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1 Introduction

Early development economists argued that the reallocation of workers from agricul-

ture to manufacturing was fundamental to sustain long run growth (Lewis 1954, Kuznets

1973). This structural transformation process can lead to higher output because labor

productivity is lower in agriculture than in the rest of the economy (Caselli 2005, Restuc-

cia, Yang, and Zhu 2008, Lagakos and Waugh 2013). In addition, the manufacturing

sector is characterized by economies of scale and knowledge spillovers. As a result, indus-

trialization can lead to higher long run growth (Krugman 1987, Lucas 1988, Matsuyama

1992a). In this paper, we qualify these views by noting that manufacturing productivity

growth depends not only on the size of the industrial sector but also on its composition

(Grossman and Helpman 1991). Thus, if workers leaving the agricultural sector are mostly

unskilled, the structural transformation process can reinforce comparative advantage in

non-innovating industries, reducing long run growth.

We provide direct evidence on this structural transformation process in the context

of a large increase in agricultural productivity due to the adoption of genetically engi-

neered (GE) soy in Brazil. To identify the causal effects of this new technology on indus-

trial development, we exploit its heterogeneous effects on potential yields across regions

with different weather and soil characteristics. We think of these regions as small open

economies that were differently exposed to the new technology, which permits to estimate

the effects of local agricultural technical change on local labor reallocation, industrial spe-

cialization and productivity growth.1 To trace the effects of technical change in soy from

the agricultural to the manufacturing sector, we rely on detailed individual information

from the Brazilian Population Census and social security data (RAIS) which allows to

follow workers across sectors at fine levels of spatial aggregation. In turn, to focus on the

manufacturing sector we use firm-level data from the Brazilian Annual Industrial Survey

(PIA) and the Technological Innovation Survey (PINTEC).

We start by studying the effects of the new agricultural technology on labor allocation

across sectors. We build on earlier work showing that GE soy technology is strongly

labor-saving. Thus, its adoption increased the comparative advantage in agriculture but

released agricultural workers who found employment in the local industrial sector (Bustos,

Caprettini, and Ponticelli, 2016). In the current study, we take a step further and analyze

the skill composition of workers leaving agriculture. We trace the flow of workers with

different education levels across sectors using detailed individual information from the

decadal Brazilian Population Census. We find that the new agricultural technology led to

a reallocation of mostly unskilled workers away from agriculture towards manufacturing

with little reallocation towards services. Our estimates indicate that microregions with a

1Our geographical units of observation are Brazilian microregions, which attempt to approximate local
labor markets. The Brazilian Institute of Geography and Statistics (IBGE) defines these microregions by
combining economically integrated municipalities with similar production and geographic characteristics.
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one standard deviation higher increase in potential soy yields experienced a 2.4 percentage

points larger decrease in the share of unskilled workers employed in agriculture, and

a corresponding 2.1 percentage points larger increase in the share of unskilled workers

employed in manufacturing. We confirm these findings using yearly information on formal

workers from social security data, which shows that the timing of this labor reallocation

process corresponds to the timing of adoption of GE seeds.

Next, we study the consequences of this reallocation of unskilled labor from agriculture

to manufacturing for industrial specialization. From the point of view of the manufactur-

ing sector, the reallocation of former agricultural workers amounts to an increase in the

relative supply of unskilled labor. According to the classic Heckscher-Ohlin trade model,

this increase in the relative supply of unskilled labor generates a comparative advantage

in unskilled-labor intensive industries, which should expand by absorbing the inflow of

unskilled workers and also attract other complementary factors such as capital (Rybczyn-

ski, 1955). Indeed, we find that this inflow of unskilled workers was completely absorbed

by an expansion of the least skill-intensive manufacturing industries. As expected, the

labor inflow was followed by an increase in capital investment. Finally, we document that

the expanding industries are the least innovation-intensive as measured by expenditure in

research and development (R&D) as a share of sales. The theoretical literature discussed

above proposes several mechanisms through which changes in the size and composition

of the industrial sector can shape manufacturing productivity growth, which we explore

next.

We trace the effects of agricultural technical change on manufacturing productivity

using data from the yearly manufacturing survey (PIA). We find that microregions facing

faster agricultural technical change experienced a slowdown in manufacturing productiv-

ity growth. Our estimates imply that microregions with a one standard deviation larger

increase in potential soy yields experienced a 7 percent increase in the size of the manufac-

turing sector and a corresponding 1.5 percent lower yearly growth rate of manufacturing

productivity, a result that challenges the traditional view in the literature.

The inflow of low-skill agricultural workers can reduce manufacturing productivity

growth through two channels. First, a reallocation of economic activity towards the

industry with lower skill and innovation intensity can decrease manufacturing productivity

due to a composition effect. Second, an increase in the relative size of the low-skill industry

can reduce incentives to innovate within the high-skill industry, as predicted by models of

directed technical change based on market size effects à la Romer (1990) such as Acemoglu

(2002). We attempt to quantify each of these mechanisms. For this purpose, we split the

manufacturing sector by the median level of R&D, into H and L industries. Then, we

decompose the manufacturing productivity slowdown into between- and within-industry

components. We obtain that the between effect, which reflects the impact of factor

reallocation towards low productivity industries, can explain at most 8 percent of the
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overall productivity decline. The remainder is explained by a reduction of productivity

growth within industries, which is of a similar magnitude in both H and L industries.2

This evidence suggests that the main driver of the productivity slowdown could be lower

innovation within industries, which we investigate as follows.

To study the effects of agricultural technical change on industrial innovation, our

identification strategy requires a measure of R&D expenditures at fine levels of spatial

aggregation. Standard innovation surveys such as PINTEC do not allow us to implement

this strategy, because they are based on a sample of firms which is not representative

of small geographical units (microregions).3 To overcome this problem, we propose a

new measure of innovation that is representative at any level of geographical aggregation

because it can be constructed using social security data, which covers the universe of

formal firms. In particular, we measure the labor input in the production of innovations

using textual analysis of the task descriptions of more than 2,500 occupations in RAIS.

Tasks generating innovations include, for example, developing or adapting new products

and processes, creating prototypes, or optimizing methods of production.

We use this measure to document that in regions more exposed to agricultural tech-

nical change, the inflow of low-skill agricultural workers into L manufacturing industries

was followed by a reallocation of innovation workers away from H industries. In partic-

ular, microregions with a one standard deviation larger increase in potential soy yields

experienced a 20 percent larger decline in innovation expenditures in H industries, mea-

sured as the wage bill of workers in innovative occupations. We show that this decline

is explained by both lower retention and lower entry of workers in innovative occupa-

tions within H industries. Next, we trace the employment path of innovation workers

initially employed in H industries, and find that a quarter of lower retention is explained

by reallocation to L industries. Finally, we show that a third of those former innovative

workers end up in non-innovative occupations within L industries. Indeed, we do not find

a significant increase in innovation expenditures within L industries. These results can

explain the decline in manufacturing productivity growth that accompanied the industri-

alization process in regions subject to faster agricultural technical change. In particular,

the reallocation of workers from innovative to non-innovative occupations can reduce lo-

cal knowledge production and explain the reduction in local manufacturing productivity

growth. In the case of the H industry, lower productivity growth can be directly explained

by a sharp decline in its innovation expenses. In contrast, the observed reduction in pro-

2We use three different measures of manufacturing productivity: value added per worker, valued added
per wage bill, and a measure of TFP . The measure of TFP takes into account changes in the capital
stock and educational level of the workforce. In turn, the value added per wage bill measure takes into
account both observed and unobserved dimensions of human capital as reflected in wages.

3Alternative measures of innovation such as patents might be geographically representative but are
not representative of the type of innovations which are most frequent in developing countries. According
to PINTEC, only 20% of firms which introduced innovations in the period 1997-2008 filed a patent
application.
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ductivity growth within the L industry is not explained by changes in its own innovation

expenditures. This finding suggests that innovations generated in the high-R&D industry

generate knowledge spillovers to other industries.

Overall, our empirical findings indicate that unskilled-labor-saving technical change

in agriculture can lead to a reallocation of workers toward unskilled-labor-intensive man-

ufacturing industries. In turn, this reallocation leads to an expansion of the industrial

sectors with the lowest R&D intensity in the economy, thereby decreasing innovation. As

resources are reallocated toward low-R&D industries, local knowledge production slows

down, leading to lower overall manufacturing productivity growth. We interpret this re-

sult as a cautionary tale on the effects of structural change on productivity growth. The

adoption of new technologies in agriculture may result in static productivity gains in the

agricultural sector but dynamic losses in manufacturing productivity.

Our findings also suggest that different forces driving structural transformation can

lead to different types of industrial development. In most countries, the process of la-

bor reallocation from agriculture to manufacturing can be ascribed to one of two forces:

“push” forces, such as new agricultural technologies that push workers out of agriculture,

or “pull” forces, such as industrial productivity growth, that pull workers into manufac-

turing. We show that when labor reallocation from agriculture to manufacturing is driven

by “push” forces, it can generate an expansion of industries with the lowest potential con-

tribution to aggregate productivity. In this sense, our results are informative for low- to

middle-income countries where a large share of the labor force is employed in agriculture,

and who import new agricultural technologies from more developed countries.

Related Literature

There is a long tradition in economics of studying the links between agricultural pro-

ductivity and industrial development. Nurkse (1953), Schultz (1953), and Rostow (1960)

argued that agricultural productivity growth was an essential precondition for the indus-

trial revolution. Classical models of structural transformation formalized their ideas by

proposing two main mechanisms through which agricultural productivity can speed up

industrial growth in closed economies. First, agricultural productivity growth increases

income, which can increase the relative demand for manufacturing goods, driving labor

away from agriculture and into manufacturing (see Murphy, Shleifer, and Vishny 1989,

Kongsamut, Rebelo, and Xie 2001, Gollin, Parente, and Rogerson 2002, Boppart 2014).

Second, if productivity growth in agriculture is faster than in manufacturing and these

goods are complements in consumption, the relative demand for agricultural goods does

not grow as fast as productivity, and labor reallocates toward manufacturing (Baumol

1967, Ngai and Pissarides 2007).4 Note that these two mechanisms are only operative

4See also: Caselli and Coleman 2001, Acemoglu and Guerrieri 2008, Buera, Kaboski, Rogerson, and
Vizcaino 2021.
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in closed economies, while in open economies high agricultural productivity induces a

reallocation of labor toward agriculture, the comparative advantage sector (Matsuyama

1992b).

This paper is part of a broader research agenda studying the effects of agricultural

productivity on structural transformation in the context of the adoption of GE crops

in Brazil. A first study in this agenda, Bustos et al. (2016) shows that, if agricultural

technical change is labor-saving, increases in agricultural productivity can lead to a real-

location of labor towards the manufacturing sector, even in open economies. The current

paper takes a step forward to understand how the reallocation of workers from agricul-

ture to manufacturing can shape the growth prospects of the industrial sector. First, we

document that the introduction of labor-saving agricultural technologies such as GE soy

had an asymmetric effect on workers with different skills and thus have an asymmetric

impact on industries that use high- and low-skill workers with different intensities. Sec-

ond, we document that this change in industrial specialization reduces innovation and

manufacturing productivity growth.

A second study in this agenda analyzes the effects of the agricultural boom in Brazil

on capital markets. Bustos, Garber, and Ponticelli (2020) document that regions with

faster technical change in soy experienced an increase in local savings deposits which were

not lent locally, leading to an increase in capital outflows. Banks redirected agricultural

savings to urban areas outside soy-producing regions where they were invested in the man-

ufacturing and service sectors. Those findings describe the effects of agricultural technical

change on structural transformation through a capital supply channel and are consistent

with a high level of financial integration across regions. In contrast, the current paper

documents the effects of agricultural technical change through a labor supply channel

which operates in local labor markets with limited migration responses, thus is consistent

with a low level of labor market integration across regions. In section 3.6, we exploit this

difference in the levels of labor and capital market integration to separately identify the

labor and capital supply channels. Our results show that while former agricultural workers

reallocate towards local non-innovative industries, agricultural savings foster the expan-

sion of innovative industries located in other regions, accentuating regional productivity

inequalities.

More generally, our paper is related to the classic literature arguing that reallocating

agricultural workers into manufacturing can increase aggregate productivity.5 First, there

might be large static productivity gains when labor reallocates from agriculture to man-

ufacturing. Sizable productivity and wage gaps between agriculture and manufacturing

have been measured in several studies and have been shown to be larger in developing

economies (e.g., Caselli 2005, Restuccia et al. 2008, Lagakos and Waugh 2013, Gollin,

5Although this view has been recently challenged by Franck and Galor (2019) who argue, in line with
this paper, that the type of industrial specialization is what determines long-run growth.
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Lagakos, and Waugh 2014). To the extent that these gaps arise from the existence of

inefficiencies and frictions in the economy, a reallocation of labor from agriculture to the

other sectors of the economy is both productivity- and welfare-enhancing.6 Second, there

can be dynamic productivity gains when labor reallocates towards manufacturing if this

sector is subject to agglomeration externalities and knowledge spillovers (Krugman 1987,

Lucas 1988, Matsuyama 1992a).7 Our paper contributes to this literature by showing how

manufacturing productivity growth depends not only on the size of the industrial sector

but also on its composition.

To make this point, we build on insights from the endogenous growth literature. In

particular, the seminal work of Grossman and Helpman (1991) who study open economy

endogenous growth models. Their model has two manufacturing industries with different

skill intensities that use differentiated intermediates with the same intensity. As a result,

incentives for inventing new goods depend on the opportunity cost of performing R&D,

which is driven by the skill premium. Note, however, that in this setup, an expansion

of the supply of unskilled workers does not affect innovation and the growth rate of the

economy. The reasons is that, if both industries are active in the trade equilibrium, there

is factor price equalization and, hence, an increase in the supply of unskilled workers does

not affect the skill premium, namely the opportunity cost of innovation, and the growth

rate remains constant. Instead, our findings appear to be in line with a modified version

of their model in which the incentive to do R&D depends on the relative size of the two

industries, as in Romer (1990).

Our paper also builds on the empirical literature studying the effects of agricultural

technical change, particularly those papers that provide evidence that technological ad-

vancements in agriculture are skill-biased. For instance, Foster and Rosenzweig (1996)

study the effects of the introduction of high-yield varieties in India, and show that tech-

nological innovations in agriculture increased the relative demand for skill in agriculture

and, thus, returns to primary schooling.8 We contribute to this literature by showing that

the recent introduction of GE soy was also skill-biased. More importantly, we study the

implications of skill-biased agricultural technical change for industrialization, which have

not previously been explored. In related contemporaneous work, Imbert, Seror, Zhang,

6More recently, Herrendorf and Schoellman (2018) measure and compare agricultural wage gaps in
countries in different stages of the structural transformation process. They find that the implied bar-
riers to labor reallocation from agriculture are smaller than usually thought in the macro-development
literature, and argue that labor heterogeneity and selection are important drivers of such gaps. Other
scholars emphasize that structural change can be growth-enhancing or growth-reducing depending on the
correlation between changes in employment shares and productivity levels (McMillan and Rodrik 2011
and McMillan, Rodrik, and Sepulveda 2017).

7Recent evidence suggests that this channel may be operative in some circumstances. Peters (2019)
uses the displacement of Eastern Germans towards Western Germany to show that places experiencing
larger population growth specialized in manufacturing and saw GDP per capita grow over the long run.

8In related recent work, Bragança (2014) shows that investments in soybean adaptation in Central
Brazil in the 1970s induced positive selection of labor in agriculture.
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and Zylberberg (2020) exploit short-run agricultural shocks in China to document how

migration from rural to urban areas reduces labor costs and makes firms expand labor

usage. They find that firms reduce capital-biased technology adoption in response to

these labor supply shocks. Differently from Imbert et al. (2020), we focus on technol-

ogy adoption in agriculture as the factor driving structural transformation, and we study

the effects of the reallocation of unskilled workers on industrial specialization through

a Hecksher-Ohlin comparative advantage mechanism and its relationship with endoge-

nous growth forces such as innovation investments and their impact on manufacturing

productivity dynamics.

The rest of the paper is organized as follows. Section 2 describes the institutional

background, the data, and our identification strategy. Section 3 discusses the empirical

results. And Section 4, contains our final remarks.

2 Empirical strategy and data

Our empirical strategy aims at identifying the effects of one particular “push” fac-

tor of structural transformation: the introduction of a new labor-saving technology in

agriculture. For this, we exploit the legalization of genetically engineered (GE) soy in

Brazil as a natural experiment. We start by providing background information on GE

soy in section 2.1. Notice that an increase in the reallocation of labor from agriculture to

manufacturing in areas that adopted GE soy could be driven by a shock to labor demand

in the local manufacturing sector. This would increase local wages, inducing agricultural

firms to switch to less labor-intensive crops, such as soy. Thus, to establish the direction

of causality, our identification strategy uses the potential increase in soy yields that can

be obtained with GE seeds in each region based on its weather and soil characteristics as a

plausibly exogenous measure of technical change in agriculture. We describe this strategy

in detail, along with the data used to implement it, in sections 2.2 and 2.3. Finally, in

section 2.4, we introduce a new measure of innovation at the microregion level that we

use to study the impact of agricultural productivity on innovative activities.

2.1 Background Information on GE Soy

The purpose of GE soy seeds is to resist a specific herbicide (glyphosate). The use of

these seeds allows farmers to spray their fields with glyphosate without harming soy plants,

reducing labor requirements for weed control.9 For example, the planting of traditional

seeds is preceded by soil preparation in the form of tillage, the operation of removing

the weeds in the seedbed that would otherwise crowd out the crop or compete with

9Other advantages of GE soy seeds are that they require fewer herbicide applications (Duffy and Smith
2001; Fernandez-Cornejo, Klotz-Ingram, and Jans 2002), allow a higher density of the crop on the field
(Huggins and Reganold 2008) and reduce the time between cultivation and harvest.
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it for water and nutrients. In contrast, planting GE soy seeds requires no tillage, as

the application of herbicide selectively eliminates all unwanted weeds without harming

the crop. Because activities related to weed control are mostly performed by unskilled

workers, the introduction of GE soy seeds tends to displace unskilled labor relatively more

than skilled labor.

The first generation of GE soy seeds (Monsanto’s Roundup Ready) was commercially

released in the U.S. in 1996 and legalized in Brazil in 2003.10 Prior to 2003, smuggling of

GE soy seeds from Argentina was only detected in 2001 and 2002 according to the Foreign

Agricultural Service of the United States Department of Agriculture (USDA, 2001). The

2006 Brazilian Agricultural Census reports that, only three years after their legalization,

46.4% of Brazilian farmers producing soy were using GE seeds with the “objective of

reducing production costs” (IBGE 2006, p.144). According to the Foreign Agricultural

Service of the USDA, by the 2011-2012 harvesting season, GE soy seeds covered 85% of

the area planted with soy in Brazil (USDA 2012).11

Panel (a) of Figure 1 documents that the legalization of GE soy seeds was followed by a

fast expansion of the area planted with soy, which increased from 11 to 19 million hectares

between 2000 and 2010.12 This graph suggests that the area planted with soy started to

increase very rapidly already in 2002. Panel (b) of Figure 1 documents that, in the same

period, the number of workers employed in the soy sector decreased substantially. This

finding is consistent with the adoption of GE seeds reducing the number of agricultural

workers per hectare required to cultivate soy. Bustos et al. (2016) document that labor

intensity in soy production fell from 28.6 workers per 1000 hectares in 1996 to 17.1 workers

per 1000 hectares in 2006. In addition, the production of soy is less labor-intensive than

all other major agricultural activities. According to the Agricultural Census, the average

labor intensity of cereals in 2006 was 94.9 workers per 1,000 hectares, 129.8 for other

seasonal crops, and 126.7 for permanent crops.13 Thus, whenever soy displaced other

agricultural activities, labor intensity in agriculture decreased.

Figure 1 goes around here

10See Law 10.688 of 2003 and Law 11.105 – the New Bio-Safety Law – of 2005 (art. 35).
11Note as well that although the initial patent of GE soy seeds was filed in the US by the multina-

tional corporation Monsanto, the final product available in the Brazilian market was the outcome of an
adaptation process that involved a Brazilian firm. The year after patenting the Roundup ReadyTM (RR)
soy seeds in the US in 1996, Monsanto started a collaboration with Embrapa – the Brazilian Research
Institute for new agricultural technologies – to develop a version of the GE soy seeds adapted to the agro-
ecological conditions of Brazil. Under this agreement, Embrapa started conducting crossings between
the herbicide tolerant variety developed by Monsanto for the US market and seeds previously developed
by Embrapa itself for the Brazilian climate. Hence, it necessarily took a few years before GE soy seeds
adapted to the Brazilian climate were available.

12According to the two most recent agricultural censuses, the area planted with soy increased from 9.2
to 15.6 million hectares between 1996 and 2006 (IBGE 2006, p.144).

13According to the 2006 Agricultural Census, even cattle ranching uses more workers per unit of land
than soy production (30.6 per 1000 hectares).
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In Panel (c) of Figure 1, we decompose the decrease in employment in the soy sector

between skilled and unskilled workers, where workers are considered skilled if they have

completed at least the 8th grade. As shown, the decrease in employment in the soy sector

is entirely driven by low-skilled workers, while the skilled ones were retained. This finding

is consistent with GE soy seeds being an unskilled labor saving technology. Notice that in

addition to being less labor intensive, soy production is also more skill intensive than most

other agricultural activities. As shown in Panel (d) of Figure 1, the share of skilled workers

(those completed at least the 8th grade) employed in soy is above 20 percent, while in most

other agricultural activities this share ranges between 5 and 15 percent. Thus, whenever

soy displaced other agricultural activities, the skill intensity of agriculture increased along

with the decrease in labor intensity.

2.2 Identification strategy

Our identification strategy builds on Bustos et al. (2016): we exploit the legalization

of GE soy seeds in Brazil as a source of time variation and differences in the potential

increase in soy yields from the introduction of the new technology across regions as a

source of cross-sectional variation. This approach allows us to identify how changes in

agricultural technology lead to structural transformation and to study its consequences

on local economies.

The potential increase in soy yields due to GE soy seeds is constructed using data

on potential soy yields sourced from the FAO-GAEZ database. This dataset reports the

maximum attainable yield for a specific crop in a given geographical area. In addition,

it reports the maximum attainable yields of each crop under different technologies or

input combinations. Yields under the low technology are described as those obtained

from planting traditional seeds, with no use of chemicals or mechanization. Yields under

the high technology are obtained using improved high-yielding varieties, with optimum

application of fertilizers, herbicides, and mechanization.

Following Bustos et al. (2016), we define technical change in soy production as the

difference in potential yields between high and low technology. This measure aims at

capturing the theoretical change in soy yields obtained by switching from traditional

soy production to the use of improved seeds and optimum weed control, among other

characteristics. Technical change in soy production in microregion k is therefore defined

as:

∆Asoyk = Asoy,Highk − Asoy,Lowk

where Asoy,Lowk is equal to the potential soy yield under the low technology and Asoy,Highk

is equal to the potential soy yield under the high technology.14 ∆Asoyk is our exogenous

14Although soy farming in certain areas of Brazil was already using relatively advanced techniques
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measure of agricultural technical change in agriculture.

Figure 2 shows the geographical variation in this measure of technical change across

microregions.

Figure 2 goes around here

The map suggests large variation in agricultural technical change across Brazilian

microregions. Some regions, most notably the regions around the Amazon river, and near

the South-East coast, experienced little changes in soy productivity. Instead, the regions

of the Center-West and South gained substantially from the introduction of the new seed.

With decennial data, we use the following specification to estimate the effect of soy

technical change on (long-run) changes in outcomes of interest:

∆Yk(r) = α + β∆Asoyk(r) + ϕXk(r) + δr + εk (1)

where ∆Yk(r) is the change in the outcome of interest in microregion k (located in macrore-

gion r) between 2000 and 2010 – the years of the last two Population Censuses –, and Xk(r)

is a vector of controls of microregion k. δr indicates macroregion fixed effects that ac-

count flexibly for trends across the five major geographical regions of the country: North,

Northeast, South, Southeast and Central-West. Our identification strategy relies on the

fact that the new GE soybeans seeds were introduced around 2001 or 2002 and legalized in

Brazil in 2003, and that this new technology disproportionately favored microregions with

certain soil and weather characteristics (as captured by ∆Asoyk(r)), something that was not

anticipated as of 2000. In all our specifications we include the share of rural population,

the initial level of income per capita, the alphabetization rate, and population density at

the microregion level, all observed in 1991 and sourced from the Population Census, and

the measure of maize technical change (discussed further below and presented in Table

A.1 of the Appendix). These controls are meant to flexibly capture differential trends

across microregions with different initial levels of income and human capital.

When we analyze the manufacturing sector in detail, we use annual data from RAIS

and PIA. This allows us to trace the timing of the effect more precisely by estimating

two types of equations. First, to provide visual support to our evidence, we estimate the

following dynamic difference-in-differences specification:

ln yk(r),t = δt + δk + δrt +
2009∑
j=1998
j 6=2000

βj1[j = t]∆Asoyk(r) + γXk(r),t + t×X ′k(r),1991ω + εk(r),t (2)

before the introduction of GE soybeans, our conversations with researchers in charge of the FAO-GAEZ
dataset show that GE soy seeds are, in fact, the improved seed varieties used to compute predicted soy
yields for Brazil under high inputs. The predictive power of the instrument on GE soy seeds adoption
documented in what follows supports this.
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where ∆Asoyk(r) is the long-run change in our exogenous measure of technical change in soy

in microregion k, and ln yk(r),t is an outcome of interest in microregion k at time t. βj

estimates the effect of the change in the productivity of soy in each year between 1998 and

2009 (using 2000 as our reference year). Thus, we flexibly allow βj to capture the effect of

soy technical change on the outcomes of interest in each year. This type of specification

is informative of the timing and persistence of the effects. δk and δt are microregion and

year fixed effects, respectively. δrt are macro-region times year fixed effects. Xk(r),t are

time-varying controls and Xk(r),1991 are the baseline controls discussed above, interacted

with a time trend.

With annual data, we estimate the effect of agricultural technical change on manufac-

turing outcomes using the following specification:

ln yk(r),t = δt + δk + δrt + βAsoyk(r),t + γXk(r),t + t×X ′k(r),1991ω + εk(r),t (3)

where Asoyk(r),t is defined as potential soy yield under high inputs for the years between 2003

and 2009, and the potential soy yield under low inputs for the years between 1999 and

2002 in microregion k. δk and δt are microregion and year fixed effects, respectively, δrt

are macro-region flexible trends, and Xk(r),t are time-varying controls and Xk(r),1991 are

baseline controls interacted with a time trend. Hence, β is the (continuous) difference-in-

differences estimate obtained from comparing microregions before and after 2003.15

Table A.1 in the Appendix reports a set of results aimed at validating our measure

of soy technical change using data from the 1996 and 2006 Agricultural Censuses. First,

in Panel A, we show that our measure of soy technical change strongly predicts variation

in the actual adoption of GE seeds by Brazilian farmers across microregions (columns 1

and 2). Importantly, it does not predict the expansion of area farmed with traditional soy

(columns 3 and 4). This indicates that this measure of the effect of technical change on

potential soy yields is a good proxy of the actual benefits of GE soy adoption given soil and

weather characteristics of different areas. Second, in Panel B, we show that our measure of

soy technical change predicts the expansion of agricultural area farmed with soy, but not

the one farmed with maize, the other main temporary crop which experienced significant

technological innovation in this period (columns 1 and 2).16 If we build a measure of

maize technical change using the same methodology, we find that such measure predicts

the expansion in maize area between 1996 and 2006, but not the expansion of soy area

(columns 3 and 4). This indicates that our measure of technical change is a good proxy

of technological innovation at the crop level. Note that the results reported in Table

A.1 effectively replicate the results presented in Bustos et al. (2016) at a larger level of

aggregation (microregion instead of municipality).

15In these specifications, we use a balanced panel of microregions that includes all the microregions for
which we have observations in each year of the decade.

16See Bustos et al. (2016) for a detailed discussion of second-season maize.
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2.3 Data sources

In this section, we describe the main datasets used in the empirical analysis. We

obtain information on employment from two different sources: the Population Census

and RAIS, the social security records dataset of the Ministry of Labor. The Population

Census has the advantage of covering both formal and informal workers, and it is available

at 10-year intervals. RAIS covers only formal employees, but it has the advantage of

being available at the yearly level. We also use data from two different manufacturing

surveys: PIA and PINTEC. We use data from PIA – the Brazilian manufacturing survey

– to construct measures of manufacturing productivity and capital. We use data from

PINTEC – the Brazilian Innovation survey – to classify industries by innovation intensity.

In what follows, we describe these four data sources in more detail.

We use the Censuses of 2000 and 2010 to obtain detailed information on employment

and wages in all sectors. We focus on individuals with strong labor force attachment.

In particular, we include individuals aged between 25 and 55 that work more than 35

hours a week.17 Differently from social security data, the Population Census covers both

formal and informal workers, which makes it well suited to study movements of workers

in the agricultural sector – whose labor force is largely informal – as well as any effect

on informal employment in manufacturing. For each individual, we define the sector of

occupation as the sector of their main job during the reference week of the census. The

Population Census also provides information on the number of hours worked during the

reference week and the monthly wage.18 We use information on education to categorize

individuals as unskilled or skilled. We define workers as skilled if they have completed

at least the 8th grade, although our results are robust to alternative definitions of this

threshold. This level should be attained when an individual is 14 or 15 years old, and

is equivalent to graduating from middle school in the US. We also use data from the

Population Census to compute “composition-adjusted” wages (i.e., wages net of observable

workers’ characteristics). To this end, we estimate a Mincerian regression of log hourly

wages on observable characteristics for the two census years of 2000 and 2010, as explained

in Appendix B.

The Annual Social Information System (RAIS) is an employer-employee dataset that

provides individual information on the universe of formal workers in Brazil.19 We use

17In order to deal with extreme observations, we focus on individuals whose absolute and hourly wages
are between the 1st and the 99th percentile for the distribution of wages in their respective year, and
who work less than the 99th percentile of hours. Moreover, we only consider individuals not enrolled in
the education system at the time of the survey.

18We compute hourly wages as the monthly wage divided by 4.33 times the hours worked reference
week.

19Employers are required by law to provide detailed worker information to the Ministry of Labor. See
Decree n. 76.900, December 23rd 1975. Failure to report can result in fines. RAIS is used by the Brazilian
Ministry of Labor to identify workers entitled to unemployment benefits (Seguro Desemprego) and federal

13



RAIS to study movements of workers across industries within manufacturing at yearly

level from 1998 to 2009. As in the Population Census, we focus on individuals aged

between 25 and 55 that work more than 35 hours a week.20 RAIS contains detailed

information on workers’ occupations, which we use to construct the new spatial measure

of the labor input in innovation activities described below.

We use data on number of workers, capital, value added, and wage bill from the Annual

Industrial Survey (PIA). The PIA survey is constructed using two strata: the first includes

a sample of firms with 5 to 29 employees (estrato amostrado), and it is representative at

the sector and state level. The second includes all firms with 30 or more employees

(estrato certo). We restrict the analysis to firms with 30 or more employees so that our

outcomes are representative at the microregion and industry level for those larger firms.

We define employment as the end-of-year number of workers, and value added as the

difference between value of production and expenditure in intermediate inputs. The PIA

survey does not report information on the capital stock. Thus, we use data on investment,

depreciation, and the book value of assets in the first year a firm appears on the sample to

construct a firm-level measure of capital stock using the perpetual inventory method. For

multiplant firms, we allocate capital stock to each of their plants using employment shares.

We focus on firms operating in manufacturing as defined by the CNAE 1.0 classification

(codes between 15 and 37) and on the period between 2000 and 2009.

Finally, we use data from the Survey of Innovation PINTEC to classify manufacturing

industries into H and L industries. We think of H industries as industries that use rel-

atively more skilled labor and dedicate more resources to innovations that can generate

knowledge spillovers for other sectors. On the other hand, we think of L industries as

traditional, unskilled-labor intensive industries in which the scope for process innovation

is lower and that are less likely to generate knowledge spillovers toward other sectors.

The PINTEC survey is designed to capture innovation activities of Brazilian firms and

it is available every 3 years starting in 2000. Using this data, we construct a measure of

R&D intensity at the industry level, computed as the monetary value of R&D expendi-

tures divided by total sales in the baseline year 2000. The measure of R&D expenditure

encompasses expenditure in both internal R&D and external R&D, as well as expenditure

in external know-how, machinery and equipment, training, and expenditures related to

introducing innovation in the market. Because this measure subsumes expenditure in

components of innovation that might be cataloged as intermediate inputs, we normalize

it by total value of output in the industry (sales) rather than value added.21

wage supplement program (Abono Salarial).
20Following Helpman, Itskhoki, Muendler, and Redding (2017), our data cleaning procedure includes:

(i) restricting to workers employed as of December 31st in each year; (ii) restricting to the highest-paying
job for each worker that appears more than once in the data during one year (randomly dropping ties).

21Other papers in the innovation literature that define R&D Intensity as R&D expenditures over sales
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We define H industries as those above the median level of R&D intensity, weighting

industries by their employment at baseline. Table A.2 reports the full list of manufacturing

industries by R&D intensity and skill intensity.22 R&D intensity and skill intensity at

the industry level are highly correlated, as can be seen in Figure A.1 in the Appendix.23

Indeed, the production function estimates presented in Table B.12 that we use to compute

Total Factor Productivity (TFP) imply that H industries are more skill-intensive, as their

skilled labor wage bill share is 18% while the one for L industries is 13%. In turn, our

estimates of the capital share are 77% and 82%, respectively. This implies that the L

industry is slightly more capital-intensive, but given the larger measurement error over

this estimate (which is not directly observed as labor payments are but rather inferred

as a residual) we think that it is sensible to infer that capital intensity is similar in both

industries.

Table 1 reports summary statistics of individual level characteristics observed in the

Population Census for workers operating in agriculture, L manufacturing, H manufac-

turing and services.24 As shown, there is large heterogeneity in skill intensity of workers

across these broad sectors. Almost 90 percent of workers in agriculture had not com-

pleted the 8th grade in 2000, while this number is around 50 percent for manufacturing

and services. Large differences are also present within manufacturing, where the share of

high-skill workers tends to be higher in H industries, particularly in 2010.

Table 1 goes around here

Table 2 provides summary statistics for the main variables used in the empirical anal-

ysis at the microregion level. Microregions are statistical units defined by the IBGE and

consist of a group of municipalities. Brazil has 557 microregions, with an average popula-

tion of around 300,000 inhabitants. We use microregions as an approximation of the local

include, but are not limited to, the seminal papers on the exploration and characterization of industry
and firm R&D Intensity of Pakes and Schankerman (1984), Cohen, Levin, and Mowery (1987), Jaffe
(1988) and Cohen and Klepper (1992), and more recent works such as Acemoglu, Akcigit, Alp, Bloom,
and Kerr (2018) and Autor, Dorn, Hanson, Pisano, and Shu (2020).

22The 60 manufacturing industries reported in Table A.2 correspond to the industry classification
CNAE-Domiciliar used in the Population Census. Our original measure of R&D intensity at industry level
constructed using PINTEC data is based on the 4-digit CNAE 1.0 industry classification, which defines
267 different manufacturing industries (PIA and RAIS datasets use the same industry classification).
To map the 267 industries in PINTEC with the 60 industries reported in Table A.2 we use the official
conversion tables provided by the IBGE (https://concla.ibge.gov.br/).

23Notice that data on R&D expenditure from the PINTEC survey is not representative at the microre-
gion level. Thus, to construct a measure of innovation that is representative at any geographical level,
we use the description of occupations reported in the social security records, as described in section 2.4.

24We define agriculture, manufacturing and services by following the classification of the CNAE Domi-
ciliar of the 2000 census. Agriculture includes Sections A and B (agriculture, cattle, forestry, and fishing).
Manufacturing includes Section D, which corresponds to the transformation industries. Services include:
construction, commerce, lodging and restaurants, transportation, finance, housing services, domestic
workers, and other personal services. We exclude the following sectors because they are mostly under
government control: public administration, education, health, international organizations, extraction,
and public utilities.
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labor market of a Brazilian worker. They can be thought of as small, open economies

that trade in agricultural and manufacturing goods but where production factors are im-

mobile.25 For outcomes sourced from the Population Census, which are observed in 2000

and 2010, we report the mean and standard deviation of their level in the baseline year

(2000) and of their change between 2000 and 2010.

Table 2 goes around here

2.4 A new measure of innovation across space

Testing the impact of agricultural productivity on innovative activities requires to ob-

serve innovation at the microregion level, our unit of observation in the empirical analysis.

For this purpose, we develop a new measure of innovation which is representative at any

level of geographical disaggregation, using the description of occupations in RAIS. More

specifically, we propose a new measure of the labor input in innovation activities based on

textual analysis of the task descriptions of more than 2,500 occupations. Tasks generating

innovations include, for example, developing new products and processes, creating proto-

types, or optimizing methods of production. An important advantage of this measure is

that it allows us to track innovation workers across sectors and regions. This is because

the social security data covers the universe of formal firms. In contrast, standard man-

ufacturing innovation surveys, such as PINTEC, are based on a sample of firms that is

not representative at low levels of geographical disaggregation, and do not allow to trace

workers’ movements across firms.

In what follows, we describe our methodology to identify workers in innovative occu-

pations. As a first step, we digitized the text containing the official description of the

tasks associated with each occupation as provided in the ”Brazilian Classification of Oc-

cupations” published by the Ministry of Labor. In the second step, we defined a set of

39 keywords or combination of keywords capturing tasks related to innovative activities.

To generate this list, we identified a set of words that are used to define activities related

to innovation either in the task description of occupations provided by the Ministry of

Labor, or in the technical documentation of PINTEC, the Survey of Innovation of Brazil-

ian firms. The list of keywords used is reported in Appendix Table A.3. As shown, most

entries are a combination of a verb and a noun describing a task associated with inno-

vation. These combinations can be grouped in those capturing innovation of products

(e.g. “develop/improve product/s”), innovation of processes (e.g. “develop/improve/test

process/es”), innovation of machinery and equipment (e.g. “develop device/s”, “develop

equipment”). We also include single nouns, combinations of nouns, or combinations of

25In Table A.5 of the Appendix we show that internal migration did not respond to the shock. This is
in line with evidence from Brazil’s lack of internal migration responses documented also in Dix-Carneiro
and Kovak (2019) and Costa, Garred, and Pessoa (2016).
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nouns and adjectives that are often found in the description of innovation intensive tasks

(e.g. “innovation”, “prototypes”, “research and development”, “new technologies”). Fi-

nally, in the last step, we run a text analysis that identifies all occupations whose descrip-

tion contains at least one of the keywords listed in Appendix Table A.3. This methodology

identifies 251 occupations, which we define as innovation-intensive.26

Figure A.2 shows the total number and the share of manufacturing workers in innovation-

intensive occupations in Brazil. According to our measure, the number of workers in

innovation-intensive occupations increased from approximately one hundred thousand in

2000 to three hundred thousands in 2014, and started falling afterward when Brazil en-

tered into a severe recession. Workers in innovation intensive occupations constitute

between 3 and 4 percent of total manufacturing formal employment. This share has been

increasing during the period under study from 2.5 percent in the early 2000s to slightly

above 4 percent in most recent years.27 Figure A.4 reports the share of local manufactur-

ing employment engaged in innovation intensive activities in each microregion of Brazil

in the baseline year 2000. As shown, the share of innovation workers ranges from 0 to

almost 20 percent of formal manufacturing employment, with higher shares observed in

the coastal regions of the South and South-east of Brazil, but also in several microregions

encompassing large cities in the North and Center-West regions of the country.

We perform a set of consistency tests on our measure of innovation. Figure A.3 shows

the correlation between employment share in innovation-intensive occupations and other

measures of innovation that are available at the industry level from the PINTEC survey.

We include measures that capture the amount of inputs devoted to the innovation process

– such as R&D expenditure per worker – as well as measures capturing the output of the

innovation process – such as the share of firms in a given sector that have filed patents and

the share of firms that have introduced new processes or products. As shown, the share of

innovation-intensive workers is highly correlated with all these alternative measures, with

the additional advantage of being available not only at the sector level but also at fine levels

of geographical aggregation. Table A.4 reports the magnitude of the correlations between

the share of innovation-intensive workers in each industry and the alternative measures

reported in Figure A.3. The estimates indicate that a 1 percentage point increase in the

share of innovation-intensive workers in a given industry is associated with a 6 percent

increase in R&D expenditure over sales, a 1.6 percentage point increase in the share

26See Lagaras (2017) for an application of this methodology at the firm-level in order to explore the
impact of corporate acquisitions on labor reorganization and firm-level innovation.

27The Brazilian Ministry of Labor has updated its classification of occupations in 2002. RAIS uses the
new classification (CBO2002) starting from 2003. We identify innovation intensive occupations using the
the description of tasks provided for the CBO2002 classification. To extend our analysis to the pre-2003
years we match the old classification (CBO 1994) and new classification (CBO 2002) using the official
correspondences provided by the Ministry of Labor. Whenever one occupation in the old classification is
matched with multiple occupations in the new one, we weight the number of workers in that occupation
by the share of innovation workers observed in the first year in which the new classification is used (2003).
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of firms filing for patents, and a 1.6 percentage points increase in the share of firms

introducing either a new product or a new process.

We also want to discuss in more detail the differences between the measure of innova-

tion based on workers’ task description proposed in this paper and the main alternative

measure of innovation used in the literature: patenting. One advantage of patent data

is that it captures the output of the innovation process, and – by using patent citations

– it allows researchers to make statements about the quality of the innovation produced

(Carlino and Kerr 2015). However, an important disadvantage of patent data is that,

in many instances, firms introduce new products or processes without patenting them.

Data from PINTEC, shows that, in the decade 1997 to 2008, 34 percent of surveyed firms

introduced new processes or products. However, only 7 percent of those firms have filed a

patent application or have an approved patent for such innovation.28 This fact is visible

also in panel (f) of Figure A.3, which shows how in many sectors with a high share of

firms introducing new processes and products, no firms report patenting activity. The

fact that many firms decide not to patent their innovations has been documented also in

other countries. For example, Cohen, Nelson, and Walsh (2000) analyze survey data from

approximately 1,500 R&D labs of manufacturing firms in the US, and show that patent-

ing is used less frequently than other approaches to protect the return from invention, as

patent applications require firms to disclose to competitors a large amount of information.

According to the same survey, smaller firms tend not to apply for patents due to their

legal costs, and are also more likely to consider patents ineffective.

Finally, we want to clarify that what our measure of innovation intends to capture is

not just investment in R&D that pushes the world technology frontier, but also investment

in adapting innovations developed elsewhere to the Brazilian market or to firm-specific

production processes. Indeed, aggregate data from the PINTEC suvey indicate that most

innovations introduced by Brazilian firms happen through adaptation of technologies that

are new to the firm but already in use elsewhere. In particular, about 84% of new products

and 94% of new processes introduced by Brazilian firms surveyed in PINTEC are an

innovation for the firm but already exist in some form either in Brazil or in the rest of the

World.29 In this sense, we think of investments aimed at “adapting” a new technology

developed elsewhere to the Brazilian market, and making it usable for local firms, as an

investment in innovation.

28These statistics are based on Table 6497 of the PINTEC surveys run in 2000, 2003, 2005 and 2008.
Each PINTEC survey captures the innovative activities in the previous three years, so they effectively
cover the decade 1997 to 2008. The statistics reported are averages across the four waves.

29The case of GE soy is illustrative in this respect. While the initial patent of GE soy seeds was deposited
in the US by the multinational corporation Monsanto, the final product available in the Brazilian market
was the outcome of an adaptation process that involved Embrapa – the Brazilian Research Institute
for new agricultural technologies. In particular, Embrapa conducted a series of crossings between the
herbicide tolerant variety developed by Monsanto for the US market and seeds previously developed by
Embrapa itself to develop a version of the GE soy seeds adapted to the agro-ecological conditions of
Brazil.
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3 Results

3.1 Industrialization without productivity growth

We start by studying the effect of soy technical change on the reallocation of workers

and capital towards manufacturing and then study its impact on manufacturing produc-

tivity growth. To this end, we use data on employment from the Population Census and

social security records (RAIS), and data on capital from the annual manufacturing survey

(PIA).

The results are reported in Table 3. In Panel A, we study the effect of soy tech-

nical change on labor reallocation across sectors using Census data and the ten year

first-difference specification explained in section 2.2, equation (1). We find that microre-

gions with higher exposure to soy technical change experienced a decrease in the share

of workers employed in agriculture and an increase in the share of workers employed in

manufacturing and services.30 The magnitude of the estimates indicates that agricultural

workers displaced by the new technology relocated mostly into manufacturing: microre-

gions with a one standard deviation larger increase in soy technical change experienced a

2.4 percentage points larger decline in the agricultural employment share, a 1.8 percent-

age points increase in the manufacturing employment share, and a 0.6 percentage points

increase in the services employment share. Overall, these results indicate that soy tech-

nical change was labor-saving and led to structural transformation, which are the main

findings documented in Bustos et al. (2016).31

Table 3 goes around here

In Panel B, we move to data from the manufacturing survey (PIA), which allows us

to use a yearly panel of microregions. We estimate the specification discussed in section

2.2, equation (3), using as outcome variable the total number of workers in manufacturing

in a given microregion and year (in logs). The estimated coefficient shows that microre-

gions more exposed to soy technical change experienced a larger increase in manufacturing

30Soy technical change had only small and not significant effects on total employment. Thus, the
employment changes that we document in what follows are not driven by migration between microregions
or by changes in the total number of workers employed, but by movement of workers across sectors within
microregions. Table A.5 provides evidence on the effect of soy technical change on total employment and
migration.

31Bustos et al. (2016) find that soy technical change had a positive and significant effect on the em-
ployment share in manufacturing but no significant effect on the employment share in the services sector.
Panel A of Table 3 in this paper documents that microregions more exposed to soy technical change
experienced an increase in employment share in both manufacturing and services. There are two reasons
behind this difference in results when the outcome is the employment share in the services sector. The
first is that, in this paper, we focus on remunerated labor – i.e. workers receiving a wage – whereas
Bustos et al. (2016) also included workers who helped household members without receiving a payment
or worked in subsistence agriculture. The second is the unit of observation, which is a microregion in this
paper, a municipality in Bustos et al. (2016).
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employment. The magnitude of the coefficient indicates that a one standard deviation

differential change in soy technical change leads to a 7 percent larger increase in manu-

facturing labor. Next, we investigate whether soy technical change also affected capital

investment by manufacturing firms. The results are reported in column (2), and show that

capital also moved towards manufacturing. The estimates suggest that a one standard

deviation differential change in soy technical change leads to an increase in capital in the

manufacturing sector of around 17.6 percent.

In columns (3) to (5), we study the effect of soy technical change on manufacturing

productivity. We construct three measures of productivity using data from the manu-

facturing survey PIA: value added per worker, valued added over wage bill, and total

factor productivity.32 The results show that, although both labor and capital reallocated

towards manufacturing, regions more exposed to soy technical change experienced a rela-

tive decline in manufacturing productivity. The magnitude of the coefficient in column (3)

indicates that labor productivity declined by about 10 percent for a standard deviation

differential change in soy technical change, which correspond to about 1.5 percent lower

growth rate in manufacturing productivity in the post GE legalization period. We find

similar magnitudes for alternative measures of productivity computed as value added per

wage bill or total factor productivity.

Taken together, the results presented in Table 3 indicate that, despite the fact that

soy technical change drove factors of production from agriculture towards manufacturing,

productivity in manufacturing slowed down in the years following GE soy legalization.

In the next sections, we explore the mechanisms that can rationalize this result. In

particular, we document the skill composition of the workers moving into manufacturing,

the patterns of industrial specialization, and how they may have influenced innovation

activities.

3.2 Unskilled-labor saving agricultural technical change

We start by studying the impact of GE soy technical change on workers with different

skills using data from both the Population Census and social security records (RAIS).

Table 4 presents the results using Census data. We estimate the ten year first-difference

specification presented in equation (1), and use as outcome variables the changes in the

share of unskilled and skilled workers in agriculture, manufacturing and services between

32We compute total factor productivity as the Solow residual of a Cobb-Douglas production function
that combines skilled labor, unskilled labor, and capital in a constant returns to scale fashion. We calibrate
the factor shares for skilled and unskilled labor by computing, for each type of labor, the aggregate wage
bill divided by total value added in Brazil in 2000, 2001, and 2002 and then taking the average across
years. The capital share is calibrated by leveraging the constant returns to scale assumption. These
assumptions imply that for a given industry the production technology is the same across microregions
and periods, and thus, changes in the TFP are dictated by changes in the allocation of production factors.
See Appendix B.1 for a more detailed explanation of how the TFP measure is computed.
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2000 and 2010.

Columns (1) to (3) focus on unskilled workers. We find that microregions more exposed

to soy technical change experienced a reallocation of unskilled workers from agriculture to

manufacturing. The magnitude of the estimated coefficients indicates that microregions

with a standard deviation higher increase in soy technical change experienced a 2.4 per-

centage points larger decrease in the share of low-skilled workers employed in agriculture,

and a corresponding 2.2 percentage points larger increase in the share of low-skilled work-

ers employed in manufacturing. These magnitudes correspond to a 7.2 percent decrease

in the initial share of low-skilled workers employed in agriculture and a 16.1 percent in-

crease in the share of those employed in manufacturing. Combined with the fact that

soy technical change had no differential effect on total employment (see Table A.5 in the

Appendix), these results are consistent with a decline in the absolute demand for low-skill

labor in agriculture in response to skilled labor-augmenting technical change.

Columns (4) to (6) focus instead on skilled workers. We find that microregions more

exposed to soy technical change experienced a larger decrease in the share of high-skill

workers in agriculture, and a larger increase in the share of high-skill workers employed in

manufacturing, as expected if low and high-skill workers are to some extent complemen-

tary in production. In terms of magnitude, the effect of soy technical change on low-skill

labor is about twice as large as the effect on high-skill labor.

Table 4 goes around here

Next, we explore in more detail the labor reallocation process described above us-

ing yearly social security data from RAIS. Although RAIS data captures only formal

employment, its annual frequency allows us to check whether the employment changes

documented with Census data occurred right after GE soy was introduced in Brazil. For

this, we plot the interaction of year dummies with our measure of soy technical change

as explained in Section 2.2, see equation (2). As can be seen in Figure 3 (a), low-skilled

labor started to move towards manufacturing in microregions more exposed to soy tech-

nical change around 2002, while there is no systematic difference in the trends leading

to this year. When focusing on formal employment captured by social security data, we

find no differential increase in skilled labor moving towards manufacturing, as shown in

Figure 3 (b). The timing of the effect suggests that changes were permanent. Reallo-

cation of unskilled labor towards manufacturing started around 2002, one year after the

first reported smuggling of the GE soy seeds in Brazil and the year when the area planted

with soy started expanding at a faster rate (Figure 1). The reallocation then accentuated

around 2004, one year after the formal legalization of GE soy in Brazil, and stabilized

during the second half of the decade.
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Figure 3 goes around here

Finally, we investigate the effect of agricultural technical change on wages. As the

adoption of GM soy reduces unskilled-labor demand, we would expect a reduction in un-

skilled worker wages in exposed local labor markets. However, identifying the effect of

the new technology on wages is particularly challenging in this context for two reasons.

First, the new technology generated a large reduction in agricultural employment which

concentrated among workers with low levels of education and possibly other unobserved

measures of human capital. Thus, workers remaining in agriculture are likely to be pos-

itively selected and display higher wages. We cannot directly address this concern by

controlling for worker unobserved characteristics (fixed effects) because the Population

Census does not allow to follow workers over time, and the social security data is not

representative of agricultural employment due to high levels of informality in this sector.

Second, the minimum wage nearly doubled in real terms during the decade under study,

increasing from R$ 266 in February 2000 to R$ 510 in January 2010 (Berg, 2010). We

address this is a potential confounding effect by studying the impact of GM soy on the

share of workers at the minimum wage in each local labor market.

We start by discussing the evidence on wages shown in panel A of Table A.6, displayed

in the Appendix. The wage premium for high-skill workers increased uniformly across

sectors, which is consistent with a relative increase in the demand for high-skill labor and

fluid mobility of workers across sectors over the time horizon of our study. However, we

also find that composition-adjusted average wages of both high and low-skill workers in

agriculture increased. As mentioned above, the increase in low-skill wages is probably

the result of selection on unobservables.33 In addition, panels B and C show that the

skill premium increase in manufacturing and services is a result of higher wages of high-

skilled workers but no changes in the wages of low-skilled workers. This finding leads us

to investigate whether wage reductions were constrained by the large contemporaneous

increase in the minimum wage. Table A.7 shows that the share of workers at the minimum

wage increased more in microregions with faster soy technical change: a one standard

deviation increase in potential soy yields leads to a 13% increase in the share of workers

at or below the minimum wage. This large effect suggests that if minimum wages had not

increased, the reallocation of unskilled workers toward the manufacturing sector would

have depressed wages.

Taken together, the estimates presented in Table 4 and Figure 3 show that the agri-

cultural sector experienced a decrease in its employment share of both low-skill and high-

skill labor, while the manufacturing sector experienced an increase in employment driven

mainly by low-skill labor. These findings indicate that labor-saving technical change in

33We come back to this point in Section 3.4, when we investigate and reject the possibility that the
bulk of the decline in manufacturing productivity documented in the previous section is explained by this
negative worker selection.
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agriculture driven by the adoption of GE soy was skill-biased and led mainly low-skill

workers to reallocate towards manufacturing.

3.3 Industrial specialization

From the point of view of the manufacturing sector, the inflow of former agricultural

workers documented in Section 3.2 amounts to an increase in the (relative) supply of

unskilled labor. According to the classic Heckscher-Ohlin trade model this generates a

comparative advantage in unskilled-labor intensive industries, which should expand by

absorbing the inflow of unskilled workers and also attract other complementary factors

such as capital and skilled labor (Rybczynski, 1955). Because low-skill industries are

characterized by low R&D-intensity, factor reallocation towards them can potentially

explain the decline in manufacturing productivity. To assess these mechanisms, in this

section, we investigate which type of industries expanded and absorbed the labor released

from agriculture.

To study the effects of soy technical change on industrial specialization we use the

classification of manufacturing in H and L industries based on PINTEC data described

in section 2.3. H industries are defined as those with higher than median R&D intensity

and tend to use skilled labor more intensively. We start by documenting the effect of soy

technical change on industrial specialization using population census data, by estimating

equation (1). Panel A of Table 5 shows that the labor inflow into manufacturing is con-

centrated in L industries whose employment expanded by around 17 percent for a one

standard deviation differential increase in potential soy yields. In contrast, H industries

did not experience any differential change in employment. In Panel B, we investigate

industrial specialization using social security data and the yearly panel regression intro-

duced in equation (3). The results are in line with the ones obtained with Population

Census data: labor was absorbed by L industries. Point estimates are smaller possibly

due to the fact that social security data only includes formal labor. As the level of infor-

mality is higher in agriculture than manufacturing, it is possible that former agricultural

workers were more likely to accept informal contracts. In this case, their employment in

the manufacturing sector is captured by the Population Census but not by social security

data.

Next, we investigate the effects of agricultural technical change on capital investment

in manufacturing. We highlight two potential channels through which agricultural pro-

ductivity growth can lead to capital investment in manufacturing. First, a labor supply

channel: the labor inflow in the L industry documented above would tend to increase

the marginal product of capital, which should attract more investment into this industry.

Second, a capital supply channel: high agricultural productivity increased local savings,

as documented in Bustos et al. (2020). In turn, this increase in local capital supply
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could have increased capital investment in capital-intensive industries. Panel C of Table

5 shows that capital inflows to manufacturing concentrated in L industries, where capital

increased by 26.7 percent for a one standard deviation differential change in soy techni-

cal change. In contrast, H industries did not experience these capital inflows. Hence,

this evidence, combined with the fact that our production function estimates imply that

both industries have a similar capital-intensity (see Section 2.3), seems to favor the labor

supply explanation.

Table 5 goes around here

To investigate in more detail the timing of these labor and capital inflows into man-

ufacturing, we estimate the dynamic difference-in-differences specification described in

equation (2). The coefficient estimates are presented in Figure 4, which shows that the

adoption of GM soy induced the reallocation of labor towards L industries starting in

2002. This timing coincides with the first reports of large scale smuggling of GE soy

seeds and the expansion of the area planted with soy (Figure 1) in 2002, which led to

the legalization of the new soy seeds in 2003. In addition, the figure shows that labor

inflows into manufacturing precede capital inflows by one year, which is further evidence

in support of the labor supply mechanism discussed above. We return to this point in

Section 3.6 where we investigate the capital supply mechanism in more detail.

Figure 4 goes around here

In sum, we find evidence of local industrial specialization into L industries. This

finding is consistent with Rybczynski-type forces (Rybczynski, 1955), since the labor

released from agriculture was mainly low-skilled and that L industries tend to use low-

skilled labor more intensively. In what follows, we investigate how this pattern of industrial

specialization can explain the decline in manufacturing productivity.

3.4 Manufacturing productivity

In this section, we investigate the causes of the manufacturing productivity decline

documented in section 3.1. First, we document the dynamics of the effect of soy technical

change on manufacturing productivity using two alternative measures of productivity:

value added per worker and TFP. To this end, we estimate the yearly effect of soy tech-

nical change using the specification described in Section 2.2, equation (2). As shown

in Figure 5 (a) and (b), the yearly estimates show a small and non-significant effect of

soy technical change on manufacturing productivity up to around 2004, when the point
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estimates become negative and statistically significant. Thus, the timing of the manufac-

turing productivity decline is consistent with the timing of legalization of GE soy seeds

in Brazil and the reallocation of workers and capital into L industries documented in the

previous section.

The findings discussed above suggest two potential explanations of the productivity

slowdown. First, as low R&D industries tend to be less productive (and invest less in

innovation), the mere reallocation of factors into these industries can reduce the overall

level of manufacturing productivity (and its growth rate). Second, the increase in the size

of the low R&D industry can change incentives to innovate in both industries, affecting

productivity growth within each of them. To assess the relative importance of each of

these mechanisms, we start by decomposing the total effect of soy technical change on

manufacturing productivity in three components: changes in productivity within the L

industry, changes in productivity within the H industry, and the change in productivity

driven by reallocation of factors between industries. In particular, we use the following

decomposition:

∆ log TFPit = siLt × ∆ log TFPiLt︸ ︷︷ ︸
Change within L industry

+ (1 − siLt) × ∆ log TFPiHt︸ ︷︷ ︸
Change within H industry

+

+ siLt × ∆ logωit ×
(TFPiLt − TFPiHt)

TFPiLt︸ ︷︷ ︸
Composition effects

+εi

where siLt = ωi×TFPiLt

ωi×TFPiLt+(1−ωi)×TFPiHt
corresponds to the share of TFP in the L industry

weighted by ωi =
V AiL,2000

V AiL,2000+V AiH,2000
which is the value added share of each sector in 2000,

before the adoption of the new GE soy seeds.34 The first and second terms of this equation

reflect changes in manufacturing productivity within the L and H industries, respectively.

The last term captures changes in overall manufacturing productivity due to composition

effects, driven by changes in the relative size of each industry.

The decompositions into between and within components, using value added per worker

and our measure of TFP, are reported in Figure 5, graphs (c) and (d). Both graphs show

that most of the reduction in the level of manufacturing productivity is driven by the

within components, the between component being small. In fact, the estimates imply

that the “between” component can explain at most 8 percent of the overall decline in

manufacturing productivity. Hence, most of the manufacturing productivity decline is

not driven by a change in the relative size of each industrial sector.

34Notice that εit is a residual that comes from the fact that we use pre-shock weights and aggregate
differences in TFP between sectors, rather than microregion specific ones.
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Figure 5 goes around here

Table 6 quantifies further the results shown in Figure 5. The estimated coefficients

in columns (1), (2), and (3) indicate that microregions with a one standard deviation

faster technical change in soy experienced a decline in manufacturing productivity in the

L industry of between 10 and 11 percent when using value added per worker or value

added over wage bill as measures of productivity, and of about 23 percent when using

TFP. The declines in manufacturing productivity in the H industry are between 9 and 11

percent for a standard deviation difference in soy technical change across all measures of

productivity.

The large reductions in productivity within the L industry reported above, in the

context of an overall increase in the size of this industry, have important implications for

interpreting the evidence. First, this finding confirms that capital and labor are not pulled

into the L industry by increases in its productivity but pushed by labor-saving technical

change in agriculture. Second, the resulting larger scale of this industry does not appear

to generate increasing returns. To further our investigation, in what follows we evaluate

two potential explanations for the observed decline in manufacturing productivity: worker

composition and lower returns to innovation.

We start, in this section, by considering whether a composition effect driven by the

entry of low-productivity former agricultural workers could contribute to the decline in

productivity within the L industry. This explanation is plausible because agricultural

technical change appears to have displaced the low skill workers with lower wages, as

discussed in Section 3.2. Then, workers entering manufacturing appear to be negatively

selected both in observable characteristics such as education and unobservable character-

istics such as their level of ability. Still, further evidence suggests that worker selection’s

contribution to L industry manufacturing productivity decline is quantitatively small.

First, when we look directly at the educational skill composition in the L industry we do

not find any significant change as a result of soy technical change (Table A.8). Second,

some of our measures of productivity, such as value added over wage bill, are designed to

account not only for observable differences in workers’ human capital like education, but

also for differences that are unobservable to the econometrician but not to the firm and

thus captured by wages. To see this, note that we can decompose labor productivity in L

industries as valued added per wage bill and average wages: lnV A/L = lnV A/wL+lnw.

In perfectly competitive labor markets, average wages should reflect the average marginal

product of labor, which can be tied to productivity. In this case, negative worker selection

would manifest in a decline in average wages and, hence, large differences in our estimates

of the effect of soy technical change on manufacturing productivity measured as value

added per worker and as value added per wage bill, shown in Table 6. Yet, the estimates

in columns (1) and (2) of this table are very similar, implying that at most 11% of the
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decline in manufacturing productivity in the L industries can be attributed to worker

selection.35

Table 6 goes around here

Finally, it is worth emphasizing that a composition effect driven by low-productivity

entrants could contribute to the decline in productivity within the L industry, but it

should not affect the productivity of the H industry, because the latter does not absorb

agricultural workers. However, as shown in Table 6, manufacturing productivity declines

in both the L and the H industries, and by comparable magnitudes. This finding suggests

that the reduction in manufacturing productivity could be driven by changes in the return

to perform innovation activities in both industries, a possibility we explore in detail in

the following section.

3.5 Innovation

In this section, we investigate whether the simultaneous reduction in productivity

within L and H industries can be explained by changes in innovation activities. A major

challenge to studying the response of industrial innovation to agricultural technical change

is the lack of a measure of investment in R&D which is representative at low levels of

spatial aggregation such as micro-regions. Thus, as detailed in Section 2.3, we use the

description of workers’ occupations in social security data to develop a new measure of

investment in innovation that varies both across regions and sectors. We measure the labor

input in innovation as the total wage bill of workers in innovation-intensive occupations,

which are defined as those effectively producing new ideas – such as new products and

processes – within each industry.

This measure allows us to estimate the effect of agricultural technical change on the

allocation of innovative activities across industries. In particular, we estimate equation

(2) using as outcome variable the total wage bill of workers employed in innovation and

non-innovation intensive occupations and report estimates in Figure 6. The top panels (a)

and (b) confirm that regions more exposed to soy technical change experienced an increase

in the wage bill in non-innovative activities within L industries. In turn, panels (c) and

(d) report the effect of agricultural technical change on investment in innovation-intensive

activities. Estimates reported in panel (c) show that, if anything, innovative activities in

L industries increased slightly. In turn, estimates in panel (d) show that regions more

exposed to soy technical change experienced a sharp decline in investment in innovative

activities within H industries, whose timing corresponds with the legalization of GE soy

in 2003.

35This number results from the following calculation: (0.151 − 0.135)/0.151 = 0.106.
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Figure 6 goes around here

Table 7 quantifies the effects documented in Figure 6. The coefficients reported in

columns (1) and (2) confirm that microregions with a one standard deviation larger in-

crease in potential soy yields experienced an 11 percent higher increase in the wage bill

of non-innovative labor in L industries and no increase in H industries. In turn, column

(3) shows a positive but not statistically significant increase in the wage bill of innovative

labor in L industries. Finally, column (4) shows that microregions with one standard

deviation larger increase in soy technical change experienced a 20 percent larger decline

in the wage bill of innovative labor in H industries.

Table 7 goes around here

The findings discussed above suggest that the increase in the relative size of the L

industry reduced innovation incentives within the H industry. To better understand the

connection between growth in the L industry and the reduction in innovation in the H

industry, we perform two additional exercises. First, we want to understand whether the

decline of innovation in the H industry is driven by lower entry or lower retention of

workers that might be attracted to the L industry. We use social security data to classify

innovation workers employed in the H industry into five different categories: stayers (i.e.

innovation workers already observed in the previous year in the H industry), entrants in

the labor market, entrants from informality/self-employment/unemployment, switchers

from L industries and switchers from sectors other than the L industry. We then estimate

the impact of soy technical change on the wage bill of each of these categories separately.

The results are reported in Figure 7. As shown, in regions more exposed to soy technical

change, innovation workers are both less likely to enter and to stay in the H industry. The

magnitude of the effect on the different components indicates that about half of the total

effect is driven by a lower probability of innovation workers remaining in the H industry.

The other half is driven by lower entry into the H industry in regions more exposed to

soy technical change.

Figure 7 goes around here

Next, we follow the employment trajectories of innovation workers to investigate to

what extent lower retention in the H industry is due to worker reallocation to the L

industry. To this end, we identify all workers employed for at least one year in innovation

activities in the H industry in the baseline period before the legalization of GE soy seeds,

i.e. 1998 to 2002. Then, we track the employment trajectories of these workers and
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identify those who moved to L industries. This allows us to measure the effect of soy

technical change on the share of innovation workers initially employed in the H industry

that reallocated to the L industry in each microregion and year. Figure 8 (a) reports

results using the wage bill share of those workers as an outcome. As shown, we find a

positive and significant effect in the post 2003 period. This implies that in microregions

with a one standard deviation higher exposure to soy technical change 2.4 percentage

points of the wage bill share of innovation workers is lost due to reallocation of workers

towards the L industry over the whole post-period. We can use this estimate to calculate

the share of the overall reduction in innovation expenditures in the H industry (20% for

one standard deviation higher exposure to soy technical change) that is directly due to

reallocation of workers to the L industry. As mentioned above, half of this reduction is

explained by lower worker entry and the other half by lower retention of workers. We focus

our calculations on this second half as we can only track the employment trajectories of

workers who were initially in the H industry. Then, out of the reduction in innovation

expenses due to less retention of workers in H (10%), direct reallocation to L explains

24%.

Note that we cannot give a direct estimate of how much of the total reduction in

innovation wage bill in H (20%) is due to worker reallocation to L, because we cannot

identify individuals that decide not to enter the H industry but would have entered in

the absence of soy technical change. Still, we can make a back of the envelope calculation

by extrapolating our estimate for the workers who moved from the H to the L industry.

This calculation implies that the expansion of the L industry explains 24% of the overall

reduction in innovation expenditures in the H industry. We can think of this estimate as

a lower bound to the extent that new entrants are more likely to be attracted to L than

workers already employed in the H industry due to labor market frictions.36

Finally, we study whether innovation workers reallocating to the L sector also expe-

rienced a change in occupation. As in the previous exercise, we focus on the innovation

workers initially observed in H industries, and study what fraction of those who moved

to L industries remained employed in innovation intensive occupations when changing in-

dustry, and which fraction instead changed to non-innovation intensive occupations. The

results of this decomposition are shown in Figure 8 (b) in terms of wage bill and in Figure

A.5 (b) in terms of number of workers. As shown, in both decompositions we find that

more than one-third of innovation workers moving from H to L industries also changed

occupation, switching from an innovation-intensive to a non-innovation intensive job.

Taken together, the results presented in this section show a decline in innovative

36Figure A.5 (a) reports the same exercise using the share of innovation workers initially employed
in the H industry that reallocated to the L industry as an outcome (rather than their wage bill). The
magnitude of the estimated effects indicate that microregions with one standard deviation higher exposure
to soy technical change had a 1.5 percentage points higher share of innovation workers initially employed
in the H industry that relocated towards the L industry.
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activities performed in H industries in regions more exposed to agricultural technical

change, and a reallocation of such activities from H to L industries. In addition, the

results indicate that a significant fraction of innovation workers moving to L industries

also switched from innovation intensive to non-innovation intensive occupations. These

results can explain the decline in manufacturing productivity growth that accompanied

the industrialization process in such regions. In particular, the results suggest that the

decline in innovation within H industries reduced local knowledge production, causing

manufacturing productivity growth to decline in both industries. Note that lower innova-

tion in the H industry appears to have a direct effect on its productivity and an indirect

effect on the productivity of the L industry through local knowledge spillovers.

3.6 The role of capital

In section 3.3, we documented that the reallocation of agricultural workers into low-

R&D intensive manufacturing industries was followed by an inflow of capital. We evalu-

ated two potential channels through which agricultural productivity growth can lead to

capital investment in manufacturing. First, a labor supply channel: labor-saving technical

change in agriculture generated an inflow of workers in the L industry. Larger employment

is expected to increase the marginal product of capital and thus attract more investment

into this industry. Second, a capital supply channel: high agricultural productivity in-

creased local savings, as documented in Bustos et al. (2020). In turn, this increase in local

capital supply could have increased capital investment in capital-intensive industries. We

concluded that the evidence presented in that section favoured the labor supply mecha-

nism for two reasons. First, capital inflows into manufacturing lagged labor inflows by

one year. Second, capital inflows were concentrated in L industries while both industries

have a similar capital-intensity. Still, in the current section we conduct a more detailed

exploration of the capital supply channel.

We build on previous work studying the effects of the agricultural boom in Brazil on

capital markets. Bustos et al. (2020) document that regions with faster technical change in

soy experienced an increase in local savings deposits which were not lent locally, leading

to an increase in capital outflows. They use detailed credit registry data to track the

destination of capital flows and find that banks capturing deposits in soy boom areas

redirected them to other regions where they had branches. This increase in bank lending

was concentrated outside of soy-producing regions and in the manufacturing and service

sectors. Note that this finding stands in contrast to the findings on the effect of agricultural

technical change on structural transformation through the labor supply channel, which

operates in local labor markets with limited migration responses (see Table A.5). Instead,

the capital supply channel operates across regions financially integrated with soy boom

areas through the bank branch network.
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We can simultaneously estimate the effect of the labor and capital supply mechanisms

on structural transformation by adding to our baseline specification, described in equation

(1), a measure of exposure to capital inflows from soy boom areas through the bank

branch network following Bustos et al. (2020). In this analysis, we use the change in

employment share in manufacturing between 2000 and 2010 as our measure of structural

transformation. Estimation results are reported in Appendix Table A.9. Two key findings

emerge. First, we confirm that the local effect of soy technical change is concentrated

in soy-producing regions, and in low-R&D intensive manufacturing – what we label L

industries in this paper. On the other hand, the indirect effect of soy technical change via

bank exposure to soy boom areas has the following characteristics: it affects manufacturing

in destination regions, it is concentrated in non-soy producing regions, and it is stronger

for high-R&D intensive manufacturing – what we label H industries in this paper.

These results have relevant implications for the role of technical change in agriculture

for industrialization and growth. In particular, they suggest that while agricultural savings

can foster the growth of productivity-enhancing manufacturing in urban regions financially

integrated via the bank network, the reallocation of former agricultural workers towards

low-skill intensive industries can slow down productivity growth at the local level. Thus,

our findings indicate that structural transformation obtained through unskilled labor-

saving technical change in agriculture – which may be quite common when developing

countries adopt agricultural technologies from more developed ones – can attenuate the

standard gains from reallocation into manufacturing emphasized by the existing literature,

and potentially accentuate regional productivity inequalities.

3.7 Robustness Tests

In this section, we address some additional concerns regarding the interpretation of

our estimates. First, we investigate whether the expansion of L manufacturing industries

in areas experiencing technical change in soy could be the result of larger local demand for

agricultural inputs or larger local supply of agricultural outputs for further processing.

In this case, the expansion of manufacturing employment would be driven by sectors

connected to soy production via input-output linkages. This includes sectors using soy

as an input – such as the food processing industry – or that produce inputs for the

soy sector – such as the production of fertilizers, herbicides or other agricultural inputs.

To identify the sectors linked to soy production via input-output linkages we use the

Input-Output tables computed by the IBGE.37 Although the majority of the output of

the soy sector is exported, two downstream manufacturing sectors report using soy as an

input: “Slaughtering and preparation of meat and fish” (SNA code 1091) and “Other food

37The tables are publicly available on the IBGE website: https://www.ibge.gov.br/en/statistics/economic/national-
accounts/. This IO Tables use the SNA sector classification, which include 67 sectors.
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products” (SNA code 1093).38 Upstream industries of the soy sector include: “Fertilizers

and other inorganic chemicals” (2412, 2413, 2419) and “Refined petroleum” (232).

In Table A.10 in the Appendix we replicate the main results of the paper excluding

upstream and downstream industries. As shown, the estimated coefficients that we obtain

are similar in magnitude to those obtained in the main tables of the paper. For example,

the coefficient capturing the effect of soy technical change on employment in the L man-

ufacturing industry has a magnitude of 0.121 in Table 5, and a magnitude of 0.124 when

excluding sectors connected via input-output linkages in Table A.10. We interpret these

results as indicating that the effect of soy technical change on local employment is not

driven by local demand effects in manufacturing industries related to soy via production

networks.

Next, we investigate to what extent the reduction in innovation within high R&D

industries has the potential to reduce productivity not only in this industry but also in

the local low R&D industry through local knowledge spillovers. Note that this is key

for our empirical identification strategy that compares microregions differently affected

by soy technical change, and thus requires that knowledge spillovers are stronger within

than across regions. Evidence from the existing literature suggests that spillovers exist

and tend to be local, as shown, for example, in Greenstone, Hornbeck, and Moretti (2010)

and Giroud, Lenzu, Maingi, and Mueller (2021) in the context of the US. Greenstone et al.

(2010) document that the construction of large manufacturing plants in a given county

generates productivity spillovers for existing plants in the same county. Importantly,

they show that such spillovers occur across manufacturing industries, and are stronger

across industries with larger technological linkages, as measured by industry-to-industry

R&D flows and industry-to-industry patent citations (Ellison, Glaeser, and Kerr, 2010).

Building on the same experiment, Giroud et al. (2021) show that across firms and across-

industry spillovers are very local, and only travel across regions within multi-plant firms.

Still, it is worth exploring whether spillovers are also local in our context. First, we

turn to survey evidence from PINTEC. This survey indicates, for each firm acquiring

innovation externally, the location of the external firm that developed the innovation.

In particular, the survey asks respondents to indicate the Brazilian state in which the

external innovating firm is located. Survey responses show that around 70% of external

innovation is developed by firms located in the same state as the respondent, consistent

with important local innovation spillovers. Second, we directly test for spillovers across

microregions, our unit of observation. We augment our main specification of the effect of

38These 2 SNA sectors correspond to the following sectors in the CNAE 1.0 sector classification at
4-digits used in the paper: (1511)-(1514), (1521)-(1523), (1531)-(1533), (1541)-(1543), (1571), (1572),
(1551)-(1556), (1559), (1581)-(1586), and (1589). To identify which of these 29 CNAE 1.0 sectors use
soy as an input we looked at the description of the activities classified in each sector according docu-
mentation provided by the National Commission of Classifications (CONCLA). We identified 5 sectors
whose description indicate they use soy as an input: 1531, 1532, 1533, 1586, 1589. We also added to the
downstream industries the biofuels sector.
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soy technical change on local manufacturing productivity with three additional controls

capturing changes in soy technical change in neighboring microregions. More specifically,

we include soy technical change in the five closest, in the five to ten closest, and in the ten

to twenty closest microregions. Each group captures geographical spillovers at different

distances, starting from adjacent microregions. Table A.11 reports the results for our key

measures of manufacturing productivity. As shown, we find that changes in agricultural

productivity in nearby microregions do not affect local manufacturing productivity.

4 Conclusions

The reallocation of labor from agriculture into manufacturing is generally regarded as

positive in the economic development literature. Several studies have documented that

the manufacturing sector has, on average, higher productivity and pays higher wages.

However, little is known about which type of workers are released from the agricultural

sector and which manufacturing industries absorb them during the process of structural

transformation. Our paper contributes to the literature by showing that the forces driving

structural transformation can shape the type of industries in which a country specializes.

In particular, we show that when labor reallocation from agriculture to manufacturing

is driven by agricultural productivity growth that displaces unskilled labor, it can gen-

erate an expansion in less innovation-intensive manufacturing sectors, which can reduce

investment in innovation and slow down aggregate manufacturing productivity growth.
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5 Figures and Tables

Figure 1: Soy Production and Employment
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(c) Soy: Employment by Skill Group

10
0

20
0

30
0

40
0

50
0

60
0

W
or

ke
rs

 (i
n 

th
ou

sa
nd

s)

1990 1995 2000 2005 2010
year

Skilled Unskilled

(d) Share of Skilled Workers by Agricultural
Activity

0
.0

5
.1

.1
5

.2

CassavaTobacco Maize Rice Coffee Sugar Other Vegetab. Citrics Livestock Soy

Notes: Figures in Panels (a) and (b) are from Bustos et al. (2016). Data sources are CONAB (Panel A), PNAD (Panel B
and C) and 2000 Population Census (Panel D). CONAB is the Companhia Nacional de Abastecimento, an agency within
the Brazilian Ministry of Agriculture, which runs surveys of farmers and agronomists to monitor the annual harvests of
major crops in Brazil. PNAD is the Brazilian National Household Sample Survey. The states of Rondonia, Acre, Amazonas,
Roraima, Pará, Amapá, Tocantins, Mato Grosso do Sul, Goias, and Distrito Federal are excluded due to incomplete coverage
by PNAD in the early years of the sample. In Panels C and D, an individual is classified as skilled if she has completed at
least the 8th grade.
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Figure 2: ∆ in Potential Soy Yield 2000-2010
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Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for each microregion is computed
by deducting the average potential yield under low inputs from the average potential yield under high inputs.
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Figure 3: Effect of agricultural technical change on
manufacturing employment

Yearly Social Security Data (1998-2009)
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Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj of equation (2)
where ln yk,r,t corresponds to aggregate log employment of unskilled and skilled labor in microregion k located in region

r at the end of year t in manufacturing. An individual is classified as skilled if she has completed at least the 8th grade.
(Source: RAIS). Standard errors are clustered at the microregion level.
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Figure 4: Effect of agricultural technical change on labor and
capital allocation within manufacturing

Yearly Social Security Data (1998-2009) and Annual Manufacturing
Survey(2000-2009)
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Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of
equation (2) where ln yk,r,t corresponds to aggregate log employment and log capital in microregion k located in region
r at the end of year t for each type of manufacturing industry (Source: PIA and RAIS). Manufacturing industries are
classified as L or H depending on whether their R&D intensity is below or above the median in 2000 (weighting industries
by number of employees so that each group captures around 50 percent of total manufacturing employment). We define
R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de
Inovação Tecnológica (PINTEC). Standard errors are clustered at the microregion level.
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Figure 5: The effect of agricultural technical change on manufacturing productivity
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(c) Value Added per Worker: decomposition
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Notes: Graphs (a) and (b) show the point estimates and 90% confidence intervals for the estimates of the βj coefficients of equation (2) using two measures of manufacturing productivity
as outcomes: log value added per worker and log TFP (Source: PIA). Graphs (c) and (d) show the decomposition of the total effect into the within components for each of the two industries
and the between component across industries. Standard errors are clustered at the microregion level.
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Figure 6: Effect of agricultural technical change on expenditure
on non-innovative and innovative occupations

Yearly Social Security Data (1998-2009)
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Notes: The figure shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of
equation (2) where ln yk,t corresponds to the log wage bill of non-innovative and innovative labor in microregion k located in
region r at the end of year t for L and H manufacturing industries (Source: RAIS). An occupation is classified as innovative
following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether
their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group
captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure as a share
of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors
are clustered at the microregion level.
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Figure 7: Decomposition of effect of agricultural technical change on innovation activities in the H

industry
Yearly Social Security Data (1998-2009)
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Notes: The graph shows the decomposition of the total effect of agricultural technical change on log wage bill of innovative workers in the H manufacturing industry into components coming
from workers who stay in the industry, workers transitioning from either informality or self employment, workers transitioning from the L industry, workers who are entering the labor force,
and workers who transition from formal sectors other than the L industry. Manufacturing industries are classified as L or H depending on whether their R&D intensity is below or above
the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D
expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are clustered at the microregion level.
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Figure 8: Agricultural technical change and the reallocation of innovation activities across
industries and occupations
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(b) Decomposition by new occupation in the L industry
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Notes: Graph (a) shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of equation (2) where the outcome variable is the share of the wage bill
of workers who were employed in innovative occupations in the H sector during a year between 1998 and 2002 that moved to the L industry in microregion k located in region r at the end
of year t (Source: RAIS). Graph (b) decomposes Graph (a) by the new occupation in the L industry of workers who were employed in innovative occupations in the H sector during a year
between 1998 and 2002. An occupation is classified as innovative following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether
their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment).
We define R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are
clustered at the microregion level.

45



Table 1: Summary Statistics of the
Sample of Individuals by Sector

2000 2010

Agriculture
Age 38.0 39.0
Male (% of the Total) 89.3 81.2
White (% of the Total) 55.4 48.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 86.1 72.7
Completed Middle School (% of the Total) 7.4 13.8
High School Graduates (% of the Total) 5.2 11.4
University Graduates (% of the Total) 1.3 2.1

Average log real hourly wage 0.81 1.06
For skilled labor 1.39 1.38
For unskilled labor 0.71 0.95

Manufacturing L Industry
Age 36.8 37.3
Male (% of the Total) 61.6 58.7
White (% of the Total) 65.0 55.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 52.2 36.8
Completed Middle School (% of the Total) 20.4 21.5
High School Graduates (% of the Total) 21.9 35.2
University Graduates (% of the Total) 5.5 6.6

Average log real hourly wage 1.23 1.51
For skilled labor 1.73 1.63
For unskilled labor 1.15 1.23

Manufacturing H Industry
Age 36.28 36.9
Male (% of the Total) 80.6 76.2
White (% of the Total) 63.0 55.2
Education level (highest degree obtained)

Less than Middle School (% of the Total) 49.8 31.3
Completed Middle School (% of the Total) 20.0 19.8
High School Graduates (% of the Total) 23.4 39.8
University Graduates (% of the Total) 6.8 9.1

Average log real hourly wage 1.58 1.66
For skilled labor 1.92 1.81
For unskilled labor 1.24 1.35

Services
Age 37.1 37.8
Male (% of the Total) 67.3 62.1
White (% of the Total) 58.9 50.8
Education level (highest degree obtained)

Less than Middle School (% of the Total) 51.1 36.0
Completed Middle School (% of the Total) 17.9 19.3
High School Graduates (% of the Total) 23.4 34.3
University Graduates (% of the Total) 7.6 10.4

Average log real hourly wage 1.42 1.51
For skilled labor 1.77 1.67
For unskilled labor 1.01 1.24

Notes: The data comes from the Population Censuses for years 2000 and

2010. Summary statistics refer to our final sample of individuals as detailed

in Section 2.3. An individual is classified as skilled if she has at least com-

pleted the 8th grade. This level should be attained when an individual is 14

or 15 years old and is equivalent to graduating from middle school. Manufac-

turing industries are classified as L or H intensive depending on whether their

R&D intensity is below or above the median in 2000 (weighting industries by

number of employees so that each group captures around 50 percent of total

manufacturing employment). We define R&D intensity as R&D expenditure

as a share of total sales at baseline and we source it from from the 2000

Pesquisa de Inovação Tecnológica (PINTEC).
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Table 2: Summary Statistics of the Sample of Microregions

Panel A: Decadal Variables

2000 ∆2000-2010

Source: Mean SD Mean SD Observations

Potential Yields FAO-GAEZ
Soy 0.286 0.135 1.787 0.740 557
Maize 1.847 0.9984 3.082 1.639 557

Employment Shares Population Census
Agriculture 0.279 0.140 -0.050 0.055 557
Manufacturing L Industry 0.081 0.055 0.007 0.033 557
Manufacturing H Industry 0.067 0.043 -0.001 0.025 557
Services 0.573 0.118 0.044 0.057 557

Log. Employment Population Census
Agriculture 8.268 0.890 0.122 0.249 557
Manufacturing L Industry 7.076 1.569 0.358 0.400 557
Manufacturing H Industry 6.897 1.485 0.309 0.394 557
Services 9.194 1.887 0.404 0.175 557

Panel B: Yearly Variables

Source: Mean SD Observations

Manufacturing Employment RAIS (1998-2009)
Log. Employment

Manufacturing L Industry 7.753 1.315 3,816
Manufacturing H Industry 7.509 1.384 3,816

Log. Non-Innovative Wage Bill
Manufacturing L Industry 16.103 2.206 3,816
Manufacturing H Industry 15.883 2.304 3,816

Log. Innovative Wage Bill
Manufacturing L Industry 12.781 2.869 3,816
Manufacturing H Industry 12.523 3.273 3,816

Manufacturing Productivity PIA (2000-2009)
Log. Value Added per Worker

Manufacturing L Industry 10.692 0.866 3,070
Manufacturing H Industry 10.536 0.944 3,070

Log. Value Added per Wage Bill
Manufacturing L Industry 1.537 0.593 3,070
Manufacturing H Industry 1.360 0.613 3,070

Log. Total Factor Productivity
Manufacturing L Industry 3.217 0.992 3,035
Manufacturing H Industry 3.657 0.948 2,950

Log. Capital PIA (2000-2009)
Manufacturing L Industry 17.812 2.216 3,037
Manufacturing H Industry 16.359 2.580 2,971

Notes: The data sources are the Population Census (2000, 2010), RAIS and PIA. Manufacturing industries are classified as Low-R&D

or High-R&D intensive depending on whether their R&D intensity is below or above the median in 2000 (weighting industries by number

of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D

expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). A

worker is classified as skilled if she has completed at least the 8th grade (completed middle school).
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Table 3: Effect of agricultural technical change on sectoral
employment shares, manufacturing growth and manufacturing

productivity

Panel A: Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment shares by sector

Agriculture Manufacturing Services
(1) (2) (3)

∆Asoy more more space -0.033*** space 0.025*** space 0.008*
[0.005] [0.005] [0.004]

Observations 557 557 557
R-squared 0.246 0.166 0.359
Region FE Yes Yes Yes
Controls Yes Yes Yes

Panel B: Yearly Manufacturing Survey Data (2000-2009)

Outcome: Manufacturing Outcomes

Labor Capital VA/L VA/WL TFP
(1) (2) (3) (4) (5)

Asoy 0.095*** 0.257** -0.141*** -0.133*** -0.197**
[0.035] [0.092] [0.043] [0.040] [0.080]

Observations 3,070 3,069 3,070 3,070 3,069
R-squared 0.977 0.913 0.876 0.735 0.544
Microregion FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls × Linear trends Yes Yes Yes Yes Yes
Region x Year FEs Yes Yes Yes Yes Yes

Notes: Panel A shows coefficient estimates corresponding to equation (1). Changes in dependent

variables are calculated over the years 2000 and 2010. The unit of observation is the microregion.

These regressions include as controls the share of rural population, income per capita (in logs),

population density (in logs), literacy rate, all observed in the 1991 Population Census, a measure of

technical change in maize and region fixed effects. Panel B shows coefficient estimates corresponding

to equation (3). The dependent variables correspond to the total labor (in logs), total capital (in

logs), total value added divided by employment (in logs), total value added divided by total wage

bill (in logs) and total factor productivity for manufacturing in each microregion. We include only

those microregions that have positive employment for all the years in the sample. Controls include

the share of rural population, income per capita (in logs), population density (in logs), literacy rate,

all observed in 1991, all interacted with a linear trend, a measure of technical change in maize and

region times year fixed effects. Robust standard errors are reported in brackets in Panel A, and

standard errors clustered at the microregion level are reported in brackets in Panel B. Significance

levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 4: Effect of agricultural technical change on sectoral
employment shares by skill group

Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment shares of Change in employment shares of
unskilled workers by sector skilled workers by sector

Sector: Agriculture Manufacturing Services Agriculture Manufacturing Services
(1) (2) (3) (4) (5) (6)

∆Asoy -0.033*** 0.030*** 0.004 -0.015*** 0.014*** 0.001
[0.006] [0.005] [0.004] [0.004] [0.005] [0.005]

Observations 557 557 557 557 557 557
R-squared 0.126 0.157 0.208 0.047 0.112 0.103
Region FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses).

The unit of observation is the microregion. All the regressions include as controls the share of rural population, income

per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census, a measure

of technical change in maize and region fixed effects. Robust standard errors reported in brackets. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 5: Effect of agricultural technical change on industrial
specialization within manufacturing

Panel A: Decadal Population Census Data (2000 and 2010)

Outcome: Change in employment by manufacturing industry

Industry: L Industry H Industry
(1) (2)

∆Asoy more more more space 0.233*** 0.015
[0.038] [0.036]

Observations 557 557
R-squared 0.129 0.099
Region FE Yes Yes
Controls Yes Yes

Panel B: Yearly Social Security Data (1998-2009)

Outcome: Employment by manufacturing industry

Industry: L Industry H Industry
(1) (2)

Asoy 0.121** -0.008
[0.050] [0.037]

Observations 5,640 5,640
R-squared 0.455 0.410
Microregion FE Yes Yes
Year FE Yes Yes
Controls × Linear trends Yes Yes
Region x Year FEs Yes Yes

Panel C: Yearly Manufacturing Survey Data (2000-2009)

Outcome: Capital by manufacturing industry

Industry: L Industry H Industry
(1) (2)

Asoy 0.360*** 0.027
[0.112] [0.115]

Observations 3,037 2,969
R-squared 0.891 0.894
Microregion FE Yes Yes
Year FE Yes Yes
Controls × Linear trends Yes Yes
Region x Year FEs Yes Yes

Notes: In Panel A the dependent variables are changes in total employment (in logs) calculated over the years 2000 and

2010 (source: Population Censuses). The unit of observation is the microregion. Controls include: share of rural population

in 1991, income per capita (in logs), population density (in logs), and literacy rate, all observed in the 1991 Population

Census, as well as a measure of technical change in maize and region fixed effects. In Panel B, the dependent variable is total

employment (in logs) for each manufacturing industry in each microregion. We use aggregate information from RAIS at the

microregion-industry level for the time period 1998-2009. We include only those microregions that have positive employment

for all the years in the sample. In Panel C, the dependent variable is capital (in logs) for each manufacturing industry in each

microregion. We use aggregate information from PIA at the microregion level for the time period 2000-2009. In Panels B and

C, Asoy is defined as potential soy yield under high inputs for the years between 2003 and 2009, and the potential soy yield

under low inputs for the years between 2000 and 2002. Controls include the share of rural population, income per capita (in

logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a linear trend, a measure of technical

change in maize and region year fixed effects. In these regressions, manufacturing industries are classified as L or H depending

on whether their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that

each group captures around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure

as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Robust

standard errors are reported in Panel A, and standard errors clustered at the microregion level are reported in Panels B and

C. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 6: Effect of agricultural technical change on
manufacturing productivity

Yearly Manufacturing Survey Data (2000-2009)

Outcomes: L Industry Productivity H Industry Productivity

Measure: Log Value Added Log Value Added Log TFP Log Value Added Log Value Added Log TFP
per Worker per Wage Bill per Worker per Wage Bill

(1) (2) (3) (4) (5) (6)

Asoy -0.151** -0.135** -0.307*** -0.119* -0.109* -0.150*
[0.059] [0.054] [0.096] [0.071] [0.057] [0.087]

Observations 3,070 3,070 3,035 3,070 3,070 2,949
R-squared 0.796 0.627 0.605 0.799 0.635 0.574
Region x Year FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: The dependent variables are: total value added divided by employment (in logs), total value added divided by total wage bill (in logs) and total

factor productivity for each type of manufacturing industry in each microregion as a proxy for productivity. We include only those microregions that

have positive employment for all the years in the sample. Asoy is defined as potential soy yield under high inputs for the years between 2003 and 2009,

and the potential soy yield under low inputs for the years between 2000 and 2002. Controls include the share of rural population, income per capita

(in logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a linear trend, a measure of technical change in maize and

region year fixed effects. The unit of observation is a microregion. In these regressions, manufacturing industries are classified as L or H depending on

whether their R&D intensity is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50

percent of total manufacturing employment). We define R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from

from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors clustered at the microregion level reported in parentheses. Significance

levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 7: Effect of agricultural technical change on innovation in
manufacturing

Yearly Social Security Data (1998-2009)

Outcomes: Wage Bill of Non-Innovation Workers Wage Bill of Innovation Workers

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.144*** -0.019 0.048 -0.274*
[0.047] [0.046] [0.107] [0.151]

Observations 3,828 3,828 3,828 3,828
R-squared 0.969 0.978 0.910 0.905
Controls Yes Yes Yes Yes

Notes: The dependent variables in columns (1) and (2) are the total wage bill of non-innovation workers

(in logs) for each manufacturing industry in each microregion as a proxy for industry size, and in columns (3)

and (4) are the total wage bill of innovation workers (in logs) for each type of industry in every microregion as

a proxy for expenditure in innovation. We use aggregate information from RAIS at the microregion-industry

level for the time period 1998-2009. We include only those microregions that have positive employment for

all the years in the sample. Asoy is defined as potential soy yield under high inputs for the years between

2003 and 2009, and the potential soy yield under low inputs for the years between 1998 and 2002. Controls

include the share of rural population, income per capita (in logs), population density (in logs), literacy

rate, all observed in 1991, all interacted with a linear trend, a measure of technical change in maize and

region year fixed effects. The unit of observation is a microregion. In these regressions, manufacturing

industries are classified as Low-R&D or High-R&D intensive depending on whether their R&D intensity is

below or above the median in 2000 (weighting industries by number of employees so that each group captures

around 50 percent of total manufacturing employment). We define R&D intensity as R&D expenditure as

a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica

(PINTEC). Standard errors clustered at the microregion level reported in parentheses. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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A Appendix: Figures and Tables

Figure A.1: Skill Intensity and R&D Intensity at Industry Level
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Notes: We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we
source it from the 2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at
baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica ](PINTEC). The correlation between these
variables is approximately 0.34.
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Figure A.2: Manufacturing Employment in Innovation Intensive
Occupations

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.1

sh
ar

e 
of

 to
ta

l w
or

ke
rs

10
00

00
15

00
00

20
00

00
25

00
00

nu
m

be
r o

f w
or

ke
rs

2000 2005 2010 2015 2020

employment employment share

Notes: Authors’ calculations using RAIS data. Innovation intensive occupations are defined using the methodology
described in Section 2.4.
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Figure A.3: Correlations between share of workers in innovation
intensive occupations and industry-level measures of innovation
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(c) Product innovation share
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(d) Process innovation share
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(e) Product or Process innovation share

0
.2

.4
.6

.8
1

sh
ar

e 
of

 fi
rm

s 
w

ith
 p

ro
ce

ss
 o

r p
ro

du
ct

 in
no

va
tio

n 
in

 la
st

 3
 y

ea
rs

0 .05 .1 .15 .2
share of workers in innovation intensive occupations

(f) Patents vs Product or Process innovation share
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Notes: The share of workers in innovation intensive occupations in each sector is constructed using RAIS data for the year
2000 and the methodology described in Section 2.4. All measures of innovation at industry level (R&D expenditure over
sales, patent share, product and process innovation share) are computed using the 2000 Pesquisa de Inovação Tecnológica
(PINTEC). Dot size captures size of the industry in terms of number of employees in 2000.
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Figure A.4: Geographical distribution of share of manufacturing
workers in innovation intensive occupations in 2000

Notes: The Figure reports the share of innovation intensive workers over total workers in the manufacturing sector in the
year 2000 by microregion. Innovation intensive occupations are defined using the methodology described in Section 2.4.
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Figure A.5: Agricultural technical change and the reallocation of innovation workers across
industries and occupations

(a) Reallocation of innovative workers from H to L Industry
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(b) Decomposition by new occupation in the L industry
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Notes: Graph (a) shows the point estimates and the 90% confidence intervals for the estimates of the βj coefficients of equation (2) where the outcome variable is the share of workers who
were employed in innovative occupations in the H sector during a year between 1998 and 2002 that moved to the L industry in microregion k located in region r at the end of year t (Source:
RAIS). Graph (b) decomposes Graph (a) by the new occupation in the L industry of workers who were employed in innovative occupations in the H sector during a year between 1998 and
2002. An occupation is classified as innovative following the methodology outlined in Section 2.4. Manufacturing industries are classified as L or H depending on whether their R&D intensity
is below or above the median in 2000 (weighting industries by number of employees so that each group captures around 50 percent of total manufacturing employment). We define R&D
intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Standard errors are clustered at the
microregion level.
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Table A.1: Effect of Agricultural Technical Change on GE Soy Adoption

Panel A ∆ GE-soy area share ∆ GE-soy area share ∆ non-GE soy area share ∆ non-GE soy area share
(1) (2) (3) (4)

∆Asoy 0.022*** 0.020*** -0.007* -0.008**
[0.005] [0.004] [0.004] [0.004]

Share rural population 0.034*** 0.117*** -0.009 -0.057**
[0.010] [0.023] [0.009] [0.023]

Log Income per capita -0.009 -0.002
[0.006] [0.007]

Literacy rate 0.162*** -0.043
[0.034] [0.035]

Log population density 0.005*** -0.006***
[0.001] [0.001]

Observations 557 557 557 557
R-squared 0.094 0.208 0.013 0.053

Panel B ∆ Soy area share ∆ Soy area share ∆ Maize area share ∆ Maize area share
(1) (2) (3) (4)

∆Asoy 0.022*** 0.016*** -0.006 0.000
[0.004] [0.004] [0.004] [0.004]

∆Amaize -0.003** -0.001 0.005*** 0.003*
[0.001] [0.001] [0.002] [0.002]

Share rural population 0.029*** 0.064*** 0.020*** 0.012
[0.007] [0.013] [0.008] [0.015]

Log Income per capita -0.010* -0.011
[0.006] [0.007]

Literacy rate 0.122*** -0.002
[0.018] [0.023]

Log population density -0.001 0.003***
[0.001] [0.001]

Observations 557 557 556 556
R-squared 0.135 0.245 0.041 0.066

Notes: Changes in dependent variables are calculated over the years 1996 and 2006 (source: Agricultural Census). The unit of observation is the

microregion. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.2: Classification of Manufacturing Industries by R&D Intensity

IBGE Code Description R&D Share of Sales Skill Intensity

26091 Ceramic products 0.106 0.275
34001 Manufacturing and assembly of motor vehicles 0.105 0.738
23030 Production of nuclear fuels 0.100 0.830
31002 Electrical material for vehicles 0.088 0.599
27001 Steel products 0.084 0.659
35030 Construction, assembly and repair of airplanes 0.080 0.875
28002 Foundries, stamping shops, powder metallurgy and metal treatment services 0.066 0.502
33003 Machines, equipment for electronic systems for industrial automation, and control 0.064 0.848
24020 Pharmaceutical products 0.062 0.809
33001 Medical equipment 0.061 0.753
29002 Appliances 0.058 0.709
34002 Cabins, car bodies, trailers and parts for motor vehicles 0.058 0.637
20000 Wooden products 0.055 0.247
33004 Equipment, instruments and optical, photographic and cinematographic material 0.055 0.709
33002 Measuring, testing and control equipment - except for controlling industrial processes 0.054 0.725
24010 Paints, dyes, varnish, enamels and lacquers 0.053 0.656
25020 Plastic products 0.052 0.543
32000 Electronic material and communications equipment 0.052 0.757
31001 Machines, equipment and miscellaneous electric material - except for vehicles 0.051 0.678
27003 Foundries 0.051 0.462
15043 Other food products 0.049 0.426
36090 Miscellaneous products 0.048 0.576
23010 Coke plants 0.047 0.487
37000 Recycling 0.045 0.304
35090 Miscellaneous transportation equipment 0.044 0.581
21002 Corrugated cardboard, packaging, and paper and cardboard objects 0.044 0.577
17001 Processing of fibers, weaving and cloth making 0.043 0.471
28001 Metal products - except machines and equipment 0.042 0.496
24030 Soap, detergents, cleaning products and toiletries 0.042 0.658
29001 Machines and equipment - except appliances 0.041 0.605
21001 Pulp, paper and smooth cardboard, poster paper and card paper 0.040 0.602
34003 Reconditioning or restoration of engines of motor vehicles 0.038 0.556
24090 Miscellaneous chemical products 0.037 0.635
25010 Rubber products 0.036 0.567
26092 Miscellaneous products of non-metallic minerals 0.035 0.382
22000 Editing, printing and reproduction of recordings 0.035 0.702
19012 Leather objects 0.034 0.453
30000 Office machines and data-processing equipment 0.034 0.852
36010 Pieces of furniture 0.034 0.402
26010 Glass and glass products 0.031 0.576
15021 Preserves of fruit, vegetables and other vegetable products 0.029 0.484
17002 Manufacturing of textile objects based on cloth - except for garments 0.028 0.433
18001 Making of clothing articles and accessories - except on order 0.023 0.425
18002 Making clothing articles and accessories - on order 0.023 0.435
18999 Making of clothing articles and accessories - on order or not 0.023 0.690
27002 Non-ferrous metals 0.022 0.644
15030 Dairy products 0.022 0.433
19020 Footwear 0.019 0.348
15010 Slaughtering and preparation of meat and fish 0.018 0.355
35010 Construction and repair of boats 0.018 0.493
23020 Products in oil refining 0.015 0.763
33005 Chronometers, clocks and watches 0.015 0.751
23400 Alcohol production 0.014 0.350
15041 Manufacturing and refining of sugar 0.013 0.334
15042 Roasting and grinding of coffee 0.013 0.499
19011 Tanning and other preparations of leather 0.013 0.325
16000 Tobacco products 0.013 0.496
15050 Beverages 0.012 0.555
15022 Vegetable fat and oil 0.009 0.446
35020 Construction and assembly of locomotives, cars and other rolling stock 0.004 0.632

Median 0.041 0.432

Notes: The industry codes correspond to the CNAE-Domiciliar, the industry classification used in the 2000 Population Census. Industries are sorted by their R&D intensity at

baseline. We measure R&D intensity as R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC).

We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. The correlation

between these variables is approximately 0.34. Industries below the median are classified as low and the ones above the median as high.

8



Table A.3: Keywords Used to Identify Innovative Occupations

Panel A: Nouns or combination of nouns from task description of occupations

Portuguese English

pesquisa e desenvolvimento research and development
inovação innovation
p&d R&D
desenvolvimento de produtos product development
desenvolvimento de processos process development
pesquisador researcher
novas tecnologias new technologies
protótipos prototypes
pesquisas tecnologicas technological research
automaçao de processos process automation

Panel B: Actions (verb + noun) from task description of occupations

Portuguese English

desenvolvem produtos develop products
desenvolvem pesquisas develop research
desenvolvem equipamentos develop equipment
desenvolvem processos develop processes
desenvolvem dispositivos develop devices
otimizam métodos optimize methods
otimizam os meios optimize means
aperfeiçoam sistemas improve systems
aperfeiçoam processos improve processes
aperfeiçoam produtos improve products
aperfeiçoam dispositivos improve devices
implementam dispositivos de automaçao implement automation devices
desenvolvem, testam e supervisionam sistemas, processos e
métodos produtivos

develop, test and supervise systems, pro-
cesses and production methods

Panel C: Nouns or combinations of nouns from PINTEC survey

Portuguese English

produto novo / novo produto new product
produtos novos / novos produtos new products
produto aprimorado improved product
produtos aprimorados improved produts
inovação de produto product innovation
aperfeiçoamento de produto product improvement
processo novo / novo processo new process
processos novos / novos processos new processes
processo aprimorado improved process
processos aprimorados improved processes
inovação de processo process innovation
aperfeiçoamento de processo process improvement

Notes: The Table reports the keywords used to identify innovation intensive occupations and their English translation.

Keywords reported in Panels A and B are sourced from the ”Brazilian Classification of Occupations”, Ministry of Labor, 3rd

Edition (2010). Keywords reported in Panel C are sourced from the Technical Appendix of the 2008 PINTEC Survey.

9



Table A.4: Industry-level Measures of Innovation

Outcome: Measure of Industrial Innovation

Measure: log R&D expenditure Share of Share of product Share of process Share of product or process
over sales patenting firms innovation firms innovation firms innovation firms

(1) (2) (3) (4) (5)

Share of innovation 5.929** 1.557*** 2.178*** 0.885** 1.628***
(2.502) (0.411) (0.406) (0.427) (0.473)

Observations 271 274 274 274 274
R-squared 0.062 0.166 0.172 0.037 0.098

Notes: Dependent variables are calculated from 2000 Pesquisa de Inovação Tecnológica (PINTEC). The unit of observation is the 4-digit CNAE industry. These regressions

compute the OLS coefficient of a number of outcomes on the share of innovation workers. The share of innovation workers in each industry are computed for the year 2000 using the

methodology described in Section 2.4. All regressions are weighted by number of workers in each industry in 2000. Robust standard errors reported in brackets. Significance levels:

∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.5: Internal migration

Skill Group: All Skilled Unskilled

Outcomes ∆ logL Net Migration In-Migration Out-Migration Net Migration In-Migration Out-Migration Net Migration In-Migration Out-Migration

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆Asoy -0.014 0.004 0.002 -0.003 -0.001 -0.004 -0.003 0.012 0.011** -0.002
[0.013] [0.009] [0.005] [0.006] [0.010] [0.005] [0.007] [0.008] [0.005] [0.006]

Observations 557 557 557 557 557 557 557 557 557 557
R-squared 0.171 0.553 0.401 0.592 0.507 0.380 0.593 0.582 0.407 0.566
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are calculated for 2010 (source: Population Censuses). The unit of observation is the microregion. These regressions compute the 5 year internal migration rate between 2005

and 2010, using the microregion of residence 5 years prior to the Census 2010. All the regressions include the baseline specification controls which are the share of rural population in 1991, a measure of

technical change in maize and region fixed effects. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population

Census. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.6: Effect of technical change in soy on wages by skill
group

Panel A

Outcome: Change in composition-adjusted skill premia
by sector

Sector Overall Agriculture Manufacturing Services
(1) (2) (3) (4)

∆Asoy 0.021** 0.017 0.028 0.024**
[0.009] [0.019] [0.019] [0.010]

Observations 557 557 554 557
R-squared 0.165 0.150 0.042 0.032
Region FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Panel B

Outcome: Change in composition-adjusted wages of skilled
workers by sector

Sector Overall Agriculture Manufacturing Services
(1) (2) (3) (4)

∆Asoy 0.033*** 0.065*** 0.042** 0.034***
[0.010] [0.018] [0.017] [0.011]

Observations 557 557 555 557
R-squared 0.216 0.199 0.107 0.217
Region FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Panel C

Outcome: Change in composition-adjusted wages of unskilled
workers by sector

Sector Overall Agriculture Manufacturing Services
(1) (2) (3) (4)

∆Asoy 0.012 0.045*** 0.012 0.010
[0.008] [0.012] [0.012] [0.009]

Observations 557 557 556 557
R-squared 0.387 0.170 0.104 0.293
Region FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Changes in wages and skill premia are calculated over the years 2000 to

2010. Controls include the share of rural population, income per capita (in logs),

population density (in logs), literacy rate, all observed in 1991, and a measure of

technical change in maize. Dependent variables are computed from a Mincerian

regression of log of hourly wages on microregion fixed effects, and a vector of

individual characteristics that includes dummies for sector, skill group, age group,

race, and all the interactions between these variables. Robust standard errors

reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.7: Effect of technical change in
soy on the number of workers at the

minimum wage

Outcome: Change in the share of workers
at the minimum wage by sector

Industry All Manufacturing L Industry H Industry
(1) (2) (3)

∆Asoy 0.177*** 0.207*** 0.185***
[0.044] [0.048] [0.045]

Observations 556 555 555
R-squared 0.184 0.221 0.302
Region FE Yes Yes Yes
Controls Yes Yes Yes

Notes: Changes in dependent variables are calculated over the years 2000

and 2010 (source: Population Censuses). The unit of observation is the

microregion. Workers at the minimum wage are workers paid below the

mandatory minimum wage in 2000 and 2010. Controls include the share of

rural population, income per capita (in logs), population density (in logs),

literacy rate, all observed in 1991, and a measure of technical change in

maize. Robust standard errors reported in brackets. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1..

13



Table A.8: Ratio high- to low-skilled workers

Outcome: Log Ratio of high- to low-skilled Log Ratio of high- to low-skilled
workers by sector workers by manufacturing industry

Sector/Industry Agriculture Manufacturing L Industry H Industry
(1) (2) (3) (4)

∆Asoy 0.160*** 0.038 -0.041 0.000
[0.044] [0.041] [0.038] [0.043]

Observations 557 556 556 546
R-squared 0.256 0.144 0.072 0.018
Region FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population

Censuses). The unit of observation is the microregion. All the regressions include as controls the share of rural

population, income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991

Population Census, a measure of technical change in maize and region fixed effects. Robust standard errors

reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.9: Labor (direct) and Capital (indirect) Channels of
Structural Transformation

Outcome: Change in manufacturing employment share
Region/Industry: All Soy regions Non-soy regions L industries H industries

(1) (2) (3) (4) (5)

∆Asoy 0.015*** 0.020*** -0.002 0.014*** 0.001
[0.004] [0.005] [0.006] [0.003] [0.003]

∆ Exposure to capital inflows 0.023* 0.001 0.042 0.004 0.019*
[0.014] [0.016] [0.028] [0.010] [0.011]

Observations 540 385 155 540 540
R-squared 0.253 0.099 0.431 0.292 0.076

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit

of observation is the microregion. All the regressions include as controls the share of rural population, income per capita (in

logs), population density (in logs), literacy rate, all observed in the 1991 Population Census, a measure of technical change

in maize and region fixed effects. Observations are weighted by total employment in a given microregion in 2000. Robust

standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1..
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Table A.10: Effect of agricultural technical change on
manufacturing outcomes excluding industries linked to soy
Yearly Social Security Data (1998-2009) and Yearly Manufacturing

Survey Data (2000-2009)

Panel A

Outcome: Employment by manufacturing Capital by manufacturing
industry industry

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.124** -0.006 0.363*** 0.043
[0.050] [0.041] [0.118] [0.122]

Observations 5,640 5,640 3,001 2,942
R-squared 0.448 0.385 0.900 0.894
Region x Year FEs Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Panel B

Outcomes: L Industry Productivity H Industry Productivity

Measure: Log Value Added Log Value Added Log TFP Log Value Added Log Value Added Log TFP
per Worker per Wage Bill per Worker per Wage Bill

(1) (2) (3) (4) (5) (6)

Asoy -0.150** -0.135** -0.277*** -0.126* -0.118** -0.166*
[0.061] [0.054] [0.096] [0.072] [0.057] [0.088]

Observations 3,055 3,055 2,999 3,069 3,069 2,922
R-squared 0.770 0.568 0.611 0.797 0.633 0.588
Region x Year FEs Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Panel C

Outcomes: Wage Bill of Non-Innovation Workers Wage Bill of Innovation Workers

Industry: L Industry H Industry L Industry H Industry
(1) (2) (3) (4)

Asoy 0.153*** -0.005 0.034 -0.284*
[0.047] [0.049] [0.111] [0.167]

Observations 3,816 3,816 3,796 3,815
R-squared 0.983 0.987 0.935 0.927
Controls Yes Yes Yes Yes

Notes: This table replicates the results presented in Table 5 (Panel A), Table 6 (Panel B) and Table 7 (Panel

C) excluding sectors directly linked to soy via input-output linkages. Such sectors include: “Slaughtering

and preparation of meat and fish” (SNA code 1091), “Other food products” (SNA code 1093), “Fertilizers

and other inorganic chemicals” (2412, 2413, 2419) and “Refined petroleum” (232). Standard errors clustered

at the microregion level reported in parentheses. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A.11: Geographical spillovers of the effect of technical change in soy
on manufacturing outcomes

Outcomes: Log Value Added per Worker Log Value Added per Wage Bill Log TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Asoy -0.141*** -0.120* -0.120* -0.133*** -0.107* -0.108* -0.197** -0.207* -0.205*
[0.043] [0.067] [0.068] [0.040] [0.061] [0.062] [0.080] [0.117] [0.118]

Asoy N5 -0.028 -0.023 -0.034 -0.017 0.011 -0.016
[0.061] [0.092] [0.056] [0.079] [0.112] [0.131]

Asoy N5-N10 -0.006 -0.021 0.037
[0.071] [0.062] [0.119]

Observations 3,070 3,070 3,070 3,070 3,070 3,070 3,069 3,069 3,069
R-squared 0.876 0.876 0.876 0.735 0.735 0.735 0.544 0.544 0.544
Region x Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variables correspond to the total value added divided by employment (in logs), and total factor productivity for each type

of manufacturing industry in each microregion as a proxy for productivity. We use aggregate information from PIA at the microregion level for

the time period 2000-2009. We include only those microregions that have positive employment for all the years in the sample. Asoy is defined as

potential soy yield under high inputs for the years between 2003 and 2009, and the potential soy yield under low inputs for the years between 2000

and 2002. Asoy N5, Asoy N5-N10 and Asoy N10-20 are defined as the average potential soy yield for the five closest neighbors, the fifth to the

tenth closest neighbors and the tenth to twentieth closest neighbors of a particular microregion weighted by the inverse distance. Controls include

the share of rural population, income per capita (in logs), population density (in logs), literacy rate, all observed in 1991, all interacted with a

linear trend, a measure of technical change in maize and region year fixed effects. Standard errors clustered at the microregion level reported in

parentheses. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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B Appendix: data

B.1 Total Factor Productivity

In this Appendix, we describe how we compute the measure of total factor productivity

at the microregion-industry level that we use in the empirical analysis. Concretely, we

compute total factor productivity as the Solow residual of a Neoclassical Cobb-Douglas

production function that combines skilled labor, unskilled labor, and capital and features

constant returns to scale, i.e we start by assuming the following Cobb-Douglas value-added

function for each industry j in a microregion i in a period t,

V Aijt = ezijtS
αs,j

ijt U
αu,j

ijt K
1−αs,j−αu,j

ijt (4)

where i indexes microregions, j indexes industries and t refers to time. Notice that for

a given industry the production technology is the same across microregions and periods.

As is well known in the Growth Accounting literature, the growth rate in value added

can be decomposed into components associated to factor accumulation and technological

progress. Moreover, assuming industries are perfectly competitive and price takers in

factor markets, one can recover the parameters of the production function using data on

factor shares.

More precisely, we calibrate the factor shares for skilled and unskilled labor by comput-

ing, for each type of labor, the aggregate wage bill divided by total value added in Brazil

in 2000, 2001, and 2002 and then taking the average across years. Due to data limitations,

in order to compute the value-added shares for each type of labor as αs,j =
Ws,jSj

V Aj
and

αu,j =
Wu,jUj

V Aj
we need to take a two-step approach. First, we compute the labor share us-

ing data from PIA by aggregating the wage bill and value added at the national-industry

level. Since PIA does not differentiate between skilled and unskilled labor, in a sec-

ond stage we compute wage bill shares by type of labor in RAIS and, then, apportion the

labor share previously computed in PIA to skilled and unskilled labor. Therefore, in prac-

tice αs,j =
WRAIS

s,j SRAIS
j

WRAIS
s,j SRAIS

j +WRAIS
u,j URAIS

j

WPIA
j LPIA

j

V APIA
j

and αu,j =
WRAIS

u,j URAIS
j

WRAIS
s,j SRAIS

j +WRAIS
u,j URAIS

j

WPIA
j LPIA

j

V APIA
j

.

Then, we leverage the constant returns to scale assumption to compute the capital share

αk,j as 1−αs,j −αu,j. In Table B.12, we describe the factor shares for the manufacturing

L industry and the H industry.

Once we have computed the shares for the three types of factors, we compute log TFP

in microregion i, industry j and time t as

log TFPijt = log V Aijt − αkj log(ptKijt) − α1j log(L1,ijt) − α2j log(L2,ijt) (5)
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Table B.12: Factor Shares

L Industry H Industry
αs αu αk αs αu αk

0.129 0.055 0.816 0.177 0.052 0.771

B.2 Wages

To compute composition-adjusted wages we estimate the following Mincerian regres-

sions:

ln(wikt) = γkt +HiktβHt + εikt for t=2000, 2010 (6)

where ln(wijkt) is the log hourly wage of individual i, working in sector j in microregion

k at time t, and γkt is a microregion fixed effect, while Hijkt is a vector of individual

characteristics, which includes dummies for sector, skill group, age group, race, and all the

interactions between these variables. We estimate the previous Mincerian regression for

each microregion and for each broad sector separately. Also, we estimate these regressions

constraining the sample to either unskilled or skilled labor only, recovering the unit price

of labor in each microregion for each type of labor in both cross sections. Since the

existing literature documented how Brazil has experienced a considerable reduction in

its gender pay gap (Ferreira, Firpo, and Messina 2017), we estimate equation (6) only

for male workers. Observations are weighted by their corresponding population census

weight. Next, we use the microregion fixed effects estimated above as the unit price of

labor for a given skill group in a given microregion, and we compute the change in unit

prices of labor in microregion k between 2000 and 2010 as ∆γk = γk,2010 − γk,2000, which

gives us the change in the composition-adjusted wages at the microregion level.

19


	Introduction
	Empirical strategy and data
	Background Information on GE Soy
	Identification strategy
	Data sources
	A new measure of innovation across space

	Results
	Industrialization without productivity growth
	Unskilled-labor saving agricultural technical change
	Industrial specialization
	Manufacturing productivity
	Innovation
	The role of capital
	Robustness Tests

	Conclusions
	Figures and Tables
	Appendix: Figures and Tables
	Appendix: data
	Total Factor Productivity
	Wages




