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1 Introduction

The feasibility of scaling up effective programs is a perennial problem in social policy. Successful
demonstration projects often fail to reproduce their effects at scale. In the education sphere, for
example, recent large-scale studies of early childhood programs, class size reductions, and the Success
For All curriculum show effects that fall short of the impressive gains seen in smaller-scale evaluations
of similar interventions (Heckman et al., 2010; Heckman, Pinto, and Savelyev, 2013; Puma, Bell, and
Heid, 2012; Krueger, 1999; Jepsen and Rivkin, 2009; Borman et al., 2007; Quint et al., 2015). This
suggests that in some cases the success of programs may be driven by unique inputs or population
characteristics such as special teachers, school leaders, peer environments, or other factors that
cannot be easily replicated (see Banerjee et al. (2017) on the challenges of scaling up demonstration
programs, including general equilibrium and spillover effects and Davis et al. (2017) on the role of
labor supply in scale-up).

The potential for sustained success at scale is of particular interest for “No Excuses” charter
schools, a recent educational innovation that has demonstrated promise for low-income urban stu-
dents. These schools share a set of practices that includes high expectations, strict discipline,
increased time in school, frequent teacher feedback, high-intensity tutoring, and data-driven in-
struction. Evidence based on randomized admission lotteries shows that No Excuses charter schools
generate test score gains large enough to close racial and socioeconomic achievement gaps in a short
time, as well as improvements in longer-run outcomes like teen pregnancy and four-year college
attendance (Abdulkadiroglu et al., 2011, 2017; Angrist, Pathak, and Walters, 2013; Angrist et al.,
2012, 2016; Dobbie and Fryer, 2011, 2013, 2015; Tuttle et al., 2013; Walters, 2018). Other recent
studies demonstrate positive effects of No Excuses policies when implemented in traditional public
schools or in low-performing schools converted to charter status (Fryer, 2014; Abdulkadiroglu et al.,
2016). No school district has adopted these policies on a wide scale, however, and No Excuses char-
ters serve small shares of students in many of the cities where they operate. It therefore remains
an open question whether the effects documented in previous research can be replicated at a larger
scale. Replicability is of particular interest in the context of charter schools, which by design are

intended to serve as laboratories of innovation and spread successful educational practices.!

'Massachusetts — charters are required by law to disseminate their ‘“best practices,”  see:
http://www.doe.mass.edu/charter/bestpractices/ for details on the Massachusetts policy.



We address this question using a recent policy change that expanded the charter school sector
in Boston, Massachusetts, a city where most charter schools operate according to No Excuses
principles. In 2010, Massachusetts passed a comprehensive education reform law that raised the
state’s cap on the fraction of funding dedicated to charter school tuition payments in low-performing
districts. Charter operators that the state deemed “proven providers” with track records of success
were permitted to expand existing campuses or open new schools in these districts. As a result, the
number of charter schools in Boston increased from 16 to 32 between 2010 and 2014, with most of
these new campuses linked to existing No Excuses charter schools. This expansion led to dramatic
growth in charter market share in Boston: the fraction of sixth grade students attending charter
schools increased from 15 to 31 percent between 2010 and 2015.

This increase in charter share is equivalent from going from the 100th ranked school district in
terms of charter sector share to the 15th ranked school district (rankings from 2016-17, see David,
Hesla, and Pendergrass 2017).2 Boston’s charter expansion is therefore a large, policy relevant
change in charter share. The closest studied analog is the expansion of the Knowledge is Power
Program (KIPP) network of charter schools (Tuttle et al., 2015). Between 2010 and 2015, the KIPP
network doubled the number of students served, from about 27,000 to 55,000 students. Observational
estimates comparing KIPP students to matched comparisons showed that the network continued
to boost student achievement over this period of expansion, but that these gains were smaller in
the years of greater expansion. The KIPP setting is in contrast to our city-specific study, as the
expansion of KIPP schools was diffuse, over many cities, and may not have had a great influence
on the share of students in charters in a given locality.

Other localities are facing the potential for charter expansion similar to the policy change we
study here. New York City reached its cap on the number of charter schools in the city in winter
2019 with 10 percent of students enrolled in charter schools. A policy change permitting more
charters could result in an influx of charter schools, and would follow similar cap increases in 2007
and 2010 (New York State Department of Education, 2019). Massachusetts voters faced a decision
about a referendum for another, similar charter school cap raise in 2016, which did not pass. Boston

has again reached the cap on charter schools and thus the state may face future legislation about

2School district rankings are for all grade levels, and the charter share we focus on here is for middle schools. The
leap for all grade levels is a move from approximately 208th to 63rd.



changing the cap. Several states have also reached their overall cap on charter schools or have
limited remaining growth, including Connecticut, Maine, Massachusetts (as previously discussed),
and Rhode Island, setting these states up for policy decisions around further growth (Ziebarth and
Palmer, 2018). The federal government also supports charter school replication, with several charter
school networks receiving very large grants to replicate their models, including 2019 awards of over
$100 million to IDEA Public Schools and over $85 million to KIPP.?3

We use records from randomized charter school admission lotteries to study changes in the
effectiveness of Boston’s charter middle school sector during this period of rapid expansion. By
comparing the outcomes of students who receive lottery offers to those that do not, we remove
selection bias and therefore generate reliable estimates of the causal effects of charter school at-
tendance. The lottery records studied here cover 14 of the 15 charter schools admitting students
in fifth or sixth grade during the time period of our study. This is important in light of evidence
that schools with more readily available lottery records tend to be more effective (Abdulkadiroglu
et al., 2011). Unlike previous studies that focus on subsets of oversubscribed charter schools, our
estimates provide a representative picture of the effectiveness of the Boston charter middle school
sector before and after expansion.

Consistent with past work, our estimates for cohorts applying before 2010 show large positive
impacts of charter attendance on test scores. Specifically, a year of attendance at a Boston charter
middle school boosted math achievement by between 0.18 and 0.32 standard deviations (o) and
increased English achievement by about 0.1¢ during this period. Our results also indicate that
policymakers selected more effective schools for expansion: proven providers produced larger effects
than other charter schools before the reform.

Estimates for the post-reform period reveal that Boston’s charter sector remained effective while
doubling in size. Proven providers and other existing charters maintained their effectiveness after
the reform, while expansion charters generate achievement gains comparable to those of their par-
ent schools. Moreover, expansion charters produce these large impacts while enrolling students that
appear more representative of the general Boston population than students at other charters. To-

gether, the estimates for new and existing schools imply an increase in overall charter effectiveness

3For details on these awards, see: https://innovation.ed.gov/what-we-do/charter-schools/charter-schools-
program-grants-for-replications-and-expansion-of-high-quality-charter-schools /awards /.



despite the substantial growth in charter market share after the 2010 reform.

We explore the roles of student composition, public school alternatives, and school practices in
mediating the effectiveness of expansion charter schools. Though changes in demographic compo-
sition contributed modestly to the positive impacts of new charters, neither changes in the student
body nor the quality of applicants’ fallback traditional public schools explain the pattern of results.
Instead, it appears that proven providers successfully transmitted hiring and pedagogical practices
to new campuses. An analysis of teacher value-added indicates that charter schools reduce returns to
experience and compress the distribution of teacher effectiveness while also employing a large share
of new and inexperienced teachers. These findings are consistent with the possibility that Boston’s
charter schools use a highly standardized school model that limits teacher discretion, which may
facilitate replicability in new contexts.

The next section provides background on charter schools in Boston and the charter expansion
reform. Section 3 describes the data and Section 4 details the empirical framework used to analyze
it. Section 5 presents lottery-based estimates of charter school effects before and after the reform.
Section 6 explores the role of student composition and fallback schools, and Section 7 discusses

charter management practices and teacher productivity. Section 8 offers concluding thoughts.

2 Background

2.1 Charter Schools in Boston

The first charter schools in Boston opened in 1994. Boston charters offer a different educational
experience than traditional public schools operating in the Boston Public Schools (BPS) district.
Table 1 compares inputs and practices of BPS schools and the 14 charter middle schools in our
analysis sample (described in more detail later on). Columns (1) and (5) of Panel A show that
charter students spend more days per year and hours per day in school than BPS students. Charter
teachers tend to be younger and less experienced than BPS teachers; as a result, they are much
less likely to be licensed or designated highly-qualified.* Charter schools and BPS have similar
student /teacher ratios, but charters spend somewhat less money per pupil ($18,766 vs. $17,041), a

difference driven by lower salaries and retirement costs for their less-experienced teachers (Setren,

“In the time period of our study teachers were designated highly qualified if they possessed a Massachusetts
teaching license and a bachelor’s degree, and passed a state examination or held a degree in their subject area. The
highly qualified label was discontinued with the passage of the federal Every Student Succeeds Act (ESSA) in 2015.



2016).

Boston charter schools commonly subscribe to No Excuses pedagogy, an approach that uti-
lizes strict discipline, extended instructional time, selective teacher hiring, frequent testing, high
expectations, teacher feedback, data-driven instruction, and tutoring (Carter, 2000; Thernstrom
and Thernstrom, 2003). Panel B of Table 1 reports the mean of an index of No Excuses policies,
constructed as an equally-weighted average of features typically associated with the No Excuses
model.> On average, Boston charter schools implement 90 percent of these policies. Charters also
commonly offer Saturday school and school break programming for homework help and tutoring.
These practices differ markedly from practices at BPS schools and at non-urban charter schools in
Massachusetts (Angrist, Pathak, and Walters, 2013).

Previous research has documented that Boston charters boost math and English standardized
test scores (Abdulkadiroglu et al., 2011; Cohodes et al., 2013; Walters, 2018). This finding is
consistent with studies showing positive test score effects for urban No Excuses charters elsewhere
(Dobbie and Fryer, 2011, 2013; Angrist et al., 2010, 2012; Chabrier, Cohodes, and Oreopoulos, 2016;
Abdulkadiroglu et al., 2017). Recent evidence shows that Boston charter high schools also increase
longer-term outcomes, including SAT scores, Advanced Placement (AP) credit, and enrollment in
four-year college (Angrist et al., 2016).

Funding for Massachusetts public school students follows their school enrollment. Specifically,
charter schools receive tuition payments from their students’ home districts equal to district per-
pupil expenditure. The state partially reimburses districts for charter school payments during a
transition period, but these reimbursements have not been fully funded in recent years. Prior to
2010, Massachusetts law capped the overall number of charter schools at 120 and limited total
charter school tuition to 9 percent of a district’s spending. Charter expenditure in Boston reached
this cap in fall 2009 (Boston Municipal Research Bureau, 2008). As a result, the charter cap limited

the expansion of charter schools in Boston before 2010.

5The No Excuses index is an average of indicators equal to one if the following items are mentioned in a school’s
annual report: high expectations for academics, high expectations for behavior, strict behavior code, college prepara-
tory curriculum, core values in school culture, selective teacher hiring or incentive pay, emphasis on math and reading,
uniforms, hires Teach For America teachers, Teaching Fellows, or AmeriCorps members, affiliated with Teach For
America alumni, data driven instruction, and regular teacher feedback.



2.2 Charter Expansion

In January 2010, Governor Deval Patrick signed An Act Relative to the Achievement Gap into law.
This reform relaxed Massachusetts’ charter cap to allow the charter sector to double for districts in
the lowest decile of performance according to a measure derived from test score levels and growth.
The law also included provisions for school turnarounds and the creation of “innovation” schools
(Massachusetts State Legislature, 2010).

For Boston and other affected districts, the 2010 reform increased the limit on charter spending
from 9 percent to 18 percent of district funds between 2010 and 2017. “Proven providers” — existing
schools or school models the Massachusetts Board of Elementary and Secondary Education deemed
effective — could apply to open new schools or expand enrollment. The law also allowed school
districts to create up to 14 “in-district” charter schools without prior approval from the local teachers’
union or proven provider status. Concurrent with the increased supply of charter seats, the law
required charters to increase recruitment and retention efforts for high need students and allowed
charters to send advertising mailers to all students in the district.®

The state received 71 initial applications (some of which it solicited) for new charter schools
or expansions from August 2010 to August 2012, and invited 60 percent of applicants to submit
final round proposals. To determine whether a school model qualified for proven provider status,
the Massachusetts Board of Elementary and Secondary Education compared existing schools using
the model to other charters and traditional public schools. Criteria for this evaluation included
enrollment of high-need students, attrition, grade retention, dropout, graduation, attendance, sus-
pensions, and performance on state achievement tests (Massachusetts Department of Elementary
and Secondary Education, 2015). The state granted proven provider status to four of seven Boston
charter middle schools, as well as to the KIPP organization, which operated a charter school in
Lynn, Massachusetts, but had not yet entered Boston. Together, the provisions of the 2010 reform
led to the establishment of 27 new charter campuses between 2011 and 2013, as well as expansions of
17 existing charter schools, typically to new grade levels (Massachusetts Department of Elementary

and Secondary Education, 2016).

5The state’s definition of high need students includes those with special education or English language learner
status, eligibility for subsidized lunch, or low scores on state achievement tests, as well as students deemed to be at
risk of dropping out of school.



Charter enrollment in Boston expanded rapidly after 2010. This can be seen in Figure 1, which
plots shares of kindergarten, sixth, and ninth grade students attending charter schools. These
statistics are calculated using the administrative enrollment data described below. Sixth grade
charter enrollment doubled after the reform, expanding from 15 to 31 percent between 2010 and
2015. Charter enrollment also grew substantially in elementary and high school, though not as
dramatically as in middle school. The share of Boston students in charter schools increased from
5 percent to 13 percent in kindergarten and from 9 percent to 15 percent in ninth grade over the
same time period.

The characteristics and practices of Boston’s new expansion charter schools are broadly similar
to those of their proven provider parent schools. This is shown in columns (2) through (4) of Table
1, which describe proven providers, other charters operating before 2010, and new expansions. Like
proven providers, expansion schools have longer school days and years than BPS schools, and rate
highly on the index of No Excuses practices. Per-pupil expenditure is similar at proven provider
and expansion schools, and lower at other charters. New campuses located an average of 3.1 miles
from their parent campuses, often expanding into different Boston neighborhoods (see Figure 2).

Expansion charter schools are primarily staffed by young teachers with little teaching experience.
Table 2 reports that 78 percent of teachers at proven providers in the year before expansion were
less than 32 years old, while 87 percent of expansion charter teachers were below this threshold
in the year after expansion. These and other teacher characteristics come from an administrative
database of Massachusetts public school employees (see the Data Appendix). Columns (4) and
(7) show that proven providers transferred some teachers from parent campuses to help staff their
expansions: 12 percent of parent campus teachers moved to expansion campuses, accounting for 25
percent of the teaching workforce at these new schools. Transferred teachers were less experienced
than teachers who remained at parent campuses (2.2 years vs. 3.3 years). Most of the remaining
expansion teachers had not previously taught in a Massachusetts school (66 percent), though a few
transferred from other schools (9 percent). As a result, the average teacher at an expansion charter
had only 1.4 years of teaching experience, compared to 2.9 years for teachers at parent campuses

and 11.5 years for BPS teachers.



3 Data

3.1 Data Sources and Sample Construction

We study the effectiveness of Boston charter middle schools using records from randomized admission
lotteries conducted between 2004 and 2013. Some charters serving middle school grades (fifth
through eighth) accept students prior to fifth grade, mostly in kindergarten; we focus on schools
with fifth or sixth grade entry because their lotteried students are old enough to take achievement
tests within our data window. Our sample includes 14 of the 15 Boston charter schools with fifth
or sixth grade entry, accounting for 94 percent of enrollment for schools in this category during the
2013-2014 school year.”

Lottery records typically list applicant names along with application grades, dates of birth, towns
of residence and sibling statuses. Our analysis excludes sibling applicants, out-of-area applicants,
and students who applied to non-entry grades (siblings are guaranteed admission, while out-of-
area applicants are typically ineligible). The lottery records also indicate which students received
admission offers. We distinguish between immediate offers received on the day of the lottery and later
offers received from the waitlist; in some lotteries all students eventually receive waitlist offers. All
offers are coded as waitlist offers in a few lotteries where we cannot distinguish between immediate
and waitlist offers. Further information on school coverage and lottery records appears in Appendix
Tables A1 and A2. We use the “proven provider” label to refer to the four middle school charters
in Boston that were granted permission to expand. The seven new campuses opened in the 2011-12
and 2012-13 school years are labeled “expansion charters,” and the three remaining charter middle
schools are “other charters.”®
We match the lottery records to state administrative data based on name, date of birth, town

of residence and application cohort. The administrative data cover all students enrolled in Mas-

"Two charter middle schools that closed before 2010 are excluded from this calculation. The one missing school
declined to provide lottery records.

8We categorize MATCH Middle School as a proven provider, as MATCH obtained that categorization from
the state. MATCH’s expansion campus opened at the elementary level, however. We categorize KIPP: Boston as
an expansion campus, but this school does not have a direct parent campus in Boston as KIPP’s only previous
Massachusetts campus was in Lynn. We classify UP Academy as an expansion charter even though it opened under
a different provision of the charter school law. To check whether our results are sensitive to these classification
decisions, Appendix Table A4 reports an alternative version of our main results with these three schools categorized
as “other charters.” The findings here remain generally the same, with other charters demonstrating slightly larger
effects and proven providers and expansion schools showing smaller gains than in our preferred specification.



sachusetts public schools between 2002 and 2014. As shown in Appendix Table A3, we find matches
for 95 percent of lottery applicants in this database. Administrative records include school en-
rollment, gender, race, special education status, English language learner status, subsidized lunch
status, and test scores on Massachusetts Comprehensive Assessment System (MCAS) achievement
tests. We standardize MCAS scores to have mean zero and standard deviation one for Boston
students by subject, grade and year. In addition to information on charter lottery applicants, we
use administrative data on other Boston students to describe changes in charter application and
enrollment patterns after the 2010 reform. The Data Appendix provides more details regarding

data processing and sample construction.

3.2 Descriptive Statistics

Charter application and enrollment patterns in our analysis sample mirror the large increases in
charter market share displayed in Figure 1. As shown in Table 3, 15 percent of eligible Boston
students applied to charter schools with fifth or sixth grade entry before the 2010 reform, 12 percent
received offers from these schools, and 10 percent enrolled. This implies roughly 1.5 applicants for
each available charter seat. The application rate increased to 35 percent in 2013, and attendance
reached 17 percent.” The increase in applications therefore outpaced enrollment growth, boosting
the number of applicants per seat to 2. This increase in demand was particularly pronounced at
other charter schools (neither proven providers nor expansions), which saw their applications per
seat rise from 1.9 to 4.19 After the expansion, half of charter school sixth grade students attended
new expansion campuses.

Table 4 describes the characteristics of Boston middle school students in BPS, charter schools,
and our randomized lottery applicant sample. Charter applicants and enrollees are consistently
more likely to be black than BPS students. Both before and after 2010, students attending proven
providers were less disadvantaged than other Boston students as measured by special education

status, limited English proficiency, and fourth grade test scores. Past achievement and other char-

9These attendance percentages are lower than the percentages in Figure 1, since they exclude charter schools that
enroll students at earlier entry grade levels.

10The number of applicants per seat is larger for each individual charter type than for the sector as a whole because
some students apply to more than one school.
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acteristics of students enrolled at proven providers and randomized applicants were similar before
the reform, but diverged somewhat afterward. This is due to the fact that one proven provider
campus transitioned to a K - 8 structure in 2010-11 by grandfathering students from its elementary
school instead of filling its entire fifth grade via random lottery.

As shown in columns (11) and (12) of Table 4, the characteristics of students enrolled at expan-
sion charters differ markedly from those of other charter students. Special education and limited
English proficiency rates are similar at expansion charters and in the BPS population. Expansion
charter students also score below the BPS average on 4th grade math and English tests, and are
more likely than BPS students to be eligible for subsidized lunches. These facts indicate that expan-
sion charters attract a more disadvantaged, lower-achieving population than their proven provider
parent schools. This pattern may reflect the changes in recruitment practices resulting from the
2010 Achievement Gap Act, which mandated that charter schools take steps to enroll higher-need

students and allowed charters to advertise directly to all students in the district by mail.

4 Empirical Framework

We use charter lottery offers as instruments for charter school attendance in a causal model
with multiple endogenous variables, each representing enrollment in a type of charter school. The

structural equation links charter attendance with outcomes as follows:

K J
Yig = ag+25kcilz+25jRij + X + €ig, (1)
k=1 =1

where Y}, is a test score for charter applicant 7 in grade g and Cilj] measures years of enrollment in
charter school type k through grade g. Charter types include parent campuses, expansion campuses,
and other charters; we also distinguish between enrollment before and after the charter expansion
law. The parameters of interest, B, represent causal effects of an additional year of attendance at
each charter type relative to traditional public schools. The key control variables in equation (1)
are a set of indicators, R;;, for all combinations of charter lottery applications present in the data.
Lottery offers are randomly assigned within these “risk sets.” A vector of baseline demographic char-

acteristics, X;, is also included to increase precision. These characteristics, which are measured in
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the year prior to a student’s lottery application, include gender, race, a female-minority interaction,
subsidized lunch status, English language learner status, and special education status.

The first stage equations for each charter enrollment type are given by:

K J
Clhy= b+ Y (nh 2y + wlyZh) + D NiRyy + Xi0" 4l k= 1K, )
/=1 j=1

Here Zik1 denotes a dummy variable equal to one if applicant i received an immediate offer to attend
charter type k on the day of a lottery, and ZZ% equals one if the applicant later received an offer
from the waitlist. Like equation (1), the first stage also controls for lottery risk set indicators and
baseline student characteristics. Two-stage least squares (2SLS) estimates are obtained by ordinary
least squares (OLS) estimation of equation (1) after substituting predicted values from (2) for the
charter attendance variables. The estimation sample stacks all post-lottery test scores in grades five
through eight for randomized charter applicants, and standard errors are clustered by student to
account for correlation in outcomes across grades.

Our empirical strategy is motivated by the fact that charter lottery offers are randomly assigned
within lottery risk sets and are therefore independent of ability, family background, and all other pre-
determined student attributes. Appendix Table A5 presents a check on this by comparing baseline
characteristics for offered and non-offered applicants within lottery risk sets. These comparisons
show that lottery winners and losers are similar for all charter school types and time periods,

indicating that random assignment was successful.!!

5 Lottery Estimates

We begin by reporting a pooled set of 2SLS impact estimates for all Boston charter middle
schools across our full sample period. These estimates, which appear in Table 5, come from a
version of equations (1) and (2) that uses a single instrument (any charter offer) to instrument for
a single endogenous variable (total years in charter). The first stage estimate in column (1) shows

that a charter school offer increases charter attendance by an average of one year. Column (2)

HEven with random assignment, selective attrition may lead to bias in comparisons of lottery winners and losers.
Appendix Tables A3 and A6 show that the attrition rate from our sample is low: we match 95 percent of applicants
to the administrative data, and find roughly 85 percent of post-lottery test scores that should be observed in our
sample window for matched students. The match rate is 4 percent higher for students offered charter seats, and we
are 3 percent more likely to find scores for students with lottery offers at non-proven-provider charters before 2010.
This modest differential attrition seems unlikely to meaningfully affect the results reported below.

12



reports reduced form differences in test scores between lottery winners and losers. The results here
show that lottery winners outscore losers by 0.22¢ in math and 0.12¢ in ELA. Because the first
stage is roughly one, the 2SLS estimates in column (3) are similar to the reduced form, implying
that a year of charter attendance boosts math and ELA scores by 0.220 and 0.120 on average.
These results, which represent the most precise and representative estimates of the effectiveness of
Boston’s charter sector to date, are similar to the effects reported by Abdulkadiroglu et al. (2011)
in a subsample of the schools and cohorts studied here.

Proven provider charter schools generated larger achievement gains than other charter schools
in Boston prior to the 2010 expansion. This can be seen in Table 6, which reports second-stage
estimates of equation (1).!2 Columns (2) and (3) demonstrate that a year of charter attendance
at a proven provider increased math and English scores by 0.320 and 0.12¢ prior to the reform,
estimates that are highly statistically significant. Corresponding math and English effects for other
Boston charters equal 0.180 and 0.080. The difference in effects for proven providers and other
charters is statistically significant in math (p = 0.00), though not in English. This finding indicates
that policymakers selected more effective charter schools to be eligible for expansion.

Proven providers and other charters maintained their effectiveness after the charter expansion
reform. As shown in columns (5) and (7) of Table 6, proven providers boost math and English
scores by 0.370 and 0.190 per year of attendance after 2010, while other charters increase scores
by 0.190 and 0.13c in this period. These estimates are slightly larger than estimates for earlier
cohorts, though the differences between pre- and post-reform effects are not statistically significant
for either group. As in the pre-reform period, the difference in effects between proven providers and
other charters is significant in math (p = 0.03). These results indicate that expanding to operate
new campuses did not dilute the effectiveness of proven provider charters at their original campuses.

Proven providers also successfully replicated their impacts at expansion schools. Column (6)
of Table 6 demonstrates that a year of attendance at an expansion charter school increases math
and English test scores by 0.320 and 0.230. These estimates are comparable to estimates for

parent campuses, and the hypothesis that expansion and proven provider effects are equal cannot

12 Appendix Table A7 reports first stage estimates separately by charter type. The first stage coefficients are
generally smaller in the post-expansion period for all charter types. This reflects the fact that less time has elapsed in
our data for cohorts applying after 2010, resulting in fewer years of potential charter enrollment between lottery and
test dates. Reduced form estimates are reported in Appendix Table A8 and OLS estimates of charter school effects
that control for prior test scores and baseline characteristics are in Appendix Table A9.

13



be rejected at conventional levels (p = 0.63 and 0.62 in math and English). Estimated effects
for expansion charters are larger than corresponding estimates for other charters during the same
time period, though these differences are only marginally statistically significant for math and not
statistically significant for English. Combined with the consistent effects for proven providers and
other charters over time, these results indicate that Boston’s charter middle school sector slightly

increased its average effectiveness despite the growth in charter market share over this period.

6 Exploring Effect Heterogeneity

The impacts of expansion charters are particularly striking in view of the changes in selection
documented in Table 4: new charter campuses continue to generate large effects despite serving
more typical students. This suggests that positive charter effects are not an artifact of a positively-
selected peer environment. This finding is also consistent with results reported by Walters (2018),
which suggest that charter effects are larger for the average Boston student than for the average
charter applicant, as well as estimates in Abdulkadiroglu et al. (2016), which indicate that charter
effects are larger for students passively enrolled in charters through school conversion than for
students who voluntarily apply through lotteries. We further investigate the impact of changes in
the charter population on the effects of charter expansion by studying effect heterogeneity across
subgroups and changes in the quality of the fallback traditional public schools available to charter

applicants.

6.1 Student Characteristics

The 2010 charter expansion law encourages charter schools to recruit and retain students with
higher needs, as measured by criteria including English proficiency, special education status and
past achievement. Appendix Table A10 summarizes effect heterogeneity as a function of these
characteristics.

The estimates show consistent positive impacts across most subgroups, charter school types,
time periods and subjects. Effects are similar for English language learners and students without
this designation, though estimates for the former group are often imprecise due to small sample
sizes. All estimates are positive for students with and without special education status; effects

for special education students appear to be somewhat smaller at proven providers and larger at
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expansion charters, but these differences may be a chance finding due to the many splits examined.
As in previous studies (e.g., Walters, 2018), we find that effects tend to be larger for students with
lower previous test scores. The large estimated effects for high-need subgroups at expansion charters
are noteworthy: expansion schools continue to generate substantial gains for these groups despite
serving larger shares of such students than other Boston charters.

We analyze the role of this heterogeneity in the effectiveness of charter expansion via a Oaxaca-
Blinder (1973)-style decomposition, which splits charter school treatment effects into components
explained and unexplained by student characteristics. This decomposition is based on 2S5LS models

of the form:
J

K
Yig=og+ > (B +X[B") CE + " 0;Rij + X}y + €ig. (3)
k=1 j=1

Equation (3) allows a separate main effect for attendance at each charter type ([32) as well as an
interaction with student characteristics common across charter types (5%). Charter exposure Cfg
and its interactions with X; are treated as endogenous. The immediate and waitlist offer variables
for each charter type Zfl, Zlg, and their interactions with X; are the excluded instruments.

Let X denote the average characteristics of students attending charter k, and let pu* = E[X|]
denote the mean of X; for the Boston population. The effect of charter type k for students enrolled

at k (the effect of treatment on the treated, TOT}) can be represented:

TOTy, = B + X}, B°

= (B +1"'B%) + (Xp — ")’ B”. (4)
ATE, Matchy,

This expression decomposes the TOT for charter type k£ into an average treatment effect for the
Boston population, AT Fj, and a deviation from the average treatment effect due to the charac-
teristics of type k’s students, Match. We quantify the contribution of student characteristics to
charter school effectiveness by studying estimates of AT Ej, and Matchy, for each school type and
time period.

Table 7 reports estimates of the components of the decomposition in equation (4), using gender,
race, ethnicity, English language learner status, subsidized lunch, special education, and baseline

test scores as interaction variables. Two-stage least squares estimates appear in panel A, and panel
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B displays corresponding OLS estimates for comparison. As with the treatment effect estimates in
Table A9, the OLS decomposition results tend to be qualitatively similar and more precise than
the 2SLS results. Estimated match components are close to zero for proven providers in both time
periods, while match components for other charters are negative in both periods. This indicates that
the demographic composition of other charters reduces their effectiveness, a result that is consistent
with Walters’ (2018) finding that disadvantaged students were less likely to apply to Boston charter
schools despite experiencing larger achievement benefits in data prior to the reform.

In contrast, column (4) reveals positive match effects for expansion charter schools. This pattern
is due to the fact that expansion charters enroll a lower-achieving set of students compared to other
charters (see Table 4). Since achievement gains are larger for this group, the match effect reinforces
the effectiveness of expansion charters. The magnitudes of these match effects are relatively small,
however, accounting for roughly 4 percent and 8 percent of the TOT in math and ELA. Evidently,
changes in student characteristics increased the effectiveness of new charter campuses but were not

the primary driver of the effectiveness of expansion schools.

6.2 Fallback Schools

One potential explanation for the success of Boston charter school expansion, where other efforts at
program replication have been less successful, is that students in expansion campuses face particu-
larly poor alternatives if they do not attend a charter school. Chabrier, Cohodes, and Oreopolous
(2016) find that poor fallback school options are one of the strongest predictors of charter school
effectiveness. It also is possible that charter schools influence the counterfactual by diverting re-
sources from district schools, as is the case in Arsen and Ni (2012); Bifulco and Reback (2014); Cook
(2018); Ladd and Singleton (2018). However Ridley and Terrier (2018) find small gains in district
school finances (and test scores) in Massachusetts using the same charter expansion law.'? Expan-
sion campuses in Boston may have located in areas where students’ counterfactual schools were
lower-performing. To see if low-quality fallback schools explain the success of expansion campuses,

we compare fallback school conditions across charter school types, both before and after charter

130ther studies of competitive effects of charter schools on nearby district schools’ test scores generally find no
or small positive impacts (Booker et al., 2008; Cordes, 2018; Jinnai, 2014; Davis, 2013; Sass, 2006; Shin, Fuller, and
Dauter, 2017; Winters, 2012; Zimmer et al., 2009; Zimmer and Buddin, 2009). One exception is Imberman (2011)
which found a mix of neutral and negative effects. For reviews of this literature, see: Betts (2009); Gill and Booker
(2008); Gill (2016); Epple, Romano, and Zimmer (2016).
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school expansion.
Table 8 shows average school-level value-added estimates for traditional public schools attended
by students that enroll in district schools as a result of losing a charter lottery (untreated com-

14 Value-added estimates are OLS coefficients from regressions of test scores on school

pliers).
indicators, with controls for lagged test scores and demographics. Specification tests reported by
Angrist et al. (2017) indicate that estimates from models of this type provide a reasonable proxy
for school effectiveness. In both math and ELA, estimated value-added of the traditional public
school fallback alternatives attended by charter applicants does not differ by charter school type,
and these fallback schools appear to be of roughly average quality among schools in BPS. Students’

fallback options therefore do not seem to be an important component of variation in effects across

charter types or time periods.

7 School Practices

Our results so far show that changes in student characteristics and the quality of applicants’ fall-
back schools do not explain the effectiveness of expansion charters. This suggests that successful
replication of the Boston charter model may be driven by attributes of the expansion schools them-
selves. We explore this hypothesis by providing a more detailed account of organizational practices
at parent and expansion charter schools in Boston. This portion of our analysis includes a quali-
tative overview of the mechanics of charter expansion based on interviews with school leaders (8.
Dunn, J. Clark, W. Austin, A. Hall, and D. Lehman, personal communication, May 2017), as well
as a quantitative assessment of teacher value-added that gives an indication of how heterogeneity

in teacher quality is managed in traditional public and charter schools.

7.1 Standardized School Models and Leadership

Proven provider charter schools sought to maintain fidelity of their school models during expansion
by emphasizing adherence to the same educational practices at new campuses. Table 1 shows a

comparison of practices at parent and expansion charters based on information drawn from charter

“We estimate untreated complier outcomes using methods from Abadie (2002).
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school annual reports.'®> Expansion schools typically have the same amount of instructional time
as their parent campuses, including identical length of the school day, time devoted to math and
reading instruction, and days in the school year.'® Expansion schools similarly implemented their
parent campuses’ No Excuses practices, tutoring, homework help, and Saturday school programs.

Expanding charter networks also tried to maintain similar pedagogical practices at old and new
campuses. Teachers co-planned curricula and teachers judged to be effective were encouraged to
share their lesson plans across the network. This model of shared teaching resources was aimed at
supporting new, inexperienced teachers, who comprised two thirds of the new schools’ staff. Survey
evidence from Boston charters indicates that such collaboration is common within the sector, with
59 percent of new teachers reporting co-planning the curriculum with their peers (Gabbianelli,
McGovern, and Wu, 2014). Recent evidence from other contexts shows that such collaboration can
increase student achievement (Jackson and Bruegmann, 2009; Ronfeldt et al., 2015; Papay et al.,
2016; Sun, Loeb, and Grissom, 2017) and that access to high quality lesson plans also boosts student
achievement (Jackson and Makarin 2018). Fryer (2014) found that charter practices, similar to those
used in Boston charters, can be successfully transfered to traditional public schools.

High teacher turnover rates are the norm at Boston charter schools. This is shown in Table 9,
which summarizes teacher mobility patterns at charter and traditional public schools. As a result,
some practices aimed at quickly training new teachers were in place prior to the 2010 reform. This
may have aided schools’ efforts to bring inexperienced teachers at new campuses up to speed on
key practices. Two charter networks run their own teacher training programs and hired some of the
graduates as full-time teachers. Charter networks also centralized teacher recruitment and profes-
sional development, potentially saving on search costs and resulting in similar types of teachers hired
at new and old schools. Each network reported conducting some share of professional development
at the network level.

Growing charter networks had stable leadership throughout the scaling up process. Principals

in the new and original campuses did not change throughout the expansion period in this study.!”

5The Massachusetts Department of Elementary and Secondary Education provided the 2012-13 annual reports
for each of the Boston charter middle schools at our request. The state requires charter schools to submit annual
reports and uses the reports when considering schools’ charter renewal applications.

Edward Brooke’s replication campus in East Boston is an exception, with six more days in its school year than
its parent campus.

"We verified this in Education Personnel Information Management Systems (EPIMS), the educator database
available from the Department of Elementary and Secondary Education, which contains yearly staff level data for all
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Furthermore, principals were trained internally: all of the principals at expansion campuses were
former teachers from the original campus. School leaders who oversaw their network’s expansion
stressed the value of selecting principals from within the network because they are familiar with
core school practices. Columns (3) and (6) of Table 9 show that roughly 4 percent of charter school
teachers were promoted to a leadership position from 2011 to 2014, compared to less than 1 percent

of BPS teachers.

7.2 Evidence on Teacher Productivity

The qualitative evidence above suggests that Boston charter schools limit teacher discretion by
emphasizing a standard set of pedagogical practices, which may facilitate efforts to implement
similar school models at new campuses. We assess this quantitatively by studying variation in
teacher value-added at charter and district schools. Teacher value-added estimates come from the

following model for achievement of student ¢ in grade g in calendar year ¢:
Yigt = ag + N + Xigyy + Ba(ing) + Ojtigy + Oc(ing,r) + & + €igt- (5)

The control vector X;4; includes student demographic characteristics and lagged test scores, as well
as classroom-level averages of these variables. We also include grade (a4) and calendar year (\;)
fixed effects. The function s(i, g) labels the school that student 7 attends for grade g, j(i, g) describes
the identity of her grade g teacher, and ¢(i, g,t) denotes a specific classroom. Because classroom-
level averages of the observables are included as controls, (5) describes a “correlated random effects”
model in which the mean of the teacher effect distribution may depend on the characteristics of
students in the classroom (Mundlak, 1978; Chamberlain, 1982). In other words, we are not imposing
independence of teacher quality from student observables.

We also allow school and teacher effects to depend on observed school and teacher characteristics.
The mean of the distribution ofschool effects 5 differs for charter and traditional public schools.
The teacher effects (which measure variation in teacher effectiveness within school) are in turn

written:

00 = 09 + W/,0°,

employees in Massachusetts public schools.
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where Wj; includes teacher j’s experience as of year ¢ in one of three experience groups (novice, 1
to 4 years of experience, and greater than five years of experience) as well as interactions of charter
status with experience. Given the small number of charter teachers in the sample, we do not
separate teachers at proven providers, expansions, and other charters for the purposes of the value-
added model, nor do we estimate experience premia for each year.'® We model the school effects 3,
within-school teacher effects 0]0-, and classroom effects d. as normally distributed conditional on X4,
with variances that differ in charter and traditional public schools. The student random effect &;
and idiosyncratic error €;4 are also modeled as normally distributed. Random effects specifications
of this sort are common in the literature on teacher value-added, and previous studies have argued
that such models generate estimates of teacher effectiveness that exhibit little selection bias (Kane,
Rockoff, and Staiger, 2008; Chetty, Friedman, and Rockoff, 2014).1°

As can be seen in Table 10, maximum likelihood estimation of model (5) produces two notable
findings. First, returns to teacher experience seem to beless pronounced in charter schools than
in BPS. Comparing teachers with 1 to 4 years of experience and teachers with 5 or more years
of experience to novices shows that more experienced teachers generally outperform new teachers.
However, the experience premium is larger in BPS (though the differences are not statistically
significant), with teachers with 1 to 4 years of experience outperforming novice teachers in BPS by
about 0.09¢ in both math and English. The corresponding experience premia for teachers in charter
schools equal 0.060 and 0.040. For teachers with more than 5 years of experience, BPS teachers
maintain their edge relative to novices, but any premium for charter school teachers is small and not
statistically significant. In short, either through selection of teachers or through training, charter
schools dampen one of the most persistent findings in the literature on teacher effectiveness (Harris
2011; Papay and Kraft 2015; Clotfelter, Ladd, and Vigdor 2007; Rockoff 2004) — that teachers make
significant gains in their first few years of teaching. Evidently, teachers at charter schools deliver
effective education despite the high proportion of novice teachers and substantial teacher turnover.

We caution, however, that while our estimates of the difference in experience profiles between the

8Data for the value-added model are from 2011-2015, the years in which it is possible to link students, teachers,
and classrooms in the state data.

90ur findings are robust to variants of this model. We estimated versions where we used teacher random effects,
teacher and school random effects, teacher fixed effects, and school and teacher fixed effects. We also ran versions
that added student random effects, phased in controls, restricted to the sample to exclude students who attended
both Charter and BPS during middle school, and used finer years of experience indicators to similar findings.
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two sectors are quantitatively large, we cannot reject the hypothesis that these parameters are equal
due to a lack of statistical precision.

The second notable finding from the value-added analysis is revealed by comparing variation in
school, teacher, and class effects across the charter and traditional sectors. Both charter and district
schools have similar variation in school-level effectiveness. At the teacher and classroom levels, we
find less variation in effectiveness in the charter sector. In math, the standard deviation of the
teacher random effect 0? is 0.120 compared to 0.190 in BPS, while the standard deviation of the
class effect 8. is 0.080 compared to 0.15¢.2° This suggests that the charter sector reduces variation
in teacher effectiveness within schools, which may be due to charters’ centralized management of
teachers and standardized instructional practices.?! Additionally, the charter hiring practices could
select teachers with less variation in their practices, though this would also be part of a management
strategy. The reduction in variation at the classroom level (which is typically attributed to random
events like construction noise on test day) suggests some of this variation is systematic and can be
reduced through standardized practices as well. Both conclusions from the value-added analysis are
consistent with the hypothesis that highly standardized management practices may contribute to

the successful replication of charter school effects.

8 Conclusion

The replication and expansion of successful schools is one strategy to address persistent achievement
gaps in the United States. The efficacy of this strategy requires schools selected for expansion
to maintain their success at new locations and with new student populations. Previous research
has shown that urban No Excuses charter schools boost test scores markedly for small groups of
applicants, suggesting the potential for transformational effects on urban achievement if these gains
can be maintained at larger scales. We examine a recent policy change in Massachusetts that

doubled Boston’s charter sector over a short time period, allowing us to evaluate changes in the

20The results found here—that charter value-added standard deviations are around 0.11 and district about 0.18—
indicate that charter schools in Boston are toward the minimum known range of teacher, value-added whereas Boston
district schools are in the middle of the distribution. Hanushek and Rivkin (2010) review the dispersion of teacher
value-added in 10 localities, and find that the standard deviation of teacher effects ranges between 0.11 and 0.360 in
math and 0.10 and 0.260 in reading.

' Taylor (2018) and Jackson and Makarin (2018) also show a compression of the teacher value-added distribu-
tion when there are standardized instructional practices. In Taylor (2018), standardization comes from the use of
computer-aided instruction; in Jackson and Makarin (2018) from access to high-quality instructional materials.

21



effects of No Excuses charters as these schools expanded to serve a larger share of the population.

Our results demonstrate that Boston’s No Excuses charters reproduced their effectiveness at
new campuses. Lottery-based estimates show that schools selected for expansion produced larger
gains than other charters in the pre-reform period, indicating that Massachusetts’ accountability
regime successfully identified more successful schools. New expansion campuses generate test score
gains similar to those of their parent campuses despite a doubling of charter market share in middle
school.

The demographics of students served by expansion charters are similar to those of the Boston
population as a whole, suggesting that charter effectiveness is not driven by unique peer environ-
ments. We find that changing student populations and the quality of fallback traditional public
schools play only a small role in the effectiveness of charter expansion, however. Both a qualita-
tive analysis of organizational practices during expansion and a quantitative analysis of variation
in teacher value-added indicate that charter schools use a highly standardized model that limits
variation in practices across schools and classrooms. This standardized approach may facilitate
the portability of charter effectiveness to new campuses. More broadly, the role of these and other
organizational practices in explaining successful replication of social programs is an important area
for future work.

This paper also brings evidence to bear on the best agent for replicating social programs. When
a program is successful, policymakers face the decision of whether to have the original implementer
continue to provide the program, or whether governments or other agencies should take over the
program at a larger scale. This paper shows that, in the charter school context, replicating existing
charters may be a better option than allowing new providers to enter the sector. This is consistent
with the findings of Bold et al. (2018), which shows that the successful Kenyan contract teacher
program evaluated in Duflo et al. 2011; 2015 was replicated with provision by the original provider,
but not with the government (despite an identical contract). The “proven provider” design of the
Massachusetts 2010 charter law is unique among the states with charter school laws, and it remains
to be seen if other states or charter authorizers adopt such policies. However, the share of charter
schools managed by charter school management organizations (independent, non-profit organiza-
tions that manage two or more charter schools) has grown from 16 percent in 2009 (Furgeson et al.,

2011) to 23 percent in 2017 (David, 2018), indicating that the market may institute a replication
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strategy even if authorizors do not.
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Table 7: Decomposition of Charter School Effects

Before Charter Expansion After Charter Expansion
Proven Proven Expansion
Providers Other Charters Providers Charters Other Charters
1) () 3) “) (5)
Panel A: 1V Results
Math

TOT 0.333*** 0.185*** 0.319%** 0.359*** 0.197***

(0.029) (0.020) (0.050) (0.052) (0.037)
ATE 0.320%** 0.198*** 0.3271*** 0.345%** 0.208***

(0.030) (0.022) (0.051) (0.053) (0.038)
Match 0.013 -0.013 -0.002 0.014*** -0.011**

(0.009) (0.009) (0.008) (0.005) (0.005)
N (scores) 15924

English

TOT 0.185*** 0.100*** 0.156*** 0.207%** 0.096**

(0.030) (0.020) (0.053) (0.051) (0.039)
ATE 0.180*** 0.119%** 0.144%** 0.1907%** 0.105%**

(0.031) (0.022) (0.054) (0.052) (0.040)
Match 0.004 -0.019** 0.013 0.016*** -0.009*

(0.009) (0.009) (0.008) (0.005) (0.005)
N (scores) 15932

Panel B: OLS Results
Math

TOT 0.365*** 0.234%** 0.307*** 0.326*** 0.228***

(0.009) (0.009) (0.011) (0.014) (0.011)
ATE 0.361*** 0.258*** 0.306*** 0.313%** 0.243%**

(0.010) (0.010) (0.011) (0.014) (0.011)
Match 0.003 -0.023*** 0.001 0.013%** -0.015%**

(0.003) (0.003) (0.003) (0.002) (0.002)
N (scores) 84246

English

TOT 0.275%** 0.094*** 0.203*** 0.164*** 0.200%**

(0.010) (0.010) (0.011) (0.013) (0.010)
ATE 0.280*** 0.125%** 0.1971*** 0.149%** 0.215%**

(0.010) (0.011) (0.012) (0.013) (0.010)
Match -0.004 -0.031%** 0.012%** 0.015%** -0.015%**

(0.003) (0.003) (0.003) (0.002) (0.002)
N (scores) 84290

Notes: This table decomposes estimates of charter school treatment effects into components
explained and unexplained by student characteristics. These characteristics are female, black,
hispanic, subsidized lunch, English language learner, special education, and baseline test
scores. Estimates in panel A come from 25LS models treating years of enrollment in each
charter type and years in any charter interacted with student characteristics as endogenous,
instrumenting with charter lottery offers and their interactions with student characteristics.
These models control for main effects of student characteristics and lottery risk sets, and are
estimated in the sample of randomized applicants. Estimates in panel B come from
corresponding OLS models estimated in the full sample of Boston students. These models
exclude lottery risk sets and include controls for asian, non-white other race, baseline charter
attendance, and a female-minority interaction.

*significant at 10%; **significant at 5%; ***significant at 1%
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Data Appendix

We use lottery records, student demographic and enrollment data, state standardized test scores,
and school personnel files in this article. Lottery records collected from individual schools contain
the list of applicants, offer status, and factors that affect an applicant’s lottery odds, including
sibling status, disqualifications, late applications, and applying from outside of Boston. The Student
Information Management Systems (SIMS) dataset contains enrollment and demographic data for
all public school students in Massachusetts. Student standardized test scores come from the state
database for the Massachusetts Comprehensive Assessment System (MCAS). The Massachusetts
Education Personnel Information Management Systems (EPIMS) database provides school staff
information. Next we describe these datasets, the matching process, and sample construction.

Lottery records

Massachusetts legally requires charters to admit students via lottery when more students apply
to a charter school than the number of available seats for a given grade. Our paper uses records
from charter lotteries conducted between spring 2004 to spring 2013 for 14 charter schools accepting
students in 5th or 6th grade. Each of the 14 schools contributes oversubscribed lottery data.??
Schools vary in the grades they serve and in years of operation. Table A1 lists this information and
the years each school contributes to the analysis. We exclude one school that did not provide lottery
records (Smith Leadership Academy) and two schools that closed before the charter expansion
(Uphams Corner Charter School in 2009 and Fredrick Douglas Charter School in 2005). Lottery
data typically includes applicants’ names, dates of birth, and lottery and waitlist offer status. Offers
to attend charter schools either occur on the day of the lottery (referred to as immediate of fer)
or after the day of the lottery when students receive offers from the randomly sequenced waitlist as
seats become available. In three out of the 65 lotteries in the study, the schools gave all applicants
offers or did not give waitlist offers to non-siblings. Four lotteries did not distinguish the timing of
the offers so we code the immediate offer variable to equal zero for these cohorts.

The Uncommon Schools/Roxbury Preparatory charter network held a single lottery for its three

22We do not have Spring 2004 lottery records for Brooke Roslindale, Boston Prep, and Academy of the Pacific Rim
or Spring 2005 records for Brooke Roslindale. Brooke Roslindale does not have lotteries in after charter expansion
because their elementary school students filled the middle school seat. All other schools and years have oversubscribed
lottery data.
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campuses in the Spring 2012 and Spring 2013 lotteries. When the school called a students lottery
number, the student could pick from the campuses that still had open seats. Our lottery records
show which campus they picked at the time of the lottery. We find the last lottery number for each
campus and code all students with better lottery numbers as having offers from that campus.

Uncommon Schools offered seats from the waitlist as they became available for individual cam-
puses. Parents chose to accept or decline waitlist offers for single schools. If they declined, they
were taken off the waitlist and would not be considered for seats at the other campuses.

Enrollment and demographics

The SIMS data contains individual level data for students enrolled in public schools in Mas-
sachusetts from 2003-2004 through 2013-2014. The data contains snapshots from October and the
end of the school year. Each student has only one observation in each time period, except when
students switch grades or schools within year. Fields include a unique student identifier, grade level,
year, name, date of birth, gender, ethnicity, special education status, limited English proficiency
status, free or reduced price lunch status, school attended, suspensions, attendance rates, and days
truant.

We code students as charter attendees in a school year if they attended a charter at any point
during a year. Students who attend more than one charter school in a year are assigned to the
charter they attended the longest. Students who attend more than one traditional public school
and no charter schools in a year are assigned to the school they attended the longest. We randomly
choose between schools if students have attendance ties between the most attended schools.

Test scores

This paper uses individual student math and English Language Arts (ELA) Massachusetts
Comprehensive Assessment System (MCAS) test scores from 2003-2004 through 2013-2014. Mas-
sachusetts public school students take the exam each year in grades grades 5 through 8. Data
includes the unique student identifier. We standardize the raw scores to to have a mean of zero
within subject-grade-year in Boston.

Staff records

The Education Personnel Information Management Systems (EPIMS) contains yearly staff level

data for all employees in Massachusetts public schools. We use data collected in October of the
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2007-08 through the 2013-14 school years. Data includes job position, school, full time equivalency,
date of birth, date of hire for first public school job in Massachusetts, license status, and highly
qualified status. We use the full time equivalency of all staff and teachers. If one school has two
half time teachers, they are counted as one full time equivalent teacher. A teacher who teaches at
multiple schools counts towards the staff statistics at each school.

Matching data

We use applicants’ names, date of birth, grade, and year to match their lottery records to the
state enrollment data. The applicants who uniquely and exactly match the grade, year, name,
and date of birth (if available) in the state records are assigned to the matched unique student id.
After this initial match, we strip names in the lottery and enrollment data of spaces, surnames,
hyphens, and apostrophes. Unique matches after this cleaning are assigned to the matched unique
student id. Then, we use reclink, a fuzzy matching STATA program, to suggest potential matches
for the remaining students. This matches students with slight spelling differences and those who
appear in one grade older or younger than the charter application grade. We hand check these
suggested matches for accuracy. We search for the remaining unmatched students by hand in the
data. Typically this last group contains name truncations, name misspellings, or first and last
names in the wrong field.

The matching process assigns 95 percent of applicants to the state administrative records (see
Table A3). Students who do not match either enroll in private, parochial, or out-of-state schools,
have names and birthdates too common to match, or have spelling errors too extreme to match with
confidence. Receiving a charter offer makes students 3.8 more likely to match to the data, as shown
in Table A3. As a result, our findings show causal estimates for the set of students who enroll in
Massachusetts Public Schools.

We match the enrollment and demographic data to the student test scores using the unique
student identifier. Students who attend out of state, private, or parochial schools do not have test
score outcomes for their years outside of Massachusetts public schools.

Sample restrictions

We exclude applicants who receive higher or lower preference in the lottery. Late applicants,

those who apply to the wrong grade, out-of-area applicants, and siblings fall into these categories
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and typically have no variation in offer status. When students have duplicate applications within
an individual school’s lottery, we keep only one application. If students apply to charter schools in
different years, we use only the first application year. We restrict the sample to students with base-
line demographics data, excluding students applying from outside of Massachusetts public schools.
With these restrictions imposed, the original raw sample of applications narrows from 20,981 to

8,473,
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Table A3: Match from Lottery Data to Administrative Data

Regression of Match on Offer

Number of Proportion
Applications Matched Immediate Offer Any Offer
Lottery Year (1) (2) (3) (4)
2004 268 0.989 -0.006 -0.007
(0.026) (0.013)
2005 616 0.987 - 0.002
- (0.013)
2006 742 0.991 - 0.004
- (0.016)
2007 924 0.984 0.019** 0.034%**
(0.008) (0.013)
2008 1018 0.957 0.042*** 0.061***
(0.013) (0.019)
2009 1106 0.977 0.004 0.011
(0.011) (0.010)
2010 1041 0.924 0.065*** 0.071%**
(0.016) (0.017)
2011 2614 0.954 0.018*** 0.025***
(0.007) (0.007)
2012 2503 0.939 0.001 0.033***
(0.011) (0.011)
2013 2712 0.902 0.045%** 0.078***
(0.012) (0.015)
All Cohorts 15482 0.949 0.023*** 0.038***
(0.003) (0.004)

Notes: This table summarizes the match from the lottery records to administrative

student data. The sample excludes late applicants, siblings, disqualified applicants,

duplicate names, and out-of-area applicants. Columns (3) and (4) report coefficients from

regressions on a dummy for a successful match on immediate and any charter offer

dummies. All regressions control for school-by-year dummies.

*significant at 10%; **significant at 5%;

A%
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Table A5: Covariate Balance

Before Charter Expansion After Charter Expansion

Proven Other Proven Expansion
Providers Charters Providers Schools ~ Other Charters
1) 2) ©) ) ©)
Female 0.000 -0.004 -0.005 0.011 0.020
(0.034) (0.028) (0.027) (0.027) (0.028)
Black -0.026 0.007 -0.027 -0.025 -0.015
(0.032) (0.027) (0.027) (0.026) (0.028)
Latino/a 0.027 0.000 -0.001 0.005 -0.010
(0.031) (0.022) (0.027) (0.026) (0.027)
Asian -0.014 0.007 0.008 0.010 0.000
(0.009) (0.008) (0.010) (0.011) (0.009)
White 0.016 -0.003 0.007 0.001 0.018
(0.011) (0.024) (0.010) (0.012) (0.017)
Subsidized Lunch 0.015 0.010 -0.011 -0.016 -0.016
(0.029) (0.027) (0.020) (0.019) (0.023)
English Language Learners -0.005 -0.001 -0.004 -0.039 -0.027
(0.023) (0.014) (0.027) (0.026) (0.025)
Special Education -0.005 0.005 0.002 0.013 0.018
(0.027) (0.022) (0.021) (0.022) (0.022)
Attended charter before applying 0.010 -0.008 -0.015 -0.015% -0.003
(0.019) (0.020) (0.010) (0.008) (0.014)
Baseline math score -0.024 -0.022 0.058 -0.033 -0.004
(0.071) (0.053) (0.050) (0.051) (0.055)
Baseline English score -0.036 0.000 0.048 0.037 0.011
(0.071) (0.052) (0.053) (0.051) (0.055)
N (offered) 1009 1309 1466 1825 1142
P-value 0.594 0.891 0.526 0.136 0.979

Notes: This table reports coefficients from regressions of baseline characteristics on charter offers, controlling

for lottery risk set indicators. P-values are from tests of the hypothesis that all coefficients are zero.

*significant at 10%; **significant at 5%;

***significant at 1%
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