, the budget constraint of a landless worker is
cip = Imp = Dwyy + (1= 10mp = 1))wyp + Y,

csp = max(wyy, W) (4)

The urban wage offers for the planting stage are drawn from a uniform distribution
wi, ~F1(w) = wfj, (5)

where f; is a positive constant. The urban wage offers drawn for the harvest stage are drawn
from (uniform) distributions that depend on the planting stage residence of the worker:

wau~I(me = DF,(w) + (1 — I(mp = 1)) F; (w). (6)

We assume that a worker is more likely to attract a better urban wage offer if the worker is
resident in the urban area. Therefore, we specify that F, = wf,, f, < f; so F, first order stochastically
dominates F; . Workers maximize (1) subject to (4) — (6).

Planting-stage migration is anticipatory migration. The worker’s decision to migrate in the
planting stage has a dynamic component, like the farmers’ planting-stage decisions, because the
distribution from which the subsequent harvest-stage wage offer is drawn differs depending upon the
planting-stage residence of the worker. If the worker had chosen to migrate to the city in the planting
stage, he draws an urban harvest-stage wage offer from the distribution F,(w), while if the worker had
chosen to remain in the village in the first stage, his urban harvest-stage wage offer is again drawn
from F; (w). Migration to the city during planting thus has an investment component because it
increases the expected value of the harvest-stage urban wage offer. As was the case for the farmer, we
assume that the landless worker has no access to financial markets.? After forecast F, labor supply in the
planting stage S depends upon the rural planting stage wage, and the rural wages in both the good
and bad states of the harvest stage.

Harvest-stage migration is ex post migration. The worker’s decision to migrate in the harvest
stage is taken after the state for the harvest stage is realized, and after the worker has received his or
her draw from the relevant distribution of urban wages. The harvest stage decision, therefore, is simple:
the worker chooses to live in the village if and only if the rural wage for the state realized in the harvest
stage is at least as great as that worker’s urban wage draw. Given planting stage migration decisions,
labor supply in the harvest stage in state s after forecast F is

8 A fixed cost of migration would generate similar migration decisions. In both cases, the complementarity across
stages in migration decisions implies that the planting stage migration decision depends on expectations of wages
in the harvest stage.



1= Msp = Sep = Sipwspfi + (1 — S1p)wsrpfa, (7)

where the first term is the supply from village landless workers who did not migrate during the planting
stage and the second term is the supply from those village workers who did migrate to the city in the
planting stage. Since f; > f5, the greater the migration out from the village during the planting stage,
the lower the village labor supply during any state of the harvest stage at any wage.

d. Equilibrium. An equilibrium is defined conditional on the forecast F by a vector of wages
(WlFJ WgF; WbF) = Wr such that

S1r(Wg) = x5 (Wp)
S1F1(wpp) + (1 = S)F(Wpp) = pxp (x15(WE)) (8)
S1T1(WgF) + (1 = SDF,(wgr) = pxg(x1p(Wr))

The first equation is the equilibrium condition for the planting-season labor market and the
second two equations describe equilibrium in the harvest-season good and bad states of nature. In
Appendix 1, we show how to construct the equilibrium wg and describe the characteristics of the
functions S;r(Wg) and x;r(Wg).

Testable Implications of the Equilibrium Analysis

The model yields a set of testable implications, and another set that is testable depending on
the degree of risk aversion. It also has testable implications regarding the effects of statutory wage
floors on wages and migration, which we introduce subsequently. To understand these implications and
why some of them depend upon the degree of risk aversion, it is useful to consider the three key
decisions made in the planting season, after the forecast is revealed and landless individuals receive
wage offers in the urban market. The decisions are the choices of cultivators regarding labor demand
and the riskiness of their technology choice, and the decisions of the landless regarding migration.

Planting-stage labor demand x; is determined by the trade-off of current consumption with
the expected marginal utility of the consumption to be generated by expanding planting-season
expenditure on labor. The decision regarding the riskiness of a farmer’s portfolio (Ry) is separable from
the planting stage labor demand decision. Specifically, as we show in appendix 1, it is defined by

1 1
mind 1 (prob(s = g|F)>V (6(1 — prF)>V ! _1+Rg )

prob(s = bIF)) \ (1 — pwyr) C1-Rg

The worker’s planting season migration decision has a reservation property such that he
migrates if and only if his urban wage offer is greater than or equal to the trigger value wy,-(Wg), which
depends upon the forecast and the rural wage vector. After forecast F, given a vector of wages wy =
(WlF: Wyr, WbF), aggregate planting stage labor supply to the village is

1 =M = Sip = wpr(Wp)fi. (10)

We show in appendix 1 that (1) — (10) have the following four testable implications that do not
depend on the risk preferences of the agents. First, regardless of the forecast, the concavity of the
production function implies that an increase in the planting stage wage reduces the demand for
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labor (d;—lF < 0). Second, regardless of the forecast, planting stage migration is decreasing in each
1F

dMp dMp
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element of the rural wage vector ( < 0). Third, regardless of the forecast, harvest stage

wages are higher if the good weather state is realized than if the bad weather state is realized
(wgp > wa). Fourth, regardless of the forecast, harvest stage migration is less if the good weather
state is realized then if the bad weather state is realized (Mgr < Mpp).

e. Regimes of Risk Aversion and Testable Implications. The above four implications would be
true in a model with complete markets. However, in our model the neoclassical separation between
production and consumption is absent. Some production and migration decisions, therefore, are
sensitive to the degree of risk aversion (y) and a subset of comparative static results depend upon the
value of y. It is possible, therefore, to distinguish a regime in which the agents are very risk averse (y >
1) from one in which the agents are less risk-averse (0 < ¥y < 1). Further testable implications follow
once the degree of risk aversion can be categorized as belonging to one or the other regime.

We prove in Appendix 1 that if two conditions are met, then we can conclude that y < 1. These
conditions are first, that farm profits are higher in the good weather state of the harvest stage than in
the bad weather state (after a forecast of good rainfall) and, second, that the riskiness of a farmer’s
portfolio is greater after a forecast of good weather than after a forecast of bad weather (R; > Rp).
That is

Proposition 1: If (1 — WgG) > (1 —wyg) and R; > Rp, theny < 1.

If farmer profits are higher in the good state than in the bad, then a farmer with sufficiently high
risk aversion (y > 1) pushes the riskiness of his portfolio to its minimum, sacrificing expected income in
exchange for less variability. If a forecast of good weather increases the riskiness of the farmer’s
portfolio of activities above that chosen in the case of a bad forecast, then the consumption smoothing
motive is not too strong, and y < 1.

We verify (in Tables 4 and 7) that these two conditions are empirically satisfied and restrict
further attention to the case of y < 1. We prove in the appendix the following six testable implications
of the model when y < 1.

First, planting stage labor demand is higher after a forecast of good rain than after a forecast of
bad rain:

X16 > X1B (11)

Second, the higher investment and greater riskiness of the farmer’s portfolios after a forecast of
good rain than after a forecast of bad rain together imply that planting season migration is less after a
forecast of good rain than after a forecast of bad rain:

My < Myp (12)

Third, the greater risk taken after a forecast of good weather implies that the difference in
harvest between good and bad weather realizations after a forecast of good weather is greater than
that difference after a forecast of bad weather. This implies that the difference in harvest season
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migration in bad and good weather outcomes after a forecast of good weather is greater than that after
a forecast of bad weather:

My — Mg > Mpp — Myp (13)

Fourth, there is a greater difference between harvest season wages with good and bad weather
realizations after a forecast of good weather than after a forecast of bad weather. This is a consequence
of the lower planting stage migration, greater planting stage investments and riskier technology choice
after a good forecast:

Woe Wgyg
g > ) (14)
Wb  Wpa

Fifth, the wage in the good state of the harvest stage after a forecast of good weather is greater

than the wage in the good state of the harvest stage after a forecast of bad weather:

Wgp < Wy6 (15)
Sixth, all of these results are strengthened as forecast accuracy (q) is improved.

f. Binding Wage Floor. The equilibrium model can be used to assess the consequences of any
policies that affect local rural labor markets. We now consider an employment guarantee scheme that
provides a prespecified wage and guaranteed work. We do this because in the setting in which we test
the model and assess the effects of weather forecasts, rural India, such a scheme was in place, namely
the National Rural Employment Guarantee Act (NREGA). The model delivers some novel predictions for
how variation in floor wages affects forecast responses as well as equilibrium wages in the harvest and
planting stages. To derive these, we use the model to determine how the employment guarantee
scheme influences the dynamic choices of cultivators and workers. While such a program cannot reduce
the welfare of workers, we will show that it can reduce their wages in some states of nature and even
expected worker income. In the latter case, the welfare of cultivators can increase with the guaranteed
wage, given the small open village assumption on product markets.

The employment guarantee implies that at the guaranteed wage there might be an excess
supply of workers in the community. We assume all of these workers are employed by the institution
running the scheme in an activity that generates no output and that the wages are paid from taxpayers
who are outside the modeled population. Equilibrium is now defined conditional on the guaranteed
wage (wy,,) and on the forecast F by a vector of wages (WlF' Wy, wa) = wg such that wg > wy, and

Sir(Wg) = x1p(Wgp) with equality if wip > wy,
S1F1(wpp) + (1 = S)F,(Wpp) = pxp (1 p(Wr)) with equality if wyp > wyy, (16)
Sl.‘]-"l(wgp) +(1-S5)F, (ng) = pxg(x1p(Wp)) with equality if wgp > wpy,
In appendix 1 we show that regardless of the forecast, an increase in a binding wage floor in any

stage/state of production reduces equilibrium wages in at least one other stage/state in which that floor
does not bind.

Proposition 2: Suppose that the equilibrium wage vector is (Wl*p, WgE) W{,‘F) = wy such that
Wg = Wy, and Wi # wy,. Then if a small increase in the statutory minimum wage wy, changes the
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equilibrium wage vector, it must reduce the equilibrium wage in at least one state of one stage of
production.

For any forecast F, consider an increase in the minimum wage. If the minimum wage is binding,
it must be binding in either the planting stage or in the bad state of the harvest stage (because the wage
in the good state of the harvest stage must be no lower than that in the bad state of the harvest stage).
Proposition 2 states that if the minimum wage is binding in the planting stage, then an increase in the
minimum wage causes equilibrium wages in both the good and the bad states of the harvest stage to
decline (unless the minimum wage is also binding in the bad state of the harvest stage, in which case the
equilibrium wage in the good state of the harvest stage declines). Similarly, if the minimum wage is
binding in the bad state of the harvest stage, then at least one of (W, wyr) must decline if the
minimum wage is increased.

This result is driven by the complementarity in labor demand between planting and harvest
stages (generated by the sequencing of cultivation activities) and by the complementarity in labor
supply across planting and harvest stages (caused by the improved distribution of harvest season offers
received by early migrants). These joint complementarities imply that a wage increase at one (or
several) time or state of nature generates reductions in the demand for labor and increases in the
supply of labor that are spread over the entire farming season, causing wages to decline at any other
times during the season (or in other states of nature) at which the guarantee is not binding.

It can be the case that the fall in the other two wages is so large that the expected wage over
the farming season declines when a binding wage floor is imposed. We show in the appendix that there
exist parameters such that wy — wip + (prob(s = glF))(ng — wgp) + (1 —prob(s = b|F))(Wyr —
wpr) < 0. For example, expected wages over the season fall when the forecast is for good weather, the
skill of the forecast is low, and the gain in the expected harvest season urban wages from planting
season migration is high. This configuration of parameters induces a large fall in the planting season
wage when the binding wage floor in the bad state of the harvest season increases.

3. IMD Monsoon Forecasts and Forecast Skill

Each year at about the end of June, the Indian Meteorological Department (IMD) in Pune issues
forecasts of the deviation of rainfall from “normal” rainfall for the July-September period (summer
monsoon). Rainfall in this period accounts for over 70% of rainfall in the crop year and is critical for
kharif- season profitability - planting takes place principally in June-August, with harvests taking place in
September-October. IMD was established in 1886 and the first forecast of summer monsoon rainfall was
issued on that date based on seasonal snow falls in the Himalayas. Starting in 1895, forecasts have been
based on snow cover in the Himalayas, pre-monsoon weather conditions in India, and pre-monsoon
weather conditions over the Indian Ocean and Australia using various statistical techniques.® Thus, IMD
forecasts are based on information that is unlikely to be known by local farmers. There has been no
alternative source of monsoon forecasts other than IMD until 2013, when a private weather services
company (Skymet) issued its own forecast for a limited set of regions.

% Regression techniques were first used in 1909 to predict monsoon rainfall. IMD has changed statistical techniques
periodically, more frequently in recent years. Different statistical methods were used for the 1988-2002, 2003-
2006, and 2007-2011 forecasts (Long Range Forecasting in India, undated).
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What is the skill of the forecasts in predicting July-September rainfall? The IMD has published
the history of its forecasts since 1932 along with the actual percentage deviations of rainfall in the
relevant period. One could use the entire time series to assess the forecast. However, in addition to the
fact that the statistical modeling has changed over time so that forecast skill in earlier periods may no
longer be relevant, the forecast regions have changed - geographical forecasting by region was
abandoned in the period 1988-1998 - and in many years the forecasts are qualitative (“far from normal,”
“slightly below normal”). Starting in 1999, actual percentage deviations were re-introduced. For India as
a whole, using the published data from 1999-2010, we find that forecast skill is not very high. However,
the forecasts exhibit the symmetry property we have assumed in the model: when the IMD forecast is
for below-normal monsoon rainfall or for above-normal monsoon rainfall the likelihood the forecast is
correct slightly above 50% in each case.

Forecast skill may, however, vary by region, as India regions differ substantially in rainfall
patterns. Indeed, in the period 1999-2003, the forecasts were issued for three regions - Peninsular
India, Northwest India and Northeast India. Starting in 2004, the forecasts have been issued for four
broad regions of India (see Appendix Map A). To assess area-specific forecast skill, we obtained the
correlations between the regional IMD forecasts and village-specific times-series of rainfall in two data
sets that contain ground-based (weather station) rainfall data. The first data set is from the ICRISAT
Village Dynamics in South Asia (VDSA) surveys from the years 2005-2011 describing farmer behavior in
the six villages from the first generation ICRISAT VLS (1975-1984). The villages are located in the states
of Maharashtra and Andhra Pradesh. These data contain a module providing daily rainfall for each of the
six villages. The second data set we use is from the 2007-8 round of the Rural Economic and
Development Surveys (REDS) carried out by the National Council of Economic Research (NCAER). This
survey was carried out in 242 villages in the 17 major states of India and includes eight years of monthly
rainfall information by village for 212 villages covering the period 1999-2006. For the ICRISAT data
(2005-2011) we use the Southern Peninsula and Central forecasts. Table 1 provides the forecasts for the
two regions over the period 2009-2014, expressed as the percent of “normal” monsoon rainfall set at
100. For the REDS (1999-2006), we matched up the REDS village rainfall time-series with the appropriate
regional forecasts over the time period.

Table 2 provides the correlations between the IMD forecasts and actual July-September rainfall
for each of the six ICRISAT villages between 2005 and 2011. As can be seen, for the four Maharashtra
villages, skill is relatively high (p=.267), but for the two Andhra villages the forecast is not even positively
correlated with the rainfall realizations. It is not obvious what accounts for the higher skill in the
Maharashtra villages. It is not because there is less rainfall variability in those villages, as the average
rainfall CV is significantly higher than that in the Andhra villages. We investigate in more detail below
the correlates of forecast skill using the REDS data, given its wider geographic coverage.

That there are regional patterns to forecast skill is also exhibited in the REDS data. While the
overall correlation between the forecast and actual July-September rainfall in the 1999-2006 period is
only .132, the range in village-specific correlations, where the correlations are non-negative, is from .01
to .77. This variation could just be noise. However, there appear to be broad contiguous geographical
areas where the skill is substantially higher. Map 1 shows where in India the correlations are highest
(darker areas), with the Northeast area exhibiting the highest skill.
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Why should forecast skill differ across regions of India? The major reason is that rainfall
distribution characteristics vary spatially such that the correlation in rainfall between regions is
imperfect and declines by distance. Thus, if there were to be a perfect annual forecast for one area, the
forecast skill would mechanically be less high in other areas. To quantitatively assess the distance-
correlation rainfall gradient, we obtained the correlations in monthly rainfall across the 36 geocoded
REDS villages in Andhra Pradesh and Uttar Pradesh, resulting in 630 unique distance-correlation pairs.
Figure 5 provides the Lowess-smoothed relationship between the monthly rainfall correlations and
distance, where the base correlation of rainfall within a village was conservatively set at 0.9. As can be
seen the drop-off in the rainfall correlation is steep, falling from 0.9 to less than 0.5 when the inter-
village distance exceeds only 100 kilometers.

Figure 5 suggests why there may be region-specificity to forecast skill, but it is not informative
about where the skill is highest. For example, forecast skill may be highest where rainfall variability is
low. Moreover, whatever the reason for the IMD forecast model to be more skilled in particular regions,
when we assess whether the response of farmers and laborers to forecasts varies by skill, we need to
consider the possibility that forecast skill is correlated with other local-area characteristics that might
affect decisions. For example, it is possible that forecast skill happens to be correlated with better
growing conditions, so that farmers are wealthier where skill is high, or forecast skill is greater where
particular crops are more suitable, or skill is greater where there is more abundant credit, which permits
greater consumption smoothing and facilitates investment. Indeed, we show in Rosenzweig and Udry
(forthcoming) based on the ICRISAT data that the response of planting investments to the forecast
depends significantly on individual farm soil characteristics.

The first column of Table 3 reports coefficients and their associated standard errors, robust to
heteroscedasticity, for a variety of district level characteristics based on a regression in which the
dependent variable is a binary indicator for whether or not the average of village-level correlations
between the IMD forecasts and actual kharif-season rainfall in a REDS district exceeds zero. This
correlation is strictly positive in 39 of the 97 REDS districts with complete rainfall data (out of the 100
REDS districts). The specification includes the mean and coefficient of variation of kharif rainfall in the
district, the fraction of farmer’s in the district growing rice, the fraction of villages proximate to a bank,
and four district-level average soil characteristics. The set of district characteristics is jointly statistically
significant, with the districts having skilled forecasts evidently having higher average rainfall, but not
greater rainfall variability, greater access to banks, and greater suitability to growing rice.

When we estimate the responses of farmers and laborers to the monsoon forecasts we will
focus on villages and districts where the forecasts have skill. In the third column of Table 3 we report the
estimates of the correlates of the district characteristics with the district-level average of village skill for
the 39 REDS districts where average skill is strictly positive. In these districts, none of the individual
district characteristics are statistically significantly associated with forecast skill, with five of the eight
coefficients shrinking substantially in absolute value compared with those estimated from the sample of
districts including those with no skill. And for this subsample the full set of coefficients is jointly
insignificantly different from zero. While these latter results suggest that the degree of forecast skill,
where there is skill, is uncorrelated with potentially important direct determinants of agent decisions we
can never measure all of the potential area-specific correlates of skill. The existence of unmeasured area
factors correlated with forecast skill is a threat to identification that should be kept in mid in assessing
the internal validity of our findings on how forecast skill affects the responses to and outcomes from the
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forecasts. Because we include individual fixed effects in all our specifications for estimating behavioral
responses to the IMD forecasts, however, our estimates of the average effects of the forecasts are
internally valid for India over the period and in the areas from which the estimates are obtained.

4. Forecasts, Planting-Stage Investments and Farm Profits

a. Farmer risk-taking: planting HYV seeds. . In this section we pin down the value of } relative to

one and quantify the gains to farmers from skilled forecasts. We have shown that, given the
consumption-smoothing motive of farmers and their inability to borrow, good-weather farm profits will
always be higher than bad-weather profits and a favorable forecast will increase the riskiness of the
farmer’s choice of planting-stage investments if and only if the farmer’s risk aversion (consumption-
smoothing motive) is not too strong, specifically if 7 < 1. The model also implies that whatever the sign

of the forecast effect on planting-stage investments, the response will be stronger where forecast skill is
higher. We first examine the choice of using high-yielding variety (HYV) seeds at the outset of the green
revolution, using the Additional Rural Income Survey (ARIS) of NCAER. HYV seeds at the time were
substantially more sensitive to rainfall (and fertilizer) than were traditional varieties of the same crops
(Foster and Rosenzweig, 1996). Thus, use of HYV seeds at the time unambiguously made the farmer
more vulnerable to weather risk. This survey has information on HYV plantings for 2,600 farmers in 250
villages across 100 districts over three years (1968-70) just at the start of the introduction of HYV’s.

At the time of the ARIS, the IMD issued monsoon forecasts for only a subset of areas (56 of the
100 districts represented in the sample). The forecasts were qualitative — “normal”, “below normal”,
“much below normal”, “above normal”. We created a forecast index, coding the most pessimistic
forecast as -2, the next pessimistic level as -1, normal as 0. We use the last two years of the panel, so
that all farmers had the opportunity to use the technology for at least one year. In the first of the two
years, 45 percent of the farmers in the areas where there was a forecast received the most pessimistic
forecast, in other areas the forecast was for normal rainfall. In the third year all farmers in forecast areas
received a forecast of “below normal’ rainfall. Thus, there was variation over the two years in the rainfall
forecast for almost half of the sample.

The first column of Table 4 reports the estimates of the IMD forecast on the amount of HYV acreage
planted from the two-year panel for farmers in all areas, where we coded the forecast index as zero (for
normal) in the areas without a forecast. The second column reports the estimates for the restricted
sample of farmers residing in forecast areas. As can be seen the estimates are similar, due to the fact
that identification comes only from the change in the forecast, which only occurs in forecast areas. Both
indicate that a more favorable forecast increases R significantly. The point estimates indicate that
change in the forecast from below normal (-1) to normal increases a farmer’s planting of HYV acreage by
1.3 acres, which is an increase of 64 percent. This behavior, coupled with the observation (reported
below in Table 7) that farmer profits are higher in the good state than in the bad state of the harvest
period implies that the risk aversion parameter y < 1.

b. Planting-stage investment responses. Given the evidence from farmers’ choices of the
riskiness of their planting decisions that y < 1, we now test the implication of the model that farmers
who receive a favorable forecast will increase their planting stage investments. We use two panel data
sets. The first is from the expanded ICRISAT Village Dynamics in South Asia (VDSA) surveys from the
years 2009-2014 describing the behavior of 3,844 farmers in 20 villages located in six states. A key
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feature of the data, aside from the availability of daily rainfall for each of the villages, is that, because
the data are collected at a high frequency, accurate information is provided on the value of inputs by
operation and by date. This enables us to measure kharif-season planting-stage investments that are
informed by the IMD forecasts (which are issued at the end of June) but made prior to the full
realization of rainfall shocks as well as the season-specific profits associated with those investments.
These data thus enable us to estimate both response of planting-stage investments to the IMD forecasts
as well as the effects of the forecasts and rainfall realizations on farm profits net of farmer fixed effects.
Our estimates of the planting-stage investment decisions use an unbalanced panel consisting of 698
farmers appearing in at least two survey years (3,403 observations).

The second panel data set we use is from the 1999 and 2007-8 Rural Economic and
Development Surveys (REDS) carried out by the National Council of Economic Research (NCAER). This
survey was carried out in 242 villages in the 17 major states of India. Like the ICRISAT survey, this survey
elicited information on inputs by season and stage of production in each round so that it is possible to
also construct a measure of kharif planting-stage investments. While, as noted, the 2007-8 round data
also includes monthly rainfall information by village for the years 1999-2006 there is no rainfall
information for the year in which profits and inputs were collected in the 2007-8 round, so it is not
possible to estimate the effects of rainfall on profits. However, we can use our estimates of forecast skill
variation across the 97 districts represented in the data based on the monthly rainfall time-series to
assess the responsiveness of investments at the planting stage to the forecasts by skill.

The planting-stage specification is:
Inx;je = B1Fjt + BoFje * q; + FieXBaZja + Aij + &ijes (17)

where Xijt = the log of the real rupee value of planting-stage investments for farmer i in area j at time t;
Fit = the forecast at time t in area j, measured as a percent of 100 (normal); (j = forecast skill in area j

(average correlation between rainfall and the forecast across the REDS sample villages in the district,
with j set to zero for district in which the correlation is negative or zero ); the Zud = the area specific

correlates of skill in Table 3; Aij = farmer fixed effect; and & =iid error.

The first column of Table 5 reports the estimates of equation (17) based on the REDS panel
without the interaction terms containing the skill correlates. As can be seen, at q; = 0 (no skill) there is
no relationship between the forecast and planting-stage investment, but at skill levels above zero a
forecast of good rainfall increases planting investments. The point estimate of the skill/forecast
interaction coefficient suggests that at the mean correlation across the 39 districts with skill (0.316), a
one percentage point increase in the forecast value would increase planting-stage investments by 5.2
percent. Adding the forecast interaction terms with the area variables in columns two and three does
not substantially alter the skill/forecast interaction coefficient. And the complete set of area/forecast
interaction coefficients are not statistically significant. The results indicating that farmers respond
positively to forecasts of good weather in skill areas appears robust to at least a wide variety of climate
and soil and credit correlates, and are consistent with ¥ < 1.

Column one of Table 6 reports the estimate of the effect of the IMD weather forecast on
planting-stage investments in the set of ICRISAT villages. Here too, the average response to an increase
in the optimism of the forecast is positive. However, the sample contains the villagers in the Andhra
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Pradesh where the forecast has no skill. In column two therefore we allow the investment forecast
response to differ across the farmers in the Andhra villages and the rest of the sample (the Z’s in
equation (17) are replaced by the Andhra dummy). As can be seen, in the skilled villages the investment
response is statistically significantly higher than that in the villages of Andhra Pradesh. The point
estimates indicate that in the non-Andhra villages for every percentage point increase in the forecast
value, planting-stage investment rise by 3.2 percent; in the Andhra villages, investments rise by a
statistically insignificant .65 percent. Finally, in columns three and four in Table 6 we replace the linear
forecast variable by a dummy variable indicating a “bad” forecast - whether the forecast value was less
than 98 (98% of normal rainfall) - which is observed in approximately half the sample-period values. The
effects of having this pessimistic forecast is to lower planting-stage investments by 15.8 percent overall,
and by over 18 percent in the skill villages, compared with only 4.4 percent in the Andhra villages.

c. Rainfall, rainfall forecasts and farm profits. In this section we assess the profitability of
accurate rainfall forecasts and further verify that that ¥ < 1. The responsiveness of farm profits to

rainfall is an important dimension of the economic environment. The model implies that if farm profits
are higher when seasonal rainfall is higher, and R; > Rjp, as we have seen, then we can conclude that ¥

< 1. We use the ICRISAT panel of farmers in the non-Andhra villages where the forecast has skill and
farmer investments evidently respond to forecasts. The number of farmers with at least two
observations in these villages is 557. Our measure of profits is the real value of agricultural output minus
the value of all agricultural inputs, including the value of family labor and other owned input services.°
As before when we assessed forecast skill, we use the total amount of rainfall in the kharif period as our
measure of rainfall. The first column of Table 7 reports the estimates of seasonal rainfall on profits in a
guadratic specification. For all values of kharif rainfall observed in the data, the effect of rainfall on
profits is positive and statistically significant. Thus, the profit, risk-taking and investment estimates are
consistent with 7 < 1.

Given the forecasts and realized rainfall over the period we can quantify the average gains to
farmers from having correct forecasts (at the sample skill level) over the sample period — the
profitability of forecasts. The key advantage that the forecast provides is that it allows farmers to exploit
the gains from higher rainfall and to minimize the losses from lower rainfall. We have seen that indeed
farmers invest more and take more risk when there is an optimistic forecast. We should therefore
observe that when there is a good forecast, increases in rainfall increase profits more than when there is
a bad forecast, and symmetrically, when rainfall declines, the loss in profits is less when there was a
pessimistic forecast compared with a forecast of normal weather.

To test whether we in fact observe significant gains from the forecasts, we add in the second
column of Table 7 interactions between the two rainfall variables and the dummy variable indicating
whether the forecast value was less than 98. The squared rainfall/forecast interaction term is highly
statistically significant, and is negative — when the forecast is bad, the positive effect of rainfall is

10 Our model suggests that the value of output should be discounted by r, the return on risk-free assets between
the time of input application and the time of harvest. Appendix Table A shows the nominal annual interest rates of
formal and informal savings accounts held by the ICRISAT households. 85% of the households have positive
savings balances. The average nominal interest rate (weighted by value of deposit) is 10.4%. Average annual
inflation over the span of the ICRISAT survey was 10.6%. Therefore, we set r=1 and do not discount output when
we calculate profits.
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attenuated, as farmers invest less and more conservatively. To quantify the gains, we computed the
derivatives of the rainfall effects on profits at mean rainfall when there is a forecast of good weather
and when there is a forecast of bad weather. These derivatives and their associated standard errors are
also reported in the second column of the table. The estimates indicate that when the forecast is good,
on average profits increase by 37 rupees for every millimeter increase in realized rain, and when the
forecast is bad, the rate of profit decrease when rainfall declines by one millimeter is only 29 rupees.
The difference across the two forecast effects of 8 rupees per millimeter of rain is statistically significant
and is the net gain from having correct forecasts, at the level of skill and thus investment/risk-taking
responsiveness in the sample. This suggests that if in a bad monsoon rainfall is lower by one-half a
standard deviation and in a good monsoon it is higher by one-half a standard deviation profits are
increased by 11.5 percent when forecasts are correct. Of course, if the forecasts are incorrect, this is the
loss. The net gain is from the forecasts being correct more than half the time — thus, the greater the
forecast skill the greater the gain, even ignoring that increases in forecast skill also amplify farmers’
responses, as we have seen, and thus also increase the net gain. Given that there are 118.7 million
farmers in India (2011 India census), the 11.5% increase in profitability from a correct forecast, if the
same level of average forecast skill observed in the ICRISAT villages applied to all of India and using the
mean profits of the ICRISAT farmers in 2011 rupees as the base, implies a total gain of 29.1 billion rupees
accruing to farmers, with little administrative costs of delivery.

5. Forecasts, Minimum Wages and Planting-Stage Worker Out-migration

Our estimates from the sample of farmers indicated that forecasts affect farmer investments
and risk-taking, the more so the greater is forecast skill, and farmers benefit from greater forecast skill in
the form of higher profits. The effects of forecasts on worker wages, however, depends also on what
happens to worker supply, on worker migration responses. Our estimates of farmer behavior, consistent
with the model, indicate that a pessimistic forecast decreases worker demand in the planting period,
which should lower planting-stage wages in equilibrium. However, the model also suggests that
pessimistic forecasts increase out-migration, and thus lower supply. The net effect on worker wages in
the planting stage is theoretically ambiguous. In this section we estimate the forecast response of
worker out-migration immediately after the rainfall forecast. Specifically, we estimate the probability
that a male worker leaves the village for work in July and August. We use two data sets, a panel of
workers from the 2010-2014 rounds of the ICRISAT data in the villages outside of Andhra Pradesh and a
panel of districts from four rounds (62, 63, 64, 66) of the National Social Survey (NSS), covering the
periods 2005-2007 and 2009. During this period, we need to take into account the NREGA (real)
guaranteed minimum wages that were in effect. The model implies that where the wages are higher,
out-migration is lower and that higher minimum wages blunt the effects of the forecast on out-
migration. Thus, we merged in each data the state-and year-specific real statutory minimum wages
associated with the NREGA program.

We first obtain estimates from a panel of males aged 19-49 from the 2010-2014 rounds of the
ICRISAT data in the villages outside of Andhra Pradesh. The specification we estimate is:

Sije = 1 Fje + aqwje + azFjewje + A + &, (18)

where Sit = 1 if a male worker j aged 19-49 residing in area j is located outside the village in year t in the
months of July and August; Fit = 1 if the forecast value is below 98 (low rainfall); wj, is the real
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statutory minimum wage associated with NREGA in area j at time t; Aij = worker fixed effect; and &i =

iid error. The model predicts that &; > 0 and a3 < 0.

The first column of Table 8 reports the estimates from a specification that omits the interaction
between the minimum wage and the forecast. The estimates indicate that, consistent with the model, a
pessimistic forecast increases out-migration, by 2.4 percentage points, a 37 percent increase at the
sample mean out-migration rate (6.4 percent). On average across the period a higher minimum wage
lowered out-migration. However, while the minimum wage effect is statistically different from zero, it is
small — a one standard deviation increase in the wage decreases out-migration by only 0.8 percentage
points. However, as is seen in the second column of Table 8 in which the interaction between the
forecast and the minimum wage is included, the inhibiting minimum wage effect on out-migration is
significantly higher in absolute value when there is a pessimistic forecast, consistent with the model. The
estimates indicate that when the forecast is not pessimistic, there is no significant effect of a rise in the
minimum wage on out-migration, but when the forecast is pessimistic a one standard deviation increase
in the real minimum wage decreases out-migration by 1.5 percentage points (23 percent). The forecast
effect on out-migration is also reduced significantly — when the forecast is pessimistic, a one-standard
deviation increase in the minimum wage lowers the positive effect of the forecast on out-migration by
64 percent.

As noted, the limited geographic coverage of the ICRISAT survey prevents examining how
forecast skill affects forecast responsiveness. The NSS has national coverage and thus we can exploit the
geographic variation across India in forecast skill that we obtained using the REDS data. Selected rounds
of the NSS contain information on temporary migration in Schedule 1.0, which ascertains the number of
days away from home in the last month. Because the NSS collects information in every month of the
year, we can look at July/August planting-stage out-migration using the rounds administered in August
and September. We use data on male agricultural workers in rural areas who are residing in the districts
common with those in the REDS data set. We thus merge the estimates of skill obtained from the REDS
data with the NSS worker data to assess if forecast skill matters for migration decisions.

There are two main limitations of the NSS for our analysis. The first is that the NSS is not a panel
of individuals or households. It is panel of administrative units that are larger than villages but smaller
than districts. We thus need to control for both time-invariant worker characteristics and the
agroclimatic characteristics of the villages. The second limitation of the NSS data is that there is no
rainfall information. We thus merge TRMM satellite data on rainfall over the relevant periods to the NSS
data at the village level. Comparisons of the time-series of the village-matched TRMM data with the
REDS and ICRISAT ground-based rainfall indicate that the satellite matching is not very accurate. We only
use the first two moments of the TRMM rainfall data as village-level control variables. The distribution
of moments of the TRMM and ground-based rainfall time-series are substantially more correlated at the
village-level than are the year-to-year values.

The specification we use for estimation is:
Sije = @1Fje + a2 Fjeqj + azwje + auFjrwje + asFjwjeq; + agZije + pj + &, (19)

where Sit = 1 if a male agricultural worker i aged 14-49 residing in area j is in located outside the village
in year t in the months of July and August; Fit = the forecast at time t in area j, measured as whether the
forecast value is below 98 (low rainfall); wj.= the real statutory minimum wage associated with NREGA
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inareajattimet; (j =forecast skill in areaj (average correlation between rainfall and the forecast
across the REDS sample villages in the district, set to zero if <0); = area fixed effect; and & = iid
error. We also include in the specification as controls Z; ¢, which includes the worker’s schooling, age

and age squared, the household’s landholdings, and the mean and standard deviation of rainfall in the
worker’s village. The model predicts that @, < 0 and a5 < 0.

The first column of Table 9 reports the estimates of the determinants of planting-stage out-
migration omitting the interaction variables. The estimates show that a forecast of bad weather, just as
in the ICRISAT sample, significantly increases out-migration in the planting stage, the more so the
greater the skill of the forecast. At the sample mean skill for districts with skill (.224) the point estimates
indicate that a bad forecast increases planting-stage migration by 20 percentage points, a 54 percent
reduction in out-migration. On average the effect of the minimum wage over the period was not
statistically significantly different from zero. However, as seen in column two of the table, a higher
minimum wage significantly reduces out-migration in the planting stage when the forecast predicts low
monsoon rainfall (only) when the forecast has skill, again consistent with the model. The point estimates
indicate that at the mean skill, an increase in the minimum wage by one standard deviation reduces out-
migration by 23.5 percentage points (64 percent) when the forecast indicates low monsoon rainfall.

6. Forecasts, Minimum Wages and Equilibrium Planting-stage Wages

The estimates of the effects of a bad forecast on planting-stage farmer investments suggests
that such forecasts reduce the demand for labor in the planting stage and thus would lower equilibrium
wages. However, also consistent with the model, forecasts of low rainfall induce greater out-migration
in the planting stage, which would raise planting-stage wages. The net effect on equilibrium planting-
stage wages resulting from a pessimistic forecast is thus an empirical question. In this section we
estimate the effects of the forecast on equilibrium wages in the planting stage. Given our theoretically-
consistent finding that a higher minimum wage inhibits the migration response to forecasts, we also test
whether higher minimum wages lower equilibrium wages in the planting stage when rain shortfalls are
forecast. We again use the sample of male workers from the ICRISAT panel survey residing outside of
Andhra Pradesh and the sample of men in the NSS data.

The first column of Table 10 reports the worker fixed-effects estimates of the effects of a bad
forecast on the log of agricultural wages in the planting stage for the ICRISAT sample of male workers
aged 19-49 along with the estimate of the effect of the statutory minimum wage. The estimates indicate
that on net a bad forecast raises wages in the planting stage — the migration/supply response evidently
dominates such that wages are 5.7 percent higher when there is a pessimistic forecast. And, on average,
higher minimum wages are associated with higher equilibrium planting stage wages. However, as the
estimates in the second column of Table 10 indicate, the net effect of a rise in the minimum wage on the
equilibrium wage in the planting stage when there is a bad forecast is negative. A one-standard
deviation in the real minimum wage decreases the planting-stage equilibrium wage by almost 3.7
percent when the forecast suggests a low-rainfall kharif season.

The estimates from the NSS data for equilibrium planting-stage wages are somewhat different
from those from the ICRISAT data in areas where the forecast has skill. In the second-column of Table
11, which contains estimates from the full specification, the forecast of bad weather and its interaction
with the real minimum wage are both statistically different from zero. The point estimates indicate that
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at the mean real minimum wage and average skill in the skill areas, a pessimistic forecast lowers
equilibrium planting-stage wages, but only by 2.1 percent. However, as also found in the ICRISAT survey
data, a rise in the minimum wage when the forecast is bad lowers the equilibrium planting-stage wage.
The point estimates indicate that a one-standard-deviation increase in the minimum wage would lower
the equilibrium wage in the planting stage by 4.7 percent, a result similar in magnitude to that obtained
from the ICRISAT data.

7. Forecasts, Rainfall, Minimum Wages and Equilibrium Harvest-stage Outcomes

Planting-stage migration decisions are made prior to the realization of rainfall based on
expectations of subsequent rainfall, which are evidently influenced by the IMD forecast. Harvest-stage
migration in contrast occurs after the realization of rainfall and thus is not only affected by the planting-
stage forecast (due to its effects on planting-stage migration and the planting decisions of farmers) but
also by the realizations of rainfall. Harvest-stage equilibrium wages are also affected by both rainfall
outcomes and the forecast. Higher rainfall increases output and thus raises labor demand, and in
equilibrium, despite higher rainfall lowering out-migration, raises equilibrium wages. However, the key
insights of the model are that the effects of any determinant of harvest-stage migration and wages are
affected by the rainfall forecast — rainfall as well as minimum wages interact with the forecast. In
particular, when the forecast of rainfall was pessimistic, the effects of changes in rainfall and the
minimum wage on out-migration and wages are attenuated compared with states of the world in which
the forecast is optimistic. And, as we have shown, it is theoretically possible that when there is a bad
forecast but normal rainfall a higher minimum wage can lower harvest-stage equilibrium wages.

In this section we test the implications of the model for the determination of harvest-stage out-
migration and equilibrium wages. Because rainfall is a key determinant of harvest-stage outcomes, we
obtain estimates from the ICRISAT panel of workers, making use of the village-level daily rainfall
information contained in the survey. We again focus on the workers in the villages outside of Andhra
Pradesh, where the IMD forecast has skill. The equation we estimate is:

Yijt = T1Fjp + Tawje + M3t + T Fjewje + s Ferye + Ay + &ijes (20)

where y;;; = 1if a male worker i aged 19-49 residing in area j is in located outside the village in year t in
the months of September and October or the log of the real daily wage in those months; F;;; = 1 if the
forecast at time t in area j is below 98 (low rainfall); w;.= the real statutory minimum wage associated
with NREGA in areaj at time t; rt = rainfall in the months of July through September; Aij = worker fixed
effect; and &t = iid error. The model predicts that for migrationmy; > 0, m,, w3 < 0,4, w5 > 0. For

equilibrium wages, the signs are opposite to those for migration: m; < 0,7, 3 > 0,14, 5 < 0.

The first column of Table 12 reports the coefficients for the rainfall, forecast and minimum wage
variables omitting the interaction terms in the equation determining harvest-stage out-migration.
Consistent with the model, migration at the harvest stage is lower when rainfall and the minimum wage
are higher but out-migration is higher when the planting-stage forecast was pessimistic. All coefficients
are statistically significant. In the second column the interaction terms are added. All three interaction
coefficients are statistically significant from zero. Consistent with the model, the positive effect of a bad
forecast on out-migration is significantly decreased at higher values of the statutory minimum wage. The
point estimates indicate that at the sample mean values of rainfall and the real minimum wage, a bad
forecast increases harvest-stage migration by a statistically significant 35.6 percent; but when the
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minimum wage is one standard deviation higher, the same forecast only reduces out-migration in the
harvest stage by a statistically insignificant 5.3 percent. On the other hand, a rise in the minimum wage
of one standard deviation at the sample means when there is a forecast of good weather reduces
harvest-stage out-migration at sample mean rainfall by only 5.4 percent but reduces harvest-stage out-
migration by 24.6 percent if there was a pessimistic forecast. The only coefficient that deviates from the
model predictions is that for the interaction between the forecast and rainfall, which suggests that
rainfall has a stronger negative effect on harvest-stage out-migration when the forecast was for reduced
rainfall.

The results in Table 12 permit us to calculate a lower bound to the gain that workers receive
from a correct forecast. We show in the Appendix that, abstracting from the effect of forecasts on
equilibrium wages, the gain in expected annual earnings of a landless worker from having a correct
forecast is equal to

1
7 Mg = M) ((Mgs = Mge)wyr — My = Myg)wyr ) (21)

Planting stage migration probabilities after bad and good forecasts are taken from column 1 of Table 9;
the differences in migration rates in the harvest stage in good and bad states, after good and bad
forecasts are drawn from column 2 of Table 12 (using a one standard deviation increase in rain as the
gap between good and bad season rainfall). The good and bad harvest stage wages are calculated using
a base bad harvest stage log wage of 7.39, which is the 25" percentile of the harvest wage distribution,
along with the coefficient on rainfall from column 1 of Table 13. The expected gain from a correct
forecast to a migrant in the ICRISAT sample is small, because the skill of forecasts in the ICRISAT sample
is low, implying a very small difference in migration patterns by forecast. ICRISAT migrants gain Rs. 25,
on average, from a correct forecast. Since only 2.35% of landless workers change their migration
decisions based on the forecast, the overall value of a correct forecast to the 105 million casual workers
across India is Rs. 61 million. This is a lower bound estimate. We have shown that as forecast skill
increases, planting stage migration responsiveness to forecasts increases, and the gain to a correct
forecast rises accordingly. And the existence of NREGA, which provides a wage floor for stayers, also
reduces the responsiveness of migration to forecasts.

In contrast to the results for out-migration, all of the estimated coefficients of the log wage
equation conform to the predictions of the model. The estimates are reported in Table 13. In the first
column, as predicted, higher rainfall and a forecast of a poor monsoon raise harvest wages as do higher
minimum wages on average. As seen in column two, all of the interaction coefficients are statistically
significant. In accordance with the model, real harvest-stage wages rise less with rainfall if there was a
pessimistic forecast and in areas where minimum wages are higher. And the positive effect of a rise in
the minimum wage on equilibrium harvest wages is less when the forecast predicted a bad monsoon.

Indeed, the point estimates in the second column of the table indicate that a rise in the
minimum wage can reduce the harvest equilibrium wage when the forecast is pessimistic as suggested
by the model. In particular, when the forecast predicts a normal or better monsoon, at average kharif
rainfall levels, a one standard deviation increase in the minimum wage pushes up equilibrium harvest-
stage wages by a statistically significant 10.9 percent. However, when the forecast was for a bad
monsoon, the same rise in the minimum wage under the same (normal) realized rainfall conditions
lowers harvest wages by a statistically significant 5.5 percent. As indicated by the model, this occurs
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when actual rainfall is normal and the minimum wage is binding in the planting stage but not the harvest
stage. The binding minimum wage together with the (incorrect) pessimistic forecast reduce farmer
investments and increase the supply of local workers, both of which lower the harvest wage in
equilibrium when the minimum wage is not binding in that stage. Note that the estimates suggest that if
realized rainfall is at its sample low and the forecast is pessimistic (and thus correct), a rise in the
minimum wage still raises equilibrium wages, by a marginally statistically significant 2.8 percent. The
perverse effect of the minimum wage on equilibrium wages is thus due to an inaccurate forecast;
increasing forecast skill would thus reduce the incidence of cases in which workers in the harvest stage
are harmed by increases in the minimum wage (combined with guaranteed employment).

8. Conclusion

In this paper we have set out a parsimonious dynamic equilibrium model of rural economies in
low-income countries that incorporates a number of their fundamental properties: the importance of
agriculture and its sequential decision-making, the role of temporary migration, the salience of weather
risk, and the necessity of decision making by both laborers and farmers prior to the resolution of
uncertainty. We used the model as a framework to assess empirically, based on panel data from India,
the effects of long-range weather forecasting in the presence of variable weather outcomes and a
guaranteed-employment minimum-wage scheme on the input and technology choices of farmers, the
migration decisions of laborers, farm profits and equilibrium wages in the planting stage and at harvest.

We first showed, using ground-level times-series data on monthly rainfall at a fine geographical
resolution across India, that the monsoon forecasts issued by the India Meteorological Department in
recent years exhibited skill only in a few contiguous regions in India. Our empirical results, examining
investments and migration decision as well as profits and wages, indicated that only in areas in which
the forecasts were skillful, did the forecast significantly affect outcomes. Moreover, within the skill
areas, the higher the skill level of the forecasts, the greater its effects. Where the forecast effects were
salient, we found that they were aligned with the predictions of the model: favorable rainfall forecasts
lead to a higher level and risker planting-stage investments by farmers, lower rates of planting-stage
out-migration migration, and lower equilibrium wages in the planting stage. We showed that the
forecasts in particular raised farm profits on average by allowing farmers to allocate resources ex ante to
exploit rainfall conditions.

The effects of weather forecasts on equilibrium wages in the harvest stage were more complex,
depending on both rainfall outcomes, the level of minimum wages, and whether the forecast was
pessimistic or optimistic. For example, harvest stage out-migration and wages were more sensitive to
rainfall outcomes when the rainfall forecast was favorable compared to when it was unfavorable. And,
in areas with higher minimum wages, responses to weather outcomes and to the forecast were less
strong, with average equilibrium wages actually lower in high minimum-wage areas if the forecast was
pessimistic.

Our results suggest that expected improvements in long-run weather forecasting skill will have
economically significant beneficial effects for rural populations, while avoiding the administrative costs
of delivering traditional contract-based services to the poor that rely on personal interventions. Our
estimates from an area in India where the forecasts have some skill and farmers and landless laborers
respond to the forecasts indicate, if that level of forecast skill were applicable to all of India, that the
expected total gains from a correct forecast would be over 29 billion rupees, a small part of which also
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benefits the landless. Our results also imply that any evaluations of interventions in rural areas in India,
such as NREGA, need to take into account the specific forecasts in place as well as realized weather
outcomes at the time of the interventions to maximize external validity. Finally, our model ignored
networking among rural agents. The integration of dynamic equilibrium elements incorporating
forecasts and production decisions in network models would appear to be a fruitful agenda for future
research.
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Figure 2. Proportion of Rural Workers in Urban Areas Among Men Aged 19-49,

007 by Month (Source: ICRISAT VLS 2010-2014)
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Figure 3. Proportion of Rural Workers Away from Home Among Men Aged 19-49,

0.14 by Month (Source: NSS Round 66, 2009/10)
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Figure 4. Proportion of Workers Among Men Aged 19-49 in Urban Areas in July,
by Year (Source: ICRISAT VLS 2010-2014)

0.14

0.12

N
sl N\

0.06 \ /

AN _

0.02

2010 2011 2012 2013 2014



Figure 5: Lowess-Smoothed Relationship between Inter-Village Distance (Km)
and June-August Rainfall Correlation, Andhra Pradesh and Uttar Pradesh 1999-2007
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Table 1
IMD Forecasts (Normal=100), by Area and Year, for the ICRISAT Villages, 2009-2014

Southern Peninsula: Central:
Year/area Andhra Pradesh, Karnataka Gujurat, Maharashtra, Madhya Pradesh
2009 93 99
2010 102 99
2011 94 95
2012 95 96
2013 98 98

2014 93 94




Table 2
Forecast Skill and Rainfall Characteristics, Six Original ICRISAT Villages 2005-2011,

by Village
State Maharashtra Andhra Pradesh
Village Kalman  Kanzara Kinkheda Shirapur Aurepalle  Dokur
Mean July-September rainfall 415.8 582.5 571.1 360.9 586.4 5254
(mm)
CV July-September rainfall 753 750 736 741 488 213

Skill (forecast-rainfall p) 451 173 193 397 -.401 -.161




Table 3
District Characteristics and Forecast Skill, 1999-2007

REDS Districts
Skill
Sample All Districts Districts
Skill
Variable District g g
Mean &harif rainfall (x 10‘3) (0.389*** 0.14 71k 0.0215
(0.166) (0.06906) (0.124)
CV kharif rainfall  (x 10‘3) -0.185 -0.0660 -.0913
(0.425) (0.232) (0.3606)
Fraction farmers growing rice 0.282%*x 0.142%*x 0.143
(0.104) (0.0435) 0.117)
Fraction of villages with a bank < 0.208*** -0.0760 -0.0311
5 km (0.0917) (0.0411) (0.0838)
Fraction soil red -0.367%** -0.153%** -0.0982
(0.165) (0.0810) (0.2006)
Fraction soil black -0.31 7%k -0.11 100 -0.0236
(0.143) (0.0562) (0.147)
Fraction soil sandy -0.266 -0.172%* -0.164
(0.238) (0.0939) (0.223)
Fraction soil clay -(0.292xk% -0.142%% -0.0635
(0.143) (0.0630) (0.124)
H,: All coefficients = 0 F [p] 0.15 5.58 0.78
[0.0000] [0.0000] [0.6253]
N 97 97 39

Robust standard errors in parentheses.



Table 4
Farmer Fixed-Effect Estimates of the Effect of the IMD Forecast
on Planted HYV Acreage: ARIS 1969-71

Variable Farmers Where There are
All Farmers Forecasts
IMD forecast index 1.33%%k 1.34k
0.411) (0.419)
N 4,784 2,704

Standard errors clustered at the village level in parentheses. Specification contains a linear trend.



Table 5
Farmer Fixed-Effect Estimates of the Effects of the IMD Forecast and Forecast Skill
on Log Planting-Stage Investment, REDS 1999-2007

Variable No additional Rainfall, rice and Rainfall, rice, bank
Interactions bank interactions and soil interactions
IMD forecast -0.0604 -0.152%* -0.0612
(0.0397) (0.0796) (0.0796)
IMD forecast x g 0.166%** 0.179%* 0.150
(0.0788) (0.0951) (0.109)
H,: Rainfall, rice and bank - 1.31 1.18
interactions = 0, F(4,208)  [p] [0.2659] [0.3187]
H,: Soil interactions = 0, F(4,208) - - 1.09
[p] [0.3640]
H,: Rainfall, rice, bank and soil - - 1.45
interactions = 0, F(8,208)  [p] [0.1792]
N 4,438 4,438 4,438

Standard errors clustered at the district level in parentheses. g=district-average of the correlations of
IMD forecasts with village-level rainfall in the 242 ARIS/REDS villages, 1999-2006. All specifications
include survey year.



Table 6
Farmer Fixed-Effect Estimates of the IMD Forecast Effect

on K)arif-Season Log Planting-Stage Investment
ICRISAT Villages, 2009-2014

Variable (1) 2) 3) “
Forecast 0.0245%** 0.0322%** - -
(0.00513) (0.00574)
Forecast x no skill village - -0.0257x% - -
(0.0124)
Forecast<98 - - -(0.158%¢x -0.1871%x
(0.0251) (0.0269)
Forecast<98 x no skill village - - - 0.137*
(0.0787)
N 3,403 3,403 3,403 3,403

Standard errors in parentheses. All specifications include a linear trend variable.



Table 7
Farmer Fixed-Effect Estimates of Rainfall and the IMD Forecast Effects
on K)arif-Season Farm Profits: ICRISAT Villages, 2009-2014

Variable (1) 2)
Total village rainfall (mm) in Kharif season 88. 1k 98.0#H*
(12.2) (13.2)
Rainfall squared -0.0425%+* -0.04577¢
(0.00638) (0.00654)
Forecast<98 x rainfall - 10.3
(7.35)
Forecast<98 x rainfall squared - -0.0137**
(0.00710)
(a) dz/dRain with good forecast at mean rainfall: - 306.6%**
(5.68)
(b) dz/dRain with bad forecast at mean rainfall: - 28. 5%k
(5.51)
(@) - (b) - 8,04
(3.55)

N 2,478 2,478




Table 8
Household Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Planting-Stage Migration by Rural Men Aged 19-49
ICRISAT Villages, 2009-2014

Year/area (1) 2)
Forecast<98 0.0235%** 0.1 84
(0.00514) (0.0745)
Real minimum wage -0.000948*** 0.0000219
(0.000431) (0.000451)
Forecast<98 x minimum wage - -0.00165%+*
(0.000759)
N 8,025 8,025

Standard errors in parentheses clustered at the household level. Specification also includes the age and

age squared of the respondent.



Table 9
District Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Planting-Stage Migration by Rural Men Aged 14-49
NSS Rounds 62,63,64, and 66 ARIS/REDS Districts

Year/area (1) 2)
Forecast<98 0.0400%** -0.103
(0.0176) (0.123)
Forecast<98 x ¢ 0.723%4¢ 8.543**
(0.130) (0.689)
Real minimum wage -0.292 0.140
(0.233) (0.421)
Forecast<98 x minimum wage - 0.998
(0.628)
Forecast<98 x minimum wage X ¢ - -4 5.4
(3.9406)
N 3,907 3,907

Standard errors in parentheses clustered at the household level. Specification also includes the age and
age squared, schooling and total owned land of the respondent and the mean rainfall and standard

deviation of rainfall in the sampling unit. g=district-average of the correlations of IMD forecasts with
village-level rainfall in the 242 ARIS/REDS villages, 1999-2000.



Table 10
Household Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Planting-Stage Log Wages for Men Aged 19-49
ICRISAT Villages, 2009-2014

Year/area (1) 2)
Forecast<98 0.0569*** 1.51 4%+
(0.0199) (0.244)

Real minimum wage 0.00239** 0.01 1 2%k

(0.00143) (0.00199)
Forecast<98 x minimum wage - -0.0149%%*

(0.00244)

N 5,139 5,139

Standard errors in parentheses clustered at the household level. Specification also includes the age and
age squared of the respondent.



Table 11
District Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Planting-Stage Log Wages for Rural Wage Workers Aged 19-49
NSS Rounds 61,66, and 68 ARIS/REDS Districts

Year/area 1) 2)
Forecast<98 -0.283 -1.016
(0.225) (1.131)
Forecast<98 x ¢ 0.593 7.67 5k
(0.6406) (3.382)
Real minimum wage 1.477 1.758
(1.632) (1.760)
Forecast<98 x minimum wage - 4.126
4.777)
Forecast<98 x minimum wage X ¢ - -35.24%**
(15.37)
N 3,023 3,023

Standard errors in parentheses clustered at the household level. Specification also includes the age and
age squared, schooling, and gender of the respondent and the mean rainfall and standard deviation of
rainfall in the sampling unit. g=district-average of the correlations of IMD forecasts with village-level

rainfall in the 242 ARIS/REDS villages, 1999-20006, where positive.



Table 12
Household Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Harvest-Stage Migration for Men Aged 19-49
ICRISAT Villages, 2009-2014

Year/area (1) 2)
Village rainfall (mm) -0.00000201 -0.0000669%**
(0.000006) (0.0000349)
Forecast<98 0.0163%** 0,203k
(0.00422) (0.0809)
Real minimum wage -0.000816*** -0.00021
(0.000394) (0.000539)
Forecast<98 x rain - -0.0000685%*
(0.0000365)
Minimum wage X rain - -0.000001 55%**
(0.000000641)
Forecast<98 x minimum wage - -0.00166%*+*
(0.000761)
N 9,621 9,621

Standard errors in parentheses clustered at the household level. Specification also includes the age and
age squared of the respondent.



Table 13

Household Fixed-Effect Estimates of the IMD Forecast and Minimum Wage Effects
on K/ arif-Season Harvest-Stage Log Wages for Men Aged 19-49

ICRISAT Villages, 2009-2014

Year/area (1) 2)
Village rainfall (mm) 0.000660*** 0.00346%**
(0.0000861) (0.000759)
Forecast<98 0.0567*** 1.99%kk
(0.0211) (0.301)
Real minimum wage 0.0049 3% 0.0238%+*
(0.00135) (0.00218)
Forecast<98 x rain - -0.000441*+*
(0.000123)
Minimum wage X rain - -0.000034 3*
(0.00000784)
Forecast<98 x minimum wage - -0.0186***
(0.00283)
N 6,007 6,007

Standard errors in parentheses clustered at the household level. Specification also includes the age and

age squared of the respondent.



Appendix
Preliminaries: Demand for Labor and Technology Choice
1. Symmetry

The model with if F = G with g = q, is indistinguishable from that with F = Band q; = 1 — q,.
Therefore the equilibrium wage vector w; = wg if ¢ = 0.5.

2. Choice of Technology is separable

The farmer chooses the level of risk knowing the forecast and wage vector. Consider F = G; the

argument is entirely symmetrical for F = B. The first order conditions with respect to labor demand and
technology choice are:

[(1 —q)(1 —pwye)(1 — RG)C +q(1+ Rg)(1 — pwys)Oc G] wmcm (22)

=0
q(1 = pwyg)cyd — (1= q)(A = pwyg)cye < 0;Rg =0 (23)
(22) holding with complementary slackness.
So
1 (24)
e _ ((1 — pwp)(1 — CI))V
Cq6 B (1 - prG)qe
and from the budget constraints we have
cpe (1= pwye)(1 —Rg) (25)

CgG B (1 - prG)H(l + RG)

(23) and (24) imply

1, dl (26}
1 <ﬂ)y ((1—q))
0(1 — pwye) q

-1
1—pw v (A-q)
(o) (452)

Parallel calculations provide the analogous result for Rg. For R; > 0andy < 1,

R; = max|0,




1
2 (1—q\yv 1
OR; 7‘4( q ) q?
= 5 >0
dq 1
1+4 ((1 — q))y
with 4 = (—1“’wa )T
0(1-pwyc)
3. Labor Demand
From (21) and (22)
p-1 (1 - pwys)qb
X156 |1 =@ = pwpg)(1 — Rg)
P [ K PWb6 ¢ (1= pwpe)(1 —q) 57
e\ (27)
+q(1+Ry)(1- wga)e] = wyg (—)
CgG
From the budget constraints we have
B-1 Y — W1x1G 7
2Bx16 q(1 — pwys)l = wyg 7 (28)
Bxlc(l + R;)(1 — prG)
Therefore
— y-1,,_
BBy _ (Y —wix16) Ywig(1+ Re)Y (1 - pwgg)” 677! ~0 (29)
1G Z,Bq
implicitly defines x. Define the LHS of (28) as G,. Noting that
—y— y-1_,_
an B-2-By VW1C1GY 1W1G(1 + RG)Y(l - prG) 97/ 1
=(B-1-pxg - <0
d0x 2Bq (30)
y-1_.,_ —y— —
G, —(1+ RG)V(l — png) (224 1(yclg 1x1Gw1G + clg) <0
owsg 2fq
We have
Implication A:
dx
¢ <o.
dw;;
Similarly
06y (Y —wix16) Ywig(1 + Rg)" (1 - PWg(;)y_z‘gy_1
=@y—-1p <0 (31)
Wy 29
for y < 1, and we can show

dx dx
16 o 16 <.

dwie  dwgg

Planting stage labor demand after a forecast of G is increasing in the skill of the forecast.
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-1
G, (Y- wix16) Y wig(1 - PWgc)y ov—1
dq 2Bq?
R,
— 14+ RV ! _]
qy(1 + Rg) 3q

[(1 + R
(32)

3Gy
Fory <1, 24 >0, so

dxq¢

> 0.
dq

4. Migration and wages

There will be a cutoff planting stage reservation wage w,; such that a worker migrates for the planting
stage if and only if he draws an urban wage for the planting stage greater than that reservation wage

Wy 2 WyF ).

w,,r is defined as the urban wage offer that equalizes a worker’s expected utility from migrating in the
planting stage with the expected utility from working in the village in the planting stage given a forecast
of F.

Consider F=G. w,;is defined by

W:v(wye) + qwge fav(Wee) + (1 = wyefz) E(v(wy) |wy, > wg)]
+ (1= Dwpefarwpe) + (1 — wpg f2)E;(v(wy,) [wy, > wyg)]
- {V(Wm)
+ q[Wnglv(WgG) +(1- Wngl)El(v(Wu)lwu > WgG)]
+ (1 — Qwpefiv(wpg) + (1 — wyg f1)Es(v(wy) lwy, > wpe)1}
=0

(33)

The LHS of (32), which we denote as W, is monotonically increasing in wyg4, so a simple application of

the IFT shows that (32) defines the trigger urban wage as a function of the rural wage vector wg:
Wy (ng, WgG» WbG). It is immediately apparent that 3“:—“6 > 0. The effects of the harvest stage wages
1G

w > 0. Differentiating (32):
G

. . dw;, ., 0
on the trigger urban wage are positive as well. —& > 0 if
dwgg owg



aw
AW,g =q [(fz - f1)V(WgG) + WgG(fz - f1)V'(WgG) - szz(V(Wu)|Wu > WgG)
g

dE, (v(wu)|wu > WgG)

+ (1 - Wngz) dwog + flEl(v(Wu)|Wu > WgG)
g
dE ) (wy, >
(1 o) A = i)

=4q [(fz - fl)v(WgG) + WgG(fZ - f1)V'(Wgc) - szz(V(Wu)lwu > WgG)

+(1—ngf2)$2gafz

— (1 — Wg(;fl)#

EZ(U(Wu)lwu > WgG) + f1E1(V(Wu)|Wu > WgG)

7 El(v(wu)|wu > ng)]
1

= Q[(fz - fl)v(WgG) + WgG(fZ - fl)v,(WgG) - szz(V(Wu)lwu > WgG)
+ fZEZ(v(Wu)|Wu > WgG) + flEl(v(Wu)|Wu > WgG) - flEl(v(Wu)|Wu > WgG)]
= Q[(fz - fl)v(WgG) + wye(f2 — f1)V'(Wgc)] <0

*
Wy

d w),
Therefore, U
dw

. d - .
& > 0. A parallel calculation shows # > 0, and three similar calculations show
g9G bG

dW;B dW;B dW;B

dWlB ’ deB ! deB

The trigger urban wage offer is less than the growing stage rural wage:

v(wig) — v(wyg)
<q [Wgcfzv(WgG) + (1 - WngZ)El(v(Wu)lwu > WgG)
- (Wgafzv(Wga) + (1 - WngZ)EZ(v(Wu)|Wu > WgG))]
+ (1 = P[wpefvWhe) + (1 — Wi f2) E1 (v (W) Iwy, > wig)
— (Woe f2v(Wpg) + (1 = wig ) Ea (v(wy) [wy, > wig))] (34)
<q [Wgcfzv(Wga) + (1 - WngZ)EZ (V(Wu)lwu > WgG)
- (Wngzv(WgG) + (1 = wyef2) E2(v(wy) [wy, > WgG))]
+ (1 = Wi fvWpg) + (1 = Wy f2) Ex (0 (W) [wy, > wiyg)
— (Whe favWpg) + (1 = Wy ) Ea (v(wy) [wy, > wie))] = 0

The first inequality is a consequence of f; > f,, along with E (v(w,)|w, > w) > v(w). The second
inequality is a consequence of E, (v(wy,)|w, > w) > E; (v(wy,)|W,, > w). Analogous reasoning holds
for F = B.

Therefore,

dM,r dMp
dWlF ’ dWSp

Implication B: migration in the planting stage M1 = (1 — Wy (WlF, Wor, WhE, F)fl), with
0.

Migration in state s of the harvest stage is Mgz = 1 — (S, f; + (1 — S1)f2)Wgp. The supply of labor in
stagelis S} = ;F(wlp, Wy, WpE, F)fl. In the harvest stage, the supply of labor is



‘ Ser = (S1fi + (1 = S)fH)wr ‘ (35) ‘

5. Harvest Stage Equilibrium in the Rural Labor Market

For either forecast, labor demand in the bad state of the harvest stage is less than labor demand in the
good state:

Qur = x0.(1 - Rp) < xP.0(1 + Rp) = Qup

Equilibrium requires that harvest stage labor supply in the good state be larger than harvest stage labor
supply in the bad state (SgF > SbF). Therefore,

SgF SbF —w
($1Aa+(A=-51)f2) = (S1fa+(1-51)f2) bF-

Implication C: wyp =

Specifically,
pxlﬁFB(l + Rr)
WoF _ Sufi+ (A =51)f) _ 0(1 + Rrp) (36)
Wor  pxp(1-Rp)  (1—Rp)
S1itA-=5Df)
In addition,

Implication D: Sy > Spr requires that harvest stage migration is less in the good state than in the bad
state of the harvest period (Myr < Mpp).

Distinguishing the Degree of Risk Aversion

In the absence of a safe asset or credit market, the choice of planting stage labor is the primary tool
for moving resources across stages, while the choice of the riskiness of the technology is the first
order tool for calibrating risk across harvest stage states of nature. If the technology is such that
harvest season profits are always (weakly) higher in the good state, then choosing Rr > 0 implies
that risk aversion cannot be too strong. Define profit in state s of the harvest stage as Qsz(1 — wgp) =

s
Proposition 1: If yp = mpr at R = 0 and Rg > Rg for q € [0.5,1] theny < 1.

. . (1-Rg) 6(1-pwgyg)
Proof: m,r > m,r implies ———= = _—
gF = ToF IMPIeS (R ) 1-pwpg

And R; > Ry implies

<1
(1+Rp)

1

(1-Rg) < (1 - pwyg) >’7_1 (1 — q)% < (1-Rp)
(1+Rg) (1 - prG)H q

Atq =1,

1
<(1 — prG)9>1 4 <1< 6(1 — pwye)
(1 - pwpe) 1—-pwpe



Therefore,y < 1. m
Equilibrium withy < 1

We can reduce the problem of solving for the equilibrium wage vector to two dimensions wheny <
1 by noting that harvest season relative wages (from (35) and (25)) are:

_ 1-y v
) ) =o(qty) &

for J; = 1and Jp = —1. (16) implicitly defines wy, as a function of wyg. To calculate an equilibrium:

1. Forevery wyp, calculate the consistent wy,r from harvest season relative wage equilibrium (16).

. . d
Note thatfory < 1, wa(ng) is monotonic and 1 > £ > (,
deF

!
2. Sothe problemis to find wp = (WlF, ng)’ such that wy = (WlF, WgF,WbF(WgF)) solves the 2

equations:

Sir(WSE) — xp(Wp) = 0

(38)
WgF(SlF(WF)fl + A =Sir(We)f2) —p 9(1 + RF(WF))(xF(WF))B =0

dSlF dSlF _ 651p 6511: deG

We have already established that —— > 0 and = > 0. We have established
WiF deG anG 6wa deG
ds ds dx dx
W GoiE 0, Foo F <0 (39)
dwip  dwgp dwip  dwgp
Define

SgF(WlF: Wyei 4 ) = WgF(SlF(WF)fl + (1 = Sir(Wp)f2)

So
as as ds as
9F _ 1F A5k L _ aSip
T = e ( B f2) = wge G (=) >0
And
dS,p ds
# = wg,:di(f1 —f2) + (Sir(wWp)fi + (1 = S1p(Wp))f2) > 0.
gF Wgr

. . dSgc
A similar calculation shows dZ

> 0.

Define DgF(WlF’ WgG; q) = pG(l + RF(WF))('XF(WF))B SO

dD - d: I
gF B 0
= 6(1+R Wg) )\ Xp(Wpg ! <
dWlF pﬁ ( F( ))( ( )) dWlF
dD - d: I B 0
gF B OR-(w xp(Wp
= 1+R Wpg) )\ Xp(WE ! £ I I L
Therefore



Sy _ Bgr _ o Dy _ Dy

, <0
dwgr ~ dwyp dwgr — dwip (40)

Testable Implications of the Model wheny < 1

Implication 1: Planting state labor demand is higher after a forecast of good rain than after a forecast of
poor rain: X1 = X1p.

By the symmetry of the model, we know that at ¢ = 0.5, x;; = x4, and that d:;—;c = — d;C—;B. Therefore,
d;;‘; >0 = xy5 > xq5. Let ] be the (2 X 2) Jacobian matrix of (37), so that
dwig] [0S16 3 0x16
'dq'z_]l dq  dq
|deG | ngG _ dDgG
l dq J dq dq

and

dle _ ale dWlG ale deG ale
dq  Owyg dq = dwy dq dq

0x16

We established above that the direct effect %q

> (. The conditions on the derivatives in (38) and (39)

. . d
ensure that J is non-singular and that ;C;G

> 0. The algebra is tedious; but the intuition should be clear
from Appendix figure Al.

Implication 2: Planting season migration must be less upon a forecast of good weather than upon a
forecast of bad weather: My; < Mp.

Planting stage labor market equilibrium requires
(1= Myg) = Si6 = %16 > x15 = S1p = (1 — Myp).
Implication 3: The difference in migration in the good state of the harvest stage and in the bad state of

the harvest stage must be greater after a forecast of good weather: My — My > Myp — Myp.

Rc = Rp implies% = ZLB. Rg = Rp and x,¢ > x4 together imply Qg — @y > Qgp — Upp- Hence
bG bB

the change in harvest labor demand is higher and migration fall more after a forecast of good than of
bad.

Implication 4: There is a greater difference between harvest season wages with good and bad weather
realizations after a forecast of good weather than after a forecast of bad weather: % > %.
bG bB

R; > Ry implies from (34)



woo _ 6L+ R) _ 6(1+Rs) _ s
wpe (1 —Rg) (1-Rp) Wwpp

Implication 5: the wage in the good state of the harvest stage after a forecast of good weather is
greater than the wage in the good state of the harvest stage after a forecast of bad weather: wyg >

Wgp.

X1c > X1 and Ry > R, imply for the harvest stage labor markets to clear that

Wy (erofy + (1= x16)f2) = pxigO(1 + Rig) > pxlp0(1+ Ryp)
=wgp(X1pf1 + (1 — x18)f2) > wyp(X16f1 + (1 — x16)12)

because f, < f;. Therefore, wye > wyp.
Wage Floors

A statutory wage floor at a fixed level w,,, generated by an employment guarantee scheme implies that
an equilibrium must have (wlF, Wyr, wa) = wy such that wp = wy,, with labor market clearing
conditions defined in text equation (16). We consider the effect of a change in the level of the statutory
wage floor on equilibrium rural wages.

We now show

Proposition 2: Suppose that the equilibrium wage vector is (W{‘ FrWgp Wp F) = wp such that wi > wy,,
and Wi # w,,. Then if a small increase in the statutory minimum wage w,,, changes the equilibrium
wage vector, it must reduce the equilibrium wage in at least one state of one stage of production.

Proof: The proposition rules out the trivial case in which wi = w,,,: given forecast F, the wage floor is
binding in each state of each stage of production. Rural labor demand is less than rural labor supply in
each state and stage, and the excess supply is employed in the employment guarantee scheme. An
increase in w,, obviously increases all rural wages.

Similarly, the proposition rules out the trivial case of wr > w,,,, where the wage floor is never binding.

We need not consider any case in which wy = wy,, < wj, because the good state harvest stage labor

market equilibrium requires
* * * * * ,B
Wor(SirWr)fi + (1 = Sir(WE)f2) = P9(1 + RF(WF))(XF(WF)) ,
but the bad state harvest stage labor market equilibrium is
* * * * * B
Wpr(Sir(WE)f1 + (1 = Sip(WE))f2) = P(l - RF(WF))(xF(WF)) )
which requires wyr = wyp.

Therefore, for any forecast F, there are 2 cases to consider:



A. The planting stage rural labor equilibrium holds with equality: EQ,z(Wr) = S;p(Wy) —
xp(Wr) = 0. We have shown that S; (W) is monotonically increasing in each of its three wage
arguments, and that xz(wy) is monotonically decreasing in each of its arguments. Therefore,
EQ1r(wg) is monotonically decreasing in each wage. Therefore at least one wage must decline
if wy, increases.

B. The planting stage rural labor equilibrium does not hold with equality (ng = Wm)but the rural
labor market equilibrium in the good state does hold with equality:

wrSirWify + (= SixWi)fo) = pO(1+ Rpwi)) (r W)’ (41)

There are two subcases to consider. Either the rural labor market equilibrium in the bad state
does or does not hold with equality.

i If the rural labor market equilibrium in the bad state of the harvest stage holds with
dwpp

equality, then (16) can be used to define W;F(ng) with > 0. The implicit function

deF
theorem vyields

d oM 0 _
L [WgF (( 1F) (f2 — f1)> —pBO(1 + Rp) a::l xf 1]

dwy, ow,, m
aMlF aMlF deF
X ((1 MlF)f1+(M1F)f2)+WgF (anF W AWy (f2— 1)
-1
dxq 0xy dwpp\ p-1
pBO(1 + Ry) (anF Bwor dwyr x) <0.

X1r and My are declining in each of their three arguments. f, < f;, so the supply of
labor in the village increases with both wy, and with wy. Labor demand in the village
declines with both wages. Hence harvest stage wages in both the good and bad weather
states are lower in the presence of higher binding wage floors in the planting stage.

ii. The rural labor market equilibrium in the bad state of the harvest stage does not hold
with equality (W, = wip = wp,). (20) then defines wyr(wy,), with the planting stage
wage and the wage in the bad state of the harvest period both equal to w,,. f, < f;, so
the LHS of (20) is monotonically increasing in wyr and wy,. The RHS of (20) is

awgp (W)

dwp,

monotonically declining in wy and wyy,, so <0. m

We show that there exist parameters such that wyz — wiy + (prob(s = glF))(ng — wgp) +
(1 — prob(s = bIF))(WbF — wyr) < 0 by constructing an example. We compare expected
wages when the wage floor in the bad state of the harvest period after a forecast of good
rainfall is 5% higher than what would have been the equilibrium without a binding floor to
expected wages without the wage floor. The expected wage is lower when there is a binding
wage floorwhen Y, =Y; =2,y =0.5,q =051, =0.5,p=0.55,0 =155, f; =14, f, =
0.3. At these parameter values, the equilibrium wages without a binding wage floor are

(ww, W) WbG) = (0.87,1.26,0.16) and when the wage floor is binding in the bad state the
equilibrium wages are (wa,ng,ng = Wm) = (0.82,1.32,0.17).The fall in the planting stage
wage is sufficiently large that the expected value of wage earning for landless laborers
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for landless laborers falls.

Expected Wage Gains from Correct Forecasts

Individuals’ migration decisions in planting depend on the forecast if and only if their draw of an urban
wage during planting falls into the range w; > w,, > wy,. So all of the direct benefits of having a correct
forecast accrue to the set of people who migrate if the forecast is for bad, and not if the forecast is for

good, that is, for the fraction M;5 — M; ;. Suppose the weather turned out well. If the forecast

(correctly) been for good, a worker earns

(1 —wyefi) (WgG + 1711)

2

wig +| fiwgeWye + > (42)
Had the forecast (incorrectly) been for bad, earnings would be
1
(1—Wg3f2) WgB +f_-2
wy + | fawggwyp + (43)

Since bad and good outcomes are equally likely, we can add them up and divide by 2 for the effect. We
consider here the direct effects of the forecast on migration and their consequences for earnings, so we
let wye = wyp = w, < W, = wye = Wyg. The difference in expected returns for correct forecasts from

incorrect forecasts is

(1 —wpf2) (Wb + %)

= |(wy + | fowpwy +

+ Wig

2 2
| fuwgwy + u- ngl)z(wg 7
PR Gallol s o,
[y Co8 )

— Wig

1
~ 2 ((MgB - MgG)Wg — (Mpp — MbG)Wb)

(44)
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Figure Al: Effect of increase in skill

Wig SIG(WlGleG;q) WQG SHG(Wla. WgG;Q)
X16(Wi6, W6: 9) Dy (wic, wye:q)
X16 Dy
Wi Sig [Wu;: Waii Q] W S -Sqr;(wlf.'» Waei ‘]’)
e
Ilt;(W‘JG-Wg(.‘: f.f) / Dyr;(wm,wyr;; q)
X16 Dye
Planting Season Harvest Season

Notes: Starting from initial equilibrium wage vector (wy, Wy¢) at points (1), an increase in skill has the direct effect of shifting
out S16,X16,Sg¢ and Dy, increasing demand for labor (in both seasons) to (2). The lower harvest season wage at (2) implies a
lower supply of labor in the planting season ( and a higher demand for labor in the planting season), making the final
equilibrium at point (3). Different parameter values could have led to a higher harvest season wage at (2), implying a higher
supply of labor in the planting season (and a lower demand for labor in the planting season), resulting in a final equilibrium at
(3’). In all cases x4 increases.





