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ABSTRACT

Policymakers are increasingly turning to insights gained from the experimental method as a 
means of informing public policies. Whether—and to what extent—insights from a research 
study scale to the level of the broader public is, in many situations, based on blind faith. This 
scale-up problem can lead to a vast waste of resources, a missed opportunity to improve people’s 
lives, and a diminution in the public’s trust in the scientific method’s ability to contribute to 
policymaking. This study provides a theoretical lens to deepen our understanding of the science 
of how to use science. Through a simple model, we highlight three elements of the scale-up 
problem: (1) when does evidence become actionable (appropriate statistical inference); (2) 
properties of the population; and (3) properties of the situation. We argue that until these three 
areas are fully understood and recognized by researchers and policymakers, the threats to 
scalability will render any scaling exercise as particularly vulnerable. In this way, our work 
represents a challenge to empiricists to estimate the nature and extent of how important the 
various threats to scalability are in practice, and to implement those in their original research.
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1. INTRODUCTION 

In the past several decades, experimental methods have evolved from an academic curiosum to a 
bona fide contributor to scientific knowledge in the social sciences. For their part, economists have 
generated data from nearly every corner of the world to lend insights into economic theories, such 
as how markets can be improved, and how public and private organizations can enhance their 
decision-making (Levitt and List, 2009). Indeed, in most governmental circles, evidence-based 
programs were once an aspirational goal, then became the gold standard, and now they are the 
expectation. Even in the most polarized political landscapes, evidence-based policymaking has 
received widespread bipartisan support.2  Such a development is entirely reasonable—what 
policymaker would argue that their policies should not be based on scientific evidence?  

This naturally leads to an important normative question: if policymakers demand scientific 
knowledge, then as academics how should we optimally supply our insights? In economics, the 
tradition of scholarship informing policy decisions arguably goes back to the father of modern 
economics, Adam Smith, whose most celebrated treatise tackled the issue of how to make people 
wealthier. Today, improving living standards is considered a core goal for governments, as 
economists use both theory and empirical work to inform policy. Indeed, data generation via the 
experimental method has grown to the point that policymakers now expect such wisdom to guide 
their program choice. Nevertheless, as experimentalists, we have focused almost exclusively on 
how best to generate data to explore intervention effects and disentangle mechanisms. This 
represented a logical first step, as experimentalists sought to provide deeper empirical insights and 
theoretical tests as part of the credibility revolution of the 1990s. 

Yet, what has been lacking is a scientific understanding of how to make optimal use of the 
scientific insights generated. In particular, how should we use the experimental insights for policy 
purposes? We denote this as the “scale-up” problem, which revolves around several important 
questions: do the research results scale to larger markets and settings? When we scale the 
intervention to broader and larger populations, should we expect the same level of efficacy that we 
observed in the small-scale setting? If not, then what are the important threats to scalability? What 
can the researcher do from the beginning of their scholarly pursuit to ensure eventual scalability? 

Providing answers to such questions is necessary because understanding when, and how, our 
experimental insights scale to the broader population is critical to ensuring a robust relationship 
between scientific research and policymaking. Without such an understanding, empirical research 
can quickly be undermined in the eyes of the policymaker, broader public, and the scientific 
community itself. Indeed, in modern economies the chain connecting initial research discovery to 
the ultimate policy enacted has as its most susceptible link an understanding of the science of how 
to use science for policy purposes.  

                                                 
2 For example, the foundations for evidence based policymaking act recently passed with broad bipartisan support in 
the U.S.: https://www.congress.gov/bill/115th-congress/house-bill/4174/text. 
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For implementation scientists, some of the issues that we discuss are timeworn. While the 
implementation science literature is deep, it typically revolves around examining the “voltage 
effect”—the conjecture that treatment effect sizes observed in research studies diminish 
substantially when the program is rolled out at larger scale (Kilbourne et al., 2007; Weiss et al., 
2014; Supplee and Meyer, 2015; Supplee and Metz, 2015; Gottfredson et al., 2015; Cheng et al., 
2017; Al-Ubaydli et al., 2017b). The literature has used this cautionary tale to stress that the voltage 
effect can severely undermine the optimism advertised in the original research. We suspect that 
this is one reason why policymakers are slow to adopt and implement the vast amount of science 
available.  

The implementation science literature primarily focuses on fidelity as a key to the voltage problem. 
For example, consider Head Start home visiting services, an early childhood intervention that 
found significant improvements in multiple child and parent outcomes in the original research 
study (Paulsell et. al, 2010). However, variation in quality of home visits was found at larger scale, 
with home visits for ‘at risk’ families involving more distractions and less time on child-focused 
activities, diminishing program effectiveness and increasing attrition (Raikes et al., 2006; 
Roggman et al., 2008). In this case, the voltage effect likely occurred because the scaled program 
did not include the fundamental core components that made the initial intervention promising. 

While fidelity of the original research study at scale is certainly important, the richness of the 
economic environment surrounding most of our interventions calls for a more holistic approach to 
studying the scale-up problem. In our previous research (Al-Ubaydli et al., 2017a), we classified 
the threats into three bins. First, statistical inference—when is evidence actionable? Second, 
representativeness of the experimental population—what incentives are in place for researchers to 
choose a representative subject pool? Third, representativeness of the experimental situation—
what situational features are important threats to scalability?3 

To lend insights into the statistical inference problem, we start with Maniadis et al. (2014), who 
present a simple model of the inferential problem faced by scholars interpreting initial findings in 
an area of research with multiple researchers (the interested reader should also see the insightful 
work of Ioannidis, 2005). Considering representativeness of the experimental population, the 
extent to which the sample that participates in a study is representative of the broader population 
is a question that is regularly posed by economists seeking to generalize their findings, whether 
their data are experimental or observational (Campbell and Stanley, 1963; Al-Ubaydli and List, 
2015; Deaton and Cartwright, 2018). While both statistical inference and representativeness of the 
population are important, the focus of much of the voltage effect literature and our previous work 
(Al-Ubaydli et al., 2017b) has been on representativeness of the experimental situation. This is 
because the experimental situation is quite rich and includes many important considerations.  

                                                 
3 Related excellent work in economics includes Banerjee et al. (2017), Mobarak et al. (2017), Muralidharan and 
Niehaus, (2017), and Davis et. al. (2017). 
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Several overarching insights for both policymakers and academics are highlighted by our 
theoretical framework. A first discussion point is that our model changes the discussion from one 
that exclusively focuses on the benefit side (voltage effect literature) to a broader metric that 
includes benefits and costs (BC hereafter). In practice, since in the US every proposed rulemaking 
that is economically significant has to undergo a formal BC analysis, this change makes sense 
because many policymakers are attracted to policies that they expect will provide the greatest 
benefit to the population within time, money, and resource constraints. As such our preferred 
metric is BC, and if that changes at scale, we classify this as a manifestation of the scale-up effect, 
because benefits and/or costs change as scale changes. 

A second discussion point for policymakers is detailing why this might happen, and present 
guidelines for a proactive approach policymakers and researchers can take to tackle this issue. In 
terms of the statistical inference bin, our model highlights that there can be a BC drop due to two 
inferential channels: false positives, and selection of the sampled population by the researcher. For 
the first channel, in the short run, the expected false positive problem becomes more severe as 
researcher competition intensifies, a result at odds with intuition. This is because while the results 
for any given researcher has error that is unconditionally zero on average, the same is not true of 
the program delivering the largest treatment effects. This leads to the bias strictly increasing in the 
number of scientists competing in the short run (this is similar to the intuition behind the winner’s 
curse in the auction literature).  

The second bin—selection of the research population—occurs in our model when the researcher 
strategically chooses populations that yield the largest treatment effects. This is a strategic effect 
due to, for example, publication bias (top journals prefer large treatment effects to small ones, 
ceteris paribus) or because the researcher is attempting to maximize sample size subject to a fixed 
budget constraint (a cost-savings, or experimental power effect). This latter relationship holds 
because experimental participants who expect relatively larger treatment effects may be more 
willing to select into the experiment, and therefore require less compensation. Our model therefore 
predicts that even in the absence of strategic effects due to publication bias, a BC drop emerges 
because scientists exploit heterogeneity as a means of saving money (also see Hunt Alcott’s work 
for a related example). 

Our first resolution to these effects is simple advice for policymakers: we need more precise 
statistical summaries and more frequent replication to help address inference problems. One 
approach to follow is stipulating a post-study probability of at least 0.95 before enacting policies. 
This will naturally lead to demand for a greater number of replications and a subsequent change 
in reward structure. In equilibrium, more dollars for replications from funding agencies would be 
a natural outcome—and one that we would regard as welcome. 

Viewed through the lens of our model, a positive externality of this increased demand for 
replications is that researchers will place more weight on replicability vis-à-vis cost savings, 
leading to a smaller strategically-induced bias, and a smaller BC drop in equilibrium. This helps 
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to reduce a threat to scalability because researchers can take preemptive steps to avoid 
inadvertently suffering from choosing a non-representative sample.  

In terms of our third bin, representativeness of the situation, several insights fall out of the theory. 
First, negative (positive) network effects and diseconomies (economies) of scale both cause a BC 
drop (increase). The network effect occurs through the benefit side whereas the economies of scale 
effect work through the supply side; on cost side considerations of scaling, please see the excellent 
work of Davis et al. (2017). Second, consonant with the literature, our model showcases that 
understanding fidelity holds great promise in deepening our knowledge of the threats to scalability 
(see, e.g., August et al., 2006; Raikes et al., 2006; Roggman et al., 2008; Hippel and Wagner, 
2018).  Unpacking our production technology reveals several predictions involving fidelity:  

• The core components, or ‘non-negotiables,’ of the intervention should be detailed before 
scaling to ensure program drift is minimized when implementation takes place. 

• Fidelity is increased if facilitators understand the “whys,” or the mechanism behind the 
intervention effect. 

• Technology should be used whenever possible, ceteris paribus. 
• It is optimal to have the original scientist play an important role in the actual roll out of the 

program at scale.4 

What is clear from the literature is that the empirical import of these, and many other important 
features of the environment, on the scale-up effect are ill-understood. This leads to a generic call 
to scholars: much like our experimental designs block on features of the population such as age, 
gender, and race, we should also block on situational features (i.e., scale, inputs, correct dosage, 
correct program, correct delivery, incentives, substitutes) to not only learn about the intervention, 
but to also learn about the effects of the environment on our results. In this manner, blocking on 
situations helps to determine scientifically the core program components when the program is 
scaled.  

A general lesson from our theoretical exercise is that the scholar should backward induct when 
setting up the original research plan to ensure accurate and swift transference of programs to scale. 
In this way, even in the case of the insoluble components of the scalability problem, such as 
upward-sloping supply curves for administrator quality, understanding the source allows scholars 
to acknowledge it upfront.  

A corollary for the policymaker is that when programs are actually scaled, we should take the 
correct approach to measuring efficacy of the actual implemented program at scale. We prefer 
using an experiment at scale to measure program effects, but if that is untenable the policymaker 
should ensure that another appropriate measurement approach (DID, regression discontinuity, or 

                                                 
4 The innovative work of Ashraf et al. (2017; 2018) using a “cogeneration of knowledge” model that they have 
implemented in Zambia to explore recruiting of nurses and teaching young women negotiating skills are illustrations 
of gains to this approach. 
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the like) can be used. In this manner, an empirical hierarchy for measuring the deliverables at scale 
should be a policy priority. Overall, for policymakers, this next step demands that they understand 
the interplay between the research environment and implementation needs necessary at scale and 
can pinpoint when the threats manifest themselves in the research study. We believe that this type 
of give and take between scholars and policymakers can yield less “government by guesswork” 
(Baron, 2018), and more cogeneration of knowledge (Ashraf et al., 2017; 2018).  

2. THE SCALING PROBLEM 

Before delving into our model, we begin by providing a brief set of examples that help to motivate 
the three overarching bins in our theory.  One interesting example of scaling too quickly is 
summarized in the work of Hitchcock et al. (2011).  Over a series of scientific replications of a 
Collaborative Strategic Reading (CSR) intervention in 5 different districts in Oklahoma and Texas, 
Hitchcock et al. (2011) find that overall the program has no discernible effect on reading and 
comprehension.  In essence, the CSR program that showed initial promising results was not 
effective in other states, providing stark indication of how broad replication before scaling up can 
prevent wide implementation of ineffective programs.  

In this same spirit, Banerjee et al. (2017) describe a study that found no effect of fortified salt on 
anemia rates, despite earlier programs that found fortified salt reduced anemia rates. They posit 
that this occurred because original studies specifically sought out adolescent women, and targeting 
adolescent women in earlier studies led to a measured treatment effect that did not manifest at a 
larger scale with a broader population.  More broadly, Heckman et al. (1998) discuss selection into 
field experiments, and find that the characteristics of subjects who participate can be distinctly 
different from those of subjects who do not participate.  All of this implies that the measured 
treatment effect of a small-scale program that compares treatment and control participants from a 
different population than the set of individuals who participate at scale will not accurately represent 
the true effect of the program when scaled.  

Concerning properties of the situation, August et al. (2006) find that when the situation changed 
from their initial field study to a broader study, families had reduced engagement in a conduct 
problems prevention program.  This decreased dosage at scale can importantly contribute to the 
lack of effect in a larger implementation.  Likewise, after promising initial results from the 
Tennessee STAR randomized state-wide class size reduction, Tennessee implemented Project 
Challenge to reduce class size in k-3 classrooms in the state’s poorest school districts (von Hippel 
and Wagner, 2018).  Following an influx of money designated to reducing class sizes, those poorest 
districts did not actually spend the money to decrease average class sizes.  Unsurprisingly, Project 
Challenge did not result in higher test scores.  Indeed, von Hippel and Wagner (2018) find that the 
average class size decreased from 26 to 25 and overall test scores did not improve.  Project 
Challenge is an example of the entirely wrong program being implemented at scale. 
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On the cost side, California’s statewide implementation of smaller class sizes demonstrated 
diseconomies of scale in implementation costs (Achilles et al., 1993).  Jepsen and Rivkin (2009) 
examine results of the implementation that forced the state of California to hire from a larger 
teacher labor market than ever before. To achieve the smaller class sizes, California could have 
incurred greater costs to maintain similar-quality teachers or continue to pay a similar amount but 
for lower quality teachers.  They find that “the increase in the share of teachers with neither prior 
experience nor full certification dampened the benefits of smaller classes, particularly in schools 
with high shares of economically disadvantaged, minority students.”  When the state of California 
expanded teacher hiring, they hired less experienced teachers, and the large-scale outcomes of the 
statewide class size reduction were significantly smaller than the original Tennessee STAR 
findings.   

Alternatively, when exploring scaling up School-Wide Positive Behavioral Interventions and 
Supports (SWPBIS), Horner et al (2013) explicitly acknowledge that “as states gained local 
training, coaching, and evaluation capacity, the cost of SWPBIS implementation became less 
expensive per school and more feasible for scaling up on a geographically distributed level.” As 
the program expanded, costs decreased, or displayed economies of scale.  Clearly, on the cost side 
features of the situation need to be understood to accurately predict whether there will be cost side 
advantages or disadvantages at scale.   

The scaling issue has not gone unnoticed by policymakers, as President Clinton observed that 
“Nearly every problem has been solved by someone, somewhere. The frustration is that “we can't 
seem to replicate [those solutions] anywhere else.”  Echoing this sentiment on the cost side, Larry 
Summers quipped:  “When we use evidence from small interventions to advocate significantly 
greater public expenditure, we must recognize that we will run into some combination of 
diminishing returns and higher prices as we scale up programs. It is difficult to quantify this 
decrease in benefits and increase in costs, but almost certainly, large-scale programs will have 
lower rates of return than those measured for small-scale programs (see Davis et al., 2017, for 
these and other quotes). 

2.1. THE MODEL  

Our model revolves around three main players. The government desires to implement programs 
that work at scale considering both benefits and costs (BC).5 Scientists desire to report both 
replicable findings and important treatment effects. The populace maximizes utility, but we focus 
on experimental participation for simplicity. With this backdrop, there is a new, proposed 
intervention, which we refer to as the “program.” Scientists are studying the program, while the 
government is following the research findings with an eye on implementing the program. The 
                                                 
5 The model can easily be extended to consider the problem of scaling within firms, for which the problem would then 
revolve around the scale up problem within firms, and non-profit and for profit firms (see, e.g., Lange et al., 2007; 
Hong  et al., 2018) would explore scaling.   
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program leads to a direct per capita treatment effect 𝑇𝑇, and it has a per capita cost 𝐶𝐶. The per capita 
net treatment effect, which measures the program’s impact net of costs, is: 

𝜏𝜏 = 𝑇𝑇 − 𝐶𝐶 

What follows is a simple model designed to explore the scale up effect, that is, changes in the 
magnitude of 𝜏𝜏 when moving from the research setting to population-wide implementation. 

Let 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁𝐼𝐼} denote the member of the population. Let 𝑆𝑆𝑇𝑇 ⊆ {1,2, … ,𝑁𝑁𝐼𝐼} be a set denoting 
who receives treatment, and let 𝑛𝑛𝑇𝑇 = |𝑆𝑆𝑇𝑇|, the number of people treated. Let 𝑒𝑒 denote the effort 
exerted to ensure that the treatment is administered correctly, and let 𝑞𝑞 denote the resultant 
administration quality. 

We define the direct treatment effect of the program on person 𝑖𝑖 as: 

𝑇𝑇𝑖𝑖 = 𝑓𝑓𝑇𝑇�𝑤𝑤(𝑛𝑛𝑇𝑇), 𝑏𝑏(𝑛𝑛𝑇𝑇), 𝑞𝑞(𝑒𝑒,𝑛𝑛𝑇𝑇)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 

𝑓𝑓𝑇𝑇�𝑤𝑤(𝑛𝑛𝑇𝑇),𝑏𝑏(𝑛𝑛𝑇𝑇),𝑞𝑞(𝑒𝑒,𝑛𝑛𝑇𝑇)� > 0,𝑇𝑇�~�𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇�
2�,𝛼𝛼𝑋𝑋 ≥ 0,𝑋𝑋𝑖𝑖~(0,𝜎𝜎𝑋𝑋2) 

Therefore, the direct treatment effect is heterogeneous. 𝑇𝑇� is a common component of the direct 
treatment effect, the effect of which is mediated by a strictly positive non-stochastic function 𝑓𝑓𝑇𝑇, 
whose arguments we explain below; and 𝑋𝑋𝑖𝑖~(0,𝜎𝜎𝑋𝑋2) is an IID person-specific component, the 
effect of which is mediated by a weakly positive non-stochastic parameter 𝛼𝛼𝑋𝑋. We assume that 
there is at least one person in the population for whom the idiosyncratic component of the treatment 
effect is zero: ∃ 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁𝐼𝐼}:𝑋𝑋𝑖𝑖 = 0. We normalize this person to being the first participant, 
𝑖𝑖 = 1. 

We further assume that 𝑇𝑇� and 𝑋𝑋𝑖𝑖 are mutually independent for all 𝑖𝑖. The function 𝑓𝑓𝑇𝑇 has three 
arguments: within-treatment spillovers (𝑤𝑤), between-treatment spillovers (𝑏𝑏), and administration 
quality (𝑞𝑞). They affect the common component of the direct treatment effect as follows: 

𝑓𝑓𝑤𝑤𝑇𝑇 > 0, 𝑓𝑓𝑏𝑏𝑇𝑇 < 0, 𝑓𝑓𝑞𝑞𝑇𝑇 > 0 

Each argument is a function of the number of people treated, 𝑛𝑛𝑇𝑇. 

Within-treatment spillovers refer to positive (𝑤𝑤′ > 0) or negative (𝑤𝑤′ < 0) spillover effects 
among the treated group. For example, mobile phones have positive network externalities, 
meaning that the value of possessing a phone increases with the number of users. Thus, when the 
intervention is assigning a mobile phone, and the outcome variable is some measure of its utility 
to the user, increasing the number treated leads to a larger common direct treatment effect. This 
would suggest that the research study under-estimates the treatment effect at scale.  

Between-treatment spillovers refer to positive (𝑏𝑏′ > 0) or negative (𝑏𝑏′ < 0) spillover effects from 
the treated group to the control group, noting that they affect 𝑓𝑓𝑇𝑇 negatively. For example, List et 
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al. (2018) finds that when evaluating their pre-K intervention, children in the control group who 
live in the same neighborhood with many treated children have better outcomes than control 
children who live in neighborhoods with fewer treated children. Thus, all else equal, when taken 
to scale, the pre-K program should be expected to have larger treatment effects than those observed 
in the research study.  

Administration quality refers to the extent of adherence to the prescribed treatment plan, which 
includes dosage fidelity. Similar to within- and between-treatment effects, it is a function of the 
number of people treated, 𝑛𝑛𝑇𝑇; however, it is also a function of the effort exerted to deliver 
administrative quality, 𝑒𝑒. Crucially, as the number of treated rises, the concomitant rise in 
implementation complexity generates inevitable, organic, random errors. This leads to an 
attenuation of the common component of the direct treatment effect, in a similar manner to the 
effect of measurement error in a conventional regression. 

Key Assumption 1: As sample size increases, the common component of the direct treatment 
effect weakly decreases due to a decline in administration quality, 𝑞𝑞𝑛𝑛𝑇𝑇(𝑒𝑒,𝑛𝑛𝑇𝑇) ≤ 0,𝑓𝑓𝑞𝑞𝑇𝑇(𝑤𝑤, 𝑏𝑏, 𝑞𝑞) >
0. 

We further elaborate on these three effects below. 

2.2. PROGRAM COSTS 

Program costs are divided into participation costs and implementation costs. 

𝐶𝐶 = 𝑃𝑃 + 𝑀𝑀 

The former refers to the cost of inducing people to participate in, and comply with, the program; 
while the latter is a portmanteau for all remaining costs, including material and administrative 
costs. 

Starting with the participation costs, the cost of compelling person 𝑖𝑖 to enroll and comply is: 

𝑃𝑃𝑖𝑖 = 𝑓𝑓𝑃𝑃(𝑛𝑛𝑇𝑇) + 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) 

𝑓𝑓𝑃𝑃(𝑛𝑛𝑇𝑇) ≥ 0,𝛼𝛼𝑃𝑃 ≥ 0,𝐸𝐸[𝑝𝑝(𝑋𝑋𝑖𝑖)] = 𝑝𝑝(𝑋𝑋1) = 0 

Thus, the heterogeneous participation cost has a fixed, common component 𝑓𝑓𝑃𝑃(𝑛𝑛𝑇𝑇), where 𝑓𝑓𝑃𝑃 is 
a non-stochastic function of the number of people being treated. This captures the possibility of 
economies of scale �𝑓𝑓𝑛𝑛𝑇𝑇

𝑃𝑃 < 0� or diseconomies of scale �𝑓𝑓𝑛𝑛𝑇𝑇
𝑃𝑃 > 0� in participation costs. 

There is also an idiosyncratic component of participation costs, 𝑝𝑝(𝑋𝑋𝑖𝑖), which is a function of the 
idiosyncratic direct treatment effect. 
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Key Assumption 2: Idiosyncratic participation costs fall as the idiosyncratic direct treatment 
effect rises, 𝑝𝑝′(𝑋𝑋𝑖𝑖) < 0. 

This assumption reflects the idea that convincing people to participate in the program, and ensuring 
their compliance, is easier/cheaper the larger the expected treatment effect. That is, the larger the 
expected benefits that accrue to that individual. For example, when conducting a trial of the effect 
of a cancer drug, in principle, getting people who expect the treatment will work to enroll will be 
easier than getting people to enroll who expect the drug will have minimal effects. 

The medical literature features significant support for this assumption. Meta studies of recruitment 
confirm that those who stand to benefit most from a medical treatment are more likely to participate 
in trials. For example this disparity is particularly acute in HIV, where confidentiality concerns 
make recruitment very difficult:  those who have reached a stage where they must do something 
to deal with an advanced stage of the disease, and who are therefore potentially the biggest 
beneficiaries exhibit much greater readiness to participate (Lovato et al., 1997). In the review due 
to Cooper et al. (2015), recruitment for medical treatments for type 2 diabetes was significantly 
easier than for prevention interventions, due to the size, tangibility, and immediacy of the effects 
of the former. While factors such as altruism and the desire to save money are important 
determinants of an individual’s readiness to participate in a medical trial, surveys also indicate that 
the perceived benefits are critical, often because prospective participants assume that the medical 
treatment in a medical trial is of higher quality than conventional, non-experimental treatment 
(Walsh and Sheridan, 2016). 

Subsumed within this assumption is the issue of attrition: just as people with higher treatment 
effects are more likely to participate at the start, they are also more likely to maintain their 
participation until the experiment’s conclusion. We do not model attrition explicitly, simply 
because adding it does not yield significant insights beyond those we already offer below. 

Without loss of generality, we normalize the expectation of the idiosyncratic term to zero. The 
non-stochastic parameter 𝛼𝛼𝑃𝑃 captures the importance of the idiosyncratic component. 

Turning to the non-participation costs, the implementation cost for 𝑖𝑖 is: 

𝑀𝑀𝑖𝑖 = 𝑓𝑓𝑀𝑀(𝑒𝑒,𝑛𝑛𝑇𝑇) 

The implementation cost depends upon the effort exerted in the pursuit of administrative quality, 
𝑓𝑓𝑒𝑒𝑀𝑀 > 0. The function 𝑓𝑓𝑀𝑀 also captures the possibility of economies of scale �𝑓𝑓𝑛𝑛𝑇𝑇

𝑀𝑀 < 0� or 
diseconomies of scale �𝑓𝑓𝑛𝑛𝑇𝑇

𝑀𝑀 > 0� in implementation costs. 
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2.3. THE NET TREATMENT EFFECT 

In light of the above, we can express the net treatment effect for person 𝑖𝑖, which is the direct 
treatment effect netting out implementation costs, as follows: 

𝜏𝜏𝑖𝑖 = 𝑓𝑓𝑇𝑇�𝑤𝑤(𝑛𝑛𝑇𝑇), 𝑏𝑏(𝑛𝑛𝑇𝑇), 𝑞𝑞(𝑒𝑒,𝑛𝑛𝑇𝑇)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 − 𝑓𝑓𝑃𝑃(𝑛𝑛𝑇𝑇) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀(𝑒𝑒,𝑛𝑛𝑇𝑇) 

For the purposes of this model, this difference structure is our chosen form of BC.  Although more 
generally, we do not take a stand on the form of the BC. We have observed in practice 
policymakers using the simple BC difference and the BC ratio (the ratio of a program’s benefits 
to its costs). A higher BC difference or ratio indicates a more cost-effective program (Davis et al., 
2017).  

2.4. ESTIMATION 

A scientist conducts an experiment on a participant 𝑖𝑖, and obtains an estimate of the direct 
treatment effect: 

𝑇𝑇�𝑖𝑖 = 𝑇𝑇𝑖𝑖 + 𝜀𝜀𝑖𝑖 

𝜀𝜀𝑖𝑖~(𝜇𝜇𝜀𝜀 ,𝜎𝜎𝜀𝜀2) 

Where 𝜀𝜀𝑖𝑖 is estimation error (we discuss the statistical sources of estimation error below). 

Key Assumption 3: A scientist conducting an experiment on participant 𝑖𝑖 observes the 
idiosyncratic component of the direct treatment effect, 𝑋𝑋𝑖𝑖. 

This assumption captures the idea that scientists conducting a study have access to more detailed 
information regarding the unique attributes of the participants, compared to other scientists and 
other parties who were not involved in the experiment. 

Given the non-stochasticity of the functions and parameters, this can be used to estimate the net 
treatment effect: 

𝜏̂𝜏𝑖𝑖 = 𝑇𝑇�𝑖𝑖 − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀(𝑒𝑒, 1) 

= 𝑓𝑓𝑇𝑇�𝑤𝑤(1),𝑏𝑏(1), 𝑞𝑞(𝑒𝑒1, 1)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀(𝑒𝑒1, 1) 

2.5. DEFINING THE SCALING PROBLEM 

If the program is implemented population wide, then conditional on the homogenous component 
of the direct treatment effect, 𝑇𝑇�, the net treatment effect for 𝑖𝑖 will be: 
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𝜏𝜏𝑖𝑖 = 𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼),𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼��𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 − 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� 

And on average, this will equal: 

𝐸𝐸(𝜏𝜏𝑖𝑖) = 𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼), 𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼�� 𝑇𝑇� − 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� 

If this average is compared to the scientist’s estimate from participant 𝑖𝑖, denoted 𝜏̂𝜏𝑖𝑖, then the 
difference will be: 

Δ = 𝐸𝐸(𝜏𝜏𝑖𝑖) − 𝜏̂𝜏𝑖𝑖 

The scaling problem refers to the possibility that Δ is non-zero. If we decompose it into its 
constituent parts, we have: 

Δ = �𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼),𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼��𝑇𝑇� − 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼��

− �𝑓𝑓𝑇𝑇�𝑤𝑤(1), 𝑏𝑏(1),𝑞𝑞(𝑒𝑒1, 1)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀(𝑒𝑒1, 1)� 

= ��𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼), 𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼�� − 𝑓𝑓𝑇𝑇�𝑤𝑤(1),𝑏𝑏(1), 𝑞𝑞(𝑒𝑒1, 1)�� 𝑇𝑇�������������������������������������������
𝛿𝛿1

− {𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖}���
𝛿𝛿2

− {𝜀𝜀𝑖𝑖}�
𝛿𝛿3

− {𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑃𝑃(1)}�����������
𝛿𝛿4

+ {𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖)}�������
𝛿𝛿5

− �𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� − 𝑓𝑓𝑀𝑀(𝑒𝑒1, 1)������������������
𝛿𝛿6

 

Therefore, there are six possible sources of the scale-up problem: 

1. Spillover and administration quality impacts direct treatment effects. 
2. The participant being unrepresentative of the population in terms of direct treatment effect. 
3. The statistical estimation error. 
4. Economies/diseconomies of scale in participation costs. 
5. The participant being unrepresentative of the population in terms of participation cost. 
6. Economies/diseconomies of scale in implementation costs. 

Note that they may cancel each other out, as the sign of each component is indeterminate ex ante. 
This highlights that the pessimism within the scaling literature might be correct, and these terms 
sum to make Δ negative. Or, it is ill-conceived and too pessimistic because it tends to focus on one 
slice of the scaling problem and the sum actually makes Δ positive. Within the equation for Δ, 
Components 1, 4, and 6 are non-stochastic sources of the scaling problem, while 2, 3, and 5 are 
stochastic sources. We analyze each in turn to provide a deeper intuition of the causes and 
consequences of each. 

We use the term “voltage effect” to refer to the scaling effect arising exclusively in the benefit 
(treatment effect) side of the equation: 

Δ𝑉𝑉 = 𝛿𝛿1 + 𝛿𝛿2 + 𝛿𝛿3 
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As aforementioned, the implementation science literature often discusses voltage drop phenomena, 
whereby observed treatment effects shrink when programs are scaled from the research setting to 
the population at large. This is sometimes referred to as the scaling effect. To avoid confusion 
between the voltage effect, and the gross scaling effect, which also considers the cost side of the 
equation according to our definition, we use a new term, “scale-up” effect, which refers to changes 
in the net treatment effect resulting from changes in scale. We use it for the remainder of this paper, 
hereby suspending our use of the term scaling effect/problem. 

2.6. SCALE-UP EFFECT TAXONOMY 

As mentioned in the introduction, in our previous work (Al-Ubaydli et al., 2017a), we identified 
three sources of the scale-up effect: statistical inference; representativeness of the experimental 
population; and representativeness of the experimental situation. The six sources identified in 
section 2.5 are not perfectly nested in the tripartite classification, because some of the six sources 
cut across the three categories. However, both classifications are exhaustive. 

For the remainder of this paper, we develop a new classification based on an analysis of the model. 
In particular, we distinguish between two primary sources of the scale-up effect: non-stochastic 
sources, which reflect structural and deterministic properties of production functions; and 
stochastic sources, which cover statistical selection effects and inferential errors. 

3. NON-STOCHASTIC SOURCES OF THE SCALE-UP EFFECT 

3.1. SPILLOVERS AND ADMINISTRATION QUALITY 
IN THE DIRECT TREATMENT EFFECT 

The first component in Δ𝑉𝑉 is composed of three subcomponents, reflecting spillover and 
administrative quality effects. 

𝛿𝛿1 = �𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼), 𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼�� − 𝑓𝑓𝑇𝑇�𝑤𝑤(1),𝑏𝑏(1), 𝑞𝑞(𝑒𝑒1, 1)�� 𝑇𝑇� 

The first subcomponent is the within-treatment spillover effect: 

𝑤𝑤(𝑁𝑁𝐼𝐼) ≠ 𝑤𝑤(1),𝑓𝑓𝑤𝑤𝑇𝑇 > 0 

Some interventions, such as mobile telephone usage, or literacy, have strong positive spillovers: 
treating people creates a positive treatment externality on the remainder of the population. One 
could imagine that early tests of the effects of the use of Facebook could produce quite small 
treatment effects but as a greater number of people were enrolled in treatment the direct treatment 
effect increased substantially.  
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Others suffer from the reverse, especially those that involve ordinal-based payoffs. For example, 
if the intervention under investigation involves assisting a student in obtaining higher school 
grades, or an airline decreasing its check-in time, part of the treatment effect may be a ranking 
effect that does not replicate as a larger number of people is treated: only 5% of students can be in 
the top 5% of students, and only one airline can have the fastest check-in time, which it can use in 
an advertising campaign. 

The second subcomponent is the between-treatment spillover effect. 

𝑏𝑏(𝑁𝑁𝐼𝐼) ≠ 𝑏𝑏(1),𝑓𝑓𝑏𝑏𝑇𝑇 < 0 

In some interventions, treating people creates a spillover effect on the untreated. This can be 
positive—consider the case of a business ethics course where enrollment is assigned to a random 
subset of a company’s employees. Those who do not enroll are still affected positively by the 
presence of the enrollees, who act as models for them: the greater the number of enrollees (treated 
group), the smaller the implied treatment effect when comparing treated to untreated in the 
research study. One recent example of the potential import of this effect is found in List et al. 
(2018), who report that in their measurement of the effects of a pre-K intervention, control children 
can gain more than 0.5 standard deviations in cognitive test scores because of treated neighbors.  

Alternatively, it could be negative: consider an intervention that improves the school performance 
of students in a given class. The control group in the same class may, upon seeing an initial 
improvement in the performance of the treated group, feel demoralized, inducing a further 
deterioration in their performance, and accentuating the treatment effect. 

In both within- and between-treatment spillover effects, we perceive no general rules of thumb 
regarding which is more likely. We merely note that it can cause a non-zero scale-up effect and 
empirical measurement of such impacts is important for future research. 

In addition to within- and between-treatment spillover effects, there is also the possibility of 
spillovers from the treated group to people who are not even participating in the experiment, i.e., 
people beyond the control group. For example, if a small-scale natural field experiment in an 
Indian village involves giving the participants large amounts of money that exceed daily wages by 
several orders of magnitude, then the village’s macroeconomy may fundamentally change because 
of the experiment. If these changes then feedback on the treatment and control groups, then the 
result can be further scale-up effects with an indeterminate sign. For example, inflation from the 
monetary expansion might diminish the real increase in income experienced by those treated. We 
do not explicitly model this class of spillover effect; instead, we merely alert readers to its existence 
(the interested reader should see Banerjee et al. (2017), Muralidharan and Niehaus, (2017), and 
the citations therein).  

The third subcomponent is the administrative quality effect: 
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𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� ≠ 𝑞𝑞(𝑒𝑒1, 1),𝑓𝑓𝑞𝑞𝑇𝑇 > 0 

Administering a treatment because more difficult as scale increases, meaning that when increasing 
the scale, project administrators must exert higher levels of per capita administrative effort to 
maintain quality. When this does not occur, the treatment effect will shrink: 

𝑒𝑒𝑁𝑁𝐼𝐼 = 𝑒𝑒1 ⇒ 𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� ≤ 𝑞𝑞(𝑒𝑒1, 1) 

This reflects the organic rise in complexity of implementation that results from increasing scale, 
even when all material and human inputs are increased in proportion. They are a form of 
managerial diseconomies of scale that is reflected in the quality of the output resulting from the 
inputs. 

One frequently-encountered manifestation is political problems, especially when a novel 
intervention is being implemented. The prevailing regime brings with it significant entrenched 
interests, which may oppose a novel intervention on the basis of financial interests, or simply 
because of institutional inertia. Circumventing the barriers erected by opponents in a small-scale 
experiment is trivial. Yet, at a larger scale, this may require a significant financial outlay, 
corresponding to diseconomies of scale. Or, in the absence of those outlays (constant per capita 
administrative effort exerted), the treatment effect will be denuded by counterattacking bureaucrats 
and other vested interests. 

Notably, the effort that researchers and overseers exert when trying to maintain fidelity sometimes 
reflects their taking the time to explain to newer administrators the reasoning behind the 
intervention. There is a large literature showing that people are more likely to adhere to instructions 
when they understand their purpose, and when those issuing the instructions take the time to ensure 
that people buy in. A good illustration is patient-adherence to medication—when physicians want 
to maximize the likelihood that their patients take drugs as prescribed, one of the best practices 
that is grounded in rigorous experimentation is to explain the way in which the drug works to the 
patient via face-to-face meetings, and to explain the importance of following the instructions 
(Zullig et al., 2013). 

3.2. SCALE-UP EFFECTS IN PARTICIPATION COSTS 

The fourth component in Δ reflects the possibility of increasing/decreasing returns to scale in the 
cost of securing participants compared to the experiment conducted by the scientist. 

𝛿𝛿4 = 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑃𝑃(1) 

A key cost advantage that governments have in this domain is that they can mandate programs, 
making participation a requirement. Salient examples include attending primary and secondary 
education, or wearing a seatbelt while driving. 
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In addition to the weight of legal backing, operating large programs can radically reduce 
awareness/marketing costs per unit, either for technological reasons (using a television commercial 
or a government press release has a low per unit cost), or because of positive spillovers, as the 
more that people talk about a program, the more others become aware of it. Further, monitoring 
and compliance costs per unit can decline as scale rises, again primarily as the result of 
technological factors. 

However, participation/compliance costs in general may also suffer from diseconomies of scale 
for the usual laundry list of reasons. For example, at small scales, word-of-mouth can be a cost-
free way of generating awareness or marketing a program, but it is insufficient at higher scales. 
Moreover, scientists operating in academic environments can often secure participants and can 
monitor compliance at costs that are unusually low, which we expand upon in the next section on 
scale effects in implementation costs. 

More generally, we do not take a definitive stance on whether economies or diseconomies of scale 
dominate in participation costs, merely noting that both possibilities exist. 

3.3. SCALE-UP EFFECTS IN IMPLEMENTATION COSTS 

The sixth component in Δ reflects the possibility of increasing/decreasing returns to scale in the 
cost of implementing the program compared to the experiment conducted by the scientist. 

𝛿𝛿6 = 𝑓𝑓𝑀𝑀(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑀𝑀(1) 

Decreasing returns to scale can sometimes reflect the unusually low costs that scientists can secure 
due to the unique settings of the academy. Alternatively, many critical inputs may appear “free” 
according to a scientist’s accounts when in fact that they are covered by other sources outside the 
experimental budget. 

An important example is the labor cost of the scientist and research assistants, which will likely 
not appear in the accounts. Graduate students may often operate as pro bono project managers, 
since their compensation is a combination of their student stipend and the “reward” of authorship 
on the resulting paper. Moreover, these graduate students are uniquely qualified in that they are 
highly intelligent, highly obedient, and fundamentally believe in the mission. 

When scaling up, securing implementation staff as competent as the graduate students will likely 
require significant financial outlays (increasing marginal cost), which is a significant source of 
diseconomies of scale. The same is potentially true of other key inputs that scientists might be able 
to secure at a cut-price rate due to the infrastructure that they can access for free as scientists, such 
as access to rooms/offices in the university, and the ability to meet with important managers due 
to personal relationships. 
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Alternatively, conventional economies of scale may apply too, especially those relating to 
procuring inputs in bulk, or more efficient production processes due to scale. For example, when 
conducting a mail drive for charitable donations, at a small scale, manual labor will be used, and 
materials will be purchased at retail rates. At a larger scale, automatic envelope-stuffers can be 
purchased, and wholesale prices can be accessed for materials. 

4. STOCHASTIC SOURCES OF THE SCALE-UP EFFECT 

We identified three stochastic sources of the scale-up problem in Δ: heterogeneity in the direct 
treatment effect, statistical estimation error, and heterogeneity in the participation costs. To 
understand these mechanisms, we build a simple model of the behavior of scientists, academic 
journals, and the government.  

4.1. PLAYERS 

We begin by introducing the preferences/goals of each the three main players, before analyzing 
predicted behavior. 

4.1.1. SCIENTISTS 

Let 𝑗𝑗 ∈ �1,2, … ,𝑁𝑁𝐽𝐽� denote the scientist. As above, scientists recruit participants to run 
experiments. They then estimate the net treatment effect and report it to the world via academic 
journals. If called upon, they then assist the government in the implementation of the program. 

Let 𝑖𝑖(𝑗𝑗) denote the participant that scientist 𝑗𝑗 recruits for an experiment. As above, an experiment 
on participant 𝑖𝑖 yields an estimate of the direct treatment effect: 

𝑇𝑇�𝑖𝑖(𝑗𝑗) = 𝑇𝑇𝑖𝑖(𝑗𝑗) + 𝜀𝜀𝑖𝑖(𝑗𝑗) 

𝜀𝜀𝑖𝑖(𝑗𝑗)~(𝜇𝜇𝜀𝜀 ,𝜎𝜎𝜀𝜀2) 

Where 𝜀𝜀𝑖𝑖(𝑗𝑗) is estimation error. As mentioned above in key assumption 3, when scientist 𝑗𝑗 selects 
participant 𝑖𝑖, they know their idiosyncratic direct treatment effect, 𝑋𝑋𝑖𝑖(𝑗𝑗). Therefore, the cost to the 
scientist of running an experiment is: 

𝐶𝐶 = 𝑓𝑓𝑃𝑃(1) + 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� + 𝑓𝑓𝑀𝑀(𝑒̅𝑒, 1) 

Where we have fixed administration quality effort at 𝑒𝑒 = 𝑒̅𝑒. The reported net treatment effect will 
be: 

𝜏̂𝜏𝑖𝑖(𝑗𝑗) = 𝑇𝑇�𝑖𝑖(𝑗𝑗) − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� − 𝑓𝑓𝑀𝑀(𝑒̅𝑒, 1) 
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= 𝑓𝑓𝑇𝑇�𝑤𝑤(1),𝑏𝑏(1), 𝑞𝑞(𝑒̅𝑒, 1)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) + 𝜀𝜀𝑖𝑖 − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� − 𝑓𝑓𝑀𝑀(𝑒̅𝑒, 1) 

In many cases, scientists explore ways in which to cut costs where possible due to constraints on 
research budgets. Money saved on a given experiment can be used for running other experiments, 
so the opportunity cost of research funds can be quite high. 

Key Assumption 4: While the idiosyncratic direct treatment effect 𝑋𝑋𝑖𝑖(𝑗𝑗) is observable to a scientist 
running an experiment, it is unobservable to those who see and consume the scientist’s reported 
net treatment effect. 

Assumption 4 complements Assumption 3 by adding asymmetric information to the problem.  

After doing the research, we assume that reporting results yields three distinct benefits to a 
scientist. The first is a knowledge-production benefit: a reward for the scientist’s contribution to 
human knowledge. 

Key Assumption 5: Ceteris paribus, the scientific community values replicable findings. 

𝜋𝜋𝐾𝐾 = 𝐾𝐾� − 𝛼𝛼𝐾𝐾�𝜏̂𝜏𝑖𝑖(𝑗𝑗) − 𝜏̂𝜏1�
2
 

𝐾𝐾� > 0,𝛼𝛼𝐾𝐾 ≥ 0 

𝐾𝐾� represents the scientist’s reward, while the latter term is a penalty for non-replicability of 
findings. Future scientists investigating the original scientist’s findings will re-run the experiment 
with 𝑖𝑖 = 1, the person for whom 𝑋𝑋𝑖𝑖 = 0 (equivalently, imagine picking 𝑋𝑋𝑖𝑖 randomly and 
performing many replications), and compare their estimated net treatment effect with the figure 
originally reported by the scientist. The parameter 𝛼𝛼𝐾𝐾 captures the strength of the penalty for 
imperfect replicability, a penalty that can be avoided by running the original experiment on 𝑖𝑖 = 1. 

The second benefit accruing to the scientist from reporting estimated net treatment effects is the 
prestige from reporting dramatic and eye-catching results. 

Key Assumption 6: Ceteris paribus, the scientific community values experiments that report net 
estimated treatment effects that are large in absolute value. 

𝜋𝜋𝐿𝐿 = 𝛼𝛼𝐿𝐿𝑙𝑙�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� 

𝛼𝛼𝐿𝐿 ≥ 0, 𝜏̂𝜏𝑖𝑖(𝑗𝑗) > 0 ⇒ 𝑙𝑙′ > 0, 𝜏̂𝜏𝑖𝑖(𝑗𝑗) < 0 ⇒ 𝑙𝑙′ < 0 

The function 𝑙𝑙 captures the reward for reporting large net treatment effects, while the parameter 
𝛼𝛼𝐿𝐿 measures the importance of such rewards. The key assumption is based on the well-documented 
bias that both professional academics and laypeople suffer, whereby they regard large net 
treatment effects as more noteworthy. We expand upon this point below when we discuss scientific 
journals. 
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The third and final benefit that a scientist reaps when reporting estimated net treatment effects 
relates to the government’s response. 

Key Assumption 7: Upon observing a scientist’s reported estimated net treatment effect, if the 
government decides to implement the program at large scale (the level of the population), then the 
scientist earns material and psychological benefits. 

𝜋𝜋𝐺𝐺 = 𝛼𝛼𝐺𝐺𝑔𝑔�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� 

𝛼𝛼𝐺𝐺 ≥ 0,𝑔𝑔 ∈ [0,1] 

Where the function 𝑔𝑔 represents the probability that the program is adopted at scale by the 
government, as a function of the reported estimated net treatment effect. We discuss the nature of 
this function when we discuss the government. Parameter 𝛼𝛼𝐺𝐺  reflects the importance of this reward 
from the scientist’s perspective. 

Thus, a scientist’s objective function is: 

𝑈𝑈𝑆𝑆 = 𝜋𝜋𝐾𝐾 + 𝜋𝜋𝐿𝐿 + 𝜋𝜋𝐺𝐺 − 𝐶𝐶 

= 𝐾𝐾� − 𝛼𝛼𝐾𝐾�𝜏̂𝜏𝑖𝑖(𝑗𝑗) − 𝜏̂𝜏1�
2

+ 𝛼𝛼𝐿𝐿𝑙𝑙�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� + 𝛼𝛼𝐺𝐺𝑔𝑔�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� − �𝑓𝑓𝑃𝑃(1) + 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� + 𝑓𝑓𝑀𝑀(𝑒̅𝑒, 1)� 

Therefore, with this maximization problem in mind, the scientist selects the participant 𝑖𝑖 to realize 
the following potentially conflicting goals: 

1. Maximizing replicability when scientists compare to the situation where 𝑋𝑋𝑖𝑖 = 0. 
2. Maximizing the estimated net treatment effect to make results eye-catching. 
3. Maximizing the likelihood that the government implements the program at scale. 
4. Minimizing the cost of experiment. 

Note that despite goal (4), for the simplicity of exposition, we are exogenizing the scientist’s effort 
decision regarding administration quality. A more sophisticated model would endogenize it, and, 
in the event that it is partially unobservable, this may lead to additional scale-up effects. We hope 
that future research takes on this goal.  

4.1.2. SCIENTIFIC JOURNALS 

After conducting experiments, scientists submit their estimated net treatment effects to scientific 
journals for publication. Consumers of scientific journals demand studies that report large net 
treatment effects. They reward journals via the purchase of subscriptions and by citing the papers 
within a journal. We treat these two goals as perfectly aligned. 

In the interests of parsimony, we do not model the process by which journals compete with each 
other over papers submitted, and over subscriptions and citations. Instead, we treat journals as a 
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unitary decision-maker that receives a fixed number of submissions, and must decide how to 
allocate a fixed prestige/exposure pie among the submissions. We assume that all costs are 
overhead, i.e., that all possible distributions of prestige/exposure entail the same cost, meaning that 
the journals’ problem is simply choosing the distribution that maximizes subscriptions/citations. 

We do not explicitly post or solve this problem in this paper. Rather, to focus on the scale-up 
effect, we proceed directly to the implied reward function for scientists. Expected rewards accruing 
to scientist 𝑗𝑗 are: 

𝑟𝑟𝑗𝑗�𝜏̂𝜏𝑖𝑖(𝑗𝑗); 𝜏̂𝜏𝑖𝑖(−𝑗𝑗)� ≥ 0 

�𝑟𝑟𝑗𝑗�𝜏̂𝜏𝑖𝑖(𝑗𝑗); 𝜏̂𝜏𝑖𝑖(−𝑗𝑗)�

𝑁𝑁𝐽𝐽

𝑗𝑗=1

= 𝑅𝑅� 

𝜕𝜕𝑟𝑟𝑗𝑗
𝜕𝜕𝜏̂𝜏𝑖𝑖(𝑗𝑗)

≥ 0,
𝜕𝜕𝑟𝑟𝑗𝑗

𝜕𝜕𝜏̂𝜏𝑖𝑖(𝑘𝑘≠𝑗𝑗)
≤ 0 

Where 𝜏̂𝜏𝑖𝑖(−𝑗𝑗) is the vector of results reported by all scientists except 𝑗𝑗. 𝑅𝑅� denotes the fixed size of 
the pie. As described in key assumption 6, each scientist’s expected reward is increasing in the 
estimated net treatment effect that they report, while it is decreasing in the estimated net treatment 
effect reported by others. This is the result of the well-documented bias that journal editors express 
in favor of studies that report large estimated net treatment effects. 

The mechanism embodied by the function 𝑟𝑟𝑗𝑗 can take many forms. For example, it could reflect 
the largest reported net treatment effects being published in the top journals, or receiving the most 
citations. Accordingly, the function 𝑟𝑟𝑗𝑗 is equal to 𝜋𝜋𝐿𝐿 from the scientist’s objective function. To 
formally reconcile the two, we express 𝑙𝑙 to be a function of the entire vector of reported net 
treatment effects. 

𝜋𝜋𝐿𝐿 = 𝛼𝛼𝐿𝐿𝑙𝑙�𝜏̂𝜏𝑖𝑖(𝑗𝑗); 𝜏̂𝜏𝑖𝑖(−𝑗𝑗)� 

Note that we are assuming journal editors naively interpret the reported findings of scientists, and 
disregard the underlying source of variation in reported net treatment effects. We do not believe 
this to be literally true. After all, journal editors are invariably some of the most accomplished 
scientists themselves. However, we regard this to be a reasonable approximation of what actually 
occurs in practice for some journals. Ultimately, this may be because the editors’ patrons—journal 
readers and citers—are the ones who obsess over large net treatment effects with insufficient 
attention to their underlying cause.  
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4.1.3. THE GOVERNMENT 

We treat the government as a surrogate of the general population, meaning that its preferences are 
identical to those of the representative individual, the one for whom 𝑋𝑋𝑖𝑖 = 0, in the event that the 
program is adopted. 

𝑈𝑈𝐺𝐺 = 𝐸𝐸(𝜏̂𝜏𝑖𝑖) = 𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼), 𝑏𝑏(𝑁𝑁𝐼𝐼),𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼�� 𝑇𝑇� − 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� 

And, it is zero in the event that the program is rejected. The government does not know the true 
value of the net treatment effect when it makes a decision about adopting the program, and so it 
must rely on the estimates published in scientific journals. 

Key Assumption 8: The government naively reads results reported in the scientist literature; it 
does not account for the potential non-representativeness of the participants in published studies, 
estimation bias, economies of scale, spillovers, or administration quality effects. 

Thus, it treats 𝜏̂𝜏𝑖𝑖 as its best estimate of 𝐸𝐸(𝜏̂𝜏𝑖𝑖). While this is an exaggerated characterization of the 
government’s actual naivety when interpreting scientific results, similar to our discussion of 
scientific journals above, it is likely to be a more accurate representation than assuming 
government omniscience towards potential sources of inferential bias. 

In the event that the program is adopted by the government, it gives prestige/consulting benefits 
to the scientist responsible for the findings. Similar to the benefits doled out by scientific journals, 
these are zero-sum, and thus we adjust the scientist’s government reward to make it a function of 
all reported net treatment effects. 

𝜋𝜋𝐺𝐺 = 𝛼𝛼𝐺𝐺𝑔𝑔�𝜏̂𝜏𝑖𝑖(𝑗𝑗); 𝜏̂𝜏𝑖𝑖(−𝑗𝑗)� 

4.1.4. SUMMARY 

Given the behavior of scientific journals and the government, scientist 𝑖𝑖’s problem is to maximize 
the following with respect to 𝑋𝑋𝑖𝑖(𝑗𝑗): 

𝑈𝑈𝑆𝑆 = 𝜋𝜋𝐾𝐾 + 𝜋𝜋𝐿𝐿 + 𝜋𝜋𝐺𝐺 − 𝐶𝐶 

= 𝐾𝐾� − 𝛼𝛼𝐾𝐾 �𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)��
2

+ 𝛼𝛼𝐿𝐿𝑙𝑙�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� + 𝛼𝛼𝐺𝐺𝑔𝑔�𝜏̂𝜏𝑖𝑖(𝑗𝑗)�

− �𝑓𝑓𝑃𝑃(1) + 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� + 𝑓𝑓𝑀𝑀(𝑒̅𝑒, 1)� 

Recall that the scale-up problem is equivalent to the following expression being non-zero: 

Δ = �𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼),𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼��𝑇𝑇� − 𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼��

− �𝑓𝑓𝑇𝑇�𝑤𝑤(1), 𝑏𝑏(1),𝑞𝑞(𝑒𝑒1, 1)�𝑇𝑇� + 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 − 𝑓𝑓𝑃𝑃(1) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖) − 𝑓𝑓𝑀𝑀(𝑒𝑒1, 1)� 
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= ��𝑓𝑓𝑇𝑇 �𝑤𝑤(𝑁𝑁𝐼𝐼),𝑏𝑏(𝑁𝑁𝐼𝐼), 𝑞𝑞�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼�� − 𝑓𝑓𝑇𝑇�𝑤𝑤(1),𝑏𝑏(1), 𝑞𝑞(𝑒𝑒1, 1)�� 𝑇𝑇�������������������������������������������
𝛿𝛿1

− {𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖}���
𝛿𝛿2

− {𝜀𝜀𝑖𝑖}�
𝛿𝛿3

− {𝑓𝑓𝑃𝑃(𝑁𝑁𝐼𝐼) − 𝑓𝑓𝑃𝑃(1)}�����������
𝛿𝛿4

+ {𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋𝑖𝑖)}�������
𝛿𝛿5

− �𝑓𝑓𝑀𝑀�𝑒𝑒𝑁𝑁𝐼𝐼 ,𝑁𝑁𝐼𝐼� − 𝑓𝑓𝑀𝑀(𝑒𝑒1, 1)������������������
𝛿𝛿6

 

Our focus is on how scientist behavior affects the three terms (𝛿𝛿2, 𝛿𝛿3, 𝛿𝛿5). We focus initially on 
(𝛿𝛿2, 𝛿𝛿5). In particular: 

𝛿𝛿2 − 𝛿𝛿5 = 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� 

𝜕𝜕Δ
𝜕𝜕(𝛿𝛿2 − 𝛿𝛿5) < 0 

Therefore, as 𝛿𝛿2 − 𝛿𝛿5 = 𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� increases, the net treatment effect shrinks. 

4.2. PARTICIPANT UNREPRESENTATIVENESS 

A non-representative participant pool can be caused by several factors.  For example, it could be 
quite direct, as when the FDA guidance recommended the exclusion of what they defined as 
“women of childbearing potential” from Phase I and (early) Phase II clinical cancer drug trials in 
1977, a policy that was eventually rescinded in 1993.6  This could certainly lead to skewed results 
when the cancer drugs are taken to scale, especially in cases of “fast-tracking” that might have left 
population specific analysis among certain groups as speculative.  Our model focuses on a very 
different purpose for the sampled population to affect scale-up: in the scientific marketplace, 
researcher incentives dictate a subject pool choice that is more likely to find larger treatment effects 
than a random sample would support. 

Participant unrepresentativeness as a source of the scaling problem is defined as deviations of Δ 
from zero caused by 𝑋𝑋𝑖𝑖(𝑗𝑗) being non-zero, i.e., by scientists using participants who are not 
representative of the general population. 

𝑋𝑋𝑖𝑖(𝑗𝑗) = 0 ⇒ 𝛿𝛿2 = 𝛿𝛿5 = 0 ⇒ 𝛿𝛿2 − 𝛿𝛿5 = 0 

𝜕𝜕(𝛿𝛿2 − 𝛿𝛿5)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)

= 𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′�𝑋𝑋𝑖𝑖(𝑗𝑗)� ≥ 0 

∂Δ
𝜕𝜕(𝛿𝛿2 − 𝛿𝛿5) = −1 ⇒

𝜕𝜕Δ
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)

≤ 0 

                                                 
6 See https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ 
UCM071682.pdf and https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/ 
WomensHealthResearch/UCM131204.pdf). 

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/
https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/
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To understand why scientists might use unrepresentative participants, we analyze the scientist’s 
objective function and its relationship with the endogenous variable, 𝑋𝑋𝑖𝑖(𝑗𝑗), and the parameters 
(𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺). 

𝑈𝑈𝑆𝑆 = 𝑈𝑈𝑆𝑆�𝑋𝑋𝑖𝑖(𝑗𝑗);𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺� 

Let 𝑋𝑋∗(𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺) denote the solution to the scientist’s problem. The first- and second-
order conditions are: 

𝜕𝜕𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)

= 0,
𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)

𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)
2 < 0 

We perform the traditional comparative statics manipulations by differentiating through the first-
order condition and using the second-order condition: 

𝜕𝜕𝑋𝑋∗

𝜕𝜕𝜕𝜕
= −

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)

2

 

⇒ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜕𝜕𝑋𝑋∗

𝜕𝜕𝜕𝜕
� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝜕𝜕

� 

Therefore, if we wish to determine the sign of a comparative static, then we need only calculate 
the sign of the cross-partial of utility. Moreover, from above, we have: 

𝜕𝜕Δ
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)

≤ 0 ⇒ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜕𝜕Δ
𝜕𝜕𝜕𝜕
� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �−

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝜕𝜕

� 

We begin by fully expressing the first-order condition. 

�𝛼𝛼𝐿𝐿𝑙𝑙′�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� + 𝛼𝛼𝐺𝐺𝑔𝑔′�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� − 2𝛼𝛼𝐾𝐾 �𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)��� �𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′�𝑋𝑋𝑖𝑖(𝑗𝑗)�� − 𝛼𝛼𝑃𝑃𝑝𝑝′�𝑋𝑋𝑖𝑖(𝑗𝑗)�

= 0 

Rearranging this term and using the fact that all parameters are weakly positive, and the 
assumptions on the derivatives of the functions 𝑙𝑙 (positive), 𝑔𝑔 (positive), and 𝑝𝑝 (negative), yields: 

𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝�𝑋𝑋𝑖𝑖(𝑗𝑗)� =
1

2𝛼𝛼𝐾𝐾
�𝛼𝛼𝐿𝐿𝑙𝑙′�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� + 𝛼𝛼𝐺𝐺𝑔𝑔′�𝜏̂𝜏𝑖𝑖(𝑗𝑗)� −

𝛼𝛼𝑃𝑃𝑝𝑝′�𝑋𝑋𝑖𝑖(𝑗𝑗)�
𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′�𝑋𝑋𝑖𝑖(𝑗𝑗)�

� ≥ 0 

⇒ 𝛿𝛿2 − 𝛿𝛿5 ≥ 0 

The left-hand side of the above equation represents the marginal cost of deviating from a 
representative participant: the penalty caused by non-replicability of the results. The right-hand 
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side represents the marginal benefit: the sum of the larger treatment effect that is rewarded by 
scientific journals, the larger treatment effect that is rewarded by the government, and the cost 
savings. 

Remark 1.1: If 𝛼𝛼𝑋𝑋 = 𝛼𝛼𝑃𝑃 = 0, then the scientist is indifferent to the choice of 𝑋𝑋. 

Under these conditions, the marginal effect of varying 𝑋𝑋 on the scientist’s utility is everywhere 
zero. Therefore, for the problem to be non-trivial, at least one of 𝛼𝛼𝑋𝑋 and 𝛼𝛼𝑃𝑃 must be non-zero. 

Remark 1.2: 𝛼𝛼𝐾𝐾 > 0 is a necessary condition for 𝑋𝑋∗ to be less than its maximum possible value. 

From the original utility function, setting 𝛼𝛼𝐾𝐾 = 0 eliminates the penalty for having an non-
representative participant, which pushes the scientist toward picking the largest possible value. 

We henceforth assume that 𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 > 0. We now turn to the comparative statics. 

Result 1.1: Increasing the non-replicability parameter, 𝛼𝛼𝐾𝐾, diminishes the non-representativeness 
of the participant, 𝑋𝑋∗, and decreases the magnitude of the scale-up drop. 

Proof: 

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝐾𝐾

= −2 �𝛼𝛼𝑋𝑋𝑋𝑋𝑖𝑖(𝑗𝑗) − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋∗)� �𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)� < 0 

⇒
𝜕𝜕𝑋𝑋∗

𝜕𝜕𝛼𝛼𝐾𝐾
< 0,

𝜕𝜕Δ
𝜕𝜕𝛼𝛼𝐾𝐾

> 0 ∎ 

Intuitively, this is equivalent to increasing the marginal cost of non-representativeness, without 
affecting the marginal benefit, meaning a decrease in optimal non-representativeness. 

Result 1.2: Increasing the parameters denoting the scientific (𝛼𝛼𝐿𝐿) or government (𝛼𝛼𝐺𝐺) reward for 
reporting a large net treatment effect increases the non-representativeness of the participant, 𝑋𝑋∗, 
and increases magnitude of the scale-up drop. 

Proof:  

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝐿𝐿

= �𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�𝑙𝑙′(𝜏̂𝜏∗) > 0 

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝐺𝐺

= �𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�𝑔𝑔′(𝜏̂𝜏∗) > 0 

⇒
𝜕𝜕𝑋𝑋∗

𝜕𝜕𝛼𝛼𝐿𝐿
,
𝜕𝜕𝑋𝑋∗

𝜕𝜕𝛼𝛼𝐺𝐺
< 0,

𝜕𝜕Δ
𝜕𝜕𝛼𝛼𝐿𝐿

,
𝜕𝜕Δ
𝜕𝜕𝛼𝛼𝐺𝐺

< 0 ∎ 
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Intuitively, this is equivalent to increasing the marginal benefit of non-representativeness, without 
affecting the marginal cost, meaning an increase in optimal non-representativeness. 

Result 1.3: Increasing the idiosyncratic participation cost parameter, 𝛼𝛼𝑃𝑃, has an indeterminate 
effect on the participant’s non-representativeness. 

Proof: 

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾 ,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝑃𝑃

= [2𝛼𝛼𝐾𝐾 − 𝛼𝛼𝐿𝐿𝑙𝑙′′(𝜏̂𝜏∗) − 𝛼𝛼𝐺𝐺𝑔𝑔′′(𝜏̂𝜏∗)]�𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�𝑝𝑝(𝑋𝑋∗)
− �𝛼𝛼𝐿𝐿𝑙𝑙′(𝜏̂𝜏∗) + 𝛼𝛼𝐺𝐺𝑔𝑔′(𝜏̂𝜏∗) − 2𝛼𝛼𝐾𝐾�𝛼𝛼𝑋𝑋𝑋𝑋∗ − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋∗)��𝑝𝑝′(𝑋𝑋∗) − 𝑝𝑝′(𝑋𝑋∗) 

Substituting in from the first-order condition yields: 

= [2𝛼𝛼𝐾𝐾 − 𝛼𝛼𝐿𝐿𝑙𝑙′′(𝜏̂𝜏∗) − 𝛼𝛼𝐺𝐺𝑔𝑔′′(𝜏̂𝜏∗)]�𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�𝑝𝑝(𝑋𝑋∗) −
𝛼𝛼𝑃𝑃𝑝𝑝′

2(𝑋𝑋∗)
𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)

− 𝑝𝑝′(𝑋𝑋∗) 

= [2𝛼𝛼𝐾𝐾 − 𝛼𝛼𝐿𝐿𝑙𝑙′′(𝜏̂𝜏∗) − 𝛼𝛼𝐺𝐺𝑔𝑔′′(𝜏̂𝜏∗)]�𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�𝑝𝑝(𝑋𝑋∗) −
𝛼𝛼𝑋𝑋𝑝𝑝′(𝑋𝑋∗)

𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)
 

Since 𝑋𝑋∗ > 0, it follows that 𝑝𝑝(𝑋𝑋∗) < 0, meaning that the first term in the above expression is 
negative (assuming concavity of the functions 𝑙𝑙,𝑔𝑔), and a negative term (the second one) is being 
subtracted from it, yielding an indeterminate sign. ∎ 

Intuitively, changing 𝛼𝛼𝑃𝑃 changes both the marginal cost and the marginal benefit of non-
representativeness: it makes the net treatment effect’s absolute deviation from the representative 
case larger, because of the larger saving on idiosyncratic participation costs, which raises the non-
replicability while increasing the returns to non-replicability. 

Result 1.4: Increasing the idiosyncratic direct treatment effect parameter, 𝛼𝛼𝑋𝑋, decreases the 
participant’s non-representativeness, and decreases the magnitude of the scale-up drop. 

Proof: 

𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)
𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝑋𝑋

= �𝛼𝛼𝐿𝐿𝑙𝑙′(𝜏̂𝜏∗) + 𝛼𝛼𝐺𝐺𝑔𝑔′(𝜏̂𝜏∗) − 2𝛼𝛼𝐾𝐾�𝛼𝛼𝑋𝑋𝑋𝑋∗ − 𝛼𝛼𝑃𝑃𝑝𝑝(𝑋𝑋∗)��
+ �𝛼𝛼𝑋𝑋 − 𝛼𝛼𝑃𝑃𝑝𝑝′(𝑋𝑋∗)�(𝛼𝛼𝐿𝐿𝑙𝑙′′(𝜏̂𝜏∗) + 𝛼𝛼𝐺𝐺𝑔𝑔′′(𝜏̂𝜏∗) − 2𝛼𝛼𝐾𝐾𝑋𝑋∗) 

The term in square brackets is negative due to the first-order conditions, while concavity of 𝑙𝑙 and 
𝑔𝑔 implies that the latter term is negative. 
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⇒
𝜕𝜕2𝑈𝑈𝑆𝑆(𝑋𝑋∗;𝛼𝛼𝑋𝑋 ,𝛼𝛼𝐾𝐾,𝛼𝛼𝑃𝑃,𝛼𝛼𝐿𝐿 ,𝛼𝛼𝐺𝐺)

𝜕𝜕𝑋𝑋𝑖𝑖(𝑗𝑗)𝜕𝜕𝛼𝛼𝑋𝑋
< 0 

⇒
𝜕𝜕𝑋𝑋∗

𝜕𝜕𝛼𝛼𝑋𝑋
< 0,

𝜕𝜕Δ
𝜕𝜕𝛼𝛼𝑋𝑋

> 0 ∎ 

Similar to 𝛼𝛼𝑃𝑃, increasing 𝛼𝛼𝑋𝑋 increases both the marginal benefit and the marginal cost of non-
representativeness. Yet, unlike changes in 𝛼𝛼𝑃𝑃, changes in 𝛼𝛼𝑋𝑋 amplify the marginal benefit less than 
they amplify the marginal cost, because one part of the marginal benefit (cost savings) is unaffected 
by changes in 𝛼𝛼𝑋𝑋. Therefore, at the margin, the net effect on non-representativeness is negative. 

This result is somewhat paradoxical.  In one case, if there is no heterogeneity, then there is no 
scale-up drop from having an unrepresentative pool of participants. Alternatively, as the degree of 
heterogeneity increases, the cost of having an unrepresentative pool of participants increases, 
pushing scientists toward selecting more representative samples.  But this is an oversimplification, 
since there are in fact two sources of heterogeneity: 𝛼𝛼𝑋𝑋 and 𝛼𝛼𝑃𝑃. And, in the case of the latter, it is 
possible that increasing heterogeneity leads to a higher scale-up drop, for example when 𝛼𝛼𝑋𝑋 = 0. 

4.3. INFERENTIAL ERRORS 

Returning to the scale-up equation in section 4.1.4, the error in the estimation of the net treatment 
effect, 𝜀𝜀, causes scale-up drop. 

𝜕𝜕Δ
𝜕𝜕𝜀𝜀

=
𝜕𝜕Δ
𝜕𝜕𝛿𝛿3

< 0 

What factors might lead to a systematically biased estimation error? The model highlights two 
inferential channels that imply a voltage drop, Δ∗ < 0: researcher white noise term and the sampled 
population is drawn strategically, 𝑋𝑋𝑖𝑖(𝑗𝑗)

∗ > 0. We discussed the latter above, so here we focus on 
the former. 

A first insight is that while the white noise is unconditionally zero on average, 𝐸𝐸�𝜀𝜀𝑗𝑗� = 0, the same 
is not true of the “winning” program. Moreover the bias is strictly increasing in the number of 
scientists competing, 𝐽𝐽. To understand the intuition, consider the winner’s curse, an adverse-
selection problem that arises because the winning bidder in a common value auction holds the 
most overly-optimistic information concerning the value of the auctioned item. As such, bidders 
must bid more conservatively as the number of competing bidders increases because winning 
implies a greater winner’s curse. The same phenomenon is happening here—as the number of 
scientists working on related programs increases, the “winning program” will be overly optimistic, 
leading to an inferential error. 
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To lend insights into potential solutions, we use the approach described in Maniadis et al. (2014), 
which investigates false positives (which is closely related to the problem of publication bias 
(Young et al., 2008). Maniadis et al. (2014) key theoretical result focuses on the concept of a post-
study probability (PSP): the probability that a declaration of a research finding, made upon 
reaching statistical significance, is true. The PSP is defined as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
(1 − 𝜃𝜃)𝜔𝜔

(1 − 𝜃𝜃)𝜔𝜔 + 𝜂𝜂(1 − 𝜔𝜔) 

Where 𝜂𝜂 is the level of statistical significance, (1 − 𝜃𝜃) is the level of power, and 𝜔𝜔 is the prior. As 
the exhibits in Maniadis et al. (2014) reveal, even after an initial research proclamation, the PSP 
can be quite low, implying that naïve policymakers will be making quite dramatic errors if they 
base important decisions upon such inferences—false positives are important, especially when the 
empirical results are deemed “surprising” or “large.”  

Second, the PSP can be raised substantially if the initial positive findings pass as little as two or 
three independent replications. This is an important insight, because in our experience many 
decision makers in government and the private sector wish to rush new insights into practice. 
Proper incentives for independent replication therefore help mitigate two problems: 

1. White noise draw leading to adoption. 
2. Strategic 𝑋𝑋𝑖𝑖(𝑗𝑗)

∗  draw leading to adoption. 

This leads to our proposal concerning inference: before advancing policies, the PSP should be at 
least 0.95.  

While of course there is an ad hoc nature of this proposal, in equilibrium, this choice has 
implications that would permeate various parts of the modeling. For example, it naturally leads to 
a greater number of replications and a subsequent change in reward structure. In equilibrium, more 
dollars for replications from funding agencies would be a natural outcome. A positive externality 
of this increased demand in replications is that researchers will place more weight on replicability 
vis-à-vis cost savings, leading to a smaller strategically-induced bias, and a smaller BC drop in 
equilibrium. This helps to reduce a threat to scalability because researchers can take preemptive 
steps to avoid inadvertently suffering from choosing a non-representative sample. 

5. EPILOGUE 

Major societal advances will not occur until we revamp the entire system of knowledge discovery 
for policymaking:  from soup to nuts.  This involves three major steps.  First, we must fund 
basic research so scientists have the means to carry out credible science.  This involves discussions 
around the philanthropy of science (see, e.g., List, 2011).  Second, we must provide the knowledge 
creation market with the optimal incentives for researchers to design, implement, and report 
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scientific results.  Third, we must develop a system whereby policymakers have the appropriate 
incentives to adopt effective policies, and once adopted they must develop strategies to implement 
those policies with rigorous evaluation methods to ensure continual improvement (see, e.g., Komro 
et al., 2019; Chambers et al., 2013). 

We view a firm understanding of all three of these areas as necessary for any modern government 
to use an evidence based approach.  While we provide insights into all three links, our 
study focuses attention on the middle link:  the knowledge creation market.  In advancing an 
economic model of scaling, we highlight the various incentives actors face in this market. By 
juxtaposing the actors and their various incentives, we provide straightforward insights into the 
causes of the scale up effect and where and when it is likely to occur.  We show that the benefit 
cost relationship changes at scale simply due to the nature of the incentives in the 
system.  Our framework also features areas where behavioral relationships are known, where more 
empirical evidence is necessary, and how we can adjust incentives for researchers to provide 
information in their original research concerning the likelihood of their intervention scaling 
effectively. 

As academics, we often ask why more scholarly research is not implemented into public policy. 
One argument for the lack of scientifically-driven policies is that the current approach is broken. 
When going from science to policy we typically follow the traditional formula of documenting 
effects on small groups over short time-spans and testing their statistical significance. We then ask 
policymakers to adopt the programs that have large treatment effects. This is because when scaling, 
we oftentimes generalize our results to both a population of situations and a population of people 
when we typically only speak to the issue of the latter. Yet, such an empirical approach can be 
quickly undermined in the eyes of the policymaker, broader public, and the scientific community 
if the promises of the original research are not delivered.  

Our research advocates flipping the traditional model, calling on scholars to place themselves in 
the shoes of the people whom they are trying to influence. Our call is for policy research that starts 
by imagining what a successful intervention would look like fully implemented in the field, applied 
to the entire subject population, sustained over a long period of time, and working as it is expected 
because its mechanisms are understood.  

To accomplish this goal, our original experimental designs must address each of these needs. For 
example, providing a list of “non-negotiables” is important in that these are features of the program 
that must be implemented with fidelity. To complete this exercise, our experiments should block 
on situations when doing experiments just like we block on individual characteristics (i.e., scale, 
inputs, human’s delivering, correct dosage, program, delivery, incentives, substitutes). 

One illustration of this idea in action revolves around human capital. If the research study uses 20 
classroom teachers but at scale we will need 20,000, then simply hiring the 20 best teachers for 
the research study is ill-conceived if one has scaling in mind. Rather, much like Fryer et al.’s 
(2012) approach in their Chicago Heights studies, a broader pool should be considered and then a 
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random sample chosen from that pool. This is carefully done in Davis et al. (2017) to explore 
scientifically the effects of this factor on scaling. 

Another example of how to use the original research design to provide empirical content to the 
features of our scaling model is to use multi-site designs optimally (for excellent recent discussions 
see Raudenbush and Bloom (2015) and Weiss et al., (2017)).  In carrying out such an agenda, the 
analyst can not only measure the average treatment effect, but explore how the treatment effect 
varies across sites.  By using appropriate variation in site specific characteristics, the design of 
multi-site trials can provide empirical content into why effects might not scale and give empirical 
hints where more research is necessary before scaling.   

While our theory highlights many other reasons why the BC ratio may differ across research 
studies and programs at scale, empirical work must be completed to determine which pieces of our 
model have empirical relevance. Measuring the nature and extent of the effects of the non-
stochastic and stochastic factors we discuss will usher in a new and innovative way to generate 
and use experimental data. We hope that this promise will be fulfilled as we strive to enhance the 
efficacy and usage of evidence-based policies.  
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