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1 Introduction

Under the Patient Protection and Affordable Care Act of 2010 (“ACA”), the United

States federal government spends over $40 billion per year on subsidizing health insur-

ance premiums for low-income individuals (Congressional Budget Office, 2017). The

design of the ACA and the regulation of non-group health insurance remain objects of

intense debate among policy makers. Addressing several key design issues, such as the

structure of premium subsidies, requires estimating demand at counterfactual prices.

Recent research has filled this need using discrete choice models in the style of Mc-

Fadden (1974). For example, Chan and Gruber (2010) and Ericson and Starc (2015)

used conditional logit models to estimate demand in Massachusetts’ Commonwealth

Care program, Saltzman (2019) used a nested logit to estimate demand in the Cali-

fornia and Washington ACA exchanges, and Tebaldi (2017) estimated demand in the

California ACA exchange with a variety of logit, nested logit, and mixed (random

coefficient) logit models.

These various flavors of logit models differ in the way they deal with the indepen-

dence of irrelevant alternatives property (e.g. Goldberg, 1995; McFadden and Train,

2000), and in how they deal with the potential endogeneity of prices (e.g. Berry, 1994;

Hausman, 1996; Berry et al., 1995). However, they are all fully parametric, with the

logistic and normal distributions playing a central role in the parameterization. This

raises the possibility that demand estimates from these models are significantly driven

by functional form.

In this paper, we use a nonparametric model to estimate the effects of changing

premium subsidies on demand, consumer surplus, and government spending in the

California ACA exchange (Covered California). The model is a distribution-free coun-

terpart of a standard discrete choice model in which a consumer’s indirect utility for

an insurance option depends on its price (premium) and on their unobserved valuation

for the option. In contrast to parametric models, we do not assume that these valu-

ations follow a specific distribution such as normal (probit) or type I extreme value

(logit). The main restriction of the model is that indirect utility is additively separable

in premiums and latent valuations. The model allows for premiums to be endoge-

nous (correlated with latent valuations), and allows a researcher to use instrumental

variables to address this endogeneity.1

Nonparametric point identification arguments for discrete choice models are often

1 While we develop the methodology with a focus on health insurance, it may also be useful for analyzing
demand in other markets, as well as for discrete choice analysis more generally. However, an important
difference with many discrete choice analyses is that in our context we observe more than one price per
market. See Sections 2, 3.3, and Appendix C for more detail.
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premised on the assumption of a large amount of exogenous variation in prices or

other observable characteristics (e.g. Thompson, 1989; Matzkin, 1993). When prices

are endogenous, these arguments shift the variation requirement to the instruments,

sometimes with an additional completeness condition (Chiappori and Komunjer, 2009;

Berry and Haile, 2010, 2014). In the Covered California data, we only observe limited

variation in premiums, so these conditions are unlikely to be satisfied. This leads us

to consider a partial identification framework (see Ho and Rosen, 2017, for a recent

review).

The primary challenge with allowing for partial identification is finding a way to

characterize and compute sharp bounds for target parameters of interest. We develop

a characterization based on the observation that in a discrete choice model, many

different realizations of latent valuations would lead to identical choice behavior under

all relevant observed and counterfactual prices. Using this idea, we partition the space

of unobserved valuations according to choice behavior by constructing a collection of

sets that we call the minimal relevant partition (MRP). We prove that sharp bounds

for typical target parameters can be characterized by considering only the way the

distribution of valuations places mass on sets in the MRP. We then use this result to

develop estimators of these bounds, which we implement using linear programming.

We apply the empirical methodology with administrative data to estimate demand

counterfactuals for Covered California. We focus on the choice of metal tier for low-

income individuals who are not covered under employer-sponsored insurance or public

programs. Our main counterfactual of interest is how changes in premium subsidies

would affect the proportion of this population that chooses to purchase health insur-

ance, as well as their chosen coverage tiers and their realized consumer surplus. To

identify these quantities, we use the additively separable structure of utility in the non-

parametric model together with institutionally-induced variation in premiums across

consumers of different ages and incomes. We exploit this variation by restricting the

degree to which preferences (latent valuations) can differ across consumers of similar

age and income who live in the same market.

Since the nonparametric model is partially identified, this strategy yields bounds

rather than point estimates. However, the estimated bounds are quite informative.

Using our preferred specification, we estimate that a $10 decrease in monthly premium

subsidies would cause between a 1.6% and 7.0% decline in the proportion of low-income

adults with coverage. The average consumer surplus reduction would be between $1.99

and $2.45 per person, per month, or between $63 and $78 million annually when

aggregated. Total annual savings on subsidy outlays would be between $238 and $604

million. When we analyze heterogeneity by income, we find that poorer consumers
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incur the bulk of the surplus loss from decreasing subsidies. Overall, our estimates

reinforce and amplify the finding that the demand for health insurance in this segment

of the population is highly price elastic (e.g. Abraham et al., 2017; Finkelstein et al.,

2019).2

We show that comparable estimates using parametric logit and probit models tend

to yield price responses close to the lower bounds, and so may substantially understate

price sensitivity. This possibility becomes more acute when considering larger price

changes that involve more distant extrapolations. It also remains when considering

richer parametric models, such as mixed logit, that allow for valuations to be corre-

lated across options. Our findings provide an example in which the shape of the logistic

distribution can have an important impact on empirical conclusions.3 The nonpara-

metric model we use presents a remedy for this problem, and in this case provides

empirical conclusions that differ significantly along a policy-relevant dimension.

In Appendix A, we provide a detailed review of the related methodological litera-

ture on semi- and nonparametric discrete choice models. Here, we briefly mention the

two papers most closely related to ours. Chesher et al. (2013) use random set theory

to derive moment inequalities in general discrete choice models. They demonstrate

their results by computing identified sets for some parametric models in numerical

simulations. As we explain further in Appendix A, applying their approach to a non-

parametric model is infeasible. Compiani (2019) develops a nonparametric estimator

and applies it to study consumer demand for strawberries in California using aggre-

gated scanner data. His approach is based on identification arguments developed by

Berry and Haile (2014), which use assumptions different than ours.

The remainder of the paper is organized as follows. In Section 2, we begin with

a discussion of the key institutional aspects of Covered California. In Section 3, we

develop our nonparametric discrete choice methodology for estimating the demand for

health insurance. In Section 4, we discuss the data, our empirical implementation,

and the main findings. In Section 5 we contrast these findings with estimates from

parametric models. Section 6 contains some brief concluding remarks.

2 We do not model supply, so all of these estimates should be interpreted as holding insurers’ decisions
fixed. Tebaldi (2017) considers equilibrium price responses under different subsidy designs with a parametric
demand model.

3 Other examples include Ho and Pakes (2014) and Compiani (2019), who also found that logit models
underestimate price elasticities relative to less parametric alternatives, albeit using different methods in
different empirical settings.
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2 Covered California

Covered California is one of the largest state health insurance exchanges regulated

by the ACA, accounting for more than 10% of national enrollment. The purpose of

the exchange is to provide health insurance options for individuals not covered by an

employer or a public program, such as Medicaid or Medicare.

The basic structure of Covered California is determined by federal regulation, and

so is common to ACA marketplaces in all states. The regulation splits states into

geographic rating regions comprised of groups of contiguous counties or zip codes. In

California, there are 19 such rating regions. Insurers are allowed to vary premiums

across (but not within) rating regions, and consumers face the premiums set for their

resident region. Each year in the spring, insurers announce their intention to enter

a region in the subsequent calendar year and undergo a state certification process.

Consumers are then able to purchase insurance for the subsequent year during an open

enrollment period at the end of the year.

However, Covered California also differs from other ACA marketplaces in several

important aspects. One difference is that an insurer who intends to participate in a

rating region is required to offer a menu of four plans classified into metal tiers of

increasing actuarial value: Bronze, Silver, Gold and Platinum.4 Unlike other market-

places, the insurer must provide the entire menu of four plans in any region where

it enters.5 Moreover, the actuarial features of the plans are standardized to have the

characteristics shown in Table 1 (among others not shown). Insurers who enter a rating

region must therefore offer each of the plans listed in Table 1 with the features shown

there.

Insurers are also regulated in the way in which they can set premiums. Each

insurer chooses a base premium for each metal tier in each rating region. This base

premium is then transformed through federal regulation into premiums that vary by

the consumer’s age.6 The insurer is not permitted to adjust premiums based on any

other characteristic of the consumer.7 Premiums are therefore a deterministic function

of a consumer’s age and resident rating region.

4 There is a fifth coverage tier called minimum (or catastrophic) coverage. This tier is not available to
the subsidized buyers we focus on (with a few, rare exceptions), so we omit it from the analysis.

5 In other ACA marketplaces, insurers are required to offer one Silver and one Gold plan, while additional
plans are optional.

6 This transformation involves multiplying base premiums by an adjustment factor that starts at 1 for
individuals at age 21 and increases smoothly to 3 at age 64. These factors are set by the Center for Medicare
and Medicaid Services. See Orsini and Tebaldi (2017) for further discussion. Individuals 65 and older are
covered by Medicare.

7 Some states also allow for adjustments based on tobacco use, but California is not one of these states.
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Table 1: Standardized Plan Characteristics in Covered California

Panel (a): Characteristics by metal tier before cost-sharing reductions

Annual Annual max Primary E.R. Specialist Preferred Advertised
Tier deductible out-of-pocket visit visit visit drugs AV(∗)

Bronze $5,000 $6,250 $60 $300 $70 $50 60%
Silver $2,250 $6,250 $45 $250 $65 $50 70%
Gold $0 $6,250 $30 $250 $50 $50 79%
Platinum $0 $4,000 $20 $150 $40 $15 90%

Panel (b): Silver plan characteristics after cost-sharing reductions

Income Annual Annual max Primary E.R. Specialist Preferred Advertised
(%FPL) deductible out-of-pocket visit visit visit drugs AV(∗)

200-250% FPL $1,850 $5,200 $40 $250 $50 $35 74%
150-200% FPL $550 $2,250 $15 $75 $20 $15 88%
100-150% FPL $0 $2,250 $3 $25 $5 $5 95%

Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf .
(?): Actuarial value (AV) is advertised to consumers as a percentage of medical expenses covered by the plan.

Individuals with household income below 400% of the Federal Poverty Level (FPL)

pay lower premiums than received by the insurer, with the difference being made up by

premium subsidies. We focus our analysis on these individuals, since they constitute

a large group of key policy interest.8 The premium subsidies vary across individuals

according to federal regulations. These ensure that the subsidized premium of the

second-cheapest Silver plan is lower than a maximum affordable amount that varies by

household income.9 Post-subsidy premiums are therefore a deterministic function of a

consumer’s age, resident rating region, and household income.

In addition to premium subsidies, the ACA also provides cost-sharing reductions

(CSRs) for individuals with household income lower than 250% of the FPL. CSRs are

implemented by changing the actuarial terms of the Silver plan for eligible individuals

according to their income, with discrete changes at 150%, 200%, and 250% of the FPL;

see Table 1. CSRs make Silver plans very attractive for low-income individuals relative

to the more expensive Gold and Platinum plans.

To further incentivize insurance uptake, the ACA had a universal coverage mandate

which determined an income tax penalty for remaining uninsured. We treat this tax

penalty as affecting the value of the outside option of not purchasing any Covered

8 In 2014, this group comprised nearly 90% of contracts in Covered California.
9 The reduction in subsidies we consider in the counterfactuals is equivalent to an increase in this maximum

affordable amount, holding insurers’ decisions fixed.
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California plan. The universal mandate was weak in 2014, and generally unenforced

between 2014–2017 (Miller, 2017). It was repealed under the Tax Cuts and Jobs Act

of 2017.

3 Empirical Methodology

3.1 Nonparametric Discrete Choice Model

We consider a model in which a population of consumers indexed by i each choose a

single health insurance plan Yi from a set J ≡ {0, 1, . . . , J} of J+1 choices. Each plan j

has a premium, Pij , which is indexed by the consumer, i, since different consumers face

different post-subsidy premiums depending on their sociodemographic characteristics.

Choice j = 0 represents the outside option of not choosing any of the insurance plans,

and has premium normalized to 0, so that Pi0 = 0. When we take the model to the

Covered California data in Section 4, we will have five choices (J = 4) with options

1, 2, 3, and 4 representing Bronze, Silver, Gold, and Platinum plans, respectively.

Consumer i has a vector Vi ≡ (Vi0, Vi1, . . . , ViJ) of valuations for each plan, with the

standard normalization that Vi0 = 0.10 The valuations are known to the consumer, but

latent from the perspective of the researcher. We assume that consumer i’s indirect

utility from choosing plan j is given by Vij − Pij , so that their plan choice is given by

Yi = arg max
j∈J

Vij − Pij . (1)

We do not assume that the distribution of Vi follows a specific functional form such as

type I extreme value (logit) or multivariate normal (probit). We also allow Vij and Vik

to be dependent for j 6= k.

Models like (1) in which valuations and premiums are additively separable have

been widely used in the recent literature on insurance demand, see e.g. Einav et al.

(2010a), Einav et al. (2010b), and Bundorf et al. (2012). In Appendix B, we derive (1)

from an insurance choice model similar to the ones in Handel (2013) and Handel et al.

(2015), in which consumers have quasilinear utility and constant absolute risk aversion

preferences. In this model, differences in Vi across consumers arise from heterogeneity

in their unobserved preferences, risk factors, and risk aversion.

The additive separability (quasilinearity) of premiums in (1) imposes restrictions

on substitution patterns. In particular, if all premiums were to increase by the same

amount, then a consumer who chose to purchase plan j ≥ 1 before the premium increase

10 Choosing j = 0 may incur a tax penalty due to the universal coverage mandate. Normalizing Vi0 = 0
means that Vij also incorporates the value of not facing the tax penalty.
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will either continue to choose plan j after the premium increase, or will switch to the

outside option (j = 0), but they will not switch to a different plan k ≥ 1, k 6= j. This

limits the role of income effects to the extensive margin of purchasing any insurance

plan versus taking the outside option.

However, it is important to note that (1) is a model of a given consumer i. When we

take (1) to the data, we combine observations on many consumers, so in practice we can

allow for income effects by allowing for dependence between a consumer’s income and

their valuations. To formalize this, we treat a consumer’s income and other observed

characteristics as part of a vector, Xi, and then restrict the dependence between Vi

and the various components of Xi. We discuss these restrictions in Section 3.5.1 and

our specific implementation of them in Section 4.2.

One observable characteristic of consumer i that will be particularly important is

their market, which in Covered California is their resident rating region. In particular,

when we estimate demand we will do so conditional on a market, so that market-level

unobservables responsible for price endogeneity are held fixed in the counterfactual (see

e.g. Berry and Haile, 2010, pg. 5). To emphasize this, we let Mi denote consumer i’s

market, and we treat Mi as separate from Xi.

3.2 Comparison with a Common Parametric Model

A common parametric specification for discrete choice demand models is

Yim = arg max
j∈J

X ′ijmβim − αimPijm + ξjm + εijm, (2)

where i, j, and m index consumers, products, and markets, Pijm is price, Xijm are

observed characteristics, ξjm are unobserved product-market characteristics, βim and

αim are individual-level random coefficients, and εijm are idiosyncratic unobservables.11

In the influential model of Berry et al. (1995), εijm are assumed to be i.i.d. logit

(type I extreme value), and (βim, αim) are assumed to be normally distributed. Our

motivation for considering (1) is to preserve the utility maximization structure in (2),

while avoiding these types of parametric assumptions.12

The three indices in (2) reflect different possible levels of data aggregation. If only

market-level data is available, as in Berry et al. (1995) or Nevo (2001), then (2) is

11 For example, see equation (6) of Nevo (2011), or equation (1) of Berry and Haile (2015). We include i
indices on Xijm and Pijm to maintain consistency with our notation.

12 Fox et al. (2012) provide conditions under which the distribution of (βim, αim) is nonparametrically
point identified, and Fox et al. (2011) develop an estimator based on discretizing this distribution. Their
results maintain the logit assumption on εijm, and require additional structure to allow for price endogeneity.
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aggregated to the (j,m) level, and the data is viewed as drawn from a population

of markets and/or products (Berry et al., 2004b; Armstrong, 2016). Our analysis

presumes richer individual-level choice data as in Berry et al. (2004a) or Berry and

Haile (2010), but the number of markets we study is small and fixed. To emphasize

this, we index the nonparametric model (1) only over i and j, and we record the identity

of consumer i’s market using the random variable Mi.

After subsuming m subscripts into i subscripts, (1) can be seen to nest (2) by

dividing through by αi and taking Vij ≡ α−1
i (X ′ijβi + ξij + εij).

13 This relationship

highlights two important considerations for our analysis. First, we do not want to

assume that Vi and Pi are independent, since Vi depends on ξi ≡ (ξi1, . . . , ξiJ), which

captures unobserved product characteristics in consumer i’s market (Berry, 1994). We

address this by conditioning on the market, Mi, after which ξi is nonstochastic. Second,

we want to allow for Vij and Vik to be arbitrarily dependent for j 6= k, in order to

avoid imposing the unattractive substitution patterns associated with the logit model

(Hausman and Wise, 1978; Goldberg, 1995; Berry et al., 1995; McFadden and Train,

2000).

3.3 Price Variation

In Covered California, post-subsidy premiums are a deterministic function of the mar-

ket, Mi, and consumer demographics, Xi. We denote this function by Pi ≡ π(Mi, Xi).

Throughout the paper, our estimates of demand condition on the market, so the

price variation we use for identification comes from variation across consumer demo-

graphics within a market. This could be problematic if these characteristics are related

to valuations, Vi. Our empirical strategy, which we describe in more detail later, will be

to use demographic variation only within relatively homogenous groups of consumers,

so that valuations can be reasonably assumed to be independent of prices within these

groups.

Our setting is different than many discrete choice applications in which prices only

vary at the market level, such as Berry et al. (1995) or Nevo (2001). In terms of our

notation, these settings would have π(Mi, Xi) constant in Xi. The methodology we

develop in the main text is not immediately useful for this case. In Appendix C, we

propose two ways in which one can extend our approach to handle more aggregated

price variation. One proposal uses within-market variation in non-price product or

consumer characteristics, as in Berry and Haile (2010), while the other uses an index

restriction, as in Berry and Haile (2014).

13 This requires the mild assumption that αi > 0 with probability 1.
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3.4 Target Parameters

The primitive object in model (1) is the distribution of valuations, Vi, conditional on

market, Mi, and other covariates, Xi. We will assume throughout the paper that

this distribution is continuous so that ties between choices in (1) occur with zero

probability. In addition to ensuring no ties, this also means we can associate the

conditional distribution of valuations with a conditional density function f(·|m,x) for

each realization Mi = m, and Xi = x.14

The density f is a key object in the following. Common counterfactual quantities

of interest can be written as integrals or sums of integrals of f (see e.g. Section 4.2

of Berry and Haile, 2014, or Section 3.4.1 of Berry and Haile, 2015). For example, a

natural counterfactual quantity is the proportion of consumers who would choose plan

j at a new premium vector, p?. This proportion can be written in terms of f as∫
1[vj − p?j ≥ vk − p?k for all k]︸ ︷︷ ︸

choose j if premiums were p?

f(v|m,x) dv, (3)

where we are conditioning on market, m, and other consumer characteristics, x. An-

other natural counterfactual quantity is the impact on average consumer surplus caused

by changing premiums from p to p?. This can be written as∫ {
max
j∈J

vj − p?j
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p?

−
∫ {

max
j∈J

vj − pj
}
f(v|m,x) dv︸ ︷︷ ︸

consumer surplus under p

, (4)

where again the market, m, is being held fixed in the counterfactual.

Conceptually, we view both (3) and (4) as scalar-valued functionals (functions) of

f . The functions vary in their form, and will further vary when we consider different

counterfactual premiums, p?, choice probabilities for plans other than j in (3), and

different values of (or averages over) the covariates, x. In Section 4, we also estimate

a third class of quantities that measure changes in government spending on premium

subsidies.

To handle this generality, we consider all such quantities to be examples of target

parameters, θ : F → Rdθ , where F is the collection of all conditional density functions

on RJ . A target parameter is just a function of the conditional density of valuations,

f . In the examples just given, the target parameter is scalar-valued, so that dθ = 1.

14 More formally, this requires the assumption that the distribution of Vi, conditional on (Mi, Xi) = (m,x)
is absolutely continuously distributed with respect to Lebesgue measure on RJ for every (m,x) in the support
of (Mi, Xi).
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However, we will also consider cases with dθ > 1, for example to understand the

joint identified set for two related target parameters, such as consumer surplus and

government expenditure. Our goal is to infer the values of θ(f) that are consistent

with both the observed data and our assumptions.

3.5 Assumptions

We augment (1) with two types of assumptions. The first assumption is that one or

more components of Xi are suitable instruments. The second assumption is that the

density of valuations has support contained within a known set.

3.5.1 Instrumental Variables

To describe the first type of assumption, let Wi and Zi be two subvectors (or more

general functions) of the market and covariates, Mi and Xi. The Zi subvector consists

of instruments that satisfy an exogeneity assumption discussed ahead. This exogeneity

assumption will be conditional on Wi, which are viewed as control variables. Note that

Wi could be chosen to be empty.

Stating the instrumental variable assumption requires the density of valuations

conditional on Wi and Zi. We can construct this object by averaging over f as follows:

fV |WZ(v|w, z) ≡ E
[
f(v|Mi, Xi)

∣∣∣Wi = w,Zi = z
]
. (5)

Our assumption that Zi is an instrument, conditional on Wi, can then be stated as:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v. (6)

In words, (6) says that the distribution of valuations is invariant to shifts in Zi, condi-

tional on Wi. That is, Zi is exogenous. In our application, Wi includes Mi and coarse

age and income bins, and Zi is residual variation in age and income within these bins.

In order for (6) to be a useful assumption, shifts in the instrument Zi (still condi-

tioning on Wi) should have an effect on premiums. This follows the usual intuition:

If Zi is exogenous, then changes in observed choice shares as Zi varies reflect changes

in premiums, rather than changes in valuations. The more that premiums vary with

Zi, the more information we will have to pin down different parts of the density of

valuations, f , and therefore the target parameter, θ. In our application, this premium

variation comes from the age-rating and income subsidies legislated by the ACA.

It is common to justify point identification of nonparametric discrete choice models
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by assuming that the instrument has a large amount of variation.15 However, in our

data this seems unlikely to be the case. For this reason, we consider the partial identi-

fication framework discussed ahead. This framework does not require the instrument

to have any particular amount of variation. However, greater variation is still rewarded

in the form of more informative bounds.

3.5.2 Support

The second assumption we use is that the support of f is concentrated on a known set.

For each realization of Wi, defined as in the previous section, we choose a set V•(w)

and then assume that f is such that∫
V•(w)

fV |WZ(v|w, z) dv = 1 for all w, z. (7)

By choosing V•(w) = RJ , one can make this assumption trivially satisfied.

We use (7) to exploit the vertical structure of the ACA. For example, a Platinum

plan is actuarially more generous than a Bronze plan (see Table 1). We can use (7)

to impose the assumption that consumers would always prefer Platinum (j = 4) to

Bronze (j = 1) at equal premiums by taking V•(w) = {v ∈ RJ : v4 ≥ v1}. Since

V•(w) depends on w, we can allow the definition of this set to change with income,

which allows us to account for CSRs. We list the support assumptions we use for the

application in Section 4.2.

3.6 The Identified Set

We now define the set of possible values that the target parameter θ(f) could take over

valuation densities f that both satisfy the assumptions in the preceding section, and

are consistent with the observed data. To do this, we assume that the researcher has

at their disposal a collection of conditional choice shares denoted as

sj(m,x) ≡ P[Yi = j|Mi = m,Xi = x]. (8)

In our application, we estimate these shares from a combination of administrative

data on enrollment and survey data used to construct the market size. Here, the

15 These types of “large support” assumptions, and the closely related concept of identification-at-infinity,
have had a prominent role in the literature on nonparametric identification more generally. Early examples
of their use include Manski (1985), Thompson (1989), Heckman and Honoré (1990), and Lewbel (2000).
More recent applications of this argument to discrete choice include Heckman and Navarro (2007) and Fox
and Gandhi (2016).
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identification analysis is premised on the thought experiment of perfect knowledge of

these choice shares.

Each density of valuations implies a set of choice shares. In particular, a consumer

would choose option j when faced with a premium p if and only if they have valuations

in the set

Vj(p) ≡
{

(v1, . . . , vJ) ∈ RJ : vj − pj ≥ vk − pk for all k
}
. (9)

The choice shares for plan j implied by the density f are determined by the mass that

f places on Vj(p) when prices are p = π(m,x). We denote these implied choice shares

by

sj(m,x; f) ≡
∫
Vj(π(m,x))

f(v|m,x) dv. (10)

A density f is consistent with the observed choice shares if

sj(m,x; f) = sj(m,x) for all j, m and x. (11)

The identified set of valuation densities is the set of all f that both match the

observed choice shares and satisfy the assumptions laid out in the previous section.

We call this set F?:

F? ≡ {f ∈ F : f satisfies (6), (7), and (11)} . (12)

However, our real interest centers on the target parameter, θ, examples of which include

counterfactual demand (3) and changes in consumer surplus (4). The identified set for

θ is the image of the identified set for F? under θ. That is,

Θ? ≡ {θ(f) : f ∈ F?}.

The set Θ? consists of all values of the target parameter that are consistent with both

the data and the instrumental variable and support assumptions (6) and (7). It is the

central object of interest.

The difficulty lies in characterizing Θ?. In the following, we develop an argument

that enables us to compute Θ? exactly. The idea is to partition RJ into the smallest

collection of sets within which choice behavior would remain constant under all pre-

miums observed in the data, as well as all premiums that are required to compute the

target parameter. We call this collection of sets the minimal relevant partition (MRP)
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of valuations. We then reduce the problem of characterizing Θ? from one of searching

over densities f to one of searching over mass functions defined on the sets that consti-

tute the MRP. For cases in which the target parameter is scalar-valued (dθ = 1), this

latter problem can often be solved with two linear programs.

3.7 The Minimal Relevant Partition of Valuations

We illustrate the definition and construction of the MRP using a simple example with

J = 2, so that a consumer’s valuations (and the premiums of the plans in their choice

set) can be represented as points in the plane. A general, formal definition of the MRP

is given in Section 3.9.

Suppose that the data consists of a single observed premium vector, pa, and that we

are concerned with behavior under a counterfactual premium vector, p?, which we do

not observe in the data. The idea behind the MRP is illustrated in Figure 1. Panel (a)

shows that considering behavior under premium pa divides R2 into three sets depending

on whether a consumer would choose options 0, 1, or 2 when faced with pa.16 Panel

(b) shows the analogous situation under premium p?. Intersecting these two three-set

collections creates the collection of six sets shown in panel (c). This collection of six

sets is the MRP for this example.17

The MRP is minimal in the sense that any two consumers who have valuations in

the same set would exhibit the same choice behavior under both premiums pa and p?.

Conversely, any two consumers with valuations in different sets would exhibit different

choice behavior under at least one of these premiums. For example, consumers with

valuations in the set marked V2 in Figure 1c make the same choices as those with

valuations in V4 under pa, but make different choices under p?, where the first group

chooses the outside option, and the second group chooses plan 1. Similarly, consumers

with valuations in V2 and V6 both choose the outside option at p?, but at pa the first

group chooses plan 2 and the second group chooses plan 1.

In Figure 1d, we show how the MRP would change if we were to observe a second

premium, pb. The MRP now consists of ten sets, but the idea is the same: Consumers

with valuations within a given set have the same choice behavior under premiums

pa, pb, and p?, while consumers with valuations in different sets would make different

choices for at least one of these premiums.

16 Diagrams like panel (a) appear frequently in the literature on discrete choice, see e.g. Thompson (1989,
Figure 1), Chesher et al. (2013, Figure 1), or Berry and Haile (2014, Figure 1).

17 The MRP is related to the class of core-determining sets derived by Chesher et al. (2013). Comparing
our Figure 1c to their Figures 2–3 shows that the MRP is a strict subset of the class of core-determining
sets, since the latter also includes all connected unions of sets in the MRP.
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Figure 1: Partitioning the Space of Valuations
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The way the MRP is constructed ensures that predicted choice shares for any val-

uation density can be computed by summing the mass that the density places on sets

in the MRP. For example, suppose that we fix Mi = m, and that there are two values

of Xi such that pa = π(m,xa), and pb = π(m,xb). In Figure 1c, we can see that the

share of consumers who would choose good 1 if premiums were pa can be written as

s1(m,xa; f) =

∫
V5∪V6

f(v|m,xa) dv =

∫
V5
f(v|m,xa) dv +

∫
V6
f(v|m,xa) dv,

while the share of consumers who would choose good 2 is given by

s2(m,xa; f) =

∫
V2∪V3∪V4

f(v|m,xa) dv.

This allows us to simplify the determination of whether a given f reproduces the

observed choice shares by considering only the total mass that f places on sets in the

MRP, without having to be concerned with how this mass is distributed within these

sets.

Since we included p? when constructing the MRP, the same is also true when

considering target parameters θ that measure choice behavior at p?. For example,

suppose that the target parameter is the choice share of plan 2 if premiums were

changed from pa to p?. This is a particular case of (3), and can be written in terms of

the MRP as

θ(f) =

∫
V3
f(v|m,xa) dv. (13)

As another example, we could write the associated change in this choice share as

θ(f) =

∫
V3
f(v|m,xa) dv −

∫
V2∪V3∪V4

f(v|m,xa) dv = −
∫
V2∪V4

f(v|m,xa) dv.

In both of these quantities, we have fixed the density conditional on the market, m,

and observed covariates, xa. This corresponds to the usual counterfactual of changing

prices while holding fixed factors that might be correlated with price.

3.8 Computing Bounds on the Target Parameter

Now suppose that we observe the following choice shares:

s0(m,xa) = .20, s1(m,xa) = .14, and s2(m,xa) = .66.
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For illustration, we assume that Xi is exogenous, i.e. we limit attention to f for which

f(v|m,xa) = f(v|m,x?) = f(v|m). In terms of (6), this corresponds to Wi = Mi and

Zi = Xi. In this case, (11) can be written as∫
V1
f(v|m) dv = s0(m,xa) = .20,

and

∫
V5
f(v|m) dv +

∫
V6
f(v|m) dv = s1(m,xa) = .14,

and

∫
V2
f(v|m) dv +

∫
V3
f(v|m) dv +

∫
V4
f(v|m) dv = s2(m,xa) = .66. (14)

As shown in (13), if the target parameter is the choice share of plan 2 at p?, this can

be written as

θ(f) =

∫
V3
f(v|m) dv. (15)

The key observation is that even though all of these quantities depend on a density

f , they can be computed with knowledge of just six non-negative numbers:{
φl ≡

∫
Vl
f(v|m) dv

}6

l=1

.

This suggests that we can focus only on the total mass placed on the sets in the MRP

without losing any information. To find the largest value that θ(f) can take while still

respecting (14), we rephrase all quantities in terms of {φl}6l=1 and then maximize (15)

subject to (14):

t?ub ≡max
φ∈R6

φ3 (16)

subject to: φ1 = .20

φ5 + φ6 = .14

φ2 + φ3 + φ4 = .66

φl ≥ 0 for l = 1, . . . , 6.

This is a linear program. In this simple example, one can see by inspection that the

solution of the program is to take φ3 = .66, so that t?ub = .66. To find the smallest

value of θ(f) we solve the analogous minimization problem, the optimal value of which

we call t?lb. In this example, t?lb = 0.

In the next section, we formally prove that Θ? = [t?lb, t
?
ub]. This result shows that the

procedure of reducing f to a collection of six numbers {φl}6l=1 is a sharp characterization
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of Θ? in the sense that it entails no loss of information. A sketch of the proof is as

follows. First, for any value t ∈ Θ?, there must exist (by definition) an f ∈ F? such

that θ(f) = t. This f generates a collection of numbers {φl =
∫
Vl f(v|m) dv}6l=1, which

must satisfy the constraints in (16), since every f ∈ F? satisfies (14). Conversely, given

any value of t ∈ [t?lb, t
?
ub], there exists a set of numbers {φl}6l=1 satisfying the constraints

in (16), and such that φ3 = t.18 From this set of numbers {φl}6l=1, we can construct

a density f that satisfies (14) by distributing mass in the amount of φl arbitrarily

within each Vl. Evidently, this density will also satisfy θ(f) = φ3 = t. Thus, the sharp

identified set for this target parameter is Θ? = [t?lb, t
?
ub]. Intuitively, the reason there

is no loss of information from reducing f to {φl}6l=1 is that the MRP was constructed

to represent all relevant differences in economic behavior.

Now suppose that we have a second observed premium, pb, so that the MRP is as

shown in Figure 1d. In this case, the MRP contains 10 sets, so the linear program

analogous to (16) will have 10 variables of optimization. In addition to matching the

observed shares at xa through (16), these variables will also need to match the observed

shares for xb, which we will suppose here are given by

s0(m,xb) = .27, s1(m,xb) = .31, and s2(m,xb) = .42.

Reasoning through the solution to the resulting program is more complicated. Since

the observed shares for pa still need to be matched, it is still the case that a total mass

of .66 must be placed over consumers who would choose plan 2 under pa. Some of

these consumers might choose the outside option under pb. In fact, as shown in Figure

2, this must be the case for a proportion of at least s0(m,xb) − s0(m,xa) = .07 of

consumers. Given this new requirement, the maximum amount of mass remaining to

distribute over consumers who would choose plan 2 under p? has decreased from .66 to

.66− .07 = .59. This is the new upper bound, t?ub. The fact that it is smaller than the

previous upper bound reflects the additional information contained in choice shares at

pb. The lower bound, t?lb, is still zero, because it is still possible to match the observed

choice shares for pa and pb by concentrating all mass southwest of p?.

When we take this procedure to the data, the linear programs will have thousands

of variables and constraints, which makes this sort of case-by-case reasoning impossible.

Instead, we will use state of the art solvers to obtain t?ub and t?lb.19 In practice, we also

do not assume that f(v|m,x) is invariant in x. This makes a graphical interpretation

18 This follows because the constraint set in (16) is closed and connected and the objective function is
continuous.

19 In particular, we use Gurobi (Gurobi Optimization, 2015) and check a subset of the results using CPLEX
(IBM, 2010). We formulate and presolve the problems using AMPL (Fourer et al., 2002).
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Figure 2: The numbers in each set show a solution to the linear program when the target parameter
is the proportion of consumers who choose plan 2 at p? and the objective is to find the upper bound
(maximize) this proportion. Matching the share of consumers who choose the outside option at the
new observed premium, pb, means there is now .07 less mass to devote to this objective.

unwieldy, since a separate diagram like Figure 2 would be needed for each value of

x. The mass placed over sets within each diagram is linked together by imposing

constraints on these masses that are analogous to the instrumental variable assumption

(6). Part of the formal analysis in the next section involves showing that such a

procedure retains sharpness.

3.9 Formalization

In this section, we formalize the discussion in the previous three sections in the following

ways. First, we provide a precise definition of the MRP. Second, we generalize the

transformation from densities f to mass functions over the sets in the MRP, which,

as in the previous section, we refer to as φ. Third, we show how to compute bounds

on the target parameter under the instrumental variable and support assumptions.

Fourth, we provide the general statement and proof of the result that these bounds are
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sharp. Lastly, we consider the conditions under which these bounds can be computed

by solving linear programs. Throughout the analysis, we model (Mi, Xi) as discretely

distributed with finite support, although this is not essential to the discussion.

Beginning with the MRP, we let P denote a finite set of premiums that is chosen

by the researcher and always contains at least the observed support of premiums. The

premiums in P are used to construct the MRP, so a given MRP depends on P. For

example, in Figure 1c we had P = {pa, p?}, while in Figure 1d, P = {pa, pb, p?}.20

The choice of which additional points to include in P is determined by the target

parameter, θ. In Figure 1, the focus was on demand at a new premium, p?, so P had

to include p?. This restriction will be formalized below as the statement that θ(f) can

be evaluated for any f by only considering the total mass that f places on sets in the

MRP. Additional points can always be added to P to help satisfy this restriction.

We use the set P to formally define the MRP as follows.

Definition MRP. Let Y (v, p) ≡ arg maxj∈J vj−pj for any (v1, . . . , vJ), (p1, . . . , pJ) ∈
RJ , where v ≡ (v0, v1, . . . , vJ) and p ≡ (p0, p1, . . . , pJ) with v0 = p0 = 0. The minimal

relevant partition of valuations (MRP) is a collection V of sets V ⊆ RJ for which the

following property holds for almost every v, v′ ∈ RJ (with respect to Lebesgue measure):

v, v′ ∈ V for some V ∈ V ⇔ Y (v, p) = Y (v′, p) for all p ∈ P. (17)

Definition MRP creates a collection of sets V that is minimal in the sense that any

two consumers who have valuations in a set in V would exhibit the same choice behav-

ior for every premium vector in P.21 Conversely, any two consumers with valuations

in different sets would exhibit different choice behavior for at least one premium in

P. Constructing the MRP is intuitive, but somewhat involved both notationally and

algorithmically. Since the details of constructing the MRP are not necessary for un-

derstanding the methodology, we relegate our discussion of this to Appendix D.22

20 When implementing our methodology, we estimate demand separately for each market m, and thus also
construct the set P separately for each market. We suppress this dependence in the notation because it does
not affect our characterization of the identified set.

21 Note that V depends on P. We do not make this explicit in the notation because the following discussion
only considers a single premium set, P, and the single MRP it generates, V.

22 We should, however, note two small misnomers in our terminology that become evident in the construc-
tion, or perhaps by inspecting Figure 1. First, the MRP may not be a strict partition, because adjacent sets
in V could overlap on their boundary. Since we are limiting attention to continuously distributed valuations,
this distinction does not have any practical or empirical relevance, and does not violate Definition MRP.
Second, and for the same reason, although we have described the MRP as “the” MRP, it is not unique,
since one could consider a boundary region to be in either of the sets to which it is a boundary without
violating (17) on a set of positive measure. Again, this is not important for the analysis given our focus on
continuously distributed valuations.
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The utility of the MRP is that it allows us to express the choice probabilities

associated with any density of valuations, f , in terms of the mass that f places on sets

in V. In particular, let Vj(p) ⊆ V denote the sets in the MRP for which a consumer

with valuations in these sets would choose j when facing premiums p.23 Then the

probability that a consumer chooses j under premiums p is the probability that Vi lies

in the union of V ∈ Vj(p). Since sets in V are disjoint, this can be written as the sum

of the masses that f places on sets in Vj(p), that is∫
Vj(p)

f(v|m,x) dv =
∑

V∈Vj(p)

∫
V
f(v|m,x) dv. (18)

Having defined the MRP, we now define mass functions over the MRP. To do this,

let φ(·|·, ·) denote a function with domain V× supp(Mi, Xi). Such a function φ can be

viewed as an element of Rdφ , where dφ is the cardinality of its domain. Let R
dφ
+ denote

the subset of Rdφ whose elements are all non-negative and define

Φ ≡
{
φ ∈ R

dφ
+ :

∑
V∈V

φ(V|m,x) = 1 for all (m,x) ∈ supp(Mi, Xi)

}
. (19)

The set Φ contains all functions that could represent a conditional probability mass

function supported on the finite collection of sets, V.

Each density f generates a mass function φ(f) ∈ Φ defined by

φ(f)(V|m,x) ≡
∫
V
f(v|m,x) dv. (20)

We assume that the value of the target parameter for any f is fully determined by

φ(f). Formally, the assumption is that there exists a known function θ with domain Φ

such that θ(f) = θ(φ(f)) for every f ∈ F . Since Φ depends on the MRP, and the MRP

depends on P, satisfying this requirement is a matter of choosing P to be sufficiently

rich to evaluate the target parameter, θ.

To impose the instrumental variable assumption (6), we define for any φ ∈ Φ the

function

φV|WZ(V|w, z) ≡ E
[
φ(V|Mi, Xi)

∣∣∣Wi = w,Zi = z
]
, (21)

where Wi and Zi are as in the statement of that condition. Similarly, to impose the

23 Using the notation of Definition MRP, Vj(p) ≡ {V ∈ V : Y (v, p) = j for almost every v ∈ V}.
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support assumption, we let V•(w) denote the subset of V that intersects V•(w), i.e.

V•(w) ≡ {V ∈ V : λ(V ∩ V•(w)) > 0}, (22)

with λ denoting Lebesgue measure on RJ .

The next proposition shows that Θ? can be characterized exactly by solving systems

of equations in φ. These equations replicate (6), (7), and (11) at a hypothesized pa-

rameter value, but in terms of the finite-dimensional mass function, φ, rather than the

infinite-dimensional density, f . The interpretation of the result is that this dimension

reduction entails no loss of information. A proof is in Appendix E.

Proposition 1. Let t ∈ Rdθ . Then t ∈ Θ? if and only if there exists a φ ∈ Φ such that

θ(φ) = t, (23)∑
V∈Vj(π(m,x))

φ(V|m,x) = sj(m,x) for all j ∈ J and (m,x), (24)

φV|WZ(V|w, z) = φV|WZ(V|w, z′) for all z, z′, w, and V, (25)

and
∑

V∈V•(w)

φV|WZ(V|w, z) = 1 for all w, z. (26)

Observe that each of (24)–(26) are linear in φ.24 If θ is also linear in φ, then

Proposition 1 shows that Θ? can be exactly characterized by solving linear systems of

equations. This linearity is satisfied for common target parameters, such as demand

and consumer surplus.25 An implication of linearity is that Θ? will be connected, and

so when dθ = 1 it can also be characterized by solving two linear programs. We record

this point in the following proposition, also proved in Appendix E.

Proposition 2. If θ is continuous on Φ, then Θ? is a compact, connected set. In

particular, if dθ = 1, then Θ? = [t?lb, t
?
ub], where

t?lb ≡ min
φ∈Φ

θ(φ) subject to (24)–(26), (27)

and with t?ub defined as the solution to the analogous maximization problem.

24 This requires noting from (21) that φV|WZ(V|w, z) is itself a linear function of φ.
25 For demand this is clear from e.g. (15). Consumer surplus (or changes in it) can be seen to be linear

in f from (4). However, constructing θ for consumer surplus is less obvious. We discuss how this is done in
Appendix F, and we show there that the resulting θ function is linear in φ.
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3.10 Estimation

Our analysis thus far has concerned the identification problem in which the joint dis-

tribution of (Yi,Mi, Xi) is treated as known. In practice, features of this distribution,

such as the choice shares sj(m,x), need to be estimated from a finite data set, so we

want to model them as potentially contaminated with statistical error. In this section,

we show how to modify Proposition 2 to account for such error in our primary case

of interest with a linear θ. A formal justification for this procedure is developed in

Mogstad et al. (2018).

The estimator proceeds in two steps. First, we find the best fit to the observed

choice shares by solving

Q̂? ≡ min
φ∈Φ

Q̂(φ) subject to (25) and (26),

where Q̂(φ) ≡
∑
j,m,x

P̂[Mi = m,Xi = x]

∣∣∣∣∣∣ŝj(m,x)−
∑

V∈Vj(π(m,x))

φ(V|m,x)

∣∣∣∣∣∣ , (28)

with ŝj(m,x) the estimated share of choice j, conditional on (Mi, Xi) = (m,x), and

P̂[Mi = m,Xi = x] an estimate of the density of (Mi, Xi). The use of absolute

deviations in the definition of Q̂ means that (28) can be reformulated as a linear

program by replacing terms in absolute values by the sum of their positive and negative

parts.26 We weight these absolute deviations by the estimated density of (Mi, Xi) so

that regions of smaller density do not have an outsized impact on the estimated bounds.

In the second step, we collect values of θ(φ) for φ that come close to minimizing

(28). That is, we construct the set:

Θ̂? ≡
{
θ(φ) : φ ∈ Φ, φ satisfies (25), (26), and Q̂(φ) ≤ Q̂? + η,

}
. (29)

The qualifier “close” here reflects the tuning parameter η, which must converge to zero

at an appropriate rate with the sample size. The purpose of this tuning parameter is

to smooth out potential discontinuities caused by set convergence. In our empirical

estimates, we set η = .01, and found very little sensitivity to values of η that were bigger

or smaller by an order of magnitude. However, there are currently no theoretical results

to guide the choice of this parameter.

We construct Θ̂? by solving two linear programs that replace (24) with the condition

26 This is a common reformulation argument, see e.g. Bertsimas and Tsitsiklis (1997, pp. 19–20).
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in (29). That is, we solve

t̂?lb ≡ min
φ∈Φ

θ(φ) subject to (25), (26), and Q̂(φ) ≤ Q̂? + η, (30)

and an analogous maximization problem for t̂?ub. The set estimator for Θ? is then

Θ̂? ≡ [t̂?lb, t̂
?
ub]. When θ is linear, (30) can be reformulated as a linear program, again

by appropriately redefining the absolute value terms. In this case, the overall procedure

of the estimator is to solve three linear programs: One for (28), one for (30), and one

for the analogous maximization problem.

4 Demand in Covered California

4.1 Data

Our primary data are administrative records on the universe of individuals who pur-

chased a plan through Covered California in 2014. The data contain unique person

and household identifiers for each individual, as well as their age, income measured in

percentage of the FPL, gender, zipcode of residence, choice of plan, and premium paid.

Since post-subsidy premiums are a deterministic function of demographics (see Section

2), this information also allows us to calculate premiums for plans a consumer did

not choose. We focus on the subpopulation of subsidy-eligible adults aged 27–64 with

household income between 140 and 400% of the FPL. This comprises 73% of enrollees

in Covered California.27

We characterize each individual i by their resident rating region (market), Mi, and

a vector Xi of observables consisting of their age and household income. We discretize

age into 38 single-year bins running from 27 to 64, and household income into 52

FPL bins that are 5% wide.28 When crossed with the 19 rating regions in Covered

California, this yields 37,544 unique rating region × age × income bins of the observable

characteristics, (Mi, Xi).

As in most demand analyses, we do not directly observe individuals who chose

the outside option of not purchasing a plan through Covered California. This means

that we need to transform data on quantities chosen for the inside options into choice

shares by estimating the number of potential buyers. To do this, we use the 2011–

2013 American Community Survey public use file (via IPUMS, Ruggles et al., 2015) to

estimate the number of subsidy-eligible buyers not covered by employer-sponsored or

27 Out of 1,291,214 covered individuals, 211,093 (16%) are dependents, younger than 26, while 137,714
(11%) are not beneficiaries of premium subsidies.

28 The FPL bins are [140, 145), [145, 150), . . . , [395, 400].
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public insurance for each (Mi, Xi) bin. Our estimation procedure for this part uses a

flexible parametric model and is similar to procedures used by Finkelstein et al. (2019)

and Tebaldi (2017). More detail is provided in Appendix G.

We combine the estimates of potential buyers with the administrative data to con-

struct choice shares for each of the region × age × income bins. For 7,517 of these

bins, we observe more enrollees in the administrative data than we estimate as po-

tential buyers. We drop these bins and use the remaining 30,027 bins as the main

estimation sample.29 Since the number of individuals per bin varies greatly, we will re-

port parameters that average over (Mi, Xi), and therefore put greater weight on larger

bins.

Our analysis is focused on an individual’s choice of coverage level (metal tier). Thus,

J = 4, with j = 1, 2, 3, 4 denoting Bronze, Silver, Gold, and Platinum, respectively,

and j = 0 denoting the outside option, as usual. The implicit assumption here is that

the choice of coverage level is separable from the choice of insurer. We view this as a

reasonable assumption for Covered California because the regulations ensure that the

metal tiers offered—as well as the financial characteristics of the tiers—do not vary by

insurer. We define premiums Pij for each tier j in each bin as the median post-subsidy

premium across insurers.30

Table 2 provides some summary statistics. Each bin contains on average 85 poten-

tial buyers. The average participation rate in Covered California is 28%, and varies

widely across rating regions and demographics, with a standard deviation across bins

of 21%. Older and poorer buyers are significantly more likely to purchase coverage.

The impact of the CSRs is evident in panel (b) of the table: Buyers with income be-

low 200% face premiums of less than $100 per month to purchase a Silver plan with

actuarial value of 88% or more (see Table 1). Over 30% of such consumers purchase a

Silver plan, whereas among consumers with income over 250% of the FPL, fewer than

9% purchase the more expensive and less generous non-CSR Silver plan.

4.2 Identifying Assumptions

In this section, we describe our specific implementations of assumptions (6) and (7).

An insurer’s primary decision in Covered California is the base price for each rating

region and coverage level. This decision likely depends on differences in demand and

costs specific to each rating region, for example due to the underlying socioeconomic

or health characteristics of the residents in a region, or due to differences in provider

29 The bins that are dropped tend to have a small number of estimated potential buyers.
30 We have also estimated a subset of the results using other measures of price, such as the mean, minimum,

and second-cheapest premiums across insurers. The estimates turn out to be fairly insensitive to this choice.
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Table 2: Summary Statistics

Panel (a): Data by region, age, income

Obs. (# of bins) Mean St. Dev. P-10 Median P-90

Number of buyers(?) 30,027 85.27 90.86 14 55 194
Age 30,027 43.41 10.70 29 43 59
Income (FPL%) 30,027 243.98 72.05 155 230 355
Takeup rate 30,027 0.280 0.208 0.053 0.235 0.576
Average premium paid 30,027 175.51 89.06 69 163 298
Share choosing Bronze 30,027 0.065 0.073 0 0.045 0.147
Share choosing Silver 30,027 0.188 0.173 0.018 0.139 0.424
Share choosing Gold 30,027 0.015 0.021 0 0.009 0.038
Share choosing Platinum 30,027 0.012 0.018 0 0.007 0.030

Panel (b): Heterogeneity by age and income

Bronze Silver Gold Platinum
Premium Share Premium Share Premium Share Premium Share

By age:

27-34 120 0.050 175 0.122 229 0.010 271 0.009
35-49 118 0.058 182 0.175 248 0.013 300 0.011
50-64 105 0.086 210 0.259 321 0.022 409 0.016

By income (FPL%):

140-150 5 0.011 59 0.338 133 0.005 191 0.006
150-200 29 0.046 95 0.318 170 0.008 229 0.009
200-250 87 0.084 164 0.193 241 0.018 302 0.015
250-400 197 0.074 278 0.084 357 0.019 419 0.014

Note: Each observation in panel (a) is a unique combination of rating region × age × income bins of the observable characteristics,
(Mi, Xi). All statistics except the number of buyers are calculated across bins, weighted by number of buyers in each bin. Standard
deviation refers to the standard deviation across bins of the within-bin median of the corresponding variable. In panel (b), premium is
calculated as the average premium paid across buyers of a given age/income group, while market shares are calculated a proportion of
potential buyers as estimated using the ACS.
(?): Number of buyers statistics are calculated across bins, not weighted by number of buyers.

networks. These factors are unobserved in the data, so we will not use variation in

premiums across regions. That is, we define a market Mi to be a rating region, and

we do not impose any restriction on how preferences (the density of valuations f) vary

across markets.

Instead, we will assume—in a limited way—that preferences are locally invariant to

age and income. Since premiums vary with age due to the age-rating, and with income

due to the premium subsidies, this will provide variation in premiums that we can use

to help identify demand counterfactuals. The way in which premiums evolve with age
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and income is prescribed by ACA regulations, so the behavior of insurers is not likely

to be an important threat to this strategy. Rather, the main concern is that valuations

also change with age or income due to changes in latent risk factors or preferences. For

this reason, we will use only local variation in age and income.

We formulate this approach using the notation of Section 3 by letting Wi denote

a coarse aggregate of Xi bins. To do this, we group Xi into age bins given by {27–

30, 31–35, 36–40,. . . , 56–60, 61–64} and income bins given in percentage of the FPL

by {140–150, 150–200, 200–250, 250–300, 300–350, 350–400}. A value of Wi is then

taken to be the market indicator Mi crossed between all possibilities of these coarser

age-income bins. Conditioning on a value of Wi, we observe multiple premiums due to

variation in age and income within the Wi bin. Our assumption is that the distribution

of latent valuations does not change as Xi varies within this coarser bin.

For example, one value of Wi = w corresponds to individuals in the North Coast

rating region who are aged between 36 and 40 with incomes between 150 and 200%

of the FPL. Within this bin, we have 50 values of Xi, comprised of the 5 ages 36, 37,

38, 39, 40 crossed with the 10 income bins between 150 and 200 in steps of 5%. For

each of these 50 values, we observe a different premium vector. Since the variation we

want to use is now in Xi, conditioning on a value of Wi, the notation we developed in

Section 3 corresponds to taking Zi = Xi. The assumption we use is now precisely (6)

in that discussion, repeated here for emphasis:

fV |WZ(v|w, z) = fV |WZ(v|w, z′) for all z, z′, w, and v.︸ ︷︷ ︸
within a coarse bin (Wi = w), valuations are locally invariant to age and income (Zi = z, z′)

(31)

In Section 4.6, we relax assumption (6)/(31) to a strictly weaker “imperfect instrument”

assumption that allows for some local variation with age and income.

The other assumption we maintain is the support condition (7), which we use to

exploit the vertical ordering of plans in terms of actuarial generosity. We specify the

sets V•(w) as follows:

V•(w) =



{v ∈ R4 : v2 ≥ v4 ≥ v3 ≥ v1} if w has income below 150% FPL

{v ∈ R4 : v2 ≥ v1, v4 ≥ v3 ≥ v1} if w has income in 150–200% FPL

{v ∈ R4 : v4 ≥ v2 ≥ v1, v4 ≥ v3 ≥ v1}, if w has income in 200–250% FPL

{v ∈ R4 : v4 ≥ v3 ≥ v2 ≥ v1} if w has income above 250% FPL

This specification requires consumers to always prefer a plan that dominates on all

actuarial characteristics. The different cases are needed to account for the CSRs,
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which change at 150, 200 and 250% of the FPL (see Table 1). Note that in no case do

we assume that any of the plans are preferred to the outside option, that is, we allow

for some or all of the components of v to be smaller than v0 = 0.

4.3 Counterfactual Prices

Our focus is on measuring the effects of a change in post-subsidy premiums on demand,

consumer surplus, and government subsidy expenditure. We do not model supply,

so all of the results should be interpreted as holding supply fixed. Integrating our

nonparametric methodology with a model of supply-side behavior is an interesting

avenue for future research, but beyond the scope of the current paper.

We consider counterfactual premium vectors of the form π(Mi, Xi) + δ, for various

choices of δ. That is, the counterfactuals we consider can be represented as the impact

of shifting every individual’s premium from the observed premium, Pi ≡ π(Mi, Xi), to

a counterfactual premium, P ?i ≡ π(Mi, Xi) + δ. For each coarse bin (value of Wi), we

construct an MRP using the set of premiums formed from all Pi and P ?i within that

bin.

Figure 3 illustrates by plotting observed and counterfactual Bronze and Silver pre-

miums for three counterfactuals. In Figure 3b, the counterfactual is a $10 increase in

the premium of the Bronze plan for all consumers, while Figure 3c illustrates a $10

increase for the Silver plan. The former corresponds to δ = (10, 0, 0, 0), while the

latter corresponds to δ = (0, 10, 0, 0). In Figure 3d, both the Bronze and Silver plan

premiums increase by $10, which corresponds to δ = (10, 10, 0, 0).

4.4 Demand Responses

The first type of target parameter we consider is the change in choice shares. For

market m, consumer characteristics x, and good j, this can be written as

∆Sharej(m,x; f) ≡
∫
Vj(π(m,x)+δ)

f(v|m,x) dv −
∫
Vj(π(m,x))

f(v|m,x) dv, (32)

where Vj(p) was defined in (9).31 In order to aggregate (32) into a single measure, we

average it over markets and demographics:

∆Sharej(f) ≡
∑
m,x

∆Sharej(m,x; f) P[Mi = m,Xi = x]. (33)

31 Note that on the left-hand side of (32) we have omitted the dependence on the premium change, δ,
since this will be clear from the way we present the results.
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Figure 3: Observed and Counterfactual Premiums

(a) Observed prices
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(b) Increase Bronze premiums by $10
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(c) Increase Silver premiums by $10
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(d) Increase both premiums by $10
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Note: The figure shows observed and counterfactual premiums of Bronze and Silver plans. Panel (a) plots the prices observed in
the data in grey, where each observation is a unique region-age-income combination (N=30,027). Panel (b) overlays in red the
counterfactual prices representing an increase in $10 per person, per month for Bronze premiums. Panel (c) is like Panel (b), but
the price increases are for Silver premiums. Panel (d) is like Panels (b) and (c) with price increases of $10 for both Silver and
Bronze premiums.
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Table 3: Substitution Patterns, Upper and Lower Bounds

Change in probability of choosing
$10/month premium Bronze Silver Gold Platinum Any plan

increase for LB UB LB UB LB UB LB UB LB UB

Panel (a): Full sample (140 - 400% FPL)

Bronze -0.051 -0.006 +0.002 +0.048 +0.000 +0.031 +0.000 +0.026 -0.013 -0.001

Silver +0.000 +0.128 -0.170 -0.013 +0.000 +0.126 +0.000 +0.100 -0.052 -0.003

Gold +0.000 +0.007 +0.000 +0.013 -0.016 -0.001 +0.000 +0.014 -0.004 -0.000

Platinum +0.000 +0.005 +0.000 +0.008 +0.000 +0.012 -0.012 -0.001 -0.003 -0.000

All plans -0.014 -0.003 -0.053 -0.010 -0.005 -0.001 -0.004 -0.000 -0.070 -0.016

Panel (b): Lower income (140 - 250% FPL)

Bronze -0.049 -0.006 +0.002 +0.047 +0.000 +0.030 +0.000 +0.025 -0.011 -0.001

Silver +0.001 +0.184 -0.243 -0.017 +0.000 +0.178 +0.000 +0.144 -0.078 -0.004

Gold +0.000 +0.006 +0.000 +0.011 -0.013 -0.001 +0.000 +0.012 -0.003 -0.000

Platinum +0.000 +0.005 +0.000 +0.008 +0.000 +0.012 -0.012 -0.001 -0.003 -0.000

All plans -0.012 -0.002 -0.080 -0.014 -0.004 -0.000 -0.004 -0.000 -0.093 -0.018

Panel (c): Higher income (250 - 400% FPL)

Bronze -0.053 -0.006 +0.001 +0.049 +0.000 +0.032 +0.000 +0.027 -0.015 -0.002

Silver +0.000 +0.058 -0.077 -0.008 +0.000 +0.059 +0.000 +0.044 -0.019 -0.001

Gold +0.000 +0.009 +0.000 +0.015 -0.019 -0.002 +0.000 +0.016 -0.005 -0.000

Platinum +0.000 +0.005 +0.000 +0.008 +0.000 +0.012 -0.012 -0.001 -0.003 -0.000

All plans -0.016 -0.004 -0.020 -0.005 -0.006 -0.001 -0.004 -0.000 -0.040 -0.014

In the notation of Section 3, ∆Sharej (either averaged or conditional) is an example of

a target parameter, θ.

Table 3 reports estimated bounds for ∆Sharej across the four metal tiers together

with bounds on overall participation, i.e. on 1−∆Share0. The rows of Table 3 reflect

different types of premium increases, δ. The nominal premium increase is taken to

be $10 per person, per month, which represents a moderate to large price increase for

many consumers (see Table 2).

Our estimated bounds are quite informative. For example, with the full sample

in panel (a), we estimate that a simultaneous $10 increase in all premiums reduces

the proportion of individuals who purchase coverage by between 1.6 and 7.0%. Panel

(b) shows that these estimates are larger in magnitude for lower income individuals,

29



Figure 4: Effect of Increasing Bronze Premiums by $10 on Bronze and Silver Choice Shares
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Note: The figure shows the joint identified set for the effect of a $10 increase in Bronze monthly premiums on the choice
probabilities of Bronze and Silver plans. To construct the set, we take a grid of equidistant points between the estimated upper
and lower bounds for the change in Bronze choice shares. At each point in the grid, we find bounds on the change in Silver, while
fixing the change in Bronze to be the value at the grid point.

at between 1.8 and 9.3%, and panel (c) shows that they are smaller in magnitude

for higher income individuals, who we estimate would reduce participation in Covered

California by between 1.4 and 4.0%. Comparing panels (b) and (c) more generally, we

find a pattern of higher price sensitivity for lower income enrollees.

The other columns of Table 3 measure substitution patterns within and between

coverage tiers. For example, panel (a) shows that an increase in Bronze premiums

by $10 per person, per month would lead to a decrease of between 0.6 and 5.1%

in the share of consumers choosing Bronze coverage, and an increase in the share

choosing Silver of between 0.2 and 4.8%. The increase in the share choosing Gold or

Platinum is significantly smaller, reflecting the closer substitutability of the Bronze

and Silver plans. The extensive margin change in participation for a Bronze premium

increase is between 0.1 and 1.3%, which is naturally both smaller and tighter than the

change when all premiums are increased together. In contrast, increasing Platinum

premiums by the same amount would lead to a much smaller decline in the proportion

of buyers not purchasing coverage, which we measure to be at most 0.3%. Overall,

Table 3 indicates substitution patterns inconsistent with the independence of irrelevant

alternatives property of the logit model.
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Table 3 reports estimated bounds obtained by considering ∆Sharej separately for

each plan. However, changes in choice shares for different plans are tightly related

to one another. For example, if the decrease in the share of Bronze in response to a

Bronze premium increase is smaller, the increase in the share of other alternatives is

likely to also be smaller, and vice versa. We can describe these patterns by plotting

a joint identified set for the change in multiple choice shares in response to a given

premium change, as in Figure 4. The shape of this set shows that among the range

of responses that could result from an increase in Bronze premiums, larger decreases

in the probability of choosing Bronze would be associated with larger increases in the

probability of choosing Silver. For example, if the probability of choosing Bronze were

to decrease by 5%, then the probability of choosing Silver would increase by at least

2%, implying that at least 40% of the individuals leaving Bronze would substitute to

Silver.

In a partial identification framework, the width of the bounds reflects the amount

of information that the data and assumptions yield about a specific counterfactual.

The bounds for more ambitious counterfactuals will be wider than the bounds for

more modest counterfactuals that are closer to what was observed in the data. This

situation is evident in Figure 5, which plots the average extensive margin (enrollment)

response as a function of a given increase or decrease in all premiums. The bounds are

relatively tight for small changes in premiums, and then widen as the premiums get

farther from what was observed in the data. We consider this an attractive feature of

the approach, since it reflects the increased difficulty of drawing inference about objects

that involve larger departures from the observed data, and so captures an important

dimension of model uncertainty. In contrast, a fully parametric model point identifies

any counterfactual quantity regardless of how distant the extrapolation involved.32

4.5 Consumer Surplus and Subsidy Expenditure

The second set of parameters we consider measure the effects of changing premium

subsidies on consumer surplus and government spending. From the individual’s per-

spective, a decrease in premium subsidies—which in terms of policy can be thought of

as an increase in the ACA’s “maximum affordable amount”—is the same as an increase

in premiums faced.33 Such a subsidy change generates an average change in consumer

32 Note that confidence intervals on point estimates from a parametric model will tend to widen as one
extrapolates further. However, for the parametric models we consider in Section 5, the width of these
confidence intervals is effectively zero even for distant extrapolations.

33 Our analysis here requires maintaining a partial equilibrium framework in which there are no other
supply-side responses in base premiums due to an adjustment in subsidy schemes. As noted above, integrating
our approach with a model of insurance supply is an interesting avenue for future research.
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Figure 5: Extensive Margin Demand for Different Counterfactuals
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surplus for an individual in market m with characteristics x of

∆CS(m,x; f) ≡
∫ [

max
j∈J
{vj − πj(m,x)− δj} −max

j∈J
{vj − πj(m,x)}

]
f(v|m,x)dv,

which we aggregate by averaging over markets and demographics into

∆CS(f) ≡
∑
m,x

∆CS(m,x; f) P[Mi = m,Xi = x].

We will contrast the change in consumer surplus to the change in government spending

on premium subsidies. This is given by

∆GS(m,x; f) ≡
∑
j>0

(Subj(m,x)− δj)×
[∫
Vj(π(m,x)+δ)

f(v|m,x) dv

]

−
∑
j>0

Subj(m,x)×
[∫
Vj(π(m,x))

f(v|m,x) dv

]
,
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where Subj(m,x) denotes the baseline premium subsidy for purchasing plan j. We

denote the aggregated change in government spending as

∆GS(f) ≡
∑
m,x

∆GS(m,x; f) P[Mi = m,Xi = x].

Both ∆CS and ∆GS are examples of target parameters θ. Constructing bounds on

∆CS involves a two-step construction where we first determine bounds on the change

in consumer surplus within each set in the MRP. We discuss this in detail in Appendix

F.

Figure 6a depicts the bounds on ∆CS for a $10 decrease in subsidies as the shaded

areas to the left of the two demand curves. The lower bound on the decline in consumer

surplus is the area to the left of the flatter demand curve, while the upper bound also

includes the entire area to the left of the steeper demand curve. Intuitively, the smallest

decrease in consumer surplus is attained when price sensitivity is highest, while the

largest decrease is attained when price sensitivity is lowest.34 Figure 6b plots the

joint identified set of the change in consumer surplus and the change in government

spending for this same counterfactual of a $10 decrease in subsidies. The fact that the

joint set is not rectangular reflects the mutual dependence of the two parameters on

the underlying price sensitivity; relatively large consumer surplus decreases will only

happen under relatively small decreases in spending, and vice versa.

Table 4 summarizes the estimates illustrated in Figure 6. The first column shows

estimated bounds using the entire sample, while the second and third columns split

the estimates on income. In the fourth column of Table 4, we report estimated bounds

on the corresponding reduction in government spending.

Our estimates imply that a $10 decrease in monthly subsidies would lead to a reduc-

tion in average monthly consumer surplus of between $1.99 and $2.45 per person. The

impacts for the lower-income sample ($2.55–$3.16) are estimated to be approximately

twice as large as the impacts for the higher-income sample ($1.27–$1.55). This reflects

the fact that individuals with income lower than 250% of the FPL have a higher uptake

of insurance and are covered under more generous plans due to the CSRs.

Our estimates of changes in consumer surplus are dwarfed by the corresponding

change in government expenditure on premium subsidies, which we estimate to be

between -$7.50 and -$19.03 per consumer, per month. The large magnitude of the

expenditure savings is due to the marginal buyers who exit the market. When these

34 Note that while the bounds on ∆CS shown here are sharp, the demand curves we have plotted are not
unique, since there are many ways to draw a demand curve up to a $10 premium increase that can yield the
same area to the left, while still respecting the data and assumptions.

33



Figure 6: Changes in Consumer Surplus and Government Spending
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(a) Bounds on the change in consumer
surplus.
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(b) The joint identified set of consumer
surplus and government spending.

Table 4: The Impacts of Reducing Premium Subsidies by $10 per Month

140 - 400% FPL 140 - 250% FPL 250 - 400% FPL 140 - 400% FPL
Change in Change in Change in Associated change

consumer surplus consumer surplus consumer surplus in subsidy outlays
LB UB LB UB LB UB LB UB

Average ($/person-month) -2.45 -1.99 -3.16 -2.55 -1.55 -1.27 -19.03 -7.50

Aggregate ($ million/year) -77.82 -62.99 -57.59 -46.48 -22.48 -18.33 -603.89 -237.80

buyers exit, they relinquish their entire premium subsidy, which in most cases is sig-

nificantly greater than $10.

The bottom row of Table 4 shows the aggregate yearly impact of a $10 reduction of

subsidies in Covered California. The total consumer surplus impact would be between

$63 and $78 million, with the majority of the losses concentrated among individuals

with income below 250% of the FPL. At the same time, government subsidy outlays

would decline by between $238 and $604 million per year.

Overall, our findings suggest that consumers value health insurance significantly

less than it would cost in premium subsidies to induce them to purchase a plan. This

is consistent with a growing number of empirical analyses, see e.g. Finkelstein et al.
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(2019). One caveat is that our estimates do not account for potential sampling error.

In Appendix H, we provide suggestive evidence that sampling error is unlikely to have

a large impact on our bounds due to the large sample sizes we are considering. A more

important caveat when interpreting our welfare estimates is that they do not account for

the existence of potentially large externalities such as the cost of uncompensated care,

debt delinquency, or bankruptcy (Finkelstein et al., 2012; Mahoney, 2015; Garthwaite

et al., 2018).

4.6 Relaxing the Instrumental Variable Assumptions

The assumption that drives our results is (31), which requires valuations to be indepen-

dent of age and income within 5 year and 50% FPL bins. We view this local invariance

assumption as reasonable for the relatively homogenous groups of individuals within

these bins. However, it is unlikely to hold exactly. Local invariance to age will fail if

valuations change with risk factors and risk factors change with age.35 Local invariance

to income gives the additive separability in (1) the interpretation of quasilinearity, but

this will of course fail if there are general income effects.

In this section, we consider a strictly weaker version of (31) that allows for devia-

tions away from perfect local invariance. We do this by relaxing (31) from an equality to

two inequalities controlled by a slackness parameter. For age, the relaxed assumption

is that

(1− κage(z, z
′))fV |WZ(v|w, z′) ≤ fV |WZ(v|w, z) ≤ (1 + κage(z, z

′))fV |WZ(v|w, z′)
for all z, z′, w, and v, (34)

where κage(z, z
′) is a function specified as

κage(z, z
′) =

κage, if z and z′ differ only in age, and only by a single bin

+∞, otherwise

and κage ≥ 0 is the slackness parameter. For income, we impose the analog of (34)

with the roles of age and income swapped and a slackness parameter κinc ≥ 0. We use

these weaker forms to conduct a sensitivity analysis by varying κage and κinc, similar in

spirit to Conley et al. (2010), Nevo and Rosen (2012), and Manski and Pepper (2017).

In words, (34) requires that within any coarse bin (i.e., conditional on Wi = w), the

pointwise difference in conditional valuation densities for any two adjacent one-year age

35 Indeed, the importance of age heterogeneity in health insurance demand has been emphasized in existing
work, see e.g. Ericson and Starc (2015), Geruso (2017), and Tebaldi (2017).
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Table 5: Allowing for Valuations to Vary Within Coarse Age and Income Bins

Change in probability Change in consumer Change in government
Allowed variation of purchasing coverage surplus ($/person-month) spending ($/person-month)

in preference if all per-person premiums if per-person subsidies if per-person subsidies
with age and income increase by $10/month decrease by $10/month decrease by $10/month
κage κinc LB UB LB UB LB UB

0 0 -0.070 -0.016 -2.45 -1.99 -19.03 -7.50

0.2 0 -0.072 -0.017 -2.46 -1.98 -19.47 -7.48

0.6 0 -0.076 -0.019 -2.47 -1.96 -20.43 -7.70

+∞ 0 -0.089 -0.015 -2.51 -1.80 -23.92 -6.52

0 0.2 -0.075 -0.019 -2.47 -1.98 -20.22 -8.00

0 0.6 -0.089 -0.022 -2.48 -1.92 -23.36 -8.72

0 +∞ -0.147 -0.021 -2.53 -1.44 -39.01 -8.26

0.2 0.2 -0.098 -0.023 -2.52 -1.92 -25.90 -9.35

0.6 0.6 -0.154 -0.015 -2.66 -1.65 -40.50 -7.71

+∞ +∞ -0.280 -0.000 -2.80 -0.00 -72.56 -2.70

bins (with identical income) can be no greater than (κage×100)%. Taking κage = κinc =

0 corresponds to the previous assumption of (31). Alternatively, taking κage = +∞
and κinc = 0 completely relaxes the age invariance restriction while retaining income

invariance.

Table 5 reports bounds on some key target parameters for different values of κage

and κinc.
36 The top row with κage = 0 and κinc = 0 is the same as the estimates

reported in the previous section. At the opposite extremes, the row with κage = +∞
uses only variation in income, the row with κinc = +∞ uses only variation in age, and

the row with κage = κinc = +∞ uses neither. Values of κage and κinc in between limit

the amount by which adjacent bins can differ, with larger values of these parameters

representing strictly weaker identifying assumptions.37

36 Note that it is straightforward to modify the sharp characterization in Proposition 1 to allow for an
assumption like (34) instead of (31)/(6). The difference in implementation just amounts to replacing (25)
with two appropriate inequalities.

37 The bounds tend to widen with increases in κage and κinc, since larger values correspond to weaker
assumptions. However, this is not always the case, due to the fact that we are estimating these bounds using
the procedure in Section 3.10. That procedure works by restricting attention to densities that come closest
to fitting the observed choice shares. This fit mechanically improves as κage or κinc increases, because a
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Figure 7: Extensive Margin Demand Relaxing Exclusion Restrictions
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Overall, Table 5 suggests the estimated bounds in the previous section are quite

robust to violations in either the age or income invariance assumption. If we completely

drop age invariance, we obtain bounds that are not much wider. If we completely drop

income invariance, the bounds widen significantly, but only at the upper end of the

price sensitivity. As we will see in the next section, comparable parametric models

produce estimates of price sensitivity that tend to be small in magnitude. Overall,

our estimates of the impacts of a $10 decrease in subsidies remain qualitatively similar

if we drop either age or income invariance separately. Figure 7 shows that extensive

margin changes also remain similar under these specifications for different changes in

subsidies.

The bounds widen more quickly when we relax both age and income invariance

together in the third panel of Table 5. When both assumptions are completely removed,

our bounds become completely uninformative: We cannot rule out that a $10 increase

in monthly premiums causes all 28% of the population currently enrolled to exit the

market. Setting κage = κinc = .6 allows for the density of valuations in adjacent age

larger class of valuation densities are considered. Densities that fit well for smaller values of the slackness
parameters might be deemed to no longer fit well for larger values, since the best fit has improved. As a
consequence, the best-fitting set of densities need not weakly increase, which can lead to non-monotonicity
in the estimated bounds, even though monotonicity must hold for the population bounds.

37



Figure 8: Extensive Margin: Nonparametric Bounds vs. Parametric Point Estimates
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and/or income bins to increase or decrease by 60%. This seems extremely conservative,

and our bounds do widen significantly, yet they remain qualitatively similar to our

estimates from the main specification. For a more modest relaxation, like κage =

κinc = .2, our bounds are, for practical purposes, essentially unmoved from our baseline

estimates.

5 Comparison to Estimates from Parametric Models

The motivation of this paper has been to construct estimates of key demand-side policy

parameters using a model that does not impose parametric distributional assumptions.

In this section, we compare the estimates of the nonparametric model to estimates

from some fully parametric logit and probit models.

The models we consider all follow a specification similar to (2):

Yi = arg max
j∈J

1[j ≥ 1] (γi + βiAVij − αiPij + ξj) + εij , (35)

where γi is an individual-specific intercept, AVij is the actuarial value of tier j for

individual i (see Table 1), αi and βi are individual slope coefficients, and ξj are unob-

servable preference shifters for each tier. The indicator sets the contribution of these
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Figure 9: Consumer Surplus and Government Expenditure Changes from a $10 Decrease in Pre-
mium Subsidies: Nonparametric Bounds vs. Parametric Point Estimates
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terms to 0 for the outside option (j = 0). We consider logit models in which εij is as-

sumed to follow a type I extreme value distribution, independently across j, as well as

a probit model in which this unobservable is assumed to follow a normal distribution.

We always estimate (35) market-by-market, so that all parameters vary by market in

an unrestricted way.

The first model we estimate is a logit in which the price parameter, αi, is constant

within markets, but both γi and βi vary with observables in a rich way.38 The second

model is a probit with the same specification.39 We then consider three mixed logit

models. In each of these models, γi and βi vary with observables in the same way

as in the baseline model. The three models differ in whether γi, αi, or both have an

additional unobservable component that is normally distributed with unknown vari-

38 In particular, the specification allows βi to vary freely by market with a different value in each of the
following four age bins: {27–34, 35–44, 45–54, 54–64}. It allows γi to vary freely by market, and within each

market restricts γi = γInci + γAge
i , where γInci varies in three FPL income bins {140–200, 200–250, 250–400},

and γAge
i varies in the same four age bins as βi.

39 The probit still has εij independent across j. We had difficulty allowing for correlation across j because
the likelihood is very flat.

39



ance. In the latter case, we also assume that the two unobservable components are

uncorrelated.

Figure 8 illustrates how the nonparametric bounds for the extensive margin compare

to the estimates one obtains from these five parametric models. The estimates shown

are for $10 and $20 increases in monthly premiums. All of the point estimates are

clustered together within the nonparametric bounds. For a $10 increase, the estimates

are towards the upper bound, where price sensitivity is the lowest, while for a $20

increase they are more towards the center of the bounds. Our bounds are constructed

so that any value within the upper and lower bound can be obtained by a distribution

of valuations that fits the observed data equally well. Thus, one implication of Figure

8 is that distributional assumptions on εij do in fact matter here, since substantially

different conclusions could be obtained while fitting the data equally well.40

Figure 9 shows that the parametric models also make substantially different pre-

dictions for the consumer surplus and government spending impacts of a $10 decrease

in premium subsidies. Only the richest parametric model we consider (the mixed logit

with random coefficients on the constant and price) falls within the nonparametric joint

identified set. All of the parametric models estimate changes in government expenditure

contained within the marginal nonparametric bounds.41 However, only the two mixed

logits with random price coefficients yield estimated consumer surplus changes within

the marginal bounds, suggesting that non-random price coefficients lead to attenuated

demand responses. Of these two models, the one without the random constant term

(shown as a square in Figure 9) predicts a combination of changes in consumer surplus

and government expenditure that is inconsistent with the nonparametric model.

6 Conclusion

We estimated the demand for health insurance in California’s ACA marketplace using

a new nonparametric methodology. While we designed our methodology with health

insurance in mind, it should be applicable to other discrete choice problems as well.

The central idea of the method is to divide realizations of a consumer’s valuations into

sets for which behavior remains constant. We showed how to define the collection of

such sets, which we referred to as the minimal relevant partition (MRP) of valuations.

Using the MRP, we developed a computationally reliable linear programming procedure

for consistently estimating sharp identified sets for policy-relevant target parameters.

40 This conclusion appears to be quite robust to potential sampling error; see Appendix H.
41 The marginal bounds can be seen by projecting the set in Figure 9 against the vertical axis. Alternatively,

these bounds are reported in Table 4.
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Our nonparametric estimates of demand point to the possibility of substantially

greater price sensitivity than would be recognized using comparable parametric models.

This is consistent with the folklore that logits are “flat” models. We showed that this

has potentially important policy implications for the impact of decreasing subsidies

on consumer surplus and government expenditure. More broadly, our results provide

a clear example in which functional form assumptions are far from innocuous, and

actually play a leading role in driving empirical conclusions.
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A Methodology Literature Review

In this section, we discuss the relationship of our methodology to the existing literature.

We focus our attention first on semi- and non-parametric approaches to unordered

discrete choice analysis. This literature can be traced back to Manski (1975). The

focus of Manski’s work, as well as most of the subsequent literature, has been on

relaxing parameterizations on the distribution of unobservables, while the observable

component of utility is usually assumed to be linear-in-parameters.42 The motivation of

our approach is also to avoid the need to parameterize distributions of latent variables,

however we have chosen to keep the entire analysis nonparametric.43

Our approach has three key properties that, when taken together, make it distinct

in the literature on semi- and nonparametric discrete choice.

First, much of the literature has focused on identification of the observable compo-

nents of indirect utility, while treating the distribution of unobservables as an infinite-

dimensional nuisance parameter. For example, in (2), this would correspond to identi-

fying αi and βi when these random coefficients are restricted to be constant. Examples

of work with this focus include Manski (1975), Matzkin (1993), Lewbel (2000), Fox

(2007), Pakes (2010), Ho and Pakes (2014), Pakes et al. (2006, 2015), Pakes and Porter

(2016), Shi et al. (2016), and Khan et al. (2019). Identification of the relative im-

portance of observable factors for explaining choices is insufficient for our purposes,

because the policy counterfactuals we are interested in, such as choice probabilities

and consumer surplus, also depend on the distribution of unobservables. Treating this

distribution as a nuisance parameter would not allow us to make sharp statements

about quantities relevant to these counterfactuals.

Second, we allow for prices (premiums in our context) to be endogenous in the

sense of being correlated with the unobservable determinants of utility. This differen-

tiates our paper from work that focuses on identification of counterfactuals, but which

assumes exogenous explanatory variables. Examples of such work include Thompson

(1989), Manski (2007, 2014), Briesch et al. (2010), Chiong et al. (2017), and Allen and

Rehbeck (2017). The importance of allowing for endogenous explanatory variables in

discrete choice demand analysis was emphasized by Berry (1994) and Hausman et al.

42 Matzkin (1991) considered the opposite case in which the distribution of the unobservable component
is parameterized, but the observable component is treated nonparametrically. See also Briesch et al. (2002).

43 Extending our methodology to a semiparametric model is an interesting avenue for future work, but
not well-suited to our application since there is no variation in choice (plan) characteristics in Covered
California. Conceptually though, one could use our strategy with a semiparametric model by fixing the
parametric component and then repeatedly applying our characterization argument, similar to the strategy
in Torgovitsky (2018). See also the discussion in Appendix C.
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(1994), and motivated the influential work of Berry et al. (1995, 2004a). In our ap-

plication, it is essential that we can make statements about demand counterfactuals

while still recognizing that premiums could be correlated with unobserved components

of a consumer’s valuations.

Third, we do not place strong demands on the available exogenous variation in the

data. In particular, we do not require the existence of a certain number of instruments,

or that such instruments satisfy strong support or rank conditions. For example, Lew-

bel (2000) and Fox and Gandhi (2016) require exogenous “special regressors” with large

support, which are not available in our data. Alternatively, Chiappori and Komunjer

(2009) and Berry and Haile (2014) provide identification results that require a suffi-

cient number of continuous instruments that satisfy certain “completeness” conditions,

which can be viewed as high-level analogs to traditional rank conditions. Compiani

(2019) uses these results to develop a nonparametric estimator and applies it to study

the demand for strawberries in California supermarkets. Besides the difficulty of find-

ing a sufficient number of continuous instruments, one might also be concerned with the

interpretability and/or testability of the completeness condition (Canay et al., 2013).

Not maintaining these types of support and completeness conditions leads naturally to

a partial identification framework (Santos, 2012).

Other authors have also considered taking a partial identification approach to un-

ordered discrete choice models. Pakes (2010), Ho and Pakes (2014), Pakes et al. (2006,

2015), Pakes and Porter (2016) developed moment inequality approaches that can be

used to bound coefficients on observables in specifications like (2) without parametric

assumptions on the unobservables. As noted, this is insufficient for our purposes, since

we are concerned with demand counterfactuals. Manski (2007), Chiong et al. (2017)

and Allen and Rehbeck (2017) bound counterfactuals, but assume that all explanatory

variables are exogenous. In parametric contexts, Nevo and Rosen (2012) have consid-

ered partial identification arising from allowing instruments to be partially endogenous,

and Gandhi et al. (2017) analyzed the problem of non-purchases in scanner data as

one of partial identification.

Chesher et al. (2013) provide a general framework for deriving moment inequalities

in partially identified discrete choice models.44 They use random set theory to char-

acterize identification, which leads to the concept of a core-determining class of sets.

For the quasilinear utility models that we consider in this paper, the core-determining

class is strictly larger than the collection of sets we call the minimal relevant parti-

tion (see footnote 17). However, the analysis of Chesher et al. (2013) also applies to

44 Chesher and Rosen (2017) generalize this framework to an even broader class of models.
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models that are not quasilinear in utility. Our methodology also differs from theirs

in terms of computation. Whereas Chesher et al. (2013) provide moment inequalities

that must be checked for each candidate distribution of valuations (f), our approach

effectively profiles out this distribution in search of bounds on the finite-dimensional

target parameter (θ). As a consequence, our approach can be implemented nonpara-

metrically, whereas feasibly implementing the Chesher et al. (2013) approach requires

parameterizing the distribution of valuations (see their Section 4.2).

More generally, our work is related to a literature on computational approaches to

characterizing identified sets in the presence of partial identification.45 In particular,

linear programming has been used by many other authors in different contexts, see e.g.

Balke and Pearl (1994, 1997) and Hansen et al. (1995) for early examples. Previous

work that has used linear programming to characterize sharp identified sets includes

Honoré and Tamer (2006), Honoré and Lleras-Muney (2006), Manski (2007, 2014),

Lafférs (2013), Freyberger and Horowitz (2015), Demuynck (2015), Kline and Tartari

(2016), Torgovitsky (2016, 2018), Kamat (2017), and Mogstad et al. (2018). Of this

work, ours is closest to Manski (2007), who also considered discrete choice problems.

Methodologically, our work differs from Manski’s because we maintain and exploit more

structure on preferences (via (1)), and in addition we do not assume that explanatory

variables (or choice sets in Manski’s framework) are exogenous.

B A Model of Insurance Choice

In this section, we provide a model of choice under uncertainty that leads to (1). The

model is quite similar to those discussed in Handel (2013, pp. 2660–2662) and Handel

et al. (2015, pp. 1280–281). Throughout, we suppress observable factors other than

premiums (components of Xi) that could affect a consumer’s decision. All quantities

can be viewed as conditional on these observed factors, which is consistent with the

nonparametric implementation we use in the main text.

Suppose that each consumer i chooses a plan j to maximize their expected utility

taken over uncertain medical expenditures, so that

Yi = arg max
j∈J

∫
Uij(e) dGij(e), (36)

where Uij(e) is consumer i’s ex-post utility from choosing plan j given realized expen-

ditures of e, and Gij is the distribution of these expenditures, which varies both by

45 In addition to the series of papers by Chesher and Rosen (2013, 2014, 2017) and Chesher et al. (2013),
this also includes work by Beresteanu et al. (2011), Galichon and Henry (2011), and Schennach (2014).
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consumer i (due to risk factors) and by plan j (due to coverage levels). Assume that

Uij takes the constant absolute risk aversion (CARA) form

Uij(e) = − 1

Ai
exp(−AiCij(e)), (37)

where Ai is consumer i’s risk aversion, and Cij(e) is their ex-post consumption when

choosing plan j and realizing expenditures e. We assume that ex-post consumption

takes the additively separable form

Cij(e) = Inci − Pij − e+ Ṽij , (38)

where Inci is consumer i’s income, Pij is the premium they paid for plan j, and Ṽij is

an idiosyncratic preference parameter.

Substituting (38) into (37) and then into (36), we obtain

Yi = arg max
j∈J

− 1

Ai

[
exp(Ai(Pij − Inci − Ṽij))

∫
exp(Aie) dGij(e)

]
Transforming the objective using u 7→ − log(−u), which is strictly increasing for u < 0,

we obtain an equivalent problem

Yi = arg max
j∈J

− log

(
1

Ai

[
exp(Ai(Pij − Inci − Ṽij))

∫
exp(Aie) dGij(e)

])
= arg max

j∈J
− log

(
1

Ai

)
+Ai

(
Inci − Pij + Ṽij

)
+ log

(∫
exp(Aie) dGij(e)

)
.

Eliminating additive terms that do not depend on plan choice yields

Yi = arg max
j∈J

−AiPij +AiṼij + log

(∫
exp(Aie) dGij(e)

)
.

Suppose that Ai > 0, so that all consumers are risk averse.46 Then we can express the

consumer’s choice as

Yi = arg max
j∈J

[
Ṽij +

1

Ai
log

(∫
exp(Aie) dGij(e)

)]
− Pij ,

46 Showing that (1) would arise from risk neutral consumers is immediate.
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which takes the form of (1) with

Vij ≡
[
Ṽij +

1

Ai
log

(∫
exp(Aie) dGij(e)

)]
.

Examining the components of Vij reveals the factors that contribute to heteroge-

neous valuations in this model. Heterogeneity across i can come from variation in risk

aversion (Ai), from differences in risk factors or beliefs (Gij), and from idiosyncratic

differences in the valuation of health insurance (Ṽij). Differences in valuations across

j arise from the interaction between risk factors and the corresponding distribution of

expenditures (Gij), as well as from idiosyncratic differences in valuations across plans

(Ṽij). The main restrictions in this model are the assumption of CARA preferences

in (37) and the quasilinearity of ex-post consumption in (38). However, as noted in

the main text, these restrictions do not have empirical content until they are combined

with an assumption about the dependence between income (here called Inci) and the

preference parameters, Ai and Ṽij .

C Modifications for More or Less Price Variation

In Covered California, post-subsidy premiums are a deterministic function of the mar-

ket (rating region) and consumer demographics. Our discussion in the main text was

tailored to this case. In this section, we discuss how to modify our approach to settings

in which prices vary either more or less.

The more straightforward (and probably less interesting) case is when Pi still varies

conditional on (Mi, Xi). This could occur if prices vary at the individual level due to

factors that the researcher does not observe. In this case, our methodology can be

applied with little more than notational changes. In addition to (Mi, Xi), one would

also need to condition on Pi when defining the primitive distribution of valuations,

f . Demand and consumer surplus parameters like (3) and (4) would be defined as

before, but there would be an additional integration step to construct the density of

Vi given (Mi, Xi) from that of Vi given (Pi,Mi, Xi). A similar comment applies to the

assumptions in Section 3.5. Condition (11) would be modified so that it is defined for

all (p,m, x) in the support of (Pi,Mi, Xi).

The less straightforward (and more interesting) case is when one observes only a

single price for each market, as in Berry et al. (1995) and Berry and Haile (2014).

Notationally, this means Pi = π(Mi) depends on Mi only, and not Xi. As a technical

matter, our methodology applies exactly as before to this case. However, since there

is only a single price per market, and since we are not assuming anything about how
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demand varies across markets, the resulting bounds will be uninformative. Here, we

suggest two additional assumptions that could potentially be used to compensate for

limited price variation.

The first assumption is that there is another observable variable that varies within

markets and can be made comparable to prices.47 This is implicit in standard discrete

choice models like (2). Consider modifying (1) to

Yi = arg max
j∈J

Vij +X ′iβj − Pij , (39)

where β ≡ (β1, . . . , βJ) are unknown parameter vectors. For each fixed β, this model

is like (1) but with “prices” given by P̃ij(βj) ≡ Pij − X ′iβj . While Pij does not vary

within markets, P̃ij(βj) can if a component of Xi does. In order to make use of this

variation, that component of Xi needs to be independent of Vi, which is a common

assumption in empirical implementations of (2). In our framework, this independence

can be incorporated by modifying the instrumental variable assumptions in Section

3.5.1.

The second assumption is that the unobservables that vary across markets can be

made comparable to prices. In (2), these unobservables are called ξjm. In our notation,

we can incorporate these by replacing (1) with

Yi = arg max
j∈J

Vij + ξj(Mi)− Pij , (40)

where ξj is an unknown function of the consumer’s market. For each fixed ξ, this

model is like (1) but with valuations given by Ṽij(ξ) ≡ Vij + ξj(Mi). After incorporat-

ing unobserved product-market effects in this way, one may be willing to assume that

Vij is independent of Pi = π(Mi), as is common in implementations of (2). This can

be incorporated by modifying the instrumental variable assumptions in Section 3.5.1.

While there is still only a single price per market, (40) together with such an indepen-

dence assumption enables aggregation across markets by requiring the distribution of

valuations to be the same up to a location shift.

Implementing either (39) or (40) requires looping over possible parameter values

β or ξ. However, for each candidate β and ξ, one can characterize and compute

the identified set exactly as before. This suggests that such a procedure will still be

sharp. Developing a feasible computational strategy appears more challenging, but not

impossible. Since neither (39) or (40) are needed for our application, we leave fuller

47 Berry and Haile (2010) show how such variables can be used to relax assumptions used in the nonpara-
metric point identification arguments in Berry and Haile (2014).
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investigations of these extensions to future work.

D Construction of the Minimal Relevant Partition

We first observe that any price (premium) vector p ∈ RJ divides RJ into the sets

{Vj(p)}Jj=0, as shown in Figures 1a and 1b. Intuitively, we view such a division as a

partition, although formally this is not correct, since these sets can overlap on subsets

like {v ∈ RJ : vj − pj = vk − pk} where ties occurs. These regions of overlap have

Lebesgue measure zero in RJ , so this caveat is unimportant given our focus on con-

tinuously distributed valuations. To avoid confusion, we refer to a collection of sets

that would be a partition if not for regions of Lebesgue measure zero as an almost sure

(a.s.) partition.

Definition ASP. Let {At}Tt=1 be a collection of Lebesgue measurable subsets of RJ .

Then {At}Tt=1 is an almost sure (a.s.) partition of RJ if

a)
⋃T
t=1At = RJ ; and

b) λ(At ∩ At′) = 0 for any t 6= t′, where λ denotes Lebesgue measure on RJ .

Next, we enumerate the price vectors in P as P = {p1, . . . , pL} for some integer

L. Let Y ≡ J L denote the collection of all L–tuples from the set of choices J ≡
{0, 1, . . . , J}. Then, since {Vj(pl)}Jj=0 is an a.s. partition of RJ for every pl, it follows

that

{
Ṽy : y ∈ Y

}
where Ṽy ≡

L⋂
l=1

Vyl(pl) (41)

also constitutes an a.s. partition of RJ .48 Intuitively, each vector y ≡ (y1, . . . , yL) is a

profile of L choices made under the price vectors (p1, . . . , pL) that comprise P. Each

set Ṽy in the a.s. partition (41) corresponds to the subset of valuations in RJ for which

a consumer would make choices y when faced with prices P.

The collection V ≡ {Ṽy : y ∈ Y} is the MRP, since it satisfies Definition MRP by

construction. To see this, note that if v, v′ ∈ Ṽy for some y, then by (41), v, v′ ∈ Vyl(pl)
for all l = 1, . . . , L, at least up to collections of v, v′ that have Lebesgue measure zero.

Recalling (9) and the notation of Definition MRP, this implies that Y (v, p) = Y (v′, p)

for all p ∈ P. Conversely, if Y (v, p) = Y (v′, p) for all p ∈ P, then taking

y ≡ (Y (v, p1), . . . , Y (v, pL)) = (Y (v′, p1), . . . , Y (v′, pL)), (42)

48 Note that these sets are Lebesgue measurable, since Vj(p) is a finite intersection of half-spaces and Ṽy
is a finite intersection of sets like Vj(p).
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yields an L–tuple y ∈ Y such that v, v′ ∈ Vyl(pl) for every l, again barring ambiguities

that occur with Lebesgue measure zero.

From a practical perspective, this is an inadequate representation of the MRP,

because if choices are determined by the quasilinear model (1), then many of the sets

Ṽy must have Lebesgue measure zero. This makes indexing the partition by y ∈ Y
excessive; for computation we would prefer an indexing scheme that only includes sets

that are not already known to have measure zero. For this purpose, we use an algorithm

that starts with the set of prices P and returns the collection of choice sequences Y
that are not required to have Lebesgue measure zero under (1). We use this set Y in

our computational implementation. Note that since Ṽy has Lebesgue measure zero for

any y ∈ Y \ Y, the collection V ≡ {Ṽy : y ∈ Y} still constitutes an a.s. partition of RJ

and still satisfies the key property (17) of Definition MRP.

The algorithm works as follows.49 We begin by partitioning P into T sets (or

blocks) of prices {Pt}Tt=1 that each contain (give or take) ψ prices. For each t, we

then construct the set of all choice sequences Yt ⊆ J |Pt| that are compatible with the

quasilinear choice model in the sense that yt ∈ Yt if and only if the set{
v ∈ RJ : vytl

− pytl ≥ vj − pj for all j ∈ J and p ∈ Pt
}

(43)

is non-empty. In practice, we do this by sequentially checking the feasibility of a linear

program with (43) as the constraint set. The sense in which we do this sequentially

is that instead of checking (43) for all yt ∈ J |Pt|—which could be a large set even for

moderate ψ—we first check whether it is nonempty when the constraint is imposed

for only 2 prices in Pt, then 3 prices, etc. Finding that (43) is empty when restricting

attention to one of these shorter choice sequences implies that it must also be infeasible

for all other sequences that share the short component. This observation helps speed

up the algorithm substantially.

One we have found Yt for all t, we combine blocks of prices into pairs, then repeat

the process with these larger, paired blocks. For example, if we let P12 ≡ P1 ∪P2—i.e.

we pair the first two blocks of prices—then we know that the set of y12 ∈ J |P1|+|P2|

that satisfy (43) must be a subset of {(y1, y2) : y1 ∈ Y1, y2 ∈ Y2}. We sequentially

check the non-emptyness of (43) for all y12 in this set, eventually obtaining a set Y12.

Once we have done this for all pairs of price blocks, we then combine pairs of pairs of

blocks (e.g. P12 ∪ P34) and repeat the process. Continuing in this way, we eventually

49 We expect that this algorithm leaves room for significant computational improvements, but we leave
more sophisticated developments for future work. In practice, we also use some additional heuristics based
on sorting the price vectors. These have useful but second-order speed improvements that are specific to our
application, so for brevity we do not describe them here.
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end up with the original set of price vectors, P, as well as the set of all surviving choice

sequences, Y ⊆ Y.

The key input to this algorithm is the number of prices in the initial price blocks,

which we have denoted by ψ. The optimal value of ψ should be something larger than

2, but smaller than L. With small ψ, the sequential checking of (43) yields less payoff,

since each detection of infeasibility eliminates fewer partial choice sequences. On the

other hand, large ψ makes the strategy of combining pairs of smaller blocks of prices

into larger blocks less fruitful. For our application, we use ψ = 8–10, which seems to

be fairly efficient, although it is likely specific to our setting.

E Proofs for Propositions 1 and 2

E.1 Proposition 1

If t ∈ Θ?, then by definition there exists an f ∈ F? such that θ(f) = t. Let φ(f) be

defined as in (20), which we reproduce here for convenience:

φ(f)(V|m,x) ≡
∫
V
f(v|m,x) dv. (20)

Note that φ(f) ∈ Φ, because the MRP V is (almost surely) a partition of RJ , and f

is a conditional probability density function on RJ . Due to the assumed properties of

θ, we also know that θ(φ(f)) = θ(f) = t, so that (23) is satisfied. To see that φ(f)

satisfies (24), observe that

∑
V∈Vj(π(m,x))

φ(f)(V|m,x) ≡
∑

V∈Vj(π(m,x))

∫
V
f(v|m,x) dv = sj(m,x; f) = sj(m,x),

where the first equality follows by definition (20), the second follows from (10) and (18),

and the third follows from the definition of F?. Similarly, φ(f) satisfies (25) because

φ(f)V|WZ(V|w, z) ≡ E
[
φ(f)(V|Mi, Xi)|Wi = w,Zi = z

]
= E

[∫
V
f(v|Mi, Xi) dv

∣∣∣Wi = w,Zi = z

]
=

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z

]
dv

=

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z′

]
dv = φ(f)V|WZ(V|w, z′)

where the third equality follows by Tonelli’s Theorem (e.g. Shorack, 2000, pg. 82),

the fourth uses (6), which holds (by definition) for all f ∈ F?, and the final equality
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reverses the steps of the first three. That φ(f) also satisfies (26) follows using a similar

argument since f ∈ F? satisfies (7), i.e.

∑
V∈V•(w)

φ(f)V|WZ(V|w, z) =
∑

V∈V•(w)

∫
V

E
[
f(v|Mi, Xi)|Wi = w,Zi = z

]
dv

=

∫
∪{V:V∈V•(w)}

fV |WZ(v|w, z) dv

≥
∫
V•(w)

fV |WZ(v|w, z) dv = 1. (44)

The inequality in (44) follows because the definition of V•(w), together with the fact

that V is an a.s. partition of RJ , implies that V•(w) is contained in the union of sets

in V•(w). This inequality implies that φ(f) satisfies (26), because∑
V∈V•(w)

φ(f)V|WZ(V|w, z) ≤
∑
V∈V

φ(f)V|WZ(V|w, z)

= E

[∑
V∈V

φ(f)(V|Mi, Xi)
∣∣∣Wi = w,Zi = z

]
= 1,

as a result of φ(f) being an element of Φ. We have now established that if t ∈ Θ?,

then there exists a φ ∈ Φ satisfying (23)–(26) for which θ(φ) = t.

Conversely, suppose that such a φ ∈ Φ exists for some t. Recall that Wi was

assumed to be a subvector (or more generally, a function) of (Mi, Xi), and denote this

function by ω, so that Wi = ω(Mi, Xi). Then define

f(φ)(v|m,x) ≡
∑

V∈V•(ω(m,x))

1 [v ∈ V ∩ V•(ω(m,x))]

λ (V ∩ V•(ω(m,x)))
φ(V|m,x),

noting that the definition of V•(w) ensures that the summands are well-defined. The

function f(φ)(·|m,x) places total mass of φ(V|m,x) on sets V ∈ V•(ω(m,x)), and dis-

tributes this mass uniformly across each set. We will show that t ∈ Θ? by establishing

that f(φ) ∈ F? and θ(f(φ)) = t.

First observe that for any V ∈ V,∫
V
f(φ)(v|m,x) dv ≡

∑
V ′∈V•(ω(m,x))

∫
V

1 [v ∈ V ′ ∩ V•(ω(m,x))]

λ (V ′ ∩ V•(ω(m,x)))
φ(V ′|m,x) dv

= 1[V ∈ V•(ω(m,x))]φ(V|m,x), (45)

since the sets in V and thus V•(ω(m,x)) are disjoint (almost surely). Using (45), we
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have that∫
RJ
f(φ)(v|m,x) dv =

∑
V∈V

∫
V
f(φ)(v|m,x) dv =

∑
V∈V•(ω(m,x))

φ(V|m,x) = 1, (46)

where the first equality uses the fact that V is an (a.s.) partition of RJ , and the final

equality is implied by the hypothesis that φ satisfies (26), since

1 =
∑

V∈V•(w)

φV|WZ(V|w, z) = E

 ∑
V∈V•(ω(Mi,Xi))

φ(V|Mi, Xi)
∣∣∣Wi = w,Zi = z

 ,
and every φ ∈ Φ satisfies∑

V∈V•(ω(m,x))

φ(V|m,x) ≤
∑
V∈V

φ(V|m,x) = 1.

Thus, from (46), and since f(φ) inherits non-negativity from φ ∈ Φ, we conclude that

f(φ) is a conditional density, i.e. f(φ) ∈ F .

To see that f(φ) satisfies (6), notice that

f(φ)V |WZ(v|w, z) ≡ E
[
f(φ)(v|Mi, Xi)|Wi = w,Zi = z

]
≡ E

 ∑
V∈V•(w)

1 [v ∈ V ∩ V•(w)]

λ (V ∩ V•(w))
φ(V|Mi, Xi)

∣∣∣Wi = w,Zi = z


=

∑
V∈V•(w)

1 [v ∈ V ∩ V•(w)]

λ (V ∩ V•(w))
φV|WZ(V|w, z)

=
∑

V∈V•(w)

1 [v ∈ V ∩ V•(w)]

λ (V ∩ V•(w))
φV|WZ(V|w, z′) = f(φ)V |WZ(v|w, z′),

where the fourth equality uses (25), and the final equality reverses the steps of the first

three. The satisfaction of the support condition, (7), follows in a similar way from (26)

and Tonelli’s Theorem, since∫
V•(w)

f(φ)V |WZ(v|w, z) dv ≡
∫
V•(w)

E
[
f(φ)(v|Mi, Xi)|Wi = w,Zi = z

]
dv

= E

 ∑
V∈V•(w)

φ(V|Mi, Xi)
∣∣∣Wi = w,Zi = z


=

∑
V∈V•(w)

φV|WZ(V|w, z) = 1.
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That f(φ) satisfies (11) follows from (10), (18), (45), and (24) via

sj(m,x; f(φ)) ≡
∑

V∈Vj(π(m,x))

∫
V
f(φ)(v|m,x) dv

=
∑

V∈Vj(π(m,x))

1[V ∈ V•(ω(m,x))]φ(V|m,x)

=
∑

V∈Vj(π(m,x))

φ(V|m,x)−
∑

V∈Vj(π(m,x))

1[V /∈ V•(ω(m,x))]φ(V|m,x)

= sj(m,x),

for all j ∈ J and (p, x) ∈ supp(Pi, Xi). The last equality here uses the implication of

(46) that φ(V|m,x) = 0 for any V /∈ V•(ω(m,x)).

Finally, note that in the notation of (20), (45) says

(φ ◦ f(φ))(V|m,x) = 1[V ∈ V•(ω(m,x))]φ(V|m,x).

This equality implies that (φ ◦ f(φ))(V|m,x) = φ(V|m,x) for all V, since (46) implies

that φ(V|m,x) = 0 for V /∈ V•(ω(m,x)). Thus,

θ(f(φ)) = θ(φ ◦ f(φ)) = θ(φ) = t,

and therefore t ∈ Θ?. Q.E.D.

E.2 Proof of Proposition 2

Observe that Φ is a compact and connected subset of Rdφ . Since (24)–(26) are linear

equalities, the subset of Φ that satisfies them is also compact and connected. Thus,

if θ is continuous on this subset, it follows that its image over it—which Proposition

1 established to be Θ?—is compact and connected as well. If dθ = 1, then Θ? is a

compact interval, so by definition its endpoints must be given by t?lb and t?ub. Q.E.D.

F Implementing Bounds on Consumer Surplus

In this section, we show how sharp bounds on changes in average consumer surplus can

be found using Propositions 1 and 2 by constructing appropriate concentrated target

parameter functions, θ. The function used for the upper bound is different from that

used to find the lower bound. Both functions are linear in φ.

For shorthand, we denote average consumer surplus at premium p?, conditional on

53



(Mi, Xi) = (m,x) under valuation density f as

CSp
?
(m,x; f) ≡

∫ {
max
j∈J

vj − p?j
}
f(v|m,x) dv.

Suppose that V is the MRP constructed from a set of premiums P that contains

the two premiums, p and p?, at which average consumer surplus is to be contrasted.

Then

CSp
?
(m,x; f) =

∑
V∈V

∫
V

{
max
j∈J

vj − p?j
}
f(v|m,x) dv, (47)

since the MRP is an (almost sure) partition of RJ . By definition of the MRP, the

optimal choice of plan is constant as a function of v within any MRP set V. That

is, using the notation in Definition MRP, arg maxj∈J vj − pj ≡ Y (v, p) = Y (v′, p) ≡
Y (V, p) for all v, v′ ∈ V and any p ∈ P. Consequently, we can write (47) as

CSp
?
(m,x; f) =

∑
V∈V

−p?Y (V,p?) +

∫
V
vY (V,p?)f(v|m,x) dv

Replacing p? by p, it follows that the change in average consumer surplus resulting

from a shift in premiums from p to p? can be written as

∆CSp→p
?
(m,x; f) ≡ CSp

?
(m,x; f)− CSp(m,x; f)

=
∑
V∈V

pY (V,p) − p?Y (V,p?) +

∫
V

(
vY (V,p?) − vY (V,p)

)
f(v|m,x) dv.

Now define the smallest and largest possible change in valuations within any parti-

tion set V as

vp→p
?

lb (V) ≡ min
v∈V

vY (V,p?) − vY (V,p),

and vp→p
?

ub (V) ≡ max
v∈V

vY (V,p?) − vY (V,p).

These quantities can be computed in an initial step with linear programming. Since

we do not restrict the distribution of valuations within each MRP set, the sharp lower

bound on a change in average consumer surplus is attained when this distribution
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concentrates all of its mass on vp→p
?

lb (V) in every V ∈ V. That is,

∆CSp→p
?
(m,x; f) ≥

∑
V∈V

pY (V,p) − p?Y (V,p?) + vp→p
?

lb (V)

∫
V
f(v|m,x) dv

=
∑
V∈V

pY (V,p) − p?Y (V,p?) + vp→p
?

lb (V)
[
φ(f)(V|m,x)

]
≡ ∆CSp→p

?

lb (m,x; f). (48)

Similarly, the sharp upper bound for any f is given by

∆CSp→p
?

ub (m,x; f) ≡
∑
V∈V

pY (V,p) − p?Y (V,p?) + vp→p
?

ub (V)
[
φ(f)(V|m,x)

]
.

Therefore, a sharp lower bound on the change in consumer surplus can be found by

taking θ(f) ≡ ∆CSp→p
?

lb (m,x; f), setting

θ(φ) ≡
∑
V∈V

pY (V,p) − p?Y (V,p?) + vp→p
?

lb (V)φ(V|m,x), (49)

and applying Propositions 1 or 2. The requirement that θ(f) = θ(φ(f)) can be seen

to be satisfied here by comparing (48) and (49). The sharp upper bound is found

analogously.

G Estimation of Potential Buyers

In this section, we describe how we use the American Community Survey (ACS) to

estimate the number of potential buyers in each market × age × income bin, that is,

each value of (Mi, Xi) = (m,x).

As is often the case in empirical demand analysis, our administrative data only

contains observations of individuals who buy health insurance in Covered California,

but not those who were eligible yet chose the outside option. That is, we do not have

data on the quantity who chose choice 0.50 Instead, we construct conditional choice

probability (market shares) by estimating the number of potential buyers and dividing

the quantity purchased of the inside choices (j ≥ 1) by this estimate. This gives

us estimated choice shares for the inside choices; the estimated choice share for the

outside choice (j = 0) is just the difference between 1 and the sum of the estimated

inside shares.

The key step here is estimating the number of potential buyers (market size) for

50 This is common in discrete choice contexts, see e.g. Berry (1994, pg. 247).

55



each (Mi, Xi) = (m,x). We do this using the California 2013 3-year subsample of

the American Community Survey (ACS) public use file, downloaded from IPUMS

(Ruggles et al., 2015).51 We define an individual as a potential buyer, denoted by the

indicator Ii = 1, if they report being either uninsured or privately insured. Individuals

with Ii = 0 include those who are covered by employer-sponsored plans, Medi-Cal

(Medicaid), Medicare, or other types of public insurance.

Our estimator is constructed using a flexible linear regression. The outcome variable

is the indicator Ii. The main regressors are the Xi bins, that is, age in years and income

in FPL (taken at the lower endpoint of the bin). We include a full set of interactions

between these variables and indicators for the coarse age and income bins described

in Section 4.2 (called Wi there). We also include a full set of market indicators (Mi),

and interactions between these indicators and both age and income. This regression

yields estimated potential buyer probabilities for each (m,x) pair. We convert these

probabilities into an estimate of the total number of buyers in each (m,x) pair by using

the individual sampling weights provided in the ACS.

An adjustment to this procedure is needed to account for the fact that the PUMA

(public use micro area) geographic identifier in the ACS can be split across multiple

counties, and so in some cases also multiple ACA rating regions. For a PUMA that is

split in such a way, we allocate individuals to each rating region it overlaps using the

population of the zipcodes in the PUMA as weights. This is the same adjustment factor

used in the PUMA-to-county crosswalk.52 Since the definition of a PUMA changed

after 2011, we also use this adjustment scheme to convert the 2011 PUMA definitions

to 2012–2013 definitions.

H Statistical Uncertainty

One concern in interpreting our estimated bounds is that they may be estimated with

statistical uncertainty due to noise in the estimated choice shares. In this section,

we examine the extent to which this might be the case through a simulation exercise.

For each consumer, we redraw their plan choice from a multinomial distribution with

probabilities given by the estimated choice shares in their fine bin. We use these new

choices to form new choice shares, and then we run these new choice shares through

51 The 3 year sample includes information from 2011 to 2013. We use the entire 3 year sample to increase
our sample size.

52 For example, suppose that an individual is in a PUMA that spans counties A and B, and that this
individual has a total sampling weight of 10, so that they represent 10 observationally identical individuals.
If the adjustment factor is 0.3 in county A and 0.7 in county B, we assume there are 3 identical individuals
in county A and 7 in county B.
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Table 6: Simulated Distributions of Bounds and Point Estimates

Change in probability Change in consumer Change in government
of purchasing coverage surplus ($/person-month) spending ($/person-month)

if all per-person premiums if per-person subsidies if per-person subsidies
increase by $10/month decrease by $10/month decrease by $10/month

Nonparametric bounds LB UB LB UB LB UB

5th percentile -0.0705 -0.0176 -2.4231 -1.9539 -19.2117 -7.8223

95th percentile -0.0700 -0.0171 -2.4094 -1.9419 -19.0483 -7.6602

Simple logit Point estimate Point estimate Point estimate

5th percentile -0.0317 -2.6418 -9.5548

95th percentile -0.0315 -2.6339 -9.5140

Mixed logit Point estimate Point estimate Point estimate
random constant

5th percentile -0.0306 -2.7216 -9.3041

95th percentile -0.0302 -2.7121 -9.1439

Mixed logit Point estimate Point estimate Point estimate
random price coefficient

5th percentile -0.0340 -1.9859 -11.0390

95th percentile -0.0305 -1.6172 -10.1852

Mixed logit Point estimate Point estimate Point estimate
random constant & price coefficient

5th percentile -0.0264 -2.2268 -9.0732

95th percentile -0.0219 -1.7602 -7.9383

Probit Point estimate Point estimate Point estimate

5th percentile -0.0288 -2.7176 -13.7916

95th percentile -0.0286 -2.5284 -13.7642

the same estimators that we used for the actual data, obtaining a new set of bounds

(for our procedure) and point estimates (for the parametric models in Section 5). We

repeat this procedure 100 times and then look at the distribution of the simulated

bounds across these 100 replications.

Table 6 reports the 5th and 95th percentile of both the upper and lower bounds for

our primary target parameters under a $10 increase in all premiums. The distribution

suggests that neither our bounds nor the point estimates would be very different if the

data were realized again under the same distribution. While reassuring, we emphasize

that this is a simulation exercise that redraws from an estimated distribution; these are
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not confidence regions. Unfortunately, constructing uniformly valid confidence regions

for estimators defined by large-scale linear programs remains both theoretically and

computationally challenging, especially in problems the size of ours.53 However, the

results of the simulation do suggest that our sample size is large enough such that valid

confidence regions both for our model and the parametric models would be quite tight.

53 Of course, we can construct confidence intervals for the parametric models, but to make a fair comparison
we use the same exercise.
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Heckman, J. J. and B. E. Honoré (1990): “The Empirical Content of the Roy Model,”
Econometrica, 58, 1121–1149. 11

Heckman, J. J. and S. Navarro (2007): “Dynamic discrete choice and dynamic treatment
effects,” Journal of Econometrics, 136, 341–396. 11

Ho, K. and A. Pakes (2014): “Hospital Choices, Hospital Prices, and Financial Incentives
to Physicians,” American Economic Review, 104, 3841–84. 3, 42, 43

Ho, K. and A. M. Rosen (2017): “Partial Identification in Applied Research: Benefits and
Challenges,” in Advances in Economics and Econometrics, ed. by B. Honore, A. Pakes,
M. Piazzesi, and L. Samuelson, Cambridge University Press, 307–359. 2
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