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1 MOTIVATION

1 Motivation

In a highly influential contribution, Barber and Odean (2000) find that households with higher stock turnover

have a lower net return. They interpret this as evidence households are overconfident and thus not rational.

They state:

Our most dramatic empirical evidence supports the view that overconfidence leads to excessive

trading ... On one hand, there is very little difference in the gross performance of households that

trade frequently with monthly turnover in excess of 8.8 percent and those that trade infrequently.

In contrast, households that trade frequently earn a net annualized geometric mean return of 11.4

percent, and those that trade infrequently earn 18.5 percent. These results are consistent with

models where trading emanates from investor overconfidence, but are inconsistent with models

where trading results from rational expectations.

Barber and Odean (2000) provide neither a theoretical proof nor direct evidence that the patterns they

document are inconsistent with rational choice nor do they provide a model with irrational agents that

matches these observations. Their statements are provocative but not convincing.

This paper studies the implications of an optimizing model with costly portfolio adjustment for the

relationship between frequency of trade and asset returns. We investigate two explanations for the findings,

highlighted in Barber and Odean (2000), that turnover rates and net returns are inversely related.1 The

first looks at the choice of rational agents faced with costs of portfolio adjustment. The second allows for

different forms of irrationality, including overconfidence.

For rational, optimizing households, it seems natural to consider the differences in net returns as reflecting

two forces: trading costs and a selection effect through household choice of whether to adjust its portfolio.

Trading costs drive a wedge between gross and net returns. Household choice, both on the extensive (to

adjust or not) and intensive (turnover conditional on adjustment) margins, creates an endogenous relationship

between asset returns and portfolio adjustment.

We ask whether the presence of fixed and variable portfolio adjustment costs can generate the observed

differences in returns based upon the frequency of trade. Our approach is to specify a dynamic optimization

problem of a household and estimate it’s parameters. The uncertainty in the model comes from income

shocks, which are partly household specific, as well as a stochastic return on the household stock portfolio.

We generate simulated panel data from the estimated model to study the relationship between portfolio

adjustment and returns. Moments from the simulated panel are calculated in two ways. First, the data is

averaged over time by household. Distributions of turnover and net returns are studied. This is called the

“time series” approach. Second, the distributions of turnover and net returns are calculated for each month

and then averaged over time. The first approach highlights differences across households while the second

highlights more of the high frequency fluctuations in turnover and net returns. This is called the “cross

section” approach.

As discussed in detail below, throughout the analysis, the focus is on the trades between stocks and bonds.

Thus the analysis excludes portfolio churning (excessive rebalancing) and thus by construction misses some

of the trades underlying the evidence provided by Barber and Odean (2000).2 This simplification of the

1See Barber and Odean (2001) for additional evidence, including a gender breakdown, and further discussion of overconfi-
dence.

2Accordingly, we do not rely on the moments presented in Barber and Odean (2000) but rather calculate them using the
time series and cross sectional approaches directly from the same data set. Statements characterizing our results pertain to
matching these moments, not those from Barber and Odean (2000).
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1 MOTIVATION

analysis reflects the computational challenges of multi-asset models. Nonetheless we demonstrate that the

inverse relationship between turnover and net returns is present even when portfolio churning is excluded.

The challenge to rational models posed in Barber and Odean (2000) remains.3

For these models, turnover, measured by the exchange of stocks for bonds, is driven by liquidity needs

stemming from income shocks. Due to the presence of portfolio adjustment costs, liquidity is mostly provided

by variations in a more liquid bond account. But, in the presence of large enough shocks and depleted liquid

resources, stock adjustment occurs. Due to the interaction of the fixed costs of adjustment and income

fluctuations, the resulting turnover can be large enough to match data moments with income processes

supported by the data. Further, the net return differential between high and low turnover households matches

the data as well. Thus, though Barber and Odean (2000) argue emphatically that liquidity needs

alone are insufficient to generate the patterns of turnover and net returns, we find this is not

the case.

Following the suggestion of Barber and Odean (2000), we also study a series of models which relax the

assumption of perfect rationality to model overconfidence. This is in line with the literature that generally

models overconfidence as mis-calibration, i.e., overestimating the precision of information about the price

of a financial security (e.g., Kyle and Wang (1997), Odean (1998) and Gervais and Odean (2001)). We

specifically consider models in which traders over-estimate the volatility of labor income, over-estimate the

serial correlation in returns or respond to signals that are not informative about returns.

To be clear, by “irrational” we mean to capture the behavior of utility maximizing households who hold

beliefs about exogenous processes, such as returns, which are not consistent with data. Our evaluation of

these alternatives is based upon the optimizing behavior built upon erroneous beliefs. The implied decision

rules are taken to the same data as those based upon rational choice.

The introduction of irrational traders does not lead to any improvement in model fit when the moments

are calculated either from the time series or cross sectional approaches. Evidently, the model of stochastic

income with trading costs is sufficient to match the turnover and net return patterns that exclude portfolio

rebalancing.

As a final exercise, we attempt to match the moments presented in Barber and Odean (2000), even

though the turnover rates they calculate include portfolio rebalancing that is, by construction, absent from

our model. Surprisingly, the model with rational agents can even match those patterns. But for this exercise,

there are some modest improvements in fit from the presence of irrational agents.4

Barber and Odean (2000) conclude with a powerful statement:

Our central message is that trading is hazardous to your wealth.

This conclusion reflects their finding that net returns are lower for agents who trade more actively without

earning higher gross returns. This trading behavior is subsequently viewed as irrational.

We do not concur. For our measurement of moments and estimation, net returns are indeed lower for

more active traders. But this is fully consistent with the choices of rational optimizing agents.5

3Else, one would be led to conclude that the irrational behavior, if it exists at all, is associated solely with excessive stock
turnover. This is not the case.

4The discussion makes clear the meaning of “modest” in this context.
5To be clear, there is some gain from irrational agents in matching the Barber and Odean (2000) moments that include

portfolio rebalancing, as explained in detail in section 6.3.
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2 HOUSEHOLD OPTIMIZATION

2 Household Optimization

Here we present the model of household optimization, drawing upon Bonaparte, Cooper, and Zhu (2012)

and Cooper and Zhu (2015), that is the basis of the parameter estimation.6 The household is infinitely lived

and has two assets: bonds and stocks. Bonds are costless to adjust, and have a certain return. Stocks yield

a random return, higher on average than bonds. Stock holdings, by assumption, are costly to adjust.

The key to the model is the household choice of whether to adjust its portfolio or not. Adjustment

is costly due to the presence of fixed and variable trading costs. The household may choose not to incur

these costs, in which case consumption smoothing is achieved solely through adjustment in bond holdings.

If the household adjusts, then it incurs costs of portfolio adjustment. In this way, the model generates two

types of turnover: the discrete choice of whether to adjust and the continuous choice of how much to adjust

conditional on having incurred fixed adjustment costs.

To be clear, portfolio turnover refers to trade between stocks and bonds.7 The model does not include

multiple stocks and thus rebalancing of the components of a stock portfolio is excluded. This implies that

the model understates actual turnover and the associated costs of rebalancing. Missing these trades makes it

more difficult to match the high turnover, low net return moments highlighted by Barber and Odean (2000).

2.1 Rational Household

Let Ω = (y, S,Rs) represent the state of the household where y is current labor income, S = (b, s) is the

current value of the holdings of bonds and stocks respectively and Rs is the stochastic return on stocks.

The return on bonds, Rb is deterministic. A household chooses between (i) portfolio adjustment and (ii) no

portfolio adjustment. This choice is given:

v(Ω) = max{va(Ω), vn(Ω)} (1)

for all Ω.

A household choosing to adjust selects the amount of stocks and bonds to solve:

va(Ω) = maxb′≥0,s′≥0 u(c) + βEΩ′|Ωv(Ω′)

s.t.

c = ψy +Rbb+Rss− b′ − s′ − C(s, s′)− F. (2)

In this problem, there is no borrowing and short sales of stocks are not allowed.

Throughout, assume u(c) is strictly increasing and strictly convex. For the empirical analysis, u(c) =
c1−γ−1

1−γ .

There are three forms of adjustment costs in the model. There is a time cost of stock adjustment

represented by ψ ≤ 1 in (2).8 Second, the model allows a fixed cost of adjustment, F . This is distinct from

the time cost of ψ as there is no interaction with income.9 Finally, the model includes direct trading costs,

explained further below, captured by C(s, s′). In addition to the frequency of adjustment these costs also

6An earlier version of the paper had only a single asset, as in Bonaparte and Cooper (2009). With that specification, portfolio
adjustment and adjusting the margin between consumption and savings was not distinct.

7It is straightforward to extend the model to multiple stocks, essentially by letting s in the state be a vector of stocks. The
challenge is to estimate a model with a large state space.

8Bonaparte, Cooper, and Zhu (2012) discusses other specifications of adjustment costs.
9We will study the two cases of ψ > 0 and F > 0 separately so that identification of the adjustment cost is not an issue.
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2 HOUSEHOLD OPTIMIZATION

generate a demand for bonds and thus impact the stock share.

If the household choses not to adjust its portfolio, then the trading and opportunity costs are avoided.

There is re-optimization over bond holdings alone. The household chooses bonds to solve:

vn(Ω) = maxb′≥0 u(c) + βEΩ′|Ωv(Ω′)

s.t.

c = y +Rbb− b′ (3)

s′ = Rss. (4)

Here we assume that if there is no portfolio rebalancing, any return on stocks is automatically put into the

stock account, i.e. s′ = Rss. In the robustness analysis, we relax this assumption so that stock returns are

instead deposited into the bond account.

The policy functions generated by household optimization include an extensive margin (adjust, no adjust)

and an intensive margin indicating the magnitude of the adjustment. Due to the adjustment costs, the model

can produce both inaction in portfolio adjustment as well as large turnover rates. The incentive for portfolio

adjustment comes from large shocks to income and returns. A large positive return shock may create

a large enough wealth gain that households choose to rebalance their portfolios. This would generate a

positive correlation between gross returns and trades. Likewise, a large adverse return shock might also

cause financial wealth to fall so that rebalancing is worthwhile. In this case, a negative correlation between

trading and gross return is created. Further, a large negative shock to income will also create an incentive

to rebalance, independent of current returns. Added to this is the differential between measured gross and

net returns created by the presence of trading costs, C(·). These types of responses to shocks form the link

from the policy functions generated by the household optimization problem to the evidence of Barber and

Odean (2000).

2.2 Irrational Household

Here we use to model to explain the forms of irrational behavior studied in the quantitative analysis. In

our setting, irrationality is limited, in various ways, to the manner in which conditional expectations are

formed. We are not considering here the implications of, for example, time inconsistencies nor intransitive

preferences.

2.2.1 Misperceptions

The decision rules from the dynamic optimization problem require the agent to compute conditional expec-

tations. For rational agents, we will require that expectations are consistent with the income and return

processes from the data. With irrational agents, we relax this requirement. Doing so is relatively straightfor-

ward in the model: just replace the conditional expectation in (2) and (3) with an alternative representation

of beliefs.

Income Consider the following representation of the income process.

yt = (1− ρ̃y)µ̃y + ρ̃yyt−1 + εyt (5)
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2 HOUSEHOLD OPTIMIZATION

where εyt is the period t innovation and yt is the period t log level of income. Assume that the innovation is

normally distributed with mean zero and standard deviation of σ̃y.

For rational agents, the parameters (µ̃y, ρ̃y, σ̃y) are taken from the data. Else, agents may hold beliefs

about the income process that differs from those obtained from the data.

The expected income process used in the optimization problem is easily modified to reflect these alterna-

tive beliefs. The key issue, discussed below, is one of identification: are decision rules sufficiently dependent

on beliefs that (µ̃y, ρ̃y, σ̃y) can be inferred from the moments.

Returns Analogous to the income process, consider the following representation of beliefs of agents about

returns:

Rt = (1− ρ̃R)µ̃R + ρ̃RRt−1 + εRt (6)

where the notation parallels that of (5). Again, these are perceived parameters that may not coincide with

the true process for returns. Indeed, our interest is in studying the relationship between beliefs and the true

process for trading strategies and portfolio returns.

From (6), the specification permits three types of deviations through the: (i) mean, (ii) standard deviation

and (iii) persistence of the return process. Beliefs about a positive serial correlation in the return captures

the frequently noted belief in stock market “momentum”.

2.2.2 Noisy Advice

Here we consider another form of irrational beliefs associated with a signal provided, say, by a financial

advisor about future returns. From our specification of the stock return process, future returns are not

predictable. But an agent may be induced to believe the advice of an advisor, leading to excessive turnover

and relatively low net returns.

To study this formally, assume there is an iid signal, denoted z, that the household believes is correlated

with future returns. The discrete choice is again given by (1) and the options of adjustment and non-

adjustment given by (2) and (3) respectively with the modified state vector of (Ω, z).

This choice is given:

v(Ω, z) = max{va(Ω, z), vn(Ω, z)} (7)

for all (Ω, z). The revised options are:

va(Ω, z) = maxb′≥0,s′≥0 u(c) + βEΩ′|Ω,z
∫
z′
v(Ω′, z′)dG(z′)

s.t.

c = ψy +Rbb+Rss− b′ − s′ − C(s, s′). (8)

if adjustment. If the household does not adjust, it solves

vn(Ω, z) = maxb′≥0 u(c) + βEΩ′|Ω,z
∫
z′
v(Ω′, z′)dG(z′)

s.t.

c = y +Rbb− b′ (9)

s′ = Rss. (10)
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3 TRADING COSTS AND EXOGENOUS PROCESSES

In these expressions, G(z′) is the cdf of z′. The conditional expectation in these expressions highlights that

the sole role of z is to provide information about Ω′.

As households believe z is informative about future returns, their decisions will depend on this random

variable. This source of irrationality is similar to overconfidence about the serial correlation about returns

but realizations of z only influence household beliefs, not their budget sets. This allows z to be, at least in

the mind of the household, a predictor of future stock returns, Rs
′
.

3 Trading Costs and Exogenous Processes

The goal of the analysis is to study the relationship between portfolio turnover and return. To do so, we

must estimate the parameters of the household choice problem. The estimation uses a simulated method of

moments approach based upon this model of dynamic household choice. Solving the household optimization

problem requires the specification of trading costs and exogenous income and return processes.

3.1 Trading Costs

The monthly household account data set from Barber and Odean (2000) is used to determine trading costs

and thus calculate net returns at the individual level. It provides information on common stock trades of

about 78,000 households through a discount brokerage firm from January 1991 to December 1996.10

Bonaparte and Cooper (2009) estimate trading costs, C(·), directly from this data set. Assume:

Cb(s−1, s) = νb0 + νb1(s− s−1) + νb2(s− s−1)2 (11)

if the household buys an asset, s > s−1. If instead the household sells, s < s−1, then

Cs(s−1, s) = νs0 + νs1(s−1 − s) + νs2(s− s−1)2. (12)

Bonaparte and Cooper (2009) use this monthly household account data to estimate these parameters.11

The trading costs, measured in dollars, are estimated in a regression where the dependent variable is the

commission and the independent variables are trade value (the price of the share times the quantity of share)

and trade value squared per stock. Bonaparte and Cooper (2009) report the estimates in Table 1.

Parameter Buying Selling

Constant νi0 56.10 61.44
(0.05) (0.061)

Linear νi1 0.0012 0.0014
(1.63e-06) (1.93e-06)

Quadratic νi2 −1.01e−10 −1.28e−10

(2.88e-13) (9.26e-13)

Adj. R2 0.251 0.359
Number of Observations 1,746,403 1,329,394

Table 1: Estimated Trading Costs

10The following section as well as the Appendix provide additional details about the data set and the calculation of these
costs and moments.

11Details on the estimation can be found in Bonaparte and Cooper (2009). Through this procedure, we are able to decompose
the commission costs reported in Table 1 of Barber and Odean (2000) into fixed and variable components.
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3 TRADING COSTS AND EXOGENOUS PROCESSES

Though the linear and quadratic terms are statistically significant, the main cost of adjustment is the

fixed cost per trade. While this cost may seem high relative to currently advertised fixed trading costs, it is

still small compared to the average trade of a household in the data set of about $12,500.

These estimates of trading costs do not include the bid-ask spread which, according to Barber and Odean

(2000) are about 0.31% for purchases and 0.69% for sales. These additional costs are added to the linear

terms reported in Table 1 when the trading costs are integrated into the household optimization problem.

3.2 Income and Returns

The income process for stockholders is annual. It is estimated from the Panel Study of Income Dynamics

(PSID). The serial correlation is 0.842 and the standard deviation of the innovation is 0.29.12 Importantly,

there is not sufficient information in the data set used by Barber and Odean (2000) to estimate the income

process for individuals in that sample. Nor is it possible to extract a sample of households who directly own

stock from the PSID to mimic those in the Barber and Odean (2000) sample.

As the frequency of the household choice problem is monthly, it is necessary to convert the annual income

process to this higher frequency. This is done in two ways, distinguished by the presence of unemployment

risk.

The first simply converts the annual process into a monthly one without adding any higher frequency

unemployment risk. In this case, the monthly serial correlation is 0.9781 and the standard deviation of the

innovation to income is 0.1165.

The second adds unemployment risk to the income process. As emphasized in Carroll (1992), it is

important to recognize that, particularly, at the monthly frequency, households face significant risk of job

loss. Thus, this second specification adds a zero labor income state to the process. These flows between

employment and unemployment are taken from the Bureau of Labor Statistics.13

Specifically, each month an employed agent becomes unemployed with probability δ = 0.014. Each month

an unemployed agent finds a job with probability 0.27. The replacement rate for an unemployed agent is

set at 40% of average income. If an unemployed agent finds a job, the wage is assumed to be the mean of

the income process. Given these flows and the estimated annual serial correlation and standard deviation

of the innovation at the annual level, the monthly income process is estimated through a simulated method

of moments approach, discussed in the Appendix. From this analysis, the monthly serial correlation is

estimated at 0.9959 and the standard deviation of the income innovation is estimated at 0.0839, conditional

on employment.

Of course, it is not clear a priori that unemployment risk is an issue for those households with direct

holdings at a brokerage account. We return to this later in the discussion of results.

The real stock return, which includes capital gains and dividends, is measured as the S&P index monthly

return from 1967-94. It is taken from CRSP (http://wrds-web.wharton.upenn.edu/wrds/index.cfm).

The average monthly return is set at 1.0061 with a standard deviation of 0.0439. The estimated serial

correlation of annual returns is not significantly different from zero. Barber and Odean (2000) find no

significant difference in the returns for the average households in their sample compared to a market index.14

12This is the same process as used in Bonaparte, Cooper, and Zhu (2012) and is described in the Appendix of that paper.
Variables are normalize by the mean income of 6000 dollars per month income taken from the Barber and Odean (2000) sample.

13Specifically, these probabilities characterizing this additional state are calculated from the seasonally adjusted flows taken
from https://www.bls.gov/webapps/legacy/cpsflowstab.htm for 1990 to 2009.

14Specifically, from Table II and related discussion, the average return of the households in the sample are not statistically
different from a NYSE/AMEX/Nasdaq value weighted index.
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4 SIMULATED METHOD OF MOMENTS ESTIMATION

4 Simulated Method of Moments Estimation

The parameters, including perceptions, are estimated by matching moments. This section discusses the

estimation approach and the moments that are used to identify the parameters.

4.1 Approach

Specifically, the estimation finds the vector of parameters that minimizes the distance between actual and

simulated moments:

J = min(Θ)

(
Ms(Θ)−Md

)′
W
(
(Ms(Θ)−Md)

)
. (13)

Here Ms(Θ) are the simulated moments that depend on the parameter vector Θ, Md are data moments and

W is the identity matrix. Results with a weighting matrix are reported as well.

The parameter vector is Θ = (β, γ, ψ) in the case of rational households. When the estimation allows for

some form of irrationality, the parameter vector is supplemented to include household beliefs. Importantly,

the estimation with irrational agents includes the re-estimation of (β, γ, ψ) along with beliefs.

The analysis assumes the household choices are made on a monthly basis. The monthly model allows a

direct link to the high frequency household account data.

Given a parameter vector, a simulated panel data set with 4000 households and 4000 time periods

(after dropping the first 1000 periods) is created from the solution of the household’s dynamic optimization

problem. The simulated moments are calculated from this panel, just as in the actual data.15 Households

differ because of idiosyncratic income shocks which generates differences in trading patterns and returns.

Trading costs are calculated from the observed trades using the estimates given in Table 1.

4.2 Moments

The choice of moments is motivated by the Barber and Odean (2000) study of household trading activity and

return. These include the monthly portfolio turnover rate as well as the net stock return. Our calculation

of these moments is slightly different than reported by Barber and Odean (2000) to match more closely the

elements of our household choice model.16 As discussed below, these moments are informative about the

parameters to be estimated.

The data is a panel, indicating trades by household over their period of activity with this particular

discount broker. This creates a couple of important issues in calculating the turnover and return moments.

First, there are two ways to create turnover quintiles from these monthly measures of turnover.17 Second,

the moments depend on the treatment of exit from the sample.

The first approach to measuring turnover, hereafter called “time series”, calculates the quintiles of the

time series average of the turnover rates by household. That is, the monthly turnover rates are averaged

over time by household. The quintiles are calculated based on these time series averaged turnover rates.

This measure captures persistent differences in turnover rates across households.

The second approach, hereafter called “cross section” turnover, calculates the time series average of the

turnover rate, by quintiles, for each month. That is, for each month, the turnover rates are ranked to create

15Our results do not change if the size of the simulated panel is increased. For these results, the (coarse) fine state space had
(20× 25× 10× 3) 100× 200× 10× 3 elements. The solution entailed piecewise cubic hermite interpolation, with convergence
for the value function defined on the fine grid.

16The procedures used to produce the moments are detailed in the Appendix.
17We are grateful to an anonymous referee for challenging our initial interpretation of the Barber and Odean (2000) method-

ology.
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4 SIMULATED METHOD OF MOMENTS ESTIMATION

average turnover rates for each quintile. Then these rates are averaged over time. With this measure, a

household may be in the high turnover quintile in some periods, and not in others. As we shall see, this

measure captures quite well the short-run liquidity needs of investors.

The second issue is exit from the sample. In the analysis that follows, “balanced” moments are those

from households who were in the sample for a complete 71 months, starting in January 1991.18 In con-

trast,“unbalanced” moments are from households who started in January 1991 but did not necessarily main-

tain an account through the entire sample.

Our baseline model does not include exit and thus we match moments created from a balanced panel.

Focusing on households with an account in January 1991 is consistent with Barber and Odean (2000) though

it is not clear how they account for exit and the resulting trades in their calculations. Thus we study both

balanced and unbalanced panels when matching those moments.

4.2.1 Turnover

For this analysis, portfolio turnover by a household over a month is defined as the absolute difference between

end of period and beginning of period stock wealth, divided by the beginning of period stock wealth. In this

way, the turnover measure excludes portfolio rebalancing, i.e. the trading of one stock for another. This is

consistent with our model in that there is only a single stock. In contrast, as discussed below, the Barber

and Odean (2000) includes rebalancing.

Specifically, turnover for household i in period t is

Ti,t ≡ |(
si,t − si,t−1R

s
t

si,t−1Rst
)|. (14)

Note that the turnover rate depends on the household’s stock wealth at the start of period t, si,t−1R
s
t ,

inclusive of current stock returns.19

Table 2 shows the turnover moments. The turnover patterns are quite different comparing the cross

section and time series approaches. Clearly, the cross section picks up a considerable amount of inaction so

that the turnover rates in the 4 lower quintiles are much higher in the time series approach. In fact, over

80% of the households do not adjust their portfolio in a given month.20 But, the highest quintile has a very

large average turnover rate in the cross section compared to the time series.

Evidently, inaction is common in the cross section, punctuated by infrequent large adjustments. These

trading patterns are smoothed over in the time series moments. This might be interpreted as the smoothing

out of the short-term liquidity needs that motivates the large trades at the monthly frequency.

4.2.2 Net Return

We calculate the net return for household i, denoted Rni , on the stock portfolio as

Rni,t =
si,t−1R

s
t − C(si,t − si,t−1R

s
t )

si,t−1
. (15)

Here the cost function comes from the results in Table 1. In calculating the net return costs of trade due to

the bid and ask spread are included as well.

18Specifically, this requires 71 months of reports in the position data.
19So si,t represents holdings at the end of period t.
20By comparison, Bonaparte, Cooper, and Zhu (2012) report a 46.7% biannual stock adjustment rate for households in the

PSID.
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Table 2: Data Moments

case Mean Median
t1 t2 t3 t4 t5 DR t5 DR

Time Series 0.00 0.0039 0.0134 0.0291 0.1155 -0.0010 0.0690 -0.0010
Cross Section 0.00 0.00 0.00 0.00 0.2721 -0.0009 0.1314 0.0001

BO 0.002 0.012 0.029 0.060 0.215 -0.0046 na na

This table reports data moments. Here “ti” is the turnover rate for quintile “i” and “DR” is the difference in the net return
between the highest and lowest turnover rate quintiles. The row labeled BO is from Table V from Barber and Odean (2000)
of that paper. The row labeled “cross section” reports the time series average of the quintiles computed from the cross
section for each month. The row labeled “time series” calculates the quintiles of the time series average of the turnover
rates by household. The last two columns compute t5 and DR using median turnover and rates.

Note that this is not the net return on an individual trade but rather the net return on the entire stock

portfolio. In our setting, it is impossible to compute the return on a particular trade without imposing some

arbitrary accounting rule to assign trading costs to net returns of a particular purchase or sale.

Clearly, there is a mechanical relationship between high turnover and low net return. If the household,

for example, buys stocks, then using the specification of the trading cost function, C(s′i − Rssi), the net

return becomes:

Rni = Rs − νb0
si
− νb1(s′i −Rssi)

si
− νb2(s′i −Rssi)2

si
. (16)

From this calculation, the linear part of the cost function implies that the net return is lower when trades

are large and when the initial stock holdings is relatively low. But the fixed cost and the quadratic cost

impact this relationship. In particular, low initial stock holdings imply a large differential between gross and

net returns. Thus it is not solely turnover that determines this differential, but the state of the household

undertaking the trade as well. Below we discuss how much of the low net returns is associated with high

turnover through the linear part of the cost function.

As in Barber and Odean (2000), we compute the return differential on the portfolio of the lowest and

highest turnover quintiles, based either on the cross section or time series approach. Either way, this is

a monthly differential in return. If, for example, one portfolio earns 1.0146 per month and another earns

1.0046, then the difference in returns is 13.34% over a year.

The differential in net returns is reported in Table 2 in the “DR” column. The sign and magnitude of the

return differential depends on the sample. For the two balanced samples, the return differential is negative,

as reported in Barber and Odean (2000). In fact, the differential is largest in the cross section, an order of

magnitude larger than in the time series.

4.2.3 Barber and Odean (2000) Moments

The final row of Table 2 reports the moments directly taken from Barber and Odean (2000). They are clearly

closer to our time series (household averaged quintiles) moments than those from the cross section.21 There

are a couple of differences in calculation of the moments.

First, recall that our turnover is net, thus excluding trades that do not involve changes in stockholdings.

From their Table V, Barber and Odean (2000) calculate monthly turnover as the average of sales and

purchases so that portfolio rebalancing is included as well. From that perspective, turnover for household i

21There is not sufficient detail in Barber and Odean (2000) to determine exactly the calculation of their moments nor sample
selection. We suspect, but cannot verify, that these are time series moments from an unbalanced panel.
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5 RESULTS

in period t is

Ti,t ≡ |(
∑
j |si,j,t − si,j,t−1R

s
jt|

si,t−1Rst
)|. (17)

In this expression, j indicates a particular asset. So the numerator is the amount of asset j traded. Total

turnover is then simply the sum of all asset trades during a period of t. The denominator represents total

financial wealth of household i at the start of period t.

Second, as there is no discussion of exit in their analysis, it seems their moments are based upon an

unbalanced panel. So the averaging across households in Barber and Odean (2000) includes those with

different sample lengths. And, perhaps more importantly, may also include the large trades made upon exit.

Table 2 makes clear the additional turnover calculated by Barber and Odean (2000) compared to our

time series and cross section tabulations for unbalanced panels. Their turnover rates in the 4 lowest quintiles

are higher than our moments. But for the key turnover category, t5, we obtain about the same turnover rate

in the time series.

Third, we use our formula to calculate the net return so that our model and the data are consistent. The

return differential in the “BO” row of Table 2 is based upon their calculation of the total trading costs.

Though our model does not include portfolio rebalancing, we will estimate the model to match these

moments are well. In part this is informative about how much of the overall pattern detected by Barber and

Odean (2000) can be explained by liquidity needs alone.

4.2.4 Outliers

The turnover and return calculations are based upon the means by quintile. Allowing 5 quintiles certainly

highlights the distribution of turnover and returns. Yet, it turns out, there remains substantial heterogeneity

within the cells, particularly the high turnover group.

The last two columns in Table 2 report the DR and t5 measures based upon the median of the quintile.

In this case, the turnover rates and net return differentials drop substantially.22

For the cross section, the DR measures are all slightly positive. Evidently the negative average return

differentials were driven by the large turnovers in t5.

Figure 1 shows the distribution of turnover rates within the t5 quintile, using the time series approach.

The panels differ in terms of the turnover rate, with the right side illustrating a small fraction of trades with

turnover in excess of 30% in a given month. Clearly, there are some extremely large trades inside of the t5

group, present in both the cross section and the time series. These trades seem to generate the net return

differential. The estimation returns to this below as we study results based upon median rather than mean

measures of return and turnover.

5 Results

The estimation results are presented for the time series and cross section calculation of the turnover and

return moments. The section that follows goes further to study a mixture of time series and cross sectional

moments as well as the moments from Barber and Odean (2000).

A model based upon liquidity shocks on turnover and net return is likely to be able to match the cross

section moments. The presence of the adjustment costs will create the monthly inaction in turnover for most

22Though not in the table, the differences between the balanced and unbalanced panels return differential disappears and the
highest turnover rates are much closer.
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5 RESULTS

Figure 1: Turnover Distribution: t5

households, punctuated by some large adjustments by the rest. These large adjustment reflect not just the

income shock but the imbalance between the stock and bond accounts created by previous inaction.

These liquidity needs are clear at the monthly frequency. The challenge is the time series where these

liquidity needs are likely to be averaged over time.

Throughout, there is the issue of exit and thus the choice between a balanced and the unbalanced panel.

For a couple of reasons, we focus on the balanced panel. First, as discussed by Barber and Odean (2000),

the choice of households to have an account with this broker is difficult to understand given the transactions

costs and performance. Thus formally modeling this choice of participation and ultimately exit from the

relationship is non-trivial. Second, our model does not include a participation decision and thus the choice

between direct and indirect holdings.23

Importantly, our choice of a balanced panel does not mitigate the key findings in the data. As made

clear in Table 2, for both the cross section and time series moments, there are high turnover rates in the

fifth quintile and a lower net return compared to the first quintile.

There are two main findings. First, there is no evidence of irrational choices in the time series analysis. All

of the turnover and net return differentials are driven by liquidity needs interacting with the fixed adjustment

costs. Second, irrationality does improve the model fit in the cross section iff there is no unemployment risk.

Once that risk is present, the gains from irrational agents disappear.

5.1 Time Series

In this case, the turnover moments are calculated from quintiles of the time series average of turnover by

household. That is, for a particular household i, the average of the monthly turnover is calculated from the

23There does not appear to be any such dynamic choice model in the literature. This is left for future work.
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Table 3: Data and Model Moments: Time Series

case t1 t2 t3 t4 t5 DR
Data 0 0.0039 0.0134 0.0291 0.1155 -0.0010

Rational
No UR 0.0065 0.0113 0.0168 0.0247 0.1151 -0.0017

UR 0.0065 0.0104 0.0157 0.0242 0.1159 -0.0018
No UR (M) 0.00 0.00 0.0141 0.0257 0.0710 -0.0008

UR (M) 0.00 0.00 0.0237 0.0349 0.0694 -0.0016
Irrational

δ 0.0065 0.0113 0.0168 0.0247 0.1151 -0.0017
σR 0.0065 0.0115 0.0174 0.0262 0.1076 -0.0018
ρR 0.0065 0.0113 0.0168 0.0248 0.1152 -0.0017
µR 0.0066 0.0113 0.0174 0.0266 0.1137 -0.0026

good news 0.0065 0.0113 0.0168 0.0247 0.1151 -0.0017
bad news 0.0063 0.0112 0.0171 0.0259 0.1160 -0.0017

This table reports data and simulated moments by household averages over time. The panel is balanced. “ti” is the turnover
rate for quintile “i” and “DR” is the difference in the net return between the highest and lowest turnover rate quintiles.
The rows with M use the median turnover and return for t5.

period in which the household had an account. The turnover rates are then ranked to create the quintiles.

For this exercise, the data and simulated moments come from a balanced panel.

Table 3 reports the findings in terms of moments. The model with rational agents, either with or without

unemployment risk matches the turnover profile well and generates the large turnover in the fifth quintile.

The return differential is actually too large relative to the data.

The mechanism here, as discussed earlier, is a combination of liquidity needs and adjustment costs.

Rational households desire to smooth consumption relative to their stochastic income. But liquidity is costly,

given the return differential between bonds and stocks. Thus, consumption smoothing arises from using the

bond account to buffer income shocks supplemented by occasional stock trades. Thus the magnitude of the

turnover is enhanced by the adjustment costs. Clearly this alone can account for the high turnover as well

as differential in returns.

Table 4 reports the parameter estimates and fit. Across the cases, the estimates of β, γ, ψ are quite close.

At the annual frequency, the discount factor is about 0.86, close to the estimate reported in Cooper and Zhu

(2015).24 The adjustment costs ranges from 1.3 to 2% of average monthly income.

The fit is very close for the two rational model, keeping in mind that there are 6 moments and 3

parameters. The model with unemployment risk fits slightly better.

There are six cases of irrationality reported. Specifically the misperceptions allowed are about: (i)

unemployment risk δ, (ii) volatility in asset returns σR, (iii) the serial correlation in asset returns, ρR, (iv)

the mean of asset returns, µR, (v) good news and (vi) bad news.

The first four of these exercises implements the discussion in section 2.2.1. To implement the noisy advice

model, assume z ∈ {0, 1}. When z = 0, households believe that Rs is an iid process, as specified in the

baseline model. Alternatively, z = 1 leads the households to put all weight on the lowest (highest) realization

of Rs
′
. These are the “bad” and “good” news cases respectively. The estimation includes p, the probability

that z = 1 for the two cases in which this realization of z is viewed as either extremely good or bad news.

For some of these estimation exercises, parameters were started in the neighborhood of the rational

estimates with the additional parameter of perceptions set at the value from the data. Additional estimation

24The product of the annual discount factor and the mean return is 0.944, thus less than unity.
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was started at a number of distant parameter values to study global identification. The results reported are

the best fits from these various starting points.

Table 4: Parameter Estimates: Time Series

case β γ ψ IR Parm DP J
Rational

No UR 0.9876 2.1659 0.9868 na na 1.3e-04
UR 0.9892 2.2552 0.9803 na na 1.2e-04
No UR (M) 0.9613 2.5932 0.9389 na na 2.7e-05
UR (M) 0.9760 0.9866. 0.9889 na na 1.6e-04

Irrational
δ 0.9876 2.1659 0.9867 0.0149 0.0140 1.3e-04
σR 0.9876 2.1658 0.9868 0.0439 0.0439 1.3e-04
ρR 0.9876 2.1659 0.9868 0.0004 0 1.3e-04
µR 0.9883 2.2407 0.9854 1.0057 1.0061 1.3e-04
good news 0.9876 2.1659 0.9868 0.0000 0 1.3e-04
bad news 0.9877 2.1670 0.9864 0.0000 0 1.2e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is
the fraction of income remaining after portfolio adjustment. For the irrational cases, “IR Parm” is the estimated beliefs
and “DP” is the parameter from the data. J is the difference between model moments and data moments as described in
equation (13).The rows with M use the median turnover and return for t5.

Table 4 there are some small differences in the parameters and in some experiments, such as the µR case,

a deviation between the estimated belief, “IR Parm”, and the statistic from the data, “DP”. But in no case

does the fit improve upon the rational model with unemployment risk.

This is a key finding of the paper. Allowing misperceptions about the stochastic processes for

income and return does not improve the fit over the rational model.

From Table 2, the behavior in the fifth quintile itself seems to be driven by outliers. The median turnover

and return differential in that cell is 0.0812 and 0.0020 respectively, quite different from the mean values

used in the estimation. This suggests that perhaps the largest turnovers are causing the negative return

differential.

To study this, the model is re-estimated to focus on the median t5 and DR moments, labeled “(M)” in

the tables of results.25 We find that the model fit is not as good in this case. This is informative: there are

not large trades in the tails that make it difficult for the rational model to match the moments. If anything,

the opposite is true.

5.2 Robustness

There are a couple of robustness exercises based upon these estimates. These include estimating a fixed cost

of adjustment, changing the dividend reinvestment procedure, increasing the mean level of income, reducing

the cost of trade and using a weighting matrix.

For all of these cases, we see that the theme remains. The model with rational agents is able to reproduce

both the return differential and the high turnover rates.

25The data moments are given in the appropriate row of Table 2,
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Table 5: Parameter Estimates: Robustness

case β γ ψ J
Baseline 0.9876 2.1659 0.9868 1.3e-04
Low Cost 0.9876 2.1635 0.9868 2.0e-04
No Reinvestment 0.9881 2.3782 0.8716 3.0e-04
F 0.9854 2.8566 0.0469 1.2e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is
the fraction of income remaining after portfolio adjustment. J is the difference between model moments and data moments
as described in equation (13). The row labeled Baseline is the baseline estimation with no unemployment risk.

5.2.1 Low Cost

The case of “low cost” reduces the fixed costs of buying and selling to 10% of their estimated values. The

motivation of this is simply that currently trading costs are considerably lower and it is interesting to see if

the patterns of turnover and return differential remain.

Not surprisingly, the lower trading costs, at the baseline parameters, leads to higher turnover rates in

the lowest quintile and lower turnover rates in the highest quintile. Consequently the return differential is

lower.

If the model is re-estimated, at the new parameters turnover in the highest quintile is restored. But the

return differential remains very low. The fit with the new estimation is not nearly as good as the baseline.

The parameters are close to the baseline though the trading cost, (1− ψ), is positive and thus a bit higher

than the baseline to compensate for the reduction in the fixed cost of trading.

5.2.2 No Reinvestment

In the baseline model, it is assumed that even if there is no portfolio adjustment, stock returns are deposited

in the stock account. As a consequence, the stock share increases in high return states unless the adjustment

cost is paid. When there is adjustment, there are stock sales in high return states.

An alternative is to assume that stock returns are paid to the bond account. With that assumption,

portfolio rebalancing will go in the other direction in response to a high return shock. The effect of this

modification on the moments will depend, in part, on the non-linear nature of the decision rules.

Table 6: Data and Model Moments: Robustness

case t1 t2 t3 t4 t5 DR
Data 0 0.0039 0.0134 0.0291 0.1155 -0.0010
Baseline 0.0065 0.0113 0.0168 0.0247 0.1151 -0.0017
Low Cost 0.0073 0.0127 0.0201 0.0297 0.1101 -0.0007
No Reinvestment 0.0102 0.0156 0.0191 0.0250 0.1152 -0.0009
F 0.0064 0.0110 0.0168 0.0253 0.1145 -0.0013

This table reports data and simulated moments by household averages over time. The panel is balanced. “ti” is the turnover
rate for quintile “i” and “DR” is the difference in the net return between the highest and lowest turnover rate quintiles.
The row labeled Baseline is the baseline estimation with no unemployment risk.

With this re-estimation, the estimated cost of portfolio adjustment is much larger to offset the increased

need for the liquidation of income paid to the stock account. The fit is not as good as other specifications.

Yet, the patterns of high turnover and the differential in returns is well matched.
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5.2.3 F

For this experiment, the opportunity cost of adjustment is replaced by a fixed cost, denoted F . Here F is

relative to mean income and is restricted, F ≥ 0.26

The resulting moments are again quite close to the baseline. The fit of the model is a little better. The

estimated value of risk version is a bit larger and the adjustment cost is 5% of average income.

5.2.4 Weighting Matrix

Another robustness exercise is to redo the baseline estimation using the optimal weighting matrix. As

discussed in the appendix in detail, the variance-covariance matrix is obtained by bootstrapping.

Table 7: Parameter Estimates: Optimal Weighting Matrix

case β γ ψ J
No UR 0.9681 1.4531 0.9830 3.41e2
UR 0.9670 1.4506 0.9819 1.45e2

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is
the fraction of income remaining after portfolio adjustment. J is the difference between model moments and data moments
as described in equation (13).

The weighting matrix puts a lot of weight on the average turnover in the first quintile. Therefore more

effort is used to match the zero in the first quintile instead of the average turnover in the highest quintile as

well as the difference in net return, which are of more interest for this study.

In Table 7, the estimates of the two cases are fairly close to each other. Consequently, due to more risk

from income, the UR case exhibits higher turnover and thus higher net return differential, as is shown in

Table 8.

Table 8: Data and Model Moments: Optimal Weighting Matrix

case t1 t2 t3 t4 t5 DR
Data 0.00 0.0039 0.0134 0.0291 0.1155 -0.0010

No UR 0.00 0.0000 0.0024 0.0216 0.0543 -0.0010
UR 0.00 0.0037 0.0173 0.0324 0.1541 -0.0018

This table reports data and simulated moments by household averages over time. The panel is balanced. “ti” is the turnover
rate for quintile “i” and “DR” is the difference in the net return between the highest and lowest turnover rate quintiles.

5.3 Identification

Table 9 reports the response of the turnover moments to variations in the three parameters. The reported

elasticities are calculated at the baseline estimates and simulated moments, based upon a 1% increase in the

parameters.27

There are a couple of points illustrated by these calculations. First, the moments are very sensitive

to changes in the discount factor and the adjustment cost, (β, ψ). The response to γ is smaller but not

insignificant, as some of the higher turnover rate moments are sensitive to variations in the risk aversion.

26As this is a change in the model itself, there are no simulation results possible at baseline parameters.
27The model is non-linear. Thus the magnitude and in some cases the sign of the moment change can depend on both the

magnitude and direction of the parameter change. This was checked as well and the basic arguments for local identification
remain.
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6 MATCHING CROSS SECTIONAL AND REBALANCING MOMENTS

Table 9: Elasticity of Moments to Parameter Values: Baseline

parm. t1 t2 t3 t4 t5 DR

β 95.31 45.25 11.96 -14.43 -77.97 -95.39
γ 3.95 7.32 17.46 18.01 4.44 3.57
ψ 6.12 9.36 17.61 18.94 -20.27 21.11

This table reports the elasticity of moments with respect to parameters for
the baseline model, based upon a 1 % increase.

Second, some of the internal mechanisms of the model are revealed by these elasticities. Again, these are

complicated due to the rich nature of the choice model as well as the moments being matched.

The response to an increase in β is large and complicated. As households become more patient, the

adjustment rate rises in response to income shocks.28 Consequently, the three lowest turnover rates rise

as well. But the higher return rates actually fall since the ”pent up” demand to adjust is lower. Further,

the response to a return shock is somewhat different, in part because the gross return is paid to the stock

account. Thus consuming from this flow requires turnover. Also, as β rises, all else the same, the level of

financial wealth is higher which decreases the turnover rate since stock holdings are in the denominator of

that rate.

As households become more risk averse, i.e. γ increases, consumption smoothing is more important. This

increases the frequency for all turnover rates and also increases the return differential, as seen in Table 9.

Looking at the adjustment cost, an increase in ψ reduces inactivity and thus causes the turnover rates to

rise for all but the highest turnover class. As with the higher discount factor, t5 is actually lower since the

increase in the small adjustments leads to less frequent large adjustments. DR increases as well.

In addition to these calculations, the estimation entailed multiple starting values searching for the best

fit. This would uncover local and global identification problems.

6 Matching Cross Sectional and Rebalancing Moments

This section goes beyond the estimation of the time series to study both the cross section moments and those

reported by Barber and Odean (2000). For these cases, models with both rational and irrational households

are estimated.

The results reported for the time series estimation hold for the cross section moments. In particular, we

do not find improvements in fit by the addition of irrational households.

The estimation matching the moments from Barber and Odean (2000) are different in a couple of ways,

reflecting the fact that they are calculated from gross rather than net trades. Importantly, we do find some

modest gains allowing agents to have irrational beliefs about unemployment risk and/or the variability of

returns. These differences are not driven by beliefs alone but rather by a combination of irrational beliefs

and alternative parameter values.

6.1 Cross Section

The presentation of results based upon moments calculated from the time averaged cross sectional moments

are split into two parts. The first reports results for a balanced panel. The second introduces exit into the

28At the baseline parameters and the average stock return, a 1% increase in β increases the adjustment rate from about 20%
to over 80%. Interestingly, these adjustment rates are lower when the stock return takes either its highest or lowest value.
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model and the estimation and studies the moments from an unbalanced panel.

6.1.1 Balanced Panel

Table 10: Data and Model Moments: Cross Section

case t1 t2 t3 t4 t5 DR
Data 0.0000 0.0000 0.0000 0.0000 0.2721 -0.0009

Rational
No UR 0.0000 0.0000 0.0000 0.0000 0.2723 -0.0017

UR 0.0000 0.0000 0.0000 0.0015 0.2723 -0.0015
Irrational

ρR 0.0000 0.0000 0.0000 0.0000 0.2724 -0.0016

This table reports data and simulated moments. “ti” is the turnover rate for quintile “i” and “DR” is the difference in the
net return between the highest and lowest turnover rate quintiles.

In this case, the focus is on monthly turnover rates across households. These rates are ranked to create

the monthly quintiles. The moments are calculated from a time series average of the means of the monthly

quintiles of turnover. So, in a particular month, there will be some households with relatively low (high)

turnover and that same household might have high (low) turnover in another month. The return differential

is the time series average of the monthly differential in net return between the high and low turnover quintiles.

For this exercise, as in the calculation of the time series moments, the data and simulated moments come

from a balanced panel.

From the data moments reported in Table 10, the inaction in portfolio adjustment is apparent. The

inaction is much higher than in the time series moments. But when there is turnover, it is large: the mean

of the highest turnover quintile is over 27% in the cross section, compared to around 11% in the time series.

Still, the return differential is about the same in the cross section as in the time series moments.

Table 11 reports the parameter estimates. Compared to the time series parameter estimates without

unemployment risk, for the rational model, the discount factor is slighter lower, the risk aversion is higher and

the portfolio adjustment costs are higher. With these parameter values, there is more portfolio adjustment

inaction and, when adjustment occurs, the turnover rate is quite large.

For the cross section, the fit is better without unemployment risk. In this case, the estimated discount

rate, risk aversion and adjustment cost fall relative to the cross section estimates without unemployment

risk. The improvement in the model fit comes through the reduced average turnover in t4. For both of the

rational models, the return differential is much higher than the data moment. Again, the problem matching

the data does not arise from the excess turnover in t5 nor the return differential.

As conjectured earlier, the fit is considerably better with the cross sectional model. Again, this perspective

highlights stochastic liquidity needs rather than smoothing them over time as in the time series analysis.

Still, both types of variations can be explained through the lens of this model.

The introduction of irrationality in the form of a slight belief in serially correlated returns (0.0004 rather

than 0) does improve model fit relative to the no unemployment risk case.29 But relative to the case with

unemployment risk, the fit is not better for any form of irrationality.

29Other forms of irrational beliefs did not lead to any improvement in fit.
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Table 11: Parameter Estimates: Cross Section

case β γ ψ IR DP J
Rational

No UR 0.9795 1.0666 0.9729 na na 6.30e-07
UR 0.9727 1.1050 0.9531 na na 3.57e-07

Irrational
ρR 0.9790 1.0487 0.9626 0.0004 0 6.03e-07

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is
the fraction of income remaining after portfolio adjustment. For the irrational cases, “IR Parm” is the estimated beliefs
and “DP” is the parameter from the data. J is the difference between model moments and data moments as described in
equation (13).

6.2 Time Series and Cross Section Moments

The cross section moments highlight high frequency liquidity needs while the time series smooth over these

variations. Naturally, it is of interest to see if both the time series and cross sectional moments can be

matched with the same set of parameter values. From the estimates presented above, the estimated risk

aversion is much lower and the discount factor lower when the cross sectional moments are matched.

Table 12: Parameter Estimates: Time Series and Cross Section

case β γ ψ J
Rational

NO UR 0.9701 2.4518 0.9919 4.4e-03
UR 0.9486 2.2756 0.9842 4.1e-03

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion
and ψ is the fraction of income remaining after portfolio adjustment. J is the difference between model moments
and data moments as described in equation (13).

Table 13: Data and Model Moments: Time Series and Cross Section

Cross Section Time Series
case t1 t2 t3 t4 t5 DR t1 t2 t3 t4 t5 DR

Data 0.0000 0.0000 0.0000 0.0000 0.2721 -0.0009 0 0.0039 0.0134 0.0291 0.1155 -0.0010
Rational

No UR 0.0000 0.0003 0.0071 0.0235 0.2370 -0.0047 0.0156 0.0260 0.0342 0.0449 0.1502 -0.0020
UR 0.0000 0.0000 0.0014 0.0127 0.2340 -0.0046 0.0061 0.0178 0.0305 0.0428 0.1573 -0.0026

This table reports data and simulated moments. “ti” is the turnover rate for quintile “i” and “DR” is the difference in the
net return between the highest and lowest turnover rate quintiles.

Tables 12 and 13 report the parameter estimates and moments for this exercise. In this case we are fitting

12 moments with only three parameters.

Not surprisingly the fit is not as good as it is when the time series and cross section moments are

matched separately. The estimated discount factor is close to the cross section estimate while the degree of

risk aversion is much higher than the other estimates. The adjustment cost is about the same.

6.3 Barber and Odean (2000) Moments

The results have been presented using the moments calculated in a way that is consistent with our model

with a single stock. For the most part, the turnover and net return moments are closely matched without
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irrational agents, with slight improvement for some irrational beliefs. This is the case for both the time

series and cross sectional moments.

Table 14: Parameter Estimates: BO

case β γ ψ Γ IR Parm Parm J
Rational: Time Series, Balanced

No UR 0.9830 1.7351 0.9947 na na na 4.36e-04
UR 0.9767 1.6029 0.9917 na na na 2.62e-04

Rational: Time Series, Unbalanced
No UR 0.9886 2.5459 0.9683 0.0612 na na 0.0015
UR 0.9927 1.3656 0.9987 0.0120 na na 0.0018

Rational: Cross-Section
No UR 0.9469 2.0056 0.9996 na na na 1.26e-05
UR 0.9797 1.5313 0.9986 na na na 6.67e-04

Irrational: Time Series

δ̃ 0.9828 1.4122 0.9951 na 0.0368 0.0140 1.44e-04
σ̃R 0.9832 1.5123 0.9898 na 0.0958 0.0439 1.80e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion
and ψ is the fraction of income remaining after portfolio adjustment. J is the difference between model moments
and data moments as described in equation (13).

We now turn to the matching the moments presented in Barber and Odean (2000). This is worth pursuing

for at least two reasons. First, these moments are a natural challenge given the strong conclusions in their

study. Second, since the moments in Barber and Odean (2000) are calculated for all trades, including

rebalancing, it is insightful to determine how well a model without rebalancing can match their moments.

Doing so, provides a metric for determining the importance of portfolio rebalancing in generating patterns

of turnover and net return.

That said, it should be clear that this exercise is off the domain of our model. In effect, by using the

turnover moments from Barber and Odean (2000) we treat all trades, including rebalancing, as adjustments

between stock and bond accounts. It is straightforward to supplement the dynamic optimization model to

include multiple stocks. The problem with the estimation of such a model comes from the expansion of the

state space making computation and estimation essentially impossible.

6.3.1 Exit

Besides the inclusion of rebalancing, there is a second deviation from our baseline analysis that is potentially

important. As noted a number of time, it is not clear how exit was treated in the Barber and Odean (2000)

set of moments. In our analysis, a household is said to exit when the record ends. Of the 53,394 households

with accounts at the start of the sample in January 1991, only about 25% had active accounts at the end

of the sample, 71 months later. The median time in the sample is 41 months. To the extent that traders

were induced into high turnover with low net returns, exit is an important form of adjustment. Further, the

turnover rate at the time of exit is, by construction, 100%. Thus exit surely contributes to the measures of

turnover.

The optimization problem is modified to include a fixed flow cost of stock market participation, presented

as a fraction of average income, denoted Γ. Thus the budget constraint for a participating, adjusting

household is given by:
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c = ψy +Rbb+Rss− b′ − s′ − C(s, s′)− Γȳ. (18)

If the participating household does not adjust its portfolio it must still incur the flow cost to maintain an

option for future adjustment. In this case consumption becomes

c = y +Rbb− b′ − Γȳ. (19)

A household can choose to sell all of its stocks and thus avoids this cost. All assets are converted into

bonds. There is an option to reenter upon payment of the fixed cost.

The results reported below include moments calculated from the baseline model without exit as well as

from an unbalanced panel with exit. For the calculation of the latter moments, all trades, including those

that effectively close an account, are included.30

6.3.2 Results

Tables 14 and 15 present the parameter estimates and moments for models with rational and irrational

households where the target moments are from Barber and Odean (2000). For these estimates, the simulated

moments are calculated in the two ways described: the time series and cross sectional approaches. For the

simulated time series moments, results are presented for both balanced and unbalanced panels since the

treatment of exit is not clear from the discussion of their moments.

For rational households, the estimates are presented in the top panel of Table 14. The panel labeled

“Rational: Time Series” reports our main parameter estimates. As before, the row labeled “No UR” assumes

no monthly unemployment risk while the “UR” row allows unemployment shocks. The next block presents

the cross section estimates.

For the times series moments and the balanced panel, in the “No UR” case, the estimated value of

β = 0.9830 and the risk version estimate is 1.7351. The cost of adjustment ψ is slightly below one. Relative

to the baseline, the estimated risk aversion and the discount rate are both lower. With unemployment risk,

the fit is better with a lower discount factor and less risk aversion.

From Table 15, the estimated model captures quite well the distribution of turnover rates, including the

highest quintile. This includes the near 21.5% turnover rate from the data. Thus the rational model has no

problem matching the large turnover rates based upon liquidity needs alone. The estimated model captures

about 63% of the net return differential.

The block of time series results with the unbalanced panel allows exit. For this case, the exit rate from

the data is added as a moment and the flow cost Γ is estimated as well. The fit is not as good as the baseline

model. The flow cost is estimated at about 3% of income. The estimated model matches turnover in the

highest quintile and creates a substantial return differential, much larger than in the data. But, the exit rate

is not matched well by the estimated model.

For the cross section moments, the best fit is obtained without unemployment risk. The discount factor

is below the baseline estimate and the risk aversion is slightly lower as well. Note that ψ is quite close to one

so that the only operative adjustment costs are associated with direct trading costs. From the moments, the

estimated model matches the highest quintile of turnover as well as the return differential as well.

The estimation results allow for irrational households following section 2.2. The results are reported in

the bottom panel of Table (14) with the moments in Table (15). The fit of the moments was improved,

30We do not include new entry.
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Table 15: Data and Model Moments: BO

case t1 t2 t3 t4 t5 DR exit rate
Data 0.0019 0.0124 0.0289 0.0598 0.2149 -0.0046 0.0120

Rational: Time Series,balanced
No UR 0.0129 0.0248 0.0364 0.0496 0.2148 -0.0032 na

UR 0.0047 0.0184 0.0311 0.0454 0.2128 -0.0028 na
Rational: Time Series,unbalanced

No UR 0.0061 0.0105 0.0157 0.0249 0.2176 -0.0060 0.0010
UR 0.0048 0.0083 0.0143 0.0220 0.2133 -0.0079 0.0005

Rational: Cross Section
No UR 0.0022 0.0112 0.0268 0.0609 0.2126 -0.0049 na

UR 0.0000 0.0022 0.0161 0.0401 0.2120 -0.0052 na
Irrational: Time Series

δ̃ 0.0085 0.0211 0.0328 0.0568 0.2160 -0.0042 na
σ̃R 0.0079 0.0225 0.0334 0.0557 0.2136 -0.0028 na

This table reports data and simulated moments. “ti” is the turnover rate for quintile “i” and “DR” is the difference in the
net return between the highest and lowest turnover rate quintiles.

relative to the rational time series case with unemployment risk, for two specifications. This improvements

arose only when both parameters and beliefs deviated from the baseline. That is, if parameters are held fixed

at their rational estimates, then allowing beliefs alone to vary did not improve the fit. The introduction of

irrational beliefs did not improve the fit relative to the cross section case with rational households.

First, in the case labeled “δ̃” the household’s beliefs about unemployment risk was estimated to be 0.0368

compared to the baseline model assumption of 0.0140. With this form of irrationality, the estimated risk

aversion is lower as is the adjustment cost. From the moments, this belief about unemployment risk brings

the turnover rates in the fourth and fifth quintiles closer to the data and bring the return differential much

closer to the data.

In the case of a more variable return process, σ̃R = 0.0958 compared to 0.0439 in the data, the model

fit improved as well. In this case as well, the estimated risk aversion and adjustment costs are slightly lower

than in the no UR baseline. The fit improved because of the larger differential in returns and increased

turnover in the highest quintiles.

One way to evaluate the significance of the irrational beliefs is to compare the allocation under the

resulting decision rule with the consumption profile of a rational agent, all else the same.31 For this exercise,

we focused on the case in which irrational agents overstate the probability of unemployment. This leads

them to have higher precautionary savings relative to rational agents.

Specifically, first, using the decision rules of rational agents, a 4000x2000 panel is generated under the

assumption of a constant stock return at its mean. The length of time is long enough to ensure the economy

reaches the ergodic joint distribution of income and asset holdings. Second, 5000 random draws are taken

from the ergodic distribution as initial states. Agents with positive stock holdings are selected (1904 of

5000) since these agents would have a stock account with a broker, as in the data. For each of these 1904

agents, 50 different paths of income are simulated for 60 months. These draws are data consistent, not

consistent with the beliefs of the irrational agents. The return process is fixed from the actual data over the

sample period of December 1991 to November 1996. Under these return and income processes, 60 months

consumption profiles are generated from the rational model (CR) and the irrational model (CIR). At the end

31Evaluation of statistical significance is possible only with the proper weighting matrix. To us, the economic significance is
more revealing.
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of the 60 months, the asset positions are recorded from these two decision models. Finally, the consumption

compensation is calculated for each of the simulated paths.

The goal was to calculate the compensating differential given to rational agents if they used the irrational

decision rules. Compensation of consumption is calculated by solving for χ that satisfies

60∑
t=1

βt−1U(CRt ∗ χ) + β60Ey′,R′|y,RV (SR61) =

60∑
t=1

βt−1U(CIRt ) + β60Ey′,R′|y,RV (SIR61 ) (20)

where U(·) is the utility function for the rational agent, rational expectation is taken over income and return

realizations, and V (·) is the value function of the rational agent at the end of the 60 month window evaluated

in the terminal state for type j = R, IR, denoted Sj61.

Averaging over all agents with initial stock holdings, χ is around 99.4%, which means a 0.6% compensation

of consumption for the rational agent to use the decision rules of the irrational agents.32 With monthly income

of about $6, 000, this is about $36 or less than the fixed cost of a single trade.

7 Conclusion

The goal of this paper was to assess the claim made by Barber and Odean (2000) that the patterns of returns

as a function of portfolio turnover was consistent with overconfident agents and inconsistent with rational

traders. The approach uses a household dynamic optimization problem, emphasizing both the extensive and

intensive margins of portfolio choice, as a framework for the analysis. In our model, portfolio adjustment

costs created both inaction and large turnover and also drive a wedge between gross and net returns.

Parameters are estimated to match moments associated with turnover rates and net return patterns. We

estimated models with both rational and irrational agents. For the latter, we study specifications in which

agents either hold beliefs about income or returns that are not consistent with the data. We also study cases

in which agents receive signals of future returns that are false.

We reach two conclusions. First, models with rational agents can match the turnover moments emphasized

in Barber and Odean (2000) and calculated in a model consistent manner. Second, introducing various forms

of irrationality do influence household choices, but does not improve the fit of the model with respect to the

turnover and net return moments.

There is one case though where this conclusion must be qualified. If we match the moments taken directly

from the Barber and Odean (2000) study, there are two cases in which some irrationality in beliefs creates

a better fit. This occurs only when the moments are taken from a time series.

Does this finding support their conclusion that:

These results are consistent with models where trading emanates from investor overconfidence,

but are inconsistent with models where trading results from rational expectations.

We think not for a couple of reasons. First, as our analysis has shown, the patterns of turnover and net return

associated with transactions between stock and bond accounts are completely consistent with the optimizing

behavior of rational households. Thus any irrationality lies in portfolio rebalancing that is excluded from our

model but included in their moments. Second, the deviations from rational beliefs are minor, as measured by

consumption compensation to rational agents for adopting the decision rules of the irrational agents. Third

32To avoid selection bias, here we are averaging over all agents including those who maintained a stock account through the
sample as well as those who did not.
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8 APPENDIX

these deviations amount to increasing the volatility of labor and/or financial income and thus point to some

missing elements of risk excluded by our simple model of portfolio choice. Fourth, there is no evidence of

overconfidence in the form of excessive beliefs in the serial correlation of returns or the news provided by a

broker.

The analysis has focused entirely on the intensive margin with respect to portfolio adjustment, as well

as the choice of whether to adjust or not. There is an important omitted margin: to open an account with

direct holdings or not.

Further, and perhaps more importantly, it might be that overconfidence plays a role in the decision

regarding direct holding itself. As noted by Barber and Odean (2000), the actual return process in their

data set is not that much different from that obtained through indirect holdings. This naturally leads to the

question of why agents hold stocks directly at all.
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8 Appendix

This appendix provides additional information about the calculation of the income process and other mo-

ments.
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8 APPENDIX

8.1 Income

Notation

The following uniform notation is used throughout this note. For income, denote the absolute level by Y ,

the log by y, and the residuals by ỹ. The superscript a indicates annual and m indicates monthly data.

Annual Income

From Bonaparte, Cooper, and Zhu (2012), henceforth BCZ, the annual income process for stock holders

obtained by the following steps (as described in the BCZ appendix): pool all the observations together,

regress income on age, age2, education attainment, gender and marital status. Take the residuals from the

regression and use the residuals to run the AR(1) process

ỹat = ρaỹat−1 + εat . (21)

The persistence of the income shock is estimated to be ρa = 0.84224, and the standard deviation of the

innovation is σε = 0.29027.

Monthly Income

From Bureau of Labor Statistics CPS survey, https://www.bls.gov/webapps/legacy/cpsflowstab.htm,

data on flows and levels are obtained to calculate the monthly probability of being separated from employ-

ment, the probability of finding a job conditional on being unemployed. Our definition of unemployment

includes unemployment and not in the labor force. The probabilities are calculated from averaging over

monthly flows over stocks. For example, the probability of being unemployed is flow(e→u+e→n)
employmentlevel .

We make the following assumptions on the monthly income process. Suppose a person was unemployed

last month, then with prob pue, he is employed this month, and receives the average income, 6.33 In logs,

ymue = log(6). With prob 1 − pue, this person is still unemployed, he receives the unemployed benefit, with

is 0.4 times the average monthly income, so this translates to ymuu = log(0.4× 6).

Suppose a person was employed last month, then with probability pee, he is still employed this month

and receives

ỹmt = ρmỹmt−1 + εmt . (22)

In levels, this corresponds to

ymt = µm(1− ρm) + ρmymt−1 + εmt (23)

Since we assume that the innovation εt follows normal distribution of mean 0 and standard deviation σε,

Y m follows log normal distribution of parameters (µm, σ
m
y ), where σ2

y =
σ2
ε

1−ρ2 . Hence,

6 ≡ EY m = eµm+
σm2
y
2 → µm = log(6)−

σm2
y

2
(24)

With prob 1− pee, this person gets unemployed and get ymeu = log(0.4× 6).

33This corresponds to the monthly average income of $6000, annual $72000 for stock holders.
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8.1.1 Estimation

Given these momthly flows into and out of unemployment, it is necessary to estimate the parameters, (ρm,

σmε ), of the monthly income process. This is essentially a SMM exercise with the annual parameters, (ρa, σaε )

as moments to match. The following algorithm was used for this purpose:

1. guess a vector of parameters ρm, σmε

2. simulate a panel of level of monthly incomes, aggregate to a panel of annual incomes (level)

ya = log(

12∑
i=1

exp(ymi )) (25)

3. use the simulated annual income panel to do the following AR(1) regression

yat = µa(1− ρa) + ρayat−1 + εat (26)

and calculate the variance of the residual.

4. compare the ρa and σaε with the estimates from BCZ and go back to step 1 if not close enough.

As indicated in the text, the serial correlation of the monthly income process conditional on employment

is estimated to be 0.9959, and the standard deviation of the innovation is 0.0839 under the mean recovery

case. For the income process without unemployment risk, we go through the procedures described above,

except that in Step 2, we simulate a panel of monthly incomes assigning 0 probability to unemployment.

For the case without unemployment risk, the serial correlation is estimated to be 0.9781, and the standard

deviation of the innovation is 0.1165.

8.2 Data Construction

The first step is to merge pieces of information in each data set together. We first start with the description

of each raw data set that was used.

8.2.1 Data Sets Used

1. newtrades3.dta: This data set documents the trade information of each account number. Notice that

each household can have multiple accounts. In each record, there is information of trade date TraD,

account number AccN, security number SecN (each account can trade various securities), type of trade

BS, the commission charged Commision, Price, Quantiy and Principle (it always hold that Prin =

Quan × Price) Cusip, and product code Proco indicating the type of the account. As in BO, we are

restricting attention to common stocks. A trade is only reported when it happens. In other words, if

a household did not trade in month t, then there will be no report.

2. newposit91(92,...96).dta: These data sets document the position information for each security SecNum

at each monthPosDat under each account. In each entry there is information on product code ProdCod,

position equity PosiEq and position quantity PosQuan. We merge all these years of position records by

simply appending newposit91 to newposit96, and generate positall.dta. The position data should be

documenting the end-of-the-month position since that is consistent with the trade record. For example,
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for SecN 1328808 under AccN 629, the first record of position is equal to 300 in quantity in May 1992

when a quantity of 300 is purchased. For the following months (until December 1992) the position

quantity was always 300 though the position equity changed with price changes until October 1995

when there is no position, with a quantity of 300 being sold.

3. newbase.dta: This data set has the household ID HHN and account ID AccN, as long as the date on

which the household opened the account HHOD, account types, Client segment CliSeg which tells us

whether the account is general G, affluent A or active T Since the position data only have account

number but we want to know how long the household was in the sample to construct the balanced

panel, we merge AccN with HHN. One HHN can have multiple AccN’s. There are 77927 households

from the raw data, and on average each HHN has 2.03 accounts with minimal of 1 and maximum of

392. Dofile called ”genkeeplisthhod.do” generates a keep list that has 1 for households whose latest

account was opened before or in February 1st 1991 and 0 otherwise. In other words, this keep list

selects households who opened all their accounts before 1991 February.

The following are generated from the raw data described above.

• ”baseAccNunique.dta”: is generated from newbase.dta after dropping the same account numbers that

belong to different households. Out of 158034 records of HHN-AccN pairs, there are 416 pairs where

the same account number belongs to different households. We dropped these.

• ”SecN Cusip.dta”: Starting from positall.dta, we only keep Security number and Cuisp and take its

first 8 digits. It turns out the 77.3% of securities have Cusip.

• ”cusip initialvalue.dta”: Since the position data is end-of-month, we need to generate a beginning of

the month position data by taking the end-of-month position of last month. What we do here is to

start with positall.dta, only keeping the common stocks, and generate a trade month one after the

record. For example, if the position record is for May 1995 then the trade date generated is June 1995.

Rename the position equity variable as ”Posi inital”. There are 0.73% observations that have multiple

reports for a security in one month. We dropped all the multiple records and only keep these records

that have one unique report for the position of a security of an account in one month.34 Then we

match SecN with Cusip using ”SecN Cusip.dta” and only keep the matched ones. (13,335,790 were

matched while 332,985 were not, in the master data)

• ”myreturn.dta” is created from CRSP return data. The variable called ”ncusip” is the correct cusip

to use from the CRSP data, as well as ”ret” for return.35 The sample period is from December 1991

to November 1996.

• ”nm0927.dta” is generated from positall.dta. First match that with HHN and only keep common

stocks. For each household, count how many months there are at least one report of positions under

one account for any security. The list assigns 1 to households who have at least 1 reported position

for all the 71 months (Jan 1991 to Nov 1996) and 0 otherwise. Out of 65,514 observations, 20.78% of

them always reported a position each month, On average, households have reports of 43.7 months.

34This leaves us with 13,668,775 observations.
35webpage http://www.crsp.com/products/documentation/monthly-data-items-0 gives detailed definition of the variables.

Ret: Month-end to month-end change in total investment of a security, with ordinary dividends reinvested at the month-end.
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8.2.2 Merging Trade and Position Data

First, starting with newtrades3.dta, we only keep product codes that are common stocks. We generate

the trade month traM from the trading date information TraD. Then by each trade month traM and each

security SecN under each account AccN, we add up all the purcases (sales) for quantity, principal and com-

mission. This is to make the trades at the monthly basis because there can be multiple purchases (sales)

within the same month. Reshape the data so that each row has the purchase principal, commission as well

as the sales principal and commission. This data then is saved to ”data0712.dta”.

We merge position data with trade data by matching the trade data into the position data by AccN, SecN and

traM. For the unmatched position data, we understand that there is no trade, so we replace the missing val-

ues with 0 for the purchase and sales principal. This merged data set is then saved as ”merge final0820.dta”

Working from ”merge final0820.dta”, we first match AccN with HHN for each household using baseAcc-

Nunique.dta. Then we match each security with its cusip by ”SecN Cusip.dta” because the return data is

based on cusip, not the security number. We only keep the records where the securities have a cusip. 36

After this, merge the data through cusip with the return data to obtain monthly return for each security.

Last, we merge this through cusip with the record of the position of last month, and only keep the records

that are matched ( in other words, those that has a position information of last month). Now we are ready

to move on and calculate important statistics.

• nettrade of each security under each account in each month: is defined as the sum of purchases minus

sum of sales of this security

• mycost is computed for each security under each account in each month plugging the nettrade computed

above into the quadratic cost function (Table 1 in the paper). Bid-ask spreads of 0.31% for

purchases and 0.69% for sales are added to the linear term.

• port is the total sum of equity across all securities in all accounts for each HHN in each month

• totalB is the total sum of purchases principal across all securities in all accounts for each HHN in each

month

• totalS is the total sum of sales principal across all securities in all accounts for each HHN in each

month

• portlastm is the total sum of equity at the end of last month Posieq initial across all securities in all

accounts for each HHN in each month

• totalnet is totalB minus totalS

• sec share is the share of each security’s equity posi initial in portlastm, the total position for each

household HHN at the beginning of each month

• GRhht is the weighted average of gross return (ret plus 1) by the share of equity of each security for

each HHN total position at the beginning of each month: the weight is same as pi,t in Equation (2) in

Barber and Odean (2000).

• ourNRhht : first, for each security under each AccN in each month, compute net return as Posiinitial∗(ret+1)−mycost
Posiinitial

.

Then calculate the weighted average of the net return for each security using the same weight as in

GRhht.
36This leaves us with 14,357,599 observations v.s. the 354,376 observations unmatched and deleted.
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• ourto: our measure of turnover. It is equal to the absolute value of net trade totalnet across all

securities for each HHN, divided by the total position at the beginning of the month: |totalnet|
Posiinitial

With all the calculations above, the data is saved as ”tohhlist wretnew0928.dta”. This is the basis of

generating cross section and time series panel.

8.2.3 The Time Series Panel

We start with ”tohhlist wretnew0928.dta”. First, drop all observations with non-positive positions (both

current month and last month positions). Second, only keep households who opened all accounts before

February 1991 using ”keeplist.dta”. Last, only keep households who always have reports of positions from

January 1991 to November 1996: 71 months using ”nm0927.dta”

Time-Series Averages

For each household, generate time-averages of: turnover, beginning of the month position, net return and

gross return. Generate 4 percentiles (p20,p40 p60 and p80). Classify households into Quintile 1 if the

household average turnover is in [0, p20], into Quntile 2 if it is in (p20, p40], into Quntile 3 if it is in (p40, p60],

into Quntile 4 if it is in (p60, p80] and into Quntile 5 if it is above p80. Compute the mean and median of

average turnover in each quintile, as well as positions and net returns. 37

Table 16: the Balanced Panel Time Series
Q1 Q2 Q3 Q4 Q5 DR

N. 2903 2529 2716 2716 2716 n.a.
mean Position 25993.79 97974.06 68047.91 65173.57 73513.23 n.a
mean TO 0 .0039409 .0133699 .0290816 .1154604 n.a
median TO 0 .0038648 .013247 .0283326 .0689786 n.a
mean GR 1.010276 1.012712 1.011621 1.010451 1.011404 0.001128
mean NR 1.010276 1.012573 1.011277 1.009708 1.009258 -0.001018
median NR 1.012228 1.012817 1.01244 1.012154 1.011238 -0.00099

We also report the unbalanced one here since the weighting as changed compared to before. The unbalance

panel still only keep people who opened account before 1991 February but doesn’t require households to have

reports for positions throughout the sample period.

Table 17: the Unbalanced Panel Time Series
Q1 Q2 Q3 Q4 Q5 DR

N. 18,918 3,627 11,272 11,272 11,272 n.a.
mean Position 19563.53 98007.75 59175.8 48063.26 50127.36 n.a
mean TO 0 .0025307 .0129559 .0357216 .2171676 n.a
median TO 0 .0025367 .0127094 .0345575 .0929772 n.a
mean GR 1.010136 1.011324 1.010707 1.010467 1.01383 0.003694
mean NR 1.010136 1.011164 1.01032 1.003104 1.003719 -0.006417
median NR 1.011759 1.01184 1.011291 1.01119 1.010631 -0.001128

37Save the data as ”TSbaldata.dta” later used in producing the var-cov matrix
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8 APPENDIX

The Variance Covariance Matrix of the Balanced Panel of Time Series

We use bootstrap. Fixing seeds for each bootstrap exercise, we draw a random sub-sample (one tenth of the

whole sample) without replacement from the balanced panel, TSbaldata.dta. Then we treat this sub-sample

the same way as in the original one in calculating the 5 quintiles’ average turnover and mean net return

differential between Q1 and Q5. After repeating 100 exercises, we calculate the standard deviation for the

average turnover and mean net return differential, as well as the correlation between each pair of them. The

covariance is computed as the product of correlation and the standard deviation of two variables for each

pair. In the end, the diagonal of the matrix are the variances of each variable, and off diagonals are the

covariances between each pairs of variable. The matrix is

2.82e− 12 1.93e− 10 2.40e− 10 3.00e− 10 2.39e− 09 5.02e− 10

1.93e− 10 9.67e− 08 1.72e− 07 1.84e− 07 1.15e− 06 9.30e− 08

2.40e− 10 1.72e− 07 5.02e− 07 6.75e− 07 2.39e− 06 2.37e− 07

3.00e− 10 1.84e− 07 6.75e− 07 1.55e− 06 7.58e− 06 7.46e− 07

2.39e− 09 1.15e− 06 2.39e− 06 7.58e− 06 5.60e− 04 −1.12e− 06

5.02e− 10 9.30e− 08 2.37e− 07 7.46e− 07 −1.12e− 06 1.44e− 05


8.2.4 The Cross Section Panel

For the balanced panel, do the sample selection in the same way as the time series panel.

For each month, put households in quintiles as in the time series panel. Then take time-averages or medians

of gross and net returns, turnovers, and positions for each quintile.

Table 18: the Balanced Panel Cross Section
Q1 Q5 DR

N. 704,786 93,118 n.a.
mean Position 53114.54 163759.3 n.a
mean TO 0 .2721021 n.a
median TO 0 .1314092 n.a
mean GR 1.01097 1.015673 0.004703
mean NR 1.010969 1.010044 -0.000925
median NR 1.011111 1.011203 0.000092

Correspondingly, the unbalanced one is

Table 19: the Unbalanced Panel Cross Section
Q1 Q5 DR

N. 1,744,799 224,705 n.a.
mean Position 41970.59 124268.2 n.a
mean TO 0 .4020133 n.a
median TO 0 .1693548 n.a
mean GR 1.009732 1.017087 0.007355
mean NR 1.009731 .977579 -0.032152
median NR 1.009036 1.009168 0.000132
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