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1 Introduction

This paper measures the fiscal roots of inflation. Higher inflation devalues nominal government

debt. It must therefore correspond to lower surplus/GDP ratios, lower growth, or higher discount

rates for government debt. I develop a set of linearized identities that express these connections.

I measure these components in a simple vector autoregression (VAR).

I find that variation in inflation largely corresponds to variation in discount rates. For

example, consider 2009. There was a big recession, and a sharp fall in inflation which raised

the real value of nominal debt. Yet deficits exploded. How can this be? Well, perhaps people

expected future surplus/GDP ratios to swiftly pay down the accumulated debt and more, making

nominal debt more valuable in real terms. Aside from its implausibility, I do not find this pattern

in the data. Perhaps people expected the recession to end swiftly, and future growth to be even

stronger than before, so that government debt became more valuable. Again, the data confirm

one’s intuition that this is not the case. But nominal and real interest rates on government debt

fell sharply. Perhaps this lower discount rate for government debt increased its value, just as

higher expected surpluses or growth would do. I find that this is the case: the fall in expected

returns is large and persistent enough quantitatively to account for this kind of episode in the

data.

I also find that fiscal shocks correspond to a drawn-out period of inflation, that devalues

long-termbonds. Long-term debt and monetary policy accommodation substantially smooth

fiscal shocks. Finally, I examine shocks to surpluses and shocks to discount rates. These do

not produce much inflation. Shocks to surpluses come largely with lower interest and discount

rates, and the two effects offset. Deficits are largely “repaid” by lower returns which bring back

the value of debt. Here discount rates answer the fiscal roots of the otherwise-puzzling absence

of inflation.

I interpret the results through the lens of the fiscal theory of monetary policy: models

with interest rate targets, fiscal theory of the price level, and potentially sticky prices, as de-

scribed in Cochrane (2019a), Cochrane (2019b). (More literature below.) In this interpretation,

changes in expected surpluses and discount rates cause unexpected inflation. We study the fis-

cal roots rather than the fiscal consequences of inflation. This paper establishes a set of facts

that will hopefully be useful for constructing such models, as atheoretical VARs guided the con-

struction of conventional monetary models. For example, the fact that discount rates account

for much inflation variation is key to making a fiscal-theory analysis reasonable, and to allow a

fiscal-theory model to have a hope of accounting for events such as 2009, or the converse rise in
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inflation in low-deficit booms. My causal language below refers to this interpretation.

But the identities hold in almost all macroeconomic models used to quantitatively ad-

dress inflation. (They assume that the present value is finite – loosely that r > g. I presume this

case without further comment.) Therefore, the results can also be interpreted as measures of the

passive-fiscal adjustments to an active-money regime, and the standard new-Keynesian model

in particular. A well-specified active-money regime must spell out a realistic passive-fiscal pol-

icy. The fact that discount rates do much of the adjusting, rather than the ex-post lump-sum

taxes alluded to in many theoretical footnotes, changes the fiscal underpinnings of such models

substantially.

Since the analysis is based on identities, I do not test anything, and the empirical results

do nothing to establish one or another causal story. But which element in an identity moves is

still an interesting measurement.

2 Identities

To develop the identities linking inflation to surpluses, growth, and discount rates, start with a

linearized version of the government debt flow identity,

ρvt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1. (1)

The log debt to GDP ratio at the end of period t+ 1, vt+1, is equal to its value at the end of period

t, vt, increased by the log nominal return on the portfolio of government bonds rnt+1 less inflation

πt+1, less log GDP growth gt+1, and less the real primary surplus to GDP ratio1 st. For brevity, I

refer to st simply as the “surplus.” The parameter ρ is a constant of linearization, ρ = er−g, which

I take to be ρ = 1 in the numerical results.I derive this identity in the Appendix.

Iterating forward, we have a present value identity,

vt =
∞∑
j=1

ρj−1st+j +
∞∑
j=1

ρj−1gt+j −
∞∑
j=1

ρj−1
(
rnt+j − πt+j

)
. (2)

The log value of government debt, divided by GDP, is the present value of future surplus to GDP

ratios, discounted at the ex-post real return, and adjusted for growth. One may attach growth

1Precisely, st is ρ times the ratio of primary surplus to GDP scaled by the steady-state value to GDP ratio. With
ρ = 1, st can also represent the real primary surplus divided by the previous period’s real value of debt. Either
definition leads to the same linearization. I impute the surplus from the other terms of (1), so its definition only
matters when one wishes to assess the accuracy of approximation, which I do below, or to assess an independent
data source on surpluses. With ρ < 1 there is also a constant in the linearization, or the variables are deviations from
steady state.



FISCAL INFLATION 3

g to the surplus, as growth raises total surpluses which pay off a given stock of debt for given

surplus to GDP ratio. One can also attach g to the discount rate, producing an effective r − g

discount rate.

Taking time t+1 innovations ∆Et+1 ≡ Et+1−Et and rearranging, we have an unexpected

inflation identity,

∆Et+1πt+1 −∆Et+1r
n
t+1 =

= −
∞∑
j=0

ρj∆Et+1st+1+j −
∞∑
j=0

ρj∆Et+1gt+1+j +

∞∑
j=1

ρj∆Et+1

(
rnt+1+j − πt+1+j

)
(3)

A decline in the present value of surpluses, coming either from a decline in surplus to GDP ratios,

a decline in GDP growth, or a rise in discount rates, must correspond to a lower real value of the

debt. This reduction can come about by unexpected inflation, or by a decline in nominal long-

term bond prices. I use time t+ 1 to denote unexpected events, and time 1 as the date of a shock

in the impulse-response functions.

The second term on the left hand side of (3) is a key point of the analysis. For example,

when there is a negative innovation to the present value of surpluses on the right hand side of

(3), a decline in nominal long-term bond prices and consequent negative return ∆Et+1r
n
t+1 can

lower the real value of debt, in place of unexpected inflation ∆Et+1πt+1. In this way, long-term

debt can buffer fiscal shocks.

What determines the long-term bond return rnt+1, and whether that mechanism operates?

With a geometric maturity structure, in which the face value of maturity j debt declines at rate

ωj , the Appendix develops a second approximate identity,

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1r
n
t+1+j = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
. (4)

Lower nominal bond prices, and a lower ex-post bond return, mechanically correspond to higher

bond expected nominal returns, which in turn are composed of real returns and inflation.

We can eliminate the bond return in (3)-(4) to focus on inflation and fiscal affairs alone,

∞∑
j=0

ωj∆Et+1πt+1+j =

= −
∞∑
j=0

ρj∆Et+1st+1+j −
∞∑
j=0

ρj∆Et+1gt+1+j +

∞∑
j=1

(ρj − ωj)∆Et+1

(
rnt+1+j − πt+1+j

)
. (5)

I focus on this decomposition.
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2.1 Mechanisms

The identities highlight several interesting mechanisms which we can look for in the data.

Consider the simple case with constant expected returns Etrnt+1 = Etπt+1. With one-

period debt, ω = 0, there is only one term on the left-hand side, ∆Et+1πt+1. Shocks to the present

value of surpluses must be soaked up by a price-level jump, which absent default is the only way

to devalue outstanding debt. With long-term debt, ω > 0, however, a shock to the present value

of surpluses can result in a drawn out period of inflation, which slowly devalues outstanding

long-term bonds. In the identity (3), the term rnt+1 marks the future inflation to market, as future

inflation in (4) sends that return down.

The latter is a much more realistic vision of the US economy, where we see drawn-out

inflation accompanying fiscal problems as in the 1970s. In fact, equation (5) allows the entire

effect of the fiscal shock to show up in expected future inflation with no movement in current

inflation ∆Et+1πt+1 = 0. This is how continuous-time models that disallow price-level jumps

work (Cochrane (2017)). This case provides an important counterexample to the usual intuition

gained from one-period models, in which fiscal shocks only give rise to a one-period inflation

surprise. We can productively look for fiscal roots of drawn-out inflation.

In both fiscal and standard new-Keynesian theories, monetary policy, control of the path

of nominal interest rates controls the path of expected inflation. For example, in the simplest

frictionless model, it = Etπt+1 so the interest rate target sets expected inflation directly. Thus,

fiscal shocks can result in smooth inflation, and a large bond-return term in the one-period

accounting (3), if monetary policy accommodates them.

As the maturity structure of government debt lengthens, ω increases, and the discount

rate terms vanish. When ω = ρ, almost a perpetuity, the discount rate term drops out. Intu-

itively, a government that funds itself with near-perpetuities can pay off its current debt while

completely ignoring real interest rate variation, just as a household that takes out a fixed rate

mortgage is immune from such variation. The discount rate effect in present value terms is the

same as the interest cost channel in flow terms – debts can be “repaid” if interest costs decline

and debts get worse if interest costs rise, when a government rolls over short-term debt.

If surpluses and growth are constant as well as discount rates in (5), a rise in expected

future inflation results in a decline in current inflation. This is an important mechanism for a

model with long-term debt to allows monetary policy - a rise in interest rates which eventually

raises long-term inflation, without changing fiscal policy – to produce a temporary inflation de-

cline.

With one-period debt, expected inflation may continue, but this fact has no impact on
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one-period unexpected inflation or this fiscal accounting. ∆E1πj for j > 1 is irrelevant (though

interesting). With long-term debt, the weighted sum of changes in expected inflation substitutes

for inflation at time 1, but only the ω-weighted sum. Additional persistence in inflation, though

interesting for matching data, has no fiscal consequence or consequence for understanding un-

expected inflation.

With time-varying expected returns, interesting additional dynamics can emerge. A rise

in the expected return of government bonds lowers the present value of surpluses just like a de-

cline in expected surpluses. But with long-term debt, a rise in the discount rate for government

bonds also lowers nominal bond prices. The discount rate term in (5) balances these two effects.

A higher interest rate, which raises the expected return of nominal bonds, will, if prices are sticky,

raise the discount rate. This is an inflationary force overall. If an adverse surplus shock comes

with lower interest rates and expected bond returns, and inflation is somewhat sticky, the lower

real interest rates raise the value of debt and offset the inflationary effect of the surplus shock.

We will see this effect is prominent in the data.

2.2 Literature

The technique in this paper is adapted from asset pricing. The general approach to lineariz-

ing the valuation identity follows Campbell and Shiller (1988). The Appendix relates impulse-

response calculations to asset price variance decompositions. The summary of this literature in

Cochrane (2011b) and the treatment of identities in Cochrane (2007) are obvious precursors. The

uniting theme in the former is that asset price and return variation is largely driven by variation

in discount rates.

The analysis of government finances, how debt is paid off, grown out of, or inflated away,

is a huge literature. Hall and Sargent (1997), Hall and Sargent (2011) are the most important pre-

cursors. Hall and Sargent focus on the market value of debt, as I do, not the face value reported

by the Treasury, and consequent proper accounting for interest costs.

This paper uses the innovation identities (3) and (5), to focus on inflation, paralleling

VAR-based return decompositions from asset pricing such as Campbell and Ammer (1993). A

companion paper Cochrane (2019c) decomposes the value of government debt vt, starting from

the value identity (2), paralleling price/dividend ratio variance decompositions.

The fiscal theory of monetary policy is the latest step in a long literature on the fiscal the-

ory of the price level, starting with Leeper (1991), that integrates fiscal theory with sticky-price

models and interest rate targets. Sims (2011), Cochrane (2017) and are immediate antecedents.

Cochrane (2019a) works out such a model with the S-shaped surplus processes I find here, calcu-
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lates inflation decompositions and response functions in the model, and reviews the literature.

Much of the fiscal theory literature has pursued various theoretical controversies. A big

point of this paper is to begin productively use fiscal theory to understand US data.

3 Data and VAR estimates

I use data on the market value of government debt held by the public and the nominal rate of

return of the government debt portfolio from Hall, Payne, and Sargent (2018). I use standard BEA

data for GDP and total consumption. I use the GDP deflator to measure inflation. I use CRSP

data for the three-month Treasury rate. I use the 10-year constant maturity government bond

yield from 1953 on and the yield on long-term United States bonds before that date to measure

a long-term bond yield.

I measure the debt to GDP and surplus to GDP ratios by the ratios of debt and surplus to

personal consumption expenditures, times the average consumption to GDP ratio. Debt to GDP

ratios are often used to compare countries, but in our time-series application they introduce

cyclical variation in GDP. We want only a detrending divisor, and an indicator of the economy’s

long-run level of tax revenue and spending. Potential GDP has a severe look-ahead bias. Con-

sumption is a decent stochastic trend for GDP.

I infer the primary surplus from the flow identities. This calculation measures how much

money the government actually borrows. NIPA surplus data, though broadly similar, does not

obey the flow identity.

I infer the surplus for the VAR from the linearized identity (1), at an annual frequency.

By doing so, the data obey the identity exactly. Therefore VAR estimates of the decompositions

add up exactly with no approximation error. The approximation errors are much smaller than

sampling errors, so this choice just produces clearer tables.

To measure the accuracy of the linear approximation, I also infer the monthly real primary

surplus from the exact nonlinear flow identity, Appendix equation (11). I then carry the surplus

to the end of the year using the government bond return. This procedure produces an annual

series for which the nonlinear flow identity (11) continues to hold in annual data.

I approximate around r = g or ρ = 1. The variables are all stationary, impulse-responses

and expected values converge, so downweighting higher order terms by 0.99j vs. 1.0 makes little

difference to the results. Since the value of the debt vt is stationary, limT→∞ Etvt+T = 0 without

ρ weighting. The parameter ρ is only the arbitrary point about which one takes a Taylor expan-

sion of the one-period flow relation. It is not the long-run value r − g in the economy, and its
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choice does not determine whether present values converge, transversality conditions hold, the

economy is dynamically efficient, government debt never needs to be repaid, and so forth. One

can linearize an economy that has r > g around r = g. With ρ = 1, the same linearization applies

to the surplus to value ratio, which we will shortly see is a bit more accurate. One can also view

the unweighted identities as r → g limits.

Figure 1: Surplus. “Linear” is inferred from the linearized flow identity, and is the definition used
in VAR analysis. “sv ” is the exact ratio of the primary surplus to the previous year’s market value
of the debt. “sy” is the exact ratio of surplus to consumption, scaled by the average consumption
to GDP ratio and the average value of debt. Vertical shading denotes NBER recessions.

Figure 1 presents the surplus and compares three measures. The “Linear, st” line imputes

the surplus from the linearized flow identity (1) directly at the one-year horizon, which is the

measure I use in the following analysis. The “svt” and “syt/ev” lines both infer the surplus from

the exact nonlinear flow identity (11), as above. The “svt” line presents the ratio of the exact

surplus to the previous year’s value of the debt. The “syt/ev” line presents the exact surplus

to GDP ratio – actually, the ratio of surplus to consumption, times the average consumption to

GDP ratio – scaled by the average value to GDP ratio eE(vt).

I use a data sample 1947-2018 for the VAR analysis. The immense deficits of WWII would

otherwise dominate the analysis, and one may well suspect that financing that war, and expec-

tations and reality of paying it off follows a different pattern than fiscal-monetary policy in the
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subsequent decades of largely cyclical deficits. WWII also featured price controls, clouding in-

flation measurement. The vertical dashed line of Figure 1 indicates the post-1947 sample.

The first piece of news in Figure 1 is that there are primary surpluses. One’s impression

of endless deficits comes from the deficit including interest payments on the debt. Even NIPA

measures show regular positive primary surpluses. Steady primary surpluses from 1947 to 1975

helped to pay off WWII debt. The year 1975 started an era of large primary deficits, interrupted

by the strong surpluses of the late 1990s. Postwar primary surpluses also have a clear cyclical

pattern. The primary surplus correlates very well with the unemployment rate (not shown), a

natural result of procyclical tax revenues, automatic (e.g. unemployment insurance) and discre-

tionary countercyclical spending.

The three measures in Figure 1 are close. The graph is a measure of the accuracy of the

linearized identity (1). The linearized identity is a slightly closer approximation to the surplus to

value ratio sv. The difference is largest when the value of debt is far from its mean, both in WWII

and in the 1970s.

3.1 Vector autoregression

Table 1 presents OLS estimates of the VAR coefficients. Each column is a separate regression. I

orthogonalize shocks later, so the order of variables has no significance. The VAR includes the

central variables for the inflation identity – nominal return on the government bond portfolio

rn, consumption growth rate g, inflation π, surplus s and value v. I include the three-month

interest rate i and the 10 year bond yield y as they are important forecasting variables for growth,

inflation, and long-term bond returns.

It is important to include the value of debt vt in the VAR, even if we are calculating terms

of the innovation identity (3) that does not reference that value. When we deduce from the

present value identity (2) expressions vt = Et(·), we must include vt in the information set that

takes the expectation. The surplus typically follows an s-shaped process, in which deficits today

are followed by surpluses in the future. The process will not be properly recovered by VARs that

do not include the value of debt. (See Cochrane (2019b), Cochrane (2019a) for discussion and

examples.)

I use a single lag. Adding the last variable, the long-term rate, already introduces slight

wiggles in the impulse-response function indicative of overfitting. More lags are insignificant

forecasters, and add additional wiggles.

I compute standard errors from a Monte Carlo. The stars in Table 1 represent one or two

standard errors above zero. Since we aren’t testing anything, stars are just a visual way to show
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rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.17** -0.02 -0.10** -0.32* 0.28* -0.08* 0.04*

gt -0.27* 0.20* 0.16* 1.37** -2.00** 0.28** 0.06
πt -0.15 -0.14* 0.53** -0.25 -0.29 0.09 0.04
st 0.12** 0.03* -0.03* 0.35** -0.24* -0.04* -0.04**

vt 0.01 -0.00 -0.02** 0.04* 0.98** -0.01 -0.00
it -0.32* -0.40* 0.29** 0.50 -0.72 0.73** 0.36**

yt 1.93** 0.54* -0.17* -0.04 1.60* 0.11 0.46**

100× std(εt+1) 2.18 1.53 1.12 4.75 6.55 1.27 0.82
Corr ε, επ -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31

R2 0.71* 0.17* 0.73* 0.48* 0.97* 0.82* 0.90*

100× std(x) 4.08 1.68 2.16 6.61 37.00 2.96 2.63

Table 1: OLS VAR estimate. Sample 1947-2018. One (two) stars means the estimate is one (two)
Monte Carlo standard errors away from zero.

standard errors without another table.

In the first column, the long-term bond yield yt forecasts the government bond portfolio

return rnt+1 (1.93). The negative coefficient on the three-month rate it means that the long-short

spread also forecasts those returns. Since the yt and it coefficients are not repeated in forecasting

inflation and growth, the long rate and long-short spread forecast real, growth-adjusted, and

excess returns on government bonds, as we expect from the long literature in which yield spreads

forecast bond risk premia (Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and

Piazzesi (2005)). The long rate yt is thus an important state variable for measuring expected

bond returns, the relevant discount rate for our present value computations.

Growth gt is only very slightly persistent (0.20). The term spread yt − it also predicts eco-

nomic growth, a common finding, and reinforcing the importance of the interest rates as state

variables.

Inflation πt is moderately persistent (0.53). The interest rate and growth help a bit to

predict inflation, but not much else does. We will see inflation responses that mostly look like

AR(1) decay.

The surplus is somewhat persistent (0.35). Growth gt predicts higher surpluses, an im-

portant and realistic feedback mechanism. This response does not imply passive fiscal policy, as

discussed in more detail below.

The value of the debt is very persistent (0.98). It thus becomes the most important state

variable for long-run calculations. A larger surplus st results in less market value of debt, vt+1, (-

0.24), as one expects. The long-run yield yt forecasts a rise in the value of debt vt+1, as we expect
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given its effect on the expected return rnt+1.

The short rate it is also persistent (0.73). The long yield is also autocorrelated (0.46) and

forecast by the persistent interest rate, again reflecting standard yield curve dynamics.

For calculations reported below, I use the standard notation

xt+1 = Axt + εt+1 (6)

to denote this VAR.

4 Responses and decomposition estimates

I start by examining the fiscal roots of a simple inflation shock, an unexpected movement in

inflation ∆E1π1. I orthogonalize the inflation shock so that all other variables move contempo-

raneously to the inflation shock. I specify επ1 = 1. I fill in shocks to the other variables by running

regressions of their shocks on the inflation shock. For each variable z, I run

εzt+1 = bz,πε
π
t+1 + ηzt+1.

Then I start the VAR (6) at

ε1 = −
[
brn,π bg,π επ1 = 1 bs,π ...

]′
.

This procedure is equivalent to the usual orthogonalization of the shock covariance matrix, but

it is more transparent and it generalizes more easily later. I denote the VAR innovations as the

change in expectations at time 1, i.e. ∆E1, and thus the response of variable x, j periods in the

future is ∆E1xj .

Figure 2 plots responses to this inflation shock. The “inflation” rows of Table 2 presents

the terms of the inflation and bond return decompositions for these responses. Figure 2 also

presents some of the main terms in the decomposition identities, (3), (4), (5), and includes the

formulas for easy reference.

In any interpretation, these responses and calculations answer the question, “if we see

an unexpected 1% inflation, how should we revise our forecasts of other variables?” In a fiscal-

theoretic interpretation, they answer “what changes in expectations caused the 1% inflation.”

As shown in the Appendix, the inflation decompositions can also be interpreted as decomposi-

tions of the variance of unexpected inflation: They answer the question, “What fraction of the
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Figure 2: Responses to a 1% inflation shock.

variance of unexpected inflation is due to each component?” Table 3 presents quantiles of the

sampling distributions of the terms of the inflation decompositions in Table 2, discussed below.

In Figure 2, the inflation shock is moderately persistent, largely following the AR(1) dy-

namics we noticed in the VAR coefficients. As result, the weighted sum
∑∞

j=0 ω
j∆E1π1+j =

1.59%, greater than the 1% initial shock.

The inflation shock coincides with deficits s, which build with a hump shape. One might

think these persistent deficits account for inflation. But surpluses eventually rise to pay back

almost all of the incurred debt. The sum of all surplus responses is−0.06%, essentially zero.

The line marked rn − π plots the response of the real discount rate, ∆E1(r
n
1+j − π1+j).

These points are plotted at the time of the ex-post return, 1 + j, so they are the expected return

one period earlier, at time j. The line starts at time 2, where the terms of the discount-rate sums

in the inflation decompositions start, and representing the time-1 expected return. After two

periods, this discount rate rises and stays persistently positive. The weighted sum of discount

rate terms is 1.04% while the unweighted sum is 1.00% (really 1.004%). The weight ω is 0.69

(chosen to make the identity (4) hold exactly for this response function), so weighting by 1 vs.

1− ωj makes little difference in the face of this persistent response.

Weighted or unweighted, the discount rate terms account for 1% inflation. A higher dis-

count rate lowers the value of government debt, an inflationary force.
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 1.59 = -( -0.06) -( -0.49) +( 1.04)
Recession -2.36 = -( -1.15) -( -1.46) +( -4.96)
Surplus -0.10 = -( -0.66) -( -0.34) +( -1.10)
Disc. Rate -0.18 = -( -0.54) -( -0.28) +( -1.00)
Surplus, no i 0.38 = -( -0.52) -( -0.48) +( -0.62)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 1.00 -( -0.56) = -( -0.06) -( -0.49) +( 1.00)
Recession -1.00 -( 1.19) = -( -1.15) -( -1.46) +( -4.79)
Surplus 0.02 -( 0.27) = -( -0.66) -( -0.34) +( -1.25)
Surplus, no i 0.36 -( 0.03) = -( -0.52) -( -0.48) +( -0.67)
Disc. Rate -0.03 -( 0.28) = -( -0.54) -( -0.28) +( -1.13)
Surplus, no i 0.36 -( 0.03) = -( -0.52) -( -0.48) +( -0.67)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation -0.56 = -( -0.03) -( 0.59)
Recession 1.19 = -( 0.17) -( -1.36)
Surplus 0.27 = -( -0.15) -( -0.12)
Disc. Rate 0.28 = -( -0.13) -( -0.15)
Surplus, no i 0.03 = -( -0.05) -( 0.02)

Table 2: Terms of the inflation and bond return identities.

Inflation also is also correlated with a persistent decline in economic growth g. The stagfla-

tionary episodes of the 1970s drive this result. The growth decline contributes 0.49% to the in-

flation decompositions.

Overall, then,

• A 1% shock to inflation corresponds to a roughly 1.5% decline in the present value of sur-

pluses. A rise in discount rate contributes about 1%, and a decline in growth accounts for

about 0.5% of that decline. Changes in the surplus/GDP ratio account for nearly nothing.

The additional 0.5% fiscal shock corresponds to a persistent rise in expected inflation, which

slowly devalues outstanding long-term bonds, and produces a 1.5% overall rise in inflation

weighted by the maturity structure of debt.

This is an important finding for matching the fiscal theory to data, or for understanding
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∑∞
j=0 ω

j∆E1π1+j =−
∑∞

j=0 ∆E1s1+j −
∑∞

j=0 ∆E1g1+j +
∑∞

j=1(1− ωj)∆E1(r
n
1+j − π1+j)

π = s g rn − π
Inflation 25 % 1.38 = -( -0.56) -( -0.77) +( 0.25)
Inflation 75 % 1.67 = -( 0.19) -( -0.19) +( 1.50)
Recession 25 % -2.36 = -( -1.56) -( -1.86) +( -5.37)
Recession 75 % -2.16 = -( 0.02) -( -0.68) +( -3.01)
Surplus 25 % -0.11 = -( -0.76) -( -0.42) +( -1.11)
Surplus 75 % -0.00 = -( -0.60) -( -0.27) +( -1.00)
Disc. Rate 25 % -0.29 = -( -0.61) -( -0.35) +( -1.00)
Disc. Rate 75 % -0.11 = -( -0.45) -( -0.22) +( -1.00)
Surplus, no i 25 % 0.17 = -( -0.82) -( -0.49) +( -0.81)
Surplus, no i 75 % 0.41 = -( -0.54) -( -0.21) +( -0.54)

∆E1π1 −∆E1r
n
1 = −

∑∞
j=0 ∆E1s1+j −

∑∞
j=0 ∆E1g1+j +

∑∞
j=1 ∆E1(r

n
1+j − π1+j)

π rn = s g rn − π
Inflation 25% 1.00 -( -0.73) = -( -0.56) -( -0.77) +( 0.19)
Inflation 75% 1.00 -( -0.43) = -( 0.19) -( -0.19) +( 1.35)
Recession 25% -1.00 -( 1.01) = -( -1.56) -( -1.86) +( -5.46)
Recession 75% -1.00 -( 1.37) = -( 0.02) -( -0.68) +( -2.99)
Surplus 25% -0.00 -( 0.20) = -( -0.76) -( -0.42) +( -1.26)
Surplus 75% 0.06 -( 0.29) = -( -0.60) -( -0.27) +( -1.18)
Disc. Rate 25% -0.07 -( 0.22) = -( -0.61) -( -0.35) +( -1.19)
Disc. Rate 75% -0.01 -( 0.37) = -( -0.45) -( -0.22) +( -1.12)
Surplus, no i 25% 0.15 -( -0.04) = -( -0.82) -( -0.49) +( -0.91)
Surplus, no i 75% 0.32 -( 0.08) = -( -0.54) -( -0.21) +( -0.64)

∆E1r
n
1 = −

∑∞
j=1 ω

j∆E1(r
n
1+j − π1+j)−

∑∞
j=1 ω

j∆E1π1+j
rn = rn − π π

Inflation 25% -0.73 = -( -0.18) -( 0.38)
Inflation 75% -0.43 = -( 0.13) -( 0.67)
Recession 25% 1.01 = -( -0.17) -( -1.36)
Recession 75% 1.37 = -( 0.21) -( -1.16)
Surplus 25% 0.20 = -( -0.21) -( -0.12)
Surplus 75% 0.29 = -( -0.13) -( -0.07)
Disc. Rate 25% 0.22 = -( -0.19) -( -0.21)
Disc. Rate 75% 0.37 = -( -0.12) -( -0.10)
Surplus, no i 25% -0.04 = -( -0.16) -( 0.01)
Surplus, no i 75% 0.08 = -( -0.03) -( 0.09)

Table 3: Monte Carlo quantiles of the inflation and bond return identities.
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the fiscal side of passive-fiscal models. Thinking in both contexts has focused on the presence

or absence of surpluses, or surplus to GDP ratios – lump sum taxes in many discussions – not

the discount rate, and not growth effects. Thinking in both contexts has considered one-period

unexpected inflation, to devalue one-period bonds, not a rise in expected inflation.

Turn to Table 2 for a more systematic view of the inflation decompositions, and to see the

role of one-period bond returns ∆E1r
n
1 . The top row of the top panel presents the just-discussed

overall decomposition (5) of current and expected future inflation in terms of surplus, growth

and discount rate shocks. The second and third panels express the inflation decomposition

in one-period terms, using the bond return rn1 . The sum of surpluses and sum of growth rate

terms are the same in this second panel as in the top panel, but I repeat them so one can see

the terms of each identity more clearly. In the first row of the second panel, the 1% inflation

shock corresponds to a roughly 1.56% overall fiscal shock. That shock comes similarly from a

tiny 0.06% decline in surpluses, a 1.004% rise in discount rate and 0.49% reduction in growth.

Here, the extra 0.56% fiscal shock is absorbed by a 0.56% decline in the value of government

debt, rn1 .

Turning to the last panel, we see that -0.56% return on government debt comes almost

entirely from expected inflation (0.59%) not a higher real discount rate (0.03%). Discount rates

matter in the inflation decompositions of the top two panels but not in this return decompo-

sition because the former have weights that emphasize long-term movements (1 and 1 − ωj),

while the ωj weights of the bottom panel emphasizes a short-run movement in discount rate.

With these weights, the early discount rate declines shown in Figure 2 match nearly exactly the

subsequent persistent rise.

Comparing the two analyses, you see how the government bond return essentially marks

to market the expected future inflation of the top panel. Here, the roughly 1.5% fiscal shock is

absorbed 1% by inflation, and 0.5% by a decline in long-term bond prices. The last panel ties the

two decompositions together, showing that the decline in long-term bond prices reflects higher

expected future inflation.

In sum,

• The 1.5% fiscal shock that comes with 1% unexpected inflation is buffered by an 0.5% decline

in bond prices, which corresponds to 0.5% additional expected future inflation. The addi-

tional expected inflation slowly devalues long-term bonds as they come due, a loss in value

marked to market in the fall in bond prices.

Figure 3 adds detail to the bond pricing responses. The interest rate i, bond yield y, and

expected return rn all move together and persistently. (Again, the graph plots the return rn, the
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Figure 3: Responses to 1% inflation shock

expected return is one period earlier. The sawtooth pattern in rn comes from a slightly negative

eigenvalue of the VAR, which is far below statistical significance.) The return shock rn1 moves in

the opposite direction as the expected returns, as bond prices decline when yields rise. This is

the picture of a “parallel shift” in the yield curve, with no sizeable risk premiums. The rise in real

discount rates stems from the much more persistent movement in nominal rates than that of

inflation seen on the right hand side of this graph.

Figure 4 plots the response of surplus and value of debt to the unexpected inflation shock.

The value of debt declines on impact, as a result of the sharp negative movement in ex-post

return rn1 . The long string of deficits and rise in expected real returns then raises the value of

debt. But eventually surpluses rise and pay down the debt.

The s-shaped surplus response is a crucial lesson. It means that early debts are repaid, at

least in part, by following surpluses. The surplus does not follow an AR(1)-like process. Mechan-

ically, this pattern is a result of the VAR coefficient of surplus on lagged debt. Thus, the finding

is econometrically robust; it does not rely on a tenuous measurement of high-order surplus au-

tocorrelations.

However, this (0.04) VAR coefficient of surpluses on debt and s-shaped response do not

mean that the estimates measure a passive fiscal policy. The active vs. passive fiscal question

is how surpluses respond to changes in the value of debt induced by multiple-equilibrium in-
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Figure 4: Responses to 1% inflation shock

flation. We cannot measure off-equilibrium responses from data drawn from equilibrium. Sup-

pose, for example, that surpluses are completely exogenous. Suppose that when a government

borrows money (negative surplus) it commits to future positive surpluses to repay bondholders,

with this s-shaped pattern, but the schedule of those surpluses is fixed. That’s active fiscal pol-

icy. Yet we observe deficits, which run up debts, and then surpluses which seem to “respond” to

those debts. (For more on this point see Cochrane (2019a) and Cochrane (2019b). Leeper and Li

(2017) also show that regressions of surplus on debt do not establish passive fiscal policy.)

If we fit an autoregressive process, or any VAR that excludes the value of debt as a fore-

caster, we will be very unlikely to measure the underlying s-shape of this surplus. If we specify

a theoretical model with AR(1) surplus, we miss the crucial fact that governments do promise,

and people do expect, subsequent surpluses to pay off debts. Cochrane (2019a) takes up these

issues in detail.

I use the words “shock,” and “response,” which have become conventional in the VAR lit-

erature, and compactly describe the calculations. But the calculations do not imply or require

a causal structure. In fact, my fiscal theory interpretation offers a reverse causal story: News

about future surpluses and discount rates causes inflation to move. That news in turn reflects

news about future productivity, fiscal and monetary policy and other truly exogenous or struc-

tural disturbances. A “shock” is only an “innovation,” a movement in a variable not forecast by
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the VAR. A “response” is a change in VAR expectations of a future variable coincident with such

a movement. Many VAR exercises do attempt to find an “exogenous” movement in a variable by

careful construction of shocks, and “structural” VAR exercises aim to measure causal responses

of such shocks. Not here.

Since we start with an identity (1) that holds ex-post, it holds ex-ante using any informa-

tion set. We do not implicitly assume that agents use only the information in the VAR in order

to make these calculations. But “unexpected” here means relative to the VAR information set.

People may see a lot more. A decomposition using larger information sets, survey forecasts, or

people’s full information sets, may be quite different.

4.1 Aggregate demand shocks

We can use the same procedure to understand the fiscal underpinnings of other shocks. For

any interesting ε1, we can compute impulse-response functions, and thereby the terms of the

inflation decompositions. I show in the Appendix that we can consider these calculations as a

decomposition of the covariance of unexpected inflation with the shock ε1, rather the decom-

position of the variance of unexpected inflation.

I start with a recession shock, which we might also call an aggregate demand shock. The

response to the inflation shock in Figure 2 is stagflationary, in that growth falls when infla-

tion rises. Unexpected inflation is, in this sample, negatively correlated with unexpected con-

sumption (and also GDP) growth. The stagflationary episodes in the 1970s outweigh the simple

Phillips curve episodes.

However, it is interesting to examine the response to disinflations which come in reces-

sions, and inflations that come in expansions, following a conventional Phillips curve. Such

events are common, as in the recession following the 2008 financial crisis. But they pose a fiscal

puzzle. In a recession, deficits soar, yet inflation declines. How is this possible? As I outlined

in the introduction, future surpluses or lower discount rates could give that deflationary force,

needed whether fiscal policy is active or passive. Can we see these effects in the data, and which

one is it?

To answer that question, we want to study a shock in which inflation and GDP go in the

same direction. I simply specify επ1 = −1, εg1 = −1. The model is linear, so the sign doesn’t matter,

but the story is clearer for a recession.

Again, we want shocks to other variables to have whatever value they have, on average,

conditional on the inflation and output shock. To initialize the other shocks of the VAR, then, I
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run a multiple regression

εzt+1 = bz,πε
π
t+1 + bz,gε

g
t+1 + ηzt+1.

I fill in the other shocks at time 1 from their predicted variables given επ1 = −1 and εg1 = −1, i.e. I

start the VAR at

ε1 = −
[
brn,π + brn,g εg1 = 1 επ1 = 1 bs,π + bs,g ...

]′
.

Figure 5 presents responses to this recession shock, and Table 2 collects the inflation de-

composition elements in the “Recession” rows.

Both inflation π and growth g responses start at -1%, by construction. Inflation is once

again persistent, with a ω-weighted sum of current and expected future inflation equal to 2.36%.

Consumption growth g returns rapidly, but does not much overshoot zero, so the level of con-

sumption does not recover much at all. Consumption is roughly a random walk in response to

this shock. The nominal interest rate i falls in the recession, and recovers a bit more slowly than

inflation. Long-term bond yields y also fall, but not as much as the short-term rate, for about 4

years. We see here the standard upward-sloping yield curve of a recession. The expected bond

return follows the long-term yield. The persistent fall in expected return corresponds to a large

positive ex-post bond return ∆E1r
n
1 . The recession includes a large deficit s, which continues

for three years. In short, we see a standard picture of an “aggregate demand” recession similar

to 2008-2009.

The large deficits in recessions puzzle a simplistic interpretation of the fiscal theory. Why

do we not see inflation at such times? Surpluses subsequently turn positive, paying down some

of the debt. But the total surplus is still -1.15%. Left to their own devices, surpluses would pro-

duce a 1.15% inflation during the recession. A potential story that disinflation results from future

surpluses more than matching today’s deficits is wrong. Growth also adds an inflationary force.

The decline in consumption is essentially permanent, so the sum of growth is -1.46%, which

would lead on its own to another 1.46% inflation.

Discount rates are the central story for deflation in recessions. After one period, expected

real returns r − g decline persistently, accounting for 4.96% cumulative deflation.

In terms of the unexpected inflation accounting in the second and third panels of Table 2,

again surpluses and growth provide a total 1.15 + 1.46 = 2.61% fiscal loosening. The unweighted

sum of future discount rates provides a 4.79% deflationary force, for an overall fiscal shock of

2.19%. Of that, 1% results in unexpected inflation and 1.19% is soaked up by lower long-term

bond prices. Again, in the bottom panel, that 1.19% overwhelmingly represents expected infla-
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Figure 5: Responses to a recession or aggregate demand shock, επ1 = εg1 = −1.
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tion, essentially marking it to market for a one-period accounting.

In sum, rounding the numbers,

• Disinflation in a recession, or after an aggregate demand shock that moves output and prices

in the same direction, is driven by a lower discount rate, reflected in lower interest rates and

bond yields. For each 1% disinflation shock, the expected return on bonds falls so much

that the present value of debt rises by nearly 5%. This discount rate shock overcomes a 1.1%

inflationary shock coming from persistent deficits, and 1.5% inflationary shock coming from

lower growth. The overall fiscal shock is 1.6%, with the extra 0.6% spread to future inflation

and soaked up by long-term bond prices.

The opposite conclusions hold of inflationary shocks in a boom. Discount rate variation

gives us a fiscal Phillips curve, accounting for the otherwise puzzling correlation of deficits with

disinflation and surpluses with inflation.

The relative magnitudes of the inflation and growth shocks that I used to define a “reces-

sion” or “aggregate demand shock” are (obviously) arbitrary. Growth fell about twice as much as

inflation in 2008, but inflation fell a bit more than growth in 1982. Other recessions have been

stagflationary. To produce a better number one must write a model and find an identification

in the data to separate “supply” or “stagflationary” Phillips-curve shift shocks from “demand”

or “movement along the Phillips curve” shocks, and one must thereby define precisely just what

kind of events we seek to evaluate. Rather than belabor the point with such a calculation, or fill

the paper with multiple graphs, I choose a simple and transparent value. The calculations report

correctly “How did expectations change if we observe inflation and growth both decline by 1%?”

The only quibble is whether that is an interesting question, or whether some other combination

of numbers, prefaced by a long identification calculation, might be more interesting.

4.2 Surplus and discount rate shocks

We have studied what happens to surpluses and to discount rates given that we see unexpected

inflation. What happens to inflation if we see changes in surpluses or discount rates? These are

not the same questions. An inflation shock may come, on average, with a discount rate shock,

but a discount rate shock may not come on average with inflation.

I calculate here how the variables in the VAR react to an unexpected change in current and

expected future primary surpluses including growth, ∆E1
∑∞

j=0(st+j + gt+j) = 1, and all shocks

to the VAR take their average values given this innovation. I call this a “surplus shock.” (The

results are almost the same with or without the growth term in the shock definition, as growth



FISCAL INFLATION 21

declines in response to a pure surplus shock.) Then I calculate how the variables in the VAR react

to an unexpected change in discount rates, ∆E1
∑∞

j=1(1 − ωj)(rnt+1 − πt+1) = 1, again letting all

other variables take their average values given this innovation. I call this a “discount rate shock.”

The response of the sum of future surpluses and growth to a shock ε1 is

∆E1

∞∑
j=0

(s1+j + gt+j) = (as + ag)
′ (I −A)−1ε1.

To calculate how VAR shocks respond to a surplus shock, I run for each variable z a regression

εzt+1 = bz
[
(as + ag)

′ (I −A)−1εt+1

]
+ ηzt+1 (7)

where az pulls variable z from the VAR, a′zxt = zt. Then, I start the surplus-shock response func-

tion at

ε1 = −
[
brn bg bπ ...

]′
.

Similarly, to calculate responses to a discount-rate shock, I run

εzt+1 = bz
{

(arn − aπ)′
[
A(I −A)−1 − ωA(I − ωA)−1

]
εt+1

}
+ ηzt+1.

I start the discount-rate response function with the negative of these regression coefficients as

well, capturing the response to a discount rate decline.

Figure 6 presents the responses to the surplus shock, and Figure 7 presents the responses

to the discount rate shock. Table 2 collects relevant contributions to the inflation decomposi-

tions.

The sum of surplus and growth responses to the surplus shock is -0.66 - 0.34 = -1.00 by

construction. Surpluses still have an s-shaped pattern, but the initial deficits are not matched

by subsequent surpluses.

This decline in surpluses and growth has essentially no effect on inflation. Starting in year

2, inflation declines – the “wrong” direction – by less then a tenth of a percent, and the overall

weighted sum of inflation declines by a tenth of a percent. Why is there no inflation? Because

discount rates also decline, with a weighted sum of 1.10%, almost exactly matching the surplus

decline. The lower panel of Figure 6 adds insight. We see a sharp and persistent decline in the

interest rate, long-term bond yield, and expected bond return, along with deficits and the growth

decline.

This figure paints a picture of an average (in this sample) recession – a decline in growth
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Figure 6: Responses to a surplus and growth shock, ∆E1
∑∞

j=0 (s1+j + g1+j) = −1.
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Figure 7: Responses to a discount-rate shock ∆E1
∑∞

j=1(1− ωj)
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rn1+j − π1+j
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= 1.
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and interest rates, accompanied by large deficits. The deficits are on average not directly repaid

by subsequent surpluses or growth. Instead, real interest rates decline persistently in the reces-

sion and its aftermath. This decline in discount rate essentially pays for the deficits. Ex-post, a

low real return brings the value of debt back rather than larger taxes or lower spending. There is,

on average, very little inflation or deflation.

The response to the discount rate shock in Figure 7 is, surprisingly, almost exactly the

same. The weighted discount rate response (
∑

1 − ωj) is -1.00 here by construction. This dis-

count rate decline should be deflationary, and it is – but the disinflation peaks at -0.1% and the

weighted sum is only -0.18%. A sharp growth and surplus decline accompanies this discount

rate decline, with a pattern almost exactly the same as we found from the growth and surplus

shock. In the bottom panel, the expected return decline comes with a decline in interest rates

and bond yields, as we would expect.

Clearly, the surplus + growth shock and the expected return shock have isolated essen-

tially the same events – recessions, in which growth falls, deficits rise, interest rates fall, and, on

average in this sample, inflation doesn’t move much, and the converse pattern of expansions.

The correlation of the surplus+growth and discount rate shocks is 0.96. The responses to a one-

period surplus shock, ∆E1s1 = 1, a pure growth shock ∆E1g1 = 1 and a one-period discount

rate shock ∆E1r
n
2 = 1 are all quite similar as well.

The fiscal roots of the absence of inflation, in the end, characterize most business-cycle

movements in the data.

• Short and long-run surplus, growth, and discount rate shocks all paint the same pictures.

Large deficits are mostly not repaid by subsequent growth or surpluses. Instead, they cor-

respond to periods of extended low expected returns. The deficit and discount rate effects

largely offset, leaving little inflation on average. Discount rate variation explains why deficits,

not repaid by future surpluses, do not result in inflation.

The fact that interest rates and discount rates move in opposition to the surplus shock is

obviously key to this result. What if there is a surplus shock and the Federal Reserve does not

accommodate the shock, or its economic correlates with the prominent interest decline seen

in Figure 6? To answer this question, I modify the surplus+growth shock so that the short-term

interest rate remains constant for two years. I now run

εzt+1 = bz,s
[
(as + ag)

′ (I −A)−1εt+1

]
+ bz,i0ε

i
t+1 + bz,i1

(
a′iAεt+1

)
+ ηzt+1.
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and I initialize the VAR at

ε1 = −
[
brn,s bg,s bπ,s ...

]′
.

Figure 8 presents the responses, and Table 2 collects the terms of the identities. Starting

in the bottom panel of Figure 8, verify that the interest rate i now stays constant for two years, by

construction. This behavior contrasts with the strong interest rate decline in the bottom panel

of Figure 6. Except for the one-period expected return decline in year two, the long-term bond

yields and expected returns follow the interest rate. All decline eventually.

Turning to the upper panel, the sum of surplus (-0.52) and growth (-0.48) shocks remains -

1.00% by construction. Deficits are initially much larger than 0.52%, but much of this immediate

deficit is repaid by higher long-term surpluses, so in the end the fiscal shock is split equally be-

tween surpluses and growth. The discount rate term is now reduced to 0.62% - 0.67%, however,

so the surplus shock now produces 0.36% immediate and 0.38% weighted sum inflation.

In sum, without the interest rate response, which we may interpret as Federal Reserve

accommodation of the fiscal shock, or of its economic consequences such as lower growth, the

countervailing discount rate effect is much weaker, so the fiscal shock does result in unexpected

inflation.

(Holding the interest rate constant for one period produces a similar though slightly weaker

result. Interest rates drift down after the one period, so the discount rate effect is slightly stronger

and inflation slightly less.)

5 Standard errors

I have delayed a discussion of standard errors because there is nothing important to test. Iden-

tities are identities. If x = y + z and x moves, y or z must move, and all we can do is to measure

which one. In addition, unlike the case in asset pricing, no important economic hypothesis here

rests on whether one of surpluses or discount rates do not move. (Asset pricing finds the hy-

pothesis that expected returns are constant over time interesting to test.) Standard errors only

give us a sense of how accurate the measurement is.

To evaluate sampling distributions I run a Monte Carlo. Most of the interesting statistics –

variance decompositions, impulse response functions, (I − A)−1, etc. – are nonlinear functions

of the underlying data, and the near-unit root in value vt also induces non-normal distributions.

For these reasons, I largely characterize the sampling distribution by the interquartile range –

the 25% and 75% points of the sampling distribution.

Table 3 collects the sampling quantiles for the variance decompositions of Table 2. Fig-
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Figure 8: Responses to a surplus and growth shock with no interest rate movement for two years,
∆E1

∑∞
j=0 (s1+j + g1+j) = 1, ∆E1i1 = 0, ∆E1i2 = 0.
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Figure 9: Distribution of the impulse response function, to an inflation shock. The bands are
25% and 75% points of the sampling distribution, the dashed line is the median, and the solid
line is the estimate.

ure 9 presents the main components of the impulse-response function relevant to the inflation

variance decomposition. The bands are 25% and 75% points of the sampling distribution, the

dashed line is the median, and the solid line is the estimate.

Start with the “Inflation” shock in Table 3. In the second panel, inflation quantiles are

1.00 because the shock is defined as a 1% movement in inflation in every sample. The 1.59%

weighted sum of inflation has 1.38% to 1.64% quantiles in the top panel. The -0.06% sum of

future surpluses has quartiles -0.69% to 0.23%. The -0.49% sum of growth rates has quantiles -

0.72% to -0.22% The 1.04% (weighted) and 1.00% (unweighted) discount rate term has quantiles

0.16% to 1.46% and 0.16% to 1.55%. That discount rates matter is a pretty solid conclusion,

but negative surpluses may contribute more to unexpected inflation than the point estimate

suggests.

There are several sources of this rather large sampling variation. First, the shocks are large.

As shown in Table 1, the surplus innovation has a 4.75 percentage point standard deviation, and

value 6.55 percentage points, compared to 1.12 percentage points for inflation. Our friend σ/
√
T

starts off badly.
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Second, the shocks are imperfectly correlated. This matters, because in each case I find

movements in other variables contemporaneous with the shock of interest by running a regres-

sion of the other shocks on the shock of interest. The sampling uncertainty of this orthogonal-

ization adds to that of the VAR. We see a correspondingly wide band around the initial surplus

and growth responses in Figure 9. There is hope in this observation, however. Higher frequency

data can better identify shock correlations, at the cost that one must model the strong seasonal

in primary surpluses. Moreover, other shock identifications may have better measured correla-

tions.

Third, we measure sums of future surpluses and discount rates. The value of the debt vt

is the main long-run state variable, and uncertainty about its evolution adds to the uncertainty

about the sum of surpluses. The coefficient of value vt on its own lag is 0.98 in Table 1, so small

variations in that value lead to large variation in (I − A)−1 sums. The Appendix shows that the

last two sources of variation contribute about equally.

(It is not always possible to find ω ∈ [0, 1] to satisfy the return identity, so many Monte

Carlo draws use a best fit value of ω in which the return identity does not hold. This adds to

sampling variation, but comparing weighted and unweighted results does not seem to have a

large effect overall.)

Table 3 also presents 25% and 75% quantiles for the recession, surplus and discount rate

shocks of Table 2. The -1.15% total surplus response to a recession shock has quantiles -1.28%

to 0.49%, spanning zero, while the -4.96% and -4.79% discount rate response has quantiles from

-4.84% to -2.43% and -4.84% to -2.35%. The conclusion that discount rate variation is a central

part of the story for understanding aggregate-demand inflation is fairly solid. The small infla-

tion and offsetting surplus and discount rate responses to surplus and discount rate shocks are

similarly measured.

It would be nicer if the elements of the identities were more precisely measured. But

there is nothing one can do within the framework of this VAR to improve on them, so it’s worth

examining point estimates while awaiting more data or other approaches such as model-based

estimates that impose prior structure. The rather large sampling variation should, however, dis-

courage one from the inevitable temptation to start eyeballing different regimes and splitting up

the sample.
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6 Concluding comments

This analysis evidently just scratches the surface. One can apply these decompositions to any

VAR, or to the impulse-responses of any theoretical model. Such calculations beckon.

In particular, it is interesting to apply the inflation decompositions model predictions or

empirical estimates of monetary and fiscal policy shocks. Suppose, for example, that monetary

policy follows it = φi,ππt + φi,xxt + uit, and fiscal policy follows st = φs,ππt + φs,xxt + ust , with

persistent disturbances uit and ust (and in particular an s-shaped moving average of ust , reflecting

partial repayment promises). With such a specification, it is interesting to compute responses

and inflation decompositions to shocks to uit and ust . The Federal Reserve cannot directly con-

trol fiscal policy, so fiscal theory of monetary policy models suggest that it is interesting to shock

monetary policy, while holding ust fixed. Yet, it is likely interesting to allow the systematic part of

fiscal policy to respond to monetary policy, reflecting the rise in tax revenues with real income

and imperfect indexation of the tax code, as well even as predictable stimulus spending in reces-

sions. (That, I think, is the kind of “what happens if we raise rates?” question a Federal Reserve

official might have in mind.) A response to ui, holding us = 0, but not s = 0, answers this ques-

tion. Cochrane (2019a) presents such calculations from a simple fiscal theory of monetary policy

model. It may also be interesting to know what happens without even the systematic fiscal re-

sponse, which setting φs = 0 can answer. Likewise, it is interesting to know what the response

to fiscal shocks, changes in ust are, assuming the central bank follows its customary rule repre-

sented by φ terms and not holding interest rates constant as in my last Figure. New-Keynesian

models move both ui and us together by the passive-fiscal assumption. Still, it is interesting to

see how important that contemporaneous fiscal shock is to the result.

Alas, making such calculations in data require one to solve the formidable problems of

estimating the φ coefficients, given that the right hand variables react to the disturbances. The

state of the art for identifying monetary policy disturbances and measuring the reaction func-

tion goes well beyond the simple recursive and long-run strategies available in the atheoretical

annual VAR here, to include highly detailed identification assumptions, high frequency data,

narrative approaches, and other devices, and still does does not offer a robustly successful result

on which one can build (Ramey (2016), Cochrane (2011a)). And even this voluminous literature

has not started to think about how we can identify monetary policy shocks that are independent

of fiscal policy shocks. In the data, monetary and fiscal authorities are likely to respond to the

same underlying shocks, as we found a strong correlation between interest rate or discount rate

shocks and surplus shocks here. Teasing out monetary policy shocks that are orthogonal to fiscal
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policy shocks, as well as all the other desired orthogonality, requires some thought. I attempted

monetary and fiscal policy shocks by recursive identification in this data, but one-year interest-

rate, inflation, and growth shocks are all highly correlated. Assuming all of that correlation flows

from interest rates to inflation and growth results in positive effects of interest rates on inflation

and growth. Assuming all correlation reflects rule-like responses of interest rates to inflation and

growth eliminates the unexpected inflation response we wish to measure. Obviously, reality lies

in between.

Quarterly or monthly data are attractive, offering potentially better measurement of cor-

relations and shock orthogonalization but requiring us to model the strong seasonality in sur-

pluses. Debt data go back centuries, allowing and requiring us to think what is the same and

different across different periods of history. Inflation through wars and under the gold stan-

dard may well have different fiscal foundations than in the postwar environment. A narrative

counterpart, especially for big episodes such as the 1970s and 1980s, awaits. Different coun-

tries under different monetary and exchange rate regimes and different fiscal constraints will

behave differently. A parallel investigation of exchange rates beckons, following Jiang (2019a),

Jiang (2019b). One could define shocks in many additional interesting ways. The treatment of

debt can be refined in many ways. In particular, the maturity structure is not geometric, and

varies over time.

I omitted analysis of the remaining shocks in the VAR. A shock to any other variable, or-

thogonal to the inflation shock, can move all of the other terms of the inflation identities. Such

movements must offset: In (5), if a shock does not move the inflation term, but does move the

sum of future surpluses, then it must also move the sum of growth rates or discount rates. These

additional effects are large. The variation in ∆E1
∑∞

j=0 s1+j when other shocks move is large;

the corresponding movement in the discount rate term is also large, and the two movements are

negatively correlated. We get a hint of that behavior in the surplus+growth and discount rate

shock responses. I do not pursue this question because it is much more interesting if one can

give some structural or economic interpretation to the shocks to other variables, which requires

a model.

Perhaps most of all, linking these theory-free characterizations to explicit fiscal theory of

monetary policy models such as Cochrane (2019a), or at least to explicit models of discount rates

and long-term debt management, is an obviously important step. However, such models need

to be elaborated to the point that they can match data, which requires considerable complica-

tion of elements such as the IS and Phillips curve, and to surmount difficult identification and

estimation challenges. It’s important, but not easy.
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Online Appendix to “The Fiscal Roots of Inflation”

A Derivation of the linearized identities

In this appendix I derive the linearized identities (1) (2) and (3),

vt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1 (8)

vt =
T∑
j=1

st+j −
T∑
j=1

(
rnt+j − πt+j − gt+j

)
+ vt+T

and

∆Et+1πt+1 −∆Et+1

(
rnt+1 − gt+1

)
= −

∞∑
j=0

∆Et+1st+1+j +

∞∑
j=1

∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)
. (9)

I also define the variables more carefully.

The symbols are as follows:

Vt = Mt +
∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t

is the nominal end-of-period market value of debt, where Mt is non-interest-bearing money,

B
(t+j)
t is zero-coupon nominal debt outstanding at the end of period t and due at the beginning

of period t+ j, and Q(t+j)
t is the time t price of that bond, with Q(t)

t = 1. Taking logs,

vt ≡ log

(
Vt
YtPt

)
is log market value of the debt divided by GDP, where Pt is the price level and Yt is real GDP

or another stationarity-inducing divisor such as consumption, potential GDP, population, etc. I

use consumption times the average GDP to consumption ratio in the empirical work, but I will

call Y and ratios to Y “GDP” for brevity.

Rnt+1 ≡
Mt +

∑∞
j=1Q

(t+j)
t+1 B

(t+j)
t

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

(10)

is the nominal return on the portfolio of government debt, i.e. how the change in prices overnight
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from the end of t to the beginning of t+ 1 affects the value of debt held overnight, and

rnt+1 ≡ log(Rnt+1)

is the log nominal return on that portfolio.

πt ≡ log

(
Pt
Pt−1

)
, gt ≡ log

(
Yt
Yt−1

)
are log inflation and GDP growth rate.

We can accommodate explicit default, and yes, the formulas also apply to countries in

the Euro. An explicit default is a reduction in the nominal quantity of debt overnight. The B(t+j)
t

in the numerator of (10) represents the post-default number of bonds outstanding, i.e. on the

morning of time t+ 1, while theB(t+j)
t in the denominator represents the pre-default number of

bonds outstanding, i.e. in the evening of time t. A partial default then shows up as a low return.

To handle default one would, of course, add notation distinguishing these two values.

Now, I establish the nonlinear flow and present value identities. In period t, we have

∞∑
j=0

Q
(t+j)
t B

(t+j)
t−1 +Mt−1 = Ptspt +

∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t +Mt, (11)

where spt denotes the real primary (not including interest payments) surplus or deficit. Money

Mt at the end of period t is equal to money brought in from the previous period Mt−1 plus the

effects of bond sales or purchases at price Q(t+j)
t , less money soaked up by primary surpluses.

The left hand side of (11) is the beginning-of-period market value of debt, i.e. before debt

sales or repurchases B(t+j)
t −B(t+j)

t−1 have taken place. It turns out to be more convenient here to

express equations in terms of the end-of-period market value of debt. To that end, shift the time

index forward one period and rearrange to write

∞∑
j=0

Q
(t+1+j)
t+1 B

(t+1+j)
t +Mt = Pt+1spt+1 +

∞∑
j=0

Q
(t+2+j)
t+1 B

(t+2+j)
t+1 +Mt+1,

∞∑
j=1

Q
(t+j)
t+1 B

(t+j)
t +Mt = Pt+1spt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1 +Mt+1,

Mt +

∞∑
j=1

Q
(t+j)
t B

(t+j)
t

Rnt+1 = Pt+1spt+1 +

Mt+1 +
∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1

 ,
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Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

PtYt

Rnt+1

Gt+1

Pt
Pt+1

=
spt+1

Yt+1
+
Mt+1 +

∑∞
j=1Q

(t+1+j)
t+1 B

(t+1+j)
t+1

Pt+1Yt+1
. (12)

We can iterate this flow identity (12) forward to express the nonlinear government debt

valuation identity as

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

PtYt
=
∞∑
j=1

(
j∏

k=1

1

Rt+k/Gt+k

)
spt+j
Yt+j

. (13)

The market value of government debt at the end of period t, as a fraction of GDP, equals the

present value of primary surplus to GDP ratios, discounted at the government debt rate of return

less the GDP growth rate. (I assume here that the right hand side converges. Otherwise, keep the

limiting debt term or iterate a finite number of periods.)

The nonlinear identities (12) and (13) are cumbersome. I linearize the flow equation (12)

and then iterate forward to obtain a linearized version of (13). Write (12) as

Vt
PtYt

Rnt+1

Pt
Pt+1

Yt
Yt+1

=
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1
.

Taking logs,

vt + rnt+1 − πt+1 − gt+1 = log

(
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1

)
(14)

I linearize in the level of the surplus, not its log as one conventionally does in asset pricing,

since the surplus is often negative. To linearize in terms of the surplus/GDP ratio, Taylor expand

the last term,

vt + rnt+1 − πt+1 − gt+1 = log(ev + sy) +
ev

ev + sy
(vt+1 − v) +

1

ev + sy
(syt+1 − sy)

where

syt+1 ≡
spt+1

Yt+1
(15)

denotes the surplus to GDP ratio, and variables without subscripts denote a steady state of (14).

With r ≡ rn − π,

r − g = log
ev + sy

ev
.

Then,

vt + rnt+1 − πt+1 − gt+1 =

[
log(ev + sy)− ev

ev + sy

(
v +

sy

ev

)]
+

ev

ev + sy
vt+1 +

ev

ev + sy

syt+1

ev
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vt + rnt+1 − πt+1 − gt+1 =

[
v + r − g − ev

ev + sy

(
v +

ev + sy

ev
− 1

)]
+ ρvt+1 + ρ

syt+1

ev

vt + rnt+1 − πt+1 − gt+1 = [r − g + (1− ρ) (v − 1)] + ρvt+1 + ρ
syt+1

ev
(16)

where

ρ ≡ e−(r−g). (17)

Suppressing the small constant, and thus interpreting variables as deviations from means, the

linearized flow identity is

vt + rnt+1 − πt+1 − gt+1 = ρ
syt+1

ev
+ ρvt+1. (18)

Iterating forward, the present value identity is

vt =
T∑
j=1

ρj−1
[
ρ
syt+j
ev
−
(
rnt+j − πt+j − gt+j

)]
+ ρT vT . (19)

If we linearize around r − g = 0, then the constant in (18) is zero (sy = 0), and we obtain the

linearized flow and present value identities (8) and (9), with the symbol st representing syt/ev.

There is nothing wrong with expanding about r = g. The point of expansion need not be the

sample mean.

To approximate in terms of the surplus to value ratio, write (14) as

vt + rnt+1 − πt+1 − gt+1 = log

(
Vt
PtYt

spt+1

Yt+1

Vt
PtYt

+
Vt+1

Pt+1Yt+1

)

rnt+1 − πt+1 − gt+1 = log

( spt+1

Yt+1

Vt
PtYt

+

Vt+1

Pt+1Yt+1

Vt
PtYt

)

rnt+1 − πt+1 − gt+1 = log
(
svt+1 + evt+1−vt) .

At a steady state

r − g = log (1 + sv) . (20)

er−g = 1 + sv.

Taylor expanding around a steady state,

rnt+1 − πt+1 − gt+1 = log (1 + sv) +
1

(1 + sv)
(svt+1 − sv + vt+1 − vt)
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vt + (1 + sv)
[
rnt+1 − πt+1 − gt+1

]
= [(1 + sv) log (1 + sv)− sv] + svt+1 + vt+1 (21)

The linearized flow identity (8) follows, with the symbol st representing the surplus to value ratio

st = svt, if we suppress the constant, using deviations from means in the analysis, or if we use

r = g or sv = 0, as a point of expansion.

The linearizations in terms of the surplus to value ratio svt are more accurate. The units

of the flow identities (8), (18) are rates of return. Dividing the surplus by the previous period’s

value gives a better approximation to the growth in value, when the value of debt is far from the

steady state.

With stationary vt, the term vt+T does not vanish in (9), where the term ρT vt+T vanishes in

(19). In this paper, the presence of the vt+T term is not a difficulty. I study innovations ∆Et+1vt+T

and ∆Et+1vt+T → 0. For other purposes, one may wish to use the surplus to GDP linearization

and r > g steady state, so that the limiting term vanishes.

A constant ratio of surplus to market value of debt for any price level path leads to a pas-

sive fiscal policy. An unexpected deflation raises the real value of debt. If surpluses always rise

in response, they validate the lower price level. Thus, although on the equilibrium path one can

describe dynamics via either linearization, if one wants to think about how fiscal-theory equi-

libria are formed, it is better to describe a surplus that does not react to price level changes, so

only one value vt emerges, as is the case in (19). For such purposes, the surplus to GDP defini-

tion is appropriate, as well as adopting a linearization point r > g and ρ < 1. It’s also better to

use the nonlinear versions of the identities for determinacy issues. The analysis of this paper

is about what happens in equilibrium, and does not require an active-fiscal assumption, so the

difference is irrelevant here.

I infer the surplus from the linearized flow identity (8) so which concept the surplus corre-

sponds to makes no difference to the analysis. The difference is only the accuracy of approxima-

tion, how close the surplus recovered from the linearized flow identity corresponds to a surplus

recovered from the nonlinear exact identity (14).

B A variance decomposition

I use the elements of the impulse response function and their sums to calculate the terms of the

unexpected inflation identity (3). We can interpret this calculation as an decomposition of the

variance of unexpected inflation. Multiply both sides of (3) by ∆Et+1πt+1 and take expectations,



6 COCHRANE

giving

var (∆Et+1πt+1)− cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1 − gt+1

)]
(22)

= −
∞∑
j=0

cov [∆Et+1πt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

Unexpected inflation may only vary to the extent that it covaries with current bond returns, or if

it forecasts surpluses or real discount rate.

Dividing by var (∆Et+1πt+1), we can express each term as a fraction of the variance of

unexpected inflation coming from that term. This decomposition adds up to 100%, within the

accuracy of approximation, but it is not an orthogonal decomposition, nor are all the elements

necessarily positive. Each term is also a regression coefficient of the other terms on unexpected

inflation.

The two approaches give exactly the same result – the terms of (22) are exactly the terms

of the impulse-response function, to an inflation shock orthogonalized last, i.e. a shock that

moves all variables at time 1 including ∆E1π1.

To see this fact, write the VAR in standard notation

xt+1 = Axt + εt+1 (23)

so

∆Et+1

∞∑
j=1

xt+j = (I −A)−1εt+1.

Let a denote vectors which pull out each variable, i.e.

πt = a′πxt, st = a′sxt, (24)

etc. Then the present value identity (3) reads and may be calculated as

a′πεt+1 − (arn − ag)′εt+1 = −a′s(I −A)−1εt+1 + a′rg(I −A)−1Aεt+1 (25)

where

arg ≡ arn − aπ − ag.

We can calculate the variance decomposition (22) by

a′πΣaπ − (arn − ag)′Σaπ = −a′s(I −A)−1Σaπ + a′rg(I −A)−1AΣaπ
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where Σ = cov(εt+1, ε
′
t+1), and then divide by a′πΣaπ to express the result as a fraction,

1− (arn − ag)′
Σaπ
a′πΣaπ

= −a′s(I −A)−1
Σaπ
a′πΣaπ

+ a′rg(I −A)−1A
Σaπ
a′πΣaπ

. (26)

To show that this variance decomposition is the same as the elements and sum of ele-

ments of the impulse-response function to an inflation shock, orthogonalized last, note that the

regression coefficient of any other shock εz on the inflation shock is

bεz ,επ =
cov(εzt+1, ε

π
t+1)

var(επt+1)
=
a′zΣaπ
a′πΣaπ

,

so the VAR shock, consisting of a unit movement in inflation επ1 = 1 and movements εz1 = bεz ,επ

in each of the other variables is given by

ε1 =
Σaπ
a′πΣaπ

.

We recognize in (26) the responses and sums of responses to this shock. Dividing (22) by the

variance of unexpected inflation, or examining the terms of (26), we recognize that each term is

also the coefficient in a single regression of each quantity on unexpected inflation.

In an analogous way, we can interpret the responses to other shocks as a decomposition

of the covariance of unexpected inflation with that shock, based on

cov (∆Et+1πt+1εt+1)− cov
[
εt+1,∆Et+1

(
rnt+1 − gt+1

)]
= −

∞∑
j=0

cov [εt+1,∆Et+1st+1+j ] +
∞∑
j=1

cov
[
εt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

This variance decomposition is similar in style to the decomposition of return variance

in Campbell and Ammer (1993). To avoid covariance terms, however, it follows the philosophy

of the price/dividend variance decomposition in Cochrane (1992), extended to a multivariate

context. With x = y + z, I explore var(x) = cov(x, y) + cov(x, z) rather than var(x) = var(y) +

var(z) + 2cov(y, z).

C Formulas for geometric maturity structure

Here I derive the linearized identity

rnt+1 ≈ ωqt+1 − qt,
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which leads to (4),

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
.

I also derive expectations-hypothesis bond-pricing equations. These are used in the sticky-price

model Cochrane (2019a).

Etr
n
t+1 = it

ωEtqt+1 − qt = it.

Suppose the face value of debt follows a geometric pattern, B(t+j)
t = Btω

j−1. Then the

nominal market value of debt is

∞∑
j=1

B
(t+j)
t Q

(t+j)
t = Bt

∞∑
j=1

ωj−1Q
(t+j)
t .

Define the price of the government debt portfolio as

Qt =
∞∑
j=1

ωj−1Q
(t+j)
t .

The return on the government debt portfolio is then

Rnt+1 =

∑∞
j=1B

(t+j)
t Q

(t+j)
t+1∑∞

j=1B
(t+j)
t Q

(t+j)
t

=

∑∞
j=1 ω

j−1Q
(t+j)
t+1∑∞

j=1 ω
j−1Q

(t+j)
t

=
1 + ω

∑∞
j=1 ω

j−1Q
(t+1+j)
t+1∑∞

j=1 ω
j−1Q

(t+j)
t

=
1 + ωQt+1

Qt
.

I loglinearize as

rnt+1 = log

(
1 + ωQt+1

Qt

)
= log (1 + ωeqt+1)− qt ≈ log

(
1 + ωQ

Q

)
+

ωQ

1 + ωQ
q̃t+1 − q̃t (27)

where as usual variables without subscripts are steady state values and tildes are deviations from

steady state.

In a steady state,

Q(t+j) =
1

(1 + i)j

Q =
∞∑
j=1

ωj−1
1

(1 + i)j
=

(
1

1 + i

)(
1

1− ω
1+i

)
=

1

1 + i− ω
. (28)
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The limits are ω = 0 for one-period bonds, which givesQ = 1/(1 + i), and ω = 1 for perpetuities,

which gives Q = 1/i. The terms of the approximation (27) are then

1 + ωQ

Q
= 1 + i

ωQ

1 + ωQ
=

ω

1 + i

so we can write (27) as

rnt+1 ≈ i+
ω

1 + i
q̃t+1 − q̃t.

since i < 0.05 and ω ≈ 0.7, I further approximate to

rnt+1 ≈ i+ ωq̃t+1 − q̃t. (29)

To derive (4), iterate (29) forward to express the bond price in terms of future returns,

q̃t = −
∞∑
j=1

ωj r̃nt+j

Take innovations, move the first term to the left hand side, and divide by ω,

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1r̃
n
t+1+j (30)

then add and subtract inflation to get (4),

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(r̃nt+1+j − π̃t+1+j) + π̃t+1+j

]
. (31)

The expectations hypothesis states that expected returns on bonds of all maturities are

the same,

Etr
n
t+1 = it

i+ ωEtq̃t+1 − q̃t = it

ωEtq̃t+1 − q̃t = ı̃t

In the text, all variables are deviations from steady state, so I drop the tilde notation.
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rn g π s v i y

Regression of other shocks on inflation shock
Coefficient -0.56 -0.33 1.00 -0.58 -0.65 0.24 0.23

Std. err. (0.25) (0.18) (0.00) (0.45) (0.71) (0.14) (0.25)
Correlation matrix of VAR shocks

rn 1.00 -0.25 -0.29 -0.27 0.63 -0.74 -0.93
g -0.25 1.00 -0.24 0.39 -0.56 0.41 0.20
π -0.29 -0.24 1.00 -0.14 -0.11 0.21 0.31
s -0.27 0.39 -0.14 1.00 -0.88 0.35 0.26
v 0.63 -0.56 -0.11 -0.88 1.00 -0.63 -0.60
i -0.74 0.41 0.21 0.35 -0.63 1.00 0.75
y -0.93 0.20 0.31 0.26 -0.60 0.75 1.00

Table 4: Regression of other shocks on inflation shock, and correlation matrix of VAR shocks

The yield yt on the government bond portfolio is the it that solves (28) for given Qt,

yt =
1

Qt
+ ω − 1

To find the yield as deviation from steady state, given the bond portfolio price as deviation from

steady state, write

qt = log
1

1 + i− ω
+ q̃t

yt = e− log 1
1+i−ω+q̃t + ω − 1

ỹt = e− log 1
1+i−ω+q̃t − e− log 1

1+i−ω =
(
eq̃t − 1

)
(1 + i− ω) .

D Sources of sampling variation

Table 4 includes the regression of other shocks on inflation shock that starts off the main infla-

tion decomposition, and thus determines the instantaneous response in Figures 2 and 9. The

table also includes the correlation matrix of the shocks.

To measure the relative contribution of the shock correlation and the long-run response

function given the shock identification as sources of variation, Table 5 includes two other sam-

pling calculations. The “no b” columns resample data using the original regression of shocks

εzt+1 on inflation shocks επt+1, the top row of Table 4, in each sample. The VAR coefficients still

vary across samples, but the identification of the inflation shock does not. The “no A” columns
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Fraction No b No A
Component Estimate 25% 75% 25% 75% 25% 75%
Inflation π1 1.00

Bond return (rn1 − g1) -0.23 -0.45 0.00 -0.23 -0.23 -0.45 0.00
Future Σs -0.06 -0.69 0.23 -0.60 0.14 -0.69 0.23

Future Σr − g 1.17 0.42 1.57 0.63 1.37 0.42 1.57

Table 5: Decomposition of unexpected inflation variance – distribution quantiles. No b holds
the initial response constant across trials. No A holds the VAR regression coefficients constant
across trials

likewise keep constant the VAR regression coefficients, but reestimate the shock regression in

each sample. Turning off either source of sampling variation reduces that variation, but not as

much as you might think. Sampling variation is still large in either case, and variances add, not

standard deviations. Moreover the sampling variation associated with shock orthogonalization

– the “no A” exercise – does not go away no matter how small the shocks. Both left and right hand

sides of the shock on shock regressions get smaller at the same rate.


