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1 Introduction

The diffusion of electric vehicles (EVs), coupled with cleaner electricity generation, offers a

promising pathway to reduce air pollution from on-road vehicles and to strengthen energy

security. In contrast to conventional gasoline vehicles with internal combustion engines, EVs

use electricity stored in rechargeable batteries to power the motor. When operated in all-electric

mode, EVs consume no gasoline and produce zero tailpipe emissions. But the stored electricity

is generated from other sources such as power plants, which produce air pollution. Therefore,

the environmental impacts of EVs depend on two critical factors. First, the emissions created

from operating EVs depend on the fuel source of electricity generation. Second, the emissions

diverted from EVs depend on the difference in emissions intensity between EVs and the vehicles

that EVs replace. While prior literature has focused on the first factor (Archsmith et al., 2015;

Holland et al., 2016), few analyses explore the second factor. We fill this gap by examining what

EV buyers would have purchased had EVs been unavailable. This counterfactual serves as the

proper baseline to evaluate the emissions impacts of EV diffusion.

Since the introduction of the first mass-market models into the United States in late 2010, EVs

sales have grown rapidly, as shown in Table 1. To encourage adoption, the federal government

provides a federal income tax credit to new EV buyers based on each vehicle’s battery capacity

and the gross vehicle weight rating, with the amount ranging from $2,500 to $7,500. Several states

have established additional state-level incentives to further promote EV adoption, including tax

exemptions and rebates for EVs and non-monetary incentives such as high-occupancy vehicle

(HOV) lane access, toll reduction, and free parking.1

A potential concern associated with subsidy policies is that they may create “non-additional”

emissions reductions: some EV buyers would have purchased EVs even if there was no subsidy.2

Since early adopters may place a higher value for new technology and the environment, it is

likely that some buyers have received a windfall gain without changing their behavior.

Moreover, even if the tax credits increased EV sales, the emissions impact may be small if

EVs replace vehicles with low emissions ratings. The effect that EVs have on emissions depends

on how clean EVs are relative to the vehicles they are replacing. Many EV buyers could have

bought a low-emission gasoline vehicle had EVs or EV incentives not been available. This could

arise from consumer preference heterogeneity and sorting: consumers that value fuel efficiency or

1In addition, federal, state, and local governments also provide funding to support charging station deployment.
2Additionality is a key issue for many other subsidy policies such as carbon offset programs (Bento et al.,

2015) and subsidy programs for alternative-fuel vehicles (Beresteanu and Li, 2011; Huse, 2014).
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environmentally friendly vehicles buy vehicles that are fuel-efficient or deemed environmentally

friendly, such as the Toyota Prius or the Toyota Prius Plug-In. For these buyers, opting to buy

the EV yields small or even negative emissions benefits.

To understand these issues, we use a stylized model to derive a simple expression relating

vehicle substitution patterns -represented by cross-price elasticities of demand- to emissions

changes. Our model shows that the greater the substitution a non-EV has with an EV, the

greater the impact the vehicle’s emissions have on the emissions effect of the EV. We then

estimate a random coefficient discrete choice model of vehicle demand by leveraging a rich

household survey of US new vehicle buyers and market-level sales data from 2010 to 2014. The

estimation takes advantage of the second-choice information from household survey data, which

greatly improves the precision of the random coefficient estimates and the resulting substitution

patterns. With the model, we simulate counterfactual market outcomes by removing the EVs

from the market to examine how consumers substitute between EVs and non-EVs. We then

conduct other counterfactual exercises to examine the cost-effectiveness of the income tax credits

policy in terms of reducing on-road emissions and compare it with alternative policy designs.

Our approach builds on the methodology used by Holland et al. (2016) to estimate EV

replacement vehicles. Their approach assigns a replacement vehicle based on stated preference

second choice survey data.3 Instead of using survey data solely to assign a substitute model

for each EV, we estimate a vehicle demand model incorporating both aggregate sales data and

second choice survey data. The estimated own- and cross-price elasticities can directly reflect

the substitution patterns between EVs and vehicles of other fuel types. The recovered consumer

preference parameters allow us to run simulations to quantify the difference in emissions between

the observed EV sales and the simulated replaced vehicles, as well as the impact of the subsidy

programs on increasing EV sales. Our structural approach also allows us to compute how much

EV subsidies lead to additional EV purchases, which allows us to evaluate the cost-effectiveness

of the subsidies.

With our estimated demand model, we run counterfactual simulations, which reveal three

3Holland et al. (2016) create a composite substitute gasoline vehicle for each EV by taking the weighted average
of emissions of the top gasoline substitute vehicles reported in the survey. But they do not have substitute choice
data for certain EV models including the Honda Fit EV, Fiat 500 EV, and BYD e6. In addition, the approach in
Holland et al. (2016) assumes that sales of a specific EV model replace the same gasoline vehicle, which might be
strong. For example, because of heterogeneous consumer preferences, some Nissan LEAFs replace a Toyota Prius,
while other Nissan LEAFs might replace a Ford Fusion. We define theoretically the emissions of a composite
vehicle that accurately represent the emissions of all vehicles that replace an EV. This definition is a weighted
average of the emissions of all vehicles that are substitutes for an EV, where the weights are proportional to each
vehicle’s cross-price elasticity of demand with respect to the EV’s effective price.
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key findings. First, electric vehicles appear to be replacing relatively fuel- efficient vehicles, as

households that generally prefer EVs also prefer conventional gasoline vehicles with better fuel

economy. Second, the availability of and support for EVs has not led to a significant reduction

in market share for hybrid vehicles. Hybrids had been supported by the federal government in

the 2000s and have seen a decline in market share since 2014, a time when EVs had started to

gain significant market share. But our results suggest that EVs have had a limited impact on

hybrid sales. Instead, the elimination of the federal subsidy for hybrids has caused a significant

reduction in hybrid sales. Third, the cost-effectiveness of the subsidy program is limited by the

fact that about 70 percent of consumers would have purchased EVs without the subsidy. We find

that this result is sensitive to the price elasticity of demand, where more elastic demand implies

a greater number of additional EV purchases. By comparing the current uniform subsidy with

an alternative policy design that removes the subsidy for high-income households and provides

additional subsidies to low-income households, our analysis shows that better targeting could

potentially increase the cost-effectiveness of the subsidy programs in terms of EV demand and

environmental benefits. Our simulation results contribute to the literature on the diffusion of low-

emission technologies and the cost-effectiveness of subsidy programs promoting these technologies

(Allcott et al., 2015; Boomhower and Davis, 2014; Langer and Lemoine, 2018; Sallee, 2011).4

Our study adds to the literature on the demand for electric vehicles and the EV market.

Li et al. (2017) employ data on EV sales and charging stations at the city level to quantify

the interplay between the availability of charging infrastructure and the installed base of EVs.

Our structural approach allows us to address several key issues surrounding EV demand that

reduced-form methods are unable to quantify, including the identification of vehicles that are

being replaced by EVs and the welfare effects of EV policies. Springel (2016) estimates a

structural model of consumer vehicle choice and charging station entry in the Norwegian EV

market and compares the effectiveness of direct purchasing price subsidies with charging station

subsidies. Li (2016) examines the issues of compatibility in charging technology and finds that

mandating compatibility in charging standards would increase the sales of EVs. Muehlegger

and Rapson (2018) use the EV subsidy receipts data and vehicle transaction prices to estimate

the pass-through rate of the EV incentive program in California and find that 100 percent of

the subsidies were passed through to consumers and that a decrease of 10 percent in EV prices

increases EV demand by 65 percent. In contrast to these papers, our study focuses on identifying

the vehicles that EVs replace.

4See Appendix A for a detailed review of this literature.
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We organize the rest of the paper as follows. Section 2 briefly describes the industry and

policy background of the study and the data. In Section 3, we develop a simple analytical model

to show emissions impacts of vehicle substitution depend on key vehicle demand parameters

to help guide our empirical analysis. Section 4 presents the empirical model and estimation

strategy. Section 5 presents the estimation results of the substitution. In Section 6, we present

the counterfactual simulations to evaluate the environmental benefits of the introduction of EVs

and the impact of the EV subsidy. We also conduct simulations to examine the impact of EVs

on hybrid vehicle sales and whether an income-dependent subsidy design could improve the

cost-effectiveness of the subsidy. Section 7 concludes.

2 Industry and Policy Background and Data

In this section, we first present industry background focusing on the recent development of the

US EV market and discuss current government policies. We then present the data used in the

empirical analysis.

2.1 Industry Background

There are currently two types of EVs for sale in the United States: battery electric vehicles

(BEVs) which run exclusively on high-capacity batteries (e.g., Nissan LEAF), and plug-in hybrid

vehicles (PHEVs) which use batteries to power an electric motor and use another fuel (gasoline)

to power a combustion engine (e.g., Chevrolet Volt). The deployment of both types of EVs

currently faces significant financial barriers: EVs are more expensive than their conventional

gasoline vehicle counterparts. The manufacturer’s suggested retail price (MSRP) for the 2014

Honda Accord Hybrid is $29,945, while the 2014 Honda Accord Plug-In Hybrid is listed at

$40,570, which is over a $10,000 difference. A key reason behind the cost differential is the cost

of the battery. Battery market analysts predict that as battery technology improves, the cost

should come down.

Governments have recently provided generous monetary and non-monetary incentives for

EVs.5 The US federal government provides income tax credits for new qualified EVs in the

range of $2,500 and $7,500 based on each vehicle’s battery capacity and the gross vehicle weight

rating. Several states add state-level incentives to further promote EV adoption. For example,

5Several cities in China such as Beijing implement a license restriction policy for the registration of new vehicles
and some PEV models are exempt from this restriction.
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through the California Clean Vehicle Rebate Project (CVRP), California residents can receive a

rebate of $ 2,500 for purchasing or leasing a BEV and $1,500 for a PHEV, and the rebate amount

increases to $4,500 and $3,500, respectively, for lower-income consumers.

There are at least two challenges that could undermine the effectiveness of the subsidy policy.

First, the uniform subsidy to EV buyers may not always result in additional EV sales in the sense

that many of the buyers who claim the subsidy may still purchase EVs even if there were no

subsidy policy. Since early adopters of EVs are those who favor the newest technology, have the

strongest environmental awareness, and usually have higher income, it is more likely that the

effect of a uniform subsidy policy, such as the current federal EV income tax credit, on boosting

additional EV sales is limited.6

The second challenge has to do with the type of vehicles that are replaced by electric vehicles.

A potential efficiency loss could arise if the subsidy does not induce people to switch from a gas

guzzler to an EV, but from another fuel-efficient gasoline vehicle, or another hybrid vehicle to

an EV, making little net gain of environmental benefits. Holland et al. (2016) evaluate the

heterogenous environmental benefits of EVs by comparing the externalities of EVs with their

gasoline counterparts. However, the relative environmental benefits would be smaller if a higher

fuel-efficient vehicle such as a hybrid vehicle is compared. At the national average fuel mix, BEVs

and PHEVs do not have an advantage over hybrid vehicles in emissions reduction, and PHEVs

even generate more emissions than hybrid vehicles (Appendix Table D.1). With the expiration

of the tax credits for hybrid vehicles, the income tax credits for EVs are likely to encourage

consumers who would otherwise purchase hybrid vehicles to purchase EVs. Table 1 shows that

as the market share of EVs increases in most recent years, the market share of hybrids starts

to decline. Chandra et al. (2010) find that the rebate programs in Canada primarily subsidize

people who would have bought hybrid vehicles or fuel-efficient cars in any case and may not be

the most effective way to encourage people to switch away from fuel-inefficient vehicles like large

SUVs or luxury sport passenger cars, at least in the short or medium run.

One of the justifications for EV subsidies is to reduce the emissions from the transportation

sector by replacing fuel-inefficient vehicles with EVs. When life-cycle emissions are accounted

for, however, substantial heterogeneity in environmental benefits could exist. For example,

6The CVRP used to offer incentives of $1,500 for PHEVs and $2,500 for BEVs, but the majority of the rebates
went to high-income households. To direct the rebates toward households that value the rebates most, CVRP
has been redesigned such that lower-income households will be able to claim a larger rebate. Households with
income less than 300 percent of the federal poverty level will be able to get $3,000 for PHEVs and $4,000 for
BEVs, and households with gross annual income above certain thresholds -$250,000 for single filers, $340,000 for
head-of-household filers, and $500,000 for joint filers- are no longer eligible for the rebates.
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EVs may not have an advantage over conventional vehicles in locations where the electricity is

generated through fossil fuels. Thus, even if the EV subsidy results in additional EV purchases,

the reduction of overall emissions would be limited. By incorporating spatial heterogeneity

of damages and pollution export across jurisdictions, Holland et al. (2016) find considerable

heterogeneity in environmental benefits of EV adoption depending on the location and argue

for regionally differentiated EV policy. They find that the environmental benefits of EVs are

the largest in California because of large damages from gasoline vehicles and a relatively clean

electric grid, but the benefits are negative in places such as North Dakota where the conditions

are reversed.

2.2 Data

We use three data sets to estimate the model of vehicle demand. The primary data source is

household-level survey data from the US New Vehicle Customer Study by MaritzCX Research.

It is a monthly survey of households that purchased or leased new vehicles. The data provide

detailed information of demographic characteristics of households that purchased each vehicle,

and the alternative vehicles they considered while making the purchase decisions. We use survey

data for five model-years: model year (MY) 2010 through MY 2014, where each model year is

defined as September of the previous calendar year to August of the current calendar year. (For

example, MY 2011 is defined as September 2010-August 2011.) For computational purposes, we

draw a sample of 11,628 transactions from the data after removing observations with missing

observed consumer attributes or information on the purchased and seriously considered models,

and end up having 1,509, 1,860, 2,287, 2,899, and 3,073 transactions for MY 2010-MY 2014,

respectively. As the market share of EVs is tiny, so that would include enough EV observations

to have sufficient variation in consumer demographic attributes for EV buyers to identify the

preference for EVs among different demographics, we use non-random sampling by including

all EV observations from the survey sample and randomly drawing observations for the other

fuel types. To adjust for non-random sampling, we then follow Manski and Lerman (1977) to

include a weighted exogenous sample maximum likelihood by re-weighting each observation in

the likelihood. The weight is defined by the actual market share in the population divided by

the within-sample market share.

Table 2 summarizes the demographic information for the households that made those purchase

transactions. The average household income for the survey respondents in the sample is $140,448,

which is higher than the average household income of $117,795 for married couples in the United
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States7. This feature of the data is caused by oversampling consumers who purchased EVs and

hybrid vehicles. The average household size is 2.66 people, and 63.9 percent of the heads of

household have earned a college degree. Of the respondents, 66.1 percent of the respondents are

from an urban or suburban area, with an average commuting of 25.6 minutes and average gasoline

price of $3.48 during the survey time. About 50 percent of the sampled households selected a light

truck, and the average price of the vehicles that the sampled households purchased is $33,451.

The average fuel economy of the purchased vehicles is 34.8 mpg.8 Appendix Table D.2 provides

further descriptive statistics for new vehicle buyers by fuel type. EV buyers have a much higher

income and a larger percentage of them graduated with a college degree.

The household survey data also include alternative vehicle choices that consumers considered

while purchasing vehicles, providing a valuable source for identifying unobserved preference

heterogeneity. Table 3 summarizes the top alternative vehicle choices reported by survey

respondents for EV models. The data reflect that EV buyers have a strong preference for

alternative fuel technologies, since most of them still consider PHEVs or hybrid vehicles as their

second choices. This strong correlation of the fuel economy between the purchased vehicle and the

alternative choices greatly facilitates estimating the random coefficients for vehicle fuel economy.

For luxury EV models, such as Tesla Model S, customers might also consider luxury gasoline

models such as Audi A7 as their alternative choices. The proximity in price, size, and some other

observed vehicle attributes would help in identifying consumer heterogenous preference for those

attributes.

Figure 1 summarizes consumers’ second choices by fuel type based on the survey data and

reflects the heterogeneous preference of fuel type among different groups of consumers. Among

gasoline buyers, 96.9 percent would consider another gasoline vehicle as a second choice, 2.9%

percent would consider a hybrid vehicle model as an alternative, and only about 0.2 percent

would consider either BEVs or PHEVs as substitutes. Gasoline vehicle buyers, who are the

majority of new vehicle purchasers, are generally less interested in the EV technology. Hybrid

vehicle buyers demonstrate a stronger preference of fuel economy, and 39.7 percent of them would

consider another hybrid vehicle as an alternative choice. However, only 3 percent would consider

EVs as second choices. Those consumers who purchase hybrid vehicles enjoy vehicles that save

fuel cost but do not favor the plug-in feature of EVs. Both PHEV and BEV buyers show a strong

7Data source: IRS Statistics of Income, 2014.
8This average is significantly higher than the average fuel economy of all purchased vehicles during the sample

period because of the oversampling of EV and hybrid buyers.
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interest into EVs: many of them are considering another EV as their second choices. However,

34.5 percent of PHEV buyers consider a hybrid vehicle as an alternative, and only 16.5 percent

consider a BEV model. PHEV buyers are more willing to adopt the EV technology but are less

interested in all-electric vehicles, probably because of the limited range of BEVs. BEV buyers are

most into the EV technology, and 41.3 percent of them pick another BEV model as their second

choice, 25.3 percent consider PHEVs, and only 18.6 percent consider another gasoline vehicle as

substitute. BEV adopters are those who care most about the feature of electrification and those

who are most into the newest technologies. The general pattern of this figure reveals the strong

correlation between alternative choices and the purchased vehicles and reflects the critical role

that the substitution pattern plays in reflecting the heterogenous preference of consumers.

We merge vehicle characteristics data from Wards Automotive, which provide detailed

attributes of each vehicle model in each model year, including horsepower, size, curb weight,

wheelbase, and fuel economy.9 The data set is further complemented by aggregate vehicle sales

data, which provide market-level information on vehicle demand, obtained from registration data

compiled by IHS Automotive. The IHS data record the quarterly number of registrations for each

vehicle model, broken down by fuel type, which are aggregated to model-year level to construct

the market share for each vehicle model in each model year. All the above data sets are matched

at the make-model-fuel type level, for example, Ford-Focus-gasoline, and the vehicle attributes

are assigned using the base model. The total number of vehicle models that are defined in the

model-year choice sets are 424, 404, 418, 441, and 459 for MY 2010- MY 2014, respectively. Table

2 summarizes the basic attributes of those vehicle choices and the composition of the choice sets

by fuel type.

We assign average vehicle prices based on respondent-reported price information in the

MaritzCX survey data. Respondents are asked to report the sales or lease prices of their vehicles,

within a few months after purchase. These values reflect the price that households paid on average

for each vehicle and may be different from the traditionally used MSRP because of negotiations or

temporary promotions. These prices exclude any credits received from trade-ins and include sales

taxes. We compute market by model by fuel type prices as the unweighted average transaction

price for all purchases and leases in the raw survey data. We do not adjust these prices for

tax credits or rebates because we do not observe whether households claimed these incentives.

Since many of the household observations lease plug-in electric or fully electric vehicles, credits

9The Wards Automotive data have a fine level of vehicle identification detail. We merge base model year by
make, model and fuel type to the MaritzCX survey data, where the base model is defined as the trim with the
lowest MSRP among all trims by make, model, and fuel type identification within the same model year.
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or rebates for these vehicles go to the leasing company, which then likely passes through the

incentive as a lower purchase price.10 We collect data of monthly average gasoline prices by

region from the Energy Information Administration (EIA).11 We convert all prices, including

average transaction prices and fuel costs, to real 2014$ using the Bureau of Labor Statistics

(BLS) Consumer Price Index.

We obtain detailed information on locations and open dates of all charging stations from the

Department of Energy’s Alternative Fuels Data Center (AFDC). By matching the zip code of

each charging station with the zip codes reported in the survey data, we assign the total number

of charging stations available in the city to each observed survey respondent.

3 Theory of Substitution

To motivate our empirical analysis, we lay out a stylized model of vehicle substitution to illustrate

how substitution between vehicles from a policy or non-policy change affects emissions. Consider

a new vehicle market where there are J unique models for sale, where each model is indexed by j.

Model j has lifetime emissions equal to ej and has aggregate demand qj = qj(p1, p2, ..., pJ), where

pj represents the sales price net of subsidies for vehicle j. Total lifetime emissions of vehicles

sold are

E =
J∑
j=1

ejqj(p1, p2, ..., pJ). (1)

Without loss of generality, we assume that j = 1 is an EV and j = 2, 3., ..., J are gasoline or

hybrid models. We assume that the EV’s price is subsidized by an amount s, so that the EV’s

price is p1 = p01 − s, where p01 is the EV’s price without a subsidy. Differentiating total lifetime

emissions with respect to the EV subsidy yields

dE

ds
= −e1

dq1
dp1
−

J∑
j=2

ej
dqj
dp1

. (2)

10Our treatment of the purchase price for plug-ins and electric vehicles adds measurement error to the price
variable for households that are able to claim the monetary incentives. We address this concern with how we
estimate the price sensitivity parameters. We estimate price elasticities based on all the models in the choice
sets, where a large majority of models are conventional gasoline vehicles that do not have tax credits or rebates.
Since plug-ins and electric vehicles comprise only a tiny share of the choice sets, mismeasuring their prices will
have a minimal effect on our estimated price elasticities. Furthermore, we instrument for price in the demand
estimation, which further reduces concerns about price measurement error.

11EIA reports monthly gasoline prices by region, defined by the Petroleum Administration for Defense Districts
(PADDs). We assign gasoline prices to each sampled household based on its PADD region and the month of
vehicle purchase.
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Normalizing the change in the subsidy by the EV’s price (so that dE
ds′

= dE
ds
p1) and defining the

own-price and cross-price elasticity of demand with respect to the EV price as ε1 = dq1
dp1

p1
q1

and

εj =
dqj
dp1

p1
qj

, respectively, we can express equation (2) as

dE

ds′
= −e1q1ε1 −

J∑
j=2

ejqjεj. (3)

Equation (3) reveals that the effect of the subsidy on lifetime emissions is proportional to the

own-price elasticity of demand for the EV and the cross-price elasticity of demands for all other

vehicles. The cross-price elasticities εj represent the substitution pattern between the EV and

the non-EV models. The larger the value of this derivative, the greater the substitution and the

more of an impact the non-EV model has on the emissions impact of the subsidy. Consider the

simple example where εj = 0 for j = 3, 4, ..., J . Then equation (3) becomes

dE

ds′
= −e1q1ε1 − e2q2ε2. (4)

If the demand responses offset one another so that there is no change in total new vehicle sales,

then the change in emissions depends on the relative difference between the lifetime emissions of

the EV and the non-EV j = 2:
dE

ds′
= (e2 − e1)q1ε1. (5)

This simplified equation is conceptually the same approach taken by prior studies to quantify

the emissions impacts of EVs.

3.1 Defining a Composite Substitute

This approach above is an accurate representation of the full impact if (1) the only substitution

that takes place is between the EV and a single vehicle, (2) the single vehicle is the correct

substitute, or (3) the j = 2 model’s emissions accurately reflect the emissions of all the vehicles

that are substitutes for the EV. In most cases, an EV will have more than one vehicle as a

substitute. Here we derive a simple formula defining the emissions of a composite vehicle that

satisfies the third condition when more than one vehicle substitute for the EV. We begin by

assuming that a change in the subsidy does not change total vehicle sales: − dq1
dp1

=
J∑
j=2

dqj
dp1

. Denote

the emissions of the composite vehicle by ec. We want to find an ec that solves dE
ds′

= (ec−e1)q1ε1.
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Substituting this expression into equation (3) yields

dE

ds′
= −e1q1ε1 −

J∑
j=2

ejqjεj = (ec − e1)q1ε1. (6)

Making cancellations and isolating ec yields

ec = −
J∑
j=2

ej
qjεj
q1ε1

. (7)

Emissions for the composite vehicle equal to the product of emissions and the ratio of the

cross-price elasticity of demand are scaled by sales of vehicle j, and the own-price elasticity of

demand is scaled by sales of the EV. In our empirical demand model, we are able to identify

composite vehicle emissions based on estimated own-price and cross-price demand elasticities.

Equation (7) can be further simplified to

ec = −
J∑
j=2

ej
dqj
dq1

. (8)

This general expression can be used to accurately evaluate hypothetical settings where electric

vehicles are added or removed from the market. This expression suggests that evaluating the

impact of EV subsidy on reducing emissions depends on the estimation of the substitution pattern

between EVs and all the other vehicle models in the market.

3.2 Additionality

In this section, we derive an equation that shows how the non-additionality of a subsidy is affected

by demand parameters. We define non-additionality as the proportion of EVs that would have

been bought without the subsidy to the total EV sales with the subsidy. A higher ratio implies

more non-additional purchases and more subsidy dollars going to households that would have

bought an EV without the subsidy. The proportion is equal to

N =
q1(p

0
1)

q1(p1)
. (9)

Differentiating N with respect to s′ and substituting the price elasticity of demand for the

11



EV yields
dN

ds′
=
q1(p

0
1)

q1(p1)
ε1 (10)

Evaluating equation (10) at the price where the subsidy is equal to zero (p01 = p1) yields

dN

ds′
= ε1 (11)

This equation shows that non-additional purchases are proportional to the EV own-price

elasticity of demand. More elastic demand (more negative ε1) implies relatively fewer non-

additional purchases and a greater number of purchases that are created by the subsidy. In

contrast to the results we derived for the emissions impacts of the subsidy, the additionality of

the subsidy depends on the own-price elasticity of demand only.

4 Empirical Model and Estimation

In this section, we discuss our empirical model and estimation strategy. We estimate vehicle

demand preference parameters using a random coefficient discrete choice model in the spirit of

Berry et al. (1995, 2004), Petrin (2002), and Train and Winston (2007). Our model most closely

follows the structure of Train and Winston (2007), as we exploit household demographics and

second choice data to identify the model parameters.

4.1 Vehicle Demand

The household survey data are not representative of the entire population since they include

only buyers of new vehicles. Therefore, we model new vehicle preferences conditional on the

decision of buying a new vehicle. Our approach will not be able to capture the substitution

between the new vehicle models and the outside option: buying a used car, continuing using

the household’s old vehicle, or relying on public transportation. Instead, our model represents

how consumers choose among new vehicles and how changes in new vehicle attributes or the

selection of new vehicles available for purchase affects new vehicle sales. Two factors suggest

that our model could reasonably capture the substitution that consumers make when deciding

between an EV and another vehicle option. First, EVs represent a new segment of the light-duty

vehicle market, where few used vehicle options represent plausible substitutes. Second, EVs are

generally expensive options relative to most new or used vehicles. If consumers substitute among
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similarly priced vehicles, the EV substitutes are likely to be expensive new vehicles.

We define household i’s utility from purchasing vehicle model j as:

uij =
K∑
k=1

xjkβ̄k − α1lnpj + ξj︸ ︷︷ ︸
δj

+α2
lnpj
Yi

+
∑
kr

xjkzirβ
o
kr +

∑
k

xjkvikβ
u
k︸ ︷︷ ︸

µij

+εij,
(12)

where δj is the mean utility of vehicle model j which is constant across consumers in the same

market. xjk stands for the kth vehicle attribute for model j. We include horsepower, weight,

gallons per mile, and some vehicle segment dummy variables as the observed vehicle attributes.

Price pj is the average transaction price observed from the survey data, which is constant for the

same model by fuel type for all households buying a vehicle in the same market.

The second component, µij, captures heterogeneous utility driven by both observed and

unobserved consumer characteristics. Yi is household i’s income in the corresponding year, and

we assume consumer price sensitivity to be inversely related to income. One would expect α2 to

be negative, as higher-income households would be less sensitive to a price increase because of

the diminishing marginal utility of money. zir denotes consumer i’s other demographic variables-

including family size, education level, whether living in an urban area, the average gasoline

price, and the number of charging stations in the area- which are interacted with certain vehicle

attributes to capture variation in consumer preference due to observed heterogeneity.

The unobserved consumer taste vik is assumed to have a standard normal distribution. The

coefficient βuk can be interpreted as the standard deviation in the unobserved preference for

the vehicle attribute k conditional on the consumer’s observed attributes. Let θ = {βokr, βuk},
denoting the “nonlinear” parameters, and it is understood that the vector δ = {δ1, ..., δj} is

estimated conditional on a given θ1. The last component, εij, is the idiosyncratic preference

of household i for vehicle model j, and it is assumed to have an i.i.d. type one extreme value

distribution.

A useful feature of the MaritzCX data is that they include vehicle models that consumers

seriously considered other than the purchased model. This allows for a ranking of both the

first and second vehicle choices.12 We exploit the second choice data as a source of variation to

identify unobserved heterogeneous preferences conditional on observed household characteristics.

12We use survey response data from multiple questions to assign a second choice. The first question is “When
shopping for your new vehicle, did you consider any other cars or trucks?” Respondents answering yes to this
question were then asked to provide make, model, model year, fuel type, and other vehicle information for the
model that they most seriously considered but did not purchase.
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For example, if the second choices of an EV model include only EV models, this would suggest

that EV buyers have a very strong preference for this particular fuel type. If, on the other hand,

the second choices include many non-EV counterparts of the EV models within the same make,

this would suggest a less strong preference for EV type, but preference for the same make is an

important factor. Similarly, the comparison between the chosen model and the second choice in

other dimensions of vehicle attributes such as vehicle size or fuel economy can also inform us

about consumer preference heterogeneity for these vehicle attributes.

To use the second choice information, we form the likelihood function based on the joint

probability of household i choosing j as the first choice and considering h as the second choice:

Pijh =

∫
exp[δj(θ) + µij(θ)]

1 +
∑
g

exp[δg(θ) + µig(θ)]
· exp[δh(θ) + µih(θ)]∑
g 6=j
exp[δg(θ) + µig(θ)]

f(v)dv. (13)

The probability of observing household i choosing model j is conditional on the household’s

vi vector, and the probability is calculated by integrating over the distribution of v. Instead of

constructing moments exploiting the exogeneity assumption that unobserved product attributes

are uncorrelated with observed attributes, we use the maximum likelihood estimation (MLE)

method with a nested contraction mapping to estimate θ and δ (Train and Winston, 2007;

Langer, 2012; Goolsbee and Petrin, 2004; Whitefoot et al., 2013; Murry and Zhou, 2017). Let

lnRi = lnPijh, denoting the individual log-likelihood of household i choosing the observed

purchased model j and considering the observed alternative choice h. The log-likelihood function

of the entire sample for a single market is therefore:

lnL =
N∑
i=1

lnRi. (14)

The nonlinear parameters θ are estimated by maximizing the likelihood function.13 Given

the larger number of mean utilities δ, we follow the two-step procedure in Berry et al. (1995),

which shows that under certain regularity conditions, for each θ, there exists a unique δ that

matches the predicted market shares with observed ones. The market demand is the sum of

individual consumers’ demand, and the predicted market share is calculated by calculating Pij

with parameters θ = {βokr, βuk} and δ = δ1, ..., δj and averaging over the N consumers in the

13In Appendix B, we lay out more details of the likelihood function and the gradient for estimation.
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survey sample. Following this strategy, we back out the mean utility vector δ for any given θ

using the contraction mapping technique:

δtj(θ, S) = δt−1j (θ, S) + ln(Sj)− ln(Ŝj(θ, δ
t−1(θ, S))). (15)

Once θ and δ are estimated using the MLE method, we then recover the parameters in mean

utility:

δj = −α1lnpj +
K∑
k=1

xjkβ̄k + ξj,

where ξj denotes the unobserved vehicle attributes of model j. To control for the correlation

of price with the unobserved product attributes, following Train and Winston (2007), we use

BLP-style instruments that measure the sum of distance and squared distance in attribute space

between own product and other products in the same firm and from other firms.

4.2 Identification

Consumer utility is composed of three parts: mean utility, observed heterogeneity, and

unobserved heterogeneity. The linear parameters in the mean utility β̄ and α1 are identified

through the variation in market shares corresponding to variation in price and other observed

vehicle attributes. Because of the potential correlation between price and the unobserved vehicle

attributes ξj, functions of attributes of other competing products that capture the intensity of

competition are used as instruments to provide exogenous variation in prices. The maintained

exogeneity assumption is that unobserved product attributes are not correlated with observed

product attributes.

The nonlinear parameters βokr and α2 in the observed individual heterogeneity component

are identified from the correlation between household demographics and vehicle attributes.

For example, if we observe that households with a high level of education disproportionately

purchased more electric vehicles, we would expect a positive coefficient for the interaction between

household education level and the EV dummy. If higher-income groups tend to be less sensitive

to vehicle prices and disproportionately buy more expensive vehicle models, we would expect a

negative sign for α2, which captures the impact of income on consumers’ price sensitivity.

The unobserved consumer heterogeneity parameters βuk are primarily identified by the

correlation between first and second choice vehicle attributes. For example, if consumers who
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purchase high fuel-economy vehicles tend to state that they would have purchased a high fuel-

economy vehicle if their first choice was not available, we would expect a large coefficient for the

parameter associated with fuel costs (i.e., the standard deviation of the preference for the fuel

cost). Berry et al. (2004) note that having micro-level second-choice data helps the estimation of

random coefficients when they have observations for only one market year, and Train and Winston

(2007) also mention that including alternative choice data significantly improves the precision

of the random coefficient estimates. In contrast to these studies, however, the unobserved

heterogeneity parameters in our model are also identified by changes in choice sets over time.

We leverage the feature of our sample, which includes periods where no electric vehicles were

available (2010 and 2011), followed by periods of availability (2012-2014) and an expansion of

available options (see Table 1). The variation in the choice sets over time provides an additional

source of identification for the random coefficients.

5 Estimation Results

We first report parameter estimates for the random-coefficient model and then use the estimates

to calculate price elasticities to show implied substitution patterns.

5.1 Parameter Estimates

Table 4 reports the estimation results of the demand model. The mean utility δ represents

the average preference consumers have for each vehicle model and is estimated by equating

the predicted market shares to the observed market shares. The mean preference coefficients

for price and each observed vehicle attribute are recovered from instrumental variables (IV)

estimation with the instruments accounting for the endogeneity of price. Both ordinary least

squares (0LS) and IV results are reported in panel (a) of Table 4 and reflect the preferences for

vehicle attributes that are generally expected. Consumers have a negative preference for price

and the price coefficient in the IV specification is more negative, suggesting OLS underestimates

the price sensitivity. Consumers have a positive preference for acceleration, measured by the

ratio of horsepower to weight, and also prefer heavier vehicles. The coefficient for gallons/mile

is positive but statistically insignificant. Consumers in general dislike AFVs and EVs, probably

because of range anxiety concerns. Conditional on other vehicle attributes, consumers do not

have a significantly different preference for pickup trucks relative to passenger cars. The positive

signs for MY 2011-MY 2014 dummies suggest that consumers prefer vehicles in later model years
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relative to MY 2010, controlling for other vehicle attributes. This is consistent with broad sales

patterns during this time period, when total sales had been recovering from the recession.

Turning to the consumer heterogeneity parameters, with the aid from the individual

transaction data, the interaction terms of consumer demographics with vehicle attributes are

estimated precisely with intuitive signs. The coefficient of log(price) divided by income captures

the extent to which a consumer’s price sensitivity varies with income. The negative sign of

the estimate suggests that households with lower income react more negatively to a vehicle’s

price than households with higher income. The elasticities implied from the price preference are

further discussed below. Households of a larger family size prefer larger vehicles that are heavier.

Compared with households that live in suburban and rural areas, households that live in urban

areas are less likely to adopt pickups, probably because of less towing utility and limited parking

space, but are more interested in EVs because of both more frequent city driving needs and

better refueling infrastructure provided in urban areas. The interaction of the household-specific

gasoline price with gallons/mile, which measures the operating cost per mile of the vehicle,

has a negative sign, suggesting that consumers have a negative preference for fuel costs. The

estimation results also suggest that consumers who have more education and live in cities with

more charging stations are more likely to adopt EVs.

We include four random coefficients, which represent unobserved consumer preferences for

fuel economy (gallons/mile), acceleration (horsepower/weight), light trucks, and AFVs. Based

on the standard normal distribution of the random taste variable vik, the coefficient βuk can be

interpreted as the standard deviation in the unobserved preference for the vehicle attribute

k. To reduce simulation noise and bias, following Train and Winston (2007), we use 150

Halton draws to approximate the distribution for the unobserved consumer taste v.14 All four

coefficients are statistically significant, indicating that consumers have heterogenous preferences

for those vehicle attributes conditional on the observed consumer characteristics. Those precisely

estimated random coefficient parameters help alleviate the well-known problem of independence

of irrelevant alternatives experienced in traditional logit models and play a critical role in defining

the substitution patterns.

To illustrate the importance of estimating the model parameters with the second-choice

data, we re-estimate the first-stage parameters (the observed and unobserved interaction terms)

without these data. Recall that we estimate the model parameters with five years of data where

14Halton draws are a type of low-discrepancy sequence. The demand results are similar when the number of
Halton draws is increased to 200.
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for each household observation we observe a second choice. The unobserved heterogeneity is

identified from both changes in choice sets and vehicle attributes over time and the correlation

between first- and second-choice vehicle attributes. Therefore, removing the second-choice data

allows us to test the importance of including these data relative to exploiting panel variation

that is traditionally used to identify unobserved heterogeneity (Berry et al., 1995). Our model

also has household demographics interacted with vehicle characteristics, and we include these

as well to isolate the impact of leveraging the second choice data. Petrin (2002) finds that

including household demographic by vehicle characteristics interactions is crucial for obtaining

precise estimates of the unobserved heterogeneity terms. Therefore, we keep them in the model

for each set of estimates.

The first-stage parameter estimates without the second-choice data are shown in panel (b)

of Table 4 under “(2) No 2nd Choice.” Overall, the signs and magnitudes of the observed

heterogeneity terms are consistent with the estimated parameters with the second-choice

data included. These terms also maintain a high level of statistical significance, suggesting

that incorporating the second-choice data is not necessary for precise estimation of observed

heterogeneity. This is intuitive because the observed heterogeneity terms are identified from

correlations between observed household demographics and vehicle characteristics, which are not

dependent on the second-choice data.

Comparing the estimates of the standard deviations of preference parameters reveals striking

differences between the two models. Without the second-choice data, all but one of the standard

deviations becomes insignificant, and the magnitudes are much different from the parameters

estimated with the second-choice data. This reveals that we are unable to obtain precise

measures of unobserved heterogeneity without including the second-choice data, even with panel

variation from five years of rapidly changing vehicle attributes and choice sets. To the best of

our knowledge, this is the first illustration of the value of exploiting repeated choice data to

identify unobserved heterogeneity parameters relative to the value of using panel variation to

identify these parameters. The lesson from this comparison is clear: the second-choice data

greatly improve the statistical precision of the unobserved heterogeneity parameters relative to

a model estimated using the standard panel variation approach.

5.2 Elasticities and Substitution Patterns

The demand system implies sensible price elasticities. All of the implied own-price elasticities

are greater than one, ranging from -3.97 to -2.37 with the average being -2.67 and the standard
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deviation being 0.21. The sales-weighted average elasticity among all 2,146 products in five

model years is -2.75. The magnitude of the own-price elasticities is close to the one obtained by

Durrmeyer and Samano (2017) and slightly smaller than those obtained by Berry et al. (1995),

Petrin (2002), Beresteanu and Li (2011), and Li (2012), since our demand estimation is based on

consumers who purchase new vehicles (excluding outside option). Our estimate is close to that

of Train and Winston (2007), who also estimate the demand focusing on new vehicle buyers and

find an average own-price elasticity of -2.32. Appendix Figure D.1 plots the own-price elasticities

against price and demonstrates that more expensive models tend to have less elastic demand.

Table 5 shows the cross-price elasticities for a selected group of models. One obvious pattern

is that the demand for less expensive models tends to be more price sensitive. More expensive

models such as Tesla Model S have lower own-price elasticities in magnitude. Compared with

other conventional gasoline vehicles, electric vehicles such as the Nissan LEAF and the Chevrolet

Volt have larger cross-price elasticities with hybrid vehicles such as Toyota Prius. Battery electric

vehicles such as the Nissan LEAF and the Tesla Model S do not have large cross-price elasticities

with plug-in hybrid vehicles such as the Chevrolet Volt. BEVs can only run on electricity and

many of them have limited range. PHEVs, on the other hand, rely on gasoline mode to boost

the range, since the electric range is only around 30-40 miles. These two different kinds of plug-

in vehicles are likely to attract consumers with different driving needs as consumers with more

frequent long-distance travels are more likely to adopt PHEVs. Therefore, it makes sense that

no strong substitution exists between PHEVs and BEVs, especially when there were only a few

models during the early deployment stage. Ford F-150, the only pickup truck in the selected

sample, does not have much substitution with the other small and mid-size sedans, and it has

almost zero substitution with EV models. The substitution pattern indicates that consumers

who purchase EVs generally favor mid-size sedans that are relatively fuel-efficient rather than

large vehicles.

Table 6 summarizes the elasticity estimates by fuel type. Across different fuel types, the

sale-weighted own-price elasticities are similar since all fuel types include vehicle models with a

large price range. Each cell in the matrix represents the average sales change of a vehicle model

in that fuel type from a price change of a vehicle model of other fuel types. For example, a

10 percent increase in the price of hybrid vehicle model will increase the sales of a BEV model

by 0.37 percent on average, and a 10 percent increase in the price of another BEV model will

increase the sales of a BEV model by 0.13 percent. Both BEVs and PHEVs have a larger cross-

price elasticity with respect to hybrid vehicle models relative to the cross-price elasticity with
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respect to gasoline, diesel, and flexible-fuel vehicle (FFV) models, suggesting that EV buyers

prefer vehicles with better fuel economy. Because of the large selection of model choices, gasoline

vehicles are a major substitute for vehicles of all fuel types. Since our data mostly cover the first

few years after the introduction of EVs, the within-segment substitution for BEVs and PHEVs

is relatively small, considering that we do not have enough between-segment variation to identify

a strong substitution between EV models.

6 Counterfactual Analysis

In this section, we conduct simulations to examine the counterfactual vehicle fleet where we

remove all EV models from the choice sets and where the EV subsidy were removed. The

magnitude of the resulting sales changes of the other fuel types could suggest what types of

vehicles were replaced by EVs. The estimated substitution patterns are then translated into

emissions reductions to assess the environmental benefits of EVs and EV subsidies.

6.1 The Environmental Benefits of EVs

The introduction of EVs could lead consumers who would originally choose gasoline or hybrid

vehicles to purchase EVs, and the substitution pattern critically determines the environmental

benefits of promoting EVs. To examine the substitution pattern of EVs with other fuel types, we

conduct a counterfactual exercise where all EVs are removed from the choice set. The resulting

changes in sales of other fuel types will reveal what types of vehicles EVs replace. Since we do not

allow consumers to choose an outside option, as the demand estimation is conditional on buying

a new vehicle, consumers who purchased EVs would switch to another non-EV model. In 2014,

109,449 EVs were sold in the US vehicle market. The simulation results suggest that 78.7 percent

of EVs replaced conventional gasoline vehicles, 12 percent of EVs replaced hybrid vehicles, 2.4

percent replaced diesel vehicles, and the remaining 6.9 percent replaced FFVs (Table 7). The

average fuel economy of the vehicles that were replaced by EVs is 28.9 mpg. This number can be

interpreted as the fuel economy level of the composite substitute of EVs, as defined in Section 3.

Among gasoline vehicles replaced by EVs, 74 percent of them have fuel economy above 25 mpg.

The vehicle models that were replaced by EVs most are: Honda Accord, Toyota Prius, Toyota

Camry, Honda Civic, Toyota Corolla, Nissan Altima, and Chevrolet Cruze. This substitution

pattern suggests that EVs mainly attracted consumers who were originally choosing mid-size and

fuel-efficient gasoline or hybrid vehicles, rather than gas-guzzlers such as large SUVs or trucks.
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To evaluate the environmental impact of the introduction of EVs, we evaluate the total

gasoline saved and CO2 emissions reductions from EVs by comparing the gasoline consumption

of the actual vehicle fleet with the counterfactual fleet without EVs. The existence of EVs helps

save lifetime gasoline consumption of 0.51 billion gallons, resulting in a CO2 emissions reduction

up to 9.94 millions pounds, assuming the lifetime VMT for all vehicle is 195,264.15 If we do not

estimate the substitution pattern but assume each EV replaces a conventional gasoline vehicle

with fuel economy of 23 mpg, the total lifetime gasoline saved would become 0.65 billion gallons,

with an emissions reduction of 12.8 billion pounds of CO2. Simply assuming EVs replace a

gasoline vehicle of an average mpg would overestimate the environmental benefits of EVs by

27 percent. The overestimated portion would be larger if EVs replace a greater number of

fuel-efficient vehicles such as hybrid vehicles.

If EVs were removed from the market, consumers who value the EV technology will suffer

from a welfare loss. We find that the removal of EVs from the choice set leads to a total consumer

welfare loss of $670.3 million in 2014.16 Panel (b) of Table 7 summaries the impact of the removal

of EVs on consumer surplus by income quintile. The results reveal a greater impact on wealthier

households, since they are more interested in the EV technology and thus benefit more from the

introduction of EVs.

6.2 Impacts of Income Tax Credits

The federal government has adopted several policies to support the EV industry including

providing federal income tax credits for EV purchases, R& D support for battery development,

and funding for expanding charging infrastructure. Congressional Budget Office (CBO)

estimates that the total budgetary cost for those policies will be about $7.5 billion through

2017. The tax credits for EV buyers account for about one-fourth of the budgetary cost and are

likely to have the greatest impact on vehicle sales. Under the tax credits policy, EVs purchased

in or after 2010 are eligible for a federal income tax credit up to $7,500. Most popular EV models

on the market are eligible for the full amount. The credit will expire once 200,000 qualified EVs

have been sold by each manufacturer. In 2014, the federal government spent $725.7 million on

income tax credits for EV buyers. To examine the effectiveness of the income tax credit policy

15In reality, EVs might have a larger VMT than gasoline cars because of lower fuel cost or a lower VMT because
of limited range and inconvenience of charging.

16The average welfare loss per household is estimated as the change in consumer surplus as shown by Small
and Rosen (1981). Total welfare loss is calculated as average consumer surplus loss multiplied by the market size
of new vehicles.
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in terms of stimulating EV sales, we use our parameter estimates to simulate the counterfactual

sales of EVs that would arise in the absence of the tax credits to EV buyers in 2014. The

counterfactual sales could help us identify the percentage of “non-additional” EV sales and also

evaluate the environmental benefits of the policy. The resulting sales increase in gasoline and

hybrid vehicles could help us evaluate the environmental benefits of the “additional” EV sales.

The short-run benefits could be small if the additional sales simply come from people who were

considering buying other fuel-efficient vehicles.

The simulation results of the federal EV subsidy are summarized in Table 8. Our estimates

imply that removing the federal income tax credits reduces EV sales by 28.8 percent in 2014,

with BEVs experiencing a sales reduction of 32.6 percent and PHEV sales falling by 24.5 percent.

The results suggest that about 70 percent of the EV buyers would still purchase EVs without

income tax credits. Since the EV subsidy lowers the effective price of purchasing EVs, consumers

would enjoy a welfare increase due to the subsidy, especially for those who purchase EVs. Our

estimation results suggest that the EV subsidy program leads to a total increase in consumer

surplus of $165.2 million. The average increase of consumer surplus per household due to policy

may not be large, since most households do not purchase EVs. Panel (b) of Table 8 summarizes

the incidence of the federal EV subsidy. The distribution impacts imply that the EV subsidy

program is regressive, as higher-income households benefit more from the subsidy because they

are more likely to purchase EVs and thus claim the subsidy.

If there were no federal-level EV subsidy, 78.9 percent of the “additional” EV buyers

would switch to gasoline vehicles with an average fuel economy of 27.2 mpg, and 11.8 percent

would switch to hybrid vehicles with an average fuel economy of 45 mpg, with the remaining

switching to diesel and flex-fuel vehicles. Using the miles per gallon gasoline equivalent (MPGe)

introduced by the US Environmental Protection Agency (EPA) 17, we can then translate those

substitution patterns to energy consumption reduction from the increased sales of EVs. By

inducing consumers to switch to more fuel-efficient EVs, the income tax credit policy leads to a

lifetime gasoline consumption of 0.15 billion gallons and CO2 emissions reduction of 2.91 billion

pounds, which is equivalent to reducing 1,750 gasoline vehicles of an average fuel economy of 23

mpg. If we assume each EV replaced an conventional gasoline vehicle with a fuel economy of 23

mpg, the gasoline consumption saved would become 0.19 billion gallons and the CO2 emissions

would become 3.74 billion pounds, equivalent to removing 2,250 gasoline cars from the road. Not

17The MPGe metric was introduced in November 2010 by EPA. The ratings are based on EPA’s formula, in
which 33.7 kilowatt-hour of electricity is equivalent to 1 gallon of gasoline.

22



taking account of the actual substitution pattern would overestimate the environmental benefits

by 27 percent (Table 9).

Appendix Table D.3 summarizes the environmental benefits of EV income tax credits by

evaluating the external cost savings from emissions reduction of various pollutants. In 2014,

the EV subsidy results in total environmental benefits of $73.8 million from a more fuel-efficient

vehicle fleet, by taking account of the reduction of CO2, VOC, NOx, PM2.5, and SO2.

The environmental benefits and increase in consumer welfare are much lower than the total

spending of $725.7 million, since the majority of the subsidies are non-additional and the

additional portion mainly induces consumers who would purchase fuel-efficient vehicles anyway

to switch. The current subsidy policy offers equal tax credit amounts to all buyers of the same

electric model. Alternatively, more credits could be given to lower-income households, with no

tax credits given to the highest-income households. This policy design would mimic the policy

reform of California’s CVRP, which intends to direct the incentives toward households that are

likely to value the rebates the most. The subsidy could also target first-time buyers, who may

not have a good sense of vehicle fuel consumption but are more sensitive to upfront costs.

A discussion of a number of caveats regarding our environmental analysis is in order. First,

the estimates of the environmental benefits are relatively crude, as they do not incorporate

spatial heterogeneity of the upstream emissions from electricity generation. As Holland et al.

(2016) show, great spatial heterogeneity exists regarding the environmental benefits promoting

EVs, and in some locations where electricity generation relies much on fossil fuels, EVs should be

taxed rather than being subsidized. The focus of our study is to demonstrate that the substitution

pattern is also an important factor in determining the environmental benefits, which matters even

if we focus on a specific location where the grid fuel mix is fixed. Nevertheless, different markets

might reflect different substitution patterns, which leads to different environmental benefits of

promoting EVs. Therefore, incorporating spatial heterogeneity and estimating location-specific

substitution patterns would help us determine the location-specific environmental benefits of

EVs, but it would require more detailed and representative location-specific sales and consumer

survey data. However, our analysis provides empirical evidence of EV substitution at the national

level and will provide guidance for the federal government to evaluate the effectiveness of federal

EV subsidies. The findings of the paper would be policy-relevant since most markets worldwide

subsidize EVs at the national level.

Second, when estimating the environmental benefits of replacing gasoline vehicles with EVs,

we assume that VMT is fixed and is the same for both EVs and gasoline vehicles. However,
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consumer mileage heterogeneity plays a critical role in evaluating the effectiveness of tax and

subsidy policies (Grigolon et al., 2018). In addition, when consumers switch to fuel-efficient

vehicles with a lower marginal cost of driving, they might drive more, resulting in a rebound

effect that undermines some environmental benefits of EVs. Nevertheless, when consumers

switch to smaller and lower-performance vehicles, the marginal benefits of driving per mile

could be reduced. Thus, the rebound effect could be weakened by shrinking vehicle size and

the net response of miles could be zero or negative (Anderson and Sallee, 2016; West et al.,

2017). Moreover, because of the limited range of EVs and the inconvenience of charging in

some locations, it is less likely that consumers would increase miles traveled once adopting EVs.

Assuming that EVs and gasoline vehicles have the same VMT would mostly likely provide a

lower-bound estimate of the environmental benefits of EVs in the section above.

Third, our demand estimation is conditional on consumers choosing a new vehicle without

considering the outside option, which includes used car markets or public transportation.

Therefore, when we estimate the benefits of the EV subsidies, we exclude the possibility that

the subsidy could induce households that were considering public transportation or used cars

to purchases new EVs. To fully evaluate the benefits of EVs, incorporating the outside options

would require us to model consumer demand of public transportation and used cars, which

is beyond the scope of the paper. However, considering that EV adopters favor the newest

technologies and have a disproportionately high leasing rate (44 percent, Appendix Table D.2)

and most of the EV survey respondents report another new vehicle models as their alternative

choices, we believe that it is reasonable to assume that they would still choose a new vehicle even

when the subsidy was removed. Thus, ignoring the outside option unlikely produce large bias in

our analysis.

6.3 The Effect of Electric Vehicles on Hybrid Sales

One possible concern with promoting electric vehicles is that the policy may have reduced demand

for alternative clean vehicles such as hybrids. Before the introduction of electric vehicles, hybrid

technology was anticipated to provide a pathway to dramatically reducing emissions from light

duty vehicles. Since we have shown that hybrids are relatively close substitutes for electric

vehicles, the introduction of electric vehicles has reduced hybrid market share and may explain

why the market share of hybrids has not continued to grow as it did during the 2000s.

To quantify the impact of electric vehicles on hybrid sales, we conduct several counterfactual

exercises. In scenario 1, we remove all the EV models from the choice sets, and then predict
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the counterfactual market shares of the remaining fuel types for MY 2010-MY 2014. In scenario

2, we remove the federal income tax credits for EVs, which vary across EV models, and then

predict the market shares of all fuel types. In panel (a) of Figure 2, we plot the observed and

simulated market shares of hybrid vehicles. The dashed lines represent out-of-sample shares that

we obtained from Wards Automotive. The observed market share of hybrids grew substantially

from 2000 to 2010, then eventually leveled off by 2015, around the time that EVs began to

gain a non-trivial market share. As shown in the figure, the simulated market share for hybrids

within our sample shows little difference from the observed hybrid market share. We conclude,

therefore, that the introduction of EVs has had only a small impact on the sales of hybrids during

our sample period.

The federal government provided income tax credits of up to $3,400 for hybrid vehicles

purchased after December 31, 2005. All the hybrid vehicles purchased after December 31, 2010,

were not eligible for this credit. The termination of federal support for hybrid vehicles could have

discouraged the sales of hybrid vehicles. To investigate this impact, we conduct simulations to

estimate the counterfactual sales of hybrids if the federal government had continued subsidizing

hybrid vehicles.

We assume that all the hybrid vehicle models that were once subsidized by the government

continue being subsidized with the original subsidy amounts. We run three counterfactual

scenarios (panel (b) of Figure 2). In scenario 1, we assume the government continues subsidizing

hybrid vehicles during MY 2010-MY 2014 while also maintaining its subsidy for EVs. In scenario

2, the government continues subsidizing hybrids during MY 2010-MY 2014 but does not provide

any subsidy for EVs. In scenario 3, the government continues subsidizing hybrids, but EVs were

removed from the market. As implied by the results, the removal of the subsidy for hybrids

played a larger role in reducing the sales of hybrid vehicles, than did the competition from EVs.

Beresteanu and Li (2011) find that the federal income tax credit program for hybrids contributes

to 20 percent of the total sales of hybrid vehicles. This suggests that although the introduction

of EVs has slightly reduced the market share of hybrids, the elimination of the income tax credit

is the major factor in the decline of hybrid vehicle sales in recent years.

6.4 Alternative Subsidy Designs

As with other energy subsidy programs, the cost-effectiveness of EV incentives could be

undermined if the subsidies are poorly-targeted and are mainly taken up by wealthier consumers

who would buy EVs without subsidies. To further investigate the “additionality” of the current

25



federal income tax credits for EVs and whether better targeting could improve the effectiveness of

the program in terms of boosting EV demand, we conduct two policy simulations to compare the

current uniform subsidy with alternative subsidy designs that incorporate an income-dependent

structure.

Through CVRP program, California has been providing state-level subsidies to EV buyers

since 2010. The standard rebate amounts are $2,500 for BEVs and $1,500 for PHEVs. On March

29, 2016, CVRP started to implement income eligibility requirements such that households with

income levels above certain thresholds are no longer eligible for the EV rebate, while lower-

income households can claim an additional rebate of $2,000 on top of the standard rate. The

income caps for high-income households are set at $150,000 for single filers and $300,000 for joint

filers. The households whose income levels are less than or equal to 300 percent of the federal

poverty level are categorized as the lower-income consumers. The motivation for switching from

a uniform subsidy to an income-dependent subsidy is to make EVs more accessible to a larger

number of drivers, especially those in lower-income households and communities that are more

affected by air pollution. Since higher-income households are less sensitive to prices and have

a stronger preference for newest technologies, they are more likely to adopt EVs without the

subsidy. Therefore, providing more generous subsidies to lower-income households that are more

price-sensitive could potentially reduce the policy cost of increasing EV sales.

The current federal-level EV subsidy is not designed to favor low-income households. To

investigate whether an income-dependent structure could be more effective in terms of inducing

additional EV sales, we conduct two counterfactual exercises that compare the current federal EV

subsidy with alternative subsidy policies that mimic the design of CVRP. We remove the subsidy

for households with income levels above the defined thresholds in both alternative policies, and

we provide lower-income households with an additional subsidy of $2,000 in alternative policy 1

and $4,000 in alternative policy 2. The income cap and low-income groups are defined the same

way as in the CVRP.18

The simulation results are summarized in Table 10. Under the current uniform subsidy,

the government spent $0.73 billion in 2014 in subsidizing EVs, and a total number of 109,850

EVs were sold in the market, leading to an average spending of $6,630 per EV. With the

removal of the subsidy to the high-income group and increased subsidy of $2,000 to low-income

18The income cap is $150,000 for single filers and $300,000 for joint filers. Low-income households are defined
as those with income less than or equal to 300 percent of the 2018 federal poverty level. For households with one
to eight persons, the combined household income must be less than $36,420, $49,380. $62,340, $75,300, $88,260,
$101,220, $114,180, and $127,140 respectively (https://cleanvehiclerebate.org/eng/income-eligibility).
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households, EV sales would decrease by 701, a 0.6 percent decrease. However, the total subsidy

spending decreases from $0.73 billion to $0.64 billion, a 12.3 percent decrease. As a result, the

income-dependent subsidy reduces the average spending per EV from $6,630 to $5,870, which is

equivalent to a saving of $760 (11.4 percent) per EV. When high-income households are no longer

eligible for the federal subsidy with the amount up to $7,500, the total reduction of EV sales is

modest since the majority of wealthy consumers would still purchase EVs because of their low

price sensitivity. The increased EV sales from low-income consumers due to the increased rebate

of $2,000 also compensates part of the sales loss from high-income groups. Since the alternative

subsidy eliminates the spending on the “non-additional” portion of EV sales from high-income

households, the average spending of subsidizing each EV is reduced.

In the second alternative policy design, an additional subsidy of $4,000 is provided to low-

income households, and high-income groups whose incomes are above the thresholds are still not

eligible for the subsidy. The total EV sales under alternative policy 2 increase by 1,232 (1.12

percent) compared with the existing policy. Even though an additional subsidy of $4,000 is given

to low-income households, the total spending is $0.66 billion, which is 9.6 percent lower than the

total spending of the current subsidy. The average spending per EV is $5,970 for alternative 2,

leading to a saving of $660 (10 percent) per subsidized EV. The savings are still mainly from the

removal of the subsidies given to households with higher income, which would purchase EVs in

the absence of the subsidy. By inducing additional EV sales, all the subsidy designs result in a

reduction of CO2 emissions by replacing vehicles that are less fuel-efficient with EVs.

The current subsidy policy reduces the total CO2 emissions from the new vehicle fleet by

1.32 metric tons, and alternative policies 1 and 2 achieve a total CO2 emissions reduction of 1.29

and 1.37, respectively. The average cost of CO2 reduction is then estimated to be $552, $489,

and $484, respectively. Both of the alternative policies are less costly than the existing policy

in terms of reducing emissions. Although alternative policy 2 has a higher average subsidy cost

per EV than alternative 1, it achieves a lower cost per CO2 reduction by inducing more sales

of BEVs, which are more fuel-efficient. By providing more generous subsidies to low-income

households, small and mid-size BEVs become more affordable to those consumers who prefer

smaller vehicles. The BEV models that experience the highest sales increases in alternative 2 are

Nissan LEAF, Smart ForTwo EV, and Fiat 500e. Beresteanu and Li (2011) estimate the cost of

CO2 reduction to be $177 per ton from the income tax credits for hybrid vehicles. Our estimates

of the cost of CO2 reduction of EV subsides are larger, since the federal subsidy for EVs is more

than twice the amount of the hybrid subsidy. Our estimates also suggest that subsidizing EVs
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is a relatively costly way to achieve the emissions reduction goals.

Panel (b) of Table 10 compares the distributional impacts of the three subsidy designs. The

current uniform subsidy is regressive, since it benefits higher-income households more, as they are

more likely to purchase EVs and claim the subsidy. Both alternative policies are less regressive

than the existing policy, since they eliminate the subsidy for households whose income levels

are above the threshold. Alternative policy 2 benefits the bottom income group the most, as

it gives the most generous subsidy to low-income households. In summary, compared with the

current uniform subsidy, the income-dependent subsidy designs are more effective in stimulating

EV demand and reducing emissions, and they could also be better justified on distributional

grounds.

7 Conclusions

Promoting electric vehicles is considered an effective way to increase fleet fuel economy and

reduce emissions from on-road transportation. The environmental benefits of subsidizing EVs

critically hinge on the fuel efficiency of the substitute vehicles. Encouraging consumers who would

otherwise purchase another fuel-efficient vehicle to switch to EVs would not lead to significant

emissions reductions.

The paper provides a theoretical and empirical analysis on how substitution patterns between

vehicles of different fuel types affect the emissions impacts of electric vehicle policies. The

styled theoretical model shows that the emissions impacts crucially depend on own-price and

cross-price elasticities of demand, where the emissions of non-EVs with a larger cross-price

elasticity have a bigger impact on the emissions impacts of EVs. To characterize the price

elasticities and the substitution pattern, we estimate a flexible discrete choice model of new

vehicle demand that incorporate rich consumer heterogeneity. A key differentiating feature of

our demand model is that we identify random preference heterogeneity by leveraging the second-

choice information from household survey data, which greatly improve the precision of estimated

preference heterogeneity and implied substitution patterns. Our simulation results suggest that

79 percent of EVs replace gasoline vehicles with an average fuel economy of 27.2 mpg, and 12

percent of EVs replace hybrid vehicles with an average fuel economy of 45 mpg. If we had

simply assumed that each EV replaces an average gasoline vehicle of 23 mpg, we would have

overestimated the environmental benefits of EVs by 27 percent.

Our estimates imply that in 2014, the federal income tax credit for EVs led to a 28.8%
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increase in EV sales, the majority of which replaced vehicles that are relatively fuel-efficient.

The increased EV sales translate to $73.8 million of environmental benefits due to reduced

emissions of major air pollutants. The cost-effectiveness of the policy is hindered by the fact

that about 70 percent of consumers would purchase EVs in the absence of the subsidy, and the

subsidy mainly attracted consumers who would otherwise have purchased fuel-efficient gasoline

or hybrid vehicles. By comparing the current uniform subsidy with alternative policy designs that

limit eligibility and provide additional subsidies to low-income households, we find the income-

dependent subsidies could potentially increase the cost-effectiveness of the subsidy program and

are less regressive. Policies intended to promote EV technology and reduce emissions would

be more effective by better targeting marginal buyers and encouraging consumers who would

otherwise purchase gas-guzzlers such as large SUVs to adopt EVs.
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Table 1: Sales Shares and Available Models of Hybrids and EVs, 2000-2017

Hybrid EV Hybrid and EV No. of hybrid No. of EV
Years Share Share Share Models Offered models offered
2000 0.05 0.00 0.05 2 0
2001 0.12 0.00 0.12 2 0
2002 0.21 0.00 0.21 3 0
2003 0.29 0.00 0.29 3 0
2004 0.49 0.00 0.49 4 0
2005 1.23 0.00 1.23 8 0
2006 1.52 0.00 1.52 10 0
2007 2.15 0.00 2.15 15 0
2008 2.37 0.00 2.37 17 0
2009 2.77 0.00 2.77 21 0
2010 2.37 0.00 2.38 30 2
2011 2.09 0.14 2.23 33 4
2012 3.01 0.37 3.38 44 11
2013 3.19 0.63 3.82 50 17
2014 2.75 0.72 3.47 50 22
2015 2.21 0.66 2.87 51 28
2016 1.99 0.90 2.89 52 33
2017 2.13 1.14 3.27 45 41

Notes: The statistics presented are derived from Wards Automotive new vehicle sales data,

which provide annual estimates of sales by make, model, and fuel type. Shares are defined

as annual sales of the vehicle type divided by total annual sales. To compute statistics for

EVs, we define EV models that are identified in the Wards data as either plug-in electric

or battery electric vehicles.
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Table 2: Household and Vehicle Summary Statistics

2010 2011 2012 2013 2014 All Years
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Household income (1,000$) 146.78 107.92 160.10 134.60 130.65 104.49 136.78 115.16 136.21 107.96 140.45 114.16
Household size 2.62 1.21 2.67 1.20 2.71 1.23 2.66 1.21 2.65 1.21 2.66 1.21
With a college degree 0.62 0.49 0.62 0.49 0.63 0.48 0.65 0.48 0.65 0.48 0.64 0.48
Living in an urban area 0.65 0.48 0.64 0.48 0.66 0.47 0.66 0.47 0.68 0.47 0.66 0.47
Average commuting time (min.) 25.78 5.81 25.57 5.84 25.48 5.78 25.72 5.75 25.52 5.67 25.60 5.76
Average gasoline price ($) 2.75 0.16 3.42 0.42 3.65 0.27 3.67 0.22 3.57 0.23 3.48 0.40
Average vehicle price (1,000$) 31.17 11.39 32.00 11.49 33.16 11.28 34.19 12.84 34.98 14.00 33.46 12.54
Average mpg of the vehicle 23.38 5.57 28.51 18.65 36.80 27.87 39.78 27.05 38.06 25.56 34.81 24.50
Purchasing a light truck 0.49 0.50 0.49 0.50 0.41 0.49 0.36 0.48 0.41 0.49 0.42 0.49
Household observations 1,509 1,860 2,287 2,899 3,073 11,628

Horsepower/weight (hp/lb) 0.06 0.02 0.06 0.02 0.06 0.02 0.07 0.02 0.06 0.02 0.42 0.49
Wheelbase*width (in2) 8,399 1,165 8,339 1,173 8,313 1,193 8,289 1,167 8,314 1,172 8,330 1,173
% of ICE models 92.92 91.58 89.71 88.44 88.24 90.12
% of hybrid models 7.08 7.67 8.85 8.62 8.28 8.11
% of EV models 0.00 0.74 1.43 2.95 3.49 1.77
Vehicle choice set size 424 404 418 441 459 2146

Notes: The household-level data represent a sample (11,628 observations) drawn from the MaritzCX household survey data. Data of vehicle
attributes are obtained from Wards Automotive. Household income is converted to 2014 $ using the BLS calculator. Household size is the number
of individuals living in the respondent’s household. Gasoline prices are quarterly average national prices from the EIA. Average mpg of the vehicle
represents the average miles per gallon of the vehicles bought by the household sample. Horsepower/weight measures a vehicle’s acceleration, and
wheelbase*width measures a vehicle’s footprint. ICE (internal combustion engine) models include gasoline, diesel, and FFV models.
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Table 3: Summary of second choices for EV buyers

Make Model Fuel type Top 1 second choice Top 2 second choice
Honda Accord Plug In Hybrid PHEV Tesla Model S Toyota Prius
Ford C-Max Energi PHEV Toyota Prius Chevrolet Volt
Ford Fusion Plug In Hybrid PHEV Chevrolet Volt Toyota Prius Plug In
Toyota Prius Plug-in PHEV Chevrolet Volt Nissan LEAF
Chevrolet Volt PHEV Toyota Prius Nissan LEAF
Fiat 500 Electric BEV Nissan LEAF Mini Cooper
Mercedes-Benz B Class Electric BEV Nissan LEAF Ford Fusion Hybrid
Ford Focus Electric BEV Nissan LEAF Chevrolet Volt
Nissan LEAF BEV Chevrolet Volt Toyota Prius
Tesla Model S BEV Nissan LEAF Audi A7
Toyota RAV4 EV BEV Nissan LEAF Tesla Model S
Chevrolet Spark Electric BEV Nissan LEAF Chevrolet Volt
Smart fortwo electric BEV Nissan LEAF Chevrolet Volt
Mitsubishi i-MiEV BEV Nissan LEAF Ford Focus Electric
BMW i3 BEV Nissan LEAF Tesla Model S

Notes: The data summary is based on the sample of 2018 EV buyers from the MaritzCX household survey data.

The table summarizes the most popular alternative vehicle choices for the households that purchased different EV

models. Top 1 second choice indicates the most frequently reported alternative choices among the buyers of a

specific EV model. Top 2 second choice reports the second most reported alternative choices for each EV model.
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Table 4: Demand Estimation Results

Panel (a): Mean Utility Parameters

(1) OLS (2) IV
Coefficient S.E. Coefficient S.E.

constant -2.4560 0.1028 -2.4728 0.1113
log(price) -1.3497 0.2572 -1.7375 0.8164
horsepower/weight 1.9525 0.3211 2.2664 0.6870
weight 1.3393 0.2505 1.2943 0.2606
gallons/mile 0.1805 0.1283 0.1327 0.1529
AFV dummy -3.6229 0.5823 -3.6632 0.5942
EV dummy -2.9321 0.2652 -2.8913 0.2791
pickup dummy 0.4192 0.2863 0.7285 0.6828
model year 11 dummy 0.2743 0.1143 0.2763 0.1144
model year 12 dummy 0.3127 0.1075 0.3321 0.1153
model year 13 dummy 0.0559 0.1063 0.0687 0.1098
model year 14 dummy 0.1741 0.0920 0.1768 0.0929

Panel (b): Heterogeneous Utility Parameters

(1) 2nd Choice (2) No 2nd choice
Coefficient S.E. Coefficient S.E.

Observed Heterogeneity
log(price)/income -9.0659 0.4839 -15.9223 0.8972
family size*vehicle weight 0.0892 0.0207 0.2207 0.0315
urban*pickups -0.6678 0.0561 -0.7232 0.0705
urban*EV 0.2305 0.0482 0.3636 0.0583
gasoline price*gallons/mile -0.3078 0.0234 -0.6481 0.0410
education*EV 0.8309 0.0808 1.1437 0.0939
stations*EV 0.6728 0.1022 0.7164 0.1190

Random coefficients
gallons/mile 1.9291 0.0565 1.5953 0.9018
horsepower/weight 1.0865 0.0396 0.1136 0.2129
light trucks 0.2823 0.0254 0.7164 0.1099
AFVs 0.9493 0.0886 0.4692 0.3074

Average own-price Elasticity -2.67

Notes: The number of households is 11,628. The value of the simulated log-likelihood at

convergence is -144,129.4 based on 150 Halton draws per household. The instrumental

variables used to estimate the linear parameters are the difference and squared difference

in characteristics (fuel economy, horsepower, and weight) with other vehicles sold by the

same manufacturer and the squared difference in characteristics of vehicles sold by other

manufacturers. Specification (1) includes consumers’ second choices in the likelihood function

while specification (2) only incorporates consumers’ purchased choices in constructing the

likelihood.
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Table 5: A sample of own- and cross-price elasticities

Nissan Chevrolet Honda Ford Nissan Tesla Chevrolet Toyota Honda Ford Price
Products Sentra Cruze Civic Focus Leaf Model S Volt Prius Accord F-150 in 2014
Nissan Sentra (gas) -3.01 0.06 0.06 0.06 0.05 0.03 0.04 0.05 0.05 0.02 13,351
Chevrolet Cruze (gas) 0.07 -2.95 0.07 0.07 0.06 0.04 0.05 0.06 0.06 0.02 19,243
Honda Civic (gas) 0.12 0.11 -2.91 0.11 0.10 0.07 0.08 0.09 0.09 0.03 20,106
Ford Focus (gas) 0.07 0.06 0.06 -2.97 0.05 0.04 0.05 0.05 0.05 0.02 20,026
Nissan LEAF (BEV) 0.01 0.01 0.01 0.01 -2.83 0.02 0.03 0.03 0.01 0.00 29,799
Tesla Model S (BEV) 0.00 0.00 0.00 0.00 0.01 -2.37 0.01 0.01 0.00 0.00 74,935
Chevrolet Volt (PHEV) 0.01 0.01 0.01 0.00 0.02 0.01 -2.66 0.01 0.00 0.00 35,203
Toyota Prius (HEV) 0.04 0.04 0.03 0.03 0.10 0.07 0.09 -2.68 0.03 0.01 24,027
Honda Accord (HEV) 0.12 0.12 0.12 0.12 0.10 0.09 0.10 0.10 -2.67 0.04 24,436
Ford F-150 (gas) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 -2.53 29,806

Notes: The table reports a sample of own- and cross-price elasticities which are calculated based on the parameter estimates reported in Table 4 with

the IV specification of the mean utility parameters and second choice specification of the heterogeneous utility parameters. The elasticity estimates are

calculated with the same individual weights and Halton draws used in the demand estimation. More details are provided in Appendix C. The last column

in the table gives the average transaction price in 2014 for those selected vehicle models. The sales-weighted average elasticity among all 2,146 products

in five model years is -2.75.
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Table 6: Own and Cross-Price Elasticity of Demand Estimates by Fuel Type

BEV PHEV Hybrid Gasoline Diesel FFV

BEV 0.013 0.018 0.015 0.004 0.003 0.002
PHEV 0.012 0.011 0.009 0.002 0.002 0.002
Hybrid 0.037 0.036 0.029 0.009 0.007 0.006
Gasoline 0.028 0.027 0.028 0.029 0.026 0.027
Diesel 0.003 0.004 0.004 0.006 0.007 0.007
FFV 0.012 0.012 0.013 0.021 0.024 0.024

Own Price Elasticity -2.751 -2.649 -2.705 -2.761 -2.606 -2.680

Notes: The table summarizes the sales-weighted average own- and cross-price elasticity

estimates by fuel type. The elasticity estimates are based on the parameter estimates

reported in Table 4. BEV stands for battery electric vehicle, which represents vehicles that

operate only with electricity, including a Tesla Model S. PHEV stands for plug-in hybrid

vehicle, which represents vehicles that are able to operate with either electricity or gasoline,

including a Honda Accord plug-in hybrid. FFV stands for flex-fuel vehicle, which represents

vehicles that are able to operate on E85 fuel. On average, a 1 percent increase in a BEV

model will increase the sales of other BEV models by 0.013 percent.
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Table 7: Sales and Incidence Impacts of Removing EVs

Panel (a): Sales Impact

Fuel types Sales change Percentage Average MPG
Gasoline 86114 78.7% 27.2
Hybrid 13167 12.0% 45.1
Diesel 2594 2.4% 27.4
FFV 7574 6.9% 22
All non-EVs 109449 100% 28.9

Among gasoline vehicles Sales change Percentage
low mpg (<19) 1,972 2.3%
medium mpg (>19 & < 25) 20,409 23.7%
high mpg (> 25) 63,733 74.0%

Panel (b): Welfare Impact

Income quintile
(1) (2) (3) (4) (5)

Average welfare loss per household ($) -33.41 -42.38 -50.35 -58.8 -73.51

Total welfare loss (million $) -670.3

Notes: The table summarizes the sales impact of removing all EVs from the choice set in

MY 2014 on other vehicles of different fuel types and its welfare impact on consumers. The

percentage column in panel (a) reports the percentage of the total sales increase from non-EV

models that each fuel type contributes to. Average mpg represents the average miles per gallon

of the vehicles that experience sales increases as a result of the removal of EVs. In panel (b),

the average welfare loss per household is calculated as the change in consumer surplus as shown

by Small and Rosen (1981). Total welfare loss is calculated as average consumer surplus loss

multiplied by the market size of new vehicles.
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Table 8: Sales and Incidence Impacts of Removing EV Subsidies

Panel (a): Sales Impact

Fuel types Sales change Percentage change
EV -31501 -28.8%
BEV -18861 -32.6%
PHEV -12640 -24.5%
Other fuel types Sales change Percentage Change Percentage of EV sales reduction Average MPG
Gasoline 24867 0.23% 78.9% 27.2
Hybrid 3728 0.92% 11.8% 45
Diesel 741 0.17% 2.4% 27.5
FFV 2165 0.15% 6.9% 22
All non-EVs 31501 0.24% 100% 28.9

Panel (b): Welfare Impact

Income quintile
(1) (2) (3) (4) (5)

Average welfare loss per household ($) -9.38 -10.81 -12.30 -13.93 -16.75

Total welfare loss (million $) -165.2

Notes: The table summarizes the market and consumer welfare impact of removing the federal-

level income tax credit for EVs in the year of 2014. In panel (a), the percentage of EV sales

reduction represents the percentage of the original EV purchasers that switch to a specific non-

EV fuel type if the federal subsidy were removed. Average mpg represents the average miles per

gallon of the vehicles that experience sales increase due to the removal of federal EV subsidy. In

panel (b), the average welfare loss per household is calculated as the change in consumer surplus

as shown by Small and Rosen (1981). Total welfare loss is calculated as average consumer surplus

loss multiplied by the market size of new vehicles.
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Table 9: Environmental Benefits and Substitution

Actual benefits

Gasoline consumption saved (billion gal.) 0.15
CO2 emissions saved (billion lb.) 2.91
Equivalent reduction of gasoline cars 1,750

Counterfactual benefits if replacing a 23-mpg gasoline car

Gasoline consumption saved (billion gal.) 0.19
CO2 emissions saved (billion lb.) 3.74
Equivalent reduction of gasoline cars 2,250

Notes: The table reports the estimated lifetime emissions reduction achieved

by the federal-level income tax credit for EVs in 2014, by comparing the actual

fleet with the counterfactual fleet when the federal subsidy is removed. The

estimation of the energy reduction from the increased EVs due to subsidy

is based on the miles per gallon gasoline equivalent (MPGe) provided by

EPA. Equivalent reduction of gasoline cars represents the equivalent number

of gasoline cars with a fuel economy of 23 mpg (2014 average level) that can

be reduced by the increased EVs due to subsidy, in terms of emissions.
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Table 10: Comparison of Current Subsidy with Alternative Designs

Panel (a): Sales and Environmental Impact

Current subsidy Alternative 1 Alternative 2
Total spending (billion $) 0.73 0.64 0.66
Total EV sales 109,853 109,152 111,085
Total BEV sales 57,791 57,554 58,900
Total PHEV sales 52,062 51,598 52,185
Average spending per EV ($) 6,630 5,870 5,970
Total CO2 reduction (mil. metric tons) 1.32 1.29 1.37
Cost of CO2 reduction ($/metric ton) 552 498 484

Panel (b): Welfare Impact

Welfare change per household ($)
Income Quintile Current subsidy Alternative subsidy 1 Alternative subsidy 2
1 9.38 11.73 14.73
2 10.81 11.07 11.40
3 12.30 12.30 12.30
4 13.93 13.29 13.29
5 16.75 8.99 8.99
Total welfare change 165.2 million 154.4 million 163.9 million

Notes: The current subsidy policy provides uniform tax credits to all EV buyers. Both alternatives 1

and 2 set an income cap such that the highest income group is not eligible to claim the subsidy. Further,

Alternatives 1 and 2 provide an additional $2,000 and $4,000, respectively, to lower-income households,

compared with the current policy. In panel (b), the income groups are defined the same way as for the

income eligibility implemented in the CVRP in California. The welfare change per household is calculated

as the change in consumer surplus as shown by Small and Rosen (1981). Total welfare change is calculated

as average consumer surplus change multiplied by the market size of new vehicles.
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Figure 1: Consumer Second Choices by Fuel Type

(a) Gasoline vehicle buyers (b) Hybrid vehicle buyers

(c) PHEV buyers (d) BEV buyers

Notes: The figure plots the frequency of alternative vehicle choices by fuel type for different groups of consumers based on the survey responses of

the 11,628 households in the sample. The number of observations for the buyers of gasoline vehicles, hybrid vehicles, PHEVs and BEVs is 9,295,

315, 1,246, and 772, respectively.

40



Figure 2: The Effect of Electric Vehicles on Hybrid Sales

Panel (a) No subsidy for hybrids

Panel (b) With subsidy for hybrids

Notes: the figure plots the impact of the introduction of EVs and EV subsidy on

the market shares of hybrid vehicles. The dashed lines represent out-of-sample shares

obtained from Wards Automotive. In Panel (a), Scenario 1 removes EV models from

the market. Scenario 2 removes the federal income tax credits for EVs. In Panel (b), we

assume that the government continues subsidizing hybrid vehicles between 2010-14 with

their original subsidy amount in all the three scenarios. Scenario 1 keeps the current EV

subsidy. Scenario 2 removes EV subsidy and Scenario 3 removes EVs from the market.
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Appendices

A Additional Literature Review

Our analysis contributes to the literature on the diffusion of vehicles with advanced fuel

technologies (e.g., hybrid vehicles) and alternative fuels (e.g., FFVs). Kahn (2007), Kahn and

Vaughn (2009), and Sexton and Sexton (2014) examine the role of consumer environmental

awareness and signaling in the market for conventional hybrid vehicles. Heutel and Muehlegger

(2015) study the effect of consumer learning in hybrid vehicle adoption, focusing on different

diffusion paths of Honda Insight and Toyota Prius. Several recent studies have examined the

impacts of government programs at both the federal and state levels in promoting the adoption of

hybrid vehicles, including Diamond (2009), Beresteanu and Li (2011), Gallagher and Muehlegger

(2007), and Sallee (2011). These studies consistently find that better environmental awareness,

higher gasoline prices, and more generous incentives are associated with higher adoption of

“green” vehicles. We add to this literature by estimating substitution patterns among gasoline-

powered vehicles, hybrids, and EVs. To the best of our knowledge, our results are the first

to provide cross-price elasticities among these vehicle types, which will allow researchers and

policy-makers to determine how subsidy designs alter the sales mix of different power types.

Our analysis relates to the literature that studies the cost-effectiveness of energy subsidy

programs. Allcott et al. (2015) find that some energy efficiency subsidies are poorly-targeted

and are primarily taken up by consumers who are wealthier and more informed about energy

costs. They conclude that restricting subsidy eligibility could increase the welfare gains from

those subsidies. Boomhower and Davis (2014) find that half of all participants would have

adopted the energy-efficient technology even with no subsidy. Ito (2015) shows that most of

the treatment effects of incentives come from consumers who are closer to the target level of

consumption, and the treatment effect is not significantly different from zero for consumers

who are far from the target level. Fowlie et al. (2015) find evidence that high non-monetary

costs contribute to the low participation of energy efficiency investment for households and

there are demographic differences between households that chose to participate on their own

and those that were encouraged to participate in the program by encouragement intervention.

Langer and Lemoine (2018) investigate the efficient subsidy schedule for durable goods in a

dynamic setting and show that an efficient subsidy often increases over time and that consumers’

rational expectations of future subsidies and technological progress could substantially increase
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public spending. By empirically estimating a national vehicle demand model in a static setting

and obtaining consumer preference parameters, we are able to run counterfactual simulations

to examine the cost-effectiveness of the current EV subsidy design and compare it with other

possible designs.

B Defining the Simulated Log-Likelihood and Gradient

The utility of household i purchasing vehicle model j is defined as:

uij =
K∑
k=1

xjkβ̄k − α1lnPj + ξj︸ ︷︷ ︸
δj

+α2
lnPj
Yi

+
∑
kr

xjkzirβ
o
kr +

∑
k

xjkvikβ
u
k︸ ︷︷ ︸

µij

+εij,

where δj is the mean utility of vehicle model j, which is constant across consumers, and

µij is the individual-specific utility component related to observed and unobserved consumer

demographics. Let θ = {βokr, βuk} be the non-linear parameters that are estimated from the first

stage. The last component, εij, is the idiosyncratic preference of household i for vehicle model j

and is assumed to have an i.i.d. type 1 extreme value distribution. The probability of household

i purchasing j and considering h as the second choice is:

Pijh =

∫
exp[δj(θ) + µij(θ)]

1 +
∑

g exp[δg(θ) + µig(θ)]
· exp[δh(θ) + µih(θ)]∑

g 6=j exp[δg(θ) + µig(θ)]
f(v)dv.

Note that the choice set of the second choice excludes the purchased product j. Since

the random taste vik is not observed, the probability above is calculated by integrating over

the distribution of the unobserved taste v. This high-dimensional integration is estimated via

simulation where R denotes the number of simulation draws and the subscript r denotes a specific

random draw r:

Pijh =
1

R

R∑
1

exp[δj(θ) + µijr(θ)]

1 +
∑

g exp[δg(θ) + µigr(θ)]
· exp[δh(θ) + µihr(θ)]∑

g 6=j exp[δg(θ) + µigr(θ)]

=
1

R

R∑
1

Ajr
Br

· Ahr
B−jr

=
1

R

R∑
1

Pijr · P−jihr ,

47



where B−jr = Br − exp[δj(θ) + µijr(θ)], which denotes the choice set for the second choice

conditional on choosing j as the first good, and P−jihr is the probability of choosing h from a choice

set that excludes j conditional on a set of random draws r.

Let lnRi = lnPijh = lnPij + lnP−jih = ln( 1
R

∑R
1 Pijr) + ln( 1

R

∑R
1 P

−j
ihr), the individual log-

likelihood of household i choosing the observed purchased model j and considering the observed

second choice h. The log-likelihood function of the entire sample for a single market is therefore:

lnL =
N∑
i=1

lnRi.

The derivative of the individual log-likelihood function with respect to θk is
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where Pigr = Agr

Br
, which is the probability of i choosing g as first choice conditional on a random

draw r. P−jigr = Agr

B−j
r

, which is the probability of i choosing g as a second choice from the choice set

that excludes the first choice j conditional on a random draw r. δj(θ) is estimated via contraction

mapping and does not have an analytical solution. To estimate
∂δj(θ)

∂θk
, we use implicit function

theorem:
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∂δj(θ)
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where Ŝj is the predicted market share for model j, and
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∂δh(θ)
∂θk

is estimated by the same method. The score matrix is then:

∂lnR
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Then, averaging the above matrix across households using the sample weight for each

household gives the gradient of the likelihood function, which is the average of the scores across

individuals:

∂lnL

∂θ
=
[ ∑N

i=1wi ·
∂lnPijh

∂θ1
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where wi is the sample weight for household i.

C Derivation of Own- and Cross-Price Elasticities of

Demand

The predicted market share for model j is the average of individual probabilities of purchasing

vehicle model j:

sj =
1

N

N∑
i=1

Pij =
1

N

N∑
i=1

exp(uij)

1 +
∑

g exp(uij)
.
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The partial derivative of individual probability of purchasing j with respect to the price of j

is:

∂Pij
∂pj

=
exp(uij)

∂uij
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.

The own-price elasticity of product j is:

∂lnsj
∂pj

=
pj
sj
· 1

N

N∑
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(Pij − P 2
ij)
∂uij
∂pj

.

The partial derivative of individual probability of purchasing j with respect to the price of

model k is:

∂Pij
∂pk

=
0− exp(uij)exp(uik)∂uik∂pk

(1 +
∑J

j=1 exp(uij))
2

= −PijPik
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.

The cross-price elasticity of product j with respect to price of product k is thus:

∂lnsj
∂pk

=
pk
sj
· 1

N

N∑
i=1

−PijPik
∂uik
∂pk

.
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D Additional Tables and Figures

Table D.1: Vehicle emissions per 100 miles (National average grid mix)

Vehicle Fuel Type GHG Emissions
Gasoline 87 lb. CO2

Hybrid Electric 57 lb. CO2

Plug-in Hybrid Electric 62 lb. CO2

All electric 54 lb. CO2

Notes: The data are from the AFDC, https://www.afdc.energy.

gov/vehicles/electric_emissions_sources.html (accessed on

October 15, 2018). The emissions from electric vehicles are

calculated based on the national average fuel sources used in

electricity generation in the United States.
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Table D.2: Summary Statistics of Household Data by Fuel Type

EV Buyers Non-EV Buyers
Mean S.D. Mean S.D.

Household income (1,000$) 180.98 134.73 131.94 107.44
With a college degree 0.81 0.40 0.60 0.49
Charging stations 0.87 1.76 0.29 0.93
Living in an urban area 0.78 0.41 0.64 0.48
Average gasoline price ($) 3.73 0.25 3.43 0.40
Average vehicle price (1,000$) 32.58 13.28 32.37 12.03
Leasing the vehicle 0.44 0.50 0.15 0.36
Observations 2,018 9,610

Notes: The data represent the 11,628 observations drawn from the MaritzCX

household survey data. Household income is converted to 2014 $ using the

BLS calculator. With a college degree indicates whether the purchaser of the

vehicle has obtained a college degree. The number of charging stations is the

cumulative sum of the charging stations that have been built in the survey

respondent’s neighborhood (zip code) by the purchase date of the vehicle.

The charging stations data are collected from the AFDC. Gasoline prices are

monthly average regional prices from the EIA. Average vehicle price is the

average transaction price in year when the vehicle was purchased.

Table D.3: Environmental Benefits of EV Subsidy

Pollutants Reduction (tons) Damage ($/ton) Damage reduction (million $)
CO2 1,321,767.1 36.0 47.6
VOC 3,695.2 1,482.0 5.5
NOx 2,478.3 6,042.0 15.0
PM2.5 14.8 330,600.0 4.9
SO2 25.2 35,340.0 0.9
All 73.8

Notes: The table summarizes the environmental benefits of the federal-level income tax credit

for EVs, with a total spending of $725.7 million in 2014. The environmental estimates are based

on the external cost savings from emissions reduction of various pollutants due to less petroleum

consumption. The emissions rates and associated damage values are obtained from EPA (2008).
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Figure D.1: Own-price Elasticity Estimates

Notes: The figure plots each vehicle model’s own-price elasticity against its average transaction price in 2014.

The elasticity estimates are calculated based on the parameter estimates reported in Table 6, and are calculated

with the same individual weights and Halton draws used in the demand estimation.
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