
NBER WORKING PAPER SERIES

AIMING FOR THE GOAL:
CONTRIBUTION DYNAMICS OF CROWDFUNDING

Joyee Deb
Aniko Oery

Kevin R. Williams

Working Paper 25881
http://www.nber.org/papers/w25881

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2019, Revised March 2023

We thank Heski Bar-Isaac, Dirk Bergemann, Alessandro Bonatti, Luis Cabral, Judy Chevalier, 
Sylvain Chassang, Daniel G. Clark, Laura Doval, Matthew Ellman, Jonathan Feinstein, Simone 
Galperti, Gary Gorton, Marina Halac, Johannes Hörner, Sjaak Hurkens, T. Tony Ke, George 
Mailath, Erik Madsen, Leslie Marx, Barry Nalebuff, Emre Ozdenoren, Jacopo Perego, Larry 
Samuelson, Jiwoong Shin, Roland Strausz and K. Sudhir, Juuso Välimäki for helpful discussions 
and comments. We thank many seminar and conference participants. We especially thank Jose 
Betancourt, Gabriella Fuschini, Haoran Li and Weicheng Min for excellent research assistance. 
We thank the Yale School of Management for financial and computational support. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by Joyee Deb, Aniko Oery, and Kevin R. Williams. All rights reserved. Short sections of 
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Aiming for the Goal: Contribution Dynamics of Crowdfunding 
Joyee Deb, Aniko Oery, and Kevin R. Williams
NBER Working Paper No. 25881
May 2019, Revised March 2023
JEL No. D21,D22,D26,D7,D8

ABSTRACT

Fundraising campaigns draw support from a wide pool of contributors. Some contributors are 
interested in private rewards offered in exchange for contributions (buyers), whereas others are 
publicly-minded and value success (donors). Buyers face a coordination problem because of the 
positive externalities of campaign success. A leadership donor who strategically times 
contributions can promote coordination by dynamically signaling his valuation. The ability to 
signal increases the probability of success and benefits all participants relative to the donor 
valuation being known. We validate our modeling assumptions and theoretical predictions using 
Kickstarter data.

Joyee Deb
Yale School of Management
165 Whitney Ave
New Haven, CT 06520
joyee.deb@yale.edu

Aniko Oery
Yale School of Management
165 Whitney Ave
New Haven, CT 06520
aniko.oery@yale.edu

Kevin R. Williams
Yale School of Management
165 Whitney Avenue
New Haven, CT 06520
and NBER
kevin.williams@yale.edu



1 Introduction

Contribution games typically feature positive externalities that result in free-riding and

miscoordination. These forces can lead to underprovision, which has been widely stud-

ied in the context of public goods. Although free-riding may be alleviated by providing

contributors with private benefits, miscoordination may persist due to uncertainty about to-

tal contributions. To address this uncertainty, capital campaigns for nonprofits—including

museums and universities—and for-profits, such as innovative startups, often draw from a

wide pool of potential contributors. Some participants may contribute simply because the

fundraising purpose is aligned with their values, whereas others may be interested in pri-

vate rewards offered in exchange for a contribution. While seeking pledges from different

types of participants naturally expands the contribution base, we show that the interaction

between differently motivated participants gives rise to new economic trade-offs that can

affect the success of campaigns.

We study the role of a publicly-motivated leadership donor in coordinating contribu-

tions by privately-motivated buyers. We introduce a dynamic contribution game with a

fundraising goal that must be achieved by a deadline. Randomly arriving buyers seek a

private reward in exchange for a contribution, and one long-lived donor values the public

benefits. Buyers face a coordination problem as contributions are costly and aggregate de-

mand is uncertain. Because the donor’s valuation is private information, he can shape buyer

beliefs about success with strategically timed donations. We make four key contributions.

First, we show that the donor’s ability to signal his valuation alleviates the coordination

problem. We provide bounds on the effect of dynamic signaling on the probability of

success and establish that making the donor’s valuation public would result in the lowest

probability of success. Second, we illustrate a trade-off between maximizing the donor’s

and buyers’ payoffs. The donor prefers the equilibrium that maximizes the probability of

success. However, this equilibrium exacerbates buyers’ contribution risks, so buyers prefer

an equilibrium with an intermediate probability of success. Third, we derive testable im-

plications and show that our model is empirically relevant for reward-based crowdfunding
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campaigns. Using novel data from the platform Kickstarter, we provide empirical evidence

of the two different contribution incentives and show that our model predictions fit the data

well. Finally, we show that our results extend to a broad class of fundraising models and

campaign designs. Our framework is relevant for both for-profit and non-profit campaigns.

In our baseline model buyers make a one-shot decision upon arrival to either pledge to

obtain a reward (or product) of known value for a fixed price or choose an outside option.

Consumption is non-rivalrous but excludable. The representative long-lived donor can con-

tribute throughout the campaign. If the campaign is successful, buyers who pledged support

pay the price and receive the reward. The donor receives a payoff equal to his valuation

for the campaign less donations made. If the campaign fails, donations are returned, and

buyers receive their pledges back but bear an opportunity cost.

We first characterize outcomes of perfect Bayesian equilibria (PBE) that maximize the

probability of success. We show that these outcomes can be attained by Markov equi-

libria with an intuitive structure where the donor must contribute above a state-dependent

threshold in order to keep buyers engaged. The threshold depends on cumulative pledges

and the time remaining until the deadline. We call such equilibria pooling-threshold (PT)

equilibria. Because the donor is benevolent and will donate up to his valuation if nec-

essary, maximizing success reduces to incentivizing buyers to pledge whenever possible.

The success-maximizing equilibrium involves donation thresholds that make buyers just

indifferent between pledging or not. Donating less than the threshold causes buyers to stop

pledging. Donating more than the threshold squanders funds that can potentially be used

to induce later-arriving buyers to pledge.

We construct the state-dependent donation threshold by induction on the number of ad-

ditional buyers necessary to achieve the goal if no more donations are made. The donation

threshold decreases after a purchase but increases if no buyer arrives in any given period.

If the donor cannot meet the donation threshold, the campaign fails. To establish that this

equilibrium maximizes the probability of success, we recast and relax the problem to a

dynamic information design problem and then show that the solution can be attained by
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the constructed PT equilibrium. The key insight of the characterization is that it suffices

to consider reduced histories that ignore donation amounts and only keep track of whether

a donation incentivizes the next potential buyer to pledge or not. The control variables in

this information design problem are the probabilities of reaching these reduced histories

subject to martingale constraints and buyer participation constraints.

We then construct the unique equilibrium that minimizes the probability of success

among all PBE. While this may seem like an unnatural benchmark, we show that this equi-

librium coincides with buyers acting as if the donor’s valuation was public information—

the no-signaling case. The success-minimizing equilibrium is a PT equilibrium that entails

the highest possible donation threshold where buyers contribute even if they believe no

additional donations will be made.

After bounding the effects of signaling on the probability of success, we investigate

which equilibria are preferred by campaign participants. We show that participants prefer

different equilibria. The success-maximizing equilibrium is preferred by the donor as he

cannot benefit from lowering donations at the expense of a lower probability of success.

However, the success-maximizing equilibrium exacerbates the uncertainty that buyers face

because the donor does not internalize buyers’ opportunity costs of pledging. Instead,

buyers prefer equilibria (which may not be unique) that result in intermediate probabilities

of success, strictly between the success-maximizing and success-minimizing equilibria.

Buyer-preferred equilibria involve the donor providing some coordination benefits through

dynamic signaling, however, our analysis highlights that participants disagree on “how

much” signaling a campaign should allow.

Our theoretical insights are robust to a number of important extensions that capture

fundraising beyond crowdfunding. For example, our analysis remains unchanged if the all-

or-nothing campaign structure is replaced with buyers/the donor simply receiving higher

payoffs if the campaign succeeds. That is, our framework accommodates general capital

campaigns where contributions are not returned if the goal is not reached by the deadline

(e.g., a museum or university gala). Although we consider a single long-lived donor in
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our formal analysis, that assumption too can be relaxed. With several donors who observe

each others valuation, the success-maximizing equilibrium with several donors yields the

same probability of success as one in which there is a single donor whose valuation is the

sum of the valuations of all donors. The success-minimizing equilibrium may, however,

be subject to free-riding among donors. Our substantive results also apply to settings with

time-varying arrivals, time-varying outside options, and to campaign designs that return

excess donations for successful campaigns. We also examine a setting where buyers engage

in social learning. This environment may be applicable to crowdfunding campaigns of

highly innovative products. We show via an example that when buyers receive private

signals about unknown campaign quality and can learn from contributions of other buyers,

donations still shape buyers’ beliefs, but donations also cause buyers to receive a weaker

signal of quality. This may reduce the donor’s effectiveness.

We also discuss aspects of campaign design. Because the success-maximizing PBE

solves a general information design problem, it follows that no other mechanism involving

donations, posted prices, and observable contribution histories can achieve a higher proba-

bility of success. For example, the probability of success is lower when we allow the donor

to contribute only at the beginning or at the end of a campaign. However, changing the

information participants have access to can fundamentally change outcomes. For exam-

ple, we show that restricting the visibility of buyer contribution histories can increase or

decrease participant payoffs and the probability of success.

Finally, we test our theory with data from the largest reward-based crowdfunding plat-

form, Kickstarter. On this platform, entrepreneurs launch campaigns to raise funds in ex-

change for rewards. The platform allows for both donations and pledges for rewards (pur-

chases). We discuss other campaign features and why these campaigns map well to our

theoretical model. Our data cover all campaigns launched on Kickstarter between March

2017 and September 2018 and distinguish buyer pledges from donations at 12-hour fre-

quencies. Our summary analysis establishes that donations are an important fundraising

source for campaigns—they constitute 28% of all funds raised on Kickstarter.
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We validate our modeling assumptions by showing that pledges are consistent with the

two distinct contribution incentives of our model. For example, we show that while pur-

chases occur throughout time, donations decline toward zero after a campaign succeeds.

Also consistent with our model, early-finishing campaigns are driven almost exclusively

by buyers when donations are unnecessary for success. We derive a rich set of predictions

based on our equilibrium characterization and empirically test these predictions. For ex-

ample, consistent with all PT equilibria, we show that initial donations are higher when

the probability of success is lower. Using a survival model, we show that donations are

most likely to occur after time intervals of no buyer activity—when the value of dynamic

signaling is greatest. In general, donations become increasingly important for campaigns

that succeed closer to the deadline. We estimate that 72% of the campaigns that succeed at

the deadline would have failed absent donations. We present a simple analysis that shows

most campaigns are inconsistent with success-minimizing equilibria which suggests that

the Kickstarter platform design actually facilitates dynamic signaling that is core to our

study.

1.1 Related Literature

Our setting entails positive externalities as in public goods games (Bagnoli and Lipman,

1989; Admati and Perry, 1991; Fershtman and Nitzan, 1991; Varian, 1994), but participants

receive private benefits and are therefore not subject to free-riding incentives.1 We study

contribution dynamics in a similar setting to Alaei et al. (2016) where participants face a

coordination problem.2 However, we add a publicly-motivated donor who can coordinate

privately-motivated contributors.3 Hence, our work is substantively related to Andreoni

(1998) who shows how leadership givers can help to overcome the free-riding incentive

when there are increasing returns at low levels of provisions, while we show how a donor

1See also, Marx and Matthews (2000); Campbell et al. (2014); Cvitanić and Georgiadis (2016); Bonatti
and Hörner (2011); Ellman and Fabi (2022b).

2Ellman and Fabi (2022a) also study contribution dynamics when bidding costs are private information.
3See also Sahm (2020); Liu (2018); Chakraborty and Swinney (2019); Chemla and Tinn (2020);

Chakraborty and Swinney (2020).
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can provide coordination benefits by dynamically signaling his valuation.

Our results on donor-incentivizing mechanisms complement recent work examining

optimal mechanism design in crowdfunding, including Strausz (2017), who finds the opti-

mal mechanism in the presence of moral hazard of buyers, Ellman and Hurkens (2019b),

who find the optimal mechanism with price discrimination, and Chang (2020), who studies

two funding mechanisms when the quality of the project is unknown.4 Our work suggests

that allowing donors to continuously contribute to signal their valuation may benefit all

participants and increases the probability of success.

We contribute to a broad literature on dynamic signaling. Unlike classic dynamic sig-

naling environments, including van Damme et al. (1990) and Swinkels (1999), in our set-

ting investments/contributions are not wasteful. Instead, they are welfare enhancing. Our

model of dynamic signaling relates to work on reputation, contests, and lemons markets

that also characterize equilibria with belief thresholds that guarantee participation (Bar-

Isaac, 2003; Daley and Green, 2012; Gul and Pesendorfer, 2012; Kolb, 2019; Gryglewicz

and Kolb, 2022). Our work is most similar technically to Ely and Szydlowski (2020) who

study an information design problem of a principal who has private information about the

difficulty of a task and where the information design problem entails a threshold strategy

to ensure agent participation. Instead, we analyze a game in which the donor is a player in-

stead of a principal. For the characterization of the donor-preferred equilibrium, we solve

an information design problem similar to Ely and Szydlowski (2020), but with multiple

agents who face coordination problems themselves. As a result, our donation thresholds

also depend on a stochastically changing state of the game as in Gryglewicz and Kolb

(2022). Our work is related to dynamic information design more generally and leverages

techniques such as optimizing over beliefs rather than strategies used in the literature on

dynamic information design and mechanism design with limited commitment (e.g., Doval

and Ely, 2020; Doval and Skreta, 2020). Our approach can be applied to dynamic signaling

games to characterize optimal equilibria, by solving a relaxed information design problem

4Ellman and Hurkens (2019a) relax the ex-post individual rationality constraint. Belavina et al. (2020)
further distinguish between funds misappropriation and performance opacity.
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subject to participation constraints.

Finally, we provide new empirical insights on reward-based crowdfunding campaigns

using granular collected data that connects to a broad literature on the impacts of crowd-

funding on innovation (Belleflamme et al., 2014; Lee and Persson, 2016; Sorenson et al.,

2016; Grüner and Siemroth, 2017; Kim et al., 2017). Our findings complement experimen-

tal work on how contributions affect campaign success (Van de Rijt et al., 2014) and con-

firm that some participants have pro-social incentives (Kuppuswamy and Bayus, 2018; Dai

and Zhang, 2019). These incentives extend to other settings, including equity crowdfunding

(e.g., Agrawal et al., 2015). Our analysis showcases how donations in crowdfunding affect

future contributions, relating to work on how seed money affects subsequent contributions

for capital campaigns (e.g., List and Lucking-Reiley, 2002).

The rest of the paper proceeds as follows. Section 2 contains the model description. The

equilibrium analysis follows in Section 3. We discuss modeling extensions and aspects of

campaign design in Section 4. In Section 5, we present our empirical analysis.

2 Dynamic Model of Crowdfunding

Crowdfunding campaign. We consider a fundraising campaign that seeks to raise a goal

amount G > 0 by a deadline T > 0. If the goal is reached by the deadline, contributors

receive a reward, e.g., a product. Obtaining a reward requires a pledge at a price p >

0. Donations are also accepted. Time is divided into periods of length ∆. Let T∆ :=

{∆, 2∆, . . . , T } denote the set of periods. For any period t ∈ T∆, there is a corresponding

time remaining u := T − t ∈U∆ ≡ {T −∆, . . . ,∆, 0}.

Players and payoffs. There are two types of contributors, randomly-arriving, short-

lived buyers (she), and a single, representative long-lived donor (he). In every period, a

buyer arrives with probability ∆λ ∈ (0, 1). Upon arrival, she makes a one-shot decision to

either pledge to pay p to buy the product if the campaign is successful, or to choose an

outside option of value v0 > 0. All buyers have the same valuation v > 0 for the product. If
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a buyer pledges and the campaign is successful, she receives utility v −p > v0. If the cam-

paign fails, she pays nothing and receives utility 0. The outside option v0 can be interpreted

as the value of a short-lived purchasing opportunity, an inspection cost, a transaction cost

of pledging, or a disappointment cost of not receiving a product if buyers are loss-averse.

The long-lived donor values a successful campaign at w ≥ 0 and has put aside that

amount for potential contributions. We refer to w as the donor’s valuation. If the campaign

is successful, the donor’s payoff is w −DT , where DT is the total donation contributed to

the campaign. If the campaign fails, all donations are returned, and the donor receives a

utility of 0. Hence, a donor will never donate more than w . Buyers do not observe w . They

only know that it is drawn from a distribution on [0,∞), with a continuously differentiable

and strictly increasing cdf F0. Denote f0 := F ′0 . Whereas w denotes the realized donor’s

valuation, we use an upper-case W to denote the random variable.

Figure 1: Timing of the game

. . .
0 ∆ 2∆ T − ∆ T

period ∆ period 2∆ period T

Donor makes
donation

Buyer arrives
with prob ∆λ,
chooses to buy or not

Donor makes
donation

Buyer arrives
with prob ∆λ,
chooses to buy or not

Donor makes
donation

Buyer arrives
with prob ∆λ,
chooses to buy or not

Donor makes
donation

Timing, histories, and strategies. Figure 1 illustrates the timing of the game. Within a

period, if a buyer arrives, she decides whether to pledge p or not. Then, the donor decides

whether and how much to donate. The donor is also allowed to donate at the start of the

game, at time t = 0. We denote cumulative pledges and cumulative donations up to and

including period t by Nt and Dt , respectively. Initially, N0 := 0. The final revenue of the

campaign is equal to RT =DT +NT p . A successful campaign is one in which RT ≥G .
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The history of a buyer who arrives in period t is given by

h B ,∆
t =
∏

s∈T∆,s≤t

(Ns−∆, Ds−∆) ∈H B ,∆
t ,

whereH B ,∆
t is the set of period-t buyer histories.5 A donor history in period t also includes

the purchase, if any, in period t . That is,

h D ,∆
t =

�

∏

s∈T∆,s≤t

(Ns−∆, Ds−∆), Nt

�

∈H D ,∆
t ,

whereH D ,∆
t is the set of period-t donor histories. A strategy of a period-t buyer is a map-

ping b̃∆t :H B ,∆
t → [0, 1], where b̃∆t (h

B ,∆
t ) is the probability of a buyer pledging at history

h B ,∆
t . We denote the collection of all buyer strategies by b̃∆ := (b̃∆t )t . The donor strategy is

a mapping D̃∆
+ :
⋃

t ∈T∆H D ,∆
t × [0,∞)→R, where D̃∆

+ (h
D ,∆
t ; w ) =Dt such that Dt ≥Dt−∆

represents cumulative donations after the donation decision at history h D ,∆
t .6 Buyer beliefs,

F̃ ∆ :
⋃

t ∈T∆H B ,∆
t → [0,∞)R, map each buyer history h B ,∆

t to a cdf F̃ ∆(·; h B ,∆
t ).

Solution concept. A perfect Bayesian equilibrium (PBE) is given by an assessment

(b̃∆, D̃∆
+ , F̃ ∆), or a tuple of strategies and beliefs, such that

i) the donor strategy D̃∆
+ maximizes the donor’s expected payoff at any donor his-

tory h D ,∆
t given buyer strategies and beliefs;

ii) each period-t buyer strategy b̃∆t maximizes the expected payoff of the buyer at any

history h B ,∆
t , given buyer beliefs, the donor strategy, and other buyer strategies;

iii) buyer beliefs about W , F̃ ∆(·; h B ,∆
t ), are derived from all strategies according to

Bayes’ Rule whenever possible.

An equilibrium outcome is given by a sequence of cumulative contributions ((Nt , Dt ))t ∈T.

5We assume that buyers do not observe arrivals, but only purchases. Arrivals are not payoff relevant, so
the Markov equilibria we characterize later are also equilibria in a game where arrivals are observed.

6Formally, we allow for mixed strategies. In that case, D̃∆
+ (h

D ,∆
t ; w ) denotes the random variable that

describes the mixed strategy at the corresponding history.
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The distribution of buyer arrivals, the donor’s valuation distribution, and an assess-

ment (b̃∆, D̃∆
+ , F̃ ∆) induce a probability measure P governing the outcomes of the game.

Payoff-relevant state and Markov equilibria. All players’ payoffs only depend on

the cumulative number of purchases and the cumulative donation amount. Therefore, we

define the payoff-relevant state to be

x := (N , D , u ) ∈X∆ :=N× [0,∞)×U∆,

or equal to (Nt−∆, Dt−∆, T − t ) for a buyer, and (Nt , Dt−∆, T − t ) for a donor, in period t .

Donor strategies, buyer strategies, and buyer beliefs are said to be Markovian if they

only depend on the state, both on and off equilibrium path. These objects are represented

by D∆ : X∆ × [0,∞) → R, b∆ : X∆ → [0, 1], and F ∆ : X∆ → RR, respectively. We call

PBEs in Markovian strategies and beliefs Markov equilibria, described by a Markovian

assessment (b∆, D∆
+ , F ∆).

3 Characterization of Equilibrium Outcomes

In this section, we characterize PBE of the game and bound the effects of dynamic signaling

on the probability of success. We then establish which PBE are preferred by the donor and

buyers. Proofs of all propositions are in the Appendix. The Online Appendix contains

technical convergence results.

3.1 Preliminaries

Given a Markovian assessment (b∆, D∆
+ , F ∆), for any state x = (N , D , u ), let π∆(x) denote

the induced probability of reaching the goal from the perspective of the N + 1st buyer if

she pledges in state x. Upon arrival, a buyer in state x is willing to pledge if and only if the
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expected utility of pledging is greater than the utility of the outside option. That is,

π∆(x) · (v −p )≥ v0. (Buyer-PC)

The probability of success π∆(·) is determined by the assessment (b∆, D∆
+ , F ∆) and two

sources of uncertainty. First, buyers are uncertain about the donor’s valuation w and update

their beliefs based on the observed state x. Second, there is uncertainty about the number of

future buyer arrivals. We define an active campaign as one in which beliefs are sufficiently

high to incentivize pledging.

Definition 1. For a given assessment (b∆, D∆
+ , F ∆), we call a campaign active in state x if

and only if π∆(x)≥ v0
v−p .

3.2 Pooling-Threshold Equilibrium Structure

One of our key insights is to show that the equilibrium outcomes that minimize/maximize

the probability of success can be attained by Markov equilibria in which the donor strategies

have an intuitive structure. In these equilibria, cumulative donations are kept above a state-

dependent threshold as long as the donor’s valuation w is not depleted.

Definition 2. We call a Markovian donor strategy D∆
+ a pooling-threshold (PT) strategy if

for any N and u , there is a donation threshold D∆
∗ (N , u ) ≥ 0 with D∆

∗ (N , 0) = G −N p ,

such that

D∆
+ (x; w ) =max
¦

D , D∆
∗ (N , u )
©

,∀w ≥D∆
∗ (N , u ),

and D∆
+ (x; w ) =max{w , D }, otherwise.

Given a PT donor strategy, donations serve to signal the donor’s valuation to buyers. If

the signal is sufficiently positive, buyers are optimistic that the campaign will ultimately

succeed, despite the uncertainty in total contributions. For any given history, there is a

corresponding “donation threshold” so that if the donor donates more than the threshold,

a buyer who arrives at the next instant will believe that the goal will be met with a high
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probability. In the Markov equilibria we construct, the threshold is such that buyers believe

that the probability of success exceeds v0
v−p , so that they are willing to pledge. That is,

buyers pledge if and only if cumulative donations exceed the donation threshold of the

donor in the preceding period,

b∆(N , D , u ) = 1 ⇐⇒ D ≥D∆
∗ (N , u +∆). (PT-buyer)

Additionally, for the Markov equilibria that we construct, the donation threshold D∆
∗ (N , u )

is decreasing in both N and u . That is, fewer donations are required to keep the campaign

active when more buyers have pledged and more time remains until the deadline. As a

result, these equilibria can be supported by buyer beliefs that are truncations of the prior

distribution F0 when D ≥D∆
∗ (N , u +∆). PT beliefs are equal to

F ∆(w ; x) =







F0(w )− F0(D )
1− F0(D )

·1(w ≥D ) if D ≥D∆
∗ (N , u +∆)

1(w ≥D ) otherwise
. (PT-belief)

As soon as cumulative donations fall below D∆
∗ (N , u +∆), buyers believe that the donor

has exhausted the amount that he is willing to contribute and w = D .7 We define a PT

assessment (a tuple of buyer strategy, donor strategy and beliefs) as follows:

Definition 3. An assessment (b∆, D∆
+ , F ∆) is a pooling-threshold (PT) assessment if D∆

+ is

a PT strategy with a donation threshold D∆
∗ (N , u ) ∈ [0,G − (N +1)p ), if Equation PT-buyer

and Equation PT-belief are satisfied, and if the following conditions hold:

7Many other buyer belief systems can sustain a PBE in which the donor plays a PT strategy. Technically,
the beliefs chosen here violate the “cannot signal what you do not know" condition off equilibrium path as
introduced in Fudenberg and Tirole (1991), in the sense that early buyer purchases can affect the beliefs of
later buyers independently of the donor’s actions. We could recover the “cannot signal what you do not know"
condition without altering anything qualitatively, by imposing that for any off-path history h B ,∆

t such that
there exists a s ≤ t with Ds <D∆

∗ (N , T−s ), we have F (w ; h B ,∆
t ) = 1(w ≥min{Ds : Ds <D∆

∗ (N , T−s ), s ≤ t }).
Instead of allowing such non-Markovian off-path beliefs, we choose the Markovian on- and off-path beliefs
given in Equation PT-belief for their clean structure.
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i) Weak monotonicity in u and strong monotonicity in N , i.e.,

D∆
∗ (N , u )≥D∆

∗ (N +1, u −∆)≥D∆
∗ (N +1, u );

ii) Strict monotonicity in N , i.e., D∆
∗ (N , u )>D∆

∗ (N +1, u ) if D∆
∗ (N , u )> 0;

iii) No donation threshold after success, i.e., D∆
∗ (N , u ) = 0 for (N +1)p ≥G .

Condition (i) in Definition 3 imposes that the donation threshold is weakly decreasing

in u , but also that if there is a pledge in period u −∆, then the donation threshold for the

next period D∆
∗ (N + 1, u −∆) does not increase. Monotonicity in N is stronger than the

monotonicity in u . Condition (ii) simply imposes strict monotonicity of D∆
∗ in N , and

Condition (iii) requires that D∆
∗ drops to zero if buyers alone raise the goal amount.

Because the donation threshold is decreasing in N and u , once a campaign reaches a

state in which it is not active, it can never be active again. This allows us to define cut-off

times (CT) such that given realized donor valuation w and the number of additional buyers

j needed for success, the campaign will fail unless the next buyer arrives before the cut-off

time u = ξ∆j (w ). Let M (D ) = ⌈G−D
p ⌉ denote the total number of buyers needed for success

given total donations D , if no further donations are made. Then, for j ≤M (w ),

ξ∆j (w ) :=min
§

u ∈U∆ :π∆(M (w )− j , w , u )≥
v0

v −p

ª

, (CT)

where we set ξ∆j (w ) = T if π∆(M (w )− j , w , u )< v0
v−p for all u ∈U∆. Monotonicity of D∆

∗

guarantees that π∆(M (w )− j , w , u ) ≥ v0
v−p for u ≥ ξ∆j (w ). Therefore, given state x with

N =M (w )− j , a donor with valuation w is not able to satisfy Equation Buyer-PC if and

only if u < ξ∆j (w ). Buyers will pledge in equilibrium if and only if they arrive before the

specified cutoff times. If they arrive too late, the donor will “run out of funds” because

he would need to donate more than w to keep the campaign active. Ex-ante, there is an

information asymmetry between donor and buyers about ξ∆j (w ), but once period ξ∆j (w ) is

reached, the asymmetry is resolved.
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Figure 2: Sample equilibrium path given donor wealth w such that M (w ) = 5

ξ5(w) ξ4(w) ξ3(w) ξ2(w) 0cut-off times
u = T − t

t

campaign never
active again

buyer pledges buyers do not pledge

D∗(N, u): realized donation threshold
Dt: cumulative donation path
donation threshold had all buyers bought

w

τ1 τ2 τ3 τ4 τ5 T0

Donations

The first line shows the cut-off times ξ j (w ) by which the M (w )− j +1-th buyer must arrive in order for the campaign to stay alive. The
second line depicts realizations of buyer arrivals (by blue dots) at τ1, . . .τ5 for a campaign with deadline T . The second arrival τ2 does
not occur “in time,” i.e., before time T −ξ4(w ). The donor runs out of funds and the campaign fails at T −ξ4(w ).

Figure 2 illustrates the structure of Markov equilibria in which the donor plays a PT

strategy, which we refer to as pooling-threshold (PT) equilibria. The τs denote buyer

arrival times where we have taken the limit as ∆→ 0. More formally, if the arrival process

of buyers is (As )s≤t , the arrival time of the n th buyer is τn ≡ inf{t ≥ 0|At ≥ n}. We have

chosen w such that M (w ) = 5 buyers are needed for success. The horizontal axis marks

time as well as the cut-off times ξ j (w ). The N -th buyer must arrive at least ξM (w )−N+1(w )

time before the deadline in order to be willing to pledge. If the N -th buyer arrives after

that instant, the expected utility from pledging for this buyer (and subsequent buyers) drops

below the utility from the outside option v0 and the campaign fails.

Given the realized arrival process and donor valuation in Figure 2, the donor contributes

along the donation threshold through the first buyer arrival time τ1. He does so to ensure

that the first buyer pledges. Because the first buyer contributes, the donation threshold

drops—the next arriving buyer is confident that the campaign will succeed—and therefore,

the donor stops donating for a period of time. Then, donations again follow the donation

threshold to keep the campaign active. Note that the second buyer arrives after the cut-off

time ξ4(w ). At ξ4(w ), the donor has run out of funds to incentivize buyers, i.e., Dt = w .

As a result, all buyers after τ2 choose the outside option and the campaign fails. The
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dashed orange lines after ξ4(w )mark the donation thresholds if all buyers had bought. The

threshold would have dropped had these buyers pledged.

When we construct PT equilibria, we define a donation threshold D∆
∗ (N , u ), and then

show that the equilibrium conditions are satisfied. We show in the appendix that for any

PT assessment, beliefs are consistent with Bayes’ rule and donors are best-responding to

the buyer strategy. Hence, for any specific equilibrium, it only remains to show that buyers

are best-responding as well.

3.3 Success-Maximizing Equilibrium

We start with the construction of a PBE that maximizes the probability of success. Because

the donor is willing to donate up to his valuation if necessary, maximizing the probability

of success boils down to providing buyers with incentives to pledge whenever possible. In

a success-maximizing equilibrium, even relatively low cumulative donations are a suffi-

ciently strong signal to buyers. As a result, even a donor with a relatively low valuation can

keep the campaign active.

A PT strategy with a minimal donation threshold that can support an equilibrium can

generate such optimistic beliefs. We calculate a minimum donation threshold for any given

history and show that at this threshold, buyers are exactly indifferent between pledging or

not. The donor should never donate more than this threshold because the threshold will

increase in the future if buyers do not pledge. Therefore, it is prudent to hold back funds in

order to potentially induce later buyers to pledge. As a result, all donors with a valuation

greater than the threshold indeed pool and donate just enough to meet the threshold. The

following proposition summarizes key properties of this equilibrium. We also show that

as ∆→ 0, any sequence of such PT equilibria converges to a unique limit. For discrete ∆,

multiple PT equilibria may attain the maximum probability of success.

Proposition 1 (Success-Maximizing Equilibrium).

i) Given any ∆> 0, there exists a success-maximizing PBE that is a PT equilibrium;
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ii) Any sequence of these PT equilibria {(b∆, D∆
+ , F ∆)}∆ converges to a unique limit

(b , D+, F ) as ∆→ 0. The donor’s limiting PT strategy admits a donation threshold

D∗(N , u ) = D (N , u ) where D (N , u ) = 0 if π(N , 0, u ) > v0
v−p , and otherwise, the next

buyer is made indifferent such that

π(N , D (N , u ), u ) =
v0

v −p
,

where π := lim
∆→0
π∆ (the limit being uniform in D ). Given a wealth realization w and

cumulative purchases N with M (w )−N = j > 1, the campaign fails in the limit at

ξ j (w ) := lim
∆→0
ξ∆(w ) satisfying

π(M (w )− j , w ,ξ j (w )) =
v0

v −p
.

If j ≤ 1, the campaign never fails.

The proof proceeds in three steps. First, we construct a PT equilibrium for fixed ∆ that

satisfies analogous discrete-time properties described in Proposition 1. Second, we take the

limit as ∆→ 0. Finally, we establish that the constructed PBE maximizes the probability

of success.

The construction of the PT equilibrium uses the insights provided in Section 3.2. We

cannot directly define a donation threshold for every state of the game such that buyers are

just indifferent between pledging or not pledging because such a condition is endogenous

to all participant strategies. Instead, we use an induction in the number of buyers needed to

reach the goal if no additional donations are made, j =M (D )−N . Within each induction

step in j , we construct equilibrium objects D∆
∗ (N , u ), π∆(N , D , u ) and ξ∆j (w ).

To find a success-maximizing PBE, we only need to find a PBE that maximizes buyer

pledges. The exact donation amounts do not matter, as long as they incentivize pledging.

We are able to consider “reduced histories" which ignore the precise donation amounts and

instead only keep track whether or not a donation keeps the campaign active. We recast

the problem by directly choosing probabilities of reaching each reduced history subject
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to a martingale constraint and a buyer participation constraint. We show that the PBE

constructed in the first step indeed achieves the value of this relaxed problem.

3.4 Success-Minimizing Equilibrium—No Signaling Benchmark

In the unique success-minimizing equilibrium, the ability of the donor to signal his value

does not facilitate coordination between buyers. However, it also does not add inefficient

uncertainty about the donor’s valuation either, because in equilibrium, buyers contribute as

if they knew the donor’s valuation. Formally, the donor plays a PT strategy with a donation

threshold that is so high that buyers act as if no more donations will be made. To define

this threshold, we start by considering the case in which w is known to be zero, that is,

F0(w ) = 1(w ≥ 0). We define the cut-off times ξ∆j (w ) of the constructed equilibrium in

Proposition 1 for w = 0, given by Equation CT in the definition below.

Definition 4. If there is no donor, i.e., w ≡ 0, we denote the cut-off times ξ∆j (0) from

Proposition 1 by ξ
∆

j . Furthermore, ξ j := lim
∆→0
ξ
∆

j .

Using Definition 4, we can define D
∆
(N , u +∆) := max{G − ( j − 1)p −N p , 0} for

u ∈
�

ξ
∆

j−1,ξ
∆

j

�

and in the limit ∆→ 0,

D (N , u ) :=max{G − ( j −1)p −N p , 0} for u ∈
�

ξ j−1,ξ j

�

. (D )

This is the maximum donation threshold that can arise in a PBE. Indeed, in any PBE, the

donor would not contribute if total revenue already exceeds G − ( j − 1)p at u ∈
�

ξ
∆

j−1,ξ
∆

j

�

since all future buyers will pledge. Note that given this threshold, as ∆→ 0, donors always

donate exactly p in order to “compensate” for the absence of a buyer arrival.

In Proposition 2 below, we show that a success-minimizing PBE can be achieved by

a PT equilibrium, in which the donation threshold is exactly this maximal possible equi-

librium donation threshold D . Note that unlike in the success-maximizing equilibrium of

Proposition 1, now when a buyer pledges, she has a strict incentive to do so.
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Proposition 2 (Success-minimizing Equilibrium).

i) Given any ∆> 0, there exists a unique success-minimizing PBE that is a PT equilib-

rium.

ii) Any sequence of such PT equilibria {(b∆, D∆
+ , F ∆)}∆ converges to a unique limit

(b , D+, F ) as ∆ → 0. The donor’s limiting PT strategy has a donation thresh-

old D∗(N , u ) =D (N , u ) given by (D ).

To prove Proposition 2, we show that the PT assessment with donation threshold D is

indeed an equilibrium by backward induction in time. Second, to show that the equilibrium

minimizes the probability of success, we show that in any PBE, buyers contribute in all

states in which they contribute according to this PT equilibrium.

Note that if buyers pledge according to the donation threshold D , they would pledge

even if they were sure that no additional donor contributions will be made. Therefore,

buyers contribute as if the donor’s valuation is equal to the current level of cumulative do-

nations. As a result, the donor does not coordinate buyers and is instead simply decreasing

the goal amount from G to G −w .

3.5 Donor- and Buyer-Preferred Equilibria

Now that we have characterized the equilibria that maximize and minimize the probability

of success, we investigate which equilibria are preferred by the donor and by buyers. Recall

that the donor values success, but also wants to minimize cumulative donations. If the donor

could be refunded excess donations at the end of the campaign (we consider this extension

in the Section 4), then it immediately follows that the donor wants to simply maximize the

probability of success. In this case, the equilibrium of Proposition 1 is the donor’s preferred

equilibrium. When this is not possible, one might conjecture that the donor “over-donates”

in the success-maximizing equilibrium, and can benefit from reducing donations at the

expense of a lower success probability. We show that this is not the case because early-

arriving buyers can always be induced to pledge with fewer cumulative donations than
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later-arriving buyers. As a result, the equilibrium of Proposition 1 is also donor-preferred.

Proposition 3 (Donor-Preferred Equilibrium). The success-maximizing PT equilibrium

outcome constructed in Proposition 1 is also optimal for the donor.

The key step to proving Proposition 3 is to show that if there is a donor-preferred equi-

librium, then there must be a donor-preferred equilibrium in which after any history, the

donor donates either nothing or just enough to induce the next buyer to pledge. The donor’s

problem then reduces to one in which he chooses probabilities over the same reduced histo-

ries (as in the proof of Proposition 1) and minimal donation thresholds that satisfy a donor

incentive compatibility constraint. Therefore, the donor is intuitively solving two prob-

lems: he is minimizing his cumulative donations necessary for the campaign to succeed

while simultaneously maximizing the probability of success.

It is not the case that buyers prefer the success-maximizing equilibrium. Moreover,

buyers also do not prefer the success-minimizing equilibrium since they do benefit from

the donor coordinating campaign pledges. Instead, buyers prefer equilibria with an in-

termediate probability of success, strictly between the success-maximizing and success-

minimizing probability. A full characterization of buyer-preferred equilibria is beyond the

scope of this paper due to pledging externalities on past and future buyers.

Proposition 4 (Buyer-Preferred Equilibrium). For sufficiently small ∆, any PT equi-

librium preferred by buyers yields a probability of success strictly between the success-

maximizing one in Proposition 1 and the success-minimizing one in Proposition 2.

The success-maximizing equilibrium is not buyer-preferred because it does not inter-

nalize buyers’ opportunity costs of pledging. In order to see why, consider a situation

when the first buyer arrives late in the game and the success-maximizing donation thresh-

old D∆(0, u ) can be met by the donor. In this case, there is no externality of pledging on

past buyers (there were none) and only a small potential externality on future buyers (they

are unlikely to arrive). At D∆(0, u ), the buyer is just indifferent between pledging or not—

so she will pledge. If the donor is actually nearly out of funds, the probability of failure is
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high and pledging would be a mistake. However, with a slightly higher threshold the buyer

would be able to screen out donor types who are nearly out of funds, and benefit from

taking the outside option. Essentially, the success-maximizing equilibrium can facilitate

buyers being “tricked” into supporting a campaign that will fail.

The success-minimizing equilibrium is also not buyer-preferred because buyers benefit

from some dynamic signaling. In order to see why, recall that in the success-minimizing

equilibrium, buyers contribute as if they knew the donor valuation w . Consider a realiza-

tion of donor valuation w =G −p −ε with small ε > 0. Then, the campaign requires two

buyers to succeed. The first buyer contributes if (v −p )
�

1− (1−∆λ)u/∆
�

− v0 ≥ 0, but total

buyer surplus is maximized if she considers

(v −p )
�

1− (1−∆λ)u/∆
�

︸ ︷︷ ︸

prob. of at least
one more arrival

−v0+ (v −p − v0)λu
︸ ︷︷ ︸

externality on
future buyers

≥ 0.

Hence, incentivizing the first buyer to contribute beyond ξ̄∆2
�

G −2p
�

increases overall

buyer surplus. This can be achieved by lowering the donation threshold D
∆
(0, u ) =G −p

on u ∈ [ū , ξ̄∆2 (G − 2p )) by ε if ū solves the above inequality with equality. We show for-

mally that this lower donation threshold defines a PT equilibrium that buyers prefer over

the success-minimizing equilibrium.

On the one hand, our analysis highlights that because campaign participants have differ-

ent preferences, they also prefer different equilibria. On the other hand, because buyers do

not prefer the success-minimizing equilibrium, it follows that buyers benefit from “some”

signaling. That is, all campaign participants benefit from the coordination made possible

by dynamic signaling, it is just that the donor and buyers disagree on how much signaling

an equilibrium should allow.
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4 Extensions and Campaign Design

We show that our baseline model is robust to a number of modeling extensions and discuss

alternative campaign designs. Proofs for this section can be found in the Online Appendix.

4.1 Fundraising Campaigns Without All-or-Nothing Design

Our baseline model studies an all-or-nothing campaign design which is widely used in

reward-based crowdfunding. However, it is isomorphic to a model for general fundraising

campaigns with a deadline where buyers and the donor receive “a utility boost” if the

campaign reaches a benchmark goal. This makes our results applicable to a wide range of

fundraising campaigns, including non-profit capital campaigns. For example, a university

might sell tickets to attend a fundraising gala to “buyers,” and a leadership donor may

contribute to the campaign leading up to the event.

Formally, consider a buyer who can pay price p in exchange for a guaranteed utility vL ,

but if the campaign reaches the goal, buyers receive utility vH > vL . Similarly, we assume

that the donor’s payoff is w̄ RT +w1(RT ≥ G ), where w is private information, w̄ ∈ (0, 1)

is publicly known, and RT denotes total funds raised. A general fundraising model with

these adjusted preferences is isomorphic to our baseline model if vH − vL ≥ v0− vL +p as

a buyer’s participation constraint can be written as

vHπ(N , D , u ) + vL (1−π(N , D , u ))−p ≥ v0 ⇔ (vH − vL )π(N , D , u )≥ v0− vL +p ,

and if the difference in the marginal utility of donations across donor types remains as in

our baseline model. The donor also does not wish to donate after the campaign succeeds

because w̄ < 1. As a result, Propositions 1-4 hold and signaling can promote coordination

analogously.
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4.2 Multiple Donors

Our baseline model considers a single representative donor. This assumption can be re-

laxed. We argue that the success-maximizing equilibrium with several donors, with known

values among donors, coincides with the success-maximizing equilibrium of the baseline

model. That is, despite the incentive to free ride, the success-maximizing equilibrium can

be supported in this extension.8

To see this, assume that there are two long-lived donors with valuations w1, w2 such

that w := w1 + w2 is distributed according to F0. We consider the same timing as the

baseline model but allow both donors to simultaneously donate at the end of each period.

First, note that with multiple donors, the probability of success cannot be higher than in

a success-maximizing equilibrium with a single donor with wealth w . Proposition 1 gen-

eralizes where the two donors play the following equilibrium strategies. The first donor

plays a PT strategy with the success-maximizing donation threshold of Proposition 1 and

the second donor does not donate until the donation threshold reaches w1. It follows that

buyer beliefs and strategies are as in the baseline success-maximizing equilibrium. More-

over, donors cannot profitably deviate given the other donor’s strategy. A deviation below

the PT threshold would cause the next buyer to not contribute, and a deviation above the

PT threshold would lead to over-contributing along the lines of Proposition 1. By similar

logic, we can extend this idea to an arbitrary number of donors such that the sum of their

valuations equals w .

However, the success-minimizing equilibrium can result in a lower probability of suc-

cess compared to the baseline model because of free-riding. To see this, consider a two-

period version of our model and assume that 2p < w1 <G < w1 +w2. Both donors know

that the campaign will fail if both do not contribute. Hence, if a single donor does not

contribute, it is optimal for the other donor to not donate. So, there is an equilibrium in

which no one donates and the campaign fails with probability one.9

8If donors did not observe each others’ valuations, free-riding may lower the probability of success.
9We may also ask what happens if buyers are allowed to contribute in excess of p , given that higher

contributions increase the probability of success and thereby the overall value of pledging π(N , D , u )(v −p ).
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4.3 Campaign Creator as the Donor and Returning Excess Donations

We do not refer to the donor as the campaign creator because in our empirical application,

crowdfunding platforms do not allow individuals to contribute to their own campaign. We

can accommodate a donor contributing to his own campaign and being refunded excess

donations at the deadline. All of our analysis (Propositions 1-4) remains unchanged.10 The

reason is that the probability of success and buyers’ outcomes remains unchanged in our

baseline model if excess donations are returned to the donor at the end of a successful

campaign. The donor will play the same strategy in all discussed PT equilibria, but will

receive back excess donations at the deadline. Thus, all participants’ equilibrium strategies

are unaffected and only the expected payoff of the donor is higher if donations are returned

at the deadline.11

4.4 Time-Varying Arrivals and Outside Options

Time-varying arrival rates and outside options are relevant for empirical applications. For

example, to attract more participants, crowdfunding platforms promote campaigns that

were recently launched and are nearing the deadline. Accommodating time-varying arrivals

is straightforward—we just need to replace λ with λt when we calculate the probability of

success and adjust the limiting outcomes accordingly. This extension does require that λt

is smooth.

Another natural extension is a time-varying outside option. For example, crowdfunding

platforms can place a credit card authorization when an individual pledges support, and we

expect that buyers have lower opportunity costs closer to the deadline. Our analysis gener-

alizes in a straightforward way to a time-dependent outside option. However, the value the

In such a game, the buyers have a strong incentive to free-ride on contributions of the long-lived donor and
other buyers. This complicates the analysis significantly, but signaling forces of the leadership donor as in
our baseline model persist.

10We maintain the assumption that the donor faces a budget constraint of w . If the donor can donate more
than his valuation, the donor might have an incentive to do so if excess funds are returned.

11There may be additional equilibria in this game, but the bounds on the probability of success remain
unchanged.
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outside option cannot decrease too quickly because otherwise an inactive campaign can be-

come active again at a later point in time. As a result, the cutoff times ξ∆j (w ) we construct

may not exist, which significantly complicates equilibrium construction.

4.5 Social Learning

Our model can also be adapted to situations where buyers engage in social learning, e.g.,

buyers learn about product quality from other buyers’ pledges. We consider an extension

where buyer valuations are v q , where v is deterministic, and q ∈ {0, 1} is the unknown

quality of the product. Each buyer receives an independent signal about quality s ∈ {0, 1}

that is equal to 1 with certainty if q = 1 and with a probability less than one if q = 0. Thus,

buyers who see s = 0 learn with certainty that q = 0 and do not pledge. The participation

constraint of buyers who receive a positive signal s = 1 can be written as

P(NT p +DT ≥G )|x)
︸ ︷︷ ︸

probability of success
in state x

�

E
�

(v q −p ) ·1(NT p +DT ≥G )|x
�

P(NT p +DT ≥G )|x)
︸ ︷︷ ︸

expected value
conditional on success

−p

�

≥ v0.

Buyers care about their valuation conditional on success rather than a deterministic value

v when making their pledging decisions. This expected valuation conditional on success is

higher if success requires more buyers with positive signals to pledge. Therefore, donations

can lower this expected valuation, conditional on success.

We make this intuition more concrete by characterizing the success-maximizing equi-

librium of a two-period version of the above game in Online Appendix B. The exam-

ple shows that the marginal impact of donations on the left-hand-side of the buyer PC

constraint—representing the value of pledging—is lower if the quality is uncertain, and

that donations can even decrease this valuation. We show that a PT equilibrium can be

constructed analogously to the construction in Proposition 1 if there is not too much uncer-

tainty about quality.

24



4.6 Optimal Donation Mechanism and Alternative Campaign Designs

In our model, the donor is allowed to contribute continuously before the deadline. We

argue that this mechanism is optimal in a large class of mechanisms. Note that the relaxed

problem in the proof of Proposition 1 does not take into account donor incentives. The

choice variable of the optimization problem is a state-contingent allocation rule for any

realized w that determines whether a buyer takes the outside option or pledges, and the

objective is to maximize the probability of success subject to buyer participation. As a

result, this relaxed problem can also be viewed as a restricted mechanism design problem

that maximizes the probability of success.

Specifically, we can consider a class of direct “donor-incentivizing mechanisms” de-

fined as follows. Let an allocation be a sequence (at )t ∈T ∈ [0, 1]T∆ that determines whether a

period-t buyer (if she arrives) takes the outside option (at = 0) or stays in the game (at = 1),

and an allocation ā that determines whether the campaign is successful. An allocation is

feasible if, given the realized arrival process At , ā = 1 only if
∑

t (At −At−∆)at p +DT ≥G .

For simplicity, consider direct mechanisms where the donor sends a message m ∈ [0,∞)

about his type, and a buyer in period t can decide whether to participate in the mechanism

or not. Then, a direct, donor-incentivizing mechanism is given by a message strategy of the

donor, a participation strategy of buyers, an allocation mapping that maps messages and

participation decisions to feasible allocations, and a donor transfer D ∈ [0,∞). We con-

sider a restricted class of mechanisms because we do not allow for transfers between buyers.

Then, it follows that the relaxed problem in the proof of Proposition 1 is a relaxed problem

of the mechanism design problem that finds the success-maximizing, donor-incentivizing

mechanism. An example of a simple donor-incentivizing mechanism is one that allows do-

nations just at the beginning or at the end of the campaign. The above argument shows that

collecting donations and pledges sequentially must yield a lower probability of success.

We also consider how the information available to participants more generally could

affect campaign success. Perhaps the most natural benchmark is an environment in which

all buyers have symmetric information, which reduces the campaign to a simultaneous-
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move contribution game. We show that in a “no-information” campaign where both buyers

and the donor receive no interim information, the probability of success for a campaign

can be higher or lower compared to our benchmark model. The reason is that in this

environment, either all buyers pledge or no buyers pledge, depending on the parameters

of the game.

5 Empirical Application to Reward-based Crowdfunding

We consider an empirical application of our theory to reward-based crowdfunding cam-

paigns with two objectives in mind. First, we provide empirical evidence that our mod-

eling assumptions are empirically relevant for crowdfunding campaigns. Second, we de-

rive testable predictions of arbitrary PT equilibria, including the outcomes characterized

in Propositions 1 and 2, and show that these predictions fit the data well. Our approach

to model testing allows us to remain agnostic about which equilibrium a given campaign

follows. Therefore, we do not impose an equilibrium selection mechanism as commonly

used in empirical studies with multiple known equilibria.

5.1 Reward-Based Crowdfunding Platforms

Reward-Based crowdfunding platforms allow entrepreneurs to raise funds for projects be-

fore production occurs. The largest reward-based crowdfunding platform is Kickstarter,

followed by Indiegogo. Many region-specific platforms, such as Startnext (German-

speaking countries) and Wishberry (India), offer similar services and features. The core

design features of these platforms match our modeling framework. In a typical campaign,

an entrepreneur specifies a funding goal (G ), a funding deadline (T ), and prices for rewards

(p ). Individuals can pledge to buy at a particular reward level or donate any amount and

receive no reward in return.12 Entrepreneurs may offer different versions of the reward or

12Individuals can also purchase the reward and contribute in excess of the reward amount. Some en-
trepreneurs request that buyers pledge in excess of the posted price if they are interested in obtaining addi-
tional product features—called “add-ons" or "optional buys." Other campaigns have “stretch goals,” which
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may offer quantity discounts. Like our theoretical model, we abstract away from price dis-

crimination in our empirical analysis. Most platforms use an all-or-nothing model, which

means that transactions are realized if and only if the funding goal is reached by the dead-

line. Platforms limit the length of a campaign. For example, Kickstarter limits campaigns

to at most 60 days. Most campaigns last 30 days. Once a campaign goes live, the core

features cannot be changed.13 Consistent with our model, we analyze campaigns through

the fundraising deadline and do not study subsequent events, such as the reward (product)

becoming a mass-market product (e.g., Peleton, Oculus VR, Brooklinen, etc.).

5.2 Data Sample Construction

We use novel Kickstarter data for campaigns launched between March 2017 to September

2018. We observe pledges separately from donations at 12-hour frequencies.14 In total, the

sample contains almost two million observations.15

We separate buyer pledges from donor contributions by processing the web page source

code and estimating unobserved quantities. We directly observe pledges for each reward

level (buyer pledges) as well as total revenues, inclusive of donations and shipping costs.

On Kickstarter, shipping costs are included in the progress towards the goal but are not

included in the reward prices listed on the platform. This means that we observe both

left-hand-side variables individually in the following equation,

Total Revenuet −Buyer Revenuet =Donor Revenuet +Shipping Costst ,

but we only observe the sum of the right-hand-side variables. In order to recover donations,

means that the entrepreneur informally adjusts the goal, and if met, adjusts the final product. Since these
instances affect our interpretation of a donation, we remove any campaign in our sample that includes words
related to add-ons, optional buys, and stretch goals.

13For example, G , T and p are fixed. The entrepreneur can take the campaign to a draft mode in order
to edit the text, but this does not pause the stopwatch to the deadline. Entrepreneurs can post updates, and
backers can post comments during and after the campaign.

14Kuppuswamy and Bayus (2018) identify “family" contributions using last name matching based on self-
selected usernames that were visible before 2012.

15We collected the data by monitoring all campaign web pages.
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we estimate shipping costs. We do so by collecting shipping costs for every campaign-

reward-country combination and then assigning a shipping cost to every observed pledge.

In total, we collect over 516,000 shipping quotes. The most frequently observed shipping

options are free shipping, single-rate shipping, or worldwide shipping with region-specific

or country-specific prices. Our approach allows us to bound the importance of donations

on the platform. We complete our analyses under three shipping-cost assignments: (i)

least-expensive shipping, (ii) assuming all buyers are located in the United States, and (iii)

most-expensive shipping. Specifications (i) and (iii) provide lower and upper bounds on

revenues coming from donations. We use (ii) as our main specification because most cam-

paigns originate in the U.S.. We report results from the other specifications in Online Ap-

pendix C.2. Since donations are positive contributions to campaigns, we also incorporate

the constraint Shipping Costst ≤Total Revenuet −Buyer Revenuet .

We define a buyer to be an individual who pledges for any reward, however, some

rewards may better be classified as a donation. For example, if the lowest reward is a thank-

you card, but the main reward is a novel product, the lowest reward may be better treated as

a donation. Another example may be the existence of an expensive option that includes the

main reward but also allows the buyer to meet with the entrepreneur. We repeat all of our

analyses treating the most-expensive, the least-expensive rewards, or both the least- and

most-expensive rewards as donations in Online Appendix C.2. All of our main findings

hold regardless of the specification choice. Although Kickstarter allows individuals to

pledge for a reward and contribute more than the reward amount (simultaneously pledge

and donate), our collected data is not at the individual level and therefore, does not provide

this level of detail.16 As a result, we maintain the assumptions of our model that buyers do

not donate and do not revisit their pledging decisions later on.17

16Observing a buyer simultaneously pledge and donate would only discernible if data were collected at
sufficiently high-frequency.

17We observe very few instances where progress toward the goal is nonmonontic (389 observations out of
1,966,378). Note that because we also observe the total number of contributors, by subtracting off the number
of individuals who pledged for a reward, we obtain a lower bound on the number of donors that contributed.
This is a lower bound because a buyer can also donate.
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5.3 Summary Statistics

Table 1 shows summary statistics for the 30,610 campaigns in our cleaned sample.18 Just

over one-half of campaigns succeed. We report sample averages for unsuccessful (Uns.)

and successful (Suc.) campaigns separately. There is a positive correlation between cam-

paign length and goal (corr. coef. = .16). The average goal amount is $15,400; the median

goal amount is $5,800. Unsuccessful campaigns tend to have higher goals and more rev-

enues coming from donations than successful campaigns. Campaigns typically offer sev-

eral reward levels. Although campaign creators can assign capacity limits to rewards, these

limits are typically not binding.19 Contributions tend to be infrequent. The median number

of both pledges and donations each period is zero, with means of 1.1 and 0.1, respectively.

Table 1: Summary Statistics for the Data Sample

Variable
Mean

Median 5th % 95th %
(All) (Uns.) (Suc.)

Project Length 32.3 34.0 30.6 30.0 15.0 60.0
Goal ($) 15326.0 21355.0 9340.1 5785.9 350.0 58062.4
Number of Rewards 7.7 7.1 9.5 7.0 1.0 17.0
Donor Revenue (per period) 25.3 5.7 46.9 0.0 0.0 62.0
Buyer Revenue (per period) 167.9 20.7 329.9 0.0 0.0 561.0
Percent Donations at Deadline 27.9 32.9 23.0 15.9 0.0 100.0
Number of Projects 30610 15250 15360 − − −

Note: Statistics are calculated for the 30,610 campaigns included in the sample after data cleaning. A period
is twelve hours. Means are computed for all campaigns (All) - unsuccessful campaigns (Uns.) and successful
campaigns (Suc.).

Our analysis establishes that donations are a key component of campaign revenues, but

18We winsorize the sample by dropping the bottom 0.5% and the top 0.5% of campaigns in terms of the
goal amount. This removes campaigns with low $1 goals and campaigns with several million dollar goals (one
in the billions). These extreme values impact some means, such as average goal, but medians are unchanged.
In addition, we drop campaigns that were removed by the creator, campaigns under copyright dispute, and
campaigns with optional add-ons.

19Successful campaigns have more reward levels. We find that 65% of buckets do not have a capacity limit,
and only 17% of rewards with capacity limits ever sell out.
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they also occur infrequently and from a single individual—the median number of donors

per period is one. We estimate that donations constitute 28% of total revenue raised on

Kickstarter (with bounds of 25% to 30%, depending on how we compute shipping costs).

Consistent with our model, donations tend to be small, with an average of $25. The average

reward price is over four times greater.

We report additional campaign outcome summaries in Figure 3. In panel (a), we report

revenue relative to goal (R/G ) at the end of the campaign. There is considerable bunching

at zero and one. Most campaigns receive little support or raise exactly the goal amount.

There is a thin and long tail beyond R/G = 2 that is not shown. In panel (b), we plot the

period in which successful campaigns reach their goal. We refer to the period in which

a campaign reaches its goal as the success time. Success times are bimodal, with many

campaigns succeeding both close to the start and close to the deadline.

Figure 3: Frequency Histograms of Final Revenue and Success Time
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Note: (a) Total campaign revenue is the sum of donations, purchases, and shipping costs. The fraction is defined as total revenue at the
deadline divided by the campaign goal. (b) For 30-day campaigns only. Period t = 0 corresponds to the first day of the campaign, and
t = 30 corresponds to the time at which the campaign ends.

5.4 Validating Modeling Assumptions

Before testing theoretical predictions, we use the data to validate some of our modeling

choices. One of our central assumptions is that contributors have distinct incentives: the
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donor contributes solely to increase the probability of success, and buyers are motivated by

obtaining private rewards. The presence of contributors with different incentives suggests

participants should have differential reactions to a campaign succeeding. More precisely,

donations should stop after a campaign reaches success, but buyer pledging should con-

tinue. We provide empirical support for these pledging incentives in Figure 4. The bar

plot shows average donor and buyer revenue flows three days before and three days after

campaign success times. As confirmed in our summary analysis, buyer revenues constitute

a larger percentage of campaign revenue than donations. However, whereas both buyer and

donor pledges are positive before success, Figure 4 shows that only donor contributions

drop significantly toward zero after success. We estimate that donations drop by 72% after

reaching success, whereas buyer contributions drop by only 33%.

Figure 4: Purchases and Donations Around Success Time
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Note: The success time is the closest time after the campaign reaches its funding goal for 30 day campaigns. Pre means within the 3
days before the goal is reached; Post means within the 3 days after to the goal being reached. This plot includes the subset of campaigns
in which the success time is greater than 3 and less than 27 (N=3,372).

Another salient feature of the data that suggests different contribution incentives is the

strong relationship between the relative importance of donations versus purchases and suc-

cess times. At the aggregate level, campaigns that succeed close to campaign launch receive

lower total donations than those that complete close to the deadline. To test this hypothe-

sis, we partition the sample according to success times using three groupings: those with

success time in the first three days (early finishers), those with success time in days 3-27

(middle finishers), and those with success time in the last three days before the deadline
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Table 2: Descriptive Statistics for Early-, Middle- and Late- Finishing Campaigns

Variable Early Middle Late

Goal ($) 2288.6 4000.0 6000.0
Number of Rewards 8.0 8.0 9.0
Average Price 96.2 126.2 183.0
R/G 3.2 1.2 1.0
D /R (%) 5.0 14.4 33.0
D /G (%) 18.0 20.4 35.5
Number of Projects 1343 3093 2061

Top Categories Theater Theater Theater
Design Music Film & Video
Games Design Music

Note: Summary statistics for successful campaigns partitioned by success time. Only 30-day campaigns are
included. Early finishers complete within three days. Late finishers complete in the last three days. All other
campaigns are included in the middle category. Medians reported.

(late finishers). We provide descriptive statistics in Table 2. We find that there are stark

differences between early-finishing and late-finishing campaigns that suggests differential

roles of individuals who pledge versus those who donate. For example, the relative con-

tribution of donations increases in success time: 5%, 14%, 33% for early-, middle-, and

late-finishers, respectively.

In Figure 5, we plot contribution flows from buyers (panel a) and donors (panel b) for

early-, middle- and late-finishing campaigns. Panel (a) confirms that purchase activity oc-

curs through time, regardless of when a campaign succeeds. The increased pledge rate at

the beginning and end of campaigns is consistent with the time-varying arrival rate model

extension in Section 4. In practice, this influx of pledges is likely due to Kickstarter ad-

vertising recently launched campaigns or campaigns nearing completion. Panel (b) shows

a different pattern for donations. Although donations also occur throughout time, the only

spike in donations occurs at the end for campaigns that succeed close to the deadline. This

represents a significant spike in terms of total revenue contribution (over 3% of campaign

revenue). While purchases exceed donations by a six-to-one margin for early-finishing

campaigns, donations constitute more than half of revenue raised close to the deadline for
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late-finishing campaigns.

Figure 5: Contributions of Buyers and Donors over Time for Successful Campaigns
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Note: Percentage of revenue is defined as the amount of purchases (donations) in a period, divided by the total amount of revenue
(donations plus purchases) at the deadline for early-, middle-, and late-finishing campaigns.

5.5 Testing Predictions on Contribution Dynamics

Given the empirical support for contributions with different underlying incentives, we next

turn to formally testing our model’s predictions. Before stating the testable implications,

we introduce a few additional definitions. Denote the event of the campaign succeeding

exactly at t by

St =
�

Nt−∆p +Dt−∆ <G and Nt p +Dt ≥G
	

.

and let S =
⋃

t ∈[0,T ]
St . The success time is given by

τ≡ inf{t ≥ 0 |Nt p +Dt ≥G }.

The failure time of a campaign in a PT equilibrium is given by

ι := inf
¦

t ≥ 0
�

�π(Nt , Dt , T − t )<
v0

v −p

©

.

With these definitions, Proposition 5 below details testable predictions on donation
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dynamics of PT equilibria. After stating the proposition, we state whether each prediction

is specific to our model and then provide supporting empirical evidence. All proofs are in

the Online Appendix.

Proposition 5 (Donation Dynamics in Pooling Threshold Equilibria). All PT equilibria

satisfy the following properties:

i) Campaigns that succeed at the deadline would fail without a donation and raise

exactly the goal with high probability. Formally, P(NT p +DT−∆ <G |ST ) < 1−∆λ

and P(DT =G −NT p |ST )≥ 1−∆λ.

ii) Campaigns that succeed before the deadline succeed due to a buyer pledge. For-

mally, P(Dτ−∆+Nτp ≥G ) = 1 if τ< T ;

iii) Donations drop to zero after a buyer pledges. Formally, D∆
∗ (N , u +∆) ≥ D∆

∗ (N +

1, u );

iv) The initial donation level D∆
∗ (0, T ) is increasing in G and decreasing in T . Formally,

for any PT equilibrium with goal G (deadline T ), there exists a PT equilibrium for

the game with goal G ′ <G (with deadline T ′ < T ) with higher (lower) D∆
∗ (0, T ).

v) Conditional on failing, campaigns with larger donor valuations fail later. Formally,

given donor realizations w > w ′, if a campaign is unsuccessful for both w and w ′,

and given the same buyer arrival realization, then the failure time ι is larger for w

than for w ′.

vi) In success-minimizing PT equilibria, all donations are at least p.

Empirical Evidence (Proposition 5).

i) The proposition states that the contributions that cause a campaign to succeed at the

deadline must come from donations. This is a consequence of the donor valuing success

and the probability of a buyer arrival in the last period being small. We test this statement
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in the data, by considering all campaigns that succeed at the deadline, subtracting any last-

minute donations, and then checking if RT > G . We find that 72% of campaigns would

have failed. Overall, campaigns that succeed in the last twelve hours before the deadline

raise on average 1.04 of the goal.

ii) A particular consequence of the PT equilibrium structure is that the donor always wants

to donate just enough to ensure that the next buyer pledges. Hence, a donor will never

donate to bring cumulative donations beyond G − (N + 1)p . To test that buyers cause

campaigns to succeed before the deadline, we simply calculate the percentage of revenue

coming from buyers in the period in which a campaign succeeds. Figure 6-(a) presents a

histogram of the results. For the median successful campaign, the percentage of revenues

from buyers is 94%.

Figure 6: Buyer Contributions at Success Time and Donation Hazard
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Notes: (a) Histogram of the fraction of revenue from buyers in the period in which a campaign succeeds. Selected campaigns finish at
least one day before the deadline. (b) Hazard rate model of donations (indicator) on the number of periods since the last purchase.

iii) This property is particular to our equilibrium. In PT equilibria, any purchase causes

a strictly positive drop in the donation threshold, which means that the donor can stop

contributing for a period of time. We find that the data is consistent with this prediction.

Figure 6-(b) shows the results of a hazard rate model of the occurrence of a donation as

a function of the number of periods since the last buyer pledge. The plot shows that the
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probability of no donation straight after a purchase is high. The probability of no donation

is decreasing with time elapsed since the last purchase. We find that the probability of

donation rises significantly after five or so days of no buyer activity.

iv) Another feature of PT equilibria is that for some campaign parameter values, the donor

may need to signal his valuation and donate a positive amount at the start to ensure that the

campaign does not fail right away, i.e., D∗(0, T ) > 0. This initial donation threshold is in-

creasing in G and decreasing in T , as a higher goal and a lower deadline make success less

likely. We estimate quantile regressions to investigate the distribution of the initial dona-

tions as a function of campaign length and goal. Figure 7-(a) shows results of the quantile

regression predictions of the initial donation divided by the goal as a function of project

length (polynomial of degree three). Figure 7-(b) shows results of the quantile regression

of the initial donation as a function of the goal amount (polynomial of degree three). The

plots confirm that the proportion of the campaign goal met by an initial donation decreases

with the length of the campaign and increases with the goal amount. Interestingly, the ob-

served spike at the start of the campaign is reminiscent of the role played by “seed money”

at the start of charitable fund-raising campaigns (Andreoni, 1998).

Figure 7: Initial Donation as a Function of Length and Goal
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(b) Initial Donation as a Function of Goal Amount
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(a) Quantile regression of the initial donation level over the goal, as a function of the length of projects. As project length increases,
the initial donation (over goal) is decreasing. The conditional mean is also plotted. (b) Quantile regression of the initial donation as a
function of the goal amount. The initial donation is increasing in goal amount. The conditional mean is also plotted.
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v) The predicted positive relationship between when a campaign fails and the donor’s val-

uation is also a specific artefact of our equilibrium. It arises exactly because donors with

high valuations pool with donors of lower valuations, saving their funds to induce later

buyers to buy. In effect, the behavior of donors of high and low valuations look similar

except that donors with higher valuations can keep campaigns active for longer.

To test this prediction, we need to infer failure times of campaigns using a logistic

regression of the form

1 [reaches success] j ,t = x j ,tβ + ϵ j ,t ,

where the outcome variable is an indicator function of the campaign outcome (suc-

cess/failure). Included in x j ,t are the interactions of the state of the campaign (R/G ), an

indicator for success, and the time index t . This simple prediction model produces an out-

of-sample prediction accuracy of 90%. We use the model to infer the realized failure time ι

for each failed campaign, and then simply correlate cumulative donations for failed projects

with the estimated failure time. We find the correlation is 0.10, meaning projects with larger

donations fail closer to the deadline. This relationship is also significant (t = 8.0).20

vi) As we stated in Section 3.4, given the success-minimizing donation threshold, in dis-

crete time ∆, donors donate at least p in order to “compensate” for the absence of a buyer

arrival. We conduct a simple analysis that shows most campaigns do not follow success-

minimizing equilibrium outcomes. We calculate the average donation level for each cam-

paign as cumulative donations (excluding the last period), divided by the number of donors

observed. We label this average as µD
j . We also calculate the backer-weighted reward price

for each campaign, which we denote as µB
j . Finally, we verify if µD

j ≥ µ
B
j which must

be satisfied in success-minimizing equilibria. We find that only 33% of campaigns satisfy

this inequality, so at most a third of campaigns care consistent with a success-minimizing

equilibrium outcome. This result is robust to conducting the analysis at the 12-hour in-
20Alternatively, we could have derived ι by looking at the last contribution—which should be a dona-

tion. However, Kickstarter promotes projects near the deadline driving some last-minute contributions. This
approach therefore implies that campaign failure times commonly occur at the deadline even though our
reduced-form model predicts that failure occurred much earlier.
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terval level as well. Therefore, our analysis suggests that Kickstarter facilitates dynamic

signaling.

Finally, we verify two general properties of PT equilibria. Interestingly, while the prop-

erties in Proposition 6 are very intuitive, they are inconsistent with our model of social

learning.

Proposition 6 (General Properties of Pooling Threshold Equilibria). In all PT equilib-

ria, the ex-ante probability of success is higher if the time horizon is longer and if the goal

amount is smaller.

Empirical Evidence (Proposition 6).

The ideal experiment to measure the impact of G and T on success probability would

be to exogenously vary G and T individually for many identical campaigns. Clearly this

is infeasible, however, we are able to measure “repeated campaigns" using creator identi-

fiers. We map each campaign to its creator and then select creators who launched multiple

campaigns in the same category. Using string matching techniques (Levenshtein distance),

we identify repeated campaigns. These are instances in which the entrepreneur’s first cam-

paign failed, but the entrepreneur relaunched the campaign. We do not condition on success

for the relaunched campaign. We use string matching techniques because the title of the

campaign may change over launches. We then compare differences in goal and length for

these repeated campaigns and find evidence that supports the proposition. Among success-

ful campaigns, we find that entrepreneurs decrease the goal amount (by median decrease

of $5,000; significant). Among unsuccessful repeated campaigns, we find the goal amount

decreases by $3,500 (median). We do not find strong evidence that length is adjusted. The

median change for successful campaigns is zero days added, and the mean change is 0.3

days and insignificant.21

21To perform this analysis, we supplement our data with publicly available Kaggle data to extend the time
horizon of our analysis (https://www.kaggle.com/kemical/kickstarter-projects). We find that 40% of repeated
campaigns succeed using the Levenshtein distance threshold at 99%. This finding is robust to the threshold
of the string matching technique as well as the string matching technique itself. Here, we use the partial ratio
statistic calculated using the package fuzzywuzzy and set a threshold to 99%. The pairwise test statistics
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6 Conclusion

We introduce a dynamic contribution game where randomly arriving, short-lived buyers

receive a reward in exchange for a contribution, and a long-lived donor values the public

benefits while seeking to minimize total contributions required for the campaign to succeed.

Two forms of uncertainty affect the ability for participants to coordinate their actions: un-

certainty in arrivals and uncertainty in the donor’s valuation. We show that allowing the

donor to dynamically signal his valuation by strategically timing contributions benefits all

participants as it facilitates coordination. The success-maximizing equilibrium maximizes

ex-ante donor payoffs, but exacerbates uncertainty borne by buyers. As a result, cam-

paign participants prefer different equilibria. Buyers prefer equilibria strictly in-between

the success-maximizing equilibrium and the success-minimizing equilibrium. The latter

corresponds to outcomes where dynamic signaling is not possible. We show that our base-

line model is robust to a number of extensions that capture features of general fundraising

campaigns. Finally, we empirically validate our model using data from Kickstarter. We

find evidence that supports there are two distinct contribution incentives and that our equi-

librium predictions fit the data well. The coordinating role of the donor can be relevant for

fundraising campaigns more broadly.
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Appendix

A Proofs

A.1 General properties of PT assessments and PT equilibria

A.1.1 Properties of PT assessments

In this section, we present some properties of PT assessments and the induced probability

of success π∆(N , D , u ) that we will use for the construction of PT equilibria.

Lemma 1. Given a PT assessment with donation threshold D∆
∗ (N , u ), if the campaign

reaches a state (N , D , u ) with D <D∆
∗ (N , u +∆), it has failed with probability one.

Proof. Assume that a state (Nt , Dt , T − (t +∆)) with Dt <D∆
∗ (Nt , T − t ) is reached. Then

Dt = w because the donor is playing a PT strategy and w < D∆
∗ (Nt , T − t ′) for all t ′ ≥ t

by Condition i) in Definition 3 of PT assessments. Thus, Nt ′ = Nt for all t ′ > t given the

buyer strategy in Equation PT-buyer. All in all, (Nt ′ , Dt ′) = (Nt , w ) for all t ′ > t where

Nt p +w <Nt p +D∆
∗ (Nt , T − t )<Nt p +G − (Nt +1)p <G , which concludes the proof. ■

Lemma 1 implies that beliefs in a PT assessment are consistent and that the induced

probability of success π∆ can be written in a recursive manner as we show in the following

lemma. We also derive some other properties of π∆. For the proof we use that for a PT

assessment, cumulative donations at time t must satisfy

Dt =max
t ′≤t

min{D∆
∗ (Nt ′ , T − t ′), w }. (1)

Lemma 2. A PT assessment (b∆, D∆
+ , F ∆) with donation threshold D∆

∗ (N , u ) satisfies the

following properties:

i) Beliefs F ∆ are consistent with the strategies b∆, D∆
+ ;

ii) The induced probability π∆(N , D , u ) satisfies the following:
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• N +1≥M (D ) if and only if π∆(N , D , u ) = 1;

• If N +1<M (D ) and D ≥D∆
∗ (N , u +∆), then

π∆(N , D , 0) =
1− F0(G −p (N +1))

1− F0(D )

and for u > 0

π∆(N , D , u ) = EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max
�

D , D∆
∗

�

N +1, u − (i −1)∆
�	

, u − i∆
�

1
�

W ≥D∆
∗

�

N +1, u − (i −1)∆
�

�

�

�

�W ≥D

�

;

• If N +1<M (D ) and D <D∆
∗ (N , u +∆), π∆(N , D , 0) = 0, and for u > 0

π∆(N , D , u ) =P(D ≥ max
N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N )), (2)

where τu
n > T −u is the time of the n-th arrival after time t = T −u .22

iii) π∆(N , D , u ) is continuous and strictly increasing in D for G − (N + 1)p ≥ D ≥

D∆
∗ (N , u +∆), and π∆(N , D , u ) is weakly increasing in D otherwise;

iv) π∆(N , D , u ) ≤ π∆(N + 1, D , u −∆) ≤ π∆(N + 1, D , u ), and π∆(N , D , u ) is strictly

increasing in N , u if 0<π∆(N , D , u )< 1.

Proof. i) Consider a buyer in an on-path state (N , D , u ). By (1) this state is reached with

zero probability by donors with w <D , and if D <D∆
∗ (N , u +∆), then D =w . Further, if

D ≥D∆
∗ (N , u +∆), any donor with w ≥D must have followed the same donation strategy

on any equilibrium path history that led to (N , D , u ). Hence, by Bayes’ rule, the distribution

22Note that π∆(N , D , u ) is defined even if the corresponding purchase is not consistent with the buyer
strategy. If D < D∆

∗ (N , u +∆) and the buyer pledges, this deviation is not observed by a buyer in period
u ′ < u . Thus, she pledges if D ≥ D∆

∗ (N + 1, u ′ +∆). The probability is with respect to the random arrival
time τu

N ′−N .
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of donor types in a state (N , D , u ) is a truncation of F0 at D .

ii) For N + 1 ≥ M (D ), π∆(N , D , u ) = 1 as the goal is reached if the (N + 1)th buyer

pledges. For N+1<M (D ), absent additional donations, at least one more buyer must arrive

to reach the goal G after the (N +1)th buyer pledges because D∆
∗ (N , u )<G − (N +1)p , so

π∆(N , D , u )< 1. The probability of success must satisfy the following recursive property:

First, π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥D∆
∗ (N ,∆)) given F ∆ defined in Equation PT-belief.

For u > 0 and D ≥D∆
∗ (N , u +∆):

π∆(N , D , u ) =

EF0

� u
∆
∑

i=1
(1−∆λ)i−1∆λ
︸ ︷︷ ︸

next buyer arrives
at u − i∆

π∆
�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

︸ ︷︷ ︸

probability of success if the N +2nd buyer pledges

1
�

W ≥D∆
∗ (N +1, u − (i −1)∆)

�

︸ ︷︷ ︸

wealth exceeds donation threshold

�

� W ≥D
︸ ︷︷ ︸

beliefs are
truncation of

F0 at D

�

,

because by Lemma 1 the campaign fails with probability one if W <D∆
∗ (N +1, u−(i−1)∆).

For D <D∆
∗ (N , u +∆), the buyer believes that W =D with probability one. Hence, in

the last period (u = 0), the campaign cannot succeed since D∆
∗ (N , u +∆) <G − (N + 1)p

even if the N +1th buyer pledges. If u > 0 and the N +1th buyer pledges, then a subsequent

buyer arriving in state (N ′, D , u ′)with N ′ ≥N+1 and u ′ < u pledges if D ≥D∆
∗ (N

′, u ′+∆).

iii) We first show that π∆(N , D , u ) is strictly increasing and continuous in D for

D∆
∗ (N , u +∆)≤D ≤G − (N +1)p by induction in u .

Induction start (u = 0): π∆(N , D , 0) = 1−F0(G−(N+1)p )
1−F0(D )

1(D ≥ D∆
∗ (N ,∆)) is continuous and

strictly increasing in D for D∆
∗ (N ,∆)≤D ≤G − (N +1)p .

Induction hypothesis for u: π∆(N , D , u ) is continuous and strictly increasing in D for

D∆
∗ (N , u +∆)≤D ≤G − (N +1)p .
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Induction step (u⇝ u +∆): For D∆
∗ (N , u +2∆)≤D ≤G − (N +1)p we have by ii)

π∆(N , D , u +∆) =
u+∆
∆
∑

i=1
(1−∆λ)i−1∆λπ∆

�

N +1, max{D , D∆
∗ (N +1, u +∆− (i −1)∆)}, u +∆− i∆

�

1−F0(max{D ,D∆∗ (N+1,u+∆−(i−1)∆)})
1−F0(D )

,

which is continuous in D by the induction hypothesis because D∆
∗ (N +1, u+∆−(i−1)∆)≤

max{D , D∆
∗ (N + 1, u +∆− (i − 1)∆)} ≤G − (N + 1)p and also strictly increasing because

1−F0(max{D ,D∆∗ (N+1,u+∆−(i−1)∆)})
1−F0(D )

is equal to 1 if D ≥D∆
∗ (N + 1, u +∆− (i − 1)∆) and 1

1−F0(D )
is

strictly increasing in D .

Finally, if D > G − (N + 1)p , then π∆(N , D , u ) = 1, and if D < D∆
∗ (N , u +∆), then it

follows that π∆(N , D , u ) is weakly increasing in D directly from (2).

iv) By Condition i) in Definition 3 of PT assessments, D∆
∗ (N , u )≥D∆

∗ (N +1, u −∆)≥

D∆
∗ (N + 1, u ). Hence, a donor w , who can incentivize the next buyer to pledge in a state

(N , D , u ), can incentivize the next buyer to pledge in state (N + 1, D , u −∆) in the next

period. Thus, more future buyers are incentivized to pledge after state (N + 1, D , u −∆)

than after (N , D , u ), so π∆(N + 1, D , u −∆) ≥ π∆(N , D , u ). Similarly, a donor w , who

can incentivize the next buyer to pledge in a state (N + 1, D , u −∆), can incentivize the

next buyer to pledge in state (N + 1, D , u ) in the period before. Thus, more future buyers

are incentivized to pledge after state (N + 1, D , u ) than after (N + 1, D , u −∆), so π∆(N +

1, D , u )≥π∆(N +1, D , u −∆).

Next, we show by induction in N that if 0 < π∆(N , D , u ) < 1, then π∆(N + 1, D , u ) >

π∆(N , D , u ). To this end, note that for N +1<M (D ) and D ≥D∆
∗ (N , u +∆) we can write

by ii) for u > 0

π∆(N , D , u ) = E
��

∆λπ∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N +1, u )}, u −∆)

�

1
�

W ≥D∆
∗ (N +1, u )
�

�

�

�W ≥D
�
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because if no buyer arrives in period u −∆, then the probability of success is as if the

buyer in period u arrived a period later, but with a new donation threshold, i.e., it is

π∆(N , max{D , D∆
∗ (N +1, u )}, u −∆).

Induction start (N =M (D )−1): π∆(N +1, D , u ) = 1>π∆(N , D , u ).

Induction hypothesis for N <M (D )− 1: Assume π∆(N + 1, D , u ) > π∆(N , D , u ) if 0 <

π∆(N , D , u )< 1.

Induction step (N ⇝N −1): Let 0<π∆(N −1, D , u )< 1. If D ≥D∆
∗ (N , u +∆), then

π∆(N , D , u ) =E
��

∆λ π∆
�

N +1, max{D , D∆
∗ (N +1, u )}, u −∆

�

︸ ︷︷ ︸

>π∆(N , D , u −∆) by induction hypothesis
and monotonicity in D

+

(1−∆λ)π∆(N , max{D , D∆
∗ (N , u )}, u −∆)

︸ ︷︷ ︸

>π∆(N , D , u −∆)
by monotonicity in D

�

1
�

W ≥D∆
∗ (N +1, u )
�

�

�

�W ≥D
�

>π∆(N , D , u −∆)P(W ≥D∆
∗ (N +1, u )
︸ ︷︷ ︸

<D∆
∗ (N , u )

|W ≥D )≥π∆(N −1, D , u )

(3)

because P(W ≥D∆
∗ (N , u )|W ≥D ) = 1 for D ≥D∆

∗ (N , u ). If D <D∆
∗ (N , u +∆), then for

π∆(N −1, D , u )> 0:

π∆(N , D , u ) =P(D ≥ max
N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))

︸ ︷︷ ︸

< max
N−1<N ′≤M (D )
τu

N ′−N+1
<T

D∆
∗ (N

′, T −τu
N ′−N+1)

>π∆(N −1, D , u ).

Finally, we consider strict monotonicity in u . Consider N + 1 < M (D ). If D ≥

D∆
∗ (N , u +∆), then (3) implies π∆(N , D , u ) > π∆(N , D , u −∆), where we use the strict

monotonicity of π∆ in N . If D <D∆
∗ (N , u+∆), then since τu−∆

N ′−N and τu
N ′−N +1 are equally
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distributed by the Markov property and since D∆
∗ (N , u ) is decreasing u for D∆

∗ (N , u )> 0,

P(D ≥ max
N<N ′≤M (D )
τu−∆

N ′−N
<T

D∆
∗ (N

′, T −τu
N ′−N ))>P(D ≥ max

N<N ′≤M (D )
τu

N ′−N
<T

D∆
∗ (N

′, T −τu−∆
N ′−N )).

Hence, π∆(N , D , u )>π∆(N , D , u −∆) as long as π∆(N , D , u ) ∈ (0, 1). ■

For the construction of the donation thresholds it is useful to consider the auxiliary

probability of success in a state (N , D , u ) if the buyer believed that donor wealth is dis-

tributed according to F0 truncated at D for all D :

π̃∆(N , D , u ) :=
u
∆
∑

i=1
(1−∆λ)i−1∆λ

1−F0(max{D ,D∆∗ (N+1,u−(i−1)∆)})
1−F0(D )

π∆
�

N +1, max{D , D∆
∗ (N +1, u − (i −1)∆)}, u − i∆

�

.

(4)

The following is a corollary of Lemma 2. We use it in the proof of Proposition 1 to define

the donation threshold D (N , u ).

Corollary 1. The auxiliary probability of success π̃∆(N , D , u ) is continuous and (strictly)

increasing in D (as long as π̃∆(N , D , u ) ∈ (0, 1)).

Finally, in any PT assessment, it is clear that the specified play for the donor at u = 0 is

optimal. Below, we show that in fact the donor strategy specified in any PT assessment is a

best response to the specified buyer strategy.

Lemma 3. For any PT assessment with donation threshold D∆
∗ (N , u ), the donor PT strat-

egy is a best response to the buyer strategy.

Proof. We argue by backwards induction in t .

Induction start (t = T ): First, consider histories in the last period h D ,∆
T with cumulative

contributions NT and DT−∆. Ignoring the constraint imposed by previous donations, the

donor would want to donate min{w ,G −NT p}, since he would want to give just enough

for the campaign to succeed without exceeding his valuation. However, the donor cannot

take out funds. Thus, a cumulative donation of max{DT−∆, min{w ,G −NT p}} is a best
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response. Hence, in all histories that correspond to a state (N , D , 0), a Markov strategy of

D̃∆
+ (h

D ,∆
T ; w ) =D∆

+ (NT , DT−∆, 0; w ) =max{DT−∆, min{w ,G −NT p}} is optimal.

Induction hypothesis for s ≥ t : Next, we assume that for all s ≥ t and all h D ,∆
s with

corresponding cumulative contributions Ns and Ds−∆, the donor payoff is maximized by

D̃∆
+ (h

D ,∆
s ; w ) =D∆

+ (Ns , Ds−∆, T − s ; w ) =max{Ds−∆, min{w , D∆
∗ (Ns , T − s )}}.

Induction step (t ⇝ t −∆): Consider an arbitrary donor strategy D̃∆
+ where for all s ≥ t ,

D̃∆
+ (h

D ,∆
s ; w ) =D∆

+ (Ns , Ds−∆, T − s ; w ) =max{Ds−∆, min{w , D∆
∗ (Ns , T − s )}}. Consider an

on-path history h D ,∆
t−∆ with corresponding cumulative contributions Nt−∆, Dt−2∆ and a donor

valuation w ≥max{Dt−2∆, D∆
∗ (Nt−∆, T − (t −∆))} such that

D̃∆
+

�

h D ,∆
t−∆ ; w
�

<D∆
∗ (Nt−∆, T − (t −∆)).

According to the PT assessment, if a buyer arrives in period t , the buyer does not pledge.

Since D∆
∗ (Nt−∆, T −(t −∆))<D∆

∗ (Nt−∆, u ) for all u < T −(t −∆), the donor needs to donate

at least D∆
∗ (Nt−∆, T − (t −∆)) in order to make a future buyer pledge and to prevent the

campaign from failing. Furthermore, D∆
∗ (Nt−∆, u ) >D∆

∗ (N
′, u ) for all N ′ >Nt−∆. Hence,

a donor with valuation w is strictly better off by donating D∆
∗ (Nt−∆, T − (t −∆)) after

history h D ,∆
t−∆ , so an optimal donor strategy must be to give at least D∆

∗ (Nt−∆, T − (t −∆)).

Similarly, monotonicity of D∆
∗ in N , u implies that it cannot be optimal that the donor gives

more than max{Dt−2∆, D∆
∗ (Nt−∆, T − (t −∆))}. If w <max{Dt−2∆, D∆

∗ (Nt−∆, T − (t −∆))},

the campaign succeeds with probability zero as cumulative donations are below w . Thus,

a best-response donor strategy is given by

D̃∆
+

�

h D ,∆
t−∆ ; w
�

=max{Dt−2∆, min{w , D∆
∗ (Nt−∆, T − (t −∆))}}.

■
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A.1.2 Properties of PT equilibria

Recall that a PT equilibrium is a PT assessment (b∆, D∆
+ , F ∆) such that given the induced

probability of success π∆(x) we have buyer optimality: π(x)> v0
v−p ⇒ b∆(x) = 1 and π(x)<

v0
v−p ⇒ b∆(x) = 0. Donor-optimality is guaranteed automatically by Lemma 3. The buyer

optimality condition allows us to define cutoff times ξ∆j (w ) as in Equation CT for each j , w

with j ≤M (w ). We can show that ξ∆j (w ) is monotone in j .

Lemma 4. In any PT equilibrium, the cutoff time ξ∆j (w ) is strictly increasing in j .

Proof. By Lemma 2 iv), we have for j ′ > j , that if π∆(M (w ) − j ′, w , u ) ≥ v0
v−p , then

π∆(M (w )− j , w , u −∆)≥π∆(M (w )− j ′, w , u )≥ v0
v−p , so

π∆(M (w )− j , w ,ξ∆j ′(w )−∆)≥π
∆(M (w )− j ′, w , u )≥

v0

v −p
.

Hence, ξ∆j (w )≤ ξ
∆
j ′(w )−∆<ξ

∆
j ′(w ). ■

As a result, in a PT equilibrium, after ξ∆j (w ) is reached, no buyer pledges, i.e.,







π∆
�

M (w )− j , w , u
�

≥ v0
v−p for u ≥ ξ∆j (w )

π∆
�

M (w )− j , w , u
�

< v0
v−p for u <ξ∆j (w )

(5)

or put differently, w ≥ D∆
∗ (N , u +∆)⇔ u ≥ ξ∆M (w )−N (w ). This allows us to re-write the

probability of success in a different way. For N <M (D )− 1 and u > 0, the probability of

success is given by

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆
�

N +1, max{D , D∆
∗ (N +1, u −∆(i −1))}, u −∆i

�

�

�

�W ≥D

� (6)

if D ≥D∆
∗ (N , u +∆). If D <D∆

∗ (N , u +∆), π∆(N , D , u )< v0
v−p .
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A.2 Proof of Proposition 1 (Success-Maximizing Equilibrium)

In Subsection A.2.1, we first construct a PT equilibrium. Subsection A.2.2 states that the

limit of these equilibria as∆→ 0 exists and is as specified in Proposition 1, while the proofs

are in the Online Appendix. Finally, in Subsection A.2.3, we show that for any ∆ > 0, the

constructed equilibrium maximizes the probability of success and that the outcomes of any

sequence of success-maximizing PBE converge to the same limit.

A.2.1 Construction of a PT equilibrium

The following lemma implies Proposition 1 i). It specifies a PT equilibrium with a donation

threshold that makes the next buyer just indifferent between pledging and not.

Lemma 5 (Success-maximizing equilibrium). Given any ∆> 0, there exists a PT equilib-

rium (b∆, D∆
+ , F ∆) with donation threshold D∆(N , u ) and induced probability of success

π∆(x), x ∈X∆ such that for u > 0







D∆(N , u ) = 0 if π∆(N , 0, u −∆)> v0
v−p ,

π∆
�

N , D∆(N , u ), u −∆
�

= v0
v−p if π∆(N , 0, u −∆)≤ v0

v−p .

We denote the corresponding probability of success from the buyer’s perspective in

state N , D , u if the buyer contributes by π(N , D , u ).

Proof. We construct the equilibrium strategies and beliefs for every state (N , D , u ) by in-

duction in j = M (D )−N . In order to define the donation threshold D (N , u ) such that

buyers are indifferent between buying and not, we need to know the probability of suc-

cess π∆(N , D , u ) induced by the assessment for arbitrary D . We tackle this issue by con-

structing a sequence of PT assessments (b∆j , D∆
+, j , F ∆j ) for j = 1, . . . , M0 =M (0) such that

(b∆M0
, D∆
+,M0

, F ∆M0
) is a PBE and satisfies the properties in Lemma 5. We start with an arbitrary

PT assessment (b∆1 , D∆
+,1, F ∆1 ). We then assume that for each 1 ≤ j ′ ≤ j − 1 there is a PT

assessment (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) such that in states (N , D , u ) with M (D )−N ≤ j ′ buyer strate-

gies are optimal, i.e., in the continuation games after such states, the assessment specifies a
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PBE. (Donor strategies are automatically optimal in a PT assessment by Lemma 3.) Then,

in the induction step j − 1⇝ j we construct a PT assessment (b∆j , D∆
+, j , F ∆j ) such that for

states (N , D , u ) with M (D )−N ≤ j , buyer strategies are optimal, and

b∆j (N , D , u ) = b∆j−1(N , D , u ),

D∆
+, j (N , D , u ) =D∆

+, j−1(N , D , u ),

F ∆j (N , D , u ) = F ∆j−1(N , D , u ),















for all states (N , D , u ) with M (D )−N ≤ j −1,

which implies that for the corresponding probabilities of success we have

π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j −1.

Figure 8 depicts pairs of (N , D ) such that j = M (D )−N for j = 0, 2, 3 and the shaded

region including the orange line captures all j ≤ 1, which is our induction start for the

equilibrium construction. The induction ends at j = M0 when the entire state space is

covered. Importantly, if the game is in state (N , D , u ), then N and D only increase in the

continuation game, i.e., j is decreasing over time.

While we denote by D∆
∗, j (N , u ) the donation threshold corresponding to (b∆j , D∆

+, j , F ∆j ),

we also construct ξ∆j (·) and parts of the threshold function D∆(N , u ) in each step. In partic-

ular, in step j , we define D∆(N , u ) for (N , u ) such that N =M0− j , or such that N <M0− j

and u ≤ ξ∆j (G − (N + j )p ). After the last step ( j =M0), D∆(N , u ) is defined for all N and

u and D∆(N , u ) = D∆
∗,M0
(N , u ). Figure 9 illustrates this construction schematically. For a

cleaner illustration that avoids drawing step functions, we assume ∆→ 0 in this figure.

Finally, table 3 summarizes the relevant notation.

(a) Induction start ( j ≤ 1⇔D ≥G − (N + 1)p ): We set (b∆1 , D∆
+,1, F ∆1 ) to be an arbitrary

PT assessment (which trivially exists). Further, for j ≤ 1, we set ξ∆j (w ) := 0 for all w which

is consistent with Equation CT. We also set D (N , u ) := 0 for N ≥M0−1. Finally, consider

states (N , D , u ) with M (D )−N ≤ 1. The probability of success is π∆1 (N , D , u ) = 1, so it is

a best response for buyers to pledge. Trivially, π∆1 (N , D , u ) is weakly increasing in N , D , u
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Figure 8: Schematic illustration of induction in j =M (D )−N
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Table 3: List of Notation

Notation Description
(b∆j , D∆

+, j , F ∆j ) assessment in the j -th induction step
ξ∆j (w ) time threshold defined for all w in the j -th induction step
D∆
∗, j (N , u ) donation threshold corresponding to (b∆j , D∆

+, j , F ∆j )
D∆(N , u ) donation threshold that is defined inductively for N =M0− j , and

N <M0− j and u ≤ ξ∆j (G − (N + j )p )

for D ≥G − (N +1)p .

(b) Induction hypothesis ( j ′ ≤ j − 1): For the induction hypothesis, we suppose that we

have constructed PT assessments (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) with a donation threshold D∆

∗, j ′(N , u ) for

j ′ = 1, . . . , j −1 with the following properties:

i) Time threshold ξ∆j ′(w ): For w < G − ( j ′ − 1)p , we define ξ∆j ′(w ) by (5). For w ≥

G − ( j ′−1)p , we set ξ∆j ′(w ) = 0. ξ∆j ′(w )>ξ
∆
j ′−1(w ) if ξ

∆
j ′(w )> 0.

ii) Donation threshold D∆(N , u ): D∆(N , u ) is defined for (N , u ) such that either N ≥

M0− ( j −1), or such that N <M0− ( j −1) and u ≤ ξ∆j−1(G − (N + j −1)p ). For (N , u ) with
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Figure 9: Schematic illustration of construction of D∆(N , u ) and ξ j (D ) (for small ∆)
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0 − 3, u)

D(M
0 −

2, u)
u

D

ξ2(0) ξ3(0) ξ4(0) ξ5(0)

G− (M0 − 1)p

G− (M0 − 2)p

G− (M0 − 3)p

G− (M0 − 4)p

j = 2
j = 3
j = 4
j = 5

Notes: The figure depicts the donation thresholds D (M0 − j , u ) as a function of u in the limit ∆→ 0. In step j , the portion between
ξ j−1(G − (N + j −1)p ) and ξ j (G − (N + j )p ) of each D (N , u ) is constructed.

N ≤M0− j ′ and u ≤ ξ∆j ′(G − (N + j ′)p )

π∆j−1

�

N , D∆(N , u ), u −∆
�

=
v0

v −p
. (7)

Note that in that case, D∆(N , u )<G −(N +1)p . For N =M0− j ′, u >ξ∆j ′(0), D∆(N , u ) = 0.

D∆(N , u ) is strictly decreasing in N , u when it satisfies (7).

In Figure 10, the blue step functions represent the portion of D∆ at N and N + 1 that

are defined in the induction hypothesis, and black dotted lines show the corresponding

ξ∆j−1

�

G − (N + j −1)
�

and ξ∆j−1

�

G − (N +1+ j −1)p
�

= ξ∆j−1

�

G − (N + j )p
�

.

iii) PT assessment: (b∆j ′ , D∆
+, j ′ , F ∆j ′ ) are PT assessments (as in Definition 3) with dona-
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Figure 10: Schematic illustration of construction of D∆(N , u ) for N and N + 1 (discrete
time)

0 u

D

ξ∆
j−1

(
G− (N + j)p

)

ξ∆
j−1

(
G− (N + j − 1)p

)ξ∆
j

(
G− (N + 1 + j)p

)
ξ∆
j

(
G− (N + j)p

)

G− (N + 1 + j)p

G− (N + j)p

G− (N + j − 1)p

D∆(N + 1, u)

D∆(N, u)

π∆
j−1(N + 1, D, u) ≥ v0

v−p

0 ∆ 2∆

Notes: The figure depicts the donation thresholds for cumulative purchases N and N + 1 with N < M0 − j . In step j − 1 only the
blue portion of D∆ is constructed, while in step j the orange portion is added. For example, we construct D∆(N + 1, u ) for u ≤
ξ∆j−1(G − (N + 1+ j − 1)p ) in step j − 1 and extend it to u ≤ ξ∆j−1(G − (N + 1+ j )p ) in step j . With D ≥ G − (N + j )p , and N + 1

purchases, the campaign is active until ξ∆j−1

�

G − (N + j )p
�

+∆ or longer, even if no additional donations are being made (shaded area).
For such states, strategies of the assessment (b∆j−1, D∆+, j−1, F ∆j−1) are not optimal and π∆j−1 might not be increasing and continuous in D .
We only assume π∆j−1 ≥ 0. Hence, the donation threshold cannot be constructed for (N +1, u ) with u >ξ∆j−1(G − (N + j )p ) in step j −1.

tion thresholds D∆
∗, j ′(N , u ) satisfying

D∆
∗, j ′(N , u ) =D∆(N , u ) for u ≤ ξ∆j ′(G − (N + j ′)p ), and

for N =M0− j ′, u >ξ∆j ′(0).

iv) Probability of success: For all N ≥ M (D )− j ′, π∆j ′(N , D , u ) satisfies (6) if D ≥

D∆
∗, j ′(N , u +∆) and π∆j ′(N , D , u )< v0

v−p if D <D∆
∗, j ′(N , u +∆).
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Note that by monotonicity of π∆j ′(N , D , u ) in N , u (Lemma 2 iii)),

π∆j ′(N , D , u )≥
v0

v −p
for u >ξ∆j ′(G − (N + j ′)p ), D ≥G − (N + j ′)p .

This is illustrated in Figure 10 in the shaded area. Similarly, it implies that u ≤ ξ∆j ′(D )⇔

D <D∆
∗, j ′(M (D )− j ′, u +∆) =D∆(M (D )− j ′, u +∆).

v) Best response: For the PT assessments (b∆j ′ , D∆
+, j ′ , F ∆j ′ ), buyers best respond by pledg-

ing if and only if D ≥D∆
∗, j ′(N , u +∆) in states all (N , D , u ) with N ≥M (D )− j .

(c) Induction step ( j − 1⇝ j , j ≥ 2): In this step, we assume the induction hypothesis

(b) and construct a PT assessment (b∆j , D∆
+, j , F ∆j ) such that the same statements are true for

states (N , D , u ) with N =M (D )− j , i.e., G − (N + j )p ≤D <G −
�

N + ( j −1)
�

p .

i) Time threshold ξ∆j (w ): First, note that for w ≥ G − (N + j )p , there is a j ′ ≤ j − 1

such that M (w )− j ′ =N +1. Then, we know by the induction hypothesis that



























for u ′ <ξ∆j ′(w ) : w <D∆
∗, j−1(N +1, u ′) =D∆(N +1, u ′)

for ξ∆j ′(w )≤ u ′ ≤ ξ∆j−1

�

G − (N + j )p
�

: w ≥D∆(N +1, u ′) =D∆
∗, j−1(N +1, u ′)

for u ′ >ξ∆j−1

�

G − (N + j )p
�

w ≥D∆
�

N +1,ξ∆j−1

�

G − (N + j )p
�

�

>D∆
∗, j−1(N +1, u ′)

Hence,

w ≥D∆
∗, j−1(N +1, u ′)⇔ u ′ ≥ ξ∆j ′(w ).

Therefore, letting π̃∆j−1(N , D , u ) be the auxiliary probability corresponding to the assess-

ment (b∆j−1, D∆
+, j−1, F ∆j−1) as defined in Equation 4, we can write

π̃∆j−1(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆j−1

�

N +1, max{D , D∆
∗, j−1(N +1, u −∆(i −1))}, u −∆i

��

�W ≥D

�

.

Next, note that the above also implies that for u−i∆<ξ∆j−1(D ), then D <D∆
∗, j−1(N +1, u−
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(i−1)∆) =D∆(N +1, u−(i−1)∆) and for u−i∆≥ ξ∆j−1(D ), D ≥D∆
∗, j−1(N +1, u−(i−1)∆).

Hence,

π̃∆j−1(N , D , u ) =EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

�

π∆j−1

�

N +1, D , u −∆i
�

1
�

u −∆i ≥ ξ∆j−1(D )
�

+ v0
v−p 1
�

u −∆i <ξ∆j−1(D )
�

�

�

�W ≥D

�

.

Note that this expression only depends on ξ∆j ′(·), j ′ ≤ j − 1, and π∆j−1(N + 1, D , u ′) where

M (D )− (N +1)≤ j −1, which are defined in the induction hypothesis. Since π j−1(N , D , u )

is strictly increasing in u and π∆j−1

�

N + 1, D , u − ∆i
�

≥ v0
v−p for u − ∆i ≥ ξ∆j−1(D ),

π̃ j−1(N , D , u ) < 1 is strictly increasing in u . Hence, for any j ≤M (D ) there is a unique

ξ∆j (D ) so that






π̃∆j−1

�

M (D )− j , D , u
�

≥ v0
v−p for u ≥ ξ∆j (D )

π̃∆j−1

�

M (D )− j , D , u
�

< v0
v−p for u <ξ∆j (D )

.

Recall that π∆j−1

�

M (D )− ( j −1), D , u
�

= π̃∆j−1

�

M (D )− ( j −1), D , u
�

for D ≥D∆
∗, j−1(M (D )−

( j − 1), u +∆), and by the induction hypothesis π∆j−1

�

M (D ) − ( j − 1), D , u
�

< v0
v−p and

π̃∆j−1

�

M (D )− ( j − 1), D , u
�

< v0
v−p for D < D∆

∗, j−1(M (D )− ( j − 1), u +∆). Hence, ξ∆j−1(D )

satisfies






π̃∆j−1

�

M (D )− ( j −1), D , u
�

≥ v0
v−p for u ≥ ξ∆j−1(D )

π̃∆j−1

�

M (D )− ( j −1), D , u
�

< v0
v−p for u <ξ∆j−1(D )

,

and we have ξ∆j (w )>ξ
∆
j−1(w ) if ξ

∆
j (w )> 0.

ii) Donation threshold D∆(N , u ): Since (b∆j−1, D∆
+, j−1, F ∆j−1) is a PT assessment by the

induction hypothesis, π̃∆j−1

�

N , D , u
�

is strictly increasing in D by Corollary 1. For such

(N , u ), we define D∆(N , u +∆) to be the unique value satisfying

π̃∆j−1

�

N , D∆(N , u +∆), u
�

=
v0

v −p
,

which must also be satisfied for u ≤ ξ j ′(G − (N + j ′)p ), N ≤ M0 − j ′, j ′ ≤ j − 1 by the

induction hypothesis ii). Since π̃∆j−1 is increasing in N , D and u , D∆ is decreasing in N
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and u . Further, for N =M0− j we set D∆(N , u +∆) = 0 for u >ξ∆j (0).

iii) PT assessment: We set

D∆
∗, j (N , u ) :=D∆(N , u ) for u ≤ ξ∆j

�

G − (N + j )p
�

, and

for N =M0− j , u >ξ∆j (0),

and otherwise define D∆
∗, j (N , u ) arbitrarily so that it is overall decreasing in N and u . This

defines a PT assessment (b∆j , D∆
+, j , F ∆j ). Note that (b∆j , D∆

+, j , F ∆j ) = (b
∆
j−1, D∆

+, j−1, F ∆j−1) for

states (N , D , u )with M (D )−N ≤ j−1 because for all such states D∆
∗, j−1(N , u ) =D∆

∗, j (N , u ).

iv) Probability of success: The corresponding probability of success has the following

properties:

• π∆j (N , D , u ) =π∆j−1(N , D , u ) for M (D )−N ≤ j−1 by definition of the corresponding

donation thresholds because (b∆j , D∆
+, j , F ∆j ) = (b

∆
j−1, D∆

+, j−1, F ∆j−1) for these states and

all states (N ′, D ′, u ′) with N ′ ≥ N , D ′ ≥ D that can be reached in a continuation

game, as they satisfy M (D ′)−N ′ ≤ j −1.

• For D ≥ D∆
∗, j (N , u + ∆), π∆j (N , D , u ) = π̃∆j−1(N , D , u ) by Lemma 2 ii), and for

D < D∆
∗, j (N , u +∆), π∆j (N , D , u ) < v0

v−p and π̃∆j−1(N , D , u ) < v0
v−p by monotonic-

ity of the probabilities in D . Hence, ξ∆j (D ) satisfies (5). Further, this implies that

π∆j (N , D , u ) is strictly increasing in u for D ≥D∆
∗, j (N , u +∆), N + 1 <M (D ). Oth-

erwise, π∆j (N , D , u ) = 1 or π∆j (N , D , u ) is given by (2) which is strictly increasing in

u or equal to zero.

v) Best response: It is immediate from the construction and because π∆j is increasing

in D , that for all (N , D , u ) with N ≥ M (D )− j , π∆j (N , D , u ) ≥ v0
v−p if and only if D ≥

D∆
∗, j (N , u +∆). ■

A.2.2 Limit as ∆→ 0

The following lemma implies Proposition 1 ii):
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Lemma 6 (Success-maximizing equilibrium limit). i) The point-wise limit of the donation

threshold D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) exists, where
�

u
∆

�

∆ is the smallest multiple of∆ that

is larger than u . Further, for any x= (N , D , u ) the following point-wise limits exist:

b (x) := lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

, D+(x; w ) := lim
∆→0

D∆
+ (N , D ,
�

u
∆

�

∆; w ),

ξ j (w ) := lim
∆→0
ξ∆j (w ), F (w ; x) := lim

∆→0
F ∆
�

w ;
�

N , D ,
�

u
∆

�

∆
�

� (8)

Finally,

π(N , D , u ) := lim
∆→0
π∆(N , D ,
�

u
∆

�

∆) uniform in u and D . (9)

ii) Proposition 1 ii) holds for this limit.

The proof of this lemma is in the Online Appendix.

A.2.3 Optimality of constructed equilibrium

Proof Outline: Next, we show that the equilibrium constructed in Section A.2.1 maxi-

mizes the probability of success and that for any success-maximizing sequence of PT equi-

libria, the outcome converges point-wise to the same limit as specified in Proposition 1.

The proof proceeds in four steps. In Step 1, we formulate a relaxed version of the success

maximization problem. In Step 2, we solve the relaxed problem. In Step 3 we show that

the outcome of the solution is attained by the equilibrium constructed Section A.2.1. In

Step 4 we show convergence as ∆→ 0.

The key idea of the proof stems from the observation that the donor will always donate

enough to reach the goal at the deadline if needed and feasible. Hence, to maximize the

probability of success, the exact amount the donor donates during the campaign before the

deadline is not important as long as buyers keep pledging. To find the PBE outcomes that

maximize the probability of success, we consider reduced histories that ignore donation

amounts and only keep track of whether a donation incentivizes the next potential buyer

to pledge or not. This idea allows us to recast the success maximization problem into one

59



in which we choose probabilities of reaching these reduced histories, rather than choosing

over the set of PBEs.

Proof:

Step 1: The relaxed success-maximization problem

Consider a particular assessment
�

D̃∆
+ , b̃∆, F̃ ∆
�

. Given this assessment, any buyer his-

tory h B ,∆
t =
∏

s∈T∆,s≤t

�

Ns−∆, Ds−∆
�

corresponds to a reduced buyer history

h̃ B
t :=
∏

s∈T∆,s≤t

�

Ns−∆, bs−∆
�

, where bs−∆ := b̃∆
�

∏

s ′∈T∆,s ′≤s

(Ns ′−∆, Ds ′−∆)

�

,

so that instead of the donation Ds−∆, the history records the probability bs−∆ ∈ [0, 1] with

which a buyer arriving in period s pledges on observing cumulative donation amount Ds−∆,

and the entire history of donations and pledges. We omit the ∆-superscipts for the reduced

histories to simplify notation. LetRb̃∆ be the mapping so that

Rb̃∆ : h B ,∆
t 7→ h̃ B

t

as defined above. We will use this mapping in the proof of Proposition 3.

In a platform-optimal equilibrium, the buyer always pledges when she is indifferent

between pledging and not pledging, so henceforth we assume bs−∆ ∈ {0, 1}. Let the set of

such reduced buyer histories in period t be H̃ B
t . Further, let us denote the corresponding

set of reduced donor histories in period t by

H̃ D
t :=

�

h̃ D
t =
�

h̃ B
t , Nt

�

�

�

�

�

h̃ B
t ∈ H̃

B
t , Nt ∈ {Nt−∆, Nt−∆+1}

�

.

The assessment, the arrival process and distributions of donor valuation define a probability

measure P on the space of outcomes
∏

t ∈T∆
(Nt , Dt ) and hence on H̃ B

t and H̃ D
t . Given this

probability space, we define the following probabilities:

i) κ(h̃ B
t ; w ) is the probability that h̃ B

t ∈ H̃
B

t is reached if the donor’s valuation is w ;
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ii) P(h̃ D
t ; w ) is the probability that h̃ D

t ∈ H̃
D

t is reached if the donor’s valuation is w .

Figure 11: Transitions between reduced histories

h̃Dt

P(h̃Dt ;w)

Donor history
at t

Donation
induces buying

bt+∆

1− bt+∆

∆λ

1−∆λ

1

(h̃Dt , 1)

κ(h̃Dt , 1;w)

(h̃Dt , 0)

κ(h̃Dt , 0;w) =
P(h̃Dt ;w)− κ(h̃Dt , 1;w)

Buyer history
at t+∆

Donor history
at t+∆

(h̃Dt , 1, Nt + 1)

P(h̃Dt , 1, Nt + 1;w)

(h̃Dt , 1, Nt)

P(h̃Dt , 1, Nt;w)

(h̃Dt , 0, Nt)

P(h̃Dt , 0, Nt;w)

Notes: The blue brackets represent reduced histories and the orange expressions below the probability of reaching the corresponding
reduced history.

Note that this implies that for each w and t ∈T∆, we have

∑

h̃ B
t ∈H̃ B

t

κ(h̃ B
t ; w ) =
∑

h̃ D
t ∈H̃ D

t

P(h̃ D
t ; w ) = 1 and P(h̃ D

t ; w ) = κ(h̃ D
t , 1; w ) +κ(h̃ D

t , 0; w ),

and in particular

κ(h̃ D
t , 1; w )≤P(h̃ D

t ; w ) for all h̃ D
t ∈ H̃

D
t . (P)

Further, the following inter-temporal link between reduced histories must hold,

P(h̃ D
t , 1, Nt +1; w ) = ∆λκ(h̃ D

t , 1; w )

P(h̃ D
t , 1, Nt ; w ) = (1−∆λ) κ(h̃ D

t , 1; w )

P(h̃ D
t , 0, Nt ; w ) = P(h̃ D

t ; w )−κ(h̃ D
t , 1; w )















for all h̃ D
t ∈ H̃

D
t . (P− t )

The reduced histories and probabilities are illustrated in Figure 11. The probabilities of
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reaching buyer histories after which a buyer pledges uniquely determines all other proba-

bilities, so we define

H̃ 1
t :=

�

h̃ B
t =
�

h̃ D
t−∆, 1
�

�

�

�

�

h̃ D
t−∆ ∈ H̃

D
t−∆

�

⊂ H̃ B
t .

Formally, P(0; w ) = 1 and the sequence κ∆(0; w ) :=
�

(κ(h̃ B
t ; w ))h̃ B

t ∈H̃ 1
t

�

t≥∆ uniquely define
�

�

P(h̃ D
t ; w )
�

h̃ D
t ∈H̃ D

t

�

t≥0
and
�

�

κ(h̃ D
t , 0; w )
�

h̃ D
t ∈H̃ B

t

�

t≥0
. Thus, (κ∆(0; w ))w∈[0,∞) determines the

outcome of the game and will be the choice variable in the relaxed problem. In order to be

able to formulate buyer IC constraints after reaching an arbitrary donor history h̃ D
t−∆, we

define continuation donor histories at times t ′ ≥ t by

H̃ D

t ′

�

h̃ D
t−∆

�

:=
�

h̃ D
t ′ ∈ H̃

D
t ′ : the first entries of h̃ D

t ′ are h̃ D
t−∆

	

.

The problem to maximize the probability of success can be written as

max
(κ∆(0;w ))w∈[0,∞]

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; W )1
�

G − (NT−∆+1)p ≤W
��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; W )1
�

G −NT−∆p ≤W
��

+

EF0
��

P(h̃ D
T−∆; W )−κ(h̃ D

T−∆, 1; W )
�

1
�

G −NT−∆p ≤W
��

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈ T∆, Nt ∈

N, w ∈ [0,∞)

∫

prob. of success if
period-t buyer pledges
︷ ︸︸ ︷

qt+∆(h̃
D
t , 1, Nt−∆+1; W ) d F0(W )
∫

κ(h̃ D
t , 1; W ) d F0(W )

≥
v0

v −p
. (Buyer IC)

where the unconditional probability of success if a period-t buyer pledges after history h̃ D
t
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is given by

qt+∆(h̃
D
t+∆; w ) =

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t+∆)

∆λκ(h̃ D
T−∆, 1; w )1
�

G − (NT−∆+1)p ≤w
�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1
�

G −NT−∆p ≤w
�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
�

].

This is a relaxed problem because the vectors (κ∆(0; w ))w∈[0,∞) that satisfy the above

constraints do not necessarily correspond to a PBE. Further, we are ignoring donor incen-

tives by considering reduced histories.

Finally, note that for a PT equilibrium, it must be that for any buyer history (h̃ D
t−∆, 1) ∈

H̃ 1
t there exists D̃ ∗

��

P(h̃ D
t−∆; w )
�

w

�

≥ 0 such that

κ(h̃ D
t−∆, 1; w ) =







P(h̃ D
t−∆; w ) for w ≥ D̃ ∗

�

(P(h̃ D
t−∆; w ))w
�

0 otherwise,
(PT-κ)

Step 2: Solution to the relaxed problem

In the following we show any solution satisfies Equation PT-κ. Such κ∆ with

D̃ ∗
�

(P(h̃ D
t−∆; w ))w
�

=W
�

(P(h̃ D
t−∆; w ))w
�

where

W
�

(P(h̃ D
t−∆; w ))w
�

:=

min
�

w
�

�(Buyer IC) is satisfied for κ(h̃ D
t−∆, 1; w ) =P(h̃ D

t−∆; w )1(w ≥w )
	

(W )

is always a solution. We set W
�

(P(h̃ D
t ; w ))w
�

=∞ if the set on the right-hand side is

empty. Further, to establish uniqueness in the limit ∆→ 0, we show that for any solution

satisfying Equation PT-κ it must be that

D̃ ∗
�

(P
�

h̃ D
t−∆; w )
�

w

�

∈
�

W
�

(P(h̃ D
t−∆; w ))w
�

, max
¦

G −
�

Nt−∆+
T−(t−∆)
∆

�

p , W
�

(P(h̃ D
t−∆; w ))w
�

©

�

,
(D̃ ∗-Region)
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where G −
�

Nt−∆ +
T−(t−∆)
∆

�

p is the amount that the donor needs to donate even if a buyer

arrives and pledges in every future period. Note that as ∆→ 0, G −
�

Nt +
T−t
∆

�

p →−∞.

We show that the solution must satisfy Equation PT-κ with (D̃ ∗-Region) by contradic-

tion. Consider an arbitrary solution κ∗∆ and corresponding P∗ such that there is at least

one history in which it does not satisfy Equation PT-κ with (D̃ ∗-Region). Consider the

latest period t̄ in time after which Equation PT-κ with (D̃ ∗-Region) is satisfied for all his-

tories, and consider a period t̄ −∆ history h̃ D
t̄−∆ such that κ(h̃ D

t̄−∆, 1; w ) does not satisfy

Equation PT-κ with (D̃ ∗-Region). Then, the probability of success conditional on reaching

history h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w and independent of the

choice of κ(h̃ D
t̄−∆, 1; w ). Let

c (h̃ D
t̄−∆) :=

∫

κ∗(h̃ D
t̄−∆, 1; W ) d F0(W ).

We now construct a κ′∆ such that the objective function is higher than with κ∗∆, while

keeping
∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W ) ≤ c (h̃ D

t̄−∆) in all histories. To this end, let W c (h̃
D
t̄−∆) be

the uniquely defined by23

∞
∫

W c (h̃
D
t̄−∆)

P∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w , κ(h̃ D
t̄−∆, 1; w ) = P∗(h̃ D

t̄−∆; w )1(w ≥ W c (h̃
D
t̄−∆))

satisfies Equation Buyer IC. We set κ′(ĥ D
t ; w ) := κ∗(ĥ D

t ; w ) for all histories ĥ D
t at t < t̄ −∆

and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=







P∗(h̃ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆), t > t̄ −∆ we set κ′(ĥ D

t ; w ) := P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that

all constraints remain satisfied and the transition probabilities remain unchanged. Figure

23Uniqueness follows because for all t ≥ t̄ , κ(h̃ D
t̄ , 1; w ) satisfies Equation PT-κ.
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12 illustrates the transitions. In the objective function, this κ′ achieves states with higher

Figure 12: Schematic illustration of transition probabilities

Probability
of reaching
h̃Dt̄−∆ given w

Period t̄−∆
reduced

Donor history

Period t̄
reduced

Buyer history

Period t̄
reduced

Donor history

Probability
of reaching

donor history in
period t̄ given w

P∗(h̃Dt̄−∆;w)
h̃Dt̄−∆ =

(h̃Bt̄−∆, Nt̄−∆)

h̃Bt̄ = (h̃Dt̄−∆, 1)

h̃Bt̄ = (h̃Dt̄−∆, 0)

h̃Dt̄ =
(h̃Dt̄−∆, 1, Nt̄−∆ + 1)

h̃Dt̄ =
(h̃Dt̄−∆, t, Nt̄−∆)

h̃Dt̄−∆ =
(h̃Dt̄−∆, 0, Nt̄−∆)

P′(h̃Dt̄−∆, 1, Nt̄−∆ + 1;w) =
P∗(h̃D

t̄−∆
,1,Nt̄−∆+1;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 1, Nt̄−∆;w)=
P∗(h̃D

t̄−∆
,1,Nt̄−∆;w)

κ∗(h̃D
t̄−∆

,1;w)
κ′(h̃Dt̄−∆, 1;w)

P′(h̃Dt̄−∆, 0, Nt̄−∆;w) =

P∗(h̃Dt̄−∆;w)− κ′(h̃Dt̄−∆, 1;w)

κ
′ (h̃

D
t̄−

∆
,1

;w
)

P∗
(h̃

D
t̄−

∆
;w

)

1−
κ ′(̃h D

t̄−
∆ ,1;w

)

P ∗
(̃h D

t̄−
∆ ;w

)

∆
λ

(1−
∆
λ)

1

Constructed from
κ∗(h̃Dt′ , 1;w), t′ < t̄−∆

such that
h̃Dt̄−∆ ∈ HDt̄−∆(h̃Dt′ )

Find better
κ′(h̃Dt̄−∆, 1;w)

NT−∆ more frequently, so κ′ yields strictly higher profits than κ∗. Thus, any solution κ∗∆
must satisfy Equation PT-κ with (D̃ ∗-Region) almost surely.

Step 3: Implementation by equilibrium

Finally, we show that the optimal solution is achieved by the PBE constructed in Propo-

sition 1. To this end it is useful to write the probability of success for donor type w after a
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history h̃ D
t−∆ recursively as a function of κt

�

h̃ D
t−∆; w
�

and P
�

h̃ D
t−∆; w
�

> 0:

Πt−∆
�

κt

�

h̃ D
t−∆; w
�

,P
�

h̃ D
t−∆; w
�

; w
�

=

∆λ
︸︷︷︸

arrival

κ
�

h̃ D
t−∆, 1; w
�

P
�

h̃ D
t−∆; w
�

︸ ︷︷ ︸

buyer pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆+1; w ),P(h̃ D

t−∆, 1, Nt−∆+1; w ); w
�

+ (1−∆λ)
︸ ︷︷ ︸

no arrival

κ
�

h̃ D
t−∆, 1; w
�

P
�

h̃ D
t−∆; w
�

︸ ︷︷ ︸

buyer pledges

Πt

�

κt+∆(h̃ D
t−∆, 1, Nt−∆; w ),P(h̃ D

t−∆, 1, Nt−∆; w ); w
�

+

�

1−
κ(h̃ D

t−∆, 1; w )

P
�

h̃ D
t−∆; w
�

�

︸ ︷︷ ︸

buyer does not buy

Πt

�

κt+∆(h̃ D
t−∆, 0, Nt−∆; w ),P(h̃ D

t−∆, 0, Nt−∆; w ); w
�

,

(W-Π)

and for P(h̃ D
t−∆; w ) = 0, we set Πt−∆(κt (h̃ D

t−∆; w ),P(h̃ D
t−∆; w ); w ) = 0 without loss. Then,

we can write the Buyer IC constraint as follows:

∫

prob. of
reaching h̃B

t
︷ ︸︸ ︷

κ(h̃ B
t ; W )

prob. of success if
period-t buyer pledges

︷ ︸︸ ︷

Πt (κt+∆(h̃
B
t , Nt−∆+1; W ),P(h̃ B

t ; W ); W ) d F0(W )
∫

κ(h̃ B
t ; W ) d F0(W )

≥
v0

v −p
. (Buyer IC’)

Consider the PT equilibrium (D∆
+ , b∆, (F ∆(·|x))x) from the proof of Proposition 1. This

assessment induces a probability measure P on outcomes and a corresponding systems of

probabilities κ(h̃ D
t , 1; w ) and P(h̃ D

t , ; w ) over reduced histories, as defined in the Step 1.

Consider any on-path buyer history in the last period h B ,∆
T =
∏

s∈T∆,s≤T
(Ns−∆, Ds−∆). The

PBE specifies that buyers pledge if and only if the probability of success is at least v0
v−p . In

addition, in the preceding period, unless success is already guaranteed, donors with w ≥

D∆(NT−∆,∆) donate max{DT−2∆, D∆(NT−∆,∆)}. This makes the next buyer just indifferent

between buying and not buying if such a donation amount exists and D∆(NT−∆,∆) =W

otherwise. Therefore, for any on-path history h D ,∆
T−∆ =

�

∏

s∈T∆,s≤T−∆
(NT−∆, Ds−∆), NT−∆

�

, the
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induced probabilities over reduced histories satisfy

κ(h̃ D
T−∆, 1; w ) =P(h̃ D

T−∆; w ) if and only if w ≥D∆(NT−∆,∆).

Now, notice that since D∆(NT−∆,∆) is calculated using the indifference condition for

buyers, π∆(N , D , u ) is increasing in D , and F ∆ is a truncation given by Equation PT-

belief, this D∆(NT−∆,∆) is exactly W ((P(h̃ D
T−∆; w ))w , NT−∆) defined in Equation W in

the solution to the relaxed problem when we write the expression for the indifference

condition as in Equation Buyer IC’. Analogous arguments apply to any history h D ,∆
t =

�

∏

s∈T∆,s≤t
(Ns−∆, Ds−∆), Nt

�

. Therefore, the PBE assessment from the proof of Proposition 1

induces exactly (κ∗∆(0; w ))w and it achieves the optimum in the relaxed problem. Hence,

(κ∗∆(0; w ))w is platform-optimal in the full class of PBEs.

Step 4: Uniqueness of limits

We have shown in Step 2 that solutions to the reduced problem satisfy Equation PT-κ

with Equation D̃ ∗-Region. Now, for a given t if ∆ is sufficiently small, then G −
�

N +
T−t
∆

�

p < 0, so any sequence of outcomes converges point-wise to the equilibrium outcome

attained by the Markov equilibrium constructed in Step 1.

A.3 Proof of Proposition 2 (Success-Minimizing Equilibrium)

We first show in Section A.3.1, we characterize a PT equilibrium for each ∆. In Sec-

tion A.3.2, we show that the limit of these equilibria as ∆→ 0 exists, and is as specified in

Proposition 2. Section A.3.3 establishes that this PBE minimizes the probability of success.

A.3.1 Characterization of PT equilibrium

Lemma 7 (Success-minimizing equilibrium). Given any ∆ > 0, a PT assessment

(b∆, D∆
+ , F ∆) with donation threshold D

∆
(N , u ) ∈ [0,G − (N + 1)p ) constitutes a PT equi-

librium.

We denote the corresponding probability of success from the buyer’s perspective in
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state N , D , u if the buyer contributes by π(N , D , u ).

Proof. Note that the donation threshold is well-defined in Section 3.4 (unlike in the con-

struction of the success-maximizing equilibrium): D
∆
(N , u +∆) := max{G − ( j − 1)p −

N p , 0} for u ∈
�

ξ
∆

j−1,ξ
∆

j

�

. This defines strategies and beliefs of the PT assessment. It is

immediate that D
∆
(N , u ) is strictly decreasing in N and u as long as D

∆
(N , u )> 0, weakly

decreasing otherwise, D
∆
(N , u ) ∈ [0,G − (N + 1)p ), and D

∆
(N , u ) = 0 for (N + 1)p ≥ G .

It only remains to show that the buyer strategies are optimal in every state (N , D , u ), since

the donor is best responding by Lemma 3. We show this by induction in j =M (D )−N and

for each j by backward-induction in u .

(a) Induction start ( j ≤ 1⇔ D ≥ G − (N + 1)p ): For N ≥ M (D )− 1, the campaign is

either already successful, or a buyer can complete the campaign. Hence π∆(N , D , u ) = 1

and b∆(N , D , u ) = 1 for all u ∈ U∆, and D ∈ [0, W ] in any equilibrium. Note that ξ
∆

1 = 0

and D∆
+ (N , D , u ; w ) =D .

(b) Induction hypothesis ( j ′ ≤ j −1): Assume that we have shown that the above strategy

profiles are best responses for buyers for all states (N , D , u ) with N = M (D ) − j ′ with

j ′ ≤ j −1.

(c) Induction step ( j − 1 ⇝ j , j ≥ 2): Consider a buyer in state (N , D , u ) with N =

M (D )− j . If D <D
∆
(N , u +∆), then u < ξ

∆

j , and the belief system dictates that a buyer

assigns a probability of success equal to

π∆(M (D )− j , D , u ) = P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )<

v0

v −p
,

where τu
i is the arrival time of the i -th buyer after period u . The inequality follows directly

from the definition of ξ
∆

j . Hence, b∆(M (D )− j , D , u ) = 0 is optimal for the buyer.
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If D ≥D
∆
(N , u +∆), then u ≥ ξ

∆

j ; by the induction hypothesis, we have

π∆(N , D , u ) = EF0

�max{(u−ξ∆M (W )−(N+1)(W ))/∆,0}
∑

i=1
(1−∆λ)i−1∆λ

π∆(N +1, max{D , D
∆
(N +1, u −∆(i −1))}, u −∆i )

�

�W ≥D
�

>P(τu
1 ≤ T −ξ

∆

j−1, . . . ,τu
j−2 ≤ T −ξ

∆

2 ,τu
j−1 ≤ T )≥ v0

v−p ,

where the last inequality follows because u ≥ ξ
∆

j and the definition of ξ
∆

j via Proposition 1.

Hence, indeed b∆(M (D )− j , D , u ) = 1. ■

A.3.2 Limit as ∆→ 0

We know from Proposition 1 that the point-wise limits ξ̄ j := lim
∆→0
ξ̄∆j and

D (N , u ) := lim
∆→0

D
∆�

N ,
lu

∆

m

∆
�

=max{G − ( j −1)p −N p , 0} for u ∈ (ξ̄ j , ξ̄ j−1]

exist. This implies that the point-wise limits D+(N , D , , u ; w ) := lim
∆→0

D∆
+

�

N , D ,
�

u
∆

�

∆; w
�

,

b (N , D , u ) = lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

, and F (w ; (N , D , u )) = lim
∆→0

F ∆
�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

exist.

This concludes the proof of Proposition 2 ii).

A.3.3 Minimization of probability of success

Next, we show that the equilibrium just constructed minimizes the probability of success

in the class of PBE. To this end, we consider an arbitrary PBE (b̃∆, D̃∆
+ , F̃ ∆). We show by

backward induction in t that for any buyer history h B ,∆
t =
∏

s∈T∆,s≤t
(Ns−∆, Ds−∆) an equilib-

rium buyer history must satisfy

Dt−∆ >D
∆
(Nt−∆, T − (t −∆))⇒ b̃∆(h B ,∆

t ) = 1. (10)

(a) Induction start (t = T ): D
∆
(N ,∆) =G − (N −1)p , so Equation 10 is satisfied for any

PBE.
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(b) Induction hypothesis (s ≥ t ): Assume that Equation 10 is satisfied for any history

h B ,∆
s with s ≥ t .

(c) Induction step (t ⇝ t −∆): For an arbitrary history h B ,∆
t−∆, from a buyer’s perspective

in period t −∆, the probability of success after a contribution is bounded from below by

π(Nt−2∆, Dt−2∆, T − (t −∆)) by the induction hypothesis. Thus, the buyer must contribute

if π(Nt−2∆, Dt−2∆, T − (t −∆))≥ v0
v−p . Since for the constructed PT equilibrium

D >D
∆
(N , T −2t )⇒π(N , D , T − (t −∆))≥

v0

v −p
,

we have Dt−2∆ >D
∆
(Nt−2∆, T − (t −2∆))⇒ b̃∆(h B ,∆

t−∆) = 1.

Finally, if Equation 10 is satisfied, then he probability of success in the PBE must be at

least as in the constructed PT equilibrium, since buyers contribute whenever they contribute

in the PT equilibrium and the donor contributes up to his wealth at the deadline in any PBE

whenever necessary for success.

A.4 Proof of Proposition 3 (Donor-Preferred Equilibrium)

Proof Outline: Given any assessment, we use the same class of reduced histories and sys-

tems of probabilities κ(h̃ B
t ; w ) and P(h̃ D

t , Nt ; w ), as in the proof of Proposition 1. Just as in

the equilibrium that maximizes the probability of success, in a donor-preferred equilibrium,

the buyer always pledges when she is indifferent between pledging and not pledging, so we

can assume that bs ∈ {0, 1} for all histories. The induced probability measure P allows us

to define (κ∆(0; w ))w which determines the outcome of the game, except for the donation

amount.

The proof proceeds in four steps. Step 1 establishes that donor-preferred equilibrium

outcomes can be attained by PBE in a smaller class of assessments. In Step 2, we formulate

a relaxed donor problem (analogously to Proposition 1). In Step 3, we solve the donor’s

problem and show that the success-maximizing solution also corresponds to a solution of

the donor’s problem. We also prove that all solutions that are PT equilibria converge to the
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same limit as ∆→ 0. Finally, in Step 4, we verify that the donor strategy constructed in

Step 3 of the proof of Proposition 1 is consistent with the donor-preferred solution.

Proof:

Step 1: Limiting the class of assessments

To find a donor-preferred equilibrium, we first show (in Lemmata 8 and 9 below) that

donor-preferred equilibrium outcomes can be attained by PBE in a smaller class of assess-

ments. First, at histories at which buyers are induced to buy, all donor types that donate

positive amounts make the same cumulative donation. Second, if a donor does not in-

centivize buying, he donates nothing. Within the class of assessments satisying these two

properties the mapping from reduced histories to donations becomes unique, a fact we use

when we formulate the donor’s maximization problem.

Lemma 8. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), there exists a donor-preferred PBE

(b̂∆, D̂∆
+ , F̂ ∆) such that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) for each h D ,∆
t , there exists a D∗(h D ,∆

t ) ∈R such that

D̂∆
+ (h

D ,∆
t ; w ) =







D̃+(h D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 0

D∗(h D ,∆
t ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 1

, and

b̂∆(h D ,∆
t−∆ , Dt−∆) =







1 if Dt−∆ =D∗(h
D ,∆
t−∆)

0 otherwise.

(11)

Proof of Lemma 8. Given a donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆), define

D∗(h
D ,∆
t ) := inf
�

D̃∆
+ (h

D ,∆
t ; w )
�

� b̃∆(h D ,∆
t , D̃+(h

D ,∆
t ; w )) = 1
	

,

which is the smallest donation amount that incentivizes buying at a history h D ,∆
t . Donating

this amount is feasible for all donor types w ≥ D∗(h D ,∆
t ). Moreover, it is consistent with
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play on equilibrium path. In particular, donating this amount is feasible for all types that

incentivize buying after h D ,∆
t in (b̃∆, D̃∆

+ , F̃ ∆).

Then, define a new assessment (b̂∆, D̂∆
+ , F̂ ∆) where b̂∆ and D̂∆

+ are given by Equa-

tion 11. On equilibrium path, F̂ (w ; h D ,∆
t−∆ , Dt−∆) is derived by Bayes’ rule. Off path, if

Dt−∆ > D∗(h
D ,∆
t−∆), then let F̂ (w ; h D ,∆

t−∆ , Dt−∆) be such that it is optimal for the buyer not

to buy (e.g. F̂ (w ; h D ,∆
t−∆ , Dt−∆) = 1(w = 0)), and let F̂ (w ; h D ,∆

t−∆ , Dt−∆) = F̃ (w ; h D ,∆
t−∆ , Dt−∆)

otherwise.

Note that the strategies are such that (b̂∆, D̂∆
+ , F̂ ∆) and (b̃∆, D̃∆

+ , F̃ ∆) result in the same

probability measures (κ∆(0; w ))w , i.e. the same purchasing outcome after any realization

of arrivals and donor type. The donation amount with (b̃∆, D̃∆
+ , F̃ ∆) is by definition weakly

lower after any arrival and donor type realization. Hence, if (b̂∆, D̂∆
+ , F̂ ∆) is a PBE, then

it must be donor-preferred by donor-preferredity of (b̃∆, D̃∆
+ , F̃ ∆). It remains to be shown

that (b̂∆, D̂∆
+ , F̂ ∆) is a PBE.

First, consider donor incentives. Given a PBE (b̃∆, D̃∆
+ , F̃ ∆), a donor type w with

b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 0 does not find it profitable to incentivize buying after a history

h D ,∆
t . Buying can be incentivized by donations of at least D∗(h

D ,∆
t−∆). Hence, also with

assessment (b̂∆, D̂∆
+ , F̂ ∆), deviating to incentivize buying cannot be profitable. For a donor

type w with b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 1 it is optimal to donate in the PBE (b̃∆, D̃∆
+ , F̃ ∆).

Given the assessment (b̂∆, D̂∆
+ , F̂ ∆), the donor can donate weakly less and still incentivize

buying, but the donor has a larger set of feasible donations in any future period. Thus, no

donor type has an incentive to deviate given the assessment (b̂∆, D̂∆
+ , F̂ ∆).

Next, consider buyer incentives. Buyers at a history (h D ,∆
t−∆ , Dt−∆) where Dt−∆ <

D∗(h
D ,∆
t−∆) have identical beliefs about donor types in both assessments, and the purchasing

outcome is also identical as argued above. Hence, the probability of success is the same

across assessments and a buyer with such a history must prefer not to buy given the assess-

ment (b̂∆, D̂∆
+ , F̂ ∆) because (b̃∆, D̃∆

+ , F̃ ∆) is a PBE. Buyers at a history (h D ,∆
t−∆ , Dt−∆) where

Dt−∆ = D∗(h
D ,∆
t−∆) believe that they face donor types that they would face if they played a

PBE (b̃∆, D̃∆
+ , F̃ ∆) and if they were at any of the histories (h D ,∆

t−∆ , Dt−∆) after which a buyer
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buys. Hence, buyers must prefer to buy at a history (h D ,∆
t−∆ , Dt−∆) where Dt−∆ = D∗(h

D ,∆
t−∆)

given the assessment (b̂∆, D̂∆
+ , F̂ ∆). A history (h D ,∆

t−∆ , Dt−∆) with Dt−∆ > D∗(h
D ,∆
t−∆) is now

off equilibrium path for assessment (b̂∆, D̂∆
+ , F̂ ∆), and we assumed that F̂ is such that the

buyer does not wish to buy in this case.

It follows that (b̂∆, D̂∆
+ , F̂ ∆) is a PBE.

Hence, to find a donor-preferred equilibrium, it suffices to restrict attention to assess-

ments (b̃∆, D̃∆
+ , F̃ ∆) such that for any h D ,∆

t , there exists a D∗(h D ,∆
t ) ∈R with

D̃∆
+ (h

D ,∆
t ; w ) =D∗(h D ,∆

t ), whenever b̃∆(h D ,∆
t , D̃∆

+ (h
D ,∆
t ; w )) = 1 (12)

and b̃∆ as is defined in Equation 11. Indeed, the success-maximizing equilibrium con-

structed in Proposition 1 is in this class.

Lemma 9. For any donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) for which the donor strategy sat-

isfies Equation 12 and buyer strategy Equation 11, there exists a donor-preferred PBE

(b̂∆, D̂∆
+ , F̂ ∆) so that

i) both assessments generate the same probability measures (κ∆(0; w ))w ,

ii) b̂∆ = b̃∆ and for each h D ,∆
t ,

D̂∆
+ (h

D ,∆
t ; w ) =







Dt−∆ if b̃∆(h D ,∆
t , D̃+(h D ,∆

t ; w )) = 0

D̃+(h D ,∆
t ; w ) if b̃∆(h D ,∆

t , D̃+(h D ,∆
t ; w )) = 1

. (13)

Proof of Lemma 9. Given the donor-preferred PBE (b̃∆, D̃∆
+ , F̃ ∆) satisfying Equation 12,

let (b̂∆, D̂∆
+ , F̂ ∆) be given by Equation 13, b̂∆ = b̃∆, and F̃ ∆(w ; h D ,∆

t−∆ , Dt−∆) so that it is con-

sistent with Bayes’ rule on equilibrium path and F̃ ∆(w ; h D ,∆
t−∆ , Dt−∆) = F̂ ∆(w ; h D ,∆

t−∆ , Dt−∆)

off path. Then, it follows immediately that the two assessments generate the same out-

comes and hence the same probability measures (κ∆(0; w ))w . It remains to show that

(b̂∆, D̂∆
+ , F̂ ∆) constitutes a PBE. The donor does not have a profitable deviation after histo-
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ries after which the buyer is incentivized to buy as the donor plays exactly the same strat-

egy as in (b̃∆, D̃∆
+ , F̃ ∆). Whenever the donor does not incentivize buying, the donor cannot

have a profitable deviation since incentivizing buying is not profitable for (b̃∆, D̃∆
+ , F̃ ∆),

and moreover, D̂∆
+ (h

D ,∆
t ; w ) = Dt−∆ ≤ D̃∆

+ (h
D ,∆
t ; w ) implies that every donor type w has

a weakly larger set of feasible donations in the future under D̂∆
+ than under D̃∆

+ . Each

buyer is also best-responding as she buys after the same histories in both assessments, and

whenever she does not buy, her belief is a mixture of beliefs after histories after which she

did not buy in (b̃∆, D̃∆
+ , F̃ ∆).

Hence, in the following, we restrict attention to assessments (b̃∆, D̃∆
+ , F̃ ∆) that satisfy

Equation 13 and Equation 12. The donor strategy in such assessments only depends on the

reduced history Rb̃∆(h D ,∆
t ), so we can define D(h̃ D ,∆

t ) := D∗(h D ,∆
t ) for h̃ D ,∆

t =Rb̃∆(h D ,∆
t ).

Indeed, the platform-optimal equilibrium from Proposition 1 satisfies Equation 13.

Step 2: Relaxed donor problem.

Consider an arbitrary assessment (b̃∆, D̃∆
+ , F̃ ∆) that satisfies Equation 13. Recall that,

analogously to Proposition 1, we can define reduced histories, systems of probabilities

κ(h̃ B
t ; w ), P(h̃ D

t , Nt ; w ), the mappingRb̃∆ that maps general histories to the corresponding

reduced history, and D(h̃ D ,∆
t ) the corresponding donation threshold for reduced history

h̃ D ,∆
t . In order to formulate the donor’s payoff, we write for t ′ ≤ t that h̃ D

t ′ ⊆ h̃ D
t if h̃ D

t ′ is a

sub-history that leads to h̃ D
t . Then, let

D̄(h̃ D
t ) := max

h̃ D
t ′⊂h̃ D

t ,
t ′≤t bt ′=1

D(h̃ D
t ′ )

be the cumulative donations after period t if the donor follows a donation strategy as spec-

ified in Equation 13, so that he donates in all periods t ′ in which the reduced history h̃ D
t

dictates that bt ′ = 1.
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The donor’s problem can be written as

max
(κ∆(0;w ))w ,

(D(h̃ D
t ))h̃D

t ∈H̃
D
t , t ∈T∆

∑

h̃ D
T−∆∈H̃

D
T−∆

∆λEF0
�

κ(h̃ D
T−∆, 1; w )1
�

G − (NT−∆+1)p ≤W
� �

W −D̄(h̃ D
T−∆)
��

+

(1−∆λ)EF0
�

κ(h̃ D
T−∆, 1; w )1
�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−∆)
��

+

EF0
��

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤W
� �

W −D̄(h̃ D
T−2∆)
��

subject to P(0; w ) = 1, Equation P, Equation P− t , and for all h̃ D
t ∈ H̃

D
t , t ∈ T∆, Nt ∈

N, w ∈ [0,∞) Equation Buyer IC, and given

dt (h̃
D
t ; w ) :=

∑

h̃ D
T−∆∈H̃

D
T−∆(h̃

D
t )

∆λκ(h̃ D
T−∆, 1; w )1
�

G − (NT−∆+1)p ≤w
� �

w −D̄(h̃ D
T−∆)
�

+

(1−∆λ) κ(h̃ D
T−∆, 1; w )1
�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−∆)
�

+
�

P(h̃ D
T−∆; w )−κ(h̃ D

T−∆, 1; w )
�

1
�

G −NT−∆p ≤w
� �

w −D̄(h̃ D
T−2∆)
�

,

we can formulate a donor incentive compatibility constraint for all h̃ D
t−∆ ∈ H̃

D
t

dt (h̃ D
t−∆, 0, Nt−∆; w ))<

∆λdt (h̃ D
t−∆, 1, Nt−∆+1; w ))+ (1−∆λ)dt (h̃ D

t−∆, 1, Nt−∆; w ))

⇒ κ(h̃ D
t−∆, 1; w ) =P(h̃ D

t−∆; w ).















(Donor IC)

This donor IC constraint puts a lower bound on donations as it imposes that the donor must

donate whenever it is optimal to do so, but does not impose that the donor does not donate

if it is optimal not to donate. Hence, this donor problem is a relaxed maximization problem.

We denote a solution to the above problem by κ∗∗∆ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
. Recall

that the solution that we presented to the platform’s relaxed problem was denoted κ∗∆.

Step 3: Solution to the relaxed problem

Next, we show the following two statements:

i) Any solution of this relaxed problem must satisfy in Equation PT-κ with Equa-

tion D̃ ∗-Region;
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ii) κ∆ as in Equation PT-κ with D̃ ∗((P(h̃ D
t ; w ))w , Nt ) =W ((P(h̃ D

t ; w ))w ) is a solution.

Given these two statements it follows immediately that in the limit as ∆→ 0, the outcome

is unique by the proof of Proposition 1.

Analogously to the proof of Propsition 1, we show that the solution must satisfy

Equation PT-κ with (D̃ ∗-Region) by contradiction. Consider an arbitrary solution κ∗∗∆ ,

corresponding P∗∗ and
�

(D∗∗(h̃ D
t , 1))h̃ D

t ∈H̃ D
t

�

t≥0
that does not satisfy Equation PT-κ with

(D̃ ∗-Region). Consider the latest period t̄ in time after which Equation PT-κ with

(D̃ ∗-Region) is satisfied for all histories, and consider a period t̄ −∆ history h̃ D
t̄−∆ such

that κ∗∗(h̃ D
t̄−∆, 1; w ) does not satisfy Equation PT-κ with (D̃ ∗-Region). Then, the probabil-

ity of success conditional on reaching history h̃ B
t̄ = (h̃

D
t̄−∆, 1) given by

qt (h̃ D
t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is

increasing in w and independent of the choice of κ(h̃ D
t̄−∆, 1; w ). We can also again define

c (h̃ D
t̄−∆) :=
∫

κ∗∗(h̃ D
t̄−∆, 1; W ) d F0(W ). Note that by Equation Donor IC, it must be for t ≥ t̄ ,

D̃ ∗∗(h̃ D
t ) =W ((P(h̃ D

t ; w ))w ). Further, by Equation Donor IC

D̃ ∗∗(h̃ D
t̄ ) =min{D̃ ∗(h̃ D

t̄ ) | d t̄+∆(h̃
D
t̄ , 0, Nt̄ ; w ))≥

∆λd t̄+∆(h̃
D
t̄ , 1, Nt̄ +1; w ))+ (1−∆λ)dt (h̃

D
t̄ , 1, Nt̄ ; w ))

for all w such that κ(h̃ D
t̄ , 1; w )<P(h̃ D

t̄ ; w )}

We now construct a κ′∆ such that the donor’s objective function is higher than with

κ∗∆, while keeping
∫

κ′(h̃ D
t̄−∆, 1; W ) d F0(W ) ≤ c (h̃ D

t̄−∆) in all histories. Analogously to

Proposition 1, we can uniquely define W c (h̃
D
t̄−∆) by

∞
∫

W c (h̃
D
t̄−∆)

P∗∗(h̃ D
t̄−∆; W ) d F0(W ) = c (h̃ D

t̄−∆).

Since
qt (ĥ D

t̄−∆,1,Nt−∆+1;w )

κ(h̃ D
t̄−∆,1;w )

is increasing in w , κ(h̃ D
t̄−∆, 1; w ) = P∗∗(h̃ D

t̄−∆; w )1(w ≥ W c (h̃
D
t̄−∆))

satisfies Equation Buyer IC. We set κ′(h̃ D
t ; w ) := κ∗∗(h̃ D

t ; w ) for all histories ĥ D
t at t < t̄ −∆
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and all histories ĥ D
t ̸∈ H̃

1
t (h̃

D
t̄−∆), t ≥ t̄ −∆. Further, let

κ′(h̃ D
t̄−∆, 1; w ) :=







P∗∗(ĥ D
t−∆; w ) for w ≥W c (h̃

D
t̄−∆)

0 otherwise,

and for histories ĥt ∈ H̃ 1
t (h̃

D
t̄−∆), t > t̄ −∆ we set κ′(ĥ D

t ; w ) :=P′(ĥ D
t ; w )κ

∗(ĥ D
t ;w )

P∗(ĥ D
t ;w )

so that all

constraints remain satisfied and the transition probabilities remain unchanged. Further, the

lowest donation amount by Equation Donor IC is then

D̃
′
(h̃ D

t̄ ) =W c (h̃
D
t̄−∆).

In the objective function, this κ′ achieves states with higher NT−∆ more frequently and

D̃
′(h̃ D

t̄ ) < D̃ ∗∗(h̃ D
t̄ ), so κ′ yields strictly higher donor payoffs than κ∗∗. Thus, any solution

κ∗∆ must satisfy Equation PT-κ with (D̃ ∗-Region) almost surely.

Step 4: Implementation by equilibrium

We have already shown in Proposition 1 that (κ∗∆(0; w ))w is induced by the constructed

assessment and established that the wealth threshold D∆(N , u ) corresponds to W (h̃
D

t ) if

there is a history h D ,∆
t with Rb∆(h D ,∆

t ) = h̃ D
t and u = T − t , Nt = N . This concludes the

proof.

A.5 Proof of Proposition 4 (Buyer-Preferred Equilibrium)

Finding an equilibrium that maximizes the sum of buyer surplus is a complex problem

since each buyer’s decision has externalities both on past buyers who have pledged already,

and future buyers. We separately construct for sufficiently small period length∆ a PT equi-

librium that yields higher buyer surplus than the success-maximizing and one that yields

higher surplus than the success-minimizing equilibrium outcomes.

We start with the construction of a PT equilibrium with higher buyer surplus than the

success-minimizing equilibrium. First, note that if the realized donor valuation was known
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to be w ∈ [G −2p ,G −p ), then the campaign requires exactly two buyer pledges to succeed.

Since the second buyer can always lead the campaign to succeed, the first buyer pledges

if and only if (v − p )
�

1− (1−∆λ)u/∆
�

= v0. Conditional on such a W , buyer surplus is

maximized if the first buyer pledges if

(v −p )
�

1− (1−∆λ)u/∆
�

︸ ︷︷ ︸

prob. of at least
one more arrival

−v0+ (v −p − v0)λu
︸ ︷︷ ︸

externality on
future buyers

≥ 0 ⇔
(1−∆λ)u/∆

1+λu
≤ 1−

v0

v −p
,

because the expected number of arrivals in u periods is u
∆∆λ. Denote the smallest u ∈U∆

such that the above inequality is satisfied ū , i.e., the inequality is equivalent to u ≥ ū

(noting that (1−∆λ)
u/∆

1+λu is decreasing in u). Note that ξ̄∆2 (G − 2p ) > ū because ξ̄∆2 (G − 2p )

solves (v −p )
�

1− (1−∆λ)u/∆
�

= v0. We define a donation threshold D
∆

ε as follows:

• D
∆

ε (N , u ) :=D
∆
(N , u ) for N > 0, and for N = 0 with u ∈ [0, ū )∪ [ξ̄∆2 (G −2p ),∞),

• D
∆

ε (0, u ) :=D
∆
(0, u )−ε=G −p −ε for u ∈

�

ū , ξ̄∆2 (G −2p )
�

.

Consider a sufficiently small ∆ > 0. Then, the PT assessment with donation threshold

D
∆

ε (N , u ) for small ε > 0 still defines an equilibrium: All buyers’ incentives to pledge

except the ones for a first buyer arriving at u ∈
�

ū , ξ̄∆2 (G −2p )
�

do not change. If the first

buyer arrives at u ∈
�

ū , ξ̄∆2 (G −2p )
�

, and the donor has wealth W ≥ G − p − ε, then the

donor can contribute G −p −ε=D
∆

ε (0, u )−ε and incentivize the buyer to pledge. Indeed

the probability of success is simply a truncation of F0 at G −p −ε which is close to 1 for

small ε, so

�

1− (1−∆λ)u/∆
�

+ (1−∆λ)u/∆
1− F0(G −p )

1− F0(G −p −ε)
≥ v0.

If the donor has valuation W <G −p −ε, then the first buyer does not want to contribute

as she knows that W <G −p , by definition of ξ̄∆2 (G −p ) > ξ̄∆2 (G − 2p ). Furthermore, by

definition of ū , this PT equilibrium makes buyers collectively better off.
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Next, we construct a PT equilibrium with higher buyer surplus than the success-

maximizing equilibrium. We define a donation threshold D∆
ε,δ for small ε > 0, δ > ∆

as follows:

• D∆
ε,δ(N , u ) :=D∆(N , u ) for N > 0 and (N , u ) = (0, u ) with u ≥δ, and

• D∆
ε,δ(0, u ) :=D∆(0, u ) +ε for u <δ.

This defines a PT equilibrium because the incentive to pledge only changes if the first

buyer arrives in [0,δ) and if the donor valuation is in W ∈ [D∆(0, u ), D∆(0, u ) + ε). The

probability of success in the success-maximizing equilibrium satisfies

π∆(0, D∆(0, u ), u ) =
v0

v −p
,

so if buyers knew W ∈ [D∆(0, u ), D∆(0, u ) + ε), then the probability of success is smaller

than v0
v−p for sufficiently small ε, so it is optimal for the buyer not to pledge. If W ≥

D∆(0, u ) + ε, the donor can keep incentivizing buyers to pledge in states (0, u ), u < δ.

Furthermore, the equilibrium outcome of this PT equilibrium yields higher buyer surplus

than the success-maximizing equilibrium since if W ∈ [D∆(0, u ), D∆(0, u ) +ε), N = 0 and

u <δ, then contributing creates collective buyer surplus of less than

(v −p )
�

1− (1−∆λ)δ/∆
�

+ (v −p )λδ −−→
∆→0

(v −p )(1− e −λδ+λδ)

and not contributing a surplus of v0(1 + λδ). Hence, for δ sufficiently small (and ∆

sufficiently small), there is a PT equilibrium with higher buyer surplus than the surplus-

maximizing equilibrium.
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Aiming for the Goal: Online Appendix

B Omitted Proofs

B.1 Proof of Lemma 6

(a) Induction start ( j ≤ 1⇔ D ≥ G − (N + 1)p ): For j ≤ 1 and x = (N , D , u ) with

M (D )−N ≤ 1, it is immediate that the point-wise limits in (8) exist and are given by

b (x) := lim
∆→0

b∆
�

N , D ,
�

u
∆

�

∆
�

≡ 1 D+(x; w ) := lim
∆→0

D∆
+

�

N , D ,
�

u
∆

�

∆; w
�

=D

ξ j (w ) := lim
∆→0
ξ∆j (w )≡ 0 F (w ; x) := lim

∆→0
F ∆
�

w ;
�

N , D ,
�

u
∆

�

∆
�

�

= F0(w )−F0(D )
1−F0(D )

1(w ≥D )

where
�

u
∆

�

∆ is the smallest multiple of ∆ that is larger than u . Further, π(x) :=

lim
∆→0
π∆(N , D ,
�

u
∆

�

∆) = 1 uniformly in D ≥G − (N +1)p and u .

(b) Induction hypothesis ( j − 1): We assume that the point-wise limits (8) exist for all

x = (N , D , u ) with N ≥M (D )− ( j −1) and j ′ ≤ j −1, where for w <G −p :

π(M (w )− j ′, w ,ξ j ′(w )) =
v0

v −p
.

Further, assume that the point-wise limit D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) exists for u ≤

ξ j−1(G − (N + j − 1)p ). If π(N , 0, u ) < v0
v−p , then D is strictly decreasing in N and u ,

and

π(N , D (N , u ), u ) =
v0

v −p
.

Further, the uniform limit in D ≥G − (N + j − 1)p and u , π(N , D , u ) := lim
∆→0
π∆(N , D , u ),

exists and is equal to

EF0







max{u−ξM (W )−(N+1)(W )}
∫

0

λe −λsπ
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s

�

�

�

�

W ≥D






. (14)
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Finally, π(N , D , u ) is strictly increasing in N , D , u .

(c) Induction step ( j −1⇝ j , j ≥ 2): Consider a state (N , D , u ) with N ≥M (D )− j , i.e.,

G − (N + j )p ≤D .

L.1) Uniform convergence (in D and u) of π̃∆
�

N , D ,
�

u
∆

�

∆
�

for D ≥G − (N + j )p :

Recall that the auxiliary probability of success is given by

lim
∆→0
π̃∆
�

N , D ,
�

u
∆

�

∆
�

=

lim
∆→0
EF0

�max
�

⌈ u∆ ⌉∆−ξ∆M (W )−(N+1)(W ),0
	

/∆
∑

i=1
(1−∆λ)i−1∆λ

�

π∆
�

N +1, D ,∆
��

u
∆

�

− i
��

1
�

∆
��

u
∆

�

− i
�

≥ ξ∆j ′−1(D )
�

+ v0
v−p 1
�

∆
��

u
∆

�

− i
�

<ξ∆j ′−1(D )
�

�

�

�W ≥D

�

where j ′ := M (D )−N ≤ j . The uniform convergence of π∆ (N +1, D , u ′) in D

(by the induction hypothesis) and the Arzelà-Ascoli Theorem imply that the fam-

ily of functions D 7→ π∆ (N +1, D , u ) is equicontinuous with respect to ∆. Hence,

we may replace π∆ by π. Finally, because lim
∆→0
ξ∆j ′−1(w ) = ξ j ′−1(w ), the dominated

convergence theorem allows us to conclude that

π̃ j (N , D , u ) := lim
∆→0
π̃∆j (N , D ,
�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·
�

π
�

N +1, D , u − s
�

1
�

u − s ≥ ξ j ′−1(D )
�

+ v0
v−p 1
�

u − s <ξ j ′−1(D )
�

�

d s

�

�

�

�

W ≥D

�

.

Note that π̃∆(N , D ,
�

u
∆

�

∆) indeed converges uniformly in D ≥G − (N + j )p for fixed

u because the sum is bounded by one, F0 is (uniformly) continuous on [0,G ], and

F0(G )< 1. Then, since

π
�

M (D )− ( j ′−1)
︸ ︷︷ ︸

N+1

, D ,ξ j ′−1(D )
�

=
v0

v −p
,

for u ′ < ξ j ′−1(D ), D < D (N + 1, u ′) π(N + 1, D (N + 1, u ′), u ′) = v0
v−p and for u ′ ≥

2



ξ j ′−1(D ), D ≥D (N +1, u ′). Hence, we have:

π̃(N , D , u ) := lim
∆→0
π̃∆(N , D ,
�

u
∆

�

∆) =EF0

� max{u−ξM (W )−(N+1)(W ),0}
∫

0

λe −λs ·

π
�

N +1, max{D , D (N +1, u − s )}, u − s
�

d s

�

�

�

�

W ≥D

�

.

(15)

L.2) Continuity and strict monotonicity of π̃ in D ≥G −(N + j )p and u: First, π̃(N , D , u )

is continuous in D and u because π̃ j (N +1, D , u ) is continuous in D and u , D (N +

1, u ) is continuous in u by the induction hypothesis and because F0 is continuous.

Furthermore, π̃ j (N , D , u ) is strictly increasing in D ≥ G − (N + j )p because

π̃(N + 1, D , u ) is weakly increasing in D by the induction hypothesis and 1
1−F0(D )

is

strictly increasing.

Now the integrand is strictly positive as long as u > ξM (w )−(N+1)(w ). Hence,

π̃(N , D , u ) is strictly increasing in u > ξM (w )−(N+1)(w ) because π̃ j (N + 1, D , u ) is

weakly increasing in u by the induction hypothesis and because u −ξM (w )−(N+1)(w )

is strictly increasing in u .

L.3) Point-wise convergence of D∆(N ,
�

u
∆

�

∆) and D∆
+, j (N , D ,
�

u
∆

�

∆; W ): First, note

that if π̃∆j
�

N , 0,
�

u
∆

�

∆
�

≥ v0
v−p then π̃ j (N , 0, u ) ≥ v0

v−p and hence, D (N , u ) :=

lim
∆→0

D∆(N ,
�

u
∆

�

∆) = 0. If π̃∆(N , 0, u ) < v0
v−p , then π̃(N , 0, u ) ≤ v0

v−p . Then, since

π̃(N , D , u ) is continuous and strictly increasing in D , there is a unique solution

D ′(N , u ) to

π̃ j (N , D ′(N , u ), u ) =
v0

v −p
.

Since π̃∆(N , D ,
�

u
∆

�

∆) converges uniformly, we have D (N , u ) := lim
∆→0

D∆(N ,
�

u
∆

�

∆) =

D ′(N , u ). It follows immediately that for all u > 0,

D+(N , D , u ; w ) := lim
∆→0

D∆
+, j

�

N , D ,
�

u
∆

�

∆; w
�

= lim
∆→0

min
�

max
�

D , D∆
�

N ,
�

u
∆

��	

, w
	

= min{max{D , D (N , u )}, w }.
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L.4) Point-wise convergence of b∆j
�

N , D ,
�

u
∆

�

∆
�

: Note that b∆j
�

N , D ,
�

u
∆

�

∆
�

= 1 if

D ≥ D∆

�

N ,
��

u
∆

�

∆ + 1
�

∆

�

and b∆j

�

N , D ,
��

u
∆

�

∆ + 1
�

∆

�

= 0 otherwise. Since

lim
∆→0

D∆

�

N ,
��

u
∆

�

∆+1
�

∆

�

=D (N , u ), b∆j (N , D , u ) converges point-wise to

lim
∆→0

b∆j (N , D , u ) =







1 if D ≥D (M (D )− ( j −1), u )

0 if D <D (M (D )− ( j −1), u )
.

L.5) Point-wise convergence of ξ j (w ) and π(M (w )− j ′, w ,ξ j ′(w )) =
v0

v−p .: If π̃∆(M (w )−

j , w , 0) ≥ v0
v−p , then it follows immediately that ξ∆j (w ) = 0. If π̃∆(M (w )− j , w , 0) <

v0
v−p , it follows that ξ∆j (w )> 0 and







π̃∆(M (w )− j , W ,ξ∆j (w ))≥
v0

v−p

π̂∆(M (w )− j , W ,ξ∆j (w )−∆)<
v0

v−p .

Furthermore, since π̂(M (w )− j , w , u ) is continuous and strictly increasing in u for

u ≥ ξ j−1(W ) and weakly increasing for u <ξ j−1(W ), there is a unique solution ξ′(w )

to

π̂(M (w )− j , W ,ξ′(w )) =
v0

v −p
.

Hence, as ∆→ 0, it must be that lim
∆→0
ξ∆j (w ) = ξ

′(w ).

L.6) Point-wise convergence of F ∆
�

w ;
�

M (D ) − j , D ,
�

u
∆

�

∆
�

�

: It follows immediately

from point-wise convergence of D∆
�

M (D )− j ,
�

u
∆

�

∆
�

that

F (w ; (M (D )− j , D , u )) := lim
∆→0

F ∆
�

w ;
�

M (D )− j , D ,
�

u
∆

�

∆
�

�

=







F0(w )−F0(D )
1−F0(D )

1(w ≥D ) if D ≥D (M (D )− j , u )

1(w ≥D ) otherwise
.

L.7) π(N , D , u ) is strictly increasing in N , D , and u , as long as G − (N + 1)p > D ≥
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D (N , u ): By Definition 3, D (N , u )≥D (N +1, u −∆)≥D (N +1, u ) and D (N , u )≥

D (N = 1, u ). An analogous argument to Lemma 2 iii) and iv) implies monotonicity

in N , D , u .

L.8) D (N , u ) is strictly decreasing in N and u , as long as π(N , 0, u )< v0
v−p : Strict mono-

tonicity of D (N , u ) in N and u follows from the strict monotonicity properties in

N , D , and u of π̃(N , D , u ) and because π̃(N , D (N , u ), u ) = v0
v−p for π(N , 0, u )< v0

v−p .

L.9) ξ j (w ) is strictly increasing in j as long as ξ j (w )> 0.

Since π(N + 1, w ,ξ j−1w )) = v0
v−p and π(N , D , u ) is strictly increasing in N ,

ξ j (w )>ξ j−1(w ).

B.2 Social Learning

A widely-mentioned benefit of crowdfunding is that it enables potential buyers to learn

about product quality from the behavior of other buyers. In this section, we illustrate how

social learning interacts with the signaling incentive of the donor by presenting a 2-period

example. We highlight two insights. First, in the presence of social learning the donor is

less effective in solving the coordination problem. Second, with social learning, a higher

goal can yield a higher probability of success.

Let q ∈ {0, 1} denote the unknown quality of the product. All players (the donor and

buyers) share the prior that q = 1 with probability µ0 ∈ (0, 1). We view q as the inherent

quality of the product or an unknown common value component of demand. In order to

keep the example simple, we assume that the quality of the product only affects buyers’

payoffs but not the donor’s payoff. Buyers value a product of quality q at v (q ) = v ·q . So,

if a buyer pledges, she gets payoff v q −p if the campaign is successful and zero otherwise.

If she does not pledge, she receives the outside option v0. As before, the donor values a

successful campaign at w ∼ F0. He receives a payoff w −DT if the campaign succeeds,

and zero otherwise. In the following, we set v = 3, p = 1, v0 = 1 and 1− F0(0.5) = 0.3. For

simplicity let us define φ := µ0
1−µ0

.
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In every period t = 1, 2, a buyer arrives with probability ∆λ = 0.9. On arrival, each

buyer privately observes a signal s ∈ {0, 1}. For simplicity, we consider a “bad news"

signal process: A buyer who receives a bad signal s = 0 knows with certainty that quality

is low (q = 0). Specifically, we set Pr(s = 1|q = 1) = 1 and Pr(s = 1|q = 0) = 0.5.

First, we consider G = 1.5, so that the campaign is successful if at least two buyers

pledge or if one buyer pledges and the donor valuation w is greater or equal to 0.5.24 A

buyer in period t = 2 can socially learn only if period-1 buyer’s strategy is to pledge if s = 1

and not to pledge if s = 0. In that case, the posterior belief of a period-2 buyer if period-1

buyer has pledged is by Bayes’ rule

µ2(1) =
µ0

µ0+ (1−µ0) ·0.25
=

4

4+φ−1

and if no pledge occured in period 1, it is

µ2(0) =
µ0 ·0.1

µ0 ·0.1+ (1−µ0)(0.1+0.9 ·0.5) ·0.5
=

4

4+11φ−1
.

Let us assume that φ is such that 3µ2(1) ≥ p + v0 = 2, so that the second buyer with a

positive signal always pledges after a pledge in the first period. Let us further assume that

3µ2(0) < 2, so that the second buyer never pledges if no pledge occured in the first period.

Hence, 2≥φ−1 > 2/11.

In the first period, a buyer with a positive signal pledges if she believes that given

cumulative donations D , the donor valuations are distributued according to w ∼ F (·|D ) if

4

4+2φ−1
(0.9+0.1(1− F (0.5|D ))) (3−1)−

2φ−1

4+2φ−1
(0.45+0.55(1− F (0.5|D )))≥ 1

The left-hand side is decreasing in 1− F (0.5|D ) if φ−1 > 8/11. Furthermore, let

φ−1 ≤
2((0.9+0.1(1− F0(0.5))2−1)

0.45+0.55(1− F0(0.5))+1
≈ 1.07 (16)

24The campaign can also succeed if no buyer pledges and the donor valuation exceeds the goal amount,
but this case is irrelevant for strategic pledging incentives of buyers.
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to make it worthwile for the buyer to pledge absent donations. Hence, e.g., for φ−1 = 0.8,

the success-maximizing equilibrium is for the donor to donate nothing until the deadline.

The campaign succeeds either if either w > 1.5 or if two buyers with a high signal realiza-

tion arrive.

If the scope of social learning is small, e.g. φ−1 = 0.5< 8/11, then a PT equilibrium in

which the donor donates just enough to make the next buyer buy exists. Hence, our analysis

are robust some amount of social learning.

The example highlights several new forces: First, increasing donations is less effective

in increasing the probability of success because it also increases the probability of buying

the product when the quality is actually low. Second, the benefit from pledging might even

be decreasing in cumulative donations.

Finally, consider the same game with a goal amount G = 1. Then, a single buyer can

guarantee success of the campaign. The first buyer with a positive signal does not want to

pledge if

1

1+φ−10.5
v −p < v0 ⇔ 1<φ−1

i.e., for example forφ−1 = 1.1. In that case, the second buyer will also not buy and the cam-

paign fails with probability one. Hence, a lower goal amount can decrease the probability

of success.

B.3 Proof of Proposition 5 (Donation Dynamics of PT Equilibria)

i) Claim: P(NT p +DT−∆ <G |ST )> 1−∆λ and P(DT =G −NT p |ST )≥ 1−∆λ.

If the campaign has not succeeded by the beginning of the last period, then DT−∆ +

NT−∆p < G . Then, it can only be that NT p +DT−∆ ≥ G if a consumer arrives in

the last period which occurs with probability ∆λ. Even if a consumer arrives, the

campaign remains unsuccessful without a donation. If NT p +DT−∆ < G , then the

donor donates exactly such that DT =G −NT p if his valuation w is large enough. If

7



w is smaller, the campaign fails.

ii) Claim: P(Dτ−∆ <G −Nτp ) = 1 if τ< T .

In any PT equilibrium with donation threshold D∆
∗ , the donor never donates more

than max{D , D∆
∗ (N , u )} at u > ∆, where D∆

∗ (N , u ) < G − (N + 1)p . Thus, if the

campaign succeeds for u >∆, it must be due to a purchase.

iii) Claim: D∆
∗ (N , u +∆)≥D∆

∗ (N +1, u )

This is simply Condition i) in Definition 3 of PT assessments.

iv) Claim: For any PT equilibrium with goal G (deadline T ), there exists a PT equi-

librium for the game with goal G ′ < G (with deadline T ′ < T ) with higher (lower)

D∆
∗ (0, T ).

First, note that a donation threshold can be constructed independent of T , where T

does not affect incentives—only the time remaining is relevant. Hence, monotonicity

of a PT threshold D∆
∗ (N , u ) in u implies that D∆

∗ (0, T ) is weakly decreasing in T ,

and for a PT equilibrium with time horizon T ′ < T , the same donation threshold

defines a PT equilibrium where D∆
∗ (0, T ′)≥D∆

∗ (0, T ).

Next, consider a PT equilibrium of a game with goal G with donation threshold

D∆
∗ (N , u ). Then, for a contribution game with goal G ′ = G − np − ε < G , ε < p ,

we can define a PT equilibrium donation threshold D∆′

∗ (N , u ) =D∆′

∗ (N +n , u ) which

maintains equilibrium conditions. Since D∆
∗ (N , u ) is decreasing in N , D∆′

∗ (0, T ) <

D∆
∗ (0, T ).

v) Claim: Given donor realizations w > w ′, if a campaign is unsuccessful for both w

and w ′, then the failure time ι is larger for w than for w ′.

We can write the failure time of a campaign in a PT equilibrium as ι =min j

�

τ j ≥

0
�

�W < D∆
∗ ( j , T −τ j )
	

. Hence, it follows immediately that a donor with wealth w

fails later than a donor with wealth w ′.
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B.4 Proof of Proposition 6 (General Properties of PT Equilibria)

Consider a contribution game with goal G and deadline T and a PT equilibrium of the

game. Using the same argument to Proposition 5 iv), we can find a PT equilibrium donation

threshold for a contribution game with goal G ′ < G (deadline T ′ < T ). Then, given the

same realization of arrivals and wealth, the campaign always succeed in the PT equilibrium

with goal G ′ (deadline T ) when it succeeds with goal G (deadline T ′). Thus, the probability

of succeess with higher (lower) with a campaign with goal G ′ (goal T ′).
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C Data Appendix

C.1 Additional Tables and Figures

In Figure 13 we show Kickstarter promotions through “A Project We Love." This is a label

attached by Kickstarter to select campaigns. In the left panel, we show when the labels

are applied. In the right panel, we show purchasing rates for campaigns that receive the

label early, receive the label at some point before the deadline, and never receive the label.

Campaigns that receive the label early on have the highest purchases. They also have a

significant spike of purchases early on, which helps drive the initial spike in purchases

observed in Figure 5.

Figure 13: Projects We Love, Timing and Buyer Contributions

(a) Timing
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(b) Buyer Contributions
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Projects We Love is a designation assigned to campaigns by Kickstarter staff. These campaigns may be featured on the site homepage as
well as advertised in emails. The left panel (a) presents a histogram of when the designation is applied, as a function of time remaining in
the campaign. The right panel (b) presents average buyer revenue for three scenarios: (1) campaigns that never receive the designation,
(2) campaigns that receive the designation after 10% of time has elapsed and (3) campaigns that receive the designation within the first
10% of time.

Table 4 presents the same summary statistics for the top four categories, as measured

by the number of campaigns: design, film and video, music, and technology. The table

shows there is rich heterogeneity in the types of campaigns and that donations are important

across diverse categories. For example, music campaigns are twice as likely to succeed

as technology campaigns. Music campaigns have one-fourth the average goal amount of

technology campaigns. The table also shows that donations constitute at least 17% of total
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Table 4: Top Category Summary Statistics

Design Film & Video Music Technology

Project Length 33.7 31.8 32.3 35.4
(10.7) (11.6) (11.4) (11.2)

Goal ($) 18973.5 16309.6 8400.8 34590.3
(29630.1) (31955.2) (17855.0) (52438.8)

Number of Rewards 8.3 7.9 7.9 6.7
(5.1) (5.7) (6.0) (4.8)

Donor Revenue 34.5 34.1 21.2 26.4
(per period) (379.8) (325.4) (179.0) (364.6)

Buyer Revenue 400.5 71.1 59.1 305.1
(per period) (2767.8) (451.4) (310.8) (2107.5)

Percent Donations 16.6 41.8 36.8 27.8
at Deadline (23.6) (29.8) (29.4) (33.8)

Percent Donations 21.6 27.1 29.7 11.3
of Goal (69.1) (49.1) (121.6) (39.7)

Percent Successful 51.4 52.2 63.8 32.6

Number of Projects 4232 3280 3016 3168

Note: Summary statistics for the top four Kickstarter categories, based on the number of campaigns within
a category. Standard deviation reported in parentheses.

revenue for all four categories. Design has the lowest percentage of revenue from donations

across all categories in the data. The categories with the highest fraction of donations are

dance and journalism—with donations between 47-51% of total revenue.

To show that the changing composition of contributors is omnipresent, we investigate

the percentage of campaigns that receive purchases and donations over time. Figure 14

plots the percentage of campaigns that see purchases or donations over time, for early-,

middle-, and late finishers, and unsuccessful campaigns. In the bottom panels, we plot

the percentages weighted by within campaign buyer/donor revenues. For example, if the

early finishers contained a single campaign that experienced donations every period, the

line would be horizontal at 100%. However, if total donations equaled $100 and $99 of
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Figure 14: Percentage of Campaigns that Receive Purchases/Donations over Time

(a) Purchases
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(b) Donations
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(c) Purchases - Weighted
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(d) Donations - Weighted
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These figures show the percentage of campaigns that have donations or purchases over time, for 30 day campaigns. 30 denotes the
campaign deadline. Four lines are shown: early finishers, middle finishers, late finishers and unsuccessful campaigns. The bottom
panels are weighted by within-campaign revenue. For example, if a campaign receives donations every period, the top donation graph
for this single campaign would be a horizontal line at 100. However, if 90% of donations in terms of dollars occur in in the first period,
the weighted graph would place 90% of the campaign weight at the first period with the remaining 10% allocated to the donations for
the remaining periods.

those donations occurred in the last period, the line would be close to zero except for the

last period, where it would be close to 100%. Collectively, the figure shows that most cam-

paigns receive purchases every period, but weighted by revenues, unsuccessful campaigns

receive purchases mostly at the beginning of the campaign. The same pattern is true for

donations, except that donations are less frequent than purchases. The bottom right graph

shows the significance of donations for both late-finishing and unsuccessful campaigns.
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C.2 Bounding Donations

Our definition of a donation comes from contributors entering an amount in the donation

box, or from contributors paying more than the reward price. However, some rewards may

be better interpreted as donations. Examples include a low priced reward that approximates

a thank-you, or an expensive reward that includes the product but also includes special

recognition. The bias is in only one direction: we are possibly understating the magnitude

of donations on the platform. This is not a problem, per se, but we would like to investigate

what role this plays in our results.

Given the number of projects and buckets per project, manually assigning a reward or

part of a reward as a donation is infeasible. There are over 500,000 rewards in the data.

Instead, we perform the following analyses. First, we assume the least expensive bucket

represents a donation. Next, we assume the most expensive bucket represents a donation.

Finally, we assume both the least and most expensive buckets constitute donations.

We reprocess the data and repeat the analyses. For brevity, we only show one result and

describe the others. Figure 15 and Figure 16 show a comparison of the raw data with the

three robustness exercises, replicating the analysis of Figure 5—purchase and donation rev-

enue, as percentage, over time for early, middle, and late completing campaigns. The figure

shows an intuitive result: as reward purchases are assigned as donations, the amount of rev-

enue attributed to donations increases. However, the figure also shows that qualitatively,

our key finding remains—donations spike at the deadline for late-completing campaigns.

There are no noticeable spikes in donations for early- or middle-finishing campaigns. Our

other empirical results are also qualitatively unaltered.

We also conduct robustness to our calculation of shipping costs. This is important

because donations are determined after subtracting off shipping costs. If we understate

shipping costs, we overstate donations. We reprocess all the data assuming all purchases are

made from the country with the lowest, and then most expensive, shipping costs. Figure 17

recreates Figure 14, showing buyer and donor purchases for US, min-cost, and max-cost

shipping, and confirms that our results are robust to the various estimates of shipping costs.
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Figure 15: Robustness to Buyer Contributions over Time for Early-Middle-Late Campaigns
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Note: Replication of Figure 5(b) using different definitions of donation. The left panel donates the origin version. Next, we assign the
lowest priced bucket as donation. The following assigns the highest priced bucket to donations. Finally, the last panel moves both the
lowest- and highest-priced buckets to donations.

Figure 16: Robustness to Donor Contributions over Time for Early-Middle-Late Cam-
paigns
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Note: Replication of Figure 5(b) using different definitions of donation. The left panel donates the origin version. Next, we assign the
lowest priced bucket as donation. The following assigns the highest priced bucket to donations. Finally, the last panel moves both the
lowest- and highest-priced buckets to donations.

We bound donations at the deadline to be between 25% and 30% under min- and max-cost

shipping. In our baseline results, we estimate this to be 28.0%.
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Figure 17: Robustness: Percentage of Projects that Receive Purchases/Donations over Time

(a) Donations - US
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(b) Donations - Min Cost
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(c) Donations - Max Cost
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(d) Purchases - US
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(e) Purchases - Min Cost
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(f) Purchases - Max Cost
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(g) Weight. Purchases - US
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(h) Weight. Purchases - Min Cost
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(i) Weight. Purchases - Max Cost
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(j) Weight. Donations - US
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(k) Weight. Donations - Min Cost
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(l) Weight. Donations - Max Cost
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These figures show the percentage of projects that have donations or purchases over time, for 30 day projects. 30 denotes the campaign
deadline. Four lines are shown: early finishers, middle finishers, late finishers and unsuccessful campaigns. The weighted panels are
weighted by within-project revenue.
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C.3 Properties of Unsuccessful Campaigns

We define the failure time of a campaign as

ι := inf
¦

t ≥ 0
�

�π(Ñt , Dt , T −u )< v0
v−p

©

= min j

�

τ j ≥ 0
�

�τ j >ξM (W )−( j−1)(W )
	

.
(ι)

Proposition 7 (Unsuccessful Campaigns). The limiting equilibrium outcomes described

in Propositions 1 and 2 satisfy the following properties.

i) Consider a campaign so that initial donations are required to keep the campaign

alive, i.e., D∗(0, T )> 0.

• In the limiting equilibrium outcome described in Proposition 1, the distribution

of ι is continuous on (0, T ) and has mass points on t = 0 and t = T .

• In the limiting equilibrium outcome described in Proposition 2, the distribution

of ι has mass points on t = 0 and t = T , and on ξ̄ j , j <M0.25

Empirical Evidence (Proposition 7).

i) The data closely matches this prediction. We use the LASSO model to examine cam-

paign probability of success. In Figure 18-(a), we plot the predicted probability of success

for projects that end up failing. More than half of the campaigns fail early on, and the

probability of success decreases over time for campaigns that start out with a positive prob-

ability of success. Figure 18-(b) shows a histogram of the last time in which unsuccess-

ful campaigns had a probability of success greater than 10% (results robust to alternative

thresholds). In our model, campaigns fail depending on the realization of arrivals and the

realization of W . Hence, realizations can cause death to occur at any point in time. Note

that Figure 18-(b) does not include campaigns that fail at u = T . Our analysis suggests

25If parameters y (excluding F0 and ∆) are drawn randomly from a continuous distribution, such that
the marginal distribution of the arrival rate λ is continuous with support on (0,∞), then for the limiting
equilibrium outcome described in Proposition 1, the distribution of ι is continuous on (0, T ) and has mass
points on t = 0 and t = T .
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Figure 18: Logistic Regression: Probability of Success for Campaigns that Eventually
Failed

(a) Campaign Success Probability over Time
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(b) Last Period Alive for each Failed Campaign
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Notes: (a) The probability of success for failed campaigns over time. Plotted is the mean project, the median campaign, and the 90th
percentile of projects. The results suggest that more than half of projects have lower probability of success at the start. (b) A histogram
of the last time a campaign had a probability of success greater than 10%. This shows that campaigns fail throughout time, with a large
mass at the end. Patterns are similar for 5% as well as 1%. Campaigns are rounded to three-day bins.

campaigns that never had a significant chance to succeed represent 54% of all failed cam-

paigns.
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