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1. Introduction

This paper measures the fiscal roots of inflation. I start with a linearized version of the govern-

ment debt flow identity,

vt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1. (1)

The log debt to GDP ratio at the end of period t+ 1, vt+1, is equal to its value at the end of period

t, vt, increased by the log real nominal return on the portfolio of government bonds rnt+1 less

inflation πt+1, less log GDP growth gt+1, and less the primary surplus1 st+1. I derive this identity

in the Appendix.

Iterating forward, we have a present value identity,

vt =
T∑
j=1

st+j −
T∑
j=1

(
rnt+j − πt+j − gt+j

)
+ vt+T . (2)

The log value of government debt, divided by GDP, is the present value of future surpluses, dis-

counted at the ex-post real return, adjusted by GDP growth.

Taking time t+ 1 innovations ∆Et+1 ≡ Et+1−Et, taking the limit as T →∞ and rearrang-

ing, we have the unexpected inflation identity,

∆Et+1πt+1 −∆Et+1

(
rnt+1 − gt+1

)
(3)

= −
∞∑
j=0

∆Et+1st+1+j +

∞∑
j=1

∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)
.

A decline in the present value of surpluses, coming either from a change in surpluses or a rise

in their discount rates, must result in a lower real value of the debt. This reduction can come

about by unexpected inflation, or by a decline in nominal long-term bond prices. I focus on this

identity because the value of the debt vt drops out.

(I approximate around r = g so there is no discounting in the above sums. One can also

approximate around r > g to allow βj = ej(r−g) terms in the sums. However, the variables are

all stationary, and impulse-responses converge faster than βj , so expected values converge, and

downweighting higher order terms by something like 0.99j makes little difference to the results.

Since the value of the debt vt is stationary, limT→∞∆Et+1vt+T = 0. One can also view these

1More precisely, st+1 is the real primary surplus divided by GDP, and scaled by the steady state debt-to-GDP ratio,
so its units are real surplus divided by real value. It can also represent the real primary surplus divided by the previous
period’s real value of debt – either definition leads to the same linearization. For brevity, I refer to st+1 as simply the
“surplus.” I impute the surplus from the other terms of (1), so its identity really only matters when one wishes to
assess the accuracy of approximation, which I do below, or to assess an independent data source on surpluses.
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unweighted identities as r → g limits.)

I use a vector autoregression (VAR) to measure each component of the unexpected infla-

tion identity (3), in response to a variety of shocks. The main message is that discount rates

matter. Unexpected inflation corresponds more to a rise in the discount rate for government

debt than to a decline in primary surpluses.

The second term of (3) is also a key point. For example, when there is a negative inno-

vation to the present value of surpluses on the right hand side, a decline in nominal long-term

bond prices and consequent negative return ∆Et+1r
n
t+1 can lower the real value of debt, in place

of unexpected inflation ∆Et+1πt+1. In this way, long-term debt can buffer fiscal shocks.

To evaluate this channel, I examine the size of responses ∆Et+1r
n
t+1, and I break them

down to expected future inflation vs. expected future real returns. With a geometric maturity

structure, in which the face value of maturity j debt declines at rate ωj , the Appendix develops

the approximate identity

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
. (4)

Lower bond prices correspond to higher bond expected nominal returns, which in turn are com-

posed of real returns and inflation. I find that the bond return responses ∆Et+1r
n
t+1 are large, and

that they mostly correspond to changes in expected future inflation, not to changes in expected

real returns. As a result, the contemporaneous bond return term ∆Et+1r
n
t+1 can show us how a

fiscal shock is absorbed by a shock to long-term expected inflation, which slowly drains repay-

ment of long-term bonds, rather than a price level jump. In this way expected and unexpected

inflation are connected.

Overall, then, I find two novel descriptions of the fiscal roots of inflation: Inflationary and

deflationary fiscal shocks come to a large extent from discount rate variation, not from shocks

to expected surpluses, and fiscal shocks translate via long-term debt to persistent movements

in expected inflation. Strong forecastable surplus movements or sudden debt-devaluing price

level jumps are not the only, or dominant, fiscal roots of inflation.

I interpret the results through the lens of the fiscal theory of monetary policy, which I

briefly define, summarize and extend. In this interpretation, unexpected inflation is caused by

movements of the other terms of the identity. We study the fiscal roots rather than the fiscal

consequences of inflation. In this view, the point of the paper is to establish a set of facts for

constructing such models, much as atheoretical VARs guided the construction of conventional

monetary models.
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But the above identities hold in almost all macroeconomic models used to quantitatively

address inflation. (They assume that the present value is finite – loosely that r > g – ruling

out models of dynamic inefficiency. I presume this case without further comment.) Likewise,

the VARs impose no theory. Therefore, the results can also be read as measuring the nature of

passive-fiscal adjustments to an active-money (Leeper (1991)) regime, if one so wishes. A well-

specified active-money regime must spell out a realistic passive-fiscal policy. The fact that dis-

count rates do much of the adjusting, rather than the painless ex-post lump-sum taxes alluded

to in many theoretical footnotes, changes the fiscal underpinnings of such models substantially.

Since the analysis is based on identities that hold in both sets of models under consid-

eration, I do not test anything. But which element in an identity moves is still an interesting

measurement, for any model.

1.1. Literature

Much of the technique in this paper is imported from asset pricing. The general approach to

linearizing the valuation identity follows Campbell and Shiller (1988). The Appendix relates

impulse-response calculations to asset pricing variance decompositions. The summary in Cochrane

(2011b) and treatment of identities in Cochrane (2007) are obvious precursors. The uniting

theme in the former is that asset price and return variation is largely driven by variation in

discount rates. Using analogous techniques, this paper finds the same result in questions of

government debt and inflation, where discount rate variation is usually ignored.

The analysis of government finances, how debt is paid off, grown out of, or inflated away,

is a huge literature. Hall and Sargent (1997), Hall and Sargent (2011) are the most important pre-

cursors. Hall and Sargent focus on the market value of debt, as I do, not the face value reported

by the Treasury, and consequent proper accounting for interest costs. I use data provided by

Hall, Payne, and Sargent (2018).

This paper uses the innovation identity (3), to focus on inflation, paralleling the return

decompositions from asset pricing. A companion paper Cochrane (2019) decomposes the value

of government debt vt, starting from the value identity (2), paralleling the price/dividend ratio

decompositions from asset pricing. Since inflation turns out to be an insignificant part of that

story, the two exercises make largely orthogonal points, despite their common methodological

heritage.

The fiscal theory of monetary policy is the latest step in a long literature on the fiscal

theory of the price level. Sims (2011) and Cochrane (2017) are immediate antecedents. Much

of the fiscal theory literature has pursued various theoretical controversies. A big point of this
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paper is to begin productively use fiscal theory to understand US data.

2. The fiscal theory of monetary policy

By the term “fiscal theory of monetary policy,” I mean a model that uses the new-Keynesian/DSGE

ingredients, including a central bank that follows an interest rate target, but substitutes active

fiscal for active monetary policy to select equilibria, following the fiscal theory of the price level.

Here I set forth a few simple models of this sort, that express the mechanisms I use later to

interpret of empirical results. The resulting picture differs substantially from the usual impres-

sion of the fiscal theory of the price level. Central banks, and their interest rate targets remain

centrally important for the determination of expected and unexpected inflation. The models

capture persistent inflation, not just large price level jumps. There is a strong role for discount

rates, and no prediction of easily-refutable correlations between inflations and debt or deficits.

2.1. Simplest FTMP model, and active/passive assumptions

As the simplest fiscal theory of monetary policy example, consider a frictionless model com-

posed of only the Fisher equation (linearized intertemporal first-order condition in a constant-

endowment economy) with a constant real interest rate, and flexible prices:

it = r + Etπt+1. (5)

With no growth and one-period debt, the fiscal inflation identity (3) reduces to

∆Et+1πt+1 = −∆Et+1

∞∑
j=0

st+1+j . (6)

(With one-period debt, the return on government bonds is rnt+1 = it.)

If the central bank sets an interest rate target {it}, and with a passive fiscal policy in which

surpluses st react ex-post to make (6) hold for any inflation rate, this model determines expected

inflation but not unexpected inflation. There are multiple equilibria corresponding to any value

of unexpected inflation ∆Et+1πt+1.

The standard new-Keynesian approach solves this multiplicity by specifying an active

monetary policy

(it − i∗t ) = φ (πt − π∗t ) , φ > 1, (7)

where π∗t , i∗t are equilibrium values the central bank wishes to select from the multiple equilibria
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of (5). One also adds a rule against nominal explosions limT→∞Et+1πt+T = 0. Now only one

value of unexpected inflation remains. (Woodford (2003), Cochrane (2011a).)

For example, suppose the central bank wishes to produce an AR(1) inflation process,

π∗t+1 = θπ∗t + εt+1. (8)

By (5), the equilibrium interest rate must follow

i∗t = r + θπ∗t . (9)

The central bank cannot simply set a time-varying peg following (9), however, as this specifica-

tion would not determine unexpected inflation ∆Et+1πt+1 = εt+1. The central bank also speci-

fies φ > 1 and announces (7), that should another inflation πt+1 6= π∗t+1 emerge, the central bank

will lead the economy to hyperinflation or deflation. The latter provision and the rule against

nominally explosive equilibria selects (8) as the unique equilibrium.

Equation (7) is more commonly written

it = r + φπt + vt, (10)

with vt = i∗t−r−φπ∗t . I write it in the equivalent form (7) to emphasize that “monetary policy,” the

the interest rate rule (9) that we observe in equilibrium, is separate from “equilibrium selection

policy,” the threat (7), unobserved in equilibrium, that the central bank uses to select one of

multiple equilibria.

A fiscal theory of monetary policy specifies instead a “passive”φ < 1 equilibrium-selection

policy (7) – or, really no such policy at all, φ = 0, just erasing (7) – and turns off the passive fis-

cal assumption, so (6) does not hold automatically. One need not assume that surpluses are

exogenous. Surpluses may react endogenously to other variables. The only restriction is that

surpluses do not react one-for-one to multiple-equilibrium unexpected inflation, in such a way

that (6) holds for any unexpected inflation. Now the combination (5) and (6) uniquely determine

both expected and unexpected inflation.

Central banks remain powerful in this model. Central banks cannot directly affect fiscal

policy, and can no longer count on a “passive” fiscal adjustment to validate their equilibrium-

selection policy. But central banks still set interest rate targets2, and thereby they control ex-

pected inflation via (5). Interest rate targets may also follow rules and react endogenously to eco-

2How does the central bank set an interest rate target? Even in this cashless and frictionless model, the central
bank can set interest rates by varying the quantity of debt, without changing surpluses. Briefly, for example, writing
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nomic variables as in (9). Fiscal events only determine unexpected inflation, the instantaneous

response of inflation to a shock ∆Et+1πt+1. Monetary policy determines the rest, ∆Et+1πt+1+j ,

j > 0.

This frictionless model is Fisherian: A rise in interest rates, with no change in surpluses,

produces a rise in expected inflation one period later via it = Etπt+1, and no change in current

inflation ∆Et+1πt+1 = 0. The frictionless new-Keynesian counterpart with φ > 1 can produce a

negative inflation response, by selecting instead an equilibrium with ∆Et+1πt+1 < 0. It implicitly

assumes a coincident fiscal contraction, as (6) still holds, achieved by “passive” fiscal authorities.

The fiscal theory of monetary policy can produce the same response, but would call it a coordi-

nated fiscal and monetary shock. In the next sections, we see how a negative inflation response

can emerge even without a shock to surpluses.

2.2. Long-term debt

Now, add long-term debt with a geometric maturity structure, keeping for now a constant real

interest rate and flexible prices. The inflation (3) and bond return identities (4) specialize to

∆Et+1πt+1 −∆Et+1r
n
t+1 = −

∞∑
j=0

∆Et+1st+1+j (11)

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1πt+1+j . (12)

Substituting the return identity into the inflation identity, the model simplifies to the Fisher

equation (5), it = Etπt+1, and

∞∑
j=0

ωj∆Et+1πt+1+j = −
∞∑
j=0

∆Et+1st+1+j (13)

in place of (6). With long-term debt, shocks to the present value of surpluses in (13) correspond

to a change in the weighted average of current and, now, expected future inflation.

When surpluses do not move, (13) introduces an important link between changes in ex-

the nonlinear valuation identity with a constant interest rate as

Bt−1

Pt
= Et

∞∑
j=0

βjst+j ,

then a change inBt−1 at time t− 1 with no change in surpluses changes expected inflationEt−1(Pt−1/Pt) and there-
fore the nominal interest rate. See Cochrane (2017) Section 2.4 for an extended discussion. Alternatively, one may
appeal to the standard Woodford (2003) cashless limit argument.
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pected inflation at different dates. Consider a persistent monetary policy shock – a persistent

positive change in it = Etπt+1 with no change in surpluses. From (13), if the terms ∆Et+1πt+1+j

for j ≥ 1 are all positive, then ∆Et+1πt+1 < 0. In this way, with long-term debt, this positive per-

sistent monetary policy shock induces a negative initial inflation response, which briefly over-

turns the otherwise Fisherian properties of this frictionless model. Inflation here behaves much

the same way that bond yields do: a rise in expected future inflation leads to a decline in cur-

rent inflation. This observation boils down a large effort in more complex models to produce a

negative inflation response in a rational expectations model, without assuming a contemporary

fiscal contraction (Sims (2011), Cochrane (2017), Cochrane (2018).)

For example, suppose the central bank creates a monetary disturbance that follows an

AR(1),

it = ρit−1 + εit, (14)

with no change in surpluses. The inflation response to a unit shock εi1 = 1 is higher expected

inflation for all periods 2, 3, ...,

∆E1π1+j = ∆E1ij = ρj .

However, from (13), the impact effect of a higher interest rate is negative:

∆E1π1 = − ρω

1− ρω
.

This is an example, not a theorem. Sticky prices in the next section change the dynamics.

Also, if the discount rate rises, that lowers the present value of surpluses, an inflationary force

that can offset or even overcome this simple mechanism. The point here is to understand one of

several mechanisms that help us to interpret the empirical results below.

In (13), with short-term debt ωj = 0, a fiscal shock must result in an immediate inflation.

A price-level jump is the only way to devalue short-term debt. With long-term debt, a rise in

expected future inflation can devalue long-term bonds. Thus a fiscal shock may give rise to a

persistent small rise in inflation, or even a rise only in future expected inflation with no current

change at all. As we shorten the time interval, the effective ω rises, and the instantaneous term

drops out altogether; all fiscal shocks now correspond to changes in expected future inflation.

Since monetary policy controls the interest rate, monetary policy determines whether a

fiscal shock is felt entirely in current inflation ∆Et+1πt+1, or leads to a drawn-out but smaller

inflation ∆Et+1πt+j .

Contrary to the impression one gets with short-term debt models, then, fiscal theory does

not produce only one-period price level shocks. A persistent inflation following a fiscal shock, if
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it is accommodated by monetary policy, can emerge from this model as well. This observations

suggests a story for the 1970s.

In these ways and more, the addition of the ωj terms in (13) represents a major shift in

perspective. Equation (13) alerts us to think of the innovation in current and expected future

inflation, captured in the bond return, together, and not to focus on the innovation to current

inflation alone. I do not substitute the bond return identity (4) into the general inflation identity

(3) because the result is not pretty, I don’t wish to impose a geometric maturity structure, and

because variation in bond expected returns and discount rates cloud the picture. But we will see

this basic mechanism at work in the estimates below.

2.3. Sticky prices and policy rules

Finally, let us examine the simplest fiscal theory of monetary policy model with sticky prices

as well as long-term debt. I use the standard new-Keynesian intertemporal substitution and

Phillips curves,

xt = Etxt+1 − σ(it − Etπt+1) (15)

πt = βEtπt+1 − κxt. (16)

Eliminating the output gap xt from (15)-(16), we have

βEtπt+2 − (1 + β − σκ)Etπt+1 + πt = σκit. (17)

We can write this equation that expected inflation Etπt+1 is a two-sided exponentially-weighted

moving average of the interest rate it, with weights given by the roots of the lag polynomial (17)

(Cochrane (2018) p. 165), naturally generalizing the Fisher equation (5) Etπt+1 = it. Therefore,

monetary policy can still determine expected inflation. It just takes a more complex interest rate

path to give any particular expected inflation path.

We can compute responses to specified interest rate and surplus paths as before, but it

is more interesting to specify policy rules. I also thereby verify that one can specify policy rules

rather than fixed surplus and interest rate paths. The resulting model can stand as a benchmark

fiscal theory of monetary policy, parallel to the standard three-equation ((10),(15), (16)) new-

Keynesian model.

The model consists of IS and Phillips equations (15), (16), fiscal and monetary policy rules,
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and the evolution of the value of government debt,

it = θiππt + θixxt + uit (18)

st = θsππt + θsxxt + αv∗t + ust (19)[
1 +

(
γ−1 − 1

)
α
]
v∗t+1 = v∗t + it − Etπt+1 − st+1 (20)

vt+1 = vt + rnt+1 − πt+1 − st+1 (21)

Etr
n
t+1 = it (22)

rnt+1 = ωqt+1 − qt (23)

uit+1 = ρiuit + εit+1 (24)

ust+1 = ρsust + εst+1 (25)

These are the same equations as the standard new-Keynesian model, with a set of implicit fiscal

equations spelled out. We parameterize and solve the model with active fiscal rather than active

monetary policy.

Equation (18) is the monetary policy rule. Equation (19) is the fiscal policy rule. I allow

surpluses to respond to the output gap, as they do, with procyclical tax receipts and counter-

cyclical stabilizers and stimuli. I allow surpluses to respond to inflation as well, which one can

view either as a policy decision or imperfect indexation. I discuss v∗ below. Equation (21) tracks

the evolution of the real value of debt, from (1). Equation (22) is the bond pricing equation, us-

ing the expectations hypothesis that expected returns on bonds of all maturities are the same.

Equation (23), derived in the Appendix, relates the return on the government bond portfolio to

its price qt. Equations (24)-(25) allow persistence in monetary and fiscal policy disturbances.

The v∗ term in (19) and (20) says that the surplus responds to what the value of the debt

would be with no inflation, i.e. to debts accumulated from past deficits or from changes in the

ex-ante real interest rate rt = it − Etπt+1. However, fiscal policy ignores changes in the value

of debt that arise from unexpected and especially multiple-equilibrium inflation and deflation.

This specification gives us a fiscal policy that is “active,” and rules out multiple equilibria, but

nonetheless pays off debts accumulated from past deficits, as the government promised to do,

implicitly or explicitly, when it sold debt. Fiscal theory does not say that governments set sur-

pluses ignoring promises made when they ran previous deficits.

This specification models a monetary-fiscal regime, such as inflation targeting or a gold

standard, in which the Treasury agrees to pay its debts at the inflation target or gold standard

target, but does not commit to pay larger values of its debts should (say) a large off-equilibrium
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deflation emerge. Like (7), this specification captures the difference between reactions observed

in equilibrium and unobserved off-equilibrium responses that select equilibria.

We can also regard (19) and (20) as a way to write compactly and intuitively a dynamic

surplus process in which a government running deficits promises future surpluses. It writes

an otherwise complex non-invertible MA process in a VAR(1) form by introducing a latent state

variable v∗t . To see this point, consider the simple case with θsx = θsπ = 0 and rt = it−Etπt+1 = 0.

Substituting the surplus response (19) into the v∗ process (20) we can write the v∗ process as

v∗t+1 = −

(
1 + α

γ

)−1
1−

(
1 + α

γ

)−1
L
ust+1.

Substituting this result back into (19) we obtain a surplus process

st+1 = a(L)ust+1 =

1− α

(
1 + α

γ

)−1
1−

(
1 + α

γ

)−1
L

ust+1

= ust+1 −
α(

1 + α
γ

)ust+1 −
α(

1 + α
γ

)2ust − α(
1 + α

γ

)3ust−1 − ...
A deficit shock, a negative ust , is followed by a string of small positive surpluses, which pay back

the debt, or some of it.

The total response of the surplus to a shock is

a(1) = 1− γ.

With γ = 1, the government pays back all of the deficit, there are no shocks to the expected

sum of future surpluses. The parameter γ < 1 allows us to model a surplus process in which

the government promises to pay back part of the deficit rather than all of the deficit, letting

unexpected inflation soak up the rest by devaluing outstanding bonds. Intuitively, with γ < 1,

(20) describes what the value of the debt would be if someone else came along with a surplus

that pays
(
γ−1 − 1

)
α of the debt.

Like the rest of the model, this surplus process can and should be generalized towards

realism in many ways. In particular, the v∗ process can respond to one particular value of un-

expected inflation, rather than the strict zero-inflation target here. News about future surpluses

and historical episodes are likely not well modeled by AR(1) shocks.

The IS and Phillips curves (15)-(16) leave two undetermined expectational errors, need-
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ing two forward-looking roots to give a unique equilibrium. As usual, they have one forward

and one backward-looking root, so we need one extra forward-looking root. In active-money

new-Keynesian models θπi > 1 (roughly speaking) generates the additional explosive root. I

specify passive monetary policy with θπi < 1. (With more complex specifications, one can cre-

ate a passive-money model in which regressions of interest rates on inflation have a coefficient

greater than one. As this model is not elaborated to be empirically realistic in its other equations,

especially the IS and Phillips curves (15)-(16), I do not pursue that complication here.)

With short-term debt, we would have rnt+1 = it, and the combination (19)-(21) would

provide the extra explosive or unit root. Long-term debt adds another expectational error, (22),

but one more unstable root in (23). Together (22)-(23) solve forward to

qt = −Et
∞∑
j=1

ωj−1it+j−1,

the expectations hypothesis that long-term bond prices reflect an average of future short-term

interest rates.

The Appendix documents the algebra for solving the model in the standard way.

2.4. Responses

The top panel of Figure 1 presents the response of this model to an AR(1) fiscal policy distur-

bance ust , in the case of no policy responses to endogenous variables θ = 0. The interest rate

i and long-term bond return rn do not respond in this case. Inflation rises and decays with an

AR(1) pattern, not the one-period price-level jump that the frictionless model produces in this

case. Output rises mirroring the path of inflation, following the forward-looking Phillips curve

that output is high when inflation is greater than future inflation.

We can see here several aspects of the surplus process (19) - (20) at work. The surplus st

and the AR(1) surplus disturbance ust are not the same. The surplus initially declines, but these

deficits raise the v∗ latent variable, which accumulates past surpluses. A long string of small

positive surplus responses on the right side of the graph then partially repays the incurred debt.

This graph warns us of the empirical challenges ahead, and against many apparently easy

rejections of fiscal theory. It would be hard to distinguish the surplus s from the disturbance us

in the data, as they differ only in the long run. The surplus seems to respond to the value of debt

vt though it does not do so. Such a response does not indicate passive fiscal policy.

The terms of the unexpected inflation decomposition (3) in this response function are

given in the “Fiscal, no θ responses” row of Table 1. The 0.50% inflation shock corresponds to an
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Figure 1: Responses of the sticky-price long-term debt model, with no policy responses, to AR(1)
surplus shock (top panel) and AR(1) monetary policy shock (bottom panel). Parameters are θ =
0, ω = 0.7, γ = 0.8, σ = 0.5, κ = 0.5, ρi = 0.9, ρs = 0.7, α = 0.2.



FISCAL INFLATION 13

even larger, 1.33% decline in the sum of future surpluses. However, since there is inflation but

no change in nominal rates, real rates respond negatively, which raises the value of debt and is

therefore a deflationary force. This endogenous decline in discount rate buffers the effect of the

surplus shock on inflation. We will see many similar offsetting responses in the VAR below.

Shock and model ∆E1π1 −∆E1 (rn1 ) = −
∑∞

j=0 ∆E1s1+j +
∑∞

j=1 ∆E1

(
rn1+j − π1+j

)
Fiscal, no θ responses (0.50) −(0.00) = −(−1.33) +(−0.82)

Fiscal, yes θ responses (0.23) −(−0.34) = −(−0.72) +(0.14)

Monetary, no θ responses (−1.24) −(−1.89) = −(2.63) +(3.28)

Monetary, yes θ responses (−0.60) −(−0.80) = −(1.14) +(1.35)

Shock and model
∑∞

j=0 ω
j∆E1π1+j = −

∑∞
j=0 ∆E1s1+j +

∑∞
j=1(1− ωj)∆E1

(
rn1+j − π1+j

)
Fiscal, no θ responses (0.89) = −(−1.33) +(−0.44)

Fiscal, yes θ responses (0.60) = −(−0.72) +(−0.11)

Monetary, no θ responses (−1.08) = −(2.63) +(1.55)

Monetary, yes θ responses (−0.29) = −(1.14) +(0.84)

Table 1: Terms of the inflation decomposition for sticky-price model response functions.

In the absence of growth, we can productively substitute the return identity (4) into the

inflation identity (3) here to obtain

∞∑
j=0

ωj∆E1π1+j = −
∞∑
j=0

∆E1s1+j +
∞∑
j=1

(1− ωj)∆E1

(
rn1+j − π1+j

)
. (26)

As above, with long term debt, fiscal shocks spread over current and future inflation, weighted

by the maturity structure of the debt, and with the time path of inflation dependent on the mon-

etary policy response. Like (13), this expression emphasizes that the separation between un-

expected inflation at time 1 and changes in expected inflation at later periods are not separate

phenomena, or equivalently that the period one bond return shock ∆E1r
n
1 , is not an indepen-

dent phenomenon. Fiscal pressures affect inflation at all dates, marked to market in the bond

return. Relative to (13), this expression adds discount rate variation. Since ω < 1, a change in

discount rate does not cancel from bond returns and the inflation identity. For example, a per-

manent rise in discount rate lowers the present value of surpluses more than it lowers the value

of outstanding government bonds.

Table 1 includes this decomposition as well. The sum of surpluses is the same. In this

case, the overall weighted inflation response of 0.89% comes from the -1.33% cumulative surplus

decline, moderated by the offsetting -0.44% weighted discount rate effect.
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The cumulative surplus disturbance ∆E1
∑∞

j=0 u
s
1+j = −3.33% in this case is much larger

than the decline in surpluses ∆E1
∑∞

j=0 s1+j = −1.33%. The difference comes from the partial

repayment promise, the response of surplus to v∗t , and the parameter γ = 0.8. For γ = 0, sur-

pluses would follow st = ust and we would have a 3.33% inflation. For γ = 1, we would have larger

positive surpluses on the right hand side of the graph, ∆E1
∑∞

j=0 s1+j = 0 and no inflation.

The bottom panel of Figure 1 presents the response of variables in this model to an AR(1)

monetary policy shock uit, again with no responses to endogenous variables θ = 0. Inflation

π now declines persistently, not just for one period, in contrast to the flexible-price model of

the last section. Output also declines, following the new-Keynesian Phillips curve. The yield

on long-term bonds (not shown) rises, following the expectations hypothesis. This rise in yield

results in a sharp unexpected negative nominal bond return rn. Then expected bond returns

rise, following the interest rate rise and the expectations model. Subtracting inflation from these

nominal bond returns, the expected real rate and real bond return rises.

Surpluses are not constant. Here, I define a monetary policy shock that holds constant

the fiscal policy disturbance ust = 0, but not surpluses st themselves. Surpluses respond to the

increased value of the debt v∗ that results from higher real interest rates.

The terms of the unexpected inflation decomposition (3) in this response function are

given by the “Monetary, no θ responses” row of Table 1. The -1.24% unexpected disinflation

comes from a balance of competing forces. There is now a large, 2.63% rise in subsequent sur-

pluses, which on their own would give rise to -2.63% unexpected deflation. However, higher

real interest rates add an even larger, 3.28%, inflationary discount-rate effect, so that overall the

present value of surpluses rises by 3.28 - 2.63 = 0.65%. But the persistent rise in nominal rates

implies a -1.89% decline in the nominal value of long-term bonds, which soaks up more than all

that inflation. The decomposition in the bottom panel says that the -1.08% decline in weighted

inflation comes from the same 2.3% rise in surpluses, offset by an 0.84% rise in discount rate.

Discount rates matter, the path of expected inflation, interest rates, and expected bond

returns matters, and even in this simple example accounting for inflation involves multiple, and

often countervailing fiscal forces. Do not be surprised to see the same thing in the data to follow.

Figure 2 plots responses to the same fiscal and monetary shocks, but now adds endoge-

nous policy responses, modifying (18)-(19) to

it = 0.5 πt + 1.0 xt + uit (27)

st = 0 πt + 0.5 xt + 0.2 v∗t + ust . (28)
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Figure 2: Response to a fiscal (top) and monetary (bottom) policy shock in the sticky-price long-
term debt model, with endogenous policy responses. Parameters add θix = 1, θiπ = 0.5, θsx =
0.5, θsπ = 0.
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I choose the coefficients to make the graphs clear, not in an attempt at realism. Table 1 includes

the inflation decompositions, in the rows marked “yes θ responses.”

In the bottom monetary policy response of Figure 2 we see that the interest rate i is no

longer the same as the disturbance ui. The positive response of the interest rate target to infla-

tion and output, and the decline in inflation and output after the shock, pull down the actual

interest rate from its disturbance. I held down the coefficient θiπ = 0.5, rather than a more

traditional larger value, to keep the interest rate response from being negative, the opposite of

the shock. Interest rates that go in the opposite direction from monetary policy shocks are a

common feature in new–Keynesian models of this sort. (Cochrane (2018) p. 175 shows some

examples.) But they are confusing, and my point here is to illustrate mechanisms. The interest

rate then rises gradually, along with inflation, before settling down long past the right end shown

in the figure. Long-term bonds again suffer a negative return on impact, as the yield rises, and

then follow the interest rate as before.

The surplus behaves quite differently than before. In Figure 1, the surplus rises, reacting

only to the larger value of debt coming from a positive expected return. Now, the output de-

cline following the monetary policy shock leads to a large deficit. The surplus eventually rises to

partially, but not totally, pay off that debt.

Just how one defines and orthogonalizes monetary and fiscal policy is a subtle matter.

Here I define a monetary policy shock that does not affect the fiscal shock ust . But monetary pol-

icy nonetheless has fiscal consequences: The fiscal rule responds to output, (potentially) to infla-

tion, and to real-interest-rate-induced rises in the value of debt. This is not “passive” fiscal pol-

icy in the traditional definition, since it does not respond to multiple-equilibrium unexpected-

inflation induced variation in the value of the debt. But nonetheless these are sensible fiscal

consequences of monetary policy which an analysis of “what if we raise interest rates and the

Treasury behaves as normal” should – and, the central point here, can – include. There is no

right or wrong here, there is only more or less interesting. Different definitions and orthogonal-

izations just ask different policy questions.

The inflation decomposition in the “Monetary, yes θ responses” rows of Table 1 show that

the overall surplus response is still positive though half of its value without endogenous mone-

tary and fiscal policy responses. Surpluses still respond positively to the higher real government

debt returns, and thus are still a deflationary force. In the top decomposition, the smoother

interest rate path implies a lower return shock ∆E1r
n
1 , and the discount rate effect is also less

than half its previous value. In the bottom decomposition, since disinflation was temporary, the

weighted sum of inflation is much smaller than the first period’s inflation, -0.29% rather than



FISCAL INFLATION 17

-0.60%. It corresponds to the same 1.14% rise in surpluses, mitigated by a 0.84% rise in weighted

discount rate.

The top panel of Figure 2 presents the response to a fiscal shock, holding constant the

monetary policy disturbance uit but now allowing a monetary policy rule. The instantaneous

inflation shown in Table 1 is about half its value with monetary and fiscal policy rules. The fiscal

shock causes inflation and output to rise. Monetary policy raises interest rates persistently in

response to the inflation and output rise, and greater output gives larger fiscal surpluses. Higher

nominal interest rates also occasions a fall in bond prices, which soaks up some of the fiscal

shock.

This is not a realistic example, in part because of the form of the IS and Phillips curves.

Fiscal shocks in the 1970s appear stagflationary, lowering output. The point is the question, not

the answer: endogenous fiscal and monetary policy responses modify the economy’s response

to all shocks in important ways, in these models as in standard models.

2.5. The way forward

This model is still simple and unrealistic. I advance it to show what can be done, as well as to

explain some of the mechanisms with which I interpret the VAR responses below.

One hungers, of course, for a model that one can bring to data, estimate parameters, and

formally match impulse-responses to structural and policy shocks. One wishes, in the end, at

least a Smets and Wouters (2007), or Christiano, Eichenbaum, and Evans (2005), adapted to fis-

cal theory as I adapted the textbook new-Keynesian model above, and eventually a more ambi-

tious model incorporating the latest in financial frictions, zero bounds, and so forth. One point

of the above section is that one can construct such models, and quite easily from a technical

standpoint. But the challenges to finding the right model are large. My monetary policy rule

is simplistic, needing at least lags and a zero bound, plus matching policy rule regressions in

data. Estimating the fiscal policy rule is a challenge of similar order, not yet started, and made

even more challenging by the fact that any sensible rule, such as this one, has subtle but crucial

long-run responses, or a latent state variable. Then one must confront all the usual carpentry

of DSGE models – the empirical troubles of the IS and Phillips curves, habits or other dynamic

preferences, heterogeneity, the evident variation in risk premia over the cycle, labor market and

investment frictions, and so on.

For this reason, the rest of this paper pursues an atheoretic VAR, in the Sims tradition.

The purpose of the VAR is to establish a set of stylized facts on which one can begin to build such

models.
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3. Estimates

3.1. Data

I use data on the market value of government debt held by the public and the nominal rate of

return of the government debt portfolio from Hall, Payne, and Sargent (2018). I use standard BEA

data for GDP and total consumption. I use the GDP deflator to measure inflation. I use CRSP

data for the three-month Treasury rate. I use the 10-year constant maturity government bond

yield from 1953 on and the yield on long-term United States bonds before that date to measure

a long yield.

I infer the primary surplus from the flow identities. This calculation measures how much

money the government actually borrows. NIPA surplus data, though broadly similar, does not

obey the flow identity. For the VAR, I infer the surplus from the linearized identity (1), at an

annual frequency.

I measure the debt to GDP and surplus to GDP ratios by the ratios of debt and surplus to

personal consumption expenditures, times the average consumption to GDP ratio. Debt to GDP

ratios are often used to compare countries, but in our time-series application they introduce

cyclical variation in GDP. We want only a detrending divisor, and an indicator of the economy’s

long-run level of tax revenue and spending. Potential GDP has a severe look-ahead bias. Con-

sumption is a decent stochastic trend for GDP.

I use a data sample 1947-2014. The immense deficits of WWII would otherwise dominate

the analysis, and one may well suspect that financing that war, and expectations and reality of

paying it off follows a different pattern than fiscal-monetary policy in the subsequent decades of

largely cyclical deficits. WWII also featured price controls, clouding inflation measurement.

To measure the accuracy of the linear approximation, I also infer the monthly real primary

surplus from the exact nonlinear flow identity, Appendix equation (36). I then carry the surplus

to the end of the year using the government bond return. This procedure produces an annual

series for which the nonlinear flow identity (36) continues to hold in annual data.

Figure 3 presents the surplus and compares three measures. The “Linear, st” line imputes

the surplus from the linearized flow identity (1) directly at the one-year horizon, which is the

measure I use in the following analysis. The “svt” and “syt/ev” lines both infer the surplus from

the exact nonlinear flow identity (36), as above. The “svt” line presents the ratio of the exact

surplus to the previous year’s value of the debt. The “syt/ev” line presents the exact surplus

to GDP ratio – actually, the ratio of surplus to consumption, times the average consumption to

GDP ratio – scaled by the average value to GDP ratio eE(vt). The Appendix shows that linearizing
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Figure 3: Surplus. “Linear” is inferred from the linearized flow identity. “sv ” is the ratio of the
primary surplus to the previous year’s market value of the debt. “sy” is the ratio of surplus to
consumption, scaled by the average consumption to GDP ratio and the average value of debt.
Vertical shading denotes NBER recessions.

in terms of either concept leads to the same result, at a linearization point r = g. The vertical

dashed line indicates the post-1947 sample that I use in VAR analysis below.

The first piece of news is that there are primary surpluses. One’s impression of endless

deficits comes from the deficit including interest payments on the debt. Even NIPA measures

show regular positive primary surpluses. Steady primary surpluses from 1947 to 1975 helped

to pay off WWII debt. 1975 started an era of large primary deficits, but also interrupted by the

strong surpluses of the late 1990s. Postwar primary surpluses also have a clear cyclical pattern.

The primary surplus correlates very well with the unemployment rate (not shown), a natural

result of procyclical tax revenues, automatic (e.g. unemployment insurance) and discretionary

countercyclical spending.

The three measures in Figure 3 are close. The graph is a measure of the accuracy of the

linearized identity (1). The linearized identity is a slightly closer approximation to the surplus to

value ratio sv. The difference is largest when the value of debt is far from its mean, both in WWII

and in the 1970s.
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rnt+1 gt+1 πt+1 st+1 vt+1 it+1 yt+1

rnt -0.17** -0.02 -0.10** -0.30* 0.24 -0.08* 0.05*

gt -0.25* 0.20* 0.16* 1.34** -1.95** 0.28** 0.06
πt -0.13 -0.14* 0.53** -0.22 -0.30 0.09 0.04
st 0.11** 0.03 -0.03 0.39** -0.28* -0.04* -0.04**

vt 0.01 -0.00 -0.02** 0.05* 0.98** -0.01 -0.00
it -0.33* -0.39* 0.30* 0.57 -0.81 0.74** 0.36**

yt 1.96** 0.52** -0.17 -0.17 1.77* 0.11 0.45**

100× std(εt+1) 2.17 1.58 1.15 4.49 6.51 1.30 0.84
R2 0.72* 0.16* 0.72* 0.55* 0.97* 0.80* 0.90*

100× std(x) 4.07 1.72 2.18 6.72 36.04 2.95 2.61

Table 2: OLS VAR estimate. One (two) stars means the estimate is one (two) Monte Carlo stan-
dard errors away from zero.

3.2. Vector autoregression

Table 2 presents OLS estimates of the VAR coefficients. Each column is a separate regression. I

orthogonalize shocks later, so the order of variables has no significance. The VAR includes the

central variables for the inflation identity – nominal return on the government bond portfolio

rn, consumption growth rate g, inflation π, surplus s and value v. I include the three-month

interest rate i and the 10 year bond yield y as they are important forecasting variables for growth,

inflation, and long-term bond returns. It is important to include the value of debt vt in the VAR,

even if we are calculating terms of the innovation identity (3 ) that does not reference that value.

When we deduce from the present value identity (2) expressions vt = Et(·), we must include vt

in the information set that takes the expectation. I use a single lag. Adding the last variable, the

long-term rate, already introduces slight wiggles in the impulse-response function indicative of

overfitting.

I compute standard errors from a Monte Carlo. The stars in Table 2 represent one or two

standard errors above zero. Since we aren’t testing anything, stars are just a visual way to show

standard errors without another table.

In the first column, the long-term bond yield yt forecasts the government bond portfo-

lio return rnt+1. The negative coefficient on the three-month rate it means that the long-short

spread also forecasts those returns. Since the yt and it coefficients are not repeated in forecast-

ing inflation and growth, the long rate and long-short spread forecast real, growth-adjusted, and

excess returns on government bonds, as we expect from the long literature in which yield spreads

forecast bond risk premia (Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and Pi-
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azzesi (2005)). The long rate yt is thus an important state variable for measuring expected bond

returns, the relevant discount rate for our present value computations.

Growth gt is slightly persistent (0.20). The term spread yt − it also predicts economic

growth, a common finding, and reinforcing the importance of the interest rates as state vari-

ables. Inflation πt is persistent, with a substantial own coefficient (0.53). The interest rate also

helps to predict inflation.

The surplus is somewhat persistent, with an own coefficient of 0.39. Growth gt predicts

higher surpluses, an important and realistic feedback mechanism. Growth is also contempo-

raneously correlated with surpluses (ρ = 0.45, Appendix Table 5.) The surplus responds to the

value of the debt, (0.05). This coefficient should not be misinterpreted to measure a passive-

fiscal regime. The active vs. passive fiscal question is how surpluses respond to changes in the

value of debt induced by multiple-equilibrium inflation. We cannot measure off-equilibrium

responses from data drawn from equilibrium. Even a completely exogenous surplus process, in

which a government borrows, then raises surpluses as promised to pay off the resulting debt,

will show this coefficient, as in the example of section 2.3.

The value of the debt is very persistent, with an 0.98 own coefficient. It thus becomes the

most important state variable for long-run calculations. A larger surplus st results in less market

value of debt, vt+1, (-0.28), as one expects. The long-run yield yt forecasts a rise in the value of

debt vt+1, almost entirely through its effect on the expected rate of return rnt+1.

The short rate it is also autocorrelated with an 0.74 own coefficient. The long yield yt does

not forecast the short rate, again reflecting time-varying real returns. The long yield y is also

autocorrelated, again reflecting standard yield curve dynamics.

For calculations reported below, I use the standard notation

xt+1 = Axt + εt+1

to denote the VAR.

3.3. Response to an inflation shock

I orthogonalize the inflation shock so that all other variables respond contemporaneously to the

inflation shock. I specify επ1 = 1. Then I fill in shocks to the other variables by running regressions

of their shocks on the inflation shock. For each variable z, I run

εzt+1 = bz,πε
π
t+1 + ηt+1.
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Then I start the VAR at

ε1 = −
[
brn,π bg,π επ1 = 1 bs,π ...

]′
.

This procedure is equivalent to the usual orthogonalization of the shock covariance matrix, but

it is more transparent and it generalizes more easily later. I refer to the VAR innovations as the

change in expectations at time 1, i.e. ∆E1, and thus the response of variable x, j periods in the

future is ∆E1xj .

Figure 4 plots responses to this inflation shock. The “inflation” column of Table 3 presents

the terms of the decomposition (3) for impulse-response functions, i.e.

∆E1π1 −∆E1 (rn1 − g1) = −
∞∑
j=0

∆E1s1+j +
∞∑
j=1

∆E1

(
rn1+j − π1+j − g1+j

)
. (29)

The top panel of Figure 4 also presents the main terms in this identity. As shown in the Ap-

pendix, these terms can also be interpreted as a decomposition of the variance of unexpected

inflation. Table 4 presents quantiles of the sampling distributions of the terms of the inflation

decomposition, discussed below.

The inflation shock coincides with a negative surplus shock s, which builds with a hump

shape. However, surpluses eventually rise to pay back some of the incurred debt. The sum of all

surplus responses is -0.04, so essentially all of the deficits associated with the inflation shock are

offset by subsequent positive surpluses.

The line marked r−g plots the response of the real growth-adjusted discount rate, ∆E1(r
n
1+j−

π1+j − g1+j). These are plotted at the time of the ex-post return, 1 + j, so they are the expected

return one period earlier, at time j. The line starts at time 2, where the terms of the last sum in

(29) start. After two periods of no movement, this discount rate rises. The sum of all discount

rate terms is 1.20%. When inflation ∆E1π1 rises 1%, more than all of the corresponding decline

in the value of government debt comes from a rise in discount rates. The extra 23% decline de-

cline in the present value of debt shows up in bond prices. The line rn − g shows the change in

the first term of (29), ∆E1 (rn1 − g1), which declines by 0.23%.

In sum,

• The decline in present value of surplus corresponding to an inflation shock comes entirely

from a rise in discount rate, and not from a change in expected surpluses.

This is an important finding for matching the fiscal theory to data, or for understanding

the fiscal side of passive-fiscal models. Thinking in both contexts has focused on the presence

or absence of surpluses, not the discount rate.
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Figure 4: Response to a 1% inflation shock.
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Component Inflation Recession Monetary Fiscal
Inflation π1 1.00 -1.00 1.94 0.48

Bond return (rn1 − g1) -0.23 2.13 -0.80 0.08
of which rn1 -0.55 1.13 -0.80 0.16
of which g1 -0.32 -1.00 -0.00 0.09

Total current π1 − (rn1 − g1) 1.23 -3.13 2.74 0.40
Future

∑
s -0.04 -1.37 0.00 -1.00

Future
∑

(r − g) 1.20 -4.50 2.74 -0.60
Total future−

∑
s+

∑
(r − g) 1.23 -3.13 2.74 0.40

rn1 : future
∑
ωj(rn1+j − π1+j) -0.03 0.15 -1.16 -0.29

rn1 : future
∑
ωjπ1+j 0.58 -1.38 1.96 0.12

Table 3: Inflation identity terms. The top two panels present the terms of (29). The bottom panel
presents the terms of the bond return identity (30).

Inflation Recession Monetary Fiscal
Component 25% 75% 25% 75% 25% 75% 25% 75%
Inflation π1 1.00 1.00 -1.00 -1.00 0.88 1.54 0.13 0.41

Bond return (rn1 − g1) -0.45 -0.00 1.91 2.33 -1.68 -0.82 -0.40 0.18
Future

∑
s -0.67 0.26 -1.48 0.33 -1.16 2.38 -1.00 -1.00

Future
∑

(r − g) 0.43 1.62 -4.70 -2.69 0.00 0.00 -0.91 -0.31

Table 4: Inflation identity quantiles. 25 and 75 percent quantiles of the sampling distribution of
the terms of the inflation identity, based on a Monte Carlo.

• A fifth of the decline in present value of surpluses associated with an inflation shock is soaked

up by a decline in the growth-adjusted value of long-term bonds.

The lower panel of Figure 4 plots the response of rates of return in more detail, to give

some intuition for the discount rate behavior of the upper panel, and Table 3 includes some of

the relevant numerical values.

The response of growth g is negative and persistent. The inflation shock is, on average in

this sample, stagflationary. Below, I isolate a shock in which unexpected inflation coincides with

larger growth.

The return rnt takes a large one-period fall, but then rises. This is the picture of an unex-

pected rise in bond yields, which produces a one-period decline in bond prices but then a rise in

bond expected return. (The sawtooth pattern comes from a slightly negative eigenvalue of the

VAR, which is far below statistical significance.)

Both long and short bond yields rise throughout. The rise in discount rate, labeled r − g

in the top panel, comes mostly from the rise in nominal return with the contributions of growth
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and inflation largely offsetting past year 4.

The -0.23% growth-adjusted instantaneous return ∆E1(r
n
1 − g1) in the top panel, consists

of a large -0.55% negative bond return, mitigated by the negative of the -0.32% decline in growth.

This movement in long-term bond return ∆E1r
n
1 , and its consequent ability to soak up

fiscal shocks, is not a separate phenomenon. By the bond return identity (4)

∆E1r
n
1 = −

∞∑
j=1

ωj∆E1

[
(rn1+j − π1+j) + π1+j

]
, (30)

the bond return corresponds to the change in expectations of future inflation or real returns. I

choose the parameter ω = 0.674 that makes identity (4) hold. The “rn1 ” rows of Table 3 then give

the terms of the decomposition (4). The return ∆E1r
n
1 = −0.55% corresponds to −(−0.03)%

expected future real rates, and−(0.58)% expected future inflation.

• The unexpected decline in bond returns that comes with an inflation shock comes almost

entirely from expected future inflation.

The bond return could have come from variation in expected future real returns as well,

requiring a more complex interpretation. In sum,

• By maintaining a maturity structure with about three years duration, and by allowing in-

terest rates and expected future inflation to rise when there are shocks to the present value of

surpluses, the US spreads the inflationary impact of changes in the present value of surpluses

forward, absorbing shocks to the present value of surpluses in long-term bond prices.

This mechanism is not terribly important quantitatively in the point estimates so far. It is

much more important in estimates that follow. Moreover, as one goes to higher frequency data,

the bond return mechanism becomes more important and unexpected inflation less so.

As a reminder, the calculations do not imply or require a causal structure, nor do I make

any structural claim for the shocks. The terminology “impulse-response function” can carry a

misleading causal implication that we read the “responses” as the “effects” of the shock. Sim-

ilarly, “shock” here just means an unexpected movement, though the terminology can suggest

a more fundamental or exogenous source, and “structural” VAR exercises aim to measure such

objects. The shocks here are only “innovations.” In fact, my fiscal theory interpretation offers

the reverse causal interpretation: The inflation shock reflects news about future surpluses and

discount rates. That news in turn reflects news about future productivity, fiscal and monetary

policy and other truly exogenous or structural disturbances. The statistical technique only mea-
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sures the correlation between unexpected inflation and the unexpected change in other vari-

ables. For this reason, I allow contemporaneous movements in the other variables, which also

may move in response to such news. Last, since we start with an identity (1) that holds ex-post, it

holds ex-ante using any information set, so we do not implicitly assume that agents use only the

information in the VAR in order to make the calculation. But “unexpected” here means relative

to the VAR information set. Agents may see a lot more.

3.4. Recession shocks

We can use the same procedure to understand the fiscal underpinnings of other shocks. For

any interesting ε1, we can compute impulse-response functions, and thereby the terms of the

decomposition (29). We can consider the calculation as a decomposition of the covariance of

unexpected inflation with the shock ε1, rather the decomposition of the variance of unexpected

inflation.

I start with a recession shock. The response to the inflation shock in Figure 4 is stagflation-

ary, in that growth falls when inflation rises. Unexpected inflation is, in this sample, negatively

correlated with unexpected consumption (and also GDP) growth. The stagflationary episodes

outweigh the simple Phillips curve episodes.

However, it is interesting to examine the response to disinflations which come in reces-

sions, following a conventional Phillips curve. Such events are common, as in the recession

following the 2008 financial crisis. But they pose a puzzle for the fiscal theory. In a recession,

deficits soar, yet inflation declines. How is this possible? Well, it’s possible and plausible that in

recessions, expected future surpluses to pay off incurred debts rise along with current deficits.

It’s possible, though less plausible, that expected future surpluses rise even more than current

deficits, raising the value of the debt and causing a disinflation. It’s also possible, and more

plausible, that real interest rates decline in a recession, so the discount rate for government debt

declines, rasing the value of debt, giving a deflationary force. Which of these channels can we

see in the data?

To answer that question, we want to study a shock in which inflation and GDP go in the

same direction. I simply create such as shock: I specify επ1 = −1, εg1 = −1. (The model is linear,

so the sign doesn’t matter, but the story is clearer for a recession.) Again, we want shocks to other

variables to have whatever value they have, on average, conditional on the inflation and output

shock. To fill out the other shocks, then, I run a multiple regression

εzt+1 = bz,πε
π
t+1 + bz,gε

g
t+1 + ηt+1
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and I fill in the other shocks at time 1 from their predicted variables given επ1 = −1 and εg1 = −1.

I then start the VAR at

ε1 = −
[
brn,π + brn,g εg1 = 1 επ1 = 1 bs,π + bs,g ...

]′
.

Figure 5 presents responses to this recession shock, and Table 3 collects the inflation de-

composition elements in the “Recession” column.

In the bottom panel of the figure, both inflation π and growth g responses start at -1%, by

construction. Consumption growth g returns rapidly, but does not much overshoot zero, so the

level of consumption does not recover much at all. Consumption is roughly a random walk in

response to this shock. The nominal interest rate i falls in the recession, and recovers slowly, in

parallel with inflation. Long-term bond yields y also fall, but not as much as the short term rate,

for about 4 years. The persistent fall in interest rate, inflation and and the smaller fall in bond

yield correspond to a large positive ex-post bond return ∆E1r
n
1 . In short, we see a standard

picture of a recession.

In the top panel, the recession includes a deficit s, which continues for three years. These

deficits, reinforced by the positive return shock rn − g imply a large rise in the value of debt,

v. These are the deficits in recessions that puzzle a simplistic interpretation of the fiscal theory.

Surpluses subsequently turn positive, paying down some of the debt. But the total surplus is

still -1.37%. Left to their own devices, surpluses would produce a 1.37% inflation during the

recession. A potential story that disinflation results from future surpluses more than matching

today’s deficits is wrong.

Discount rates are the central story. After one period, expected real returns r − g decline

persistently (top panel) raising the value of debt by 4.50%. We can see the underlying forces in

the bottom panel: At year 3, which are expected values at year 2, the nominal return ∆E1r
n
j falls

more than inflation ∆E1πj , and persistently.

Even after the -1.37% decline in surplus, the 4.50% discount rate effect is larger than the

-1% fall in inflation. It shows up in the current growth-adjusted bond return ∆E1 (rn1 − g1) =

2.13%. That return derives from the -1% growth rate, defined in the shock, and the 1.3% positive

bond return. The decomposition of bond returns in the bottom rows of Table 3 again reveals

that the bond return is driven almost entirely by the persistently lower future inflation. Persis-

tently lower future inflation would on its own lead to currently higher inflation, so we need a big

fiscal shock to lower current and future inflation. So, the 4.50%-1.37% deflationary fiscal shock
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Figure 5: Response to a recession shock, επ1 = εg1 = −1.



FISCAL INFLATION 29

is soaked up by the persistent disinflation.

In sum, rounding the numbers,

• Disinflation in a recession is driven by a higher discount rate. For each 1% disinflation

shock, the expected return on bonds falls so much that the present value of debt rises by

4.5%. This discount rate shock overcomes a 1.4% percent inflationary shock coming from

persistent deficits, and generates persistent disinflation.

The opposite conclusions hold of inflationary shocks in a boom. Discount rate variation

gives us a fiscal Phillips curve.

3.5. Monetary and fiscal shocks

Central banks move interest rates, but cannot tax or spend. Therefore, I define here a monetary

policy shock as one that moves interest rates ∆E1i1, but does not affect the sum of current and

future surpluses, ∆E1
∑∞

j=0 s1+j = 0. I further orthogonalize the monetary policy shock so that it

does not contemporaneously move the growth rate gt, ascribing the contemporaneous positive

correlation between growth and interest rate shocks as a Taylor-rule reaction of the Fed to growth

and not the other way around.

Conversely, I define here a fiscal shock as a movement in current and expected primary

surpluses ∆E1
∑∞

j=0 s1+j that comes with no movement in the short-run interest rate ∆E1i1 = 0.

The response of the sum of future surpluses to a shock ε1 is

∆E1

∞∑
j=0

s1+j = a′s(I −A)−1ε1.

To calculate how other shocks respond instantaneously to a monetary shock, then, I run for each

variable z a multiple regression

εzt+1 = bz,iε
i
t+1 + bz,pva

′
s(I −A)−1εt+1 + bz,gε

g
t+1 + ηt+1. (31)

The monetary policy shock wants

εi1 = 1, a′s(I −A)−1ε1 = 0, εg1 = 0.

Thus, I start the monetary policy impulse-response function with

ε1 =
[
brn,i bg,i = 0 bπ,i ... bι,i = 1 ...

]′
,
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For the fiscal shock I run the same regression without gt,

εzt+1 = bz,iε
i
t+1 + bz,pva

′
s(I −A)−1εt+1 + ηt+1,

And then I start the fiscal impulse-response function with

ε1 =
[
brn,pv bg,pv bπ,pv ...

]′
.

Figure 6 presents the responses to the monetary policy shock. Table 3 collects relevant

contributions to the inflation identity (29). The instantaneous response of the nominal interest

rate ∆E1i1 is 1% by construction, as is the zero instantaneous growth response ∆E1g1 = 0 and

the zero response of the sum of surpluses ∆E1
∑∞

j=0 s1+j = 0. Consumption g then declines, as

one might expect from a positive monetary policy shock, and as a new-Keynesian Phillips curve

predicts with declining inflation. Although the sum of surpluses does not change by construc-

tion, near-term surpluses increase, and long-term surpluses decrease, roughly paralleling the

path of consumption. The surplus is procyclical.

Figure 6 shows that

• The response of inflation to this monetary policy shock is super-Fisherian, with inflation

rising immediately.

A “Fisherian” response has come to mean that if the central bank raises the interest rate

it, then inflation rises, for example fulfilling the simple Fisher relation it = r + Etπt+1. A “super-

Fisherian” response is one in which raising the interest rate ∆E1i1 raises inflation ∆E1π1 immediately.

That is the pattern shown in Figure 6. Here, inflation rises by even more than the nominal rate.

A large discount rate effect overcomes the negative inflation effect in the simple constant-

real-rate models in section 2.2. and 2.3. Though inflation initially is larger than the expected

bond return, starting in year 4, the expected bond return rn exceeds the interest rate π, and stays

there. A negative growth rate g adds to the effective discount rate r − g. The sum of the future

r − g terms, 2.7%, lowers the value of government debt, producing inflation.

The long-term debt disinflationary effect remains, with instantaneous bond return rn1 −

g1 = −0.80%. In the return decomposition on the bottom of Table 3, this return comes from

a strong 1.96% future inflation effect, as we would expect from the large, and positive inflation

response. If discount rates were constant, this pattern of surpluses and future inflation a neg-

ative current inflation ∆E1π1 = −1.96%. That future inflation effect is tempered here with a

−1.16% real interest rate effect on bond returns, but still leaves−0.80% disinflationary force. But
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Figure 6: Response to a monetary policy shock – a movement in the interest rate y1 with no
movement in the sum of future surpluses

∑
1 sv1+j or growth g. The dashed lines labeled “no
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the large discount rate effect overwhelms this deflationary effect to produce the positive current

inflation response.

In sum,

• A monetary shock, defined as an interest rate rise with no change in surpluses and growth,

leads to an immediate and persistent increase in inflation. Unexpected inflation comes from

a rise in discount rates, which lowers the value of government debt, overwhelming the nega-

tive response that comes from long-term debt and persistent inflation.

Figure 7 presents responses to fiscal policy shocks. I specify a negative shock to produce

positive inflation, which is a clearer story. In the bottom panel, the contemporaneous interest

rate response to the fiscal shock is ∆E1i1 = 0, by construction. The interest rate then rises

slightly. The fiscal shock gives rise to a positive and persistent inflation.

In the top panel, though the sum of all surplus terms is -1.00% by construction, near-

term surpluses rise, and long-term surpluses fall even more. There are three years of negative

discount rate movement, adding up to -0.60%, offsetting more than half of the surplus shock.

This discount rate movement comes from the dynamics shown in the bottom panel. The long-

term rate y declines for one period, which gives rise to a large one-period expected return rn.

The remaining -0.40% shock to the present value of surplus results in 0.48% inflation, and a

small 0.08% bond return term.

• A fiscal shock sets off a protracted inflation. Discount rate variation offsets about half of the

fiscal shock.

3.6. Orthogonalization and shock definitions

Most VAR estimates of the effects of a monetary policy shock find small inflation responses.

These are often zero or positive in the short run. When inflation responds negatively at all, it

typically drifts down only quite slowly, and even then after a long specification search (Ramey

(2016)).

The main difference in these results is that I define a monetary policy shock differently.

Standard estimates do not measure fiscal variables or try to keep any measure of fiscal policy

constant. In historical episodes, both monetary and fiscal authorities react to the same events.

On their own, VARs will thus find monetary policy shocks that also move fiscal variables. This is

not a mistake. If one takes a strong passive-fiscal view, then the fiscal authority does not act in-

dependently, but always follows the central bank’s equilibrium-selection desires, and the central
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Figure 7: Fiscal policy response. Response to a shock to expected surpluses ∆Et+1
∑∞

j=1 svt+j =
1, with no interest rate shock vyt+1 = 0.
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bank can count on it to keep doing so. But if one doubts this mechanism, if one wants to ask what

would happen if monetary policy moved and fiscal policy did not follow, then an orthogonaliza-

tion such as this one in which monetary policy does not coincide with a fiscal policy change is

more interesting. The main innovation of this calculation, then, is try to measure the effects of

conceptually separate monetary policy and fiscal shocks, each holding the other constant.

To evaluate this central difference, the dashed lines in the top panel of Figure 6 present the

inflation response without restriction on surpluses. The line labeled “no s, no g” also removes

the growth orthogonalization, allowing growth to move contemporaneously to the monetary

policy shock. These inflation responses with a free fiscal response are much smaller. Surpluses

in these cases (not shown) rise sharply, with a sum ∆E1
∑
st+j = 3.20% and 3.15% respectively.

Defining the monetary policy shock to hold surpluses constant is a big part of the difference

between these and conventional results.

My calculation is, however, unsophisticated regarding exogeneity and orthogonalization.

The contemporaneous correlation between interest rate shocks and shocks to inflation, GDP, or

other variables can result from the Fed reacting within the period to those variables, as described

for example by a Taylor rule such as (18)

it = θiππt + θixxt + uit (32)

instead of the contemporaneous reaction of the economic variables to the Fed’s shock, an inno-

vation to uit. And perhaps even the apparent disturbance uit is taken in response to news about

future inflation or output, or other variables such as financial conditions that forecast inflation

or output, news not captured by VAR variables.

I define the monetary policy shock so that growth does not respond contemporaneously,

conservatively assigning all the correlation between the interest rate and growth to reverse causal-

ity from consumption to the interest rate. The correlation is positive, so otherwise we estimate

that the interest rate rise raises growth. I can’t orthogonalize inflation the same way, or there is

by definition no inflation shock left ∆E1π1 = 0, and one of the main questions of the analysis is

ruled out. A second reason many VARs find no immediate and small short-run responses of in-

flation to a monetary policy shock is that they orthogonalize the contemporaneous correlation

in this way.

Reality of course lies somewhere in between. Some of the correlation of inflation and in-

terest rate shocks within a year reflects the reaction of interest rates to inflation, so my Fisherian

estimate is surely overstated. Some of the correlation of growth and interest rate shocks within
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a year surely reflects the response of growth to interest rates, not entirely the other way around.

A better estimate thus requires something more sophisticated than a recursive identification,

i.e. assuming either that the Fed does not react within a year to specific economic variables,

or that those variables do not react within a year to monetary policy shocks. High frequency

data, narrative approaches, or a detailed specification and estimation of the policy rule such as

(32) may help. However, Ramey (2016) shows that a half-century of effort has still not led to a

clear standard answer or procedure, on to which one can layer a fiscal policy assumption. The

deepest problem is that the Fed never explains any action as a random innovation. Rather, the

Fed always describes every action (or inaction) as a response to something. The only hope is to

find a Fed response to something orthogonal to inflation, output, or employment, or forecasts

of those, but given those are the Fed’s mandate it’s hard to think what that object could be.

My shock definitions are even crude relative to the simple theory outlined in section 2.3.

There I wrote a monetary policy rule (18), (32) and a fiscal policy rule (19)-(20),

st = θsππt + θsxxt + αv∗t + ust (33)[
1 +

(
γ−1 − 1

)
α
]
v∗t+1 = v∗t + it − Etπt+1 − st+1.

Such a rule captures the clear association of fiscal surpluses to output, via the standard effects of

proportional income taxation, and both automatic and discretionary fiscal stabilizers. These are

fiscal reactions that one might well wish an analysis of the effects of monetary policy to consider.

Thus, ideally, one should define and estimate monetary and fiscal policy rules such as (32)

and (33). One should then define a monetary policy shock as one that comes with no fiscal policy

disturbance ust = 0, and one should define a fiscal shock as one that comes with no monetary

policy disturbance ust = 0, as I did in section 2.3., rather than define the monetary shock as

having no change in surpluses st and the fiscal shock as having no instantaneous change in

the interest rate it. But doing so is (at least) a paper-length theoretical, data, and econometric

challenge, so I leave it as a suggestion for future research.

The definitions here are not wrong, they just answer different and potentially less inter-

esting questions. The response to the monetary policy shock here answers the question, “what

if monetary policy changes and fiscal policy does not change,” rather than “... and fiscal policy

follows its customary reaction to endogenous variables,” and likewise for the fiscal shock.
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4. Standard errors

I have delayed a discussion of standard errors because there is nothing important to test. Iden-

tities are identities. If x = y + z and x moves, y or z must move, and all we can do is to measure

which one. In addition, unlike the case in asset pricing, no important economic hypothesis here

rests on whether one of surpluses or discount rates do not move. Standard errors only give us a

sense of how accurate the measurement is.

To evaluate sampling distributions I run a Monte Carlo. Most of the interesting statistics –

variance decompositions, impulse response functions, (I − A)−1, etc. – are nonlinear functions

of the underlying data, and the near-unit root in value vt also induces non-normal distributions.

For these reasons, I largely characterize the sampling distribution by the interquartile range –

the 25% and 75% points of the sampling distribution.
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Figure 8: Distribution of the impulse response function, to an inflation shock. The bands are
25% and 75% points of the sampling distribution, the dashed line is the median, and the solid
line is the estimate.

Table 4 collects the sampling quantiles for the variance decompositions of Table 3. Fig-

ure 8 presents the main components of the impulse-response function relevant to the inflation

variance decomposition. The bands are 25% and 75% points of the sampling distribution, the

dashed line is the median, and the solid line is the estimate.
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As shown in Table 4, the -0.04 sum of future surpluses in the inflation decomposition

has quartiles of -0.67 to 0.26. The 1.20 future return contribution has larger quartiles of 0.43

to 1.62. Even the instantaneous return contribution of 0.23 has quartiles of 0.00 to 0.45. That

discount rates matter is a pretty solid conclusion, but negative surpluses may contribute more

to unexpected inflation than the point estimate suggests.

There are several sources of this rather large sampling variation. First, the shocks are large.

As shown in Table 2, the surplus innovation has a 4.49 percentage point standard deviation, and

value 6.51 percentage points, compared to 1.15 for inflation. Our friend σ/
√
T starts off badly.

Second, the shocks are imperfectly correlated. This matters, because in each case I find

movements in other variables contemporaneous with the shock of interest by running a regres-

sion of the other shocks on the shock of interest. The sampling uncertainty of this orthogonal-

ization adds to that of the VAR. The instantaneous response of the surplus to an inflation shock,

-0.44, is measured with a 0.51 standard error. The corresponding correlation is only -0.11. We

see a correspondingly wide band around the initial surplus response in Figure 8. There is hope

in this observation, however. Higher frequency data can better identify shock correlations, at

the cost that one must model the strong seasonal in primary surpluses. Moreover, other shock

identifications may have better measured correlations.

Third, we measure sums of future surpluses and discount rates. The value of the debt vt

is the main long-run state variable, and uncertainty about its evolution adds to the uncertainty

about the sum of surpluses. The coefficient of value vt on its own lag is 0.98 in Table 2, so small

variations in that value lead to large variation in (I − A)−1 sums. The Appendix shows that the

last two sources of variation contribute about equally.

Table 4 also presents 25% and 75% quantiles of the inflation decomposition for the re-

cession, monetary, and fiscal shocks of Table 3. The -1.37 surplus response to a recession shock

has quantiles -1.48 to 0.33, spanning zero, while the -4.50 discount rate response has quantiles

-4.70 to -2.69. The conclusion that discount rate variation is a central part of the story for under-

standing disinflation during recessions is supported, despite its large sampling error. Similarly,

the positive inflation effect and strong discount rate effects of monetary policy shocks are well

away from zero, as is the positive inflation effect and discount rate effect of the fiscal shock. The

quantiles reveal asymmetric sampling distributions. In many cases the point estimate is well to

the edge of the 25%-75% quantiles. The 1.94 inflation effect of monetary policy is even outside

the 0.88-1.54 interquartile range.
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5. Concluding comments

This analysis evidently just scratches the surface. Quarterly or monthly data are attractive, offer-

ing potentially better measurement of correlations and shock orthogonalization but requiring us

to model the strong seasonality in surpluses. Debt data go back centuries, allowing and requiring

us to think what is the same and different across different periods of history. Inflation through

wars and under the gold standard may well have different fiscal foundations than in the postwar

environment. A narrative counterpart, especially for big episodes such as the 1970s and 1980s,

awaits. Different countries under different monetary and exchange rate regimes and different

fiscal constraints will behave differently. A parallel investigation of exchange rates beckons, fol-

lowing Jiang (2019a), Jiang (2019b). One could define shocks in many additional interesting

ways. The treatment of debt can be refined in many ways. In particular, the maturity structure

is not geometric, and varies over time.

I omitted analysis of the fiscal correlates of the remaining shocks in the VAR. A shock to

any other variable, orthogonal to the inflation shock, can move all of the other terms of the infla-

tion identity (3), (29). Such movements must offset: If a shock does not move inflation, but does

move the sum of future surpluses, then it must also move the sum of future discount rates or the

current bond return, in such a way that current inflation does not move. These additional effects

are large. The variation in ∆E1
∑∞

j=0 s1+j when other shocks move is large; the corresponding

movement in the discount rate term is also large, and the two movements are negatively cor-

related. The meaning of such orthogonalized movements in expected surpluses, matched by

movements in discount rates, in response to these other shocks needs to be understood. I do

not pursue this question for length, but also because it is much more interesting if one can give

some structural or economic interpretation to the shocks to other variables, which requires a

model.

Perhaps most of all, linking these theory-free characterizations to explicit fiscal theory

of monetary policy models, or at least to explicit models of discount rates and long-term debt

management, is an obviously important step. More broadly, we need to reexamine medium and

large scale new-Keynesian DSGE models with fiscal equilibrium selection. This is the natural

next step for the fiscal theory of the price level / fiscal theory of monetary project. And, given

the immense troubles of the “active money” description of equilibrium selection captured here

by (7), perhaps it should be the next natural step for the broader new-Keynesian DSGE model

project as well.
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6. Online Appendix to “The Fiscal Roots of Inflation”

6.1. Derivation of the linearized identities

In this appendix I derive the linearized identities (1) (2) and (3),

vt+1 = vt + rnt+1 − πt+1 − gt+1 − st+1 (34)

vt =
T∑
j=1

st+j −
T∑
j=1

(
rnt+j − πt+j − gt+j

)
+ vt+T

and

∆Et+1πt+1 −∆Et+1

(
rnt+1 − gt+1

)
= −

∞∑
j=0

∆Et+1st+1+j +

∞∑
j=1

∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)
. (35)

I also define the variables more carefully.

The symbols are as follows:

Vt = Mt +
∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t

is the nominal end-of-period market value of debt, where Mt is non-interest-bearing money,

B
(t+j)
t is zero-coupon nominal debt outstanding at the end of period t and due at the beginning

of period t+ j, and Q(t+j)
t is the time t price of that bond, with Q(t)

t = 1. Taking logs,

vt ≡ log

(
Vt
YtPt

)
is log market value of the debt divided by GDP, where Pt is the price level and Yt is real GDP

or another stationarity-inducing divisor such as consumption, potential GDP, population, etc. I

use consumption times the average GDP to consumption ratio in the empirical work, but I will

call Y and ratios to Y “GDP” for brevity.

Rnt+1 ≡
Mt +

∑∞
j=1Q

(t+j)
t+1 B

(t+j)
t

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

is the nominal return on the portfolio of government debt, i.e. overnight from the end of t to the
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beginning of t+ 1, and

rnt+1 ≡ log(Rnt+1)

is the log nominal return on that portfolio.

πt ≡ log

(
Pt
Pt−1

)
, gt ≡ log

(
Yt
Yt−1

)
are log inflation and GDP growth rate.

Now, I establish the nonlinear flow and present value identities. In period t, we have

∞∑
j=0

Q
(t+j)
t B

(t+j)
t−1 +Mt−1 = Ptspt +

∞∑
j=0

Q
(t+1+j)
t B

(t+1+j)
t +Mt, (36)

where spt denotes the real primary (not including interest payments) surplus or deficit. Money

Mt at the end of period t is equal to money brought in from the previous period Mt−1 plus the

effects of bond sales or purchases at price Q(t+j)
t , less money soaked up by primary surpluses.

The left hand side of (36) is the beginning-of-period market value of debt, i.e. before debt

sales or repurchasesB(t+j)
t −B(t+j)

t−1 have taken place. It turns out to be more convenient here to

express equations in terms of the end-of-period market value of debt. To that end, shift the time

index forward one period and rearrange to write

∞∑
j=0

Q
(t+1+j)
t+1 B

(t+1+j)
t +Mt = Pt+1spt+1 +

∞∑
j=0

Q
(t+2+j)
t+1 B

(t+2+j)
t+1 +Mt+1,

∞∑
j=1

Q
(t+j)
t+1 B

(t+j)
t +Mt = Pt+1spt+1 +

∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1 +Mt+1,

Mt +
∞∑
j=1

Q
(t+j)
t B

(t+j)
t

Rnt+1 = Pt+1spt+1 +

Mt+1 +
∞∑
j=1

Q
(t+1+j)
t+1 B

(t+1+j)
t+1

 ,

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

PtYt

Rnt+1

Gt+1

Pt
Pt+1

=
spt+1

Yt+1
+
Mt+1 +

∑∞
j=1Q

(t+1+j)
t+1 B

(t+1+j)
t+1

Pt+1Yt+1
. (37)

We can iterate this flow identity (37) forward to express the nonlinear government debt

valuation identity as

Mt +
∑∞

j=1Q
(t+j)
t B

(t+j)
t

PtYt
=

∞∑
j=1

(
j∏

k=1

1

Rt+k/Gt+k

)
spt+1

Yt+1
. (38)
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The market value of government debt at the end of period t, as a fraction of GDP, equals the

present value of primary surplus to GDP ratios, discounted at the government debt rate of return

less the GDP growth rate. (I assume here that the right hand side converges. Otherwise, keep the

limiting debt term or iterate a finite number of periods.)

The nonlinear identities (37) and (38) are cumbersome. I linearize the flow equation (37)

and then iterate forward to obtain a linearized version of (38). Write (37) as

Vt
PtYt

Rnt+1

Pt
Pt+1

Yt
Yt+1

=
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1
.

Taking logs,

vt + rnt+1 − πt+1 − gt+1 = log

(
spt+1

Yt+1
+

Vt+1

Pt+1Yt+1

)
(39)

I linearize in the level of the surplus, not its log as one conventionally does in asset pricing,

since the surplus is often negative. To linearize in terms of the surplus/GDP ratio, Taylor expand

the last term,

vt + rnt+1 − πt+1 + gt+1 = log(ev + sy) +
ev

ev + sy
(vt+1 − v) +

1

ev + sy
(syt+1 − sy)

where

syt+1 ≡
spt+1

Yt+1
(40)

denotes the surplus to GDP ratio, and variables without subscripts denote a steady state of (39).

With r ≡ rn − π,

r − g = log
ev + sy

ev
.

Then,

vt + rnt+1 − πt+1 + gt+1 =

[
log(ev + sy)− ev

ev + sy

(
v +

sy

ev

)]
+

ev

ev + sy
vt+1 +

ev

ev + sy

syt+1

ev

vt + rnt+1 − πt+1 + gt+1 =

[
v + r − g − ev

ev + sy

(
v +

ev + sy

ev
− 1

)]
+ βvt+1 + β

syt+1

ev

vt + rnt+1 − πt+1 + gt+1 = [r − g + (1− β) (v − 1)] + βvt+1 + β
syt+1

ev
(41)

where

β ≡ e−(r−g). (42)

Suppressing the small constant, and thus interpreting variables as deviations from means, the
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linearized flow identity is

vt + rnt+1 − πt+1 + gt+1 = β
syt+1

ev
+ βvt+1. (43)

Iterating forward, the present value identity is

vt =
T∑
j=1

βj−1
[syt+j
ev
−
(
rnt+j − πt+j + gt+j

)]
+ βT vT . (44)

If we linearize around r − g = 0, then the constant in (43) is zero (sy = 0), and we obtain the

linearized flow and present value identities (34) and (35), with the symbol st representing syt/ev.

There is nothing wrong with expanding about r = g. The point of expansion need not be the

sample mean.

To approximate in terms of the surplus to value ratio, write (39) as

vt + rnt+1 − πt+1 − gt+1 = log

(
Vt
PtYt

spt+1

Yt+1

Vt
PtYt

+
Vt+1

Pt+1Yt+1

)

rnt+1 − πt+1 − gt+1 = log

( spt+1

Yt+1

Vt
PtYt

+

Vt+1

Pt+1Yt+1

Vt
PtYt

)

rnt+1 − πt+1 − gt+1 = log
(
svt+1 + evt+1−vt) .

At a steady state

r − g = log (1 + sv) . (45)

er−g = 1 + sv.

Taylor expanding around a steady state,

rnt+1 − πt+1 − gt+1 = log (1 + sv) +
1

(1 + sv)
(svt+1 − sv + vt+1 − vt)

vt + (1 + sv)
[
rnt+1 − πt+1 − gt+1

]
= [(1 + sv) log (1 + sv)− sv] + svt+1 + vt+1 (46)

The linearized flow identity (34) follows, with the symbol st representing the surplus to value

ratio st = svt, if we suppress the constant, using deviations from means in the analysis, or if we

use r = g or sv = 0, as a point of expansion.

The linearizations in terms of the surplus to value ratio svt are more accurate. The units

of the flow identities (34), (43) are rates of return. Dividing the surplus by the previous period’s
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value gives a better approximation to the growth in value, when the value of debt is far from the

steady state.

With stationary vt, the term vt+T does not vanish in (35), where the term βT vt+T van-

ishes in (44). In this paper, the presence of the vt+T term is not a difficulty. I study innovations

∆Et+1vt+T and ∆Et+1vt+T → 0. For other purposes, one may wish to use the surplus to GDP

linearization and r > g steady state, so that the limiting term vanishes.

A constant ratio of surplus to market value of debt for any price level path leads to a pas-

sive fiscal policy. An unexpected deflation raises the real value of debt. If surpluses always rise

in response, they validate the lower price level. Thus, although on the equilibrium path one can

describe dynamics via either linearization, if one wants to think about how fiscal-theory equi-

libria are formed, it is better to describe a surplus that does not react to price level changes, so

only one value vt emerges, as is the case in (44). For such purposes, the surplus to GDP defini-

tion is appropriate, as well as adopting a linearization point r > g and β < 1. It’s also better to

use the nonlinear versions of the identities for determinacy issues. The analysis of this paper

is about what happens in equilibrium, and does not require an active-fiscal assumption, so the

difference is irrelevant here.

I infer the surplus from the linearized flow identity (34) so which concept the surplus

corresponds to makes no difference to the analysis. The difference is only the accuracy of ap-

proximation, how close the surplus recovered from the linearized flow identity corresponds to a

surplus recovered from the nonlinear exact identity (39).

6.2. A variance decomposition

I use the elements of the impulse response function and their sums to calculate the terms of the

unexpected inflation identity (3). We can interpret this calculation as an decomposition of the

variance of unexpected inflation. Multiply both sides of (3) by ∆Et+1πt+1 and take expectations,

giving

var (∆Et+1πt+1)− cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1 − gt+1

)]
(47)

= −
∞∑
j=0

cov [∆Et+1πt+1,∆Et+1st+1+j ] +

∞∑
j=1

cov
[
∆Et+1πt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

Unexpected inflation may only vary to the extent that it covaries with current bond returns, or if

it forecasts surpluses or real discount rate.

Dividing by var (∆Et+1πt+1), we can express each term as a fraction of the variance of
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unexpected inflation coming from that term. This decomposition adds up to 100%, within the

accuracy of approximation, but it is not an orthogonal decomposition, nor are all the elements

necessarily positive. Each term is also a regression coefficient of the other terms on unexpected

inflation.

The two approaches give exactly the same result – the terms of (47) are exactly the terms

of the impulse-response function, to an inflation shock orthogonalized last, i.e. a shock that

moves all variables at time 1 including ∆E1π1.

To see this fact, write the VAR

xt+1 = Axt + εt+1 (48)

so

∆Et+1

∞∑
j=1

xt+j = (I −A)−1εt+1.

Let a denote vectors which pull out each variable, i.e.

πt = a′πxt, st = a′sxt, (49)

etc. Then the present value identity (3) reads and may be calculated as

a′πεt+1 − (arn − ag)′εt+1 = −a′s(I −A)−1εt+1 + a′rg(I −A)−1Aεt+1 (50)

where

arg ≡ arn − aπ − ag.

We can calculate the variance decomposition (47) by

a′πΣaπ − (arn − ag)′Σaπ = −a′s(I −A)−1Σaπ + a′rg(I −A)−1AΣaπ

where Σ = cov(εt+1, ε
′
t+1), and then divide by a′πΣaπ to express the result as a fraction,

1− (arn − ag)′
Σaπ
a′πΣaπ

= −a′s(I −A)−1
Σaπ
a′πΣaπ

+ a′rg(I −A)−1A
Σaπ
a′πΣaπ

. (51)

To show that this variance decomposition is the same as the elements and sum of ele-

ments of the impulse-response function to an inflation shock, orthogonalized last, note that the
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regression coefficient of any other shock εz on the inflation shock is

bεz ,επ =
cov(εzt+1, ε

π
t+1)

var(επt+1)
=
a′zΣaπ
a′πΣaπ

,

so the VAR shock, consisting of a unit movement in inflation επ1 = 1 and movements εz1 = bεz ,επ

in each of the other variables is given by

ε1 =
Σaπ
a′πΣaπ

.

We recognize in (51) the responses and sums of responses to this shock. Dividing (47) by the

variance of unexpected inflation, or examining the terms of (51), we recognize that each term is

also the coefficient in a single regression of each quantity on unexpected inflation.

In an analogous way, we can interpret the responses to other shocks as a decomposition

of the covariance of unexpected inflation with that shock, based on

cov (∆Et+1πt+1εt+1)− cov
[
εt+1,∆Et+1

(
rnt+1 − gt+1

)]
= −

∞∑
j=0

cov [εt+1,∆Et+1st+1+j ] +
∞∑
j=1

cov
[
εt+1,∆Et+1

(
rnt+1+j − πt+1+j − gt+1+j

)]
.

This variance decomposition is similar in style to the decomposition of return variance

in Campbell and Ammer (1993). To avoid covariance terms, however, it follows the philosophy

of the price/dividend variance decomposition in Cochrane (1992), extended to a multivariate

context. With x = y + z, I explore var(x) = cov(x, y) + cov(x, z) rather than var(x) = var(y) +

var(z) + 2cov(y, z).

6.3. Formulas for geometric maturity structure

Here I derive the linearized identity

rnt+1 ≈ ωqt+1 − qt,

which leads to (4),

∆Et+1r
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(rnt+1+j − πt+1+j) + πt+1+j

]
.
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I also derive the expectations-hypothesis bond-pricing equations of the sticky-price model, (22)

and (23),

Etr
n
t+1 = it

ωEtqt+1 − qt = it.

Suppose the face value of debt follows a geometric pattern, B(t+j)
t = Btω

j−1. Then the

nominal market value of debt is

∞∑
j=1

B
(t+j)
t Q

(t+j)
t = Bt

∞∑
j=1

ωj−1Q
(t+j)
t .

Define the price of the government debt portfolio as

Qt =

∞∑
j=1

ωj−1Q
(t+j)
t .

The return on the government debt portfolio is then

Rnt+1 =

∑∞
j=1B

(t+j)
t Q

(t+j)
t+1∑∞

j=1B
(t+j)
t Q

(t+j)
t

=

∑∞
j=1 ω

j−1Q
(t+j)
t+1∑∞

j=1 ω
j−1Q

(t+j)
t

=
1 + ω

∑∞
j=1 ω

j−1Q
(t+1+j)
t+1∑∞

j=1 ω
j−1Q

(t+j)
t

=
1 + ωQt+1

Qt
.

I loglinearize as

rnt+1 = log

(
1 + ωQt+1

Qt

)
= log (1 + ωeqt+1)− qt ≈ log

(
1 + ωQ

Q

)
+

ωQ

1 + ωQ
q̃t+1 − q̃t (52)

where as usual variables without subscripts are steady state values and tildes are deviations from

steady state.

In a steady state,

Q(t+j) =
1

(1 + i)j

Q =

∞∑
j=1

ωj−1
1

(1 + i)j
=

(
1

1 + i

)(
1

1− ω
1+i

)
=

1

1 + i− ω
. (53)

The limits are ω = 0 for one period bonds, which gives Q = 1/(1 + i), and ω = 1 for perpetuities,

which gives Q = 1/i. The terms of the approximation (52) are then

1 + ωQ

Q
= 1 + i
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ωQ

1 + ωQ
=

ω

1 + i

so we can write (52) as

rnt+1 ≈ i+
ω

1 + i
q̃t+1 − q̃t.

since i < 0.05 and ω ≈ 0.7, I further approximate to

rnt+1 ≈ i+ ωq̃t+1 − q̃t. (54)

To derive (4), iterate (54) forward to express the bond price in terms of future returns,

q̃t = −
∞∑
j=1

ωj r̃nt+j

Take innovations, move the first term to the left hand side, and divide by ω,

∆Et+1r̃
r
t+1 = −

∞∑
j=1

ωj∆Et+1r̃
n
t+1+j

then add and subtract inflation to get (4),

∆Et+1r̃
n
t+1 = −

∞∑
j=1

ωj∆Et+1

[
(r̃nt+1+j − π̃t+1+j) + π̃t+1+j

]
.

The expectations hypothesis states that expected returns on bonds of all maturities are

the same,

Etr
n
t+1 = it

i+ ωEtq̃t+1 − q̃t = it

ωEtq̃t+1 − q̃t = ı̃t

The first and third are equations (22) and (23) of the text. In the text, all variables are deviations

from steady state, so I drop the tilde notation.

The yield yt on the government bond portfolio is the it that solves (53) for given Qt,

yt =
1

Qt
+ ω − 1

To find the yield as deviation from steady state, given the bond portfolio price as deviation from
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steady state, write

qt = log
1

1 + i− ω
+ q̃t

yt = e− log 1
1+i−ω+q̃t + ω − 1

ỹt = e− log 1
1+i−ω+q̃t − e− log 1

1+i−ω =
(
eq̃t − 1

)
(1 + i− ω) .

6.4. Sticky-price model algebra

Here, I set out the algebra to solve the model (15)-(25). I express the model in the form

Ayt+1 = Byt + Cεt+1 +Dδt+1 (55)

where y is a vector of variables, ε are the structural shocks, and δ are expectational errors in

the equations that only tie down expectations. We eigenvalue decompose the transition matrix

A−1B, we solve unstable roots forward and stable roots backward to determine the expectational

errors δ as a function of the structural shocks ε. Then, we can compute the impulse-response

function.

First, eliminate redundant variables to write (15)-(25) as

xt+1 + σπt+1 = xt + σ
(
θiππt + θixxt + uit

)
+ δxt+1 + σδπt+1

πt+1 =
1

β
πt −

κ

β
xt + δπt+1[

1 +

(
1

γ
− 1

)
α

]
v∗t+1+

(
θsππt+1 + θsxxt+1 + αv∗t+1 + ust+1

)
=
(
θiππt + θixxt + uit

)
−
(

1

β
πt −

κ

β
xt

)
+v∗t

vt+1 − (ωqt+1 − qt) + πt+1 +
(
θsππt+1 + θsxxt+1 + αv∗t+1 + ust+1

)
= vt

ωqt+1 =
(
θiππt + θixxt + uit

)
+ qt + ωδqt+1,

or

xt+1 + σπt+1 = (1 + σθix)xt + σθiππt + σuit + δxt+1 + σδπt+1

πt+1 = −κ
β
xt +

1

β
πt + δπt+1

θsxxt+1 + θsππt+1 +

(
1 +

α

γ

)
v∗t+1 + ust+1 =

(
θix +

κ

β

)
xt +

(
θiπ −

1

β

)
πt + v∗t + uit

θsxxt+1 + (1 + θsπ)πt+1 + αv∗t+1 + vt+1 − ωqt+1 + ust+1 = vt − qt

ωqt+1 = θixxt + θiππt + qt + uit + ωδqt+1.
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In matrix notation (55),

1 σ 0 0 0 0 0

0 1 0 0 0 0 0

θsx θsπ 1 + α/γ 0 0 0 1

θsx 1 + θsπ α 1 −ω 0 1

0 0 0 0 ω 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





xt+1

πt+1

v∗t+1

vt+1

qt+1

uit+1

ust+1



=



1 + σθix σθiπ 0 0 0 σ 0

−κ/β 1/β 0 0 0 0 0

θix + κ/β θiπ − 1/β 1 0 0 1 0

0 0 0 1 −1 0 0

θix θiπ 0 0 1 1 0

0 0 0 0 0 ρi 0

0 0 0 0 0 0 ρs





xt

πt

v∗t

vt

qt

uit

ust



+



0 0

0 0

0 0

0 0

0 0

1 0

0 1



 εit+1

εst+1

+



1 σ 0

0 1 0

0 0 0

0 0 0

0 0 ω

0 0 0

0 0 0




δxt+1

δπt+1

δqt+1



Now, we solve the model as

Ayt+1 = Byt + Cεt+1 +Dδt+1

yt+1 = A−1Byt +A−1Cεt+1 +A−1Dδt+1

yt+1 = QΛQ−1yt +A−1Cεt+1 +A−1Dδt+1

Q−1yt+1 = ΛQ−1yt +Q−1A−1Cεt+1 +Q−1A−1Dδt+1

zt+1 = Λzt +Q−1A−1Cεt+1 +Q−1A−1Dδt+1
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Let Gf select rows with eigenvalues greater than one, and Gb select rows with eigenvalues less

than one. For example, if the first and third eigenvalues are greater than or equal to one,

Gf =

 1 0 0 ...

0 0 1 ...

 .
Then, the z corresponding to eigenvalues greater than one must be zero so

0 = GfQ
−1A−1Cεt+1 +GfQ

−1A−1Dδt+1

δt+1 = −
(
GfQ

−1A−1D
)−1

GfQ
−1A−1Cεt+1

For this to work there must be as many rows of Gf as columns of δ, i.e. as many eigenvalues

greater or equal to one as there are expectational errors. Substituting, we have the evolution of

the transformed z variables, i.e. the impulse response function,

zt+1 = Λzt +Q−1A−1
[
I −D

(
GfQ

−1A−1D
)−1

GfQ
−1A−1

]
Cεt+1,

and then the original variables from

yt = Qzt.

I include two small refinements. First, for computation it is better to force the elements of

zt that should be zero to be exactly zero. Machine zeros (1e− 14) multiplied by explosive eigen-

values eventually explode. Thus, I find the non-zero z only by simulating forward the nonzero

elements of z,

Gbzt+1 = GbΛzt +GbQ
−1A−1

[
C −D

(
GfQ

−1A−1D
)−1

GfQ
−1A−1C

]
εt+1.

Second, the consumer’s transversality condition tells us that debt vt cannot explode. There

is no reason to impose that the latent state variable v∗t cannot explode or have a unit root. In

solving the model for some parameter values it is important not to unwittingly impose that

condition. The most obvious example occurs for passive fiscal policy, if st = .. + αvt + ..., not

st = .. + αv∗t + .... Then v∗t + st+1 + .. = v∗t has a unit root (or explosive in the usual model with

discounting), but the quantity v∗t enters nowhere else in the model. We seem to get determinacy

by adding a useless unit root variable.
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Rather than limT→∞Et+1yt+T = 0, we need to impose

lim
T→∞

REt+1yt+T = 0

where R is of the form

R =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0
. . .


,

i.e. omitting the row of yt corresponding to v∗t (or any other variable that can explode). Then,

rather than simply setting to zero the z corresponding to unit and greater eigenvalues, we need

to set only

lim
T→∞

RQEt+1zt+T = lim
T→∞

RQΛT zt+1 = 0.

Denote by λ<1 the eigenvalues less than one and λ>1 the eigenvalues greater than one, and sim-

ilarly for the corresponding z. We want, for example,

lim



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


Q



λ<1 0 0 0 0

0 λ<1 0 0 0

0 0 λ>1 0 0

0 0 0 λ>1 0

0 0 0 0 λ>1



T 

z<1

z<1

z>1

z>1

z>1


= 0.

(The actual system is larger.)

Let G∗f denote a matrix with ones in the place of eigenvalues greater or equal to one and

zeros elsewhere, for example,

G∗f =



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

This is the matrix Gf above with zero rows added back. A simple test whether this problem is

occurring is whether the rank of RQG∗f is the same as the rank of QG∗f , i.e. of G∗f itself since Q is
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rn g π s v i y

Regression of other shocks on inflation shock
Coefficient -0.55 -0.32 1.00 -0.44 -0.79 0.23 0.23

Std. err. (0.24) (0.18) (0.00) (0.51) (0.74) (0.15) (0.09)
Correlation matrix of VAR shocks

rn 1.00 -0.23 -0.29 -0.32 0.66 -0.74 -0.93
g -0.23 1.00 -0.23 0.45 -0.59 0.42 0.19
π -0.29 -0.23 1.00 -0.11 -0.14 0.21 0.31
s -0.32 0.45 -0.11 1.00 -0.89 0.44 0.31
v 0.66 -0.59 -0.14 -0.89 1.00 -0.69 -0.63
i -0.74 0.42 0.21 0.44 -0.69 1.00 0.75
y -0.93 0.19 0.31 0.31 -0.63 0.75 1.00

Table 5: Regression of other shocks on inflation shock, and correlation matrix of VAR shocks

full rank. If that test succeeds, then we are not using the false condition that v∗ may not explode

to set a linear combination of the z to zero.

If that test fails, then in place of setting Gfzt+1 = 0, we set RQG∗fzt+1 = 0, i.e.



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


Q



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





z<1

z<1

z>1

z>1

z>1


=



0

0

0

0

0


.

Express the matrix on the right hand side in row-echelon form, delete the rows with zeros, and

proceed as before.

6.5. Sources of sampling variation

Table 5 includes the regression of other shocks on inflation shock that starts off the main infla-

tion decomposition, and thus determines the instantaneous response in Figures 4 and 8. The

table also includes the correlation matrix of the shocks.

To measure the relative contribution of the shock correlation and the long-run response

function given the shock identification as sources of variation, Table 6 includes two other sam-

pling calculations. The “no b” columns resample data using the original regression of shocks

εzt+1 on inflation shocks επt+1, the top row of Table 5, in each sample. The VAR coefficients still
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Fraction No b No A
Component Estimate 25% 75% 25% 75% 25% 75%
Inflation π1 1.00

Bond return (rn1 − g1) -0.23 -0.45 -0.00 -0.23 -0.23 -0.45 -0.00
Future Σs -0.04 -0.67 0.26 -0.57 0.16 -0.67 0.26

Future Σr − g 1.20 0.43 1.62 0.66 1.39 0.43 1.62

Table 6: Decomposition of unexpected inflation variance – distribiution quantiles. No b holds
the initial response constant across trials. No A holds the VAR regression coefficients constant
across trials

vary across samples, but the identification of the inflation shock does not. The “no A” columns

likewise keep constant the VAR regression coefficients, but reestimate the shock regression in

each sample. Turning off either source of sampling variation reduces that variation, but not as

much as you might think. Sampling variation is still large in either case, and variances add, not

standard deviations. Moreover the sampling variation associated with shock orthogonalization

– the “no A” exercise – does not go away no matter how small the shocks. Both left and right hand

sides of the shock on shock regressions get smaller at the same rate.


